@ilﬁtﬂera@ DeS|gn Hub q Iterdm

An Intel Company

AN 1011: TinyML Applications in
Altera FPGAs Using LiteRT for
Microcontrollers

@ Online Version 848984
D Send Feedback 2025.04.07

https://www.altera.com/design
https://www.intel.com/content/www/us/en/docs/programmable/848984.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

altera.

An Intel Company

Contents
B 0 3 =T o 4
B SO 2T [0 =T o =1 0 4
2. Preparing LiteRT Inference Model........ccviiiimimimnmi i m s s sss s ssasssassnssansanssnssnssansanss 5
2.1. Defining the Problem.t e e e e 5
2.2. Gathering and Preparing Sample Data........ccoviiiiiiiiii e 6
2.2.1. Preparing Datasel........ccuiiiiiiiii i 6
2.2.2. PreproCessing Dataset. . .c.ciiiiii i i e e 7
2.3. BUilding TENSOIrFIOW MOAEL. .. .uiiuiiii i e e e re e 7
2.3.1. Constructing Model ArChiteCtUre. . ..oiiriiii i e e 7
2.3.2. Configuring MOGEL........uieieii e e e 8
2.3.3. Training MOAEL. .. v e 8
2.3.4. Evaluating the Model........oviiiiiiii e 9
2.3.5. Saving and Loading Model.......ciiiiiiiiiiii i e 10
2.4. Preparing the LIteRT MOdel.....ciriiiiiiiiiiii et s e e e e e e e eaees 10
2.4.1. Converting into LItERT MOdel....c.iiviiiiiiiii e e e 10
2.4.2. Saving the LILERT MOdEl.ciuiiie i e eaeas 10
2.4.3. Analyzing the LIiteRT MOdel......cuiiiiiiiiii e 10
2.4.4. Loading a LiteRT Interpreter.. ..o e 11
2.4.5. Evaluating the LIteRT Model....cciiiiiiiiii i e 11
2.5. Preparing Binaries fOr C/C ..ottt et a s e e s et s e e e e e e e aaeanens 12
2.5.1. Converting LItERT t0 @ C ATy . .ciiiiiiiiiiiine i aes e saae e saneaeannens 12
2.5.2. Preparing a Header File for LItERT C Array....cocoueeieinaeieieaeaeeeeeeeaaeneaeneenens 12
2.5.3. Preparing Supporting Header File for LiteRT C Array.....ccooeviiiiieiiiiiinniienneinenn, 12
2.5.4. Preparing Main Function to Run TinyML.......cooiiiiiii e 13
2.5.5. Converting MNIST Sample into C Array.....cvuvuiiiiiiiiiniiii e 13
3. Generating Nios V Processor System......c.ciciiiimimieierrarsinnsimiessess s ssssssasssasasasssnsnnnnnnnns 16
3.1. Building Hardware Design in Platform DeSigner......co.vuvieieiriiiie e eee e eeeeeeeenenes 16
3.2. Building Software Design with Ashling RiscFree IDE for Altera FPGAS........cvevvvvvinnnnnens 17
3.2.1. Creating a Board Support PaCckage......cviiiiiiiiii i e aea 18
3.2.2. Building LiteRT for Microcontroller Static Library........ccovviiiiiiiiiiiiiiiieen 20
3.2.3. Creating an Application Project File......cooiiiiiiiiii e 21
3.2.4. Building the LiteRT TinyML Application.......cccouiiiiiiii e e 22
4. Generating Arm Processor SysStem.....c.cvcvurimrumrrimmrimssnssassssss s sasssassnsanssansasansansasanss 23
4.1. GHRD HardWare DeSigN. . .uuuutitireitiititieeteassassessassasane e esassassasentansansansnerernennsns 24
4.2. Building the SOftWare DeSIigN.....uiuiie ittt e a e e e nanes 26
4.2.1. Arm-TrusSted-FirmMWare. ... et e e e e e e e e e e 26
4.2.2. Building LiteRT for Microcontrollers Static Library..........cocviviiiiiiiiiiiiiieneenen 28
4.2.3. Zephyr OS EnVIiroNmMeENt SELUPD....couiiiiiiiiiiii it e e 29
4.2.4. Building the LiteRT TinyML Application......c.coviiiiiiiiiiiiiic i e 29
5. Programming and RUNNING . .cicriereriamsmmerasmemiamssmasassemssmsssassssasassassnsassssassassnsasansassnssssasansas 32
5.1, NIOS V ProCESSOr SYSEeM. ...t e e e e 32
5.2. Arm HPS ProCeSS0r SYStemM .. it 33
5.2.1. BOOtiNG from QS P, ... e 34
5.2.2. Booting via the Debugger.......ccoviiiiiii e 34
Qli\lcrlooct:].tr'gll?eyrl\sllL Applications in Altera FPGAs Using LiteRT for D Send Feedback

