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ST60A3H1 PCB design guidelines

Introduction

The aim of this document is to help users integrate the ST60A3H1 into their boards by providing guidelines for both the
schematic design and PCB layout, based on the X-NUCLEO-60K1A1 kit.

These guidelines are applicable to products with a single ST60A3H1 pair as additional constraints apply to multi-lane
applications involving more than one ST60A3H1 pair.

The X-NUCLEO-60K1A1 is a kit composed of two expansion boards, an X-NUCLEO-60L1A1 expansion board, and an X-
NUCLEO-60R1A1 expansion board, working as a pair, which can be plugged onto most STM32 Nucleo boards equipped with
the Arduino® R3 connectors. It provides a complete evaluation kit that allows you to learn, evaluate, and develop applications
based on the ST60A3H1 transceiver, for contactless connectivity up to 480 Mbit/s.

The ST60A3H1 is a full RF transceiver with a dual-linear-polarization integrated antenna, operating in half-duplex mode. It
provides an optimized solution for a high-speed, low-power, short-range point-to-point 60 GHz RF link.
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1 Layout recommendations

The ST60A3H1 combines a high data rate digital interface, millimeter wave RF, and an antenna in package.
Besides the IC and antenna design, the end-to-end link’s performance depends on the way the IC is implemented
and used in the application: the IC integration on the application board and the operating conditions (temperature,
RF gap, casing, 3D environment, etc.). Careful consideration is therefore needed during the application board
design to achieve the desired performance.

The following PCB guidelines are provided to help users integrate the ST60A3H1 on the board, optimizing the
radiation properties of the antenna and the IC’s end-to-end performance (link budget and ripple).

1.1 General ST60A3H1 antenna integration principles

To preserve the ST60A3H1 antenna's radiation properties and end-to-end performance, STMicroelectronics'
general recommendations are:

. To minimize the metal plates around the ST60A3H1’s ground and/or add ground openings to isolate it from
the rest of the board.
. To shield the interconnects (power supply, high-speed IOs, low-speed data, and control signals) using a

dedicated inner layer ground plane.

. To route the ST60A3H1 signals using stacked and buried vias and not directly on the ST60A3H1
component layer.

. To integrate the ST60A3H1 as a standalone component and separated from other board components
(isolated on a rectangular part that emerges from the rest of the PCB). This helps avoid extra coupling and
rippling on the radiation due to substrate waves and edges.

The guidelines presented in this section are an application of the above principles with more details. Strictly
following them is not mandatory for the system to be functional and it is possible to find different configurations
that are good enough, but it is strongly recommended to follow STMicroelectronics guidelines to preserve the
system’s performances. Any deviation from these guidelines can have an impact on the ST60A3H1’s performance
that would need to be evaluated in an EM (ElectroMagnetic) simulation. Under NDA conditions,
STMicroelectronics can provide an encrypted Ansys HFSS model of the ST60A3H1 so that users can run these
EM (ElectroMagnetic) simulations.

1.1.1 ST60A3H1 grounding, reflector, and radiation properties

The ST60A3H1 grounding is crucial for its antenna performance. The ground plane under the ST60A3H1 is at the
right distance to play the role of a reflector, which is why this ground plane pattern can induce radiated
performance variations. The objective being to improve the radiated performances of the board compared to the
ST60A3H1 module alone. This ground is considered as a part of the radiated system and needs to be well
controlled and isolated from the rest. This ground plane is also necessary for proper IC grounding. The external
size of the ground plane can affect the radiated gain (value and ripple vs. angle, beam angle). The 1 mm value
shown in ST60A3H1 grounding is optimized for gain and beam centering.
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Figure 1. ST60A3H1 grounding
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Provided the previous definition of the ST60A3H1’s ground plane, a minimum isolation guard distance of 0.5 mm
is needed (see Figure 2. ST60A3H1 various implementation zones), especially on this component layer. This
isolation guard distance helps preserve the radiated performances, especially in terms of radiated gain and
optimized angular beam, thus no copper should be present in this zone. If the ST60A3H1’s ground is not cut from
the rest of the board’s ground, at least on the component layer, surface currents propagation can be different and
can induce a different radiation pattern with a tilted beam and a reduced gain value, considering a far-field use.
This rule (ground cut) should also be applied on the layer next to the component layer.

The 0.5 mm guard distance (blue zone in Figure 2) is mandatory even in cases where the application constraints
prevent the integrator from removing the ground plane on the whole component layer and close to the ST60A3H1.

Figure 2. ST60A3H1 various implementation zones
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1
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The red zone is a recommended keep-out zone for SMD/packages to eliminate their influence on the IC. Itis a
second order recommendation to follow if enough space is available. A dedicated EM simulation would be
required if one or more packages were inside the red zone. An alternative would be to place these packages on
the opposite side of the board.
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11.2 Recommended board form factor

Figure 3 presents an example of the recommended board form factor to isolate the ST60A3H1 on a PCB edge
tap in order to control its close environment. This minimizes:

. The interference between the space waves of the antenna and the parasitic radiation from substrate-
guided modes (surface waves) inside the PCB, leading to radiation pattern ripple signature.

