
September 2023 AN5042 Rev 15 1/67
1

AN5042
Application note

How to calibrate the HSE clock for RF applications
 on STM32 wireless MCUs

Introduction
This document describes how to tune the HSE for RF applications using STM32WL,
STM32WB, and STM32WBA series microcontrollers (hereinafter referred to as STM32
wireless MCUs). These products offer a cost-effective and efficient solution to control the
oscillator accuracy by using their internal load capacitances, thus saving the cost of external
capacitances, and lowering the crystal constraints.

STM32 wireless MCUs use an external oscillator high-speed clock source as the base for
RF clock generation. HSE accuracy is essential for RF system performance, and the
external oscillator is therefore fine-tuned to achieve the highest clock accuracy.

The first part of the document introduces the crystal oscillator solutions. The second part
introduces and then compares three HSE frequency tuning methods, namely a manual one,
an automatic one, and another one based on STM32CubeMonitor-RF (for the STM32WB
series only). The application of these methods to Nucleo boards is described in the following
sections, and provided as firmware and script examples in X-CUBE-CLKTRIM, an
STM32Cube Expansion Package.

A specific section is dedicated to describe how to select the crystal for STM32WB series
microcontrollers.

This document must be read in conjunction with the reference manuals and datasheets
available at www.st.com.

www.st.com

http://www.st.com

Contents AN5042

2/67 AN5042 Rev 15

Contents

1 HSE oscillator . 7
1.1 Crystal oscillator . 8

1.2 STM32 wireless MCUs architecture . 9

1.3 HSE configuration parameters - STM32WB series 10

1.4 HSE configuration parameters - STM32WBA series 11

1.5 HSE configuration parameters - STM32WL series 11

1.6 Board implementation (STM32WB series) . 12

1.7 Board implementation (STM32WBA series) . 13

1.8 Crystal references . 13

1.9 Tuning in production . 14

2 Trimming methods comparison . 16

3 Manual frequency trimming procedure example for
the STM32WB series . 18
3.1 Procedure description . 18

3.2 Implementation . 18
3.2.1 Hardware setup . 19
3.2.2 Software implementation . 21

3.2.3 Scripts . 23

4 Manual frequency trimming procedure example for
the STM32WBA series . 24
4.1 Procedure description . 24

4.2 Implementation . 24
4.2.1 Hardware setup . 24
4.2.2 Software implementation . 26

4.2.3 Scripts . 27

5 Manual frequency trimming procedure example for
the STM32WL series . 28
5.1 Procedure description . 28

5.2 Implementation . 28

AN5042 Rev 15 3/67

AN5042 Contents

4

5.2.1 Hardware setup . 29
5.2.2 Software implementation . 32
5.2.3 Scripts . 33

6 Automatic frequency trimming procedure example
for the STM32WB series . 34
6.1 Procedure description . 34

6.2 Implementation . 35
6.2.1 Hardware setup . 35
6.2.2 Software implementation . 37

6.2.3 Scripts . 38

7 Legacy automatic frequency trimming procedure
example for the STM32WBA series . 40
7.1 Procedure description . 40

7.2 Implementation . 40
7.2.1 Hardware setup . 40
7.2.2 Software implementation . 43

7.2.3 Scripts . 43

8 Simplified automatic frequency trimming procedure
example for the STM32WBA Series . 45
8.1 Procedure description . 45

8.2 Implementation . 45
8.2.1 Hardware setup . 45
8.2.2 Software implementation . 48

8.2.3 Scripts . 49

9 Automatic frequency trimming procedure example
for the STM32WL series . 50
9.1 Procedure description . 50

9.2 Implementation . 51
9.2.1 Hardware setup . 51

9.2.2 Software implementation . 51
9.2.3 Scripts . 53

10 STM32CubeMonitor-RF frequency trimming
procedure example for the STM32WB series . 54

Contents AN5042

4/67 AN5042 Rev 15

10.1 Procedure description . 54

10.2 Procedure steps . 54

10.3 Implementation . 55
10.3.1 Hardware setup . 55

10.3.2 Software and scripts setup . 55
10.3.3 Scripts . 56
10.3.4 C code . 57

11 STM32CubeMonitor-RF frequency trimming
procedure example for the STM32WA series . 59
11.1 Procedure description . 59

11.2 Procedure steps . 59

11.3 Implementation . 59
11.3.1 Hardware setup . 59

11.3.2 Software and scripts setup . 60
11.3.3 Scripts . 60

12 Selection of a compatible HSE crystal for the STM32WB series 62

13 Conclusion . 63

14 Revision history . 64

AN5042 Rev 15 5/67

AN5042 List of tables

5

List of tables

Table 1. Carrier accuracy requirement for RF protocols. 7
Table 2. Oscillator pin numbers for the STM32WB series . 12
Table 3. Oscillator pin numbers for the STM32WBA series . 13
Table 4. Crystal specifications . 14
Table 5. Trimming methods . 16
Table 6. Comparison of trimming methods. 16
Table 7. Document revision history . 64

List of figures AN5042

6/67 AN5042 Rev 15

List of figures

Figure 1. Crystal oscillator principle . 8
Figure 2. Crystal oscillator system overview . 9
Figure 3. UFQFPN48 (USB dongle board) footprint detail. 12
Figure 4. UFQFPN48 footprint detail . 13
Figure 5. Manual calibration overview - STM32WB series . 19
Figure 6. OB configuration to boot from SRAM with BOOT0 value driven by PH3 pin 20
Figure 7. OB configuration to boot from SRAM with BOOT0 value

driven by option bit nBOOT0 . 20
Figure 8. Configuration store in OTP bytes . 22
Figure 9. Manual calibration overview - STM32WBA52. 25
Figure 10. Manual calibration overview - STM32WL series. 29
Figure 11. OB configuration to boot from SRAM with BOOT0 value driven by PH3 pin 30
Figure 12. OB configuration to boot from SRAM with BOOT0 value

driven by option bit nBOOT0 . 30
Figure 13. Automatic calibration overview - STM32WB series . 35
Figure 14. Procedure implementation . 36
Figure 15. Configuration for simplified automatic trimming . 41
Figure 16. Procedure implementation . 41
Figure 17. Configuration for simplified automatic trimming . 46
Figure 18. Procedure implementation . 47
Figure 19. Automatic calibration overview - STM32WL series. 51
Figure 20. STM32CubeMonitor-RFcalibration overview - STM32WB series . 55
Figure 21. STM32CubeMonitor-RFcalibration overview - STM32WA series . 60

AN5042 Rev 15 7/67

AN5042 HSE oscillator

66

1 HSE oscillator

RF systems require high frequency accuracy to achieve the best performance. Any clock
deviation can cause system malfunctions and/or degrade performance.

Table 1 shows the accuracy requirements for two RF protocols supported by STM32WB
series microcontrollers. For other protocols and standards, refer to the corresponding
specifications.

In STM32 wireless MCUs, based on Arm®(a) Cortex® cores, the RF clock is provided by a
high frequency VCO, which takes as reference a signal created by an embedded oscillator
that uses an external crystal.

This crystal is the HSE (high-speed external) clock source of the RF synthesizer and of the
microcontroller. Its nominal frequency can vary, depending on factors such as process
variations, used crystal, and PCB design. The HSE inaccuracy is directly transferred to the
RF clock, hence it must be fine-tuned by adjusting load capacitance at crystal terminals.

STM32 wireless MCUs offer an efficient architecture with internal load capacitances, which
allows the users to fine tune the crystal frequency, without extra cost for additional external
capacitances.

Note: AN2867 (Oscillator design guide for ST microcontrollers), which generally describes HSE
for STM32 products, does not apply to STM32 wireless MCUs because of RF constraints.
This document is the correct reference for these products.

Table 1. Carrier accuracy requirement for RF protocols
RF standard Carrier accuracy

Bluetooth® Low Energy ± 50 ppm

IEEE 802.15.4 / Thread ± 40 ppm

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

HSE oscillator AN5042

8/67 AN5042 Rev 15

1.1 Crystal oscillator
Figure 1 shows the principle of the crystal oscillator system. An oscillator consists of an
inverting amplifier, a feedback resistor (Rf), a crystal (XTAL), and two load capacitors (CL1
and CL2). Cs is the stray (parasitic) capacitance, resulting from the sum of the MCU pin
capacitances (between OSC_IN and OSC_OUT). This value is negligible, it is not
necessary to know it exactly, because trimming and startup optimization procedures do not
rely on it.

Figure 1. Crystal oscillator principle

CL load capacitance
The load capacitance is the terminal capacitance of the circuit connected to the crystal
oscillator. This value is determined by the external capacitors CL1 and CL2, and the stray
capacitance of the printed circuit board and connections (Cs). The CL value is specified by
the crystal manufacturer. For the frequency to be accurate, the oscillator circuit must show
to the crystal the same load capacitance as the one the crystal was adjusted for.

Frequency stability requires that the load capacitance be constant. The external trimming
capacitors CL1 and CL2 are used to tune the desired value of CL to reach the value specified
by the crystal manufacturer.

Equation 1: Load capacitance

MSv47132V1

CL2CL1

Rf

Inv

XTAL

CS

CL
CL1 CL2×

CL1 CL2+
----------------------------- Cs+=

AN5042 Rev 15 9/67

AN5042 HSE oscillator

66

1.2 STM32 wireless MCUs architecture
These MCUs embed an efficient and cost-effective crystal oscillator system with internal
capacitances for trimming. The advantages of the internal mechanism for load capacitance
tuning are twofold:
• it reduces the accuracy constraints on the external crystal
• it reduces the global BOM (and the footprint) of the PCB.

Figure 2 shows the crystal oscillator system embedded in the STM32 wireless MCUs. The
crystal is the only external component. No extra load capacitances are needed.

Figure 2. Crystal oscillator system overview

The crystal oscillator system consists of two pads (OSC_IN and OSC_OUT) with their
respective capacitance banks, and the amplifier stage.

For the STM32WB and STM32WBA series, the capacitance value is the same for both the
IN and the OUT banks. This value, alongside with the oscillator gain and sense (the
parameters used to optimize the startup phase), is driven by a register, and controls the
system behavior. These parameters are explained in Section 1.3 and Section 1.4.

For the STM32WL series, the capacitance values for the IN and the OUT banks are
independent. These two values are driven by two sub-GHz radio registers and control the
system behavior. These parameters are explained in Section 1.5.

MS53500V1

XTAL

OSC_IN

OSC_OUT

Capacitance
Bank IN

Capacitance
Bank OUT

Amplifier
and

Reshaping

Crystal oscillator

STM32WB/WL

HSE_CLK

HSE oscillator AN5042

10/67 AN5042 Rev 15

1.3 HSE configuration parameters - STM32WB series
Three parameters can be set to control the oscillator module. They are accessible in the
RCC_HSECR register described below.

RCC_HSECR

Load capacitance: HSETUNE[5:0]
This is the parameter responsible for the clock accuracy. It selects the capacitance value
added on both input and output pads. The adjustable range is set to have a global load
capacitance from 12 to 16 pf. The minimum (0x00) and maximum (0x3F) values correspond,
respectively, to the smallest and to the largest load capacitance.

Default value is 0x00 (minimum load capacitance).

Current control: HSEGMC[2:0]
This parameter (referred to as Gm or Gm_crit_max in the documentation of other STM32
products for which it has a fixed value) is the maximum critical crystal transconductance of
the oscillator. It controls the startup performance of the system, and its value must be
greater than gmcrit (see Section 12). A low value decreases the power consumption, while a
high value improves the startup time.

The minimum value (0b000) corresponds to Gm = 0.18 mA/V, the maximum value (0b111)
to Gm = 2.84 mA/V. Default value is 0x3 (Gm = 1.13 mA/V).

HSES sense amplifier threshold
This parameter controls an internal comparison threshold for the oscillator startup. When
this bit is set (1), the startup time is reduced (from around 15 µs), but the current
consumption is higher, because the HSE starts earlier. The default value is 0x0 (1/2 ratio).

Address 0x09C

Reset 0x0000 0030

Access This register is protected to avoid on-the-fly modification.
A key (0xCAFECAFE) must be written at the register address to unlock it
before any single write access, it is then locked again.
The HSE clock must be switched off during register access procedure to avoid
unpredictable behavior. Note that HSE must not be used as CPU clock source
during this step.
In this document the default MSI clock is used as system clock source after
startup from Reset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. HSETUNE[5:0] Res. HSEGMC[2:0] HSES Res. Res. UNLOCKED

rw rw rw rw rw rw rw rw rw rw rw

AN5042 Rev 15 11/67

AN5042 HSE oscillator

66

1.4 HSE configuration parameters - STM32WBA series
Three parameters can be set to control the oscillator module. They are accessible in the
RCC external clock sources calibration register 1 (RCC_ECSCR1) described below.

RCC_ECSCR1
Address offset: 0x210

Power-on reset value: 0x0020 0000

Reset value not effected by exit Standby mode, nor reset from system reset and BORx
(x = 1 to 4).

Access: no wait state; word, half-word and byte access

Access to this register can be protected by RCC HSESEC and RCC SPRIV or RCC
NSPRIV.

1.5 HSE configuration parameters - STM32WL series
For the STM32WL series two parameters can be set to control the oscillator module. They
are accessible in the SUBGHZ_HSEINTRIMR and the SUBGHZ_HSEOUTTRIMR sub-GHz
radio registers, which contain the capacitance value of the IN and OUT banks, respectively.
The associated value is represented by their six lower bits (the remaining bits of these
registers must be kept at their reset values).

For both registers:
• 0x00 corresponds to the minimum capacitance (~11.3 pF)
• 0x2F corresponds to the maximum capacitance (~33.4 pF)
• the values must not exceed 0x2F, and the trimming step is ~0.47 pF
• the reset value is 0x12, corresponding to ~20.3 pF.

