
Building trust: the journey
towards security with

open-source STM32 MPU
solutions

Contents
	 5	 Defining security
	 3	 Role of standardization organizations	
	 5	 Protecting OEM assets has never been

this simple thanks to STM32MP1 and
STM32MP2 solutions	

	 6	 Secure boot: why is it important?	
	 7	 Public – private key authentication	
	 8	 STM32 MPU firmware signature process
	 8	 Firmware authentication
	 9	 The chain of trust and how it works
	11	 Security must be considered from the start
	11	 Secure secret provisioning	
	13	 Hardware security certification options
	14	 How ST eases security certifications	
	14	 High-security certifications for banking

applications
	16	 The security and open-source software

dilemma
	18	 The added value of open-source software
	19	 How you can benefit from the STM32

ecosystem and the open-source
community

	21	 Managing the IP licensing scheme
	21	 ST partner program: benefit from a wide

range of products and services	
	22	 Conclusion
	22	 Useful resources

3

Standardized cryptographic algorithms offer numerous advantages over the
concept of "security through obscurity." Standardized algorithms undergo rigorous
public scrutiny by the cryptographic community, which helps to identify and rectify
potential weaknesses, leading to stronger and more reliable security measures. This
peer review process of open-source algorithms is critical because it leverages the
collective expertise of cryptographers worldwide, ensuring that the algorithms are
robust against various attack vectors.
In contrast, "security by obscurity" relies on keeping the details of a security
mechanism secret, with the hope that if attackers are unaware of the system's inner
workings, they will be less likely to find vulnerabilities. However, this approach is
fundamentally flawed because it assumes that secrecy alone is sufficient to maintain
security. Once the obscurity is compromised, the entire system's security can be
jeopardized.
Furthermore, standardized algorithms are typically designed to be adaptable and
scalable, allowing for seamless integration into different systems and applications.
They also facilitate interoperability between various platforms and services, which is
essential in our interconnected digital world. By using well-established and openly
vetted cryptographic standards, organizations can ensure a high level of security that
is based on proven principles and practices, rather than relying on the uncertain and
risky strategy of keeping their security methods a secret.
This whitepaper addresses the various security challenges of embedded applications
and how ST's open-source software implementation facilitates secure solutions
without increasing costs. It introduces ST's OpenSTLinux distribution, which
leverages the Trusted Firmware-A (TF-A), Trusted Firmware-M (TF-M), OP-TEE,
and U-Boot open-source communities to establish a chain of trust, thereby helping
companies to minimize development time and expenses.

https://www.st.com/en/embedded-software/stm32-mpu-openstlinux-distribution.html?ecmp=tt39288_gl_link_jun2024

4

DEFINING SECURITY
The increasing number of connected devices makes them an attractive target for attackers. OEMs must develop solutions that
protect their products against a certain number of threats:

•	Eavesdropping: Accessing information without authorization without any modification to the system

•	Tampering: Modifying of the information or product without authorization from the manufacturer or end user

It is for these reasons that engineers must take into account certain security concepts in their designs:

•		Confidentiality: To prevent data from being retrieved by unauthorized people

•		Integrity: To ensure data has not been modified

•		Authentication: Verify the data is coming unmodified from a known source

•		Availability: To make data accessible whenever it is needed

•		Non-repudiation: Assurance that a subject cannot deny a commitment or action after having performed it

•		Anti-rollback: This feature prevents the loading of signed code that is older than the current version. Designed to prevent the
exploitation of old vulnerabilities which have been fixed in newer versions, an anti-rollback mechanism prevents malicious
people from reverting to a previous version.

ROLE OF STANDARDIZATION ORGANIZATIONS
Security in systems is one of the technologies which evolved the most
in the past decade, moving from a “nice to have” to a “must have”.

Security started with “security by obscurity” where the security relied
on the high-level skills of the architect. Now most security solutions are
based on security standards. Still some systems continue to depend
on “security by obscurity” due to certain constraints including footprint
and performance.

Security standards rely on cryptography defined by standardization
organizations, such as the United States’ National Institute of
Standards and Technology (NIST), the French Cybersecurity Agency
(ANSSI), and the German Federal Office for Information Security (BSI).

We must assume
the enemy knows the
system being used.

Claude Shannon, the "father of information
theory"

It should not
require secrecy, and it

should not be a problem if
it falls into enemy hands.

Kerckhoffs's principle, Auguste Kerckhoffs
(Dutch cryptographer)

New cryptographic algorithms are based on Claude Shannon’s Communication Theory of Secrecy Systems that states “to
make the problem mathematically tractable, we must assume that the enemy knows the system being used”.

Based on that principle, before standardizing a new cryptographic algorithm, NIST organizes an open public competition
where candidate algorithms can be submitted. Proposals are evaluated by the community of experts and the NIST. Eventually
NIST selects one or more proposals for standardization.

These steps are designed to ensure the selected cryptographic algorithm is robust from a mathematical standpoint that it is
public.

The baseline of device security is the hardware as security levels increase with each generation of hardware, motivated by
multiple parameters: market demand, regulation, threats, competition, certification, and geopolitics.

The first steps were to increase the security of the software as it was the easiest. Then the hardware was hardened to resist
certain attacks.

Today, new hardware designers must consider security as a main
requirement with several objectives depending on the targeted market
vertical.

In order to demonstrate the security level of certain products or
solutions, associations and standardization bodies have defined
evaluation schemes based on the three parties involved: Developer,
Laboratory, and Certification body. During these evaluation processes,
products must comply with functional specifications and, depending
on the certification level, penetration tests may be required. In some
cases, the scope may be extended to include the development and
manufacturing phases.

