User Software
Development
Manual




catalogue

SOUNG. ...ttt s bbb s s s s sttt 1

Contactformula2

VersionHistory3

Contents4

|.Software communication protocolinterface6

(1I)COMMUNICATIONSAGIEEIMENTS..........ouiiiieieiieieeeteie ettt sttt seee 6
1. Communication MeSSAgEFOMMAL............cccceiiuriiieiirieieiee e 6
2. Face lock algorithm module message reception(H>>M).......c.orvrrirrrerrrenriernrnnsensseesssssesssesssessseesseessens 7
3. Face lock algorithm module message sending(M>>H) .....c.ovvvrrrenreernrierneinseinesisseeessesessssssssesseenees 16
(iFunctional implementationexample ..o 26

1. Master receives MesSagefloW....... ..o 26
2. General message ProcesSiNGIlOW ..........c.ouuiuiiiiiiieie s 26
3. Up and dOWN CUMTENTIANGE ........ouiieiiicieii ettt 27
4. FACE ENTIYPIOCESS. ...ttt ettt ettt ettt et e s s et s b et e s e s et sesesesen e e anesenes 27
5 ENErYDESCIPLION. ...ttt 28
6. SiNgle framereCOrANG .............covueiiieiiiei et 29
7. Face VErificationfloW ............coouimiie s 30
8. Encrypted communicatioNflOW.............coiuiuiiriii e 30
9. Photo Delivery RegistrationEXamPle.............couiuriiiriiiriiieie e 31
MID_ENROLL WITH _PHOTO ....cvtieieiieeieeieeineniesisesiesssesssessesssesssesasesasesssesssesssssssesssesssessnesssessnessns 31




(3)SupplementaryeXplanation..............ccocirieiiee e 34

1. MID_REPLY .o ses s ses oot seee et 34
P3N Y (103 N0 35
3. VD RESET oottt sossees s sees s sese s sees st 36
8. MID_GETSTATUS ..ot sessee e sesssse st ssesresese s 36
5. IMID_VERIFY oo ses oo seee e sess e sess oo st 36
6. MID_ENROLL/MID_ENROLL SINGLE ....ocreeesseesesseessessessesseeseessesssssesssesseesseseeseese 37
7. MID_ENROLL TG sessessessesseessee sttt sees e 38
8. IMID_DELUSER ..o see s sessesssessessessesssssessess s ses ettt sss s 39
Y o o)1 39
10. MID_GETUSERINFO ..o sesseesessessesssssessessseesessssesessssssesssssesssesses s 39
11, MID_ ENROLL WITH_PHOTO ..ot ssessesssessoe s sessee s 39
12. MID_DEMOMODE ..o see s ses s sssses s sessssssessssssessssesessssses e 40

13, MID_GET ALL USERID oo sessesses e sess et ssesssesessoe st 40




l. Software communication protocol docking

(i) Communication protocols

Face Recognition module is in a subordinate position, and the main control needs to complete
various functions through different instructions.

1. communication message format

The basic message format of communication between master control and binocular Face Recognition
module is shown in the table below

Basic message format

SyncWord MsgID Size Data ParityCheck

2 bytes 1 byte 2 bytes N bytes 1 byte

The following table provides a detailed description of each field.

Basic Message Format Field Details

field length explain

SyncWord | 2bytes Fixed message start sync word OXEFOXAA
MsglD 1byte MessagelD(e.g.RESET)

Size 2bytes Data size, unitbyte

Data corresponding to the message parameters corresponding
Data N bytes to the command message. 65535>=N>=0,

N=0 indicates that this message has no parameters.

Parity code of protocol, calculated as the entire protocol

Parity
1 byte excluding SyncWord

Check

After that, the rest of the bytes areXORed bitwise.




Face lock algorithm module message reception (H>>M)

The complete protocol format received by the module is shown in the table below, and the master control
shall send commands to the module according to this format.

H> >MProtocol Format Description

name SyncWor MsgID Size Data ParityCheck
number of | 2 bytes 1 byte 2 bytes N bytes 1 byte
bytes
content OxEFAA | command | upper | lower data checksum
eight eight
bits bits
Command and data are defined in the following table.
H>>Mprotocol format data detailed description
command(* data )
indicat code explain
indicates structural content
carryingdata) body
RESET 0x10 not have not have
GET STATUS 0x11 not have not have
pd_rightaway retain
S msg_veri 1byte .
VERIFY ox12 | - ita b (Tbyte) (Default:0)
Timeout Unlock timeout
(Tbyte) (ins)
Initiate low power auto-
detection
(yes:1 no:0)
at_verify 1= Automatically recognize
(Tbyte) and output the result after
s_msg_Auto judging the face or QR
AUTO—VERIFY* Ox12 Verify data code;(Note: Palm vein
(Al-10module N L
recognition is only started after
applicable) : .
detecting the face) 0= Exit the
mode.




You can also exit this mode
directly by issuing the O0x10

RESET command.

Timeout
(Tbyte)

single identification
timeout
(ins)

Face detection, automatic recognition,
At this time, if the person has
walked away, xS exits
recognition, andthe module
continues to perform low-

power face detection.




pd_rightaway retain
(Tbyte) (Default:0)
Timeout Unlock timeout
(1byte) (ins)
The number of
VERIF.Y*(FMZ s_msg_verify_ repeated recognition
26T-XF Series and 0x12 data i limited,ranging
Al-10module Max_Recognition | from 0-255.  The
applicable) _times (1byte) |smaller this number,
(Optional) the fewer attempts to
identify, and the faster
the time to return to
unknown users! The
specific time is
obtained by
usertesting. This
parameter is an
extended parameter. If
this parameter is not
sent when the
following is sent, the
module defaultsto 30
attempts to identify.
. Set as Administrator
admin
(yes:1no:0)
user_name Enter user name
s msg_enroll_ (32bytes)
ENROLL 0x13 data The direction that the
s face dir (1byte) user needs to enter
isshown in
thefollowing table
"Face Direction
Definition" for the
physical parameters.
timeout Enter timeout time
(1 byte) (ins)
. Set as Administrator
admin
(yes:1no:0)
user_name Enter user name
s msg_enroll_ (32bytes)




ENROLL SINGLE Ox1D data s face dir
- - nonuse
(Tbyte)
timeout Enter timeout time
(1 byte) (ins)
DELETE USER* 0x20 | ¢ meg delus user_id_heb
(Tbyte) IDof the user to be
er data user_id_leb deleted
- (1byte)
DELETE ALL 0x21 not have delete all users
user id heb
s _msg_getuser - - )
GET USER INFO* 0x22 | —. °~ (Tbyte) IDof registered user
info_data
user_id leb




(Tbyte)

FACE RESET 0x23 not have Clear Entry Status
MID GET ALL U 0x24 00(1byte) Get thenumber and
SERID IDof all
registered
users
. Set as Administrator
admin
(yes:1no:0)
user_name
= Enter user name
(32bytes)
face dir
- nonuse
(Tbyte)
enroll_type Registration
MID ENROLL ITG | 0x26 | >-Ms9-enroll (1 byte)
- - itg type:
interactiveentr
y or single
frame entry
enable duplica
te 0
(1 byte)
timeout Enter timeout time
(1 byte) .
(ins)
R
eserved reserved bit
(3 byte)
GET VERSION 0x30 not have Get software version
INIT s msg_init encr seed[4](4 bytes) | Control sends a random
. 0x50 i number
ENCRYPTIO yption_data
mode
MID _SET RELE s msg_enc_ke
- - T enc_key number .
A 0x52 | y_number _dat 16l encryption sequence
SE_ENC_KEY a
s msg_enc ke
MID_SET DEBU 0x53 number dat enc_key num .
u
G ENC_KEY X y_| . ber[16] encryption sequence

a




MID GET SN 0x93 not have Equipment unique serial
number
READ_USB_UVC_PA 0xBO not have USBtransfer parameter

RAMETERS

settings




(FM223SeriesFM88
8 Series applies)

USB1.1: 0x11
USB2.0: 0x20
USB Type BIT7:0-Bulk 1-1SOC
(1 byte) (Note:0xa0-USB2.0 ISOC
0x20-USB2.0&Bulk
0x11-USB1.1&Bulk
0x91-USB1.1&ISOC )
SET USB_UVC PAR : : :
AMETERS o s msg_us UVC bit Uvc bit rate, unltc
FM226 Series, A-10 b_uvc_data rate(1b Mbps,example: 0x18 =
module applicable) yte) 24Mbps
10-100, eg. 0x4 b=75
This means 75%
Quality of quality, andthe
MJPG(1by closer the value is
te) to 100, the clearer the
picture, but subject to
rate control.
Therefore, high-quality
pictures need to be set
to a high bitrate!
image attribute| BITO:1Enable Mirrors
(Tbyte) BIT1:1Enable Reverse
180degrees
00
MID SCAN QR CO 0x70 S msg_sca (1 byte) :tz:lmciz;:de
DE n QR
timeout timeout
(1 byte) (Unit: s)
MID_SNAP&UPLOA 0x71 >-Msg_sha 00(1byte) Capture photos and
D IMAGE 1 pimage

upload




MID_SNAP&UPLOA
D IMAGE_2

0x71

s msg_sna
pimage

Seq(1byte)

upload photos
(240*320pixel)Seq
accumulates 1
(Seqgreceives photo
data from 1), and each
packet fixedly
transmits 1024 bytes
of photo data. When
the last packet is less
than 1024 bytes, it is
actually remaining.
Number of bytes
transmitted.