. The rippling on the end-to-end link loss due to metal reflection, refraction, and diffraction mechanisms. It is
recommended to remove all ground surface on the rest of the top copper layer (if possible or reduce at
maximum their size) to limit as much as possible metal surfaces facing in the end-to-end configuration.

The isolation guard distance zone (in blue) is also the recommended substrate cut zone in this case.

Figure 3. Board form factor
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113 Local control of the injected E-field density inside the PCB

A ground plate below the ST60A3H1 package connected through a via matrix to an inner layer (full) ground plane
helps minimize the waves propagation underneath the ST60A3H1 (see Figure 4. Ground plane below the
ST60A3H1).

Figure 4. Ground plane below the ST60A3H1

The ground plate below Signals are routed after
the IC is connected using the inner ground plane
a via matrix with the

inner ground plane

In other words, the goal is to reduce as much as possible the injected E-field inside the PCB to avoid exciting
substrate wave propagation modes. No routing is allowed between the ST60A3H1’s layer and this inner ground
layer.

1.1.4 Other possible PCB implementations

STMicroelectronics has performed multiple EM simulations with the ST60A3H1 which led to the recommended
implementation described in the previous sections. Other PCB implementations are possible depending on the
application and its constraints, but they require a validation with EM simulations. Four different implementation
examples (not necessarily simulated by STMicroelectronics) are shown in Figure 5. ST60A3H1 implementation
examples.

Figure 5. ST60A3H1 implementation examples
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As can be seen in Section 1.2, the X-NUCLEO-60K1A1 was designed and optimized to be close to typical
application boards and does therefore not follow all the general recommendations. This is to show that the
ST60A3H1 can work with classical/common PCB implementations even if we know from experience that
implementations following our recommendations could lead to even better performances.

1.1.5 1/0s routing

The 1/0Os must be routed from the ST60A3H1’s balls on layers other than the ST60A3H1 layer. In-pad vias must
therefore be used (see Figure 6. ST60A3H1 I/Os routing). This minimizes:

. 60 GHz noise on the traces, especially the high-speed 1/Os.
. Broadside parasitic radiation which is relative to the E-field density injected inside the PCB.

Figure 6. ST60A3H1 1/0Os routing

I1/Os are not routed
on the ST60A3H1
layer

&= |/0s 1/0s wmp

1.2 X-NUCLEO-60K1A1 implementation

The previous section described the generally recommended rules for an optimal integration of the ST60A3H1.
There may however be additional constraints (cost, manufacturing, mechanical, etc.) which would prevent the
board designer from following all these rules. In such cases, EM simulations would be needed to evaluate the
impact on the ST60A3H1 performance of any deviation.

The X-NUCLEO-60K1A1 is an implementation example with a common PCB which follows some of the rules
listed previously and discards some others. EM simulations have been done on this board and the impact
compared to the optimal implementation has been quantified and deemed acceptable.

Therefore, users can and are advised to copy the X-NUCLEO-60K1A1 PCB board (the ST60A3H1 zone) and be
assured that their boards can obtain similar RF performances.

Users who would deviate from the X-NUCLEO-60K1A1, including a change in the board stack-up, layers number
(even down to 2), etc. would need to evaluate the impact of such deviation through EM simulations (standalone
and end-to-end in the targeted RF channel) and are invited to contact STMicroelectronics for support.

Captures from the X-NUCLEO-60K1A1 PCB are used to illustrate the various rules that were followed in its
design.
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1.21 PCB specification and stack-up

The X-NUCLEO-60K1A1 is a 4-layer 1.6 mm thick FR4 board. The core, prepreg, and solder mask characteristics
are indicated in Figure 7. X-NUCLEO-60K1A1 stack-up. PTH vias are the only type of vias used. The various
layers are described later in this document.

Figure 7. X-NUCLEO-60K1A1 stack-up

Signal
F'I"JI reg
Signal

Signal

Bottom Layer 4., Ci 3 oz 0.035mm

Note: Dk and Df in this table are given at 1 MHz. Prepreg Dk is given by the manufacturer at 4.3 at 10 GHz.

1.2.2 Form factor and keep-out zone

The X-NUCLEO-60K1A1 board follows an implementation which mixes examples 3 and 4 in Figure 5. ST60A3H1
implementation examples. The ST60A3H1 is placed together with the rest of the board’s components (instead of
being on a separated edge tap) with the 10 mm x 11 mm keep-out zone.

1.23 Board layers

Layer 1

This is the most important layer for the antenna behavior both in standalone and end-to-end configurations.
Among the rules defined previously, two are fully followed on the X-NUCLEO-60K1A1 while the others have been
discarded with minimum impact on the RF link performance quantified through EM simulations. The two rules that
have been implemented are:
. Three specific zones around the ST60A3H1 (see Figure 8. X-NUCLEO-60K1A1 Layer 1)

- The IC ground zone (5 mm x 6 mm) is filled with copper except for the PTH vias and routings.