5

As an analogy, implementing security in airports requires
major investments in infrastructure, training personnel and
customer acceptance. Likewise, deploying security within
an IT network requires a dedicated development strategy
with specific hardware and software features. Engineering
capabilities must be developed to acquire strong expertise
within the security domain. In order to stay one step ahead
of threats, end users must accept the constraints of having
slower networks and enhanced barriers to access different
services.

Over the last 30 years, embedded security was snubbed
in many domains as its added value was not completely
understood. But the situation has changed and companies
are now more eager to invest in security to obtain the right
technical expertise because they realize that their return on
investment is less jeopardized with a secure approach.

At another level, technical security in the embedded market
has the same constraints as those of airport or IT network
environments. The example that best illustrates the need for
robust security in IoT connected devices (such as printers,
IP cameras and others) is the Mirai malware. This malware
and its many variants turned unprotected network devices
into remotely controlled bots to conduct Distributed Denial of
Service attacks on networks disrupting popular websites such
as eBay, Netflix, GitHub, and PayPal to name a few.

Over the last decade, the continuous increase of various
attacks drove IoT and Industry 4.0 companies to realize
that security breaches might hurt their financial results
and jeopardize their success. The time has come to drive
investments on required infrastructure, IP development and
deployment of industry initiatives. While the tide has turned,
international standards and certification bodies dedicated
to cybersecurity in the domains of IoT and Industry 4.0

among others have been created (PSA, SESIP, IEC 62443,
per vertical organization, and many others) to make sure
assets get properly protected against threats in the context
of embedded devices, all along the life cycle of the devices.
Indeed, in addition to the financial investments linked to
development, OEMs must find innovative ways to accelerate
the development phase in order to get their product to market
more quickly and gain market share.

To help companies reduce development time and costs, ST
proposes a solution based on open-source software, ST’s
OpenSTLinux distribution, providing a chain of trust built
around the Firmware-A (TF-A), Firmware-M (TF-M), OP-TEE
and U-Boot open-source communities.

While this proposal may seem surprising, there are many
reasons why OEMs should leverage open-source software to
protect their code while at the same time reducing the cost
of the development phase. System designers will appreciate
the level of security that can be easily added to their solution
using STM32 microprocessors and their comprehensive
development ecosystem leveraging years of experience of ST,
partners and the community.

Among the different security features provided by the
STM32MP1 and STM32MP2 platforms, this whitepaper
focuses on implementing secure boot technology within
embedded applications. While describing the different
security challenges involved within the secure boot, the
document explains how ST facilitates the implementation of
secure embedded solutions without raising the bottom line
thanks to an open-source software implementation.

PROTECTING OEM ASSETS HAS NEVER BEEN THIS SIMPLE THANKS TO STM32 MPU
SOLUTIONS

Regardless of the assets that need protection, security has always been difficult to implement.
From end users to the engineering community and investors, the value chain has often shown some
reluctance to accept and implement secure solutions.

https://www.st.com/en/embedded-software/stm32-mpu-openstlinux-distribution.html?ecmp=tt39288_gl_link_jun2024
https://www.st.com/en/embedded-software/stm32-mpu-openstlinux-distribution.html?ecmp=tt39288_gl_link_jun2024
https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-series.html?ecmp=tt39288_gl_link_jun2024
https://www.st.com/en/microcontrollers-microprocessors/stm32mp2-series.html?ecmp=tt39288_gl_link_jun2024

6

SECURE BOOT: WHY IS IT IMPORTANT?
To ensure developers can have confidence in the security
of their applications, the following sections address the key
security requirements needed to protect the company's
assets and end users' data at a minimum cost. These
processes are also part of the STM32Trust, an innovative
security framework combining ST’s expertise, ecosystem and
security services. To develop secure embedded solutions in
a cost-effective manner, certain important concepts must be
considered. When designing an IoT product with embedded
security, both authenticity and anti-cloning concepts must be
well understood in order to protect OEM and end user assets.

Secure boot provides the first stages of security in a device.
Responsible for ensuring the global chain of trust of the
system, it uses advanced cryptographic technologies to
verify the integrity and the authenticity of the firmware before
starting the main application. This is designed to thwart
attacks that consist in modifying the firmware stored in
external mass storage to inject malware, disable security
features, dump software for product cloning, etc.

PUBLIC – PRIVATE KEY AUTHENTICATION
The first step is to generate the private-public key pair for the secure boot. After generating the key pair, the private key needs
to be stored in a highly secure environment in the OEM or subcontractor manufacturing site and never in the product nor at
the third-party manufacturing site. If by some means, a malicious person gets access to the private key, they will be able to
modify the code and re-sign it without being detected. The public key is used by the microprocessor at each boot to verify the
signature of the OEM firmware located in the Flash memory and ensure its authenticity. The signature is generated only once
by the OEM using the private key!

