



# Application Note: AZD034 Release2

## Wear&Play™: Auto ON/OFF for portable devices

### Table of Contents

|   |                                                                          |    |
|---|--------------------------------------------------------------------------|----|
| 1 | INTRODUCTION.....                                                        | 1  |
| 2 | TYPICAL APPLICATION.....                                                 | 1  |
| 3 | ADVANTAGES OF CAPACITIVE SENSING .....                                   | 3  |
| 4 | AZOTEQ WEAR&PLAY™ APPLICABLE SENSORS .....                               | 4  |
| 5 | IQS572 TRACKPAD IMPLEMENTATION: WIRELESS HEADPHONE GESTURE CONTROL ..... | 5  |
| 6 | CONTACT INFORMATION .....                                                | 10 |

### No more discharged batteries – Azoteq Wear&Play™ intelligent wear detection for Auto ON/OFF

Capacitive sensing technology to detect  
wearable usage and provide intuitive control.

Automatic device  
activation when wearable  
detects body contact

## 1 Introduction

All wearable devices contain rechargeable  
battery units that need to last long periods.

This document describes the application of  
Azoteq ProxSense® capacitive sensors in  
wearables for:

- Auto ON/OFF – Wear detection
- Proximity alert and movement detection
- Capacitive sensing buttons
- Trackpad/touchscreen with gestures

Capacitive sensing eliminates the need for  
mechanical ON/OFF switches. Auto-OFF after  
a fixed period is not practical in all applications.  
Motion sensors may deactivate during passive  
periods – like traveling in a car or an airplane.

Azoteq ProxSense® provides a range of low  
cost and low current, touch and proximity  
sensors manufactured in compact packages.

## 2 Typical application

### 2.1 Wireless Headphones

Figure 2.1 depicts typical wireless headphones.  
Capacitive sensing can be used for:

- On-head detection
- Gesture control



Figure 2.1 Typical wireless  
headphones

### 2.2 Bluetooth earphones

- Small/compact design
- Limited battery life
- Auto ON/OFF saves power when not in use.



Figure 2.2 A Bluetooth headset

### 2.3 Fitness trackers

- Robust designs (water/dust -proof)
- Need extended battery life
- Intuitive user interface



Figure 2.3 Typical fitness trackers

### 2.4 Smart watches and other wearables

- Capacitive touchscreen
- On-wrist detection
- Functional gesture control



Figure 2.4 A modern smart watch

### 2.5 Toys & remote controllers

- Proximity detection
- Auto ON/OFF
- Capacitive touch control



Figure 2.5 A children's toy example



Figure 2.6 Remote controller

### 2.6 Medical wearables

- Monitor the health of a person
- Heart rate monitors, ECG's, glucose level monitoring (Figure 2.7), pain relievers, and respiratory- and neuro-monitoring devices
- Human detection is crucial
- Require extended battery life

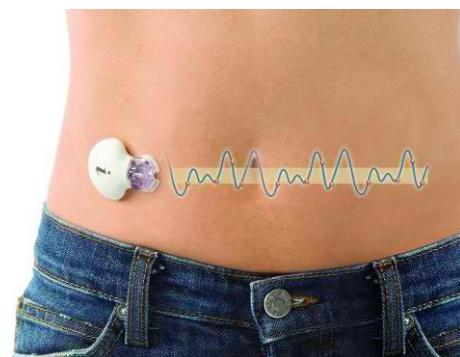



Figure 2.7 Wearable glucose monitoring system



### 3 Advantages of capacitive sensing

#### 3.1 Low power

Azoteq Wear&Play™ solutions provide current consumptions below 80µA in activation mode and as less as 3.5µA in a low power state while still sensing.

#### 3.2 Robust design possibilities

Using capacitive sensors:

- No mechanical switches
- Saves space (small device packages)
- Robust designs (waterproof)
- Custom finishes possible



Figure 3.1 A robust wearable device for fitness tracking

#### 3.3 Intuitive use

Azoteq ProxSense® sensors can detect:

- Proximity,
- Touch,
- Movement,
- Gestures (tap, double tap, tap-and-hold, swipe, swipe and hold).
- Tilt sensing (require hardware design)

Figure 3.2 shows an example of a swipe gesture on a smart watch's display.



Figure 3.2 Swipe gesture on a smart watch display

Also refer to Figure 5.18 for a complete gesture illustration available regarding headphone trackpads.