- A 0.5 mm wide rectangular ring with the copper removed and surrounding the first zone.

- A 2 mm wide rectangular ring surrounding the second zone and free of any SMD but the ST60A3H1.
This creates a 10 mm x 11 mm keep-out zone. This zone on the X-NUCLEO-60K1A1 is
10 mm x 9 mm only as it is stripped of the bottom 2 mm because the IC is placed on the border of the
board.

. Ground vias grid over the first and third zone.
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Figure 8. X-NUCLEO-60K1A1 Layer 1

Vias grid

Keep-out zone (2 mm wide)

Copper free zone (0.5 mm
wide)

IC ground zone (5 x6 mm)

Layer 2

This is a ground layer with a vias grid. No routing is done on this layer in the ST60A3H1 zone.

Layer 3

This is a ground layer with a vias grid. It is the reference ground plane for the eUSB2 differential lane that is
routed on Layer 4.

Layer 4

This layer is used to route the 1.8 V power supply and the eUSB2 bus as can be seen in the next section.

1.24 ST60A3H1 routing

Ground and power supply

The ground balls of the ST60A3H1 are connected to Layer 1’'s ground plane, as can be seen in Figure 8. X-
NUCLEO-60K1A1 Layer 1.

The 1.8 V power supply is routed through a track on Layer 4. The decoupling capacitors are placed on Layer 1,
outside the keep-out zone, but if the user is willing to place components on the bottom layer, then it is better to do
so with the capacitors placed close to their respective balls on Layer 4. It is also better to use in-pad vias, micro-
vias, and buried vias for vertical routing of the power signals from the ST60A3H1 balls but PTH vias can be used
with minimum impact on the antenna performance as done on the X-NUCLEO-60K1A1. See Figure 9. Power
supply routing, Layer 1 and Layer 4.
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Figure 9. Power supply routing, Layer 1 and Layer 4

Decoupling
capacitors on layer 1,
outside the keep-out
zone

1.8V routed on layer 4

PTH vias used for
vertical routing from
ST60A3H1 balls

eUSB2 bus

This is a high-speed differential lane signal and the usual recommended practices to route such lanes must be
followed. They include:

. Ensuring a good impedance control (85 Q differential in our case) from end to end.

. Keeping the lane on the same layer as much as possible and in any case avoiding too many layer
changes. If the lane routing changes layers, make sure the signal vias are closely surrounded by ground
vias.

. Having a continuous reference ground plane (no cuts and no signal routing) placed on the layer above or
below the differential lane’s routing layer.

. Routing the P and N tracks symmetrically and ensuring the tracks have the same length (total and layer-

per-layer individually if routed on more than one). The lane’s total length must be kept short and, in all
cases, compatible with the eUSB2 standard.

. Avoiding right angles and adding passives on the lane only when necessary.
. Isolating the differential lane for the rest of the signals by surrounding it by a ground vias matrix.

Some of these rules are illustrated in Figure 10. eUSB2 bus routing, Layer 4, showing the routing done on the X-
NUCLEO-60K1A1.
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Figure 10. eUSB2 bus routing, Layer 4
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Additionally, and specific to the ST60A3H1, it is necessary to short TX_IN with RX_ON and TX_IP with RX_OP.
These shorts must be positioned below TX_IN/TX_IP balls for a minimized impedance matching break. If the
suggested LC circuit is added (see Section 3.7: eUSB2 bus), place it symmetrically close to the short.

As much as possible, and to preserve the component’s layer and therefore the ST60A3H1’s antenna
performances, it is advised to use in-pad, stacked micro-vias and buried vias for the vertical routing of the signals
from the ST60A3H1’s balls to the desired routing layer. It is however possible to use PTH vias with a minimum
impact on the antenna’s performance, as can be seen in Figure 11. eUSB2 routing from ST60A3H1 balls, Layer 1.

Figure 11. eUSB2 routing from ST60A3H1 balls, Layer 1

PTH vias (from Layer
1 to Layer 4) for
eUSB2 signals
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Single-ended signals

As much as possible, and to preserve the component’s layer and therefore the ST60A3H1’s antenna
performances, it is advised to use in-pad, stacked micro-vias and buried vias for the vertical routing of the signals
from the ST60A3H1’s balls to the desired routing layer. It is however possible to route these signals directly on the
ST60A3H1 component layer with a minimum impact on the antenna’s performance, as can be seen in

Figure 12. Single-ended signals routing from ST60A3H1 balls, Layer 1.

While these signals are low speed and some even static, their rise/fall time is very small and is a source of noise

on the board. It is advised to route the active signals (12C for example) far from the sensitive signals/zones such
as the eUSB2 lane.

Figure 12. Single-ended signals routing from ST60A3H1 balls, Layer 1

All 9 CMOS signals routed
directly from the —_—
ST60A3H1 balls on layer 1
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2 X-NUCLEO-60K1A1 RF performance

The X-NUCLEO-60K1A1 performance has been simulated and measured in both functional positions (0° and
180°) achieving very similar results. This section shows the results of the 0° position.