MID_SNAP&UPLOA
D FACEIMAGE _1

0x72

S_msg_snha
pfaceimage

00(1byte)

After capturing the
face photo,
compare it locally
and complete the
upload.




After judging that the
photos are qualified
to the front face, they
are automatically
captured,  compared
locallyand  uploaded.
Face photo for

320*320pixel,

Upload face photos
Seq accumulates 1
(Segreceives photo

MID_SNAP&UPLOA S_msg_sna
D FACEIMAGE 2 0x72 ofaceimage Seq(1byte) data from 1), and each
- - packet transmits 1024
bytes of photo data.
When the last packet
is less than 1024
bytes, it is transmitted
according to the
actual remaining
number of bytes.
. Set as Administrator
admin
(yes:1no:0)
user_name
ENROLL SNAPFACE 0x73 s msg_enroll_ - Enter user name
IMAGE data (32bytes)
s face_dir(1byte) reserved
timeout 4
reserve
(1 byte)
Seq Take a full-view photo,
(Tbyte) DPI isactive
MID_SNAP&UPLOA Ox74 S msg_sha whenSeq=0
D_IMAGE_T pimage_b picture resolution
DPI 0 - 480x640
(1byte) 1 - 600x800

2- 1200 x 1600(only
Al-10 effective)




MID_SNAP&UPLOA
D IMAGE 2

Ox74

s msg_snha
pimage b

Seq(1byte)

When Seq>0, upload
photo Seq
accumulated 1
(Segreceived photo
data from 1), each
packet fixed
transmission of 1024
bytes of photo data,
the last packet less
than 1024 bytes as the
actual residual

Number of bytes
transmitted.




(OxF7 is
recommended for
preference)

Command)

orUID(2byte)
1-1000 (AI-10)







Start USBflash drive

MID_UPGRADE FW | OxF6 not have
- - Upgrade module
firmware
00(1byte)
00(1byte)
Phpoto
len(dbytes) Send photos or feature
registration
(First order)
s _msg_enroll_ BioType(1byte)
photo Ofor normal photo where the signature file
mode .
' is41000r
Tforencrypted | 5555 or 1028bytes,
MID_ENROLL WITH | OxF7 photomode, | .
2 Normal
PHOTO 1 signature mode 40960r 2048 or
- - (2048 bytes 1024words '
(color] section is the
or4096[color + signature,4 bytes
' crc32  (big endian)
. infrared]) CRC32 initial vector
3 isthe L | valueis oxffi
compresse

signaturepatter
n (1024 bytes)




Seq heb

(1byte) Photo or feature data
MID_ENROLL WITH s _msg_enroll_ Seq leb transmission Seq
OxF7 (byte) accumulation 1 (Seq
_PHOTO_2 photo sends photo data
Phpoto data[n] from 1), hotodata is
(n bytes) photo data, photo data
packet size MTU<246
seq_id_heb
(Tbyte) packet sequence number
MID READ FEATUR s msg_read fe seq id leb (00 00)
E 1 OXFA | — ~— ~ - =
- ature_data 1 (1byte)
(AI-10 module y
applicable) user_id_heb UserlDto read
(1byte) (1~1000are face users,




user id leb
(Tbyte)

1001~2000 is
palmprintvei
n)

feature_type

1: Color Face Template

2: Color + outer red face

1byte
(Tbyte) template
3: Palmprint Palm Vein
Template
seq_id_heb packet sequence number
(1byte) (Each packet is 246
bytes, calculate the
seq _id_leb total package number,
(1byte) and then send it from
MID_READ_FEATUR s_msg_read fe 1to accumulate in turn
E2 OXFA |~ e data 2 until the last packet is
(A|'1 0 module - - received)
applicable) .
user_id_heb UserlDto read
(1byte) (1~1000 for face
user_id_leb USGFS,1 001~2000 for
Imvei
(1byte) palmvein)
Receive template data
Feature data[n] )
(Each packet is 246
(nbyte)
bytes, and the last
packet is the remaining
actual length data)
seq_id_heb
(1byte) packet sequence number
: (00 00)
s_msg_write f seq_id_leb
eature data 1 (Tbyte)
1: Color Face Template
MID_WRITE_FEATU feature_type
- - 2: Color + outer red face
RE_1 OxFB (1byte)
- template
(Al-1 O'module 3: Palmprint Palm Vein
applicable) Template




MID WRITE_FEATU
RE 2
(Al-10 module
applicable)

OxFB

s _msg_write f

eature data 2

seq_id_heb
(Tbyte)

seq id leb

packet sequence number
(Each packet is 246
bytes, calculate
thetotal package
number, and thensend
it from 1.
Add up to the last packet.




(Tbyte)

End of data
transmission)

feature type
(1byte)

1: Color Face Template
2: Color + outer red face
template

3: Palmprint Palm Vein
Template

Feature data[n]

template data

(246 bytes per packet,
(n byte)
last one)
packet is the remaining
actual length data)
0: No duplicate
MID_DUPLICATE C s _msg_duplica check
HECK OxFC te check checkflag 1: Duplicate check
(Photo registration and
distribution
Whether to check
duplication in case of
characteristic mode)
DEMO MODE* OXFE s_msg _demo enable enable:1
mode data (Tbyte) disable: 0
Face orientation is defined as shown in
the table below.
Face Orientation Definition Description
st face dir(face orientation code explain
definition)
FACE _DIRECTION_UP 0x10 Enter faces facing upward
FACE DIRECTION DOWN 0x08 Enter faces facing down
FACE_DIRECTION_LEFT 0x04 Enter faces facing left
FACE_DIRECTION RIGHT 0x02 Enter faces facing right
FACE_DIRECTION_MIDDLE 0x01 Enter positive faces
FACE_DIRECTION _UNDEFINE 0x00 Undefined, default is positive




The definition of face entry command type is

shown in the table below.

Face Entry Command Type Definition Description

enroll type(face entry command Code explain
type)
FACE ENROLL TYPE_INTERA CTIVE 0x0 interactive entry
FACE_ENROLL TYPE SINGLE 0x1 Single frame entry

Example: OXEF OxAA 0x10 0x00 0x000x10




H> >MProtocol Example

name | SyncWord MsgID Size Data ParityCheck
content | OxEFAA 0x10 (MID_RESET) 0x00 0x00 | not 0x10
have

This message is a RESET message sent by the master to the module, and the data length is0.

3. Face lock algorithm module message sending (M>>H)

The module sends three types of messages: REPLY, NOTE and IMAGE.
1) Transmission ofa REPLY message
The complete protocol of the REPLY message sent by the module to the master is shown in

the table below.

M> >H REPLYMessage Protocol Format Description

name | SyncWord | MsgID | Size Data ParityCheck
number | 2 bytes 1 byte | 2 bytes N bytes 1 byte
of bytes
MIDR |u |lo s msg_reply data

conten| OxEFAA E(I;L(\)(O P W [ mid result data[0] checksum
t Ox00) | P | e | (1byte | (1byte) | (n-byte)

er | ei

el | g

g | ht

ht | bi

bi | ts

ts

midindicates the task currently being processed by the module. For
examplewhenmid=MID _ENROLL(0x13), it indicates that the message is a message replied by

the module after processing the enroll task. mid details are shown in the table below.