As mentioned earlier, SUBGHZ_HSEINTRIMR and SUBGHZ_HSEOUTTRIMR are part of
the sub-GHz radio, not of the system CPU. To modify their values, the user code must
communicate with the sub-GHz radio via its SPI interface. The addresses of these registers,
considering this SPI interface, are 0x911 for SUBGHZ_HSEINTRIMR and 0x912 for
SUBGHZ_HSEOUTTRIMR.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. HSETRIM[5:0]

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

Bits 31:22 Reserved, must be kept at reset value.

Bits 21:16 HSETRIM[5:0]: HSE32 clock trimming
These bits provide user-programmable capacitor trimming value. It can be programmed to
adjust the HSE32 oscillator frequency.

Bits 15:0 Reserved, must be kept at reset value.

HSE oscillator AN5042

12/67 AN5042 Rev 15

1.6 Board implementation (STM32WB series)
Oscillator pads are available on different pins (named OSC_IN and OSC_OUT), depending
upon the package. Table 2 shows the pin numbers for different packages used in Nucleo
and USB dongle boards for the STM32WB series.

The crystal is plugged directly onto the pads, with no extra capacitance, close to the device,
to minimize parasitic capacitances.

Figure 3 shows a typical UFQFPN48 footprint for the STM32WB series.

Figure 3. UFQFPN48 (USB dongle board) footprint detail

The PCB layout for the STM32WB and STM32WL series reference designs is detailed,
respectively, in AN5165 “Development of RF hardware using STM32WB microcontrollers”,
and AN5407 “Optimized RF board layout for STM32WL Series”, both available on
www.st.com.

Table 2. Oscillator pin numbers for the STM32WB series
Package OSC_IN OSC_OUT

UFQFPN48 25 24

WLCSP49 F1 F2

VFQFPN68 35 34

WLCSP100 J1 J2

BGA129 M13 N13

MS47142V1

OSC_IN

OSC_OUT

Crystal_pins

GND

AN5042 Rev 15 13/67

AN5042 HSE oscillator

66

1.7 Board implementation (STM32WBA series)
Oscillator pads are available on different pins (named OSC_IN and OSC_OUT), depending
upon the package. Table 3 shows the pin numbers used in Nucleo and USB dongle boards.

The HSE crystal is connected directly to the pads, with no extra capacitance, close to the
device, to minimize parasitic capacitances. Figure 4 shows a typical footprint.

Figure 4. UFQFPN48 footprint detail

The PCB layout for the reference design is detailed in AN5948 “Development of RF
hardware using STM32WBA microcontrollers”, available on www.st.com.

1.8 Crystal references
Table 4 shows the specification of the crystals used to validate the reference designs.

Table 3. Oscillator pin numbers for the STM32WBA series
Package OSC_IN OSC_OUT

UFQFPN48 41 40

HSE oscillator AN5042

14/67 AN5042 Rev 15

It is possible to use other crystals, as long as they respect the carrier accuracy requirements
(see Table 1 and the HSE crystal requirements in the datasheets). More precisely, the sum
of the maximum values for the following parameters of the chosen crystal must be below the
carrier accuracy requirements:
• frequency tolerance
• frequency versus temperature characteristics (for the range in which the crystal is

used)
• aging (for the duration during which the crystal must be used)
• crystal pullability (the CL deviation can be estimated to 10% maximum, refer to

AN2867)

Note: Such data can be named differently or absent in the crystal documentation.

The previous verification is reliable if the PCB based on the chosen crystal is designed with
the requirements mentioned in Section 1.6, and fine-tuned with one of the HSE trimming
methods described in the next sections of this document.

For STM32WB devices, in the case of crystals with low load capacitance (such as 6 pF), if
the parasitic layout capacitance is not negligible, frequency fine tuning to 32 MHz with
0 ppm can be difficult to achieve (the trimming range is centered on crystals with a load
capacitance of 8 pF).

The accuracy of the capacitance bank used for the HSE trimming can vary from a product to
another. If the carrier accuracy verification is needed for the whole production chain, refer to
Section 1.9.

1.9 Tuning in production
It is important to know if the trimming parameters defined for a test PCB have the same
efficiency when applied to all the PCBs to be produced. To have a fast and efficient
manufacturing, it is not mandatory to operate the trimming process on each PCB.

Data gathered during the production of the STM32WB Nucleo boards have shown some
variations of the HSE frequency for a fixed HSETUNE value (HSETUNE accuracy).
Besides, the typical HSETUNE granularity is 1 ppm (see XOTUNE granularity in STM32WB

Table 4. Crystal specifications
Series NDK crystal Parameter Value

STM32WB NX2016SA 32 MHz
EXS00A-CS06654

Load capacitance 8 pF

Frequency tolerance ± 10 ppm at 25 ± 3 °C

Frequency vs. temperature
(with reference to +25 °C) ± 25 × 10−6

STM32WBA NX1612SA-32MHZ-
EXS00A-CS09166

Load capacitance 8 pF

Frequency tolerance ± 10 ppm at 25 ± 3 °C

Frequency vs. temperature
(with reference to +25 °C) ± 15 × 10−6

STM32WL NX2016SA 32 MHz
EXS00A-CS06465

Load capacitance 10 pF

Frequency tolerance ± 10 ppm at 25 °C

AN5042 Rev 15 15/67

AN5042 HSE oscillator

66

datasheets). To compensate for these variations, the following trimming method is
suggested for production:
1. Tune some PCBs (not more than a few dozens), to get a significant span of HSETUNE

values.
2. Calculate the median of the found values, and use the result to trim all other PCBs.
3. The interval between the median and the maximum/minimum of the found values

corresponds to the HSETUNE accuracy for the tuned design.

After this flow, a potential frequency deviation due to the HSETUNE accuracy (point 3) must
be taken into account, and added to the carrier accuracy verification calculation presented
in Section 1.8.

A similar method can be used for the other series. The number of test boards must be
larger, because of the two trimming parameters for these products.

Trimming methods comparison AN5042

16/67 AN5042 Rev 15

2 Trimming methods comparison

The three trimming methods described in this document are detailed in Table 5, and
compared in Table 6.

Note: The proposed methods require the use of a pin (MCO) to output the HSE signal for the
frequency measurement. If no MCO pin is available for this purpose, AN5378 (available on
www.st.com) describes another technique: instead of measuring the frequency on the MCO
pin, it proposes to perform it on a tone frequency emitted by the STM32WB radio. However,

Table 5. Trimming methods
Method Description

Manual

A precision frequency meter is used to measure the HSE frequency
output on one of the STM32 pins. Then, the user tunes the HSE
frequency with the buttons of a Nucleo board. A button is dedicated to
the saving of the tuning parameters in the STM32 nonvolatile memory.

Automatic

One STM32 timer is clocked with a precision external clock source
provided by the user via one of the STM32 pins. This reference clock
allows the user to measure the internal STM32 system HSE frequency.
Then, the STM32 can compare the frequency measured with the one
expected, to test and determine the best tuning parameters. Finally, the
STM32 saves these parameters in its nonvolatile memory.

STM32CubeMonitor-RF(1)

1. Compatible with STM32WB series only.

A precision frequency meter is used to measure the HSE frequency
output on one of the STM32 pins. Then, the user tunes the HSE
frequency with a script to run in STM32CubeMonitor-RF. The user has
to change the tuning parameter values in the script to test them. When
the correct values are found, another script saves them in the STM32
nonvolatile memory.

Table 6. Comparison of trimming methods
Method Advantages Disadvantages

Manual Runs in SRAM (user program in
flash memory is not affected).

Needs the use of buttons and a
frequency meter for each product.

Automatic

Runs in SRAM (user program in
flash memory is not affected).
The user must set up a reference
clock only once, to trim as many
devices as wanted.

Needs two timers with adequate
accuracy.

STM32CubeMonitor-RF(1)

1. Compatible only with the STM32WB series.

Convenient for users familiar with
STM32CubeMonitor-RF, willing to
achieve the maximum functionality.

Bluetooth Low Energy stack and
transparent mode FW must be
flashed in the device.
Requires several actions from the
user for each product (modifying
and running the script, use of a
frequency meter).

AN5042 Rev 15 17/67

AN5042 Trimming methods comparison

66

while this tone is emitted, HSE cannot be trimmed, because it is used by the radio (actually
this is more a verification than a real trimming method, like those exposed in this document).

Manual frequency trimming procedure example for the STM32WB series AN5042

18/67 AN5042 Rev 15

3 Manual frequency trimming procedure example for
the STM32WB series

The firmware and scripts associated to this document are available as an STM32Cube
Expansion Package
(X-CUBE-CLKTRIM_vx.y\Projects\P-NUCLEO-WB55.Nucleo\RCC_HSE_Calib).

3.1 Procedure description
The procedure consists in measuring the HSE clock generated inside the device from the
external crystal. This clock is output on pin PA8 and is measured by a precision frequency
meter.

Note: An external reference is mandatory since no such accurate one is integrated in the device.

A step-by-step tuning of the load capacitance is performed to reach the best accuracy of the
HSE clock. The load capacitance value is then stored inside a nonvolatile location of the
device, either a dedicated area of the user flash memory or in the One-Time-Programming
(OTP) area.

Flash memory or OTP programming is done with a double-word granularity (64 bits). To
save OTP bytes (1 K in the STM32WB series), the load capacitance value on six bits can be
appended to a 64-bit wide structure with other personalization data (such as Bluetooth
device address, MAC short address, product specific code, key).

This procedure can be done several times, only the latest setup is active.

Once the procedure is completed, the active load capacitance value can be retrieved at
startup (in the clock configuration function), and the HSE configuration register set
accordingly.

3.2 Implementation
The procedure is executed in SRAM, so it can be run on an already programmed device,
without modifying the flash memory content.

AN5042 Rev 15 19/67

AN5042 Manual frequency trimming procedure example for the STM32WB series

66

3.2.1 Hardware setup
Figure 5 shows the manual calibration procedure for an STM32WB series Nucleo-68 board.

Figure 5. Manual calibration overview - STM32WB series

A precision frequency meter (better than 0.1 ppm) must be connected to pin PA8/MCO, and
set to detect a 32 MHz 3.3 V square wave peak to peak signal.

Note: Standard oscilloscopes are not sufficiently accurate for this kind of measurement.

Boot from SRAM
Boot selection can be done through the BOOT0 pin and nBOOT1 bit in the User options
(FLASH_OPTR).

The boot from SRAM configuration is set by both Boot0 = 1 and nBoot1 = 0 conditions,
nBoot1 is set only by option bit FLASH_OPTR[23].

Boot0 can be selected:
• through value of pin PH3 at startup if option bit nSWBOOT0 = 1

(FLASH_OPTR[26] = 1), see the option byte panel in Figure 6
• through option bit value nBOOT0 if option bit nSWBOOT0 = 0 (FLASH_OPTR[26] = 0),

see the option byte panel in Figure 7

Option bits can be selected through STM32CubeProgrammer.

Manual frequency trimming procedure example for the STM32WB series AN5042

20/67 AN5042 Rev 15

Figure 6. OB configuration to boot from SRAM with BOOT0 value driven by PH3 pin

Figure 7. OB configuration to boot from SRAM with BOOT0 value
driven by option bit nBOOT0

AN5042 Rev 15 21/67

AN5042 Manual frequency trimming procedure example for the STM32WB series

66

Clock output
The HSE clock is output on the pin PA8 (MCO), available on connectors CN9/D6 and
CN10/25. PA8 configuration is performed by the firmware. A frequency meter probe is
connected to one of these connectors, and ground can be taken from connector CN11 or
CN12. According to the type of frequency meter used, AC coupling instead of DC may be
needed.

The next sequence is required to output the HSE on the MCO pin.
1. Turn on the HSE oscillator:

a) Set clock control register RCC_CR[16] = 1
2. Configure PA8 pin to Clock output function:

a) Select GPIO alternate function to MCO (= 0x0)
b) Select GPIO speed to Very high frequency (= 0x3)

3. Select HSE as output clock with no division factor:
a) Clock configuration register RCC_CFGR[30:24] = 0b000_0100

Load capacitance setting
The RCC_HSECR[13:8] register drives the load capacitance.

The proposed procedure uses the three push-button available on the Nucleo68 board to
modify the register value:
• Pushing SW1 button increases this value by 1.
• Pushing SW2 button saves it in the nonvolatile memory.
• Pushing SW3 button decreases it by 1.

– Initial value is set to 0 after reset, it cannot be increased above 0x3F (maximum
load capacitance), and cannot be decreased below 0x0 (minimum load
capacitance). After each action, measure the frequency.

The following sequence is required for each tested value:
1. Disable the HSE clock:

– Clock control register RCC_CR[16] = 0
2. Unlock RCC_HSECR register:

– WRITE_REG(RCC_HSECR, 0xCAFECAFE);
3. Write the six bits of load capacitance in RCC_HSECR[13:8]
4. Turn on the HSE oscillator:

– Clock control register RCC_CR[16] = 1

Other fields of the register remain unchanged, and keep their initial value:
• HSE current control (HSEGMC = RCC_HSECR[6:4]) is set to 0x3 → current max limit

1.13 mA / V.
• HSE sense amplifier threshold (HSES = RCC_HSECR[3]) is set to 0 → HSE bias

current factor 1/2

3.2.2 Software implementation

Project configurations
Two project configurations are available in the package:

Manual frequency trimming procedure example for the STM32WB series AN5042

22/67 AN5042 Rev 15

1. STM32WBxx_Nucleo_Set_Calibration: calibration procedure
2. STM32WBxx_Nucleo_Test_Calibration: to test the stored value

This last configuration is given as an implementation example of the HSE clock initialization
in RF applications.