2.1 EM simulations

211 Standalone simulations

This section presents standalone simulation results or, in other words, only one side with one board and one LP
AiP (linearly polarized antenna in package) module (ST60A3H1) as shown in Figure 13.

Figure 13. Standalone simulation 3D model view with the full X-NUCLEO board

Figure 14. ST60A3H1 antenna matching to the die impedance presents the matching results of the LP AiP
module, with defined excitation ports placed at ALUCAP PAD chip level with measured impedances set in the
ports (probe measurements). The matching to the die impedance is acceptable for both TX and RX paths with
limited mismatch losses. This matching is dependent on the PCB implementation.

Figure 14. ST60A3H1 antenna matching to the die impedance

Matching ressoman ANSYS
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s

Figure 15. ST60A3H1 antenna TX and RX realized gain at 60.5 GHz below shows far-field realized gain results: 6
= 0° is the targeted direction directly perpendicular to the center of the patch antenna of the LP AiP module. A
good gain flatness from = 6 -5° to 8 = 5° is targeted along with a -3 dB gain bandwidth quite large to be able to
tolerate some misalignment between both sides as well as manufacturing variations.
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Figure 15. ST60A3H1 antenna TX and RX realized gain at 60.5 GHz
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TX and RX realized gains are well balanced and no back lobe radiation is observed at 6 = -180° (6 is the
elevation and ¢ the azimuth).

2.1.2 End-to-end simulations

This section presents end-to-end simulation results with two boards facing each other, as shown in
Figure 16. End-to-end simulation 3D model view with half boards.

This type of simulation allows us to predict the maximum achievable communication distance between these two
boards and to see whether the RF communication channel is stable over distance (ripple vs. distance) or
perturbed (reflections, refractions, etc.). It is mandatory to ensure that one board does not disturb the other and
that they are functional together.

Figure 16. End-to-end simulation 3D model view with half boards

Figure 17. X-NUCLEO-60K1A1 60.5 GHz link loss vs. distance presents the 60.5 GHz link loss results vs.
distance between the two LP AiP modules with 0.5 mm distance step with the two modules perfectly aligned.
According to these results, the system should work up to 24 mm including PVT variations (see

Section 2.2: Measurements for the measured value). Ripple vs. distance seems acceptable even if it is still visible
(peak higher than 1 dB) due to the board shape and implementation with full ground planes around the LP AiP
modules. This ripple vs. distance is expected to be higher in measurements due to this implementation and the
half-board simplification in simulation.
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Figure 17. X-NUCLEO-60K1A1 60.5 GHz link loss vs. distance
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As shown in Figure 18. ST60A3H1 antenna matching to the die impedance in end-to-end configuration, the
matching is stable vs. the distance between boards. The Smith chart also shows that TX and RX matching
impedance is stable vs. the distance with the same positions.

Figure 18. ST60A3H1 antenna matching to the die impedance in end-to-end configuration
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Thanks to other metrics, the far-field seems to be established from around 15 mm.
2.2 Measurements

2.21 Standalone measurements

The antenna radiation pattern is measured on an X-NUCLEO-60L1A1 board in nominal voltage and temperature
conditions. The measurement is done using a 6-axes robot handling a horn test antenna which is connected to a
spectrum analyzer. Facing this antenna is the X-NUCLEO-60L1A1 board which is positioned on a rotative
platform. The robot combined with the rotative platform allows the measurement to cover the half sphere above
the ST60A3H1 package. The distance between the ST60A3H1 package and the test antenna is kept constant at
10 cm for each measurement point to be in the far-field zone.

Some zones of the half sphere are excluded from the measurement because of mechanical constraints.

The ST60A3H1 is configured to output a CW (continuous wave) and the spectrum analyzer measures the
received power. The reported values are EIRP (effective isotropic radiated power) de-embedded on the
ST60A3H1 antenna plan.
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The EIRP 3D pattern is shown in Figure 19. X-NUCLEO-60L1A1 EIRP 3D pattern. An ST60A3H1 die CW output
power of 3.5 dBm is targeted during the trimming step but with a limited accuracy EIRP (Effective Isotropic
Radiated Power) of at least £1 dB and even more considering the impedance variation in this specific
configuration. Given the previous elements, the TX gain can be deduced from EIRP measurement to be between

1.6 and 3.6 dBi compared to 4.3 dBi in simulation, which is quite coherent especially for only one sample
measured.

Figure 19. X-NUCLEO-60L1A1 EIRP 3D pattern
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Figure 20. X-NUCLEO-60L1A1 EIRP 2D pattern shows two 2D cuts (EIRP vs. elevation) of the 3D pattern for
azimuths of 0° and 90°.
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Figure 20. X-NUCLEO-60L1A1 EIRP 2D pattern
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2.2.2 End-to-end measurements

RF performance of the X-NUCLEO-60K1A1 has been evaluated in free-space and typical operating conditions
(room temperature, nominal supply voltage, etc.). CW RSSI has been recorded as a function of the RF gap
between the two ST60A3H1 devices. Several kit samples have been tested.