2

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

altera.

An Intel Company

SN 5 o 2= o T | 39
6.1, MAIN.CC fOr NIOS V PrOCES SO . ettt ittt ettt ettt eaterate e eaaeeeeaaeraeerneeaaeraeernranneaness 39
6.2. MaAIN.CC fOr A HP S PrOCES SO . . ittt ittt ittt it et e e et rte e raneeraneeerness 42

7. Document Revision History for the AN 1011: TinyML Applications in Altera FPGAs
Using LiteRT for Microcontrollersccicivimimirimamsmse s smsssssssa s ssassasssassnssansansnnnss 46
D Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

3

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

848984 | 2025.04.07 altero

D Send Feedback An Intel Company

1. Overview

This application note is a fundamental guide for developing LiteRT for Microcontrollers
software in a Nios® V processor system.

Altera recommends that you have the following skills or experience before starting this

project:

e Quartus® Prime software—Platform Designer, and Board Support Package Editor

e Ashling* RiscFree* IDE for Altera® FPGAs

e Fundamental in C/C++ - Running a simple Hello World application in Nios V
processor

Related Information

AN 985: Nios® V Processor Tutorial
For more information about for building a Nios® V processor system and running a
simple Hello World program.

1.1. Requirements

Note:

Hardware

e Any Altera FPGA Development Kit
e Power Adapter
e Intel FPGA Download Cable II

Software

e Quartus Prime
e Ashling RiscFree IDE for Altera FPGAs

You need to acquire the license for the Nios V processor to compile the design in
Quartus Prime software.

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera

Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to 1so

make changes to any products and services at any time without notice. Altera and Intel assume no 9005":2015
responsibility or liability arising out of the application or use of any information, product, or service described Registered
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to

obtain the latest version of device specifications before relying on any published information and before placing

orders for products or services.

*QOther names and brands may be claimed as the property of others.

https://www.intel.com/content/www/us/en/docs/programmable/784468.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

848984 | 2025.04.07 qltero
D Send Feedback "

An Intel Company

2. Preparing LiteRT Inference Model

The LiteRT development workflow involves identifying a Machine Learning (ML)
problem, choosing a model that solves that problem, and implementing the model on
embedded devices. LiteRT is designed to run machine learning models on embedded
devices with only a few kilobytes of memory. It doesn't require operating system
support, any standard C or C++ libraries, or dynamic memory allocation.

The following example illustrates how to prepare a LiteRT model for digit classification.
It outlines the steps needed to prepare the model in a TensorFlow Python environment
before converting it into a LiteRT model.

Import the following Python libraries at the start of the Python script:

import matplotlib.pyplot as plt
import tensorflow as tf

import numpy as np

import random

2.1. Defining the Problem

Before developing any ML problem, determine the project's objective. Explore the

project's key characteristics and identify the type of problem as regression or
classification.

e Regression - Establish a relationship between input variables and output variables.
e Classification - Assign input data to specific predefined categories.

This example consists of the following aspects:

e The goal is to classify a single digit from 0 to 9, which presents a classification
problem.

e Based on the MNIST (Modified National Institute of Standards and Technology)
database that contains a large collection of handwritten digits.

¢ Implements the LeNet-5 Convolutional Neural Network (CNN) model architecture.

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera

Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to 1so

make changes to any products and services at any time without notice. Altera and Intel assume no 900}:2015
responsibility or liability arising out of the application or use of any information, product, or service described Registered
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to

obtain the latest version of device specifications before relying on any published information and before placing

orders for products or services.

*QOther names and brands may be claimed as the property of others.