What is STM32Trust?
A robust multi-level strategy to enhance security in embedded systems, STM32Trust is
a security framework that offers a complete toolset for code and execution protection
and ensures IP protection, firmware authenticity and secure firmware updates, as well as
secure data and the use of validated credentials.
STM32Trust helps protect your assets by identifying and analyzing threats and
vulnerabilities to define protections and countermeasures and mitigating them with
ready-to-use security functions and services.
To further ensure a high level of security, STM32Trust is based on two product
certification schemes aligned with numerous national and application security standards:
•	Security Evaluation Standard for IoT Platforms (SESIP) published by GlobalPlatform for

IoT devices
•	PSA Certified (Platform Security Architecture) by Arm® protecting IoT devices

WHAT IS HASHING?
Based on a mathematical algorithm, hashing
transforms the data in file into a fixed-size bit string.
Changing even a single bit in a file will significantly
change its hash value. This technique is often used
to verify the integrity of a file after it has been
transferred from one place to another; by comparing
the hash values of both files, it is easy to determine
if the files are different. The main advantages of
hashing are:
•	No way to determine the original message from

the hash
•	Resistance to collision of hash value: There is no

practical algorithmic way other than brute force to
find two modified messages with identical hash
values.

WHAT IS PUBLIC-KEY CRYPTOGRAPHY?
This is a cryptographic scheme that uses pairs
of keys (public and private) to prevent cloning
and ensure the authenticity of their device. The
private key is never exchanged with anyone,
while the public key is designed to be shared. The
mathematical foundation ensures it is not feasible to
deduce the private key from the public key.
Messages are signed with the private key, and
signatures can be verified by the receiving entity
using the corresponding public key. This mechanism
ensures a very high level of protection.

https://www.st.com/content/st_com/en/ecosystems/stm32trust.html?ecmp=tt39288_gl_link_jun2024

7

STM32 MPU FIRMWARE SIGNATURE PROCESS
The private key is used to generate the signature of the firmware while
the public key will be hashed and stored in internal and one-time
programmable (OTP) memory. These steps enable the authentication
phase during the boot process. The use of STM32CubeProgrammer
makes it easier to accomplish these steps. A two-step sequence is
required to sign the firmware within a secure environment (a secured
and protected PC in the OEM's or trusted subcontractor's site):

•	A hash function hashes the product’s firmware and generates a hash
value with a fixed length.

•	The Elliptic Curve Digital Signature Algorithm (ECDSA) is used to
generate the firmware’s signature by combining the hash value with
the private key.

This initial code signature step paves the way to ensure the integrity
and authentication of the boot images used during the initial chain of
trust.

FIRMWARE AUTHENTICATION
The firmware authentication process starts by authenticating the
public key stored in the external Flash memory in conjunction with the
internal OTP content (Figure 1). The hardware (OTP) and boot-time
computed hash values must equal each other. If the hash values do not
match, this means that the public key has been tampered with. This
may be the result of a malicious person trying to modify the product’s
firmware. If the hash values match, the public key is authenticated. The
mathematical properties of public key cryptography (public and private
keys) ensure the device boots only if the firmware is authenticated. Any
attempt to break the integrity of the firmware layers breaks the chain
of trust and prevents the device from booting. The digital signature
process, including the above steps is summarized in Figure 1.

DIGITAL SIGNATURE DEFINITION
The digital signature process ensures the
integrity and authenticity of the original firmware
downloaded during the product manufacturing
phase. A firmware authentication process is
needed with asymmetric cryptography where a
public key will be stored into the product while
the private key is used to sign the firmware,
stored in the product's non-volatile memory.
The private key must be well protected at the
manufacturing site.
During the boot sequence, the firmware is
hashed and compared to the signature to
assess the integrity and authenticity of the OEM
firmware.
The manufacturer’s final objective may not
be to protect the firmware’s confidentiality,
but rather to prevent malicious entities from
either duplicating the product (anti-cloning
mechanism) or adding malware to modify the
product's purpose. Signing the code prior the
manufacturing phase links this code to the final
product.
By design, this prevents any potential malware
added during the product’s lifespan from
persistently modifying the product and its use.
The code-signing process ensures the integrity
and authenticity of the firmware executed in the
device at start-up, including even the customer
applications.

Yes Yes

NoNo

Continue

Fail: No Boot

FW Public key verification:

Are 2 values equal?

1. Load public key from flash
2. Compute hash (public key)
3. Compare with value stored in OTP

FW Authentication

1. Load FW’s image from Flash
2. Compute signature (FW, Public key)
3. Compare with value stored in Flash

Are 2 values equal?

Figure 1: Firmware Authentication Mechanism on STM32MP1

The STM32MP1 and STM32MP2 reference boot sequence starts with the authentication of the First Stage Boot Loader (TF-A)
followed by the Secure OS (OP-TEE) securely initializing the STM32MP1 and STM32MP2, and finally the Second Stage Boot
Loader (U-Boot) loads the Linux kernel.

The flexibility and implementation of the STM32MP1 and STM32MP2 along with the OTP allows the chain of trust to
enable authentication from the ROM code up to and including OEM applications. STM32 MPUs are able to embed various
authentication keys to support key revocation functions.

https://www.st.com/en/development-tools/stm32cubeprog.html?ecmp=tt39288_gl_link_jun2024

8

FIRMWARE ENCRYPTION
STM32MP13 and STM32MP25 microprocessors
support an encrypted First Stage Boot Loader
(FSBL) which ensures the confidentiality of the
system's data from the ground up.

https://wiki.st.com/stm32mpu/wiki/STM32_MPU_ROM_
code_secure_boot#Image_encryption

THE CHAIN OF TRUST AND HOW IT
WORKS
During the boot-up sequence, the authentication
process takes place between one stage and another
to finally create the chain of trust sometimes known
as the secure bootchain, for authentication and
integrity purposes before reaching runtime.

The chain of trust, or secure bootchain,
implements all the anti-rollback, authentication,
anti-eavesdropping, and integrity mechanisms
used to protect OEM and user data once the
product is available in the field.