#### 3.4 Intelligent detection algorithms

Proven sensing algorithms:

- **Touch late release.** Hysteresis based threshold adjustment.

Firm touch → activation

Relaxed over time → keeps activation

- **Movement detection.** Senses small capacitive changes when moving.

Distinguish between:

- A trigger from a person (continuous movement afterwards)
- A false trigger with an inanimate object (stationary).

Figure 3.3 gives an example of no movement although proximity triggered.



Figure 3.3 Wireless headphones stored on a metal stand



### 3.5 Low cost

Azoteq provides low cost capacitive sensing solutions with a wide range of sensors for every application. With limited external components, capacitive functionality can be added to a device at a price comparing to tactile switches.

## 4 Azoteq WEAR&PLAY™ applicable sensors

Azoteq's range of wearable IC and package details are given in Table 4.1.

**Table 4.1 Azoteq wearable IC's**

| Controller | Description                                      | Package  |
|------------|--------------------------------------------------|----------|
| IQS211     | Touch, Prox, Movement, Touch late release        | TSOT23-6 |
| IQS213A    | SwipeSwitch™                                     | MSOP-10  |
| IQS263     | Touch, Prox, SAR, Movement, Slider, Scroll wheel | MSOP-10  |
| IQS333     | Touch, Prox, 2 sliders                           | QFN32    |
| IQS360     | Trackpad controller                              | QFN32    |
| IQS525     | Trackpad/Touchscreen                             | QFN28    |
| IQS572     | Trackpad/Touchscreen                             | QFN28    |

For any further details regarding a specific ProxSense® controller kindly consult the appropriate datasheet available on the Azoteq website ([www.azoteq.com/design/datasheets](http://www.azoteq.com/design/datasheets)).

## 5 IQS572 trackpad implementation: Wireless headphone gesture control

An Azoteq IQS572 trackpad module (AZP584A01) was fitted in a [SoundBot® SB420-BLU](#) headphone (Figure 5.1) for on-head touch and gesture recognition.

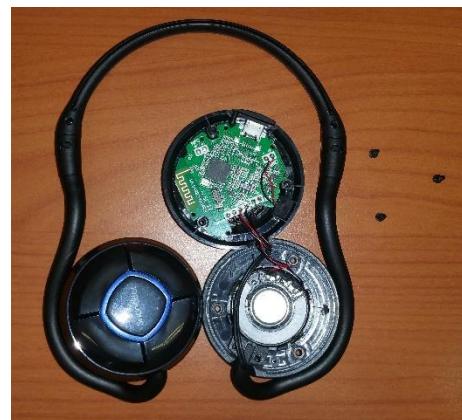
User gestures will emulate tactile button presses.



**Figure 5.1 SoundBot® SB420-BLU headphones**

The integration steps follows (guideline):

- Disassemble the headset module.
- Fit a trackpad module into the design.
- Apply an appropriate overlay to the trackpad and ear piece.
- Program the IQS572 IC.
- Interface connections towards the controller inputs. Assemble the headset.
- Evaluate the gesture recognitions and sensitivity of the trackpad.


### 5.1 Disassemble the headset

- a. Remove the cushions over ear pieces.



**Figure 5.2 Ear cushions removed**

- b. Open the controller ear piece (right hand side) by loosening the screws (3).

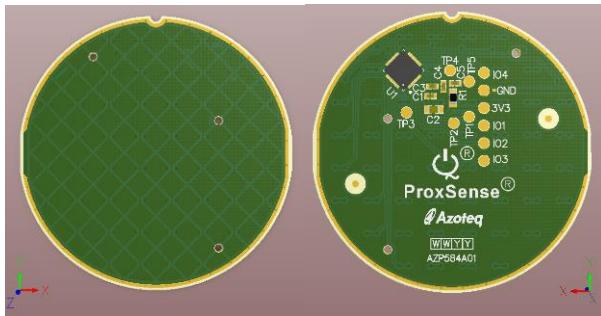


**Figure 5.3 Controller-side ear piece opened**

- c. Remove the controller PCB from the plastic ear piece structure.



**Figure 5.4 Control PCB removed**


- d. Separate the ear piece structure from its individual plastic buttons.