M>>H REPLYmessage ormiddefinition descriptioninilmageOrTemplatemessage




mid data[0]
*indi code explain
( |nd|c.ates structural body content
carrying
data)
MID_RESET 0x10 not have not have
The status of the

module includes:




MID_GETSTATUS ol s_msg_repy getst status IDLE(0),BUSY(1),E
* atus_data (1byte) RROR(2),INVA
LID(3)
user_id _heb
1byte
(Tby _) [Dof
user id leb _
- authenticated
MID_VERIFY* (1byte)
user
) s_msg_reply verif
(Only if result 0x12 user_name
: y data - user name
resultsin (32 bytes)
MR _SUCCESS
user _id) admin it
sitan
(Tbyte)
Y administrator?
unlockStatus th
(1 byte) not have
user_id_heb
" (1byte)
MID_ENROLL ) IDof registered
(Only iftheresult | s_msg_reply_enrol | yser id leb
x13 - - user
MR _SUCCESS | data (Tbyte)
user id) face direction(1 | Face registration in
all directions
byte) in status
user id heb
MID_ENROLL_ (byte)
SINGLE * | | y 'e IDof registered
(Only if result 0x1D s_rng_reIp )(/j_etnro user_id_leb user
resultsin -Sihgle_data (Tbyte)
face direction(1
MR_SUCCESS _b ©) ( 01 (indicates face
; e
user id) y entry)
MID DELUSER 0x20 not have not have
MID_DELALL 0x21 not have not have
user_id_heb
(Tbyte)
Y X IDof registered
MID GETUSE | user id_leb
A s_msg_reply g user
0x22 Tbyt
RINFO* etuserinfo_data (1byte)
ser_name Registered user's
egis
(32bytes) g
name
admin(1byte) Is it an
administrator?




MID _FACERESET | 0x23 not have not have
MID GET ALL US s msg reply all u | user counts Number of registered
Ux24 users,single
ERID* serid_data (1 byte) A maximum

of100per package




End when the
number returned
is less than 100.

users_id[MAX U
SER_ COUNTS*2]

(£100*2 bytes)

All registered user
IDs,use two
consecutive bytes
to store an ID, save
the uppereight
bitsfirst

MID_ENROLL ITG user id_heb
* i 1byte
(onIy‘ f 0x26 s.msg_reply_enrol | (1by _) IDof registered
resultisMR _SUCC | data user_id leb
ESS (1byte) user
user id)
MID_GET_VERSIO 0x30 s_msg_reply_versi version information
N* on_data
s msg _reply i L
MID_INIT_EN x50 | nit encryption device id[20](20 devicelDinf "
CRYPTION X _encryp bytes) evicelDinformati
_data on
MID SET RELEA
SET > 0x52 not have not have
E_ENC_KEY
MID_SET_DE 0x53 not have not have
BUG_ENC K EY
MID GET SN | 0x93 Device_SN(32] Fquipment
-7 (32bytes) unique serial
numberinformat
ion, the first 8
bytes are valid
(FM223SeriesFM
888 Series
applies)




READ USB UVC_
PARAMETERS
(FM226
seriesapplicable

)

0xBO

s_msg_usb_uvc d
ata

USB Type
(Tbyte)

USB1.1: Ox11

USB2.0: 0x20

BIT7:0-Bulk

1-1SOC

(Oxa0-USB2.0&ISOC
0x20-USB2.0&Bulk
0x11-USB1.1&Bulk
0x91-USB1.1&ISOC )

UVCbit rate

Code rate ofUVC,
unit




(Tbyte)

Mbps, for example:
0x18=24Mbps

Quality of
MJPG(1by
te)

10-100 Current
imagequality

image attribute
(1byte)

BITO:1Enable
Mirrors
BIT1:1Enable

Reverse
180degrees

SET USB_UVC_PA
RAMETERS

0xB1

not have

Usbimage
transfer
parameter
settingres
ults

MID_SNAP&UPL
OAD_IMAGE _1

Ox71

s msg_reply
snapimage

result(1byte)

0= success, others =
failure

Phpoto
len(4bytes)

For example, 00
00 28 a3
representsthe
length of the
picture, and the
large module is
equal to 0x28 a3.

MID_SNAP&UPL
OAD _IMAGE 2

0x71

s msg_reply_
snapimage?2
(Note: This
responseis
returnedaccordi
ngto
ImageOrTemplate

message
protocol format
MsgID Size Data

Phpoto data[n]
(n bytes)

Size is the length
of photo data in
this packet. Each
packet is fixed
totransmit 1024
bytes of
photodata. When
the last packet is
lessthan 1024
bytes, it is
transmitted
according to the
actual number of
remaining bytes.
Photo data is
photodata




MID_SNAP&UPL
OAD_FACEIMAG

E 1

Ox72

s msg_reply_
snapfaceimage1

SnapFaceresult

0= success, others =

(Tbyte) failure
Phpoto For example, 00
len(4bytes) 00 28 a3
representsthe
length of the

picture, and the
large module is
equal to 0x28 a3.

UserlD (2bytes)
(Big End Mode)

Search for local
user ID. UserlID =
0000, which
means there is no
corresponding
user in the
modaule. If it is not
0, it means there
is a corresponding
userlLarge-
endmode

id_high
id_low




MID_SNAP&UPL
OAD_FACEIMAG

E2

0x72

s msg_reply
snapfaceimage2(
Note: This replyis
returnedaccordin

gto
ImageOrTemplate

message
protocol format
MsglID Size Data)

Phpoto data[n]
(n bytes)

Size is the
length of photo
data in this
packet. Each
packet is fixed
totransmit 1024
bytes of
photodata. When
the last packet is
less than 1024
bytes, it is
transmitted
according to the
actualnumber of
remaining
bytes. Photo
data is photodata

ENROLL SNAPFA
CEIMAGE*
(user_idonly exists
if
SnapFaceresoluti
on resultis 0

0x73

s msg_reply enr
ollsnapfaceimag
e data

user_id_heb
(Tbyte)

user id leb
(1byte)

ID of
registered
userNote: Used in
with
0x72 when no local

conjunction

user is found. This
entry  command
does not check

duplicates.

face direction(1
byte)

Default isO

MID_SNAP&UPL
OAD_IMAGE _1

Ox74

s msg_reply
snapimage’

result(1byte)

0= success, others =
failure

Phpoto
len(4bytes)

For example, 00
00 28 a3
representsthe
length of the
picture, and the
large module is
equal to 0x28 a3.




Size is the

s_rr?sg_reply_ length of photo
snapimage2 data in this
MID_SNAP&UPL (Note: This Phpotodataln] | packet. Each
0x74 | responseis is fi
OAD_IMAGE_2 (n bytes) packet is fixed
returnedaccordin totransmit 1024
Igtg S bytes of
magelriemplate photodata. When
message ,
the last packet is
protocol format
MsglD Size Data) fess than.1 (.)24
bytes, it is
transmitted
according to the
actualnumber of
remaining
bytes. Photo
data is photodata
MID_UPGRADE _F ! P
_UPGRADEF | >_MSg_reply_ rogress Percentage of
w, upgradefw (1byte)
upgrade progress
Seq heb(1 byt
eq heb(l byte) packet sequence
Seq leb(1 byte) number
MID ENROLLWI | | s.msg_reply enr
TH PHOTO 1 X oll_photo 1 UserlD heb(1 etain
byte)
(User ID to be
UserlD leb(1 returned,default is
byte) 00 00)
MID_ENROLL WI s msg_reply enr | Seq heb(1 byte)
TH_PHOTO 2 OxF7 oll_photo_2 packet sequence

Seq leb(1 byte)

number




UserID heb(1
byte)

UserlID leb(1
byte)

UserlDwhen
registration is
successful
(Only after the
photo is sent, the
corresponding
UserID will be
registered
successfully,
otherwise0)

(Recommended for
priority use)
0xF7 Command)

MID_READ_FEAT
URE_1

OxFA

s msg_reply rea
d feature data

result(1byte)

0= success, others =
failure

Feature
len(4bytes)

Such as 00 00 16
D4 generation
Table Palmprint
Palmprint Vein
Feature Length,
Big End Mode
equals 0x16 DE

MID_READ_FEAT
URE_2

OxFA

s msg_reply rea
d feature data(
Note: This reply

followsthe
ImageOrTemplate
message

protocol format
MsglID Size Data
Return)

Feature data[n]

(n bytes)

Size is the
characteristic data
length of the
packet. Each
packet
transmits246 bytes
of
characteristicdata.
When the last
packet is lessthan




246 bytes, it is
transmitted
according to the
actual number

ofremaining
bytes. Feature
data
ischaracteristic
data
Seq heb(1 byte)
packet sequence
s_msg Seq leb(1 byte) number
MID WRITE FEAT T
- - OxFB | reply write featu UserlD heb
URE_T retain
re data 1 (1 byte)
b (User ID to be
UseriDle returned,default is
(1 byte) 00 00)
MID WRITE FEAT s ms Seq heb(1 byt
_ _ OXEB _Msg_ eq heb(1 byte)

URE_2

reply write featu
re_data 2

Seq leb(1 byte)

packet sequence

number




UserID heb UserlDwhen

(1 byte) registration is
successful
UserlD leb (Only after the
(1 byte) photo is sent, the

corresponding
UserID will be

registered
successfully,
otherwise0)
MID _DUPLICATE_
OxFC not have not have
CHECK
MID_DEMOM OxFE not have not have
ODE

result indicates the execution result of this command, as shown in the following table.