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

q IterQ 2. Preparing LiteRT Inference Model

848984 | 2025.04.07
An Intel Company

2.2. Gathering and Preparing Sample Data

2.2.1. Preparing Dataset

Apply the following Python commands to load the MNIST dataset. The Matplotlib
library allows you to display random MNIST samples.

Load the MNIST Train and Test Dataset
mnist = tf_keras.datasets.mnist
(x_train, y train), (x_test, y test) = mnist.load_data()

rows, cols = 28, 28

Display Random Samples

fig = plt.figure(figsize=(9,9))

for 1 in range(8):
ind = random.randint(0, len(x_train))
plt.subplot(3,3,i+1)
plt.imshow(x_train[ind], cmap="gray", interpolation=None)
plt_title(y_train[ind])

Figure 1. Example of MNIST Samples

8

0

5

10

15
20
25 #

0 10 7 20

Microcontrollers
6

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for D Send Feedback

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Preparing LiteRT Inference Model a It e ro
848984 | 2025.04.07 ™

An Intel Company

2.2.2. Preprocessing Dataset
Perform data preprocessing by reshaping, normalizing, and encoding the dataset.

Reshape the data into a 4D Array
X_train = x_train.reshape(x_train.shape[0], rows, cols, 1)
X_test = x_test.reshape(x_test.shape[0], rows, cols, 1)

input_shape = (rows,cols,1)

Set type as float32 and normalize the values to [0,1]
X_train = x_train.astype("float32")

Xx_test = x_test.astype("float32%)

X_train = x_train / 255.0

X_test = x_test / 255.0

Transform labels to one hot encoding
y_train = tf._keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)

2.3. Building TensorFlow Model

2.3.1. Constructing Model Architecture

Construct a LeNet-5 model (or any other CNN model).

Construct a Sequential Model
model = tf._keras.Sequential()

Input Layer

model .add(tf.keras. layers. Input(shape=input_shape))

C1 Convolution Layer

model .add(tf.keras.layers.Conv2D(filters=6, strides=(1,1), kernel_size=(5,5),
activation="relu*))

S2 SubSampling Layer

model .add(tf.keras.layers.AveragePooling2D(pool_size=(2,2), strides=(2,2)))
C3 Convolution Layer

model .add(tf.keras.layers.Conv2D(Filters=6, strides=(1,1), kernel_size=(5,5),
activation="relu*))

S4 SubSampling Layer

model .add(tf.keras. layers.AveragePooling2D(pool_size=(2,2), strides=(2,2)))
C5 Fully Connected Layer

model .add(tf.keras. layers.Dense(units=120, activation="relu®))

Flatten Layer

model .add(tf.keras.layers.Flatten())

FC6 Fully Connected Layer

model .add(tf.keras. layers.Dense(units=84, activation="relu®))

Output Layer

model .add(tf.keras. layers.Dense(units=10, activation="softmax"))

Display a Summary of the Model
model . summary ()

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

7

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

q Iterd 2. Preparing LiteRT Inference Model

848984 | 2025.04.07
An Intel Company

Figure 2. Summary of the Model

Model: “sequential 7"

Layer (type) Output Shape Param #
convad_14 (ConviD) (. 24, 24, 6) 156
average_pooling2d_14 (225 X2,6)]
(AveragePooling2D)

conv2d_15 (Conv2D) { , 8, 8, 6) 906
average_pooling2d_15 C s> 4, 4, 6) @

(AveragePooling2D)

dense_21 (Dense) (, 4, 4, 120) 840
flatten_7 (Flatten) (, 192@) @
dense_22 (Dense) (, 84) 161,364
dense_23 (Dense) (> 19) 85e
Total params: 492,358 (1.88 MB)

Trainable params: 116 (641.08 KB)
Non-trainable params: ¢ (@.ee B)
Optimizer params: 328,234 (1.25 MB)

2.3.2. Configuring Model

Specify the loss function, optimizer, and interested metrics for the model.

Compile the Model
model .compile(loss = tf.keras.metrics.categorical_crossentropy, optimizer =
"adam', metrics = [“accuracy”])

2.3.3. Training Model

Feed the training data into the model in batches and validate the model on the
validation set after each epoch to monitor performance. Using the Matplotlib library,
you can display the training and validation accuracy in a line graph.