**Figure 5.5 Ear piece structure and buttons disassembled**

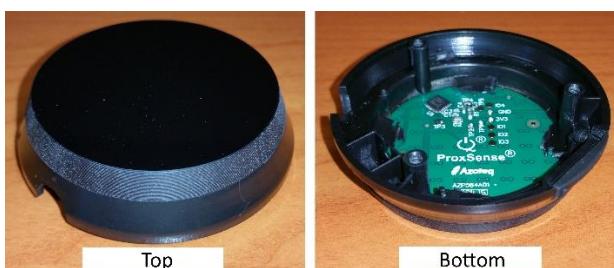
## 5.2 Fit a trackpad module

- Select an appropriate size trackpad module (developed by Azoteq). A 40mm diameter circular trackpad (1mm thick FR4) was used.





b. A double sided adhesive tape (3M) was used (Figure 5.11). Ensure that:


- Surfaces is clean and level
- Properly stick trackpad PCB to overlay.
- No air pockets.

This guarantee equal and consistent sensitivity over the trackpad surface.



**Figure 5.11 Double sided adhesive contact tape over trackpad**

c. The outer ear piece was assembled afterwards (excluding the original plastic buttons as shown in Figure 5.5; the three rightmost pieces).



**Figure 5.12 Trackpad with overlay on ear piece**

#### 5.4 Program the trackpad module

This section is omitted due to its complexity. The reader is referred to the Application note [AZD070 IQS5xx programming and data streaming](#) for more detail.



**Figure 5.13 Trackpad interfaced with programming wires**

#### 5.5 Interface the trackpad to the headphone's controller

a. Provide wire connections to the trackpad solder pads (Table 4.1).



**Figure 5.14 Connection wires soldered on the trackpad PCB**

b. Table 5.1 summarises all wire connections towards button inputs to control their functions.

| Headphone             | Trackpad |
|-----------------------|----------|
| AUX 1V8               | 3V3      |
| Ground (G)            | GND      |
| Volume increase (+)   | IO1      |
| Call/Play/Pause (>ll) | IO2      |
| Volume decrease (-)   | IO3      |
| Skip backward (<<)    | IO4      |
| Skip forward (>>)     | RDY      |

**Table 5.1 Headphone control interface towards trackpad**



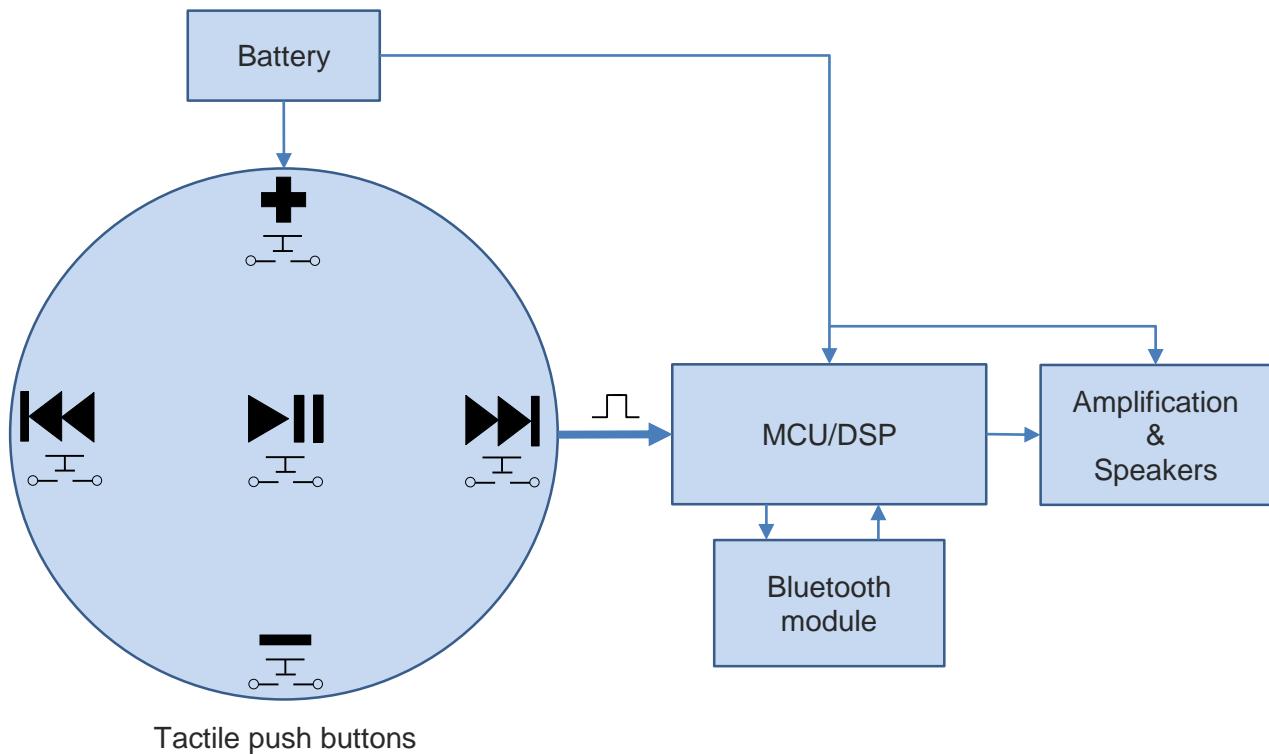
**Figure 5.15 Connection wires soldered and tucked into earpiece**