ROM Code

Public Key 2 Public Key n

Firmware 1 Firmware 2 OEM Code

Public Key 1

Figure 2: Use of public keys to ensure code authentication

Figure 3: Trusted Foundation from ST - STM32MP1 reference bootchain sequence (chain of trust)

STM32MPx Device

System DRAM
External DRAM

ROM Code

First stage boot loader

Second stage boot loader

Applicative OS

Application

Secure OS

Trusted application

Public Key 1

Public Key 3

Public Key 4

Public Key 5

Public Key 2

Public Key 6

All boot stages up to the Second Stage Boot Loader are authenticated based on the OEM's public key. TF-A offers a PKI
(public key infrastructure) starting from the OEM's public key to manage a chain of trust for the loaded binaries. Regarding
the remaining firmware layers, the OEM has full flexibility to authenticate per its own requirements the remaining stages of the
bootchain up to application levels as shown in Figure 3.

With this security infrastructure, a chain of trust (integrity and authentication) is created which allows the addition of extra
services, once the kernel is accessible, by the Linux ecosystem to fully secure the entire OEM application.

By securely writing the hash value of the OEM's public key and secrets into the STM32MP1 and STM32MP2 OTP prior to
the manufacturing phase (Secure Secret Provisioning mechanism), an OEM’s product (hardware) and its firmware becomes
strongly interweaved with each other, preventing product cloning.

Signing tool

Firmware image
Are 2 values equal?

Binary file

Encrypted
firmware

Hash

https://wiki.st.com/stm32mpu/wiki/STM32_MPU_ROM_code_secure_boot#Image_encryption
https://wiki.st.com/stm32mpu/wiki/STM32_MPU_ROM_code_secure_boot#Image_encryption

9

SECURITY MUST BE CONSIDERED FROM THE
START
Considering security at the start of a project is important because it
helps to identify potential security risks and vulnerabilities early on
in the development process. This allows for the implementation of
appropriate security measures and controls to mitigate those risks
before they can be exploited by attackers.

Failing to consider security at the start of a project can result in security
vulnerabilities being introduced into the system, which can be costly
and time-consuming to fix later on. It can also lead to data breaches,
system downtime, and damage to the organization's reputation.

By considering security at the start of a project, organizations can
ensure that they are building secure systems that protect their data
and systems from potential threats. This helps to minimize the risk of
security incidents and ensures that the organization is compliant with
relevant security regulations and standards.

•	Secured software: Software provides a workaround for any possible hardware issues.
Software, by nature, is easier to change than hardware. This is why when hardware does not
implement security features or has a vulnerability, a workaround is developed with software.

•	Secured hardware: Hardware includes security mechanisms. Software helps hardware ensure
better performance for better resistance.

•	Security by design: This approach involves integrating security considerations into the
software and system development lifecycle from the beginning and throughout all stages
of development. It is proactive, rather than reactive, to prevent security vulnerabilities and
mitigate risks from the outset.

•	Certified security: Standardization bodies publish security standards. Complying with security
standards offers the advantages of ensuring interoperability and robustness. This assurance
can be achieved through self-assessment or by engaging a third-party to test and certify that
your solution adheres to specific standards, such as the NIST CAVP for cryptography or SESIP
for security functions. Additionally, certain certifications involve a certifying authority that
reviews the third-party results and issues a certificate of conformance.

•	Regulated security: Regulations can, for given applications, define security requirements
(i.e., the European Cyber Resilience Act). This is the strongest compliance requirement; if
applications do not comply with these requirements, they can be fined.

Regulated
security

Certified
security

Security
by design

Secured
hardware

Secured
software

10

SECURE SECRET PROVISIONING
Attacks can happen all along a product’s lifecycle, not only when
the product is in the field. They may happen for example during the
production phase of the device by a malicious actor loading corrupted
firmware (or stealing original firmware) while it is being programmed
into chips. These are called “supply chain attacks”, and since supply
chains tend to be more and more complex, such attacks need to be
considered by manufacturers and system providers.

The Secure Secret Provisioning (SSP) concept consists of protecting
OEM information during the manufacturing phase, especially in
the context of supply chains where it is difficult to assess the
trustworthiness of the different players all along the production chain.

Prior to shipping the product to manufacturing facilities, confidential
OEM data and hashes of the public keys are stored in a Hardware
Security Module (HSM) card. Each genuine STM32 MPU is provisioned
with a unique private / public key pair certified by ST during the
chip manufacturing stage. The HSM uses this key pair to verify the
authenticity of the MPU and protect OEM data all along the production
process.

HARDWARE SECURITY CERTIFICATION
OPTIONS
Whether the software is open source or not, it is executed on hardware
that needs to be secured at the correct level vis a vis its targeted
usage.

Security certification can either be via self-assessment, an evaluation
lab or a 3-party scheme:

•	Self-assessment: you evaluate the security using your own scheme,
without external support. This is quicker and less costly, but you
need to hire people with the required skillset and there is no proof
that your solution is secure as stated. Customers can be suspicious.

•	Evaluation lab: you use an external lab to evaluate your solution.
This is more costly and longer, but the lab can attest your solution is
secure as stated. The evaluation report can be private or public; this
is the developer’s decision.

•	3-party scheme: The 1st party is the developer. The 2nd is the
evaluation lab. The 3rd party is an independent entity called a
certification body which defines the testing and method. The
certification body qualifies (accredits) evaluation laboratories. This
route is longer and more costly. This 3rd party can formally attest
your solution is secure as stated. A public certificate is published on
certification body’s website.