Figure 21. CW RSSI as a function of RF gap
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Figure 21. CW RSSI as a function of RF gap above shows the result of one sample. It can been seen that the RF
link is established with the X-NUCLEO-60K1A1 in free space with an estimated CW RSSI higher than -32.5 dBm
(ST60A3H1 typical sensitivity value for eUSB2 total jitter smaller than 212 ps) for RF gaps up to around 30 mm.
An estimation of the free space performance over consumer temperature range, supply voltage range, and silicon

process dispersion is given for a CW RSSI higher than -26.5 dBm which corresponds to a maximum RF gap of 16
mm.
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Note that all these distances are estimates based on a single kit sample’s results obtained with the ST60A3H1’s
RSSI indicator which has a low accuracy, as can be seen in the ST60A3H1 datasheet. These various inaccuracy
sources easily explain the difference between the simulation and measurement maximum RF gap estimations.

We can also note the high ripple on the RSSI vs. distance which is due to the “worst common PCB
implementation” used (not respecting the guidelines) and is, as expected, higher than the one simulated. The
consequence is a reduction of the maximum achievable communication distance.

Users must run dedicated qualification tests on the X-NUCLEO-60K1A1 kit or their own hardware (over targeted
operating conditions and on several hardware samples) to ensure the product works well over their targeted RF
channel. If users target a higher range than that achieved by the X-NUCLEO-60K1A1, then they must use a more
recommended implementation with a specific board shape that reduces the link loss ripple.

Figure 22. 60.5 GHz RSSI comparison between measurements and simulation shows the comparison between
an estimated RSSI (using the link loss simulation and an estimation of the output power at die level) and RSSI
measurements done on 4 different samples (R1, R2, R3, and R4). Using the previous EIRP measurement and the
simulated gain, the die output power was estimated around 1.7 dBm (instead of the 3.5 dBm target).

Figure 22. 60.5 GHz RSSI comparison between measurements and simulation
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An RSSI vs. RF gap test was also performed while adding some scalar misalignment between the two ST60A3H1
devices. Figure 23. CW RSSI as a function of RF gap and misalignment shows that with a £ 2 mm maximum
misalignment in both axes, the CW RSSI remains above -32.5 dBm for an RF gap up to 21 mm in typical
operating conditions. Considering -26.5 dBm as the PVT threshold, the estimated functional range over PVT
would be between 1 mm and 13.5 mm, always with + 2 mm maximum misalignment in both axes.
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Figure 23. CW RSSI as a function of RF gap and misalignment
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2.3 Additional considerations

The previous sections show the simulated and measured free-space RF performances of the X-NUCLEO-60K1A1
board in typical operation conditions. Such performances do vary according to the channel between the
ST60A3H1 devices and the whole 3D environment as well as the operating conditions. Metrics such as link loss
and antenna VSWR (voltage standing wave ratio) are heavily impacted by:

. Temperature and voltage which have an impact on the ST60A3H1’s intrinsic performance.
. Board size and topology: Moving the antenna away from the board as advised is a plus.

. Linear and/or angular (tilt) misalignment between the two ST60A3H1 devices.

. Number of ST60A3H1 pairs in the application.

. Air gap distance (near-field or far-field zone).

. Casing:

- Number (1 or 2).
- Thickness: Consider the thickness compared to the RF signal wavelength inside the casing.
- Material (dielectric constant value [Dk] and loss tangent value [Df]).

- When two casings are present, whether both have the same Dk or not could make a significant
difference.

- If a metal casing is used, then a hole must be created in it to allow the 60 GHz radiation, and this
hole’s size has an impact on the radiation and end-to-end performance.

- Distance between the casings (air gap).
- Distance between each ST60A3H1 and its casing.

Users are invited to use the X-NUCLEO-60K1A1 to evaluate the range they could expect in their targeted
operating conditions (RF channel, casing, alignment tolerances, operating temperature).

2.31 Performance examples with casings

Depending on their EM properties, dimensions, and distance to the ST60A3H1 devices, the casings affect the
way the EM waves propagate creating an impact on the minimum and maximum supported range as well as on
the maximum supported misalignment.

As explained above, users must perform their own evaluation considering their casing specification (material,
dimensions, etc.) constraints.