M> >H REPLYresultdefinition description

result code explain

MR_SUCCESS 0 succeed

MR_REJECTED 1 module rejects the command

MR _ABORTED 2 Entry/validation algorithm
terminated

MR _FAILED4 CAMERA 4 Camera failed to open

MR_FAILED4 UNKNOWNREASON 5 unknown error

MR FAILED4 INVALIDPARAM 6 invalid parameter

MR _FAILED4 NOMEMORY 7 run out of memory

MR_FAILED4 UNKNOWNUSER 8 No user has entered.

MR _FAILED4 MAXUSER 9 Entry exceeds maximum number
of users

MR _FAILED4 FACEENROLLED 10 Face entered

MR_FAILED4 LIVENESSCHECK 12 Vivo test failed

MR _FAILED4 TIMEOUT 13 Entry or unlock timeout

MR _FAILED4 AUTHORIZATION 14 Encryption chip authorization
failed.




MR_FAILED4 READ FILE 19 Failed to read file

MR_FAILED4 WRITE_FILE 20 Failed to write file

MR _FAILED4 NO ENCRYPT 21 Communication protocol
unencrypted

MR _FAILED4 NO_RGBIMAGE 23 RGBimages are not ready

MR _FAILED4 JPGPHOTO_LARGE 24 Photos are too large (photo

registration)




MR FAILED4 JPGPHOTO SMALL 25 Photos are too small (photo
registration)

Example: OXEF OxAA 0x00 0x00 0x05 0x13 0x00 0x00 0x03 Ox1FOx0A
M>>H REPLYMessage Protocol Example

na| Sync | Msgl Size Data Parity
me| Word D Check

call

0x00 s msg_reply data

c | oxEFA | (MID | Ox | ox | Ox13 | 0x00 | 0x00 | Ox03
- Ox1F OXOA
o5 | MID_ | (MR_ | (user_ | (user_

o| A |REPLY | 00 _ -
- ) ENROL | SUCC |id_ | id leb ?;acctie;:)'
. D ESS) | heb) |)

nt

This message indicates that this is a REPLY message returned by the module to the master control.
The data part occupies 5 bytes. The entry is successful and the entered user ID is 3.

2) Send NOTE message

NOTE message is mainly used to actively return some information to the master control. Currently,
NOTEmessage is mainly sent in three cases:

a) the module sends NID READY to
the master control during startup; b)
the module sends face information to
the master control during entry; c)
the module sends face information to

the master control during unlocking.

The complete protocol for NOTE messages sent by modules to the master is shown in the table below.

M>>HNOTEMessage Protocol Format Description

nhame SyncWord | MsgID | Size Data ParityCheck
number of| 2 bytes 1 byte 2 N bytes 1 byte
bytes bytes
MIDN |u|lo s_msg_note data
content| OxEFAA OTE PlW I hid data[0] checksum
Ox01) | p e'r (Tbyte) (n-bytes)
er| ei




eil g
g | ht
ht| bi
bi| ts
ts

nidrepresentsthe execution result of the algorithm in the enroll process, as follows:

M> >H NOTEDescription of nid definitionin message

nid( *indicates carrying | code explain
data)
NID_READY 0 Module ready.
NID FACE STATE* 1 The algorithm executes successfully and returns

face information_note data face




NID_UNKNOWNERROR 2 unknown error

NID_OTA DONE* 3 not have

NID_EYE_STATE 4 not have

The data carried by NID_FACE STATEmainly stores face information, and the details are as follows:

M> > Datadescriptioncorrespondingto NID FACE STATE in H NOTE

constr s note data face
uction
conten| state left top Right bottom yaw pitch roll
t
type | int16 t int16_t int16_t int16_t int16_t int16 t int16_t int16_t
byte | 2bytes 2bytes 2bytes 2bytes 2bytes 2bytes 2bytes 2bytes

state: Indicates the current state of the face, mainly including the following situations:

M> >H NOTE Statedescriptionof Datacorresponding to NID_FACE STATEin message

Face state cod | explain

FACE STATE_NORMAL 0 Face normal

FACE STATE_NOFACE 1 | No faces detected.

FACE STATE_TOOUP 2 | The face is too close to the top edge
of the picture, so it cannot be
entered.

FACE STATE TOODOWN 3 | The face is too close to the bottom
edge of the picture, so it cannot be
entered.

FACE STATE_TOOLEFT 4 | The face is too close to the left edge
of the picture, so it cannot be
entered.

FACE_STATE TOORIGHT 5 | The face is too close to the right
edge of the picture, so it cannot be
entered.

FACE STATE FAR 6 | Face distance too far, failed to enter

Document




FACE_STATE_CLOSE 7 | The face distance is too close to
enter.

FACE STATE EYEBROW OCCLUSION 8 | Eyebrow occlusion

FACE_STATE_EYE_OCCLUSION 9 | Eye occlusion

FACE STATE FACE OCCLUSION 10 | Face occlusion

FACE_STATE_DIRECTION_ERROR 11 | Wrong face direction entered

FACE_STATE_EYE CLOSE STATUS OPEN _EYE 12 | Eyes open state detected in eyes

closed mode

Document




FACE_STATE_EYE_CLOSE_STATUS 13 | eyes-closed state

FACE STATE EYE CLOSE. UNKNOW STATUS 14 | Closed eyes cannot be determined
in closed eyes mode detection

The other members ofs note data face have the following meanings:
left: Distance from the face frame to the leftmost side of the

picture (negative number means the face frame is beyond the
leftmost side of the picture) top: Distance from the face frame to
the top of the picture (negative number means the face frame is
beyond the top of the picture) right: Distance from the face frame
to the rightmost side of the picture (negative number means the

face frame is beyond the rightmost side of the picture)

bottom: Distance of the face box from the bottom of the picture (negative number means the

face box is beyond the bottom of the picture)
yaw,pitch,rollindicates the direction of rotation. Yawis negative for left head,yawis positive for

right head;pitchis negative for upward head, pitch is positive for downward head;roll is negative

for right tilt, roll is positive for left tilt.

Example: OxEF OxAA 0x01 0x00 0x01 0x000x00
M> >H NOTEMessage Protocol Example

n SyncWo
a Y q ' MsgID Size Data ParityCheck
m
e
c OxEFAA 0x01(MI 000 | 001 s msg_note data 000
X X X X
o D_NOTE) 0x00(NID_READY) |not have
nt
e
nt

This message indicates that this is a NOTE message sent by the module to the master, the data length
is 1 byte, and the module is ready to receive other commands.

3) ImageOrTemplateMessage Sending

The complete protocol for sending Image or Template messages from the module to the master is

shown in the table below.




M>>H ImageOrTemplate Message Protocol Format Description

name | SyncWord | MsgID Size Data ParityCheck
number of| 2 bytes 1 byte 2 bytes N bytes 1 byte
bytes
) hi lo ,
content OxEFAA mid image data checksum
g w
h er
ei ei
g 9
ht ht

mid indicates the task currently being processed by the module. For example, when mid =
MID_SNAP& UPLOAD FACEIMAGE 2(0x72), it indicates that the message is a message replied by
the module after processing the capture task. For detailsof mid, see "Description of mid

definition inREPLYmessage orimageOrTemplatemessage”.




(ii) Examples of functional implementation

1. Master receives message flow

The message sent by the master control receiving module may follow the flow shown in the figure

below.