The firmware is built on the STM32WB HAL drivers.
1. STM32WBxx_Nucleo_Set_Calibration: the device is programmed to:

– Send the HSE clock on the PA8 pin.
– Modify and set the load capacitance value when push-buttons SW1 and SW3 are

actioned.
– Store the load capacitance value together with the 48 bits of additional data

(Bluetooth device address) in the OTP or the selected flash memory area when
SW2 button is pushed.

2. STM32WBxx_Nucleo_Test_Calibration: configuration to test the actual HSE settings:
– Configure the HSE clock and output it on PA8 pin.
– Fetch the load capacitance value from the OTP/flash memory area.
– Program RCC_HSECR register accordingly.

Storage in OTP (one-time-programmable) bytes
The load capacitance value is included in a 64-bit structure. Each OTP structure type is
indicated by its index (one byte). The index used for the structure in this document is 0. Six
bytes remain to store additional data like MAC, Bluetooth device address or crypto key.
typedef __packed struct

 {

 uint8_t additional _data[6]; /* 48 bits */

 uint8_t hse_tuning; /* Load capacitance value */

 uint8_t index; /* structure index ==0x00*/

 } OTP_BT_t;

The configuration phase usually is not repeated, but there are cases when it must be
overwritten. When using OTP bytes, the current configuration cannot be removed, hence
the new one is placed at the next free double-word slot (see Figure 8).

Figure 8. Configuration store in OTP bytes

When the calibration phase has been done, the application initialization phase must retrieve
the load capacitance (and other additional data) from this OTP area. The value retained is
then the last one with the right index.

MSv47146V1

OTP_data
Idx = n

OTP_data
Idx = m

0x1FFF7000 0x1FFF7008 0x1FFF7010 0x1FFF7018 0x1FFF7020

Previous calibration
obsolete

Current OTP_data
for HSE

Next free OTP
double-word

0xFFFFFFFF_FFFFFFFF
OTP_data

Idx = 0
OTP_data

Idx = 0

AN5042 Rev 15 23/67

AN5042 Manual frequency trimming procedure example for the STM32WB series

66

3.2.3 Scripts
Two batch scripts are provided to run each firmware configuration:
1. STM32WBxx_Nucleo_Set_HSE_Calibration_OTP.bat
2. STM32WBxx_Nucleo_Test_HSE_Calibration_OTP.bat

These scripts call the STM32CubeProgrammer in command-line mode, and the path to the
tool must be set accordingly: SET CLI="C:\Program Files
(x86)\STMicroelectronics\STM32Cube\STM32CubeProgrammer\bin\STM32_Programmer_
CLI.exe.

The binary or hex file of the configuration must be set also (example for Set_Calibration)
1. For Keil®:

SET HEXFILE="STM32WBxx_Nucleo\STM32WBxx_Nucleo_Set_Calibration.hex"
2. For IAR™:

SET HEXFILE="STM32WBxx_Nucleo_Set_Calibration\Exe\
STM32WBxx_Nucleo_Set_Calibration.hex"

3. For STM32CubeIDE:
SET HEXFILE="STM32WBxx_Nucleo_Set_Calibration\Debug\
STM32WBxx_Nucleo_Set_Calibration.hex"

The 48 bits of additional data (last parameter) are transmitted to the device through these
scripts. They are stored inside the SRAM and read by the FW.
%CLI% -c port=swd -w32 0x2002FFF0 0x33445566

%CLI% -c port=swd -w32 0x2002FFF4 0x00001122

Manual frequency trimming procedure example for the STM32WBA series AN5042

24/67 AN5042 Rev 15

4 Manual frequency trimming procedure example for
the STM32WBA series

The firmware and scripts associated to this document are available as an STM32Cube
Expansion Package
(X-CUBE-CLKTRIM_vx.y\Projects\P-NUCLEO-WBA52CG\RCC_HSE_Calib).

4.1 Procedure description
The procedure consists in measuring the HSE clock generated from the external crystal ine
the device. This clock is output on pin PA8, and is measured by a precision frequency meter.

A step-by-step tuning of the load capacitance is performed to reach the best accuracy of the
HSE clock. The load capacitance value is then stored inside a nonvolatile location of the
device, either a dedicated area of the user flash memory, or in the One-Time-Programming
(OTP) area (512 bytes).

Flash memory or OTP programming is done with a quad-word granularity (128 bits). The
load capacitance (1 byte) value is saved along a 112-bit wide structure that contains
personalization data (such as Bluetooth device address, MAC short address, product
specific code, key).

This procedure can be done several times, only the latest setup is active.

Once the procedure is completed, the active load capacitance value can be retrieved at
startup (in the clock configuration function), and the HSE configuration register set
accordingly.

4.2 Implementation
The procedure is executed in SRAM, so it can be run on an already programmed device,
without modifying the flash memory content.

4.2.1 Hardware setup
Figure 9 shows an example of hardware configuration for the manual calibration of an
STM32WBA Series Nucleo-68 board.

AN5042 Rev 15 25/67

AN5042 Manual frequency trimming procedure example for the STM32WBA series

66

Figure 9. Manual calibration overview - STM32WBA52

A precision frequency meter (better than 0.1 ppm) must be connected to pin PA8/MCO, and
set to detect a 32 MHz 3.3 V square wave peak to peak signal.

Note: Standard oscilloscopes are not sufficiently accurate for this kind of measurement.

Clock output
HSE clock is output on the pin PA8 (MCO), which is available on pin 35 from connector
CN3. A frequency meter probe should be connected to this connector and ground can be
taken from connector CN12. According to the type of frequency meter used, AC coupling
instead of DC may be needed.

The next sequence is required to output the HSE on the MCO pin.
1. Turn on the HSE oscillator:

a) Set clock control register RCC_CR[16] = 1
2. Configure PA8 pin to Clock output function

a) Select GPIO alternate function to MCO (= 0x0)
b) Select GPIO speed to high frequency (= 0x2)

3. Select HSE as output clock with no division factor:
a) Clock configuration register RCC_CFGR1[30:24] = 0b000_0100

Load capacitance setting
The HSETRIM[21:16] bits from RCC_ECSCR1 register drive the load capacitance.

Manual frequency trimming procedure example for the STM32WBA series AN5042

26/67 AN5042 Rev 15

The proposed procedure uses the three push-button available on the Nucleo68 board to
modify the register value HSETRIM:
• Pushing SW1 button increases this value by 1.
• Pushing SW2 button saves it in the nonvolatile memory.
• Pushing SW3 button decreases it by 1.

Initial value is set to 0x20 after reset, it cannot be increased above 0x3F (maximum load
capacitance) and cannot be decreased below 0x0 (minimum load capacitance).

4.2.2 Software implementation

Project configurations
Two project configurations are available in the package
1. RCC_HSE_Calib_Set_Calibration, for the calibration procedure
2. RCC_HSE_Calib_Test_Calibration, to test the stored value

This last configuration is given as an implementation example of the HSE clock initialization
in RF applications. The firmware is built on the STM32WBA HAL drivers.
1. RCC_HSE_Calib_Set_Calibration: the device is programmed to:

– Send the HSE clock on the PA8 pin
– Modify and set the load capacitance value when push-buttons SW1 and SW3 are

actioned
– Store the load capacitance value together with the 112 bits of additional data when

SW2 button is pushed
2. RCC_HSE_Calib_Test_Calibration: configuration to test the actual HSE settings:

– Configure the HSE clock and output it on PA8 pin
– Fetch the load capacitance value HSETRIM from the OTP
– Program RCC_ECSCR1 register accordingly

Storage in OTP
Load capacitance value is included in a 128-bit structure. Each OTP structure type is
indicated by its index (one byte). The index used for the structure in this document is 0,
there are 14 bytes to store additional data like MAC, Bluetooth device address or crypto key.
typedef __packed struct

{

 uint8_t bytes[14];

 uint8_t hsetune;

 uint8_t index;

} OTP_Data_s;

Usually the configuration phase is not repeated, but there are cases when it must be
overwritten. When using OTP bytes, the current configuration cannot be removed, the new
one is placed at the next free double-word slot (see Figure 8). When the calibration phase is
done, the application initialization phase must retrieve the load capacitance and other data
from this OTP area. The retained value is the last one with the right index.

AN5042 Rev 15 27/67

AN5042 Manual frequency trimming procedure example for the STM32WBA series

66

4.2.3 Scripts
Two batch scripts are provided to run each firmware configuration:
1. RCC_HSE_Calib_Set_Calibration.bat
2. RCC_HSE_Calib_Test_Calibration.bat

These scripts call the STM32CubeProgrammer in command-line mode, and the path to the
tool must be set accordingly: SET CLI="C:\Program
Files\STMicroelectronics\STM32Cube\STM32CubeProgrammer\bin\STM32_Programmer_
CLI.exe”.

To be executed in SRAM, the Reset_Handler and Main Stack Pointer must be set
accordingly, using the map file generated after the compilation process. In the script
example, this is done automatically by parsing the.map file generated by the IDE.

The 112 bits of additional data are transmitted to the device through these scripts. They are
stored inside the SRAM and read by the FW.

Manual frequency trimming procedure example for the STM32WL series AN5042

28/67 AN5042 Rev 15

5 Manual frequency trimming procedure example for
the STM32WL series

The firmware associated to this application note is available as an STM32Cube Expansion
Package
(X-CUBE-CLKTRIM_vx.y\Projects\Nucleo-WL55JC\RCC_HSE_Calib_SingleCore).

Note: The trimmed NUCLEO-WL55JC board needs to be configured to use the on-board crystal
as HSE instead of the TCXO (which adjusts its frequency autonomously, according to the
temperature). For details refer to UM2592, available on www.st.com.

5.1 Procedure description
The procedure consists in measuring the HSE clock generated inside the device from the
external crystal. This clock is output on pin PA8 and is measured by a precision frequency
meter.

Note: An external reference is mandatory since no such accurate internal one exists in the device.

A step-by-step tuning of the load capacitance is performed to reach the best accuracy of the
HSE clock. The IN and OUT banks load capacitance values are then stored in a nonvolatile
location of the device, either a dedicated area of the user flash memory or in the OTP
programming area.

Flash memory or OTP programming is done with a double-word granularity (64 bits). To
save OTP bytes (1 K in the STM32WL series), the IN and OUT load capacitance values,
each one on six bits, can be appended to a 64-bit wide structure with other personalization
data (such as device address, product specific code, key).

This procedure can be done several times, only the last setup is active.

Once the procedure is completed, the active load capacitance value can be retrieved at
startup (in the clock configuration function), and the HSE configuration register set
accordingly.

5.2 Implementation
The procedure runs in SRAM, so it can be executed on an already programmed device
without modifying the flash memory content.

AN5042 Rev 15 29/67

AN5042 Manual frequency trimming procedure example for the STM32WL series

66

5.2.1 Hardware setup
Figure 10 shows the manual calibration procedure for an STM32WL series Nucleo board.

Figure 10. Manual calibration overview - STM32WL series

A precision frequency meter (better than 0.1 ppm) must be connected to pin PA8/MCO and
set to detect a 32 MHz square wave 3.3 V peak to peak signal.

Note: Standard oscilloscopes are not enough accurate for this kind of measurement.

Boot from SRAM
Boot selection can be done through the BOOT0 pin and nBOOT1 bit in the user options
(FLASH_OPTR).

The boot from SRAM configuration is set by both BOOT0 = 1 and nBOOT1 = 0 conditions,
nBOOT1 is set only by option bit FLASH_OPTR[23].

BOOT0 can be selected
• through value of pin PH3 at startup if option bit nSWBOOT0 = 1

(FLASH_OPTR[26] = 1), see the option byte panel in Figure 11
• through option bit value nBOOT0 if option bit nSWBOOT0 = 0 (FLASH_OPTR[26] = 0),

see the option byte panel in Figure 12

Option bits can be selected through STM32CubeProgrammer.

Manual frequency trimming procedure example for the STM32WL series AN5042

30/67 AN5042 Rev 15

Figure 11. OB configuration to boot from SRAM with BOOT0 value driven by PH3 pin

Figure 12. OB configuration to boot from SRAM with BOOT0 value
driven by option bit nBOOT0

AN5042 Rev 15 31/67

AN5042 Manual frequency trimming procedure example for the STM32WL series

66

Clock output
HSE clock is output on pin PA8 (MCO), available on connectors CN10/16. PA8 configuration
is performed by the firmware. Frequency meter probe is connected to this connector and
ground can be taken from connector CN3 or CN4. According to the type of frequency meter
used, it can be needed to use AC coupling instead of DC.

The next sequence is required to output the HSE on the MCO pin.
1. Turn on the HSE oscillator:

a) Set clock control register RCC_CR[16]=1
2. Configure PA8 pin to clock output function:

a) Select GPIO alternate function to MCO (= 0x0)
b) Select GPIO speed to Very high frequency (= 0x3)

3. Select HSE as output clock with no division factor:
a) Clock configuration register RCC_CFGR[30:24] = 0b000_0100

Load capacitance setting
The SUBGHZ_HSEINTRIMR[5:0] bits set the capacitance for bank IN.

The SUBGHZ_HSEOUTTRIMR[5:0] bits set the capacitance for bank OUT.

The proposed procedure uses the three push-buttons available on the Nucleo board to
modify the registers value:
• After startup, each push of SW1 or SW3 respectively increases the value of

SUBGHZ_HSEINTRIMR and SUBGHZ_HSEOUTTRIMR by 1.
• One short push on SW2 changes the variations direction. For example if we push one

time SW2 after startup, then each SW1 / SW3 push respectively decreases the value of
SUBGHZ_HSEINTRIMR / SUBGHZ_HSEOUTTRIMR by 1. Another SW2 push sets
back an increasing variations direction, another one sets back a decreasing variations
direction, and so on.