Train and Validate the Model

epochs = 10

history = model.fit(x_train, y train, epochs=epochs, batch_size=128,
validation_data = (x_test, y_test), verbose=1)

Display the Training Progress

def summary_history(history):
plt.figure(figsize = (10,6))
plt.plot(history.history[“accuracy®], color = "blue®, label = "train®)
plt.plot(history.history[“val_accuracy®], color = “red”, label = "val~)
plt.legend()
plt.title("Accuracy”)
plt.show()

summary_history(history)

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for Send Feedback
Microcontrollers

8

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Preparing LiteRT Inference Model a Ite rd

848984 | 2025.04.07
An Intel Company

Figure 3. Training and Validation Logs

Epoch 1/18@
469/469 ————————————— 285 56ms/step - accuracy: @.7988 - loss: @.7733 - val_accuracy: 8.9618 - val_loss: @.130@
Epoch 2/1e
469/469 ———————————————— 415 56ms/step - accuracy: €.9632 - loss: ©.1238 - val_accuracy: 8.9688 - val_loss: ©.8957
Epoch 3/18
469/469 ————————————————— 415 56ms/step - accuracy: ©.9756 - loss: 0.8793 - val_accuracy: 8.9889 - val_loss: @.8584
Epoch 4/10
469/469 ———————————————— 24s 51ms/step - accuracy: ©.9805 - loss: 0.8650 - val_accuracy: 0.9838 - val_loss: 0.0503
Epoch 5/1@
469/469 ———————————— 415 5ims/step - accuracy: ©.9845 - loss: 8.8583 - val_accuracy: ©.9868 - val_loss: @.e418
Epoch 6/1@
469/469 ——————————————— 41s Sims/step - accuracy: ©.9859 - loss: ©.0448 - val_accuracy: 0.9874 - val_loss: ©.0394
Epoch 7/1@
469/469 —————————————— 265 56ms/step - accuracy: @.9885 - loss: @.8374 - val_accuracy: 8.987@ - val_loss: @.8405
Epoch 8/10@
469/469 ——————————— 265 56ms/step - accuracy: ©.9897 - loss: 0.8324 - val_accuracy: 8.9866 - val_loss: 8.8387
Epoch 9/16
469/469 —————————————— 405 54ms/step - accuracy: @.9985 - loss: 0.0299 - val_accuracy: ©.9871 - val_loss: @.0411
Epoch 18/18
469/469 ——————————— 255 52ms/step - accuracy: @.9918 - loss: @.8263 - val_accuracy: 8.9873 - val_loss: @.e41@

Figure 4. Training and Validation Accuracy per Epoches

Accuracy

— train

— val
0.98 -
0.96 -
0.94 -
0.92 -
0.90 -

0 2 4 6 8

2.3.4. Evaluating the Model

Assess the model's performance on the test set to estimate how well it generalizes to
unseen data.

Evaluate Accuracy of the Model
loss ,acc= model.evaluate(x_test, y_ test)

print(“Accuracy : ", acc)

Figure 5. Classification Accuracy of TensorFlow Model on Test Dataset

313/313 2s Sms/step - accuracy: 0.9844 - loss: ©.0503
Accuracy : ©.9872999787330627

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

9

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

q Itero 2. Preparing LiteRT Inference Model

848984 | 2025.04.07
An Intel Company

2.3.5. Saving and Loading Model

Once you train a highly accurate model, Altera recommends that you save the model
data for future use. Training a model consumes a lot of time, and the final accuracy
can vary with each session. By saving the trained model, you can efficiently load it
whenever you need it.

Save Model
model .save(*"lenet._keras*™)

Load Model
model = tf_keras.models.load _model (" lenet.keras")

2.4. Preparing the LiteRT Model

2.4.1. Converting into LiteRT Model

A good starting point is converting a TensorFlow model to a LiteRT model without
quantization, which generates a 32-bit floating-point LiteRT model.

Convert the model from Tensorflow to LiteRT model
converter = tf._lite.TFLiteConverter.from_keras_model (model)
tflite_model = converter.convert()

Alternatively, you can use full integer-only quantization to reduce the model size and
increase processing speed. However, this may impact the model's accuracy.