RIERETE
& BIMIDH
EORFHH WEEE
IO R s
%,l v v v
’ X ‘ MID_REPLY y ‘ MID_NOTE ’ MID_IMAGE
- HIBTRE N
N . Esyxr::cworq ¢ ¢ ‘
Ty R EDatalImid RIEDataftinid# #HDatarh
HT R BMES R B A5 2 Ll
Ha=ll, 53 RIEMHE (NID_READY, NI
El B size (RESERT ENRO D_FACESTAT
LL.), F B3 E..), FHBEH R
______ =& Hdata =% HAdata
RiBsizetZ R
L ' FIECE FAED
A N
N SRR, .
— TR, 2 v
- data, MIEEH# —> W —
Ly TR

Message flow chart of main control receiving module

2. General message processing flow

LSRR 2

A A 3 2% B

EAE 285 R A AL BE
gLy, R ki%
GETSTATUS 154,
4£200ms IR 11 13 B
FIBEHL. 1l
. A IR AL 3
PRl e PRk 254,
CANCEL{E AL # H ok
RESET

Msg: XXXCMD

Msg: XXXCMD Done

Msg: XXXCMD

Msg: MID_GETSTATUS

B
R4

| LIIIJ i||j: )R

{mm%wkm

P AL B 3= 45
1 R

General Message Processing Flowchart




3. up-down flow

The power-on and power-off of the main control active control module are shown in the figure
below. When the module is powered on, it enters the startup process. When the module enters
thestandbystate,it notifies the master controIMSG:NOTE:READY. The master control starts to send

G AL R

SR RO A

=123
EEBEE
Msg: NOTE: READY VIR 25
ERitiies
Msg: XXXCMD i
BEHAb B 4%
=5 N
Msg: XXXCMD Done | (RPN
Fixigd
{1 &k
I ET ] s

Flow chart of
command messages, and the module processes and returns the results. Module no message

sent or timeout, master control can power off.
4. Face Entry Process

;‘;g%ﬁ%‘;‘g”gi Msg:MID_ENROLL:MIDDLE I BURSA ERay

LAl i MsgNOTE face_data ||
Msg:REPLY:enroll_result 7
Msg:MID_ENROLL:UP [

Msg:NOTE:face_data BB R R,

T T T T T T T T T T T T A 45 Rk B

Msg:REPLY:enroll_result| g A ISR, %

’ 2 AR 2R F K

( Msg:MID_ENROLL:DOWN | s, fum. w4,

Msg:NOTE:face_data FATEH R Rl

e e e e e ARSER.

Msg:REPLY:enroll_result

Input face flow chart

In the input process, the face lock algorithm module does not limit the order of the input
direction, and the user can arbitrarily combine the order of the input direction. The above figure takes

one of the orders as an example to illustrate.

46




When the master control sends an instruction to input a face in a certain direction, the module starts to
work and returns the state, position and posture of the face in real time.




Information (returned in the form of NOTE message) The user can remind the entry person to adjust
the posture position according to this information. When the entry is successful, themodule
willreturn the entry result in the form of REPLY message. If the entry is unsuccessful, the
module will return the reason for the failure accordingly.
It is worth noting that when the first frame image collected by the module is successfully
entered, the result will be returned directly inthe form of a REPLY message. During the entry
process, the entry can be terminated by the FACE RESET command, and the previous entry
status will also be cleared.
If there is a sudden power failure during the entry process, the previously entered faces will not be

saved.

5. entry instructions

The angle of face input in each direction is described as follows:
Face Input Angle Description

Enter direction deflection angle
positive face Facing the camera, no deflection angle
up 5~55degreesupward deflection of the front face
downward 5 - 55degrees downward
towards the right Turn your face 8~60degrees to theright.
towards the left Turn your face 8~60degreesto the left.

The upward and downward deflections are shown below.

Pitch

Face input up and down schematic diagram

Left and right deflections are shown below.




.
‘0..-ou--....-.|v-" Y.w ........ sennsarye®

.

Face input left and right schematic diagram

Please do not use the method shown below.

Schematic diagram of face entry error

We suggest that users slowly turn their heads in a certain direction during the actual entry

process, and keep turning, please do not turn too fast or immediately return to the face state.

6.

Single frame entry

The difference between single-frame entry and entry process is that single-frame entry only

needs one face to enter successfully. without having to interact five times to complete

registration.




7. Face verification process

FEEAIE
WIEARRES

Msg:MID_VERIFY

Msg:NOTE:face_data

Msg:NOTE:face_data

Msg:REPLY:verify_result |

Face verification process

8. Encrypted communication flow

The encrypted communication flow is shown in the figure below.

BRESEEDS

BHNBEHEANEK, HA
WIEARTE. HasiRE
ANERRE., (8. 85F
=8, AFRIBXEEIE
THPERES. B,
IERLIIR([BIFF
ID/name/adminZE58, &
MEEMORIAEN AYREA,

@ The main control powerson FM21xseries Face Recognition module

@FM21xseries Face Recognition module sendsREADY (plaintext)to master control

® The module needs to call the MID_SET RELEASE ENC_KEYcommand to set the 16bytes sequence

required by the private protocolfor the first time.

@ The master control uses random numbers to generate random sequences and sends them to FM21x

series Face Recognition module(4bytes)

@ FM21xseries Face Recognition module and master control adopt customized private
protocol(generate 16bytes password)according to this random sequence. Both parties use the

same algorithm to generate the same password. After that, both parties used this password to

encrypt and decrypt this session.

Face Recognition module of FM21x series returns to status andsends product serial number to main

controller with random cipher AES/SMPL encryption.

7. The master control decrypts, identifies the equipment ID, confirms the identity, and then begins to process

the demand instructions, input or verify, etc.

The master uses randomly generated password, AES/SMPL encryption method to encrypt

instructions and data and send them to FM21x series face recognition module.

50




FM21xseries Face Recognition moduledecrypts the password decrypted in step 4, judges the
legality of the instruction and processes the instruction.

FM21xseries Face Recognition module encrypts theinstruction processing result and data with the
password decrypted in step 4, and sends it to the main control.




READY

Ji3 2 N il
FOXRAHLIF 51

TR FLR R e
B SR PR BB

I R I% R G ME

BULCE= e YT

OKJ& &f'?

- RikfH4E
n ;%;@Hl I

L MERIE 34
SRR N % RESULT

Encrypted communication flow

9. Photo Delivery Registration Example
MID_ENROLL WITH_PHOTO

Master (PC) initiates photo registration, Seqis set to 0, Photo datais 4 bytes (big end mode)Photo
size, Photo type
(normal photo 0, encrypted photo 1)is 1 byte
[Seq+ photo
length]module
returnsResultandSeq
WhenResultisMR_SUCCESS, the master control accumulatesSeqby1 (Segstarts to send photo
datafrom1)Photodatais photodata, and the packet size of photo data is 246 bytes. When the
last packet is less than 246 bytes, it is sent for its actual byte number.

When the photo is sent, the module finally returns the registration result. When the
ResultisMR _SUCCESS, it also carries the userlID.

Example: Send a small photo with a photo size 0f2763, without the user name
(Send:PC to module, Recv:module toPC)

Send:ef aa f7 00 07 00 00 00 00 0a cb 0130 Seq=0,photolen=0x00000ach,type=1)
52




Recv:ef aa 00 00 06 f7 0000000000 f1  dresult=0,Seq=0,userid=0))
Send:ef aa f7 00 f8 00 01 5b b5 01 35 7b 8e 76 99 ed 2b fe d4 7a 9e 3c de a4 6¢ fe d5 84 45 3¢
9c a4 65f8d3 7c9839d7 a3 6af9dc729636d3b060f2de709225cdb762eac8618122c2




be 71 e2 f5 5f b0 1b ff 86 41 dd c9 67 b6 Ob 6 88 5d cf el 4f aa 23 f8 9d 50 c6 e7 47 b0 0f eb 96 92
25 d5 38 9f 35 d6 ad 61 f5 d9 63 93 31 ¢7 96 4c e2 f4 49 ac Oe ed 96 5f cc e7 49 ac Oe ed 96 5f cc
e7 49 ac Oe ed 96 5f cc e7 49 ac Oe ed 96 5f cc €7 49 ac Oe ed 96 5f cc e7 49 ac Oe ed 96 5f cc e7 49
ac c3 1f a4 7c f6 d5 03 9e 44 dc a5 4f fe d7 6a 9f 3f ce a5 92 3a d5 64 9e 3c de al 6¢ ff d4 7a 9f 3d
df a4 6d fe d5 7b 9e 3c de a6 6e fa dO 7d 99 34 d6 ae 66 01 11 7b 2b 2c df a6 6¢ fd d6 79 9a 3f da
al 69 fad5 7b 9f 41 de a6 6e fe d1 6a 9b 2e fe 95 2c 8 c6 2a ff 92