• Pushing SW2 for two seconds (the three Nucleo LEDs blink at the same time when the
push has been taken into account) stores the parameters in memory (OTP or flash
memory according to constants defined by the user).

For these two registers, the initial value is set to 0x12 (20.3 pF) after reset. It cannot be
increased above 0x2F (maximum load capacitance 33.4 pF), and cannot be decreased
below 0x0 (minimum load capacitance 11.3 pF). After each action, the frequency must be
measured.

Manual frequency trimming procedure example for the STM32WL series AN5042

32/67 AN5042 Rev 15

The following sequence is required for each tested value:
1. Enter the sub-GHz radio in standby with HSE32 mode:

– sends the command code 0x80 to the sub-GHz radio SPI interface with no
parameters (set the parameter to 0 by default).

2. Write the six bits of load capacitance in SUBGHZ_HSEINTRIMR[5:0] or
SUBGHZ_HSEOUTTRIMR[5:0]:
– sends the command code 0x0D (write register command) to the sub-GHz radio

SPI interface followed by the register address (0x0911 for
SUBGHZ_HSEINTRIMR and 0x0912 for SUBGHZ_HSEOUTTRIMR) and the
value they have to take.

3. Enter the sub-GHz radio in FS (frequency synthesis) mode (to exit standby mode):
– sends the command code 0xC1 to the sub-GHz radio SPI interface with no

parameters (set the parameter to 0 by default).

5.2.2 Software implementation

Project configurations
Two project configurations are available in the package, one for the calibration procedure
(determination called RCC_HSE_Calib_SingleCore) and another to test the stored value
(called RCC_HSE_Calib_SingleCore_Test). The latter configuration is given as an
implementation example of the HSE clock initialization in RF applications.

The firmware is built on the STM32WL HAL drivers.
1. RCC_HSE_Calib_SingleCore: the device is programmed to:

a) Send the HSE clock on the PA8 pin.
b) Modify and set the IN and OUT load capacitance values when push-buttons SW1

and SW3 are actioned (short push on SW2 changes the variations direction).
c) Store the load capacitance value together with the 40 bits of additional data

(Bluetooth device address) in the OTP or the selected flash memory area when
SW2 is pushed for two seconds.

2. RCC_HSE_Calib_SingleCore_Test, a configuration to test the saved HSE settings:
a) Configure the HSE clock and output it on PA8 pin.
b) Fetch the IN and OUT load capacitance values from the OTP/flash memory area.
c) Program SUBGHZ_HSEINTRIMR and SUBGHZ_HSEOUTTRIMR registers

accordingly.

Storage in OTP bytes
Load capacitance values are included in a 64-bit structure. Each OTP structure type is
indicated by its index (one byte). The index used for the structure in this application note is
0. Five bytes remain to store additional data like device address or crypto key.
typedef __packed struct

{

uint8_t additional _data[5]; /* 48 bits */

uint8_t hse_tuning_in; /* IN bank load capacitance value */

uint8_t hse_tuning_out; /* OUT bank load capacitance value */

uint8_t index; /* structure index ==0x00*/

} OTP_BT_t

AN5042 Rev 15 33/67

AN5042 Manual frequency trimming procedure example for the STM32WL series

66

Even if the configuration phase is not supposed to be repeated, there may be some case
where it should be overwritten. When using OTP bytes, the current configuration cannot be
removed, so the new one is placed at the next free double-word slot (see Figure 8).

When the calibration phase has been done, the application initialization phase must retrieve
the IN and OUT load capacitances (and other additional data) from this OTP area. The
values retained are the last ones with the right index.

5.2.3 Scripts
Two batch scripts are provided to run each firmware configuration:
• RCC_HSE_Calib_SingleCore_OTP.bat
• RCC_HSE_Calib_SingleCore_Test_OTP.bat

These scripts call the STM32CubeProgrammer command-line interface, and the path to the
tool must be set accordingly:
SET CLI="C:\Program Files (x86)
\STMicroelectronics\STM32Cube\STM32CubeProgrammer\bin\STM32_Programmer_CLI
.exe"

The binary or hex file of the configuration must be set also

For IAR™:
SET BINFILE="RCC_HSE_Calib_SingleCore\Exe\RCC_HSE_Calib_SingleCore.bin"

For Keil®:
SET HEXFILE="RCC_HSE_Calib_SingleCore\Exe\RCC_HSE_Calib_SingleCore.hex"

The 40 bits of additional data (last parameter) are transmitted to the device through these
scripts. They are stored inside the SRAM and read by the firmware.
STM32_Programmer_CLI.exe -c port=swd -w32 0x20006FF0 0x22334455

STM32_Programmer_CLI.exe -c port=swd -w32 0x20006FF4 0x00000011

Automatic frequency trimming procedure example for the STM32WB series AN5042

34/67 AN5042 Rev 15

6 Automatic frequency trimming procedure example
for the STM32WB series

The firmware and scripts associated to this document are available as an STM32Cube
Expansion Package
(X-CUBE-CLKTRIM_vx.y\Projects\P-NUCLEO-WB55.Nucleo\RCC_HSE_AutoCalib).

6.1 Procedure description
The procedure consists in measuring the HSE clock generated inside the device from the
external crystal. The measure is done internally to the STM32 system and is based on an
accurate external 16 MHz clock reference provided by the user on PA9.

Note: An external reference is mandatory since no such accurate one is integrated in the device.

An automatic tuning of the load capacitance is performed by a specific STM32 application to
reach the best accuracy of the HSE clock. The load capacitance value found is then stored
in a nonvolatile location of the device, in a dedicated area of the user flash memory or of the
OTP.

Flash memory or OTP programming is done with a double-word granularity (64 bits). To
save OTP bytes (1 K in the STM32WB series), the load capacitance value on six bits can be
appended to a 64-bit wide structure with other personalization data (such as the Bluetooth
device address, the MAC short address, the product specific code, the key).

This procedure can be done several times, only the latest setup is active.

Once the procedure is completed, the active load capacitance value can be retrieved at
startup (in the clock configuration function) and the HSE configuration register set
accordingly.

AN5042 Rev 15 35/67

AN5042 Automatic frequency trimming procedure example for the STM32WB series

66

6.2 Implementation

6.2.1 Hardware setup
Figure 13 shows the automatic calibration procedure for an STM32WB series
Nucleo-68 board.

Figure 13. Automatic calibration overview - STM32WB series

A precision clock generator (better than 0.1 ppm) must be connected to pin PA9/TIM1_CH2,
and set to generate a 16 MHz, 3.3 VPP square wave. To see how to configure the board so
as to boot from SRAM refer to Section 3.2.1: Hardware setup.

Note: A standard signal generator does not give enough accuracy for this application.

Hardware connections principle
Two timers (TIM1 and TIM2) are used by the MCU to exploit the external reference clock
and thus to measure and tune the HSE frequency.

TIM1 is clocked by the 16 MHz precision external reference clock, itvgenerates a PWM
signal low during an OFF time (fixed to 16 ms) and high during a REF time (100 or 1000 ms,
depending on the stage of the calibration procedure).

This PWM signal is used to enable TIM2 counter when high.

TIM2 is clocked by HSE/2 output on MCO pin.

Then, after one PWM signal period, TIM2 counter corresponds to the number of HSE/2
periods elapsed during REF time.

This value can be compared to the expected value to adjust the load capacitance
conditioning HSE frequency.

Note: OFF time is needed to temporize and wait for HSE stabilization when several HSE
measurements are done in sequence.

MS53505V2

PA5/TIM2_ETR

16 MHz precision
reference clock source

PA9/TIM1_CH2

BOOT0 to 3.3V

PA8/MCO

Automatic frequency trimming procedure example for the STM32WB series AN5042

36/67 AN5042 Rev 15

Figure 14 illustrates the connections between the elements involved in the procedure.

Figure 14. Procedure implementation

TIM1 configuration
TIM1 is configured to be clocked by a 16 MHz external signal provided on PA9. PA9 is
associated to the TIM1 CH2, which provides the TI2 (trigger input 2) input. TI2 must be
chosen as TIM1 clock source.
• SMS bits of TIM1_SMCR register = b0111 (external clock mode 1)
• TS bits of TIM1_SMCR register = b00110 (trigger input = TI2, filter, and polarity for the

input must be set).

TIM1 must generate a PWM signal low during OFF time, and high during REF time.

For this purpose, TIM1 CH3 is configured in PWM mode 2 (low, then high cycles) with a
prescaler of 16000 to get a 1 ms granularity (APB2 frequency is configured to be 16 MHz
and 16 MHz / 16000 = 1 kHz). The period is set to REF time + OFF time - 1, and the pulse
duration to OFF time to get the desired signal (REF and OFF times in milliseconds).
• TIM1_ARR register = 0x3E7F (prescaler = 16000)
• TIM1_PSC register = REF time + OFF time - 1 (period)
• OC3M bits of TIM1_CCMR2 register = b111 (PWM mode 2)
• TIM1_CCR3 register = OFF time (pulse for channel 3)

Finally, TIM1 must be set in master mode OC3REF so that its TRGO (trigger output) relays
the PWM signal generated by its CHANNEL 3.
• MMS bits of TIM1_CR2 register = b110 (OC3REF master mode)

TIM2 configuration
TIM2 must be clocked by HSE/2.

For this purpose HSE/2 is output on MCO pin PA8:
• RCC_CFGR[30:24] = b001_0100 (HSE as MCO output with a division factor of 2).

PA8 is linked externally to PA5, corresponding to TIM2 ETR (external trigger) input.

M
S5

35
08

V1

TIM1
TRGO

TIM2
ITR0

PA9

PA5

PA8 HSE/2 = 16 MHz
(frequency to tune)

TIM1_CH2/TI2

ETR

MCO

STM32
16 MHz precision

reference clock source

AN5042 Rev 15 37/67

AN5042 Automatic frequency trimming procedure example for the STM32WB series

66

Then, external clock mode 2 (counter clocked by any active edge on the ETRF signal) must
be chosen as TIM2 clock source.
• ECE bits in TIM2_SMCR = b1

TIM2 CH2 is configured as a simple time base to count the HSE/2 periods. The time base
period is set to its maximum value 0xFFFFFFFF, to be sure that HSE/2 measurement does
not overflow.
• TIM2_ARR register = 0 (prescaler = 0)
• TIM2_PSC register = 0xFFFFFFFF (period)

Finally, TIM2 must be set in GATED slave mode with ITR0 as trigger input. Since TIM2 ITR0
and TIM1 TRGO are connected, the GATED mode enables the TIM2 CH2 counter only
when the TIM1 CH3 PWM signal displayed on TRGO is high.
• SMS bits in TIM2_SMCR register = b0101 (GATED mode)
• TS bits in TIM2_SMCR register = b00000 (ITR0 as trigger input)

6.2.2 Software implementation

Firmware tuning algorithm principle
The timer links presented above allow to count the number of HSE/2 periods elapsed during
REF time with the external reference clock precision.

The HSE_Measurement function of the firmware provided with this document makes it
possible to get this number of periods by launching one TIM1 CH3 PWM cycle, and
returning the value of the TIM2 CH2 counter.

The function HSE_Tuning exploits HSE_Measurement to tune HSE, using dichotomy logic
to find the best load capacitance value for HSE, to be the closest to 32 MHz.

The tuning parameter that sets the load capacitance can take values from 0 to 63. The
function starts by setting it to 32 (RCC_HSECR[13:8] = HSETUNE = 32), then it makes an
HSE/2 measurement.

If the measured frequency (calculated thanks to the number of periods returned by
HSE_Measurement) is above 16 MHz, the function increases HSETUNE to lower the
frequency. If it is below, it decreases it, to increase the frequency.

The variations of HSETUNE are done with a step starting with a value of 16 when
HSETUNE is 32. After each measurement, this step is divided by two to calculate the new
HSETUNE value to test.

So far, the measurements duration is 100 ms. When the step value reaches a value of 1 and
that the load capacitance approaches the best value, the duration is set to 1000 ms to be
even more precise.

When the step reaches 1, if the measured HSE/2 frequency is below 16 MHz, the function
decrements HSETUNE and makes new measurements and adjustments until the measured
frequency exceeds 16 MHz. Then the function takes the HSETUNE value between the one
above 16 MHz and the last one below with the best HSE precision.

The reasoning is the same if the last 100 ms measurement (the last one before the step has
reached 1) is above 16 MHz.

Finally, the HSETUNE value found is saved in a nonvolatile memory.

Automatic frequency trimming procedure example for the STM32WB series AN5042

38/67 AN5042 Rev 15

Other fields of the RCC_HSECR register remain unchanged, and keep their initial value:
• HSE current control (HSEGMC = RCC_HSECR[6:4]) is set to 0x3 → current max limit

1.13 mA/V
• HSE sense amplifier threshold (HSES = RCC_HSECR[3]) is set to 0 → HSE bias

current factor 1/2

Firmware configurations
The constant STORE_ADDRESS in hse_trimming.h allows the user to choose to save
HSETUNE in OTP (STORE_ADDRESS = 0x1FFF7000U) or flash memory
(STORE_ADDRESS = 0x080A0000 for example).

Two project configurations are available in the package, one (RCC_HSE_AutoCalib) for the
calibration procedure, another one (RCC_HSE_AutoCalib_Test) to test the stored value.
This last configuration is given as an implementation example of the HSE clock initialization
in RF applications.

Note: Under STM32CubeIDE, the two projects are called, respectively,
STM32WBxx_Nucleo_Set_AutoCalibration, STM32WBxx_Nucleo_Test_AutoCalibration.