c. Assemble the headphone completely. Ensure that all wire connections are securely fastened.

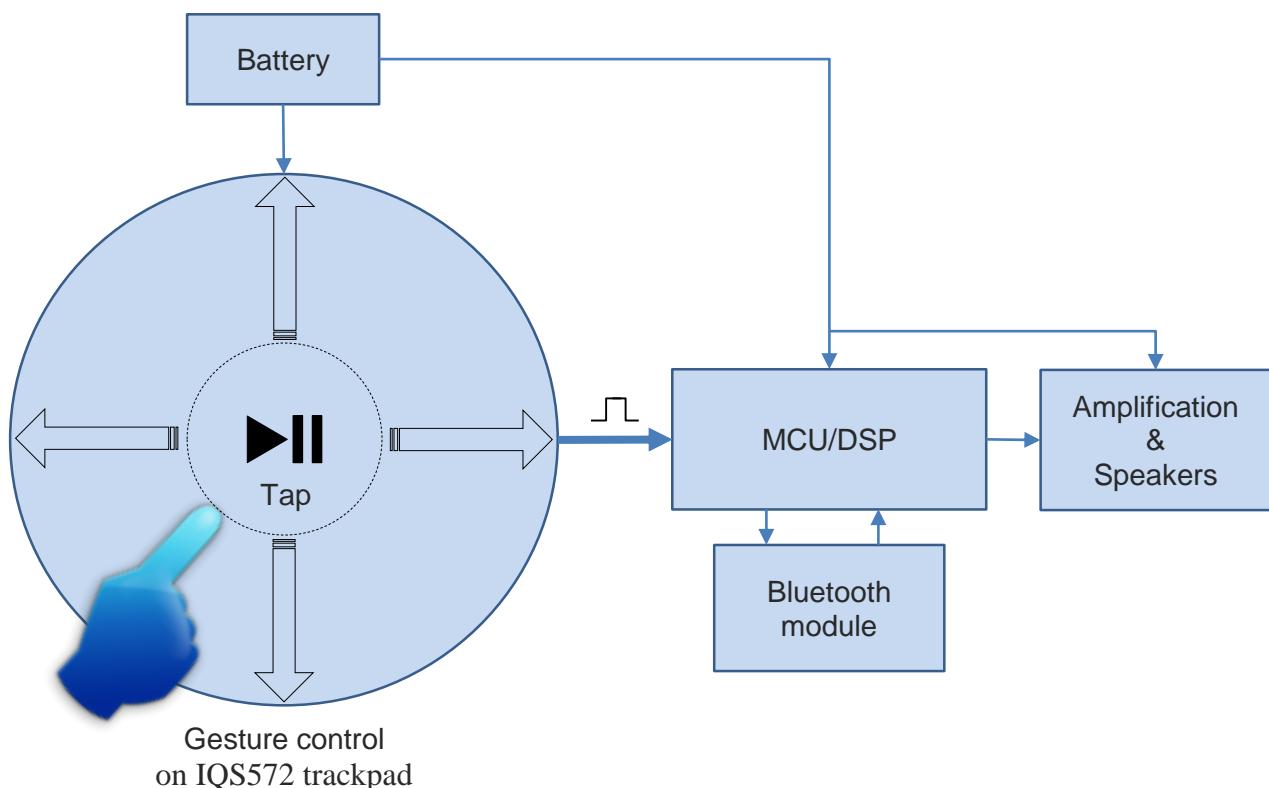


**Figure 5.16 Headset completely assembled**

## 5.6 Test evaluation


- 1) Power on and connect Bluetooth
- 2) Swipe up for volume increase
- 3) Swipe down for volume decrease
- 4) Swipe forward for skip forward
- 5) Swipe backwards for skip backward
- 6) Tap for play/pause/call answer

The definition and timing of IO port's logic can be custom programmed.