The 3-party scheme is mainly used for SESIP, PSA, and PCI
certifications. It is also worth noting that certain regulations mandate
security certifications for various verticals such as automotive,
industrial, and healthcare.

The HSM card is then sent to the potentially untrusted manufacturing site's owner and put in their production line. This
guarantees the OEM's secret data and keys will be securely programmed only on genuine devices, and only accessible to
OEM-signed firmware. Moreover, this procedure ensures the manufacture of a limited number of products (determined by the
OEM) to better control inventory and prevent product cloning.

To help developers, our STM32TrustedPackageCreator utility packaged in the STM32CubeProgrammer tool can be used to
create images and signatures required for loading the code in a secure manner, among other things.

When in-field firmware updates are required, STM32 MPUs have the correct secure boot implemented in the ROM code to
prevent people from downgrading the firmware in order to exploit the firmware holes from the previous version and apply
malicious techniques that can potentially change the behavior of the legitimate firmware. Indeed, the ROM code checks that
the firmware version is higher or equal to the monotonic counter stored in OTP and automatically update it when a new valid
version is detected.

HOW STM32CUBEPROGRAMMER CAN HELP
An all-in-one multi-OS software tool
for programming STM32 devices,
STM32CubeProgrammer (STM32CubeProg)
offers a wide range of features for creating
secure firmware and generating public – private
keypairs.
Moreover, using the STM32 open development
environment ensures easy portability to other
STM32 devices.

Never consider security
as the last piece of the

project,

but as the
starting point

https://www.st.com/en/development-tools/stm32cubeprog.html?ecmp=tt39288_gl_link_jun2024

11

HOW ST EASES SECURITY
CERTIFICATIONS
ST’s global security strategy is to ease efforts, complexity
and costs for customers thanks to multiple certifications
recognized by the industry. Additionally, it brings confidence
and trust to the hardware thanks to a formal attestation of
security from a recognized authority.

Each certification defines a scope of evaluation (list of
security functions) that will be evaluated against defined tests.

Customers can apply these test results to their own security
functions that rely on ST’s hardware security functions.

For example, for STM32MP1 and STM32MP2 SESIP Level 3
certifications, the Hardware True Random Number Generator
is tested against NIST SP800-90B. If a customer wishes to
pass a FIPS 140-3 certification, they can re-use our SP800-
90B certificate.

Another example is that SESIP Level 3 supports composition.
Composition is similar to a Russian stacking doll: a security
function based on a certified security function is certified. As
a direct benefit, the customer mapping its security functions
on underlying certified security functions would ease its
device certification.

HIGH-SECURITY CERTIFICATIONS FOR BANKING APPLICATIONS
Due to the very nature of payment transactions, point of
sale (POS) applications have their own 3-party security
certification scheme.

The Security Standards Council manages the POS
certification scheme and an information security standard
named Payment Card Industry Data Security Standard (PCI
DSS) is applied to payment systems.

The PCI-PIN Transaction Security Derived Test Requirements
(PCI-PTS-DTR) document specifies all requirements that a
POS solution must comply with.

Prior to deploying its solution, a POS vendor must pass
the PCI-PTS certification process. As this involves all the
hardware components included in the POS device and its
related software, the scope is very large.

The STM32MP13x microprocessor series has successfully
passed the PCI pre-certification: this is a PCI certification with
a scope limited to the hardware. It cannot pretend to be a full
PCI certification.

PCI certification is an attestation of a very high security level;
as the POS handles transactions with banking cards, it should

not be the weak point of the security chain.

PCI is a ‘monolithic’ certification: even if a POS is composed
of multiple components, the POS is to be certified as a whole
component.

Thanks to STM32MP135 PCI pre-certification, POS
vendors can more easily pass their PCI-PTS certification
while reducing their efforts and time to market. With more
confidence in the hardware security of the selected chip,
companies reduce project risks while being able to focus
more on other features.

ST’s track record confirms positive customer experiences
thanks to this PCI pre-certification strategy.

As STM32MP25 MPUs are in part based on the
STM32MP135, they natively inherit its security features and
are consequently ready for PCI pre-certification.

While non-POS vendors cannot use PCI pre-certification
directly for their own certification, this PCI pre-certification
is beneficial as it is proof that their application has a high
security level.

NEW IOT SECURITY STANDARDS: GET READY WITH A
CERTIFIED MICROCONTROLLER AND ROOT-OF-TRUST

Learn how IoT device makers can save time and cost to
ensure compliance with the upcoming EU Cyber Resilience
Act and revised Radio Equipment Directive.
Download our whitepaper

Each STM32 MPU features a security
option with an isolated secure
boot with TrustZone® to protect
applications from intrusions and
more...

https://content.st.com/whitepaper-understanding-sesip-certification-for-microcontrollers-z11-5157.html?ecmp=tt39288_gl_link_jun2024

12

THE SECURITY AND OPEN-SOURCE SOFTWARE
DILEMMA
The perception of open-source software has evolved over time, and it
can vary depending on the individual or organization. In the past, open-
source software was often perceived as less secure than proprietary
software, but this has changed as it now considers security as a key
point.

Also, open source is no longer a small group of enthusiasts. The
community has established rules and obligations to ensure the quality,
security and interoperability of the software.

Security for open-source software is a difficult subject with benefits
and drawbacks. When choosing between proprietary/commercial and
open-source software, this duality is to be well balanced.

Benefits of open-source software include:

•	Transparency: Greater transparency and visibility into the security
features and potential vulnerabilities of open-source software are
achieved by making the source code widely available. Communities
are now using the DevSecOps framework and Product Security
Incident Response Team (PSIRT) advisories.