The firmware is built on the STM32WB HAL drivers.
• RCC_HSE_AutoCalib: the device is programmed to:

– send the HSE clock on the PA8 pin, configure the timers and exploit the external
clock source

– modify and set the load capacitance value following the trimming algorithm
presented before

– store the load capacitance value together with the 48 bits of additional data
(Bluetooth device address) in the OTP or in the flash memory.

• RCC_HSE_AutoCalib_Test: the device is programmed to test the actual HSE setting:
– configure the HSE clock and output it on PA8 pin
– fetch the load capacitance value from the OTP/flash memory area
– program RCC_HSECR register accordingly.

Storage in OTP bytes
The way to store tuning parameters in OTP memory is the same used for the manual
trimming procedure for STM32WB series (see Section 3.2.2: Software implementation).

6.2.3 Scripts
Two batch scripts are provided to run each FW configuration:
1. STM32WBxx_Nucleo_Set_HSE_AutoCalibration_OTP.bat
2. STM32WBxx_Nucleo_Test_HSE_AutoCalibration_OTP.bat

These scripts call the STM32CubeProgrammer in command-line mode, and the path to the
tool must be set accordingly: SET CLI="C:\Program Files
(x86)\STMicroelectronics\STM32Cube\STM32CubeProgrammer\bin\STM32_Programmer_
CLI.exe"

AN5042 Rev 15 39/67

AN5042 Automatic frequency trimming procedure example for the STM32WB series

66

The binary or hex file of the configuration must be set also (example for the Set Calibration
application)
• for IAR™: SET HEXFILE="RCC_HSE_AutoCalib \Exe\RCC_HSE_AutoCalib.hex"
• for Keil®: SET HEXFILE="RCC_HSE_AutoCalib\ RCC_HSE_AutoCalib.hex"
• For STM32CubeIDE:

SET HEXFILE="STM32WBxx_Nucleo_Set_AutoCalibration\Debug
\STM32WBxx_Nucleo_Set_AutoCalibration.hex"

The 48 bits of additional data (last parameter) are transmitted to the device through these
scripts. They are stored inside the SRAM and read by the FW.
%CLI% -c port=swd -w32 0x2002FFF0 0x33445566

%CLI% -c port=swd -w32 0x2002FFF4 0x00001122

Legacy automatic frequency trimming procedure example for the STM32WBA series AN5042

40/67 AN5042 Rev 15

7 Legacy automatic frequency trimming procedure
example for the STM32WBA series

The firmware and scripts associated to this document are available as an STM32Cube
Expansion Package
(X-CUBE-CLKTRIM_vx.y\Projects\ NUCLEO-WBA52CG\RCC_HSE_AutoCalibLegacy).

7.1 Procedure description
The procedure consists in measuring the HSE clock generated inside the device from the
external crystal. The measure is done internally to the STM32 system, and is based on an
accurate external 16 MHz clock reference provided by the user on PA15.

Note: An external reference is mandatory, as the device does not integrate an accurate one.

An automatic tuning of the load capacitance is performed by a specific STM32 application to
reach the best accuracy of the HSE clock. The found value is stored in a dedicated area of
the user flash memory or of the OTP.

Flash memory or OTP programming is done with a quad-word granularity (128 bits). The
load capacitance value (1 byte) is saved along a 112-bit wide structure that contains
personalization data (such as Bluetooth® device address, MAC short address, product
specific code, key).

This procedure can be done several times, only the latest setup is active.

Once the procedure is completed, the active load capacitance value can be retrieved at
startup (in the clock configuration function), and the HSE configuration register set
accordingly.

7.2 Implementation

7.2.1 Hardware setup
Figure 15 shows the automatic calibration procedure for a Nucleo-68 board.

A precision clock generator (better than 0.1 ppm) must be connected to pin
PA15/TIM1_ETR, and set to generate a 16 MHz, 3.3 VPP square wave.

Note: A standard signal generator does not give enough accuracy for this application.

Two timers (TIM1 and TIM2) are used by the MCU to exploit the external reference clock
and to measure and tune the HSE frequency.

AN5042 Rev 15 41/67

AN5042 Legacy automatic frequency trimming procedure example for the STM32WBA series

66

Figure 15. Configuration for simplified automatic trimming

Hardware connections principle
Figure 16 illustrates the connections between the elements involved in the procedure.

Two timers (TIM1 and TIM2) are used by the MCU to exploit the external reference clock
and thus to measure and tune the HSE frequency.

Figure 16. Procedure implementation

TIMER1 is clocked by the 16 MHz precision external reference clock. It generates a PWM
signal low during an OFF time (fixed to 16 ms) and high during an HSETRIM_TICKS time
(by default 1000 ms).

This PWM signal is used to enable TIM2 counter when high.

TIM2 is clocked by HSE/2 output on MCO pin.

D
T5

63
62

Connect PA8 (MCO)
to PA5 (TIM2_ETR)

Connect high precision
16 MHz clock reference
to PA15

D
T5

63
75

TIM1
TRGO

TIM2
ITR0

PA15

PA5

PA8 HSE/2 = 16 MHz
(frequency to tune)

TIM1_ETR

TIM2_ETR

MCO

STM32
16 MHz precision

reference clock source

Legacy automatic frequency trimming procedure example for the STM32WBA series AN5042

42/67 AN5042 Rev 15

Then, after one PWM signal period, TIM2 counter corresponds to the number of HSE
periods divided by two elapsed during HSETRIM_TICKS.

This value can be compared with the expected value to adjust the load capacitance
conditioning HSE frequency.

Note: OFF time is needed to temporize and wait for HSE stabilization when several HSE
measurements are done in sequence.

TIM1 configuration
TIM1 is configured to be clocked by a 16 MHz external signal provided on PA15. PA15 is
associated to the TIM1_ETR.
• ECE bit of TIM1_SMCR register = 1 (external clock mode 2)

TIM1 must generate a PWM signal low during OFF, and high during HSETRIM_TICKS.

For this purpose, TIM1 CH3 is configured in PWM mode 2 (low, then high cycles) with a
prescaler of 16000, to get a 1 ms granularity (APB2 frequency is configured to 16 MHz).

The period is set to HSETRIM_TICKS + OFF - 1 (in ms), and the pulse duration to OFF, to
get the desired signal.
• TIM1_ARR register = 0x3E7F (prescaler = 16000)
• TIM1_PSC register = HSETRIM_TICKS + OFF - 1 (period)
• OC3M bits of TIM1_CCMR2 register = b111 (PWM mode 2)
• TIM1_CCR3 register = OFF (pulse for channel 3)

Finally, TIM1 must be set in master mode OC3REF, so that its TRGO (trigger output) relays
the PWM signal generated by its CHANNEL 3.
• MMS bits of TIM1_CR2 register = b110 (OC3REF master mode)

TIM2 configuration
TIM2 must be clocked by HSE/2.

For this purpose, HSE/2 is output on MCO pin PA8:
• RCC_CFGR[30:24] = b001_0100 (HSE as MCO output with a division factor of 2). PA8

is linked externally to PA5, corresponding to TIM2 ETR (external trigger) input.

Choose external clock mode 2 (counter clocked by any active edge on the ETRF signal) as
TIM2 clock source.
• ECE bit in TIM2_SMCR = 1

TIM2 CH2 is configured as a simple time base to count the HSE/2 periods. The time base
period is set to its maximum value 0xFFFFFFFF, to be sure that HSE/2 measurement does
not overflow.
• TIM2_ARR register = 0 (prescaler = 0)
• TIM2_PSC register = 0xFFFFFFFF (period)

Finally, TIM2 must be set in GATED slave mode with ITR0 as trigger input. Since
TIM2_ITR0 and TIM1_TRGO are connected, the GATED mode enables the TIM2 CH2
counter only when the TIM1 CH3 PWM signal displayed on TRGO is high.
• SMS bits in TIM2_SMCR register = b0101 (GATED mode)
• TS bits in TIM2_SMCR register = b00000 (ITR0 as trigger input)

AN5042 Rev 15 43/67

AN5042 Legacy automatic frequency trimming procedure example for the STM32WBA series

66

7.2.2 Software implementation

Firmware tuning algorithm principle
The timer links described above make it possible to count the number of HSE/2 periods
elapsed during REF time with the external reference clock precision.

The _hse_measure_frequency function of the firmware allows the user to get this number
by launching one TIM1 CH3 PWM cycle, and returning the value of the TIM2 counter.

The HSETRIM_Process function is used to tune HSE oscillator, using dichotomy logic to
find the best load capacitance value HSETRIM, to be the closest possible to 32 MHz.

The tuning parameter that sets the load capacitance can take values from 0 to 63. The
function starts by setting it to 32 (RCC_ECSCR1[13:8] = HSETRIM = 32), then, it makes an
HSE/2 measurement. It is possible to adjust the measurement duration with the macro
HSETRIM_TICKS, set by default at 1000 ms. At most, the binary search algorithm finds the
best HSE load capacity in log2 64 * HSETRIM_TICKS, so, by default, in 6 seconds. The
default HSETRIM_TICKS is conservative, may need to be adapted.

Finally, the load capacitance HSETRIM value found is saved in the OTP or in the flash
memory.

Firmware configurations
Two project configurations are available in the package, one
(RCC_HSE_AutoCalib_Set_Calibration) for the calibration procedure, another one
(RCC_HSE_AutoCalib_Test_Calibration) to test the stored value. This last configuration is
given as an implementation example of the HSE clock initialization in RF applications.

The firmware is built on the STM32WBA HAL & LL drivers.
• RCC_HSE_AutoCalib_Set_Calibration: the device is programmed to:

– send the HSE clock on the PA8 pin, configure the timers and exploit the external
clock source

– modify and set the load capacitance HSETRIM value following the trimming
algorithm presented before

– store the load capacitance value together with the 112 bits of additional data
(Bluetooth device address) in the OTP memory.

• RCC_HSE_AutoCalib_Test_Calibration the device is programmed to test the actual
HSE setting:
– configure the HSE clock and output it on PA8 pin
– fetch the load capacitance value from the OTP memory area and program

HSETRIM from RCC_ECSCR1 register accordingly.

Storage in OTP bytes
The way to store tuning parameters in OTP memory is the same used for the manual
trimming procedure for STM32WBA Series (see Section 3.2.2).

7.2.3 Scripts
Two batch scripts are provided to run each firmware configuration:
1. RCC_HSE_AutoCalib_Set_Calibration.bat
2. RCC_HSE_AutoCalib_Test_Calibration.bat

Legacy automatic frequency trimming procedure example for the STM32WBA series AN5042

44/67 AN5042 Rev 15

These scripts call the STM32CubeProgrammer in command-line mode, and the path to the
tool must be set accordingly: SET CLI="C:\Program
Files\STMicroelectronics\STM32Cube\STM32CubeProgrammer\bin\STM32_Programmer_
CLI.exe”.

To be executed in SRAM, the Reset_Handler and Main Stack Pointer must be set
accordingly, using the map file generated after the compilation process. In the script
example, this is done automatically by parsing the.map file generated by the IDE.

The 112 bits of additional data are transmitted to the device through these scripts. They are
stored inside the SRAM and read by the FW.

AN5042 Rev 15 45/67

AN5042 Simplified automatic frequency trimming procedure example for the STM32WBA Series

66

8 Simplified automatic frequency trimming procedure
example for the STM32WBA Series

The firmware and scripts associated to this document are available as an STM32Cube
Expansion Package
(X-CUBE-CLKTRIM_vx.y\Projects\ NUCLEO-WBA52CG\RCC_HSE_AutoCalib).

8.1 Procedure description
The procedure consists in measuring the HSE clock generated inside the device from the
external crystal. The measure is done internally to the STM32 system and is based on an
accurate external 32 MHz clock reference provided by the user on PA15.

Note: An external reference is mandatory, as the device does not integrate an accurate one.

An automatic tuning of the load capacitance is performed by a specific STM32 application to
reach the best accuracy of the HSE clock. The found value is stored in a dedicated area of
the user flash memory or of the OTP.

Flash memory or OTP programming is done with a quad-word granularity (128 bits). The
load capacitance (1 byte) value is saved along a 112-bit wide structure that contains
personalization data (such as Bluetooth device address, MAC short address, product
specific code, key).

This procedure can be done several times, only the latest setup is active.

Once the procedure is completed, the active load capacitance value can be retrieved at
startup (in the clock configuration function), and the HSE configuration register set
accordingly.

8.2 Implementation

8.2.1 Hardware setup
Figure 17 shows the automatic calibration procedure for a STM32WBA Series Nucleo-68
board.

A precision clock generator (better than 0.1 ppm) must be connected to pin
PA15/TIM1_ETR, and set to generate a 32 MHz, 3.3 VPP square wave.

Note: A standard signal generator does not provide enough accuracy for this application.

Simplified automatic frequency trimming procedure example for the STM32WBA Series AN5042

46/67 AN5042 Rev 15

Figure 17. Configuration for simplified automatic trimming

Hardware connections principle
Two timers (TIM1 and TIM2) are used by the MCU to exploit the external reference clock,
and thus to measure and tune the HSE frequency.

TIM1 is clocked by the 32 MHz precision external reference clock divided by 4 (8 MHz). It
generates a PWM signal low during OFF time (fixed to 16 ms), and high during
HSETRIM_TICKS time (by default 1000 ms).

This PWM signal is used to enable TIM2 counter when high.

TIM2 is clocked by the internal system clock (HSE).

After one PWM signal period, TIM2 counter corresponds to the number of HSE periods
elapsed during HSETRIM_TICKS. This value can be compared with the expected value, to
adjust the load capacitance conditioning HSE frequency.

Note: OFF time is needed to temporize and wait for HSE stabilization when several HSE
measurements are done in sequence.