The examples in this section show the impact of inserting two PLA casings in the RF channel between the Local
and Remote X-NUCLEO boards, with variable casing thicknesses and distances to the ST60A3H1 device
package.
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Figure 24. Impact of casing-to-package distance on CW RSSI (PLA casing with 0.5 mm thickness)
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Figure 25. Impact of casing-to-package distance on CW RSSI (PLA casing with 1.5 mm thickness)
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Figure 26. Impact of casing thickness on CW RSSI (PLA casing with 1.5 mm casing-to-package distance)
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Figure 27. Impact of casing thickness on CW RSSI (PLA casing with 5 mm casing-to-package distance)
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3 Schematics recommendation

The recommendations below must be read in conjunction with Section 3.1: Schematic diagrams and all the
related documentation.
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3.1

Schematic diagrams

Figure 28. X-NUCLEO-60L1A1 circuit schematic (1 of 4) - ST60A3H1

R24 +IV8

USB TypC receptable
To connect to host .
and for external power host and device External power supply
B2378 actas USB device N7 45V
RI3 0 SKI CCL_AS
ccl o VBUSI
RIS W SKI CC2 o vhus
VBUS3
g;& SBUI  VBUS4
SBU2
A6
uss e fBe| D)
USB H N g AT
57 D)
D2
H TXIe GND4
I TX- GND3
o RXI+ GND2
RXI-  GNDI
24 TX2e shielal
] TX2 Shiela2
5 RX2+  Shield3
RO kX2 Shiclad
USBTYPE-C
USB_C 632723300011
FAVIINE
RIS RIO
1V 0R R
ke ci [S5)
1o TuE
kgl o o &
12C shared with ST60A3 CFG DNF| S| [ g S S ) R22
SDA IV8  R23 .\ OR_USB SDA IV8 100p! T00pF F0R DNF_RD s
SCL1Vs R3S 'V OR USB SCL Vs © PNFRD - SCL IVS R26,, OR_CFG SCL IV8 ST60 El [" oo
SDA_IVS _R27, OR_CFG SDA_IVS ST60 _F) -
DNF_RD RS DR &
USBHP R . OR S0R IX GPIOO 1V8 B2 | (oo o
6 P DNF_LH RX_GPIOL_IV§_DI_| opo-)
7 z22 SCL_GPIOZ_TVE K1 | 10
882 SDA_GPIO3 TVEM2 | (1163
DNF_LH USB2 tracks gg €USB2 tracks
= R3I OR 1 = USB ST E P <USB ST60 P 4
USB_ST60 P o—X 25 Ush st PP eDP TX_IP
L USB ST NS 2= R32 (W OR [2_ &= USB ST EN 8] py DN = USB_ST60 N [
BRF T 3 =] =
5 Resin opening provision Ls
ECMF022AMX6 oy
LINK_STATUS 1V -
RE_EN 1V8 HI
REEN IV HL) RF BN
+1V8 . DE INT1VS GI0| \isr
LINK_STATUS

R3s IR36 SR37 SR39
4K7 $4K7 3390R $4K7
[DNF - PNF  DNF  [DNF
TX_GPIOO_1V8
RX_GPIOI_IV§
SCL_GPIO2 1V§
SDA_GPIO3 IV

LINK_STATUS IV§

R3§
K

VDD 10

CFG_SDA  VDD_IV8

Lig V8 ST6Q. ()
C.
Cl6

cls

1000F { 1000F

STGOASHICICCEPY3

UOIEPUSWIWIOD3] SIIJRWAYIS

LYZIONV



>
4
o
N
H
]
)

A
o
<
N

LyIcz abed

Figure 29. X-NUCLEO-60L1A1 circuit schematic (2 of 4) - Nucleo
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Figure 30. X-NUCLEO-60L1A1 circuit schematic (3 of 4) - Switch
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Figure 31. X-NUCLEO-60L1A1 circuit schematic (4 of 4) - Hub
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Figure 32. X-NUCLEO-60R1A1 circuit schematic (1 of 4) - ST60A3H1
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Figure 33. X-NUCLEO-60R1A1 circuit schematic (2 of 4) - Nucleo
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Figure 34. X-NUCLEO-60R1A1 circuit schematic (3 of 4) - Switch
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Figure 35. X-NUCLEO-60R1A1 circuit schematic (4 of 4) - Hub
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3.2 Power supplies

3.21 GND (A3, A4, A5, C6, L6, N3, N4, and N5)
They must be connected to the board ground.

3.2.2 VDD_IO (L3) and VDD_1V8 (C3)

They must be shorted together and connected to the 1.8 V power supply. A minimum of two 100 nF bypass
capacitors must be used.

An LDO or a buck can be used to generate this 1.8 V, ensuring a clean voltage with less than 120 mVpp ripple.
The 1.8 V supply voltage must be within the 1.65 V to 1.95 V range. It is advised to select an LDO/buck with a
current output that is ~30% higher than the total of maximum currents of all the devices supplied by this LDO/
buck.

3.3 Configuration I2C bus

A single 12C controller is generally needed to control the pair of STB0A3H1 devices. It is placed on the Local

ST60A3H1’s side with a direct connection to its 12C pins. The Remote ST60A3H1 is controlled by the same 12C
controller using Over-the-air programming through the Local ST60A3H1.

3.31 Local CFG_SCL (E1) and CFG_SDA (F1)

They must be pulled-up to 1.8 V and connected to the 12C controller controlling the Local STBOA3H1. If the
controller’s 12C 10s are not 1.8 V, bidirectional level shifters must be used.