Recv:ef aa 00 00 06 f7 00 00 01 00 00 fO

Send:ef aa f7 00 f8 00 02 3b fd d5 79 cc 54 ea 3f 34 fc e6 dc 3f cO 29 4f cc fb 97 0f 8¢ 57 72 94
2a c8 bc 74 e4 f0 5d b9 14 f6 8e 59 cb e3 4c a6 05 e5 e7 29 bb 93 3¢ d6 75 95 7 39 ab 83 2c c6 65
85¢7099b b3 1cf6 55 b5 d7 19 8b a3 0c e6 45 a5 27 €9 7b 53 fc 16 b5 55 36 fe 6a 40 ed 09 a4 46
3ecf5d71de389b 77 0d c7 4c 66 cf 2b 8a 68 1c d4 44 17 b8 5af9 19 63 a5 37 1f a9 4d e8 0a 72
ba 26 0c al 7f de 3¢ 40 88 18 32 93 77 d6 2e 56 9e 0a 20 8d 69 c4 26 5e 92 3a d5 64 9f 3c dc a5 6¢
ff d4 7a 9f 3d de a5 6d fe d5 7b 9e 3c de a6 6e fa dO 7d 99 34 d6 ae 66 01 11 7b 2b 2d df a6 6¢ fc
d1 7f 9d 38 d8 al 69 fa d5 7a 9c 4b df a5 6f fd c4 7f 9b 1d ee a2 7f bf 84 7c ff 4d cc 86 5f 7f dd 6f dc
ad 7e 15 ac f7 f6 48 cc cc ca c6 1f 2f df 6d ba 08 3e 81 9c €9 cd 94

Recv:ef aa 00 00 06 f7 00 00 02 00 00 f3

Send:ef aa f7 00 f8 00 03 62 84 1a f8 8c 44 d4 e0 4d a9 04 eb 9e 2e ba 90 3d d9 74 96 ee 3e
aa 80 2d ¢9 64 86 fe Oe 9a b0 1d f9 54 b6 ce 1e 8a a0 0d €9 44 a6 de ef 7d 51 fe 18 bb 57 2d e7 6¢
46 ef Ob aa 48 3¢ f4 64 77 d8 323 99 79 03 ¢5 57 7f c9 2d 88 6a 12 da 46 6¢ c1 5¢ ff 1b 61 ab 39 1d
b2 54 ee Oc 70 b8 28 02 a3 47 e6 3d 47 89 1b 33 9¢ 76 d5 35 56 9e 0a 20 8d 69 c4 26 5e 92 24 d5
77 9d 3d df a6 7c fd c4 7b al 3c 2b ff 02 Ob 9e 8f 37 63 7e Oc 40 a5 e4 fa cd 03 95 50 a2 da a9 26
b4 5d 01 05 e6 5b 9e e7 cc 3c al 31 38 14 bc 1e c6 df f3 48 6d 52 6e fO 6d ae ce 95 e3 13 2b 6e ad
95 c7 8b 14 6b cf 29 01 fe 54 €9 bc 54 4e 84 9e 90 23 e3 9e 54 e7 a5 d0 e3 2d 74 ed 83 ed d1 2c 60
943a33b22e4a3075bc8dbl145b69e8e8374692fe835251cbbd323613

Recv:ef aa 00 00 06 f7 00 00 03 00 00 f2

Send:ef aa f7 00 f8 00 04 25 4d 60 7a 84 a2 1a el 25 6a eb6 c4 06 3b 56 a9 9d cb 27 ec 2e ee
85 3f 3e d9 88 Ob 38 a4 53 c0 97 b7 d2 55 7f e5 3¢ 07 6f 01 a4 d0 a8 2c 53 20 bb d9f2 b2 5d 3c c4
a7 84 c4290186b4048bd56a011499a15164 159919 10 88 8f9e bc be ¢7 al 81 ac8a 3615
54 e3 fc 7b 97 59 34 e4 9d f1 Oa cb 92 aa a4 ff 65 ae 0e 8¢ 73 23 e7 df 83 aa b9 3¢ 83 64 cf 26 a2 12
f8 ad al 6e 27 86 14 a8 fe d9 5f b3 84 e5 8f 42 47 2d 22 7b 3a 8b 4e 78 2¢ 0f 65 b1 d0 Oc 16 26 c0
23 b7 2992 62 8b fb 92 3a 5b a9 6¢c a4 13 39 46 9b 11 29 3e db 1d 64 45 4b 5a c6 18 d3 62 ae 2f c9
4b 84 65 a2 18 be fd d1 a7 89 de 3c a2 6f 58 8c 54 9d 2a 6a c3 3f cO 5f aa 1e 9b e8 a5 a3 a7 5a b3
85 cf 9e a6 0d a3 36 ea 75 f0 9d d4 6e al 34 ce d9 8e 9b 8c 98 2c 07 8c 6b 4e

Recv:ef aa 00 00 06 f7 00 00 04 00 00 f5

Send:ef aa f7 00 f8 00 05 80 4b b9 d8 bf 28 6f a6 34 f1 7d 22 ab 6a 53 2f 9a 98 2e 8f 26 59 45
b0 42 2b b1 76 52 74 9b 0f 73 47 2¢ 26 29 45 e3 44 ad a8 38 a4 74 d7 bb 75 5e 90 b9 8a b7 c9 41
c512bc62cdflb792bbd0a2207446f47be3704a53a3d8 led4c34el48ea3978f2e77a
fb b0 6f 8c 4d 11 f4 72 94 13 a2 07 1f 3¢ b0 4e 3f e0 b2 46 f9 2f 14 8f ac 85 84 47 44 af ¢5 89 20 eb
1b 3575 b4 37 da 8b 5e 62 c8 bd ¢8 d3 04 80 12 df 82 54 4e 9f a4 73 f2 a3 88 a7 6b Oc 25 8f 78 49
c6 bd e6 94 3a 29 f4 86 f5 29 ab f8 ce a6 33 8a d2 a8 ab 38 68 54 c5 da 1f fa e3 75 1a d7 70 a9 fe
b2 26 09 99 d3 f3 63 3¢ f6 €6 af c¢3 Of 6f c3 7¢ 90 b6 6¢ d2 8f 78 8e e4 c9 10 89 91 47 58 98 be cf cf
e8acfdffa01123110da216045af3b306dc45c7da3616ca82f9

Recv:ef aa 00 00 06 f7 00 00 05 00 00 f4




Send:ef aa f7 00 f8 00 06 ee e3 2d f1 78 caebaeal 17 7c 8a 74 7d 93 56 46 7c 07 9d 03 14 c2
4e 91 86 2a 34 ea 13 09 e7 ¢5 96 fa 12 fe ff 96 fc 44 92 2d bf 10 d4 44 e8 d9 58 77 88 ad 8e 1f 7d
91a574 1ab95856 baech9 2e212f8136544a1222785258ef8bbbdcc5869cch 1856 d4
f5¢1 08 55 c1 68 f0 f4 6a 06 e2 64 a2 46 03 8d 20 a4 10 e4 70 99 f7 92 06 d2 b6 c6 97 01 00 c9 7e
00 6¢c 08 bc a7 ec 91 f6 65 84 00 af ad c0 89 77 e3 06 ea 46 b1 32 fd 98 ae c6 6¢ be fd 3a a9 10 f2 f9
a3 44 bb 40 d4 85 08 87 33 c0 88 bf 1b fb f2 4f 97 a2 8d 6d de 2d c2 01 89 09 36 f7 61 27 3b 3e 86
bb dc 14 f5 bf ec fa 8c 79 82 43 1c 30 24 5c 2d 78 08 6e 44 79 5f 3d 89 08 7f f3 8d 94 92 al 70 28