•	Support: The developer community assists in locating and fixing
security vulnerabilities; important resources that an organization may
not have at their disposition. Also, in general, these developers are
security experts.

•	Flexibility: Open source may be perceived as over-sized and over-
engineered compared to specific security requirements. Open-
source software can be modified, and certain functions can even be
removed.

But there are drawbacks to open-source software security as well, such as:

•	Control: Compared to proprietary software, open-source software may give companies less control over software security
because it is developed by a community of contributors.

•	Complexity: Open-source software may have a large number of interdependent components, making it challenging to find
and fix security flaws.

•	Liability: As open-source software is by nature ‘open’, there may be some issues in terms of liability.

•	Visibility: Unlike commercial software, open-source software may not have an extensive roadmap.

Open-source software can be a good option for organizations, but it is important to carefully evaluate the software and its
security features before implementing it. Also, companies should ensure that they have the necessary expertise to properly
customize, implement and maintain open-source software from a security perspective.

With the emergence of new regulations such as the European Radio Equipment Directive (RED) and Cyber Resilience Act
(CRA), which require developers to disclose and fix their vulnerabilities, the open-source community has already put in place
several initiatives:

Trustedfirmware.org has a Product
Security Incident Response Team
(PSIRT) and is publishing security
advisories for each project (OP-TEE,
TF-A, TF-M, and Mbed TLS)

The supply chain is evolving: Yocto and Zephyr
Embedded Projects are now automatically
building SBOMs and signing binaries.
OPENSSF proposes tools for generating
signatures and SBOMs as well as disclosing
vulnerabilities.

The mission of the
Open-Source Security Foundation
is to sustainably secure the
development, maintenance,
and distribution of open-source
software (OSS)

Explore STM32MPUs embedded
software offer

Find your ST embedded software
source code

https://www.st.com/content/st_com/en/stm32-mpu-developer-zone/embedded-software.html?ecmp=tt39288_gl_link_jun2024
https://www.st.com/content/st_com/en/stm32-mpu-developer-zone/embedded-software.html?ecmp=tt39288_gl_link_jun2024
https://github.com/STMicroelectronics/STM32MPU_EmbSW_Overall_Offer
https://github.com/STMicroelectronics/STM32MPU_EmbSW_Overall_Offer

13

Open-source software
is software that anyone
can access, modify, and
distribute, which can lead
to greater collaboration and
higher-quality code. At the
same time, vulnerabilities like
Log4shell have illustrated the
downstream impact for flaws
in widely used open-source
code.

Cisa.gov, Sept 12, 2023

THE ADDED VALUE OF OPEN-SOURCE SOFTWARE
To ease the development of software, mainlining in carefully selected good-quality
projects with sufficient critical mass (such as Linux kernel, OP-TEE, etc.) provides the
following benefits:

•		Free-of-charge access to source code: Companies may inspect the available source
code to select the desired features for their projects.

•	Active maintenance: The open-source community can quickly fix known bugs and
security vulnerabilities for further upgrade and enhancement.

•	Ensuring software quality: Rules established in the selected open-source projects and
code review by active community guarantee a high level of code quality.

•	Software scalability towards different platforms: To reduce cost of software, a stable API
between drivers and the application help developers migrate an application from one
product to another.

•	Certification: Depending on the topics and community members, open-source projects
may obtain certain certifications and compliance with standards to help companies
deploy their project.

•	Support: By building on an open-source project, companies can reduce their
development time and optimize their design efforts either with their internal software
engineers or through authorized members of the ST Partner Program participating in
the open-source community.

Limiting
maintenance activities

Removing security
breaches

Ensuring software
quality

Software scalability
toward different

platforms

Making the project
a technical success

Linux community

Driving business success

Board support
package (BSP)

From reducing time to
market towards profitable

growth

Figure 4: Mainlining Advantages

WHAT IS MAINLINING?
Leveraging the work of the many developers in the open-source community, modified
code is uploaded (after validation) into the original, or mainline, source code. This means
that the shared code benefits from the latest (and often innovative) modifications that add
features, fix bugs or improve security.

https://www.st.com/content/st_com/en/partner/partner-program.html?ecmp=tt39288_gl_link_jun2024

14

HOW YOU CAN BENEFIT FROM THE STM32 ECOSYSTEM AND THE OPEN-SOURCE
COMMUNITY
STMicroelectronics actively participates within the open-
source community and the vast majority of the STM32 MPU
drivers and board support packages are mainlined in all open-
source projects that are part of the OpenSTLinux distribution.

By working with selected open-source communities (TF-
A, OP-TEE, etc.), ST is continuously sharing proposals,
requirements, and code enhancements to facilitate the
application porting and long-term maintenance on top of the
OpenSTLinux distribution.

These advantages of mainlining the open-source code help
OEMs reduce engineering resources and development time,
speed up time to market and, as a result, increase market
share, while ensuring an excellent protection level with up-to-
date patches and the most recent enhancements.

OEM developers can start their project using STM32
embedded software packages starting from the trusted
bootchain based on Trusted Firmware-A (TF-A), Trusted
Firmware-M (TF-M), OP-TEE and U-Boot. Each software
component is authenticated before being securely installed in
memory and executed by the processor's different execution
contexts.

As a GlobalPlatform-compliant API, OP-TEE allows
companies to develop their own trusted applications but
also lets them use open-source ones or those provided by
third party companies. Optionally and depending on the
application, OP-TEE may load, authenticate, and isolate the
real-time code running on the Cortex® M core.