It is possible to have other devices, including devices addressed through I2C tunneling, on the same 12C bus so
long as none of the devices is at the Local ST60A3H1’s I2C address (0xC0) and the total load capacitance

remains within the 12C specification. The 12C specification limits the bus capacitance to 400 pF in Standard mode,
Fast mode, and Fast mode plus. For an only resistive pull-up, the maximum bus capacitance is limited to 200 pF.

The pull-up resistances must be tuned by the integrator depending on the maximum I12C speed that is targeted
and the bus topology. The pull-up resistor value (Rp) depends on the 1/0 supply voltage (1.8 V on the ST60A3H1

side) and the I2C bus capacitance (Cb). It must be in a range defined by the following two equations from the 12C
specification:

. Rp(max) = t,/(0.8473 x Cb)

. Rp(min) = (1.8 V = VoL (max)) / loL

Where t; is the rise time of SDA and SCL signals, and Vo and lg, are the output low voltage and output current,
respectively, defined in the ST60A3H1 documentation.

3.3.1.1 eUSB2 tunneling use-case

The 12C controller must be connected to the eUSB2/USB2 repeater which must be configured in 12C mode. This is
needed for RF regulation tests.

3.3.2 Remote CFG_SCL (E1) and CFG_SDA (F1)
They can be left unconnected.

In rare cases where a customer application necessitates having a direct 12C connection to the Remote
ST60A3H1, the Local side rule must be applied to the Remote side too.

34 RF enable

3.4.1 Local RF_EN (H1)

It must be directly connected to the MCU or the AP controlling it. If this MCU/AP’s 10 is not 1.8 V then a level
shifter or divider bridge must be used. It is important for the application to be able to enable or disable the RF of
the Local ST60A3H1 to save power consumption and to be ready for RF regulation tests.

3.4.2 Remote RF_EN (H1)
It can be connected to 1.8 V or connected to a controlling MCU/AP in the same way as the Local.
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3.5 Interrupt signal

3.5.1 Local MODE_INT (G1)

It must be connected to an interrupt input pin of the MCU/AP controlling the Local ST60A3H1. This interruption
signal is then used by the ST60A3H1 driver. A level shifter may be needed if the interfaces are not all 1.8 V.

3.5.2 Remote MODE_INT (G1)

It can be left open or connected to wherever it may be needed by the user application. A level shifter may be
needed if the interfaces are not all 1.8 V.

3.6 LINK_STATUS (J1)

LINK_STATUS (J1) indicates the status of the RF link. It can be left open, connected to an LED, or to the MCU/AP
if the RF link status is supposed to trigger some action. A level shifter may be needed if the interfaces are not all
1.8 V.

3.6.1 eUSB2 tunneling use-case

It is necessary to notify the system application of any RF link loss to ensure a reliable USB2 link recovery. This is
done using the LINK_STATUS (J1) signal which must be connected in a way to perform the following:

. Reset the eUSB/USB2 repeaters on both Host and Device sides before re-establishing the USB2 link after
the RF link is enabled.

. Disable the VBUS of the USB2 Device if it has one.

. Reset the USB2 Device (PHY and controller by software means) if it does not use a VBUS.

. Disable the VBUS and reset any hub IC that would be on the board.

Doing the above also helps reduce the overall system power consumption when the RF link is disabled.

On the Local ST60A3H1’s side, it is preferred for the sake of flexibility to have the LINK_STATUS signal routed to
the MCU where dedicated signals are created to control the USB2 features.

3.7 eUSB2 bus

eUSB2 lanes (C4, C5, L4, and L5) can be left unconnected or tied to ground when not used.

If eUSB2 tunneling is desired, these lanes must be shorted together (C4 with L4, and C5 with L5) and connected
to their corresponding eUSB2/USB2 repeater (see Section 1.2.4).

Shorting C4/C5 with L4/L5 respectively creates a stub on these lines which degrades their signal integrity (SI).
The impact of this stub is sufficiently reduced due to a proper layout (see eUSB2 bus in Section 1.2.4), leading to
a performing design.

Users who want to further improve Sl (and slightly reduce the link jitter) could insert an LC circuit between the
ST60A3 and the eUSB2/USB2 repeater as shown in Figure 36. LC circuit on eUSB2 lanes. In this case, ST
recommends using 2.7 nH inductors and a1 pF capacitor with an estimated improvement of ~1 ps in random jitter
(RJ). ST also advises users to run Sl simulations to find the optimized values for their design.

Figure 36. LC circuit on eUSB2 lanes

eUSB2_p

— eUSB2/USB2
3.8 GPIOs

If any of the GPIOs (B2, D1, K1, and M2) are unused, then they can be left unconnected, otherwise, their
connection depends on the targeted application (tunneling protocol).