c8 01 d587 f9 de 5f90 56 50 87 93 1c 9f 78 e2 e9 af e2 69 al bc 26 9¢c Oc

Recv:ef aa 00 00 06 f7 00 00 06 00 00 f7

Send:ef aa f7 00 f8 00 07 d5 el 75 5d ff fO 6d 38 51 10 3d 1e bc c0 17 38 ¢7 26 b3 a5 6a 81 2c
1d b6 4a 53 9c 82 al 60 be ec 24 ee f0 8a b2 cf ea a8 b8 89 70 27 36 5a 42 77 12 f6 43 45 2b b3 a6
8cc01663 17 fa9f 55 7e 7d 55d2 28 9c 61 9f 0a fO c6 cc 81 73 5b 14 d8 f4 4c 99 93 b3 4f 12 3e 73
67 a5 e0 badbad9c0339958e656289f10c957f38605c9 125998 11c689dec35a792991
46 b8 41 74 ad 46 b5 72 b1 42 03 ¢3 5b f4 5d ad ¢7 08 0a c3 4b 9e 46 42 5c¢c 5e 3b 55 03 05 0d 4d
d8 7d 3b 23 88 07 4b 10 95 43 f3 b7 ea ad 31 0d 39 19 45 cb 1f f4 bc 96 b5 ca 8f 19 c1 28 ac 54 74
97 d4 61 cb 3f 0a 56 b2 80 dd 27 90 70 Ob 4f €9 d6 62 b2 b6 64 50 a6 13 65 e5 a0 32 d6 c1 ce 89 9f
459af51e820d el 63 ee a7 b7 e8eaal52547fba 6f c2 4f55 2e 43 21 Of

Recv:ef aa 00 00 06 f7 00 00 07 00 00 f6

Send:ef aa f7 00 f8 00 08 bd 13 35 d7 fb 09 Oc b0 bc 56 Ob eb 30 dO bc 4e 53 bd 92 47 b3 91
2d 50 ed 7a d6 f8 e3 6e cd e3 d5 1a e5 56 c8 08 60 a3 85 87 f1 b9 38 ab 52 ad 52 ed 8f 46 99 40 b5
cd 38 acalae 17 7a3abd b7 49 e7 78 ae €7 06 da e6 cd 7d 2c 8d 65 85 db 4e 0d d8 7b fc 7d 59 67
cd d7 43 82 6a 0a 10 Oe 1b 1f 8a ca 89 bf 1f b2 e2 27 13 2e 92 ac 0d 7f 55 b8 58 18 96 0d fc 2d 31
43 f6 d7 c3 df cc Ob 53 4¢ 3b 0e 52 ¢7 53 ¢6 c0 97 45 81 b0 4e ea ac 8d e2 80 a4 Oe e4 c7 bd f2 84
8dfc9c5e64c0ddc37cd4bd77037f9ab2a267ea2511ca3019c29fb3282a6d3729d0
315ef43bdf7a9cdlda743eb0d891e348c3ed4bb760a635812541717e890d677f174
0473f46eccda2748c0e94625a4f6a6f5160194 bed0925b49777a83

Recv:ef aa 00 00 06 f7 00 00 08 00 00 f9

Send:ef aa f7 00 f8 00 09 7e e6 67 48 27 03 9d d1 ec 51 0d 86 2c c6 8d Of d8 de b2 44 7d 55
48 8e 59 bd d5 f3 94 08 d7 Oc 09 07 44 2c 16 7a db e4 9a 31 60 69 2d c3 e5 dc d4 91 15 18 e5 59
8d c8 d2 0a b7 f5 7b 64 €9 f7 41 6b Of cf 18 16 e8 3b 70 9f 1a d7 4a d0 ba 06 92 7d 1e c5 b8 Oe 57
fcdf f4 0d 2d 90 d5 c2 0e 92 44 c0 f3 7¢ 86 14 9f 83 87 b8 ff ee 40 84 50 1f 1e 8e ec 5f 04 67 00 ab
b7 07 59 b9 ac fc 43 28 9e 74 13 06 85 55 a3 a2 08 a0 Oc df cb ad e2 2b e5 8a 18 31 ¢9 8b 59 44 59
7d ec 60 d6 23 5e 62 6094 8d 27 87 1c db 43 4e 74 1519 5f 29 1e a4 4d 30 a5 d8 8b 8f b5 98 d8 3e
3c 37 d3 1f 9e 00 8f 5e b3 94 d6 67 eb 72 51 ad 91 49 78 ac 7f 69 4e 6d 26 16 5e 22 06 09 3a 14 fe
44 d9 73 4d fd 5¢ 22 fd 85 21 ee 6b bf c0 84 81 6¢ 26 b3 fc b4 82 af 58 d9 14 88

Recv:ef aa 00 00 06 f7 00 00 09 00 00 8

Send:ef aa f7 00 f8 00 0a 17 bc b5 db ac 60 be 47 17 21 09 6a 18 be 22 f0 59 6a d5 41 d3 53
66 2523 72 ¢3 84 8e ac 4d 5d e8 2a 0f 1f 03 09 29 e8 46 d5 9e 4c d3 a0 62 30 37 62 6d 6f 91 e4 cc
fd bd 08 87 72 78 ff 40 09 e0 c4 7a cd 68 e3 2d 6d 2b 60 fe eb b7 6b 27 0d 62 a2 dc 9f 36 20 4b 4d
da56ala955c5b2a3165d5cfabl53229aeeb5e 15 1feachb236436555a8c6663748baa
69 f2 08 €7 72 cc d7 77 aa 88 d1 29 f8 8e a5 2e cd 5b 6d 39 fb b5 cc 24 7c 2d 6a b3 0d 5f 60 49 8e
583741 b2 b9 96 78 58 0d b1 c1 40 23 8¢ 65 84 b9 c4 fa df 40 70 7¢ d6 58 07 c8 69 a8 01 11 6d 7b
al 08 d7 d4 dd 68 4a 2e bb 20 3 fd d8 3e 3e f7 04 00 f1 46 b5 72 f4 5¢ 08 c1 6f eb a6 20 bb be al
55




8f ba 4a bd 58 bb ba 53 ab c1 cb 45 79 d4 a7 7f facb f9 0a a6 37 e0 c0 83 db be
Recv:ef aa 00 00 06 f7 00 00 0a 00 00 fb
Send:ef aa f7 00 f8 00 Ob fe 81 4e 39 23 55 a4 7¢ 77 3e 92 05 19 08 fd 8b a6 b4 5f 28 cf a6 61
ba 313612 b8 c0 0c c7 fd dO 2d 57 90 2c ae 9f cd 47 88 ¢5 57 5e 92 fe 20 d1 f8 95 c0 25 85 d4 71
0c 08 ef eb 25 4b a8 27 b3 c9 €7 11 ab 55 el 74 d4 d0 d6 ce 70 9f a3 3f 30 d3 e5 f7 42 e7 b7 30 f6
fe f6 ¢8 6¢ 54 d5 62 a0 a3 47 Oe fd 51 a3 fO c¢7 13 df 5d 08 b8 2a 98 63 Oa 18 bf ae 24 8 9d 6f cf 67
43 07 fb e8 44 cd b4 ae a2 a4 c1 43 9b 54 b8 7f 51 28 5e bb c0 b2 17 47 c2 3¢ 28 45 ec a2 51 f3 53
d620d591 61 b0 14 7d 1c 37 c3 fd c9 89 ee 7c 38 Ob b2 a8 4a ca e3 9a 13 3b da f5 8d 5b 28 8d 8e
81 9e 66 23 60 d3 c0 21 4e 9f da 44 03 28 8f 85 ef 81 4e f1 73 88 04 c0 db 4d 95 fc ed Oc d3 69 87
b6 77 f1 73 fe 7ad2 14 06 03 97 0f 56 9d ec c3 a6 71 a1 f8 9b a9 01 f9 e5
Recv:ef aa 00 00 06 f7 00 00 Ob 00 00 fa
Send:ef aa f7 00 3b 00 Oc 77 02 96 95 8f fb 54 aa e2 db 08 57 9e 55 73 79 51 98 e7 0a 81 05
15ff 23 e6058d d9 b6 eb 14 76 80 72 22 ae 91 d5 el 6¢ aa 45 0a 6d 9a dd 43 64 6¢ 91 34 ee a5 3b
922724
Recv:ef aa 00 00 06 f7 0000 0c00 01 fcSend complete, UserID=1

(ili) Supplementary explanation
1. MID REPLY

Each command sent by the master to the module will eventually receive a MID_REPLY reply from the
module, which contains the command mid sent by the master,the execution result of the command,
and the data that may be returned.