The Universal Boot (U-Boot) is installed by TF-A and executed
by the Cortex® A core into the non-secure context. The
trusted foundation mechanism ensures the code’s integrity.
The remaining open-source firmware stages can then be
trusted.

In order to maintain an up-to-date Board Support Package
(BSP) in terms of quality and stable environment (managing
bug reports, fixing vulnerabilities, etc.), OpenSTLinux is based
on long-term support versions and updated twice a year.

When correctly configured and initialized, different hardware
mechanisms (memory protection for Cortex CPUs, TrustZone,
Cortex-M core isolation, etc.) isolate the proprietary software
from the rest of the software, thus protecting an OEM's
intellectual property.

The hardware mechanisms listed above strengthen a
defense-in-depth implementation. They provide separation
mechanisms for the software stack with different levels
of privileges. By applying the principle of least privilege,
vulnerabilities can be confined to limited parts of the software
stack, making it harder for malicious players to mount
attacks.

By building a robust chain of trust, a secure bootchain
ensures that attackers can neither corrupt nor tamper with an
OEM's assets and end users' data.

Trusted Firmware-A (TF-A) is an
open-source project by TrustedFirmware
group, designed to run in the Secure
Processing Environment (SPE) of
Armv7-A and Armv8-A class processors.

Trusted Firmware-M (TF-M) is an
open-source project by TrustedFirmware
group, designed to run in the Secure
Processing Environment (SPE) of
ARMv8-M microcontrollers, following
PSA Certified guidelines and offering
services through secure partitions.

MCUboot is a secure bootloader for
32-bit microcontrollers, providing a
common infrastructure for bootloader
and system flash layout, enabling easy
software upgrades, and is OS and
hardware agnostic, relying on hardware
porting layers from the OS it works with.

15

MANAGING THE IP LICENSING SCHEME
Another key consideration that must be taken into account when
protecting OEM intellectual property (IP) resides in the licensing
scheme management. There are many different licensing schemes
that define how users can use, study, modify or improve open-source
software, including the OpenSTLinux distribution, and as well as
redistribute it in a modified or unmodified form. The most well-known
schemes are the GNU General Public License (GPL), the MIT License
(X11 License), Berkeley Source Distribution (BSD) licenses and some
others.

By using TF-A, TF-M, and OP-TEE, OEMs can securely link and build
their own proprietary code in a secure way since both environments are
not copyleft and therefore are not contaminating. Furthermore, when
releasing the OpenSTLinux distribution, ST provides legal licensing
information for each code component helping customers to adapt their
own licensing scheme strategy and implementation.

WHAT IS COPYLEFT?
A copyleft license, such as GPL, for example,
lets software engineers use, study, change, and
distribute modified or unmodified firmware and,
more importantly, to make it fully available for
further use by other software engineers.
Copyleft also includes the notion of
contamination, meaning every piece of firmware
becomes fully available for further use, thus
preventing OEMs from keeping their own IPs
confidential.

Linux
Kernel

User space

Cortex-A
Secure context

Kernel
space

Platform
configuration

STM32MPU
Embedded software

OpenSTLinuxBSP

OP-TEE U-Boot TF-MLinux
Kernel

Linux
Middleware

Drivers
(BSP/HAL/LL)

Middleware

TF-A
BL2 & BL31

Boot chain

Trusted
applications Applications Trusted

applicationsApplications

STM32MP13x

STM32MP15x

STM32MP2x

Cortex-A
Non-secure context

Cortex-M
Non-secure

context

Cortex-M
Secure context

16

In the realm of embedded systems, the conversation has shifted from a mere focus
on security to a broader emphasis on trustworthiness, which is increasingly grounded
in transparency. The inherent transparency of open-source firmware is a significant
factor in this evolution, as it undergoes continual refinement and assessment.
Regulatory measures are also contributing to this transformation by advocating for
certification processes, transparency, and the ability to update systems. However,
this evolution is not without its challenges. As the landscape evolves, so too do the
strategies of attackers, who are now employing more sophisticated techniques such
as side-channel and fault attacks, exploring new vectors of attack that range from
remote to local, and leveraging emerging technologies like artificial intelligence to
streamline their learning process. Additionally, the discussion around open-source
hardware is gaining traction, with many initiatives already exploring its potential and
implications.
This whitepaper demonstrates the trusted foundation behind our STM32MP1 and
STM32MP2 platforms designed to ensure OEMs’ products cannot be cloned nor
compromised thanks to a robust chain of trust. In addition, using open-source
software and benefiting from the shared contributions of the open-source community
means OEMs can reduce development costs, lower the time to market, and gain
market share.

CONCLUSION

ST PARTNER PROGRAM
The ST Partner Program helps companies easily identify trusted partners
able to supply expertise for their critical design projects; reducing their
development efforts and accelerating time to market.

Partner
Program

ST PARTNER PROGRAM: BENEFIT FROM A WIDE RANGE OF PRODUCTS
AND SERVICES
ST Partner Program certifies and promotes the collaboration between ST and companies offering products
and services that ease the adoption and use of ST devices.