Besides being used in a tunneling protocol, the four GP1Os can be alternatively used as general-purpose 1/O pins,
the value of which can be written or read by an 12C register access or through RRA (in LOW_POWER state).
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3.8.1 Single-wire half-duplex UART tunneling

GPIO_0 (B2) and GPIO_1 (D1) must be shorted together, pulled-up to 1.8 V, and connected to the TXD pin of the
UART source or sink. The pull-up value (Rp) must be tuned vs. the targeted data rate keeping in mind the items
below:

. It must be such that the input pin of the UART reads a high state when not driven by the ST60A3H1. The
rise time of the signal depends on the RC circuit made of the pull-up resistor and the capacitive load of the
UART line. The value of the resistor is a trade-off between the targeted data rate and the current driven at
a low level. It can be fine-tuned to optimize the amount of current flowing from 1.8 V when the pin is driven
low.

. As GPIO_0 and GPIO_1 are connected together, when the ST60A3H1 receives a transition to perform on
its GPIO_1 output line, it masks its GPIO_0 input line so that it does not retransfer this received transition.
This masking period is around 50 ns and the signal must reach its new level within this period. This implies
having a steep edge or, in other words, decreasing Rp value. As the longest transition is from low level to
high level, the masking period begins at the start of the rising edge of the GPIO_1 RX signal and ends
when the signal level on GPIO_0 TX reaches V|4 (input high voltage defined in the ST60A3H1
documentation).

Level shifters may be needed if the interfaces are not all 1.8 V and, in such cases, the short between GPIO_0 and

GPIO_1 must be done on the ST60A3H1 side. This avoids any additional delay between the RX and the TX

signals, with respect to the above masking period.

3.8.2 Dual-wire half-duplex UART, full-duplex UART or bidirectional GPIO tunneling

GPIO_0 (B2) must be connected to the TXD pin of the UART source or sink or to the GPIO’s source. This signal
is an input to the ST60A3H1. A pull-up to 1.8 V must be added in case the source or sink’s TXD is configured in
open-drain mode.

GPIO_1 (D1) must be connected to the RXD pin of the UART source or sink or to the GPIO’s sink. This signal is
an output from the ST60A3H1.

Level shifters may be needed if the interfaces are not all 1.8 V.

3.8.3 Single-direction GPIO tunneling
GPIO_0 (B2) must be connected to the GPIO source’s first TXD line or GPIO sink’s first RXD line.
GPIO_1 (D1) must be connected to the GPIO source’s second TXD line or GPIO sink’s second RXD line.
Level shifters may be needed if the interfaces are not all 1.8 V.

3.84 I2C tunneling on GPIO_0/1

GPIO_0 (B2) must be pulled up to 1.8 VV and connected to the 12C controller or target(s) SCL. GPIO_1 (D1) must

be pulled up to 1.8 V and connected to the 12C controller or target(s) SDA. Refer to Section 3.3.1: Local
CFG_SCL (E1) and CFG_SDA (F1) for more details on the pull-ups value selection and on multi-target operation.

Level shifters may be needed if the interfaces are not all 1.8 V. The pull-up resistors must be tuned by the
integrator depending on the maximum I12C speed that is targeted.

3.85 I2C tunneling on GPIO_2/3

GPIO_2 (K1) must be pulled up to 1.8 VV and connected to the 12C controller or target(s) SCL. GPIO_3 (M2) must

be pulled up to 1.8 V and connected to the 12C controller or target SDA. Refer to Section 3.3.1: Local CFG_SCL
(E1) and CFG_SDA (F1) for more details on the pull-ups value selection and on multi-target operation.

Level shifters may be needed if the interfaces are not all 1.8 V. The pull-up resistors must be tuned by the
integrator depending on the maximum I12C speed that is targeted.
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3.9 Forbidden boot configuration

In all the cases described above, users must ensure that CFG_SCL, CFG_SDA, LINK_STATUS, MODE_INT, and

the four GPIOs are not all setto 1 L (1.8 V) at IC power-up as this is a forbidden configuration. There are many

possible solutions to do so:

. Keep MODE_INT and/or LINK_STATUS unconnected. The internal pull-downs on these two pins ensure
that it is set to OL (0 V) during power-up.

. Connect MODE_INT and LINK_STATUS as constrained by the application but make sure one of them
bears 0 V during the ST60A3H1 power-up.

. Pull down any one of the GPIOs, preferably GPIO_2 or GPIO_3.
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In this chapter, typical schematics with the minimum required components are shown for each tunneling protocol.

Figure 37. eUSB2 tunneling (USB2 Host on Local ST60A3 side)
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Figure 38. eUSB2 tunneling (USB2 Host on Remote ST60A3 side)
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Figure 39. Single-wire half-duplex UART tunneling
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Figure 40. Dual-wire half-duplex UART or full-duplex UART tunneling
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Figure 41. Bidirectional GPIO tunneling
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Figure 42. Single-direction GPIO tunneling
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It is possible to have the tunneled I2C signal on GPIO0/1 on the Local side and on GPIO2/3 on the Remote side,
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Figure 44. I2C tunneling on GPIO_2 and GPIO_3
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