2.4.2. Saving the LiteRT Model

Save the LiteRT Model for reuse purposes.

Save the LiteRT model
open(“"lenet_tflite”, "wb™).write(tflite_model)

2.4.3. Analyzing the LiteRT Model

Identify the type of op resolver needed to run the model using LiteRT for
Microcontrollers libraries. Refer to Appendix for more information about op resolver
registration in the main() function. For this LeNet-5 example, the op resolvers are:

e CONV_2D
e AVERAGE_POOL_2D
e FULLY_CONNECTED
e RESHAPE
e SOFTMAX

Analyse the LiteRT Model
tf._lite.experimental .Analyzer_analyze(model_path=""lenet._tflite")

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for Send Feedback
Microcontrollers

10

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Preparing LiteRT Inference Model a It e ro
848984 | 2025.04.07 ™

An Intel Company

Figure 6. Results from Analyzer

Subgraph#e main(T#e) -»> [T#2e]
Op#@ CONV_2D(T#@, T#6, T#ll) -> [T#12]
Op#l AVERAGE POOL_2D(T#12) -> [T#13]
Op#2 CONV_2D(T#13, T#3, T#1) -> [T#14]
Op#3 AVERAGE_POOL_2D(T#14) -> [T#15]
Op#4 FULLY_COMNECTED(T#15, T#2, T#3) -> [T#16]
Op#5 RESHAPE(T#16, T#0[-1, 1926]) -» [T#17]
Op#6 FULLY_CONMNECTED(T#17, T#5, T#7) -> [T#18]
Op#7 FULLY_COMNECTED(T#18, T#4, T#6) -> [T#19]
Op#8 SOFTMAX(T#19) -» [T#28]

Related Information

Appendix on page 39

2.4.4. Loading a LiteRT Interpreter

Setup the LiteRT Interpreter to test the newly converted LiteRT model.

Load the LiteRT model in TFLite Interpreter
interpreter = tf.lite.Interpreter(model_path="lenet.tflite")

Get input and output tensors.
input_details = interpreter.get_input_details(Q
output_details = interpreter.get _output_details()

Adjust the model interpreter to take 10,000 inputs at once instead of just 1
interpreter._resize_tensor_input(input_details[0]["index"], (x_test.shape[0],
rows, cols, 1))

interpreter.resize_tensor_input(output_details[0]["index"], (y_test.shape[0],
10))

interpreter.allocate_tensors()

Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get output_details()

2.4.5. Evaluating the LiteRT Model

Since the LiteRT model is generated without quantization, the final accuracy is
expected to be preserved, which is the same as 0.9872 from the TensorFlow model.

It's important to check how much accuracy is lost after using post-training
quantization. If the loss is significant, consider using quantization-aware training.

Set the test input and run
interpreter.set_tensor(input_details[O0]["index'], x_test)
interpreter. invoke()

Get the result and check its accuracy
output_data = interpreter.get_tensor(output_details[0]["index"])

a = [np.argmax(y, axis=None, out=None) for y in output_data]
b = [np.argmax(y, axis=None, out=None) for y in y_ test]
accuracy = (np.array(a) == np.array(b)).mean()

print(""TFLite Accuracy:', accuracy)

Figure 7. Classification Accuracy of LiteRT Model on Test Dataset

TFLite Accuracy: ©.9873

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

11

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

q Iterd 2. Preparing LiteRT Inference Model

848984 | 2025.04.07
An Intel Company

2.5. Preparing Binaries for C/C++

Ensure you have acquired the following binaries before proceeding to the next

chapters.
Table 1. LiteRT for Microcontrollers Binaries
Binaries Description
model_data.cc Model params stored within a C array.
model_data.h Header file of model_data.h
model_settings.h List of classes to decode classification results in main.cc
main.cc Main LiteRT application to setup LiteRT model, uploading images, classifying images
and profiling.
Multiple figure.h Sample of MNIST images stored within a C array.