Figure 18 illustrates the connections between the elements involved in the procedure.

D
T5

63
74

Connect high precision
32 MHz clock reference
to PA15

AN5042 Rev 15 47/67

AN5042 Simplified automatic frequency trimming procedure example for the STM32WBA Series

66

Figure 18. Procedure implementation

TIM1 configuration
TIM1 is configured to be clocked by a 32 MHz external signal provided on PA15. PA15 is
associated to the TIM1_ETR, configured to divide by 4 the 32 MHz external clock.
• ECE bit of TIM1_SMCR register = 1 (external clock mode 2)
• ETPS bits of TIM1_SMCR register = b10 (divided by 4)

TIM1 must generate a PWM signal low during OFF time, and high during REF time.

For this purpose, TIM1 CH3 is configured in PWM mode 2 (low, then high cycles) with a
prescaler of 8000 to get a 1 ms granularity (APB2 frequency is configured to be 8 MHz and
8 MHz / 8000 = 1000 Hz). The period is set to HSETRIM_TICKS + OFF - 1 (in ms), and the
pulse duration to OFF, to get the desired signal.
• TIM1_ARR register = 0x1F3F (prescaler = 8000 - 1)
• TIM1_PSC register = HSETRIM_TICKS time + OFF time - 1 (period)
• OC3M bits of TIM1_CCMR2 register = b111 (PWM mode 2)
• TIM1_CCR3 register = OFF time (pulse for channel 3)

Finally, set TIM1 in master mode OC3REF, so that its TRGO (trigger output) relays the PWM
signal generated by its CHANNEL 3.
• MMS bits of TIM1_CR2 register = b110 (OC3REF master mode)

TIM2 configuration
TIM2 is clocked by the internal clock provided from RCC (HSE).

TIM2 CH2 is configured as a simple time base to count the HSE periods. The time base
period is set to its maximum value 0xFFFFFFFF, to be sure that HSE measurement does
not overflow.
• TIM2_ARR register = 0 (prescaler = 0)
• TIM2_PSC register = 0xFFFFFFFF (period)

D
T5

63
73

TIM1
TRGO

TIM2
ITR0

PA15
TIM1_ETR

Internal clock (HSE)

STM32
32 MHz precision

reference clock source

Simplified automatic frequency trimming procedure example for the STM32WBA Series AN5042

48/67 AN5042 Rev 15

TIM2 must be set in GATED slave mode with ITR0 as trigger input. Since TIM2 ITR0 and
TIM1 TRGO are connected, the GATED mode enables the TIM2 CH2 counter only when the
TIM1 CH3 PWM signal displayed on TRGO is high.
• SMS bits in TIM2_SMCR register = b0101 (GATED mode)
• TS bits in TIM2_SMCR register = b00000 (ITR0 as trigger input)

8.2.2 Software implementation

Firmware tuning algorithm principle
The timer links described above make it possible to count the number of HSE/2 periods
elapsed during HSETRIM_TICKS with the external reference clock precision.

The _hse_measure_frequency function of the firmware provided with this document makes
it possible to get this number of periods by launching one TIM1 CH3 PWM cycle, and
returning the value of the TIM2 counter.

The function HSETRIM_Process is used to tune HSE oscillator, using binary search to find
the best load capacitance value HSETRIM, to be close to 32 MHz.

The tuning parameter that sets the load capacitance can take values from 0 to 63. The
function starts by setting it to 32 (RCC_ECSCR1[13:8] = HSETRIM = 32), then it makes a
measurement of the current HSE frequency. The measurement duration can be adjusted
with the macro HSETRIM_TICKS, set by default to 1000 ms. At most, the binary search
algorithm finds the best HSE load capacity in log2 64 * HSETRIM_TICKS, so, by default, in
6 seconds. The default HSETRIM_TICKS is conservative, adapt it if needed.

The load capacitance HSETRIM value found is then saved in the OTP or in the flash
memory.

Firmware configurations
Two project configurations are available in the package:
• RCC_HSE_AutoCalib_Set_Calibration for the calibration procedure
• RCC_HSE_AutoCalib_Test_Calibration to test the stored value

This last configuration is given as an implementation example of the HSE clock initialization
in RF applications.

The firmware is built on the STM32WBA HAL & LL drivers.
• RCC_HSE_AutoCalib_Set_Calibration: the device is programmed to:

– modify and set the load capacitance HSETRIM value following the trimming
algorithm presented before

– store the load capacitance value together with the 112 bits of additional data
(Bluetooth device address) in the OTP memory.

• RCC_HSE_AutoCalib_Test_Calibration: the device is programmed to test the actual
HSE setting:
– configure the HSE clock and output it on PA8 pin
– fetch the load capacitance value from the OTP memory, and program HSETRIM

from RCC_ECSCR1 register accordingly.

AN5042 Rev 15 49/67

AN5042 Simplified automatic frequency trimming procedure example for the STM32WBA Series

66

Storage in OTP bytes
The way to store tuning parameters in OTP memory is the same used for the manual
trimming procedure for STM32WBA series (see Section 3.2.2).

8.2.3 Scripts
Two batch scripts are provided to run each firmware configuration:
1. RCC_HSE_AutoCalib_Set_Calibration.bat
2. RCC_HSE_AutoCalib_Test_Calibration.bat

These scripts call the STM32CubeProgrammer in command-line mode, and the path to the
tool must be set accordingly: SET CLI="C:\Program
Files\STMicroelectronics\STM32Cube\STM32CubeProgrammer\bin\STM32_Programmer_
CLI.exe”.

To be executed in SRAM, the Reset_Handler and Main Stack Pointer must be set
accordingly, using the map file generated after the compilation process. In the script
example, this is done automatically by parsing the .map file generated by the IDE.

The 112 bits of additional data are transmitted to the device through these scripts. They are
stored inside the SRAM and read by the FW.

Automatic frequency trimming procedure example for the STM32WL series AN5042

50/67 AN5042 Rev 15

9 Automatic frequency trimming procedure example
for the STM32WL series

The firmware associated to this document is available as an STM32Cube Expansion
Package
(X-CUBE-CLKTRIM_vx.y\Projects\NUCLEO-WL55JC\RCC_HSE_AutoCalib_SingleCore).

Note: The trimmed NUCLEO-WL55JC board needs to be configured to use the on-board crystal
as HSE instead of the TCXO (which adjusts its frequency autonomously, according to the
temperature). For details refer to UM2592, available on www.st.com.

9.1 Procedure description
The procedure consists in measuring the HSE clock generated inside the device from the
external crystal. The measure is done internally to the STM32 system and is based on an
accurate external 16 MHz clock reference provided by the user on PA9.

Note: An external reference is mandatory since no such accurate internal one exists in the device.

An automatic tuning of the load capacitance is performed by a specific STM32 application to
reach the best accuracy of the HSE clock. The load capacitance values are then stored
inside a nonvolatile location of the device (a dedicated area of the user flash memory, or in
the OTP programming area).

Flash or OTP memory programming is done with a double-word granularity (64 bits). In
order to save OTP bytes (1 K in the STM32WL series), the IN and OUT load capacitance
values, each one on 6 bits, can be appended to a 64-bit wide structure with other
personalization data (such as device address, product specific code, key).

This procedure can be repeated several times, only the last setup is active.

Once the procedure is completed, the active load capacitance values can be retrieved at
startup (in the clock configuration function) and the HSE configuration register set
accordingly.

AN5042 Rev 15 51/67

AN5042 Automatic frequency trimming procedure example for the STM32WL series

66

9.2 Implementation

9.2.1 Hardware setup
Figure 19 shows the automatic HSE calibration procedure for an STM32WL series Nucleo
board.

Figure 19. Automatic calibration overview - STM32WL series

A precision clock generator (better than 0.1 ppm) must be connected to pin PA9/TIM1_CH2,
and set to generate a 16 MHz, 3.3 VPP square wave. To see how to configure the board to
boot from SRAM refer to Section 5.2.1: Hardware setup.

Note: A standard signal generator does not give enough accuracy for this application.

Hardware connections principle
The ways to establish connections and to implement TIM1 and TIM2 are the same than for
the automatic trimming procedure for STM32WB series (see Section 6.2.1).

9.2.2 Software implementation

Firmware tuning algorithm principle
The timer links described in Section 6.2.1 make it possible to count the number of HSE/2
periods elapsed during REF time with the external reference clock precision.

The HSE_Measurement function of the firmware provided with this document can be used
to get this number by launching one TIM1 CH3 PWM cycle and returning the value of the
TIM2 CH2 counter.

The function HSE_Tuning exploits HSE_Measurement to tune HSE. It follows a dichotomy
logic to find the best load capacitance value for HSE, to be the closest to 32 MHz.

MS5307V1

BOOT0 to 3.3V

16 MHz precision
reference clock source

PA9/TIM1_CH2

PA5/TIM2_ETR

PA8/MCO

Automatic frequency trimming procedure example for the STM32WL series AN5042

52/67 AN5042 Rev 15

The tuning parameters that set the IN and OUT load capacitances can take values from 0 to
47. The function starts by setting it both to 24 (SUBGHZ_HSEINTRIMR[5:0] = 24 and
SUBGHZ_HSEOUTTRIMR[5:0] = 24), then it makes an HSE/2 measurement.

If the frequency measured (calculated thanks to the number of periods returned by
HSE_Measurement) is above 16 MHz, the function increases SUBGHZ_HSEINTRIMR to
lower the frequency. If it is below, it decreases it to increase the frequency.

The variations of SUBGHZ_HSEINTRIMR are done with a step starting with a value of 12
when SUBGHZ_HSEINTRIMR is 24. After each measurement, this step is divided by two to
calculate the new SUBGHZ_HSEINTRIMR value to test.

For each measurement, the parameter tuned is changed. That is to say, a first
measurement is done and SUBGHZ_HSEINTRIMR is adjusted, another measurement is
done and SUBGHZ_HSEOUTTRIMR is adjusted (and the adjustment principle explained
above for SUBGHZ_HSEINTRIMR is followed), then another measurement is done and
SUBGHZ_HSEINTRIMR is adjusted again, and so on.

So far, the measurements duration is 100 ms. When the step value reaches a value of 1 for
one of the two parameters (the load capacitance approaches its best value), the duration is
set to 1000 ms to be even more precise.

When the step reaches 1, if the HSE/2 frequency measured is below 16 MHz, the function
decrements successively SUBGHZ_HSEINTRIMR and SUBGHZ_HSEOUTTRIMR, and
makes new measurements and adjustments until the HSE/2 frequency measured exceeds
16 MHz. Once above 16 MHz, the function keeps the SUBGHZ_HSEINTRIMR and
SUBGHZ_HSEOUTTRIMR pair between the one above and the last one below that got the
best HSE precision.

The reasoning is the same if the last 100 ms measurement (the last one before the step has
reached 1) is above 16 MHz.

Finally, the SUBGHZ_HSEINTRIMR and SUBGHZ_HSEOUTTRIMR pair found is saved in
a nonvolatile memory.

Firmware configurations
The constant STORE_ADDRESS in hse_trimming.h allows the user to choose to save the
SUBGHZ_HSEINTRIMR and SUBGHZ_HSEOUTTRIMR pair in OTP (STORE_ADDRESS
= 0x1FFF7000U) or flash memory (STORE_ADDRESS = 0x0803F800 for example).

Also two project configurations are available in the package, one for the calibration
procedure (RCC_HSE_AutoCalib_SingleCore), and another one to test the stored value
(RCC_HSE_AutoCalib_SingleCore_Test). This last configuration is given as an
implementation example of the HSE clock initialization in RF applications.

AN5042 Rev 15 53/67

AN5042 Automatic frequency trimming procedure example for the STM32WL series

66

The firmware is built on the STM32WL HAL drivers.
• RCC_HSE_AutoCalib_SingleCore: the device is programmed to

– Send the HSE clock on the PA8 pin, configure the timers and exploit the external
clock source

– Modify and set the IN and OUT load capacitance values following the trimming
algorithm presented before

– Store the IN and OUT load capacitance values together with the 40 bits of
additional data in the OTP or in the selected flash memory area.

• RCC_HSE_AutoCalib_SingleCore_Test, to test the actual HSE settings saved:
– Configure the HSE clock and output it on PA8 pin
– Fetch the load capacitance value from the OTP/flash memory area
– Program SUBGHZ_HSEINTRIMR and SUBGHZ_ HSEOUTTRIMR registers

accordingly

Storage in OTP
The way to store tuning parameters in the OTP memory is the same as the one for the
manual trimming procedure for STM32WL series (see Section 5.2.2).

9.2.3 Scripts
Two batch scripts are provided to run each FW configuration:
• RCC_HSE_AutoCalib_SingleCore_OTP.bat
• RCC_HSE_AutoCalib_SingleCore_Test_OTP.bat

These scripts call the STM32CubeProgrammer command-line interface, and the path to the
tool must be set accordingly:
SET CLI="C:\Program Files (x86)
\STMicroelectronics\STM32Cube\STM32CubeProgrammer\bin\STM32_Programmer_CLI
.exe"

The binary or hex file of the configuration must be set also
• For IAR: SET

BINFILE="RCC_HSE_AutoCalib_SingleCore\Exe\RCC_HSE_AutoCalib_SingleCore

.bin"

• For Keil: SET
HEXFILE="RCC_HSE_AutoCalib_SingleCore\Exe\RCC_HSE_AutoCalib_SingleCore

.hex"

The 40 bits of additional data are transmitted to the device through these scripts. They are
stored inside the SRAM and read by the FW.
STM32_Programmer_CLI.exe -c port=swd -w32 0x20006FF0 0x22334455

STM32_Programmer_CLI.exe -c port=swd -w32 0x20006FF4 0x00000011

STM32CubeMonitor-RF frequency trimming procedure example for the STM32WB series AN5042

54/67 AN5042 Rev 15

10 STM32CubeMonitor-RF frequency trimming
procedure example for the STM32WB series

The firmware and scripts associated to this document are available as an STM32Cube
software expansion package
(X-CUBE-CLKTRIM_vx.y\Projects\P-NUCLEO-WB55.Nucleo\RCC_HSE_MonitorRFCalib).