typedef struct {

uint8 t mid; // the command(message) id to reply (the request message ID)

uint8_t result; // command handling result: success or failed -> s msg_result

uint8_t data[0];

} s_msg_reply data;

The result of the command execution may be the following:

/* message result code */

typedef uint8 ts msg result;

constuint8 t MR SUCCESS = 0; // success

const uint8 t MR REJECTED = 1; // module rejected this command

const uint8 t MR _ABORTED = 2; // algo aborted

const uint8 t MR _FAILED4 CAMERA =4; // camera open failed

const uint8 t MR FAILED4 UNKNOWNREASON = 5; // UNKNOWN ERROR




const uint8_t MR _FAILED4 INVALIDPARAM = 6; // invalid param
const uint8_t MR_FAILED4 NOMEMORY = 7; // no enough memory
const uint8 t MR_FAILED4 UNKNOWNUSER = 8; // exceed limitation
const uint8 t MR FAILED4 MAXUSER = 9; // exceed maximum user number
const uint8 t MR_FAILED4 FACEENROLLED = 10; // this face has been enrolled
const uint8_t MR _FAILED4 LIVENESSCHECK = 12;// liveness check failed
const uint8_t MR FAILED4 TIMEOUT = 13; // exceed the time limit
const uint8 t MR FAILED4 AUTHORIZATION = 14;// authorization failed
const uint8_t MR_FAILED4 READ FILE = 19; // read file failed
const uint8_t MR_FAILED4 WRITE_FILE = 20; // write file failed
const uint8_t MR _FAILED4 NO ENCRYPT = 21; // encrypt must be set
const uint8 t MR FAILED4 NO RGBIMAGE= 23; // rgb image is not ready
/* message result code end */
The returneddatavariesaccording tomid.Inthe header filemessage.h,the structure
starting with "s_msg_reply "is the data carried when each instruction sends a reply

message. Take verify as an example:
/* message reply data definitions */
typedef struct {
uint8 tuser id heb;
uint8 t user_id _leb;
uint8_tuser name[USER NAME_SIZE];
uint8 t admin;
uint8_t unlockStatus;

} s_msg _reply verify data;
2. MID NOTE

MSG:NOTE is the information that the module actively reports to the master control. For
example, when the module is powered on, it will actively send a NOTE to the master control,
indicatingthat it has READY and can receive the command of the master control. After receiving
the NOTE message, the master control can start sending the entry or verification command.

The data contained inthe

NOTE message is: typedef




struct {

uint8_t nid; // note id




uint8 t data[0];
} s_msg_note data;

/* module -> host note end */
3. MID RESET

After the master sends this command, the module will cancel the previously executed command (such
as entry, unlock, etc.) and return to STANDBY state.

4. MID GETSTATUS

After the master sends the command, the module returns to its current state, mainly
including: MS_STANDBY(0): module is in idle state, waitingfor master command MS_BUSY(1):
module is in working state MS ERROR(2): module error, unable to work normally

MS_INVALID(3):module is not initialized
5. MID VERIFY

MSG::VERIFY is the most commonly used function, which carries thefollowingdata

// verify

typedef struct {

uint8_t pd_rightaway; // power down right away after verifying

uint8_t timeout; // timeout, unit second, default 10s

} s_msg_verify data;

[pd_rightaway] indicates whether to shut down immediately after unlocking;[timeout] is the
unlocking timeout time (unit s), which is
implicitlyrecognizedas10s andcan be set when sending the unlocking command. The timeout time
can be set arbitrarily by the user, and the maximum is255s.

During the unlock process, the module returns NOTEandREPLYmessages.

NOTE mainly returns the state of the face in the current frame picture, as well as the position and
posture of the face.

REPLYmainly returns the final result after the unlocking process is completed, and
the possible returned messages include MR SUCCESS, MR FAILED4 NOSUCHFACE,
MR _ABORTED, etc. When the returned result is MR_SUCCESS, it indicates that the unlocking is
successful. REPALY will carry is what kind of way to unlock. The data structure is as follows:

typedef struct
{ uint8_t user id_heb;




uint8 t user id leb;
uint8 tuser name[USER NAME SIZE];

uint8_t admin;




uint8_t unlockStatus;

} s msg_reply verify data;
6. MID ENROLL/MID ENROLL SINGLE

MSG::ENROLL is also a common function, and its accompanyingdata is as follows:

// enroll user

typedef struct {

uint8 t admin; // the user will be set to admin

uint8 t user_name[32];

s face dir face_direction;

uint8_t timeout;

}s_msg_enroll_data;

[admin] indicates that the person who entered the entry is the administrator;[timeout] is the
timeout time (ins)duringthe entry process,which can beset by default when sending the entry command.
The timeout time can be set freely by the user, and the maximum is255sface direction] is onlyvalidin
MID_ENROLL

/* msg face direction */

typedef uint8 ts face dir;

const uint8 t FACE _DIRECTION_UP = 0x10; // face up

const uint8 t FACE DIRECTION _DOWN = 0x08; // face down

const uint8_t FACE_DIRECTION_LEFT = 0x04; // face left

const uint8 t FACE_DIRECTION_RIGHT = 0x02; // face right

const uint8 t FACE _DIRECTION_MIDDLE = 0x01; // face middle

const uint8 t FACE_DIRECTION_UNDEFINE= 0x00;// face undefine

Two messages, NOTEand

NOTE mainly returns the state of the face in the current frame picture, as well as the position and
posture of the face.

REPLY mainly returns the final result after the entry process is completed. When MR _SUCCESSS

is returned, it indicates that the entry is successful. TheREPLY also returns some information, as

follows:

typedef struct
{ uint8 t user_id_heb;

uint8 t user id leb;




uint8 tface direction;




} s_msg _reply enroll data;

[face direction], the lower5bits of the data from high to low respectively represent the upward,
downward, left, right and positive directions of the face direction,as shown in the following figure,

1 indicates that the direction has been entered, and 0 indicates that the direction has not been
entered.

face direction

ik | | e Lz | L |

7. MID ENROLL ITG

MSG:ENROLL ITisa supplement and extensionto the 1.15.6 ENROLL

, and allows users to choose
whether to repeat the
entry;the accompanying data
is as follows:
// enroll user intergrated
typedef struct {
uint8_t admin; // the user will be set to admin, 1:admin user, O:normal user
uint8_t user name[USER_NAME_SIZE];
uint8_t face direction; // reference FACE_DIRECTION *

uint8 t enroll_type; // reference FACE_ENROLL TYPE *

uint8_t enable duplicate; // enable user enroll duplicatly, 1:enable, O:disable

// when enroll_type is equal to FACE_ENROLL _TYPE RGB, theenable duplicate can be set

to 2, it means that cant duplicate enroll with username

uint8_t timeout; // timeout unit second default 10s




uint8_t reserved[3]; // reserved feild

} s_msg_enroll_itg;




[enroll type] FACE_ENROLL TYPE INTERACTIVE, interactive entry;

FACE ENROLL TYPE_SINGLE, single frame entry

[enable_duplicate] functions as follows:

0: The same person cannot be entered, but the user name can be repeated.

1: The same person can be entered repeatedly, and the user name can also be repeated.

2: The same person can be entered, but the username cannot be repeated (only valid when

RGB is registered).
MID DELUSER
MSG:DELUSER is to delete a registered user, specified by user id.

MID DELALL

MSG::DELALL is to delete all registered user information.

10.MID_GETUSERINFO

The master specifies the registered user to be returnedthrough the userid.After receiving the

command, the module will return the information of the specified user, mainly including the

followinginformation:

11.

typedef struct

{ uint8_t user_id heb;
uint8_t user_id leb;
uint8_tuser_name[32];

uint8_t admin;

} s_msg_reply getuserinfo_data;
MID_ENROLL WITH PHOTO

Master initiates photo registration, Seqis set to 0, Photo datais 4 bytes (big
end mode) Photo size; Module returns Result and Seq,

WhenResultisMR_SUCCESS, the master control accumulatesSeqby1 (Segstarts to send photo

datafrom1)Photodatais photodata, and the packet size of photo data is 246 bytes. When the

last packet is insufficient, it is sent for its actual byte number.




12.MID DEMOMODE

After the control sends the command, the module enters the demonstration mode. In this
mode, the module authentication process will not do feature comparison, that is, everyone can

unlock, but the living body detection will still be performed.
13.MID _GET ALL USERID

Gets the number of all registered users and the IDs of all registered users.