When combined with the long-term maintenance strategy with ST Authorized Partners, ST ensures a high
level of trust for projects based on the STM32MP1 and STM32MP2 platforms.

https://www.st.com/content/st_com/en/partner/partner-program.html?ecmp=tt39288_gl_link_jun2024

17

RESOURCES

Product and development ecosystem pages

STM32MP1 microprocessor series from single Arm® Cortex®-A7 up to dual Arm® Cortex®-A7
and Cortex®-M4 cores [Product portfolio]

STM32MP2 microprocessor series with up to dual Arm Cortex®-A35 and Cortex®-M33 cores
[Product portfolio]

STM32Trust: Raising the bar on security in embedded designs [Product ecosystem]

STM32 MPU software development tools [Product portfolio]

STM32 MPU embedded software [Product portfolio]

STM32CubeProgrammer all-in-one multi-OS software tool (containing the
STM32TrustedPackageCreator utility) [Product page]

STM32 MPU OpenSTLinux Distribution [Product page]

STM32 MPU OpenSTLinux expansion packages [Product page]

Learning resources

STM32 MPU Platform Security overview [Wiki page]

STM32 MPU Platform boot overview [Wiki page]

STM32 MPU OP-TEE overview [Wiki page]

STM32MP1 Workshop or How to Appreciate the Complexities of MPU Design
[Blog post and video]

STM32MP1 workshop [MOOC]

Enable secure, advanced edge AI in Industry 4.0 with the STM32MP2 MPU series
[Webinar]

Technical documentation

AN5156: Introduction to STM32 microcontroller security [Application note]

AN5510: Overview of the secure secret provisioning (SSP) on STM32 platform
[Application note]

New IoT security standards: Get ready with a certified microcontroller and root-of-trust
[Whitepaper]

External websites

Open Portable Trusted Execution Environment (OP-TEE) [Website]

Open-Source Security Foundation (OpenSSF) [Website]

SESIP [Website]

https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-series.html?ecmp=tt39288_gl_link_jun2024
https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-series.html?ecmp=tt39288_gl_link_jun2024
https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-series.html?ecmp=tt39288_gl_link_jun2024
https://www.st.com/en/microcontrollers-microprocessors/stm32mp2-series.html?ecmp=tt39288_gl_link_jun2024
https://www.st.com/en/microcontrollers-microprocessors/stm32mp2-series.html?ecmp=tt39288_gl_link_jun2024
https://www.st.com/content/st_com/en/ecosystems/stm32trust.html?ecmp=tt39288_gl_link_jun2024
https://www.st.com/content/st_com/en/ecosystems/stm32trust.html?ecmp=tt39288_gl_link_jun2024
https://www.st.com/content/st_com/en/stm32-mpu-developer-zone/software-development-tools.html
https://www.st.com/content/st_com/en/stm32-mpu-developer-zone/software-development-tools.html
https://www.st.com/content/st_com/en/stm32-mpu-developer-zone/embedded-software.html
https://www.st.com/content/st_com/en/stm32-mpu-developer-zone/embedded-software.html
https://www.st.com/en/embedded-software/stm32-mpu-openstlinux-distribution.html
https://www.st.com/en/embedded-software/stm32-mpu-openstlinux-distribution.html
https://www.st.com/content/st_com/en/products/embedded-software/mcu-and-mpu-embedded-software/stm32-embedded-software/stm32-mpu-openstlinux-expansion-packages.html?ecmp=tt39288_gl_link_jun2024
https://www.st.com/content/st_com/en/products/embedded-software/mcu-and-mpu-embedded-software/stm32-embedded-software/stm32-mpu-openstlinux-expansion-packages.html?ecmp=tt39288_gl_link_jun2024
https://wiki.st.com/stm32mpu/wiki/Category:Platform_security
https://wiki.st.com/stm32mpu/wiki/Category:Platform_security
https://wiki.st.com/stm32mpu/wiki/Category:Platform_boot
https://wiki.st.com/stm32mpu/wiki/Category:Platform_boot
https://wiki.st.com/stm32mpu/wiki/Category:OP-TEE
https://wiki.st.com/stm32mpu/wiki/Category:OP-TEE
https://content.st.com/advanced-edge-ai-with-stm32mp2-mpu-series.html
https://content.st.com/advanced-edge-ai-with-stm32mp2-mpu-series.html
https://trustcb.com/iot/sesip/
PSA: https://www.psacertified.org/
https://trustcb.com/iot/sesip/
PSA: https://www.psacertified.org/

18

ACRONYMS

API:		 Application Programming Interface
CRA: 	 	 (European) Cyber Resilience Act
DRAM:	 Dynamic Random Access Memory
ECC:		 Elliptic Curve Cryptography
ECDSA: 	 Elliptic Curve Digital Signature Algorithm
eMMC: 	 embedded MultiMedia Card
FSBL: 		 First Stage Boot Loader
HSM: 		 Hardware Security Module
IP: 		 Intellectual Property
OEM: 		 Original equipment manufacturer
OP-TEE: 	 Open Portable – Trusted Execution Environment
OTP: 		 One Time Programmable
PSIRT: 	 Product Security Incident Response Team
RED: 		 (European) Radio Equipment Directive
ROM: 		 Read-Only Memory
SBOM: 	 Software Bill Of Material
SSBL: 		 Second Stage Boot Loader (U-Boot)
TF-A: 		 Trusted Firmware-A
TF-M: 		 Trusted Firmware-M

Order code: WP2408STM32MP1SEC

© STMicroelectronics - September 2024 - Printed in the United Kingdom - All rights reserved
ST and the ST logo are registered and/or unregistered trademarks of STMicroelectronics International NV or

its affiliates in the EU and/or elsewhere. In particular, ST and the ST logo are Registered in the US Patent and
Trademark Office. For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

For more information on ST products and solutions, visit www.st.com

At STMicroelectronics
we create
technology that
starts with You