Note: STM32CubeMonitor-RF procedure has been developed only for the STM32WB series, as
the software does not support the STM32WL series.

10.1 Procedure description
The procedure is the same as the one detailed in Section 3.1: Procedure description.

10.2 Procedure steps
Details for these steps are given in Section 10.3.2.

This procedure tunes the STM32WB HSE clock using STM32CubeMonitor-RF. Thus, a
connection between the two entities must be established.

To allow this connection, two softwares have to be flashed in the STM32WB cores:
• the Bluetooth Low Energy transparent mode firmware in the Cortex® M4 core
• the Bluetooth Low Energy stack in the Cortex® M0+ core.

Once the flashing is done, connect the STM32WB to the PC running
STM32CubeMonitor-RF.

Go to the Script section in STM32CubeMonitor-RF.

Begin by running mco_output_config.txt to output HSE on pin PA8.

Modify hse_tunning.txt with the HSETUNE tuning parameter to test, and run it.

Measure the frequency of HSE on PA8 and adapt the tuning parameter in hse_tunning.txt if
needed, before running it again.

When a satisfying parameter has been found, insert it in trim_param_flash.txt or
trim_param_otp.txt, depending on the memory (flash or OTP) where it is saved. Then run
the chosen script.

To save in the flash memory the selected page may have to be erased (erase operations are
only possible at the page level), using the erase_flash_page.txt script.

Finally, the tuning parameter is saved in a nonvolatile memory.

The C code retrieve_trimming_values gives an example for retrieving the parameter saved
in memory.

AN5042 Rev 15 55/67

AN5042 STM32CubeMonitor-RF frequency trimming procedure example for the STM32WB series

66

10.3 Implementation

10.3.1 Hardware setup
Figure 20 shows the STM32CubeMonitor-RF HSE calibration procedure for an STM32WB
series Nucleo-68 board.

Figure 20. STM32CubeMonitor-RFcalibration overview - STM32WB series

A precision frequency meter (better than 0.1 ppm) must be connected to pin PA8/MCO and
set to detect a 32 MHz 3.3 V square wave peak to peak signal.

Note: Standard oscilloscopes are not sufficiently accurate for this kind of measurement.

10.3.2 Software and scripts setup

Flashing transparent firmware in the Cortex® M4 core
The Bluetooth Low Energy transparent mode firmware is available in the
STM32Cube_FW_WB package:
• STM32Cube_FW_WB_Vx.y.z\Projects\P-NUCLEO-WB55.Nucleo\Applications\BLE\

BLE_TransparentMode

This project can be opened in the user favorite IDE and must run on the Cortex® M4 core.

Flashing Bluetooth Low Energy stack in the Cortex® M0+ core
The Bluetooth Low Energy stack is available in the STM32Cube_FW_WB package:
• STM32Cube_FW_WB_Vx.y.z\Projects\STM32WB_Copro_Wireless_Binaries\

stm32wb5x_BLE_Stack_fw.bin

The instructions to flash this stack into the Cortex® M0+ core are given in the release notes
file: STM32Cube_FW_WB_Vx.y.z\Projects\STM32WB_Copro_Wireless_Binaries\
Release_Notes.html

MS53509V2

PA8/MCO

32000.470 Hz

Frequency meter

32000.010 Hz

Stored in
Flash memory or in OTP

STM32CubeMonitor-RF frequency trimming procedure example for the STM32WB series AN5042

56/67 AN5042 Rev 15

Note: For more information on transparent mode, Bluetooth Low Energy stack and
STM32CubeMonitor-RF relations, refer to UM2288 “STM32CubeMonitor-RF software tool
for wireless performance measurements”, available on www.st.com.

Connecting the product to STM32CubeMonitor-RF
If a Nucleo board is used, simply link it to the PC via USB. If not, the user can communicate
with the transparent mode firmware through the USART interface of the MCU, available on
pins PB6/RX and PB7/TX.

Note: PB6 and PB7 are used by the ST-Link VCP (Virtual COM Port) on Nucleo boards.

10.3.3 Scripts
Note: The scripts presented below are available in the STM32Cube software expansion package

(X-CUBE-CLKTRIM_vx.y\Projects\P-NUCLEO-WB55.Nucleo\RCC_HSE_MonitorRFCalib).

mco_output_config.txt

No need to modify, run it in STM32CubeMonitor-RF to output HSE on PA8.

hse_tuning.txt

This script includes the HSETUNE value to test. This value is the last parameter in the script
line below (line 11) and is set to 0x18 for this example.
Send(VS_HCI_C1_WRITE_REGISTER;0x04;0x0000FF00;0x5800009C;0x00001800)

This line updates the HSETUNE bits of the RCC_HSECR register.

To test an HSETUNE tuning parameter, change this value as wanted and run the script in
STM32CubeMonitor-RF.

Then, use the frequency meter (HSE measurement on PA8) to evaluate the quality of the
HSETUNE value fixed: the closer the HSE frequency to 32 MHz, the better the HSETUNE
quality.

Note: In BLE_TransparentMode the system clock is HSE. In this script the HSE is off, hence
switch the system clock to another one before setting HSE to off.

erase_flash_page.txt

This script can be used to partially clean the flash memory to save new tuning parameters in
an already full page.

Note: The running of the script is not mandatory for the procedure.

The number of the page to erase is the last parameter in the script line below (line 20), it is
set to 0xA0 for this example (since the trim_param_flash.txt script delivered saves the
parameter at this page).
Send(VS_HCI_C1_WRITE_REGISTER;0x04;0x000007F8;0x58004014;0x00000500)

This line updates the PNB bits of the FLASH_CR register.

Note: To traduce the page number (0x0500 → 0xA0) take into account the mask 0x7F8.

AN5042 Rev 15 57/67

AN5042 STM32CubeMonitor-RF frequency trimming procedure example for the STM32WB series

66

trim_param_flash.txt

This script saves an HSETUNE value in flash memory at a given address.

It must be modified with the HSETUNE value found with HSE_tuning.txt to get the best HSE
frequency, with other information to complete a 64-bit data and with the address where
these data must be saved.

The script lines below (lines 19 to 25) include the HSETUNE value to modify, and other
information that can be modified.

As an example, the HSETUNE value saved is 0x1B.
#Write lower BD Address : Company Id = 0xE105 + Board Id = 0x7777 (for
example)

Send(VS_HCI_C1_WRITE_REGISTER;0x04;0xFFFFFFFF;0x080A0000;0xE1057777)

Wait(100)

#Write upper BD Address : Id = 0x0 + HSE_Tun = 0x1B(for example) + Upper BD
= 0x0080

Send(VS_HCI_C1_WRITE_REGISTER;0x04;0xFFFFFFFF;0x080A0004;0x001B0080)

Wait(100)

These lines save in memory a 64-bit data equal to 0x 001B 0080 E105 7777 (64 bits is the
size of a flash memory word line).

The other 58 bits apart from the HSETUNE value can be chosen as wanted. For example,
they can be the Bluetooth device address.

Moreover, 0x080A0000 corresponds to the address where the 64-bit data is saved (the 32
lower bits at 0x080A0000 and the 32 upper bits at 0x080A0004).

trim_param_otp.txt

trim_param_otp.txt is equivalent to trim_param_flash.txt: the user must modify the same
elements for the script to get the requested behavior.

However, the saving address is not the same, as OPT and flash memory are mapped at
different addresses in the STM32WB microcontrollers. In the delivered script, the address is
close to the beginning of the OTP memory: 0x1FFF7008 and 0x1FFF700C.

10.3.4 C code
retrieve_trimming_values.c

This C code is given as an example of implementation for the HSE clock initialization
procedure for RF applications, when tuning parameters are saved in OTP memory.

STM32CubeMonitor-RF frequency trimming procedure example for the STM32WB series AN5042

58/67 AN5042 Rev 15

It gathers:
• Two constants, CFG_OTP_BASE_ADDRESS and CFG_OTP_END_ADDRESS,

localizing the beginning and the ending of the OTP memory.
• The structure OTP_ID0_t representing the 64-bit data saved in memory by

trim_param_otp.txt.
• The OTP_Read function that seeks the most recent 64-bit data saved in OTP memory

with a 0 ID (0 has been chosen in this application note as the index for HSETUNE data
in OTP memory).

• The Config_HSE function that exploits OTP_Read to find the most recent HSETUNE
value in OTP memory so as to set the HSETUNE bits in the RCC_HSECR register and
to get a satisfying HSE frequency.

Note: The same code can be used for flash memory by changing the two constant values with
flash memory addresses.

AN5042 Rev 15 59/67

AN5042 STM32CubeMonitor-RF frequency trimming procedure example for the STM32WA series

66

11 STM32CubeMonitor-RF frequency trimming
procedure example for the STM32WA series

The firmware and scripts associated to this document are available as an STM32Cube
software expansion package
(X-CUBE-CLKTRIM_vx.y\Projects\NUCLEO-WBA52CG\RCC_HSE_MonitorRFCalib).

Note: STM32CubeMonitor-RF procedure has been developed only for the STM32WB and WBA
series, as the software does not support the STM32WL series.

11.1 Procedure description
The procedure is the same as the one detailed in Section 3.1: Procedure description.

11.2 Procedure steps
These scripts allow to tune the STM32WBA HSE load capacitance using
STM32CubeMonitor-RF.

Once you have flashed the Bluetooth® Low Energy transparent mode firmware onto the
STM32WBA, open STM32CubeMonitor-RF and connect the device.

Next, navigate to the Script section in STM32CubeMonitor-RF. Begin by running
start_tone.txt to output a continuous tone at 2402 MHz.

To modify the HSETUNE tuning parameter, open the hse_tuning.txt file and make the
necessary changes. Run the file and measure the frequency deviation from 2402 MHz.

If needed, adjust the tuning parameter in hse_tuning.txt before running the file again.
Repeat this process until you find the optimal load capacitance value. When a satisfying
parameter has been found, insert it in trim_param_flash.txt or trim_param_otp.txt,
depending on if you want to save it in flash or OTP memory. Then run the script chosen.

To save in the flash memory the selected page may have to be erased (erase operations are
only possible at the page level), using the erase_flash_page.txt script. Finally, the tuning
parameter is saved in a nonvolatile memory.

11.3 Implementation

11.3.1 Hardware setup
The following figure illustrates the HSE calibration procedure using STM32CubeMonitor-RF.

STM32CubeMonitor-RF frequency trimming procedure example for the STM32WA series AN5042

60/67 AN5042 Rev 15

Figure 21. STM32CubeMonitor-RFcalibration overview - STM32WA series

11.3.2 Software and scripts setup

Flashing transparent firmware
The Bluetooth® Low Energy transparent mode firmware is available in the
STM32Cube_FW_WBA package:
• STM32CubeWBA/Projects/NUCLEO-

WBA52CG/Applications/BLE/BLE_TransparentMode

Connecting the product to STM32CubeMonitor-RF
The user can communicate with the transparent mode firmware through the USART
interface of the MCU, available on pins PA8/RX and PB12/TX.

11.3.3 Scripts
Note: The scripts presented below are available in the STM32Cube software expansion package

(X-CUBE-CLKTRIM_vx.y\Projects\NUCLEO-WBA52CG \RCC_HSE_MonitorRFCalib).

start_tone.txt

No need to modify, run it in STM32CubeMonitor-RF to start a continuous tone at 2402 MHz.

stop_tone.txt

No need to modify, run it in STM32CubeMonitor-RF to stop the continuous tone.

hse_tuning.txt

This script can be used to adjust the HSE load capacitance with STM32CubeMonitor-RF. It
is important to ensure that the HSE oscillator accuracy is better than 20 ppm which means,
at the end, that the tone should be centered at 2402 MHz ± 48 KHz.

HSE load capacitance can be adjusted by modifying RCC_ECSCR1.HSETRIM[21:16]
between the minimum capacitance load (0x00) and the maximum capacitance load (0x3F).
The following line of code can be modified to set the HSETRIM value to the user's desired
value. In this example, the value is set to 0x14:
Send(VS_HCI_C1_WRITE_REGISTER;0x04;0x003F0000;0x46020e10;0x00140000)

AN5042 Rev 15 61/67

AN5042 STM32CubeMonitor-RF frequency trimming procedure example for the STM32WA series

66

erase_flash_page.txt

This script erases a specific flash memory page to save new tuning parameters in an
already full page. The following line of code can be modified to erase the desired page. In
this example, the last page of the flash memory is being erased:
Send(VS_HCI_C1_WRITE_REGISTER;0x04;0x000007F8;0x40022028;0x000007F8)

trim_param_flash.txt

This script is designed to save the HSE load capacitance HSETRIM value in flash memory
at a specified address, along with any additional information provided by the user. To
customize the script for the user needs, simply modify the code below to specify the desired
load capacitance value and any additional information to be stored at the designated
address. This example saves four words starting at address 0x080FE000.
• The corresponding structure index value: 0x00
• The HSETRIM value: 0x14
• The Bluetooth device address: 0x0080E12A4CC7
• A custom character string “STM32WBA”: 0x334D54534142573
Write additional information: STM3 = 0x334D5453

Send(VS_HCI_C1_WRITE_REGISTER;0x04;0xFFFFFFFF;0x080FE000;0x334D5453)

Write additional information: 2WBA = 0x4142573

Send(VS_HCI_C1_WRITE_REGISTER;0x04;0xFFFFFFFF;0x080FE004;0x41425732)

Write lower BD Address: Company Id + Board Id = 0xE12A4CC7

Send(VS_HCI_C1_WRITE_REGISTER;0x04;0xFFFFFFFF;0x080FE008;0xE12A4CC7)

Write upper BD Address: DataId + HSETRIM + Upper BD = 0x00140080

Send(VS_HCI_C1_WRITE_REGISTER;0x04;0xFFFFFFFF;0x080FE00C;0x00140080)

trim_param_otp.txt

trim_param_otp.txt is equivalent to trim_param_flash.txt, but the saving address is different
because OPT and flash memories are mapped at distinct addresses. Specifically, OTP
starts at 0xBF90000.63.