For further information regarding this subject, please contact your local distributor or submit enquiries to Azoteq at: [ProxSenseSupport@azoteq.com](mailto:ProxSenseSupport@azoteq.com)



**Figure 5.17 The original tactile button solution vs. the new gesture trackpad implementation**



**Figure 5.18 Block diagram of original wireless headphones**



**Figure 5.19 Block diagram of a IQS572 trackpad fitted wireless headphones**



## 6 Contact information

|                         | USA                                                                 | Asia                                                                                | South Africa                                     |
|-------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------|
| <b>Physical Address</b> | 6507 Jester Blvd<br>Bldg 5, suite 510G<br>Austin<br>TX 78750<br>USA | Rm2125, Glittery City<br>Shennan Rd<br>Futian District<br>Shenzhen, 518033<br>China | 109 Main Street<br>Paarl<br>7646<br>South Africa |
| <b>Postal Address</b>   | 6507 Jester Blvd<br>Bldg 5, suite 510G<br>Austin<br>TX 78750<br>USA | Rm2125, Glittery City<br>Shennan Rd<br>Futian District<br>Shenzhen, 518033<br>China | PO Box 3534<br>Paarl<br>7620<br>South Africa     |
| <b>Tel</b>              | +1 512 538 1995                                                     | +86 755 8303 5294<br>ext 808                                                        | +27 21 863 0033                                  |
| <b>Fax</b>              | +1 512 672 8442                                                     |                                                                                     | +27 21 863 1512                                  |
| <b>Email</b>            | kobusm@azoteq.com                                                   | linayu@azoteq.com.cn                                                                | info@azoteq.com                                  |

Please visit [www.azoteq.com](http://www.azoteq.com) for a list of distributors and worldwide representation.

The following patents relate to the device or usage of the device: US 6,249,089 B1; US 6,621,225 B2; US 6,650,066 B2; US 6,952,084 B2; US 6,984,900 B1; US 7,084,526 B2; US 7,084,531 B2; US 7,265,494 B2; US 7,291,940 B2; US 7,329,970 B2; US 7,336,037 B2; US 7,443,101 B2; US 7,466,040 B2 ; US 7,498,749 B2; US 7,528,508 B2; US 7,755,219 B2; US 7,772,781 B2; US 7,781,980 B2; US 7,915,765 B2; US 7,994,726 B2; US 8,035,623 B2; US RE43,606 E; US 8,288,952 B2; US 8,395,395 B2; US 8,531,120 B2; US 8,659,306 B2; US 8,823,273 B2 B2; EP 1 120 018 B2; EP 1 206 168 B1; EP 1 308 913 B1; EP 1 530 178 A1; EP 2 351 220 B1; EP 2 559 164 B1; CN 1330853; CN 1783573; AUS 761094; HK 104 1401

IQ Switch®, SwipeSwitch™, ProxSense®, LightSense™, AirButton™, ProxFusion™ and the  logo are trademarks of Azoteq.

The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does not warrant the accuracy, completeness or reliability of the information contained herein. All content and information are provided on an "as is" basis only, without any representations or warranties, express or implied, of any kind, including representations about the suitability of these products or information for any purpose. Azoteq disclaims all warranties and conditions with regard to these products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title and non-infringement of any third party intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused by, without limitation, failure of performance, error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such damages. The applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Azoteq products are not authorized for use as critical components in life support devices or systems. No licenses to patents are granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property rights. In the event that any of the abovementioned limitations or exclusions does not apply, it is agreed that Azoteq's total liability for all losses, damages and causes of action (in contract, tort (including without limitation, negligence) or otherwise) will not exceed the amount already paid by the customer for the products. Azoteq reserves the right to alter its products, to make corrections, deletions, modifications, enhancements, improvements and other changes to the content and information, its products, programs and services at any time or to move or discontinue any contents, products, programs or services without prior notification. For the most up-to-date information and binding Terms and Conditions please refer to [www.azoteq.com/ip](http://www.azoteq.com/ip).

[WWW.AZOTEQ.COM](http://WWW.AZOTEQ.COM)

info@azoteq.com