2.5.1. Converting LiteRT to a C Array

In a microcontroller environment, the LiteRT model is included as a C array and
compiled into the C application. Use the following Python script to convert the LiteRT
model into a C array:

I xxd -i lenet.tflite > model _data.cc

Example 1. Content of nodel dat a. cc

unsigned char lenet_tflite[] = {.};
unsigned int lenet_tflite_len = 660296;

Apply the follow changes to improve the processor execution:
#include "model_data.h"

alignas(8) const unsigned char lenet_tflite[] = {.};
const unsigned int lenet_tflite_len = 660296;

2.5.2. Preparing a Header File for LiteRT C Array

Example 2. Content of nodel data. h

#ifndef MODEL_DATA H
#define MODEL_DATA H

extern const unsigned char lenet_tflite[];
extern const unsigned int lenet_tflite_len;

#endif // MODEL_DATA H

2.5.3. Preparing Supporting Header File for LiteRT C Array

The example main() function implements the supporting model_settings.h
header file to decode the output of the LiteRT model.

Microcontrollers
12

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for D send Feedback

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Preparing LiteRT Inference Model a It e ro
848984 | 2025.04.07 ™

An Intel Company

Example 3. Content of nodel _settings.h

#ifndef IMAGE_CLASSIFICATION_MODEL_SETTINGS H_
#define IMAGE_CLASSIFICATION_MODEL_SETTINGS H_

// Keeping these as constant expressions allow us to allocate fixed-sized arrays
// on the stack for our working memory.

// All of these values are derived from the values used during model training,
// if you change your model you®"ll need to update these constants.

constexpr int kNumCols = 28;

constexpr int kNumRows = 28;

constexpr int kNumChannels = 1;

constexpr int kMaxImageSize = kNumCols * kNumRows * kNumChannels;
constexpr int kCategoryCoun 10;
constexpr int kOIndex =

constexpr int kllndex
constexpr int k2Index
constexpr int k3Index
constexpr int k4lndex
constexpr int k5lndex
constexpr int k6lndex
constexpr int k7Index
constexpr int k8Index
constexpr int k9lndex

t
0
1
2
3
4-
5
6
7
8
9

constexpr const char* kCategorylLabels[kCategoryCount] = {
"number 0",
"number 1",
"number 2",
"number 3",
"number 4",
“number 5%,
"number 6",
"number 7",
“number 8",
"number 9"

¥
#endif // IMAGE_CLASSIFICATION_MODEL_SETTINGS H_

2.5.4. Preparing Main Function to Run TinyML

Altera recommends reading and understanding the LiteRT documentation before
writing the main() function in the Appendix. Refer to the following links for more
information.

Related Information

e LiteRT - Hello World Example

e LiteRT - Get started with microcontrollers

e Appendix on page 39

2.5.5. Converting MNIST Sample into C Array

You can prepare a collection of C arrays representing MNIST samples. These arrays
serve as static inputs to test the LiteRT C array model in the Nios V processor before
deployment.

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

13

https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/hello_world
https://ai.google.dev/edge/litert/microcontrollers/get_started
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

q Itero 2. Preparing LiteRT Inference Model
™ 848984 | 2025.04.07

An Intel Company

Repeat this Python script for a few rounds until every class (0 to 9) is collected. The
script replaces duplicated class, thus resulting in a single sample for each class.

Convert MNIST samples into a C array
import matplotlib.pyplot as plt

import tensorflow as tf

import numpy as np

import random

import sys

Load the MNIST Train and Test Dataset
mnist = tf.keras.datasets.mnist
(x_train, y train), (x_test, y test) = mnist.load_data()

rows, cols = 28, 28

Reshape the data into a 4D Array
X_test = x_test.reshape(x_test.shape[0], rows, cols, 1)

input_shape = (rows,cols,1)

Set type as float32 and normalize the values to [0,1]
X_test = x_test.astype("float32")
X_test = x_test / 255.0

Transform labels to one hot encoding
y_test = tf_keras.utils._.to_categorical (y_test, 10)

img = x_test*255.0
img = img.astype(np.uint8)
img_label=np.argmax(y_test, axis=1)