Selection of a compatible HSE crystal for the STM32WB series AN5042

62/67 AN5042 Rev 15

12 Selection of a compatible HSE crystal for the
STM32WB series

The crystal used for the HSE is an essential element for the performance of the radio
system, the requirements are described in the datasheets. The next step is the calculation
of the minimum transconductance of the selected oscillator.

Note: As already specified, for a crystal with low load capacitance (6 pF) and with not negligible
parasitic layout capacitance, frequency fine tuning to 32 MHz with 0 ppm can be difficult to
achieve. The trimming range is centered on crystals with a load capacitance of 8 pF, the
recommended load capacitance. Crystals with 7 pF load capacitance can be used, but need
special hardware layouts.

Assuming CL1 = CL2, and that the crystal sees on its pads the CL value given by the
manufacturer (see Figure 1), the minimum transconductance is
gmcrit = 4 * ESR * (2 * π * F)2 * (C0 + CL)2, where C0 is the shunt capacitance, CL the
nominal load capacitance, and F the nominal oscillation frequency. As an example, with the
NX2016SA 32 MHz - EXS00A-CS06654 crystal, F = 32 MHz, CL = 8 pF, C0 = 0.6 pF, and
ESR = 60 Ω, so gmcrit = 4 * 60 * (2 * π * 32 * 106)2 * (0.6 * 10-12 + 8 * 10-12)2 = 0.717 mA/V.

Because of the limitation described in the STM32WB errata sheet, gmcrit ≤ 1.13 mA/V. It is
recommended to keep HSEGMC it at its default (maximum) value 011 (current maximum
limit 1.13 mA/V). Do not select a crystal whose gmcrit does not respect this requirement.

The gmcrit for crystal NX2016SA 32 MHz - EXS00A-CS06654 is safely below 1.13 mA/V,
making it compatible with STM32WB devices. Follow hardware layout recommendations for
placing the crystal and for its routing, detailed in AN5165.

Note: Due to the design of the Bluetooth® Low Energy radio, it is not recommended to modify by
software the CFG_BLE_HSE_STARTUP_TIME parameter. The default value 0x148 (800
μs) ensures that HSE frequency is stable for Bluetooth® Low Energy over all voltage and
temperature conditions. As the CPU2 is woken up 1 ms prior to Bluetooth® Low Energy
scheduled transaction, decreasing CFG_BLE_HSE_STARTUP_TIME does not bring any
significant power saving.

HSERDY bit does not signal that HSE crystal frequency is stable enough for Bluetooth Low
Energy communication. After the HSERDY flag is raised, some time is needed for the
oscillation frequency stabilization. To be sure that HSE is ready for Bluetooth Low Energy
communication, monitor HCI_HARDWARE_ERROR_EVENT (see AN5270). If this event is
not generated, HSE frequency is correct during the communication.

Setting HSES bit does not decrease HSE start-up time. HSE oscillations are detected
sooner, and HSERDY is triggered a dozen of microseconds sooner. Setting HSES does not
modify the consumption (the peak current is negligible because it is very short).

Troubleshooting:
• Verify that HSE crystal is able to start (HSERDY is set)
• Verify HSE crystal parameters with respect to gmcrit
• Verify that HSE frequency is tuned
• Check HCI_HARDWARE_ERROR_EVENT occurrence

If the crystal is compatible according to calculations, but still does not operate correctly,
most likely issues are caused by the PCB design.

AN5042 Rev 15 63/67

AN5042 Conclusion

66

13 Conclusion

To ensure best performance, RF applications require a very accurate clock.

The RF clock is derived from an external crystal, and the frequency fine tuning is obtained
by setting the right load capacitance at crystal pins.

STM32 wireless MCUs introduce a very efficient architecture with internal capacitances
setting, removing the need for extra components on PCB, and lightening the constraints on
the crystal performance.

Revision history AN5042

64/67 AN5042 Rev 15

14 Revision history

Table 7. Document revision history
Date Revision Changes

27-Sep-2017 1 Initial release.

14-Nov-2017 2
Updated:
– Section 3.2.2: Software implementation
– Section 3.2.3: Scripts

21-Feb-2019 3
Changed document classification, from ST restricted to Public.
Updated Section 1: HSE oscillator.
Minor text edits across the whole document.

30-Jan-2020 4

Introduced STM32WL series, hence updated document title, Introduction
and Section 13: Conclusion.
Updated Section 1: HSE oscillator, Section 1.2: STM32 wireless MCUs
architecture, Section 1.3: HSE configuration parameters - STM32WB
series, Section 1.8: Crystal references, Section 3: Manual frequency
trimming procedure example for the STM32WB series, Load capacitance
setting and Project configurations.
Added Section 1.5: HSE configuration parameters - STM32WL series,
Section 2: Trimming methods comparison, Section 6: Automatic frequency
trimming procedure example for the STM32WB series and Section 10:
STM32CubeMonitor-RF frequency trimming procedure example for the
STM32WB series.
Updated Table 4: Crystal specifications.
Minor text edits across the whole document.

04-Feb-2020 5 Updated Introduction.

27-Apr-2020 6

Updated Section 1: HSE oscillator, Section 1.6: Board implementation
(STM32WB series), Section 1.8: Crystal references and Section 3:
Manual frequency trimming procedure example for the STM32WB series.
Added Section 1.9: Tuning in production.
Updated Table 1: Carrier accuracy requirement for RF protocols.
Minor text edits across the whole document.

26-May-2020 7 Added Note: in Section 2: Trimming methods comparison.

AN5042 Rev 15 65/67

AN5042 Revision history

66

29-Jun-2020 8

Updated Introduction, Section 1.3: HSE configuration parameters -
STM32WB series, Section 1.9: Tuning in production, Section 3: Manual
frequency trimming procedure example for the STM32WB series,
Section 3.2.1: Hardware setup, Section 3.2.3: Scripts, Section 6:
Automatic frequency trimming procedure example for the STM32WB
series, Section 6.2.1: Hardware setup, Firmware configurations,
Section 6.2.3: Scripts, Section 10: STM32CubeMonitor-RF frequency
trimming procedure example for the STM32WB series, Section 10.3.2:
Software and scripts setup and Section 10.3.3: Scripts.
Added footnotes to Table 5: Trimming methods and Table 6: Comparison
of trimming methods.
Updated Figure 6: OB configuration to boot from SRAM with BOOT0
value driven by PH3 pin, Figure 7: OB configuration to boot from SRAM
with BOOT0 value driven by option bit nBOOT0, Figure 13: Automatic
calibration overview - STM32WB series and Figure 20:
STM32CubeMonitor-RFcalibration overview - STM32WB series.

05-Nov-2020 9

Introduced STM32WL series, hence updated Introduction and added
Section 5: Manual frequency trimming procedure example for the
STM32WL series, Section 9: Automatic frequency trimming procedure
example for the STM32WL series and their subsections.

26-Jan-2021 10

Updated document title, Introduction, Section 1: HSE oscillator, and
Section 13: Conclusion.
Added Section 12: Selection of a compatible HSE crystal for the
STM32WB series.
Minor text edits across the whole document.

03-Nov-2022 11

Updated Section 1.1: Crystal oscillator, Current control: HSEGMC[2:0]
and Section 12: Selection of a compatible HSE crystal for the STM32WB
series.
Updated Table 2: Oscillator pin numbers for the STM32WB series.
Minor text edits across the whole document.

17-Jan-2023 12
Added note in Section 10.3.3: Scripts.
Minor text edits across the whole document.

21-Apr-2023 13

Updated document title, Section 1.8: Crystal references, Section 12:
Selection of a compatible HSE crystal for the STM32WB series, and
Section 13: Conclusion.
Minor text edits across the whole document.

13-Jun-2023 14

Document scope extended to STM32WBA series, hence updated
Introduction and Section 1.2: STM32 wireless MCUs architecture.
Added Section 1.4: HSE configuration parameters - STM32WBA series,
Section 1.7: Board implementation (STM32WBA series), Section 4:
Manual frequency trimming procedure example for the STM32WBA
series, Section 7: Legacy automatic frequency trimming procedure
example for the STM32WBA series, and their subsections.
Updated Table 4: Crystal specifications and Table 6: Comparison of
trimming methods.
Minor text edits across the whole document.

Table 7. Document revision history (continued)
Date Revision Changes

Revision history AN5042

66/67 AN5042 Rev 15

20-Sep-2023 15

Updated Table 4: Crystal specifications
Added Section 11: STM32CubeMonitor-RF frequency trimming procedure
example for the STM32WA series
Minor text edits across the whole document.

Table 7. Document revision history (continued)
Date Revision Changes

AN5042 Rev 15 67/67

AN5042

67

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

	1 HSE oscillator
	Table 1. Carrier accuracy requirement for RF protocols
	1.1 Crystal oscillator
	Figure 1. Crystal oscillator principle

	1.2 STM32 wireless MCUs architecture
	Figure 2. Crystal oscillator system overview

	1.3 HSE configuration parameters - STM32WB series
	1.4 HSE configuration parameters - STM32WBA series
	1.5 HSE configuration parameters - STM32WL series
	1.6 Board implementation (STM32WB series)
	Table 2. Oscillator pin numbers for the STM32WB series
	Figure 3. UFQFPN48 (USB dongle board) footprint detail

	1.7 Board implementation (STM32WBA series)
	Table 3. Oscillator pin numbers for the STM32WBA series
	Figure 4. UFQFPN48 footprint detail

	1.8 Crystal references
	Table 4. Crystal specifications

	1.9 Tuning in production

	2 Trimming methods comparison
	Table 5. Trimming methods
	Table 6. Comparison of trimming methods

	3 Manual frequency trimming procedure example for the STM32WB series
	3.1 Procedure description
	3.2 Implementation
	3.2.1 Hardware setup
	Figure 5. Manual calibration overview - STM32WB series
	Figure 6. OB configuration to boot from SRAM with BOOT0 value driven by PH3 pin
	Figure 7. OB configuration to boot from SRAM with BOOT0 value driven by option bit nBOOT0

	3.2.2 Software implementation
	Figure 8. Configuration store in OTP bytes

	3.2.3 Scripts

	4 Manual frequency trimming procedure example for the STM32WBA series
	4.1 Procedure description
	4.2 Implementation
	4.2.1 Hardware setup
	Figure 9. Manual calibration overview - STM32WBA52

	4.2.2 Software implementation
	4.2.3 Scripts

	5 Manual frequency trimming procedure example for the STM32WL series
	5.1 Procedure description
	5.2 Implementation
	5.2.1 Hardware setup
	Figure 10. Manual calibration overview - STM32WL series
	Figure 11. OB configuration to boot from SRAM with BOOT0 value driven by PH3 pin
	Figure 12. OB configuration to boot from SRAM with BOOT0 value driven by option bit nBOOT0

	5.2.2 Software implementation
	5.2.3 Scripts

	6 Automatic frequency trimming procedure example for the STM32WB series
	6.1 Procedure description
	6.2 Implementation
	6.2.1 Hardware setup
	Figure 13. Automatic calibration overview - STM32WB series
	Figure 14. Procedure implementation

	6.2.2 Software implementation
	6.2.3 Scripts

	7 Legacy automatic frequency trimming procedure example for the STM32WBA series
	7.1 Procedure description
	7.2 Implementation
	7.2.1 Hardware setup
	Figure 15. Configuration for simplified automatic trimming
	Figure 16. Procedure implementation

	7.2.2 Software implementation
	7.2.3 Scripts

	8 Simplified automatic frequency trimming procedure example for the STM32WBA Series
	8.1 Procedure description
	8.2 Implementation
	8.2.1 Hardware setup
	Figure 17. Configuration for simplified automatic trimming
	Figure 18. Procedure implementation

	8.2.2 Software implementation
	8.2.3 Scripts

	9 Automatic frequency trimming procedure example for the STM32WL series
	9.1 Procedure description
	9.2 Implementation
	9.2.1 Hardware setup
	Figure 19. Automatic calibration overview - STM32WL series

	9.2.2 Software implementation
	9.2.3 Scripts

	10 STM32CubeMonitor-RF frequency trimming procedure example for the STM32WB series
	10.1 Procedure description
	10.2 Procedure steps
	10.3 Implementation
	10.3.1 Hardware setup
	Figure 20. STM32CubeMonitor-RFcalibration overview - STM32WB series

	10.3.2 Software and scripts setup
	10.3.3 Scripts
	10.3.4 C code

	11 STM32CubeMonitor-RF frequency trimming procedure example for the STM32WA series
	11.1 Procedure description
	11.2 Procedure steps
	11.3 Implementation
	11.3.1 Hardware setup
	Figure 21. STM32CubeMonitor-RFcalibration overview - STM32WA series

	11.3.2 Software and scripts setup
	11.3.3 Scripts

	12 Selection of a compatible HSE crystal for the STM32WB series
	13 Conclusion
	14 Revision history
	Table 7. Document revision history (continued)