Repeat for a few rounds to get all numbers (0-9)

fig = plt.figure(figsize=(9,9))

for i1 in range(9):
ind = random.randint(0, len(img))
np.set_printoptions(threshold=sys.maxsize)
stringl = np.array2string(img[ind], separator="-,
c_array = stringl.replace("[", "{")-replace("]", "}")-.replace(".", "%)
c_array_label = img_label[ind]

plt.subplot(3,3,i+l)
plt.imshow(img[ind], cmap="gray', interpolation=None)
plt.title(c_array_label)

base_path = "figure-"'

label_name = str(c_array_Jlabel)

file_type = ".h"

file_name = base_path + label_name + file_type

with open(file_name, "w") as f:
f.write(#include <stdint.h>\n\n")

f.write('#define IMAGE_WIDTH 28\n'")
f.write('#define IMAGE_HEIGHT 28\n'")
f.write("#define NUM_CHANNELS 1\n')
f.write(""'#define IMAGE_SIZE (IMAGE_WIDTH * IMAGE_HEIGHT * NUM_CHANNELS)\n\n'")
f.write('uint8_t test_image[IMAGE_HEIGHT][IMAGE_WIDTH][NUM_CHANNELS] = *)
f.write(c_array)
f.write('';"™)
AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for D Send Feedback
Microcontrollers

14

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Preparing LiteRT Inference Model q Ite rQ

848984 | 2025.04.07
An Intel Company

Figure 8. Randomly Selected MNIST Samples

8

0 10 20
Figure 9. Complete Set of MNIST Samples
/] / /] / /
W b @ @
figure-0.h figure-1.h figure-2.h figure-3.h figure-4.h
/ /]] / 7

figure-5.h figure-6.h figure-7.h figure-8.h figure-9.h

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

15

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

848984 | 2025.04.07 alterd

D Send Feedback An Intel Company

3. Generating Nios V Processor System

The general implementation of the Nios V processor system has two parts: hardware
design and software design. The hardware design, which comprises the Nios V
processor and peripherals, is developed using the Quartus Prime software.

Developing a Nios V processor application requires a software design that

complements the processor hardware design. You can develop a Nios V processor
software design using Ashling RiscFree IDE for Altera FPGAs.

3.1. Building Hardware Design in Platform Designer

This document shows how to use a simple Nios V processor hardware design for image
classification with LiteRT for Microcontrollers libraries.

Table 2. Component Description
Components Description
Nios V/m Processor Intel® FPGA IP Runs application by executing instructions.
JTAG UART Intel FPGA IP Enables serial character communication between Nios V/m
processor and host computer
On-Chip Memory II Intel FPGA IP Stores data and instructions.
Reset Release Intel FPGA IP Recommended reset output in SDM-based devices.

Optionally, you can implement a Nios V/g processor with branch prediction, caches,
and floating-point units for better performance. Altera recommends starting the
project with large On-Chip RAM due to the size of the LiteRT C array model.

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera

Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to 1so

make changes to any products and services at any time without notice. Altera and Intel assume no 9005":2015
responsibility or liability arising out of the application or use of any information, product, or service described Registered
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to

obtain the latest version of device specifications before relying on any published information and before placing

orders for products or services.

*QOther names and brands may be claimed as the property of others.

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

3. Generating Nios V Processor System

848984 | 2025.04.07

Figure 10. Enabling Cache and Floating-Point Unit

Nios V/g General Purpose Processor Intel FPGA IP

intel_niosv_g

[+ Example Designs

[* cPU Architecture

Enable Floating Point Unit

Enable Branch Prediction

mhartid CSR value: il

[+ Debug

|> Locksiep

[+ Use Reset Request

[+ vectors

|' Memory Configurations

|" Caches

Data Cache Size: 16 KBytes =
Instruction Cache Size: |16 KBytes =

Related Information
AN 985: Nios® V Processor Tutorial

For more information about building the hardware design.

altera.

An Intel Company

3.2. Building Software Design with Ashling RiscFree IDE for Altera

FPGAs

Note: Ensure you complete the steps in Preparing LiteRT Inference Model before continuing

this chapter.

Once the processor system is ready, start building the software design using Ashling
RiscFree IDE for Altera FPGAs. Follow these steps:

ik wN

Create a Board Support Package (BSP) project.
Build LiteRT for Microcontrollers static library.

Import both projects into RiscFree IDE’s workspace.
Build the Hello World application.

Create a Nios V application project with Hello World TinyML example source code.

Altera recommends you create a similar directory tree in your design project to ensure
a streamlined build flow. The following software design flow is based on this directory

tree.

To create the software project directory tree:

D Send Feedback

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for

Microcontrollers
17

https://www.intel.com/content/www/us/en/docs/programmable/784468/current/building-hardware-design-in.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

q Iterd 3. Generating Nios V Processor System
™ 848984 | 2025.04.07

An Intel Company

In your design project folder, create a folder called software.

In the software folder, create two folders called app and bsp.

Figure 11. Software Project Directory Tree

software
app
bsp
Table 3. LiteRT for Microcontrollers Binaries at Prerequisite
Binaries Description

model_data.cc

Model params stored within a C array.

model_data.h

Header file of model_data.h.

model_settings.h List of classes to decode classification results in main.cc.

main.cc Main LiteRT application to setup LiteRT model, uploading images, classifying images
and profiling.

Multiple figure.h Sample of MNIST images stored within a C array.

3.2.1. Creating a Board Support Package

Board Support Package (BSP) provides a software runtime environment for embedded
systems, such as Nios V/m processor systems. Platform Designer includes the BSP
Editor tool to generate and configure BSP content.

Follow these steps to create a BSP:

1.

2
3.
4

7.
8.
9.

In the Quartus Prime software, go to Tools O Platform Designer.
In the Platform Designer window, go to File 0 New BSP.
The Create New BSP window appears.

For BSP setting file, create a BSP file (settings.bsp) in <Working
directory>/software/bsp/settings.bsp.

For System file (gqsys or sopcinfo), select the Nios V/m processor Platform
Designer system (niosv_top.qgsys).

For Quartus project, select the example design Quartus Prime Project File
(niosv_top.qpT).

For Revision, select niosv_top.
For CPU name, select intel_niosv_m_0.
Select the Operating system as Altera HAL.

10. Click Create to create the BSP file.

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for D send Feedback

Microcontrollers
18

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Generating Nios V Processor System

848984 | 2025.04.07

Figure 12. Create New BSP Window

11. The

Sysi_em 1'1Pvariant | BSP Editor

altera.

An Intel Company

Select BSP setting file to open

BSP setting file | software/bsp/settings.bsp

System file (gsys or sopcinfo) | niosv_top.qsys

Quartus project: I niosv_top.gpf

Revision: |niosvjap |v‘
CPU name |intei_niosv \v

Operating system |Altera HAL l'. Version ‘defaun {;‘

[¥] Use default locations

BSP target directory |

[[] Enable Additional Tcl script

Additional Tcl script |

BSP Editor tab appears.

12. Modify the GNU compiler flags as follows:

Table 4. GNU Compiler Flags Modification

BSP Settings

Values

cflags_user_flags

-ffunction-sections -fdata-sections -fno-rtti -fno-exceptions

cflags_defined_symbols -DTF_LITE_STATIC_MEMORY
cxx_Flags -std=c++11
link_flags -WI,--gc-sections

cflags_optimization -03

13. Click Generate BSP to generate the BSP file.

14. The BSP Editor generates the BSP files in <Working directory>/
software/bsp folder.

D Send Feedback

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for

Microcontrollers
19

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

q Itero 3. Generating Nios V Processor System
™ 848984 | 2025.04.07

An Intel Company

Figure 13.

Generated BSP Files

(7 drivers
HAL

alt_sys_init.c
(MakeLists.txt
linker.h
linker.x
memory.gdb
settings.bsp
summary.html

NelDDDRDD

system.h

G toolchain.cmake

3.2.2. Building LiteRT for Microcontroller Static Library

Note:

Figure 14.

You must build LiteRT for Microcontroller libraries in Linux environments. If you are
using Windows OS, you can invoke Windows* Subsystem for Linux* (WSL) within Nios
V Command Shell.

Run the following commands:

$ sudo apt update

$ sudo apt install make git python3 unzip python3-pip

$ pip3 install numpy Image

$ git clone --depth 1 https://github.com/tensorflow/tflite-micro.git

$ cd tflite-micro

$ python3 tensorflow/lite/micro/tools/project_generation/create_tflm_tree.py\
-e hello_world tflite_app

Change Directory command (cd) to tflite-micro is mandatory. The execution of
create_tflm_tree.py Python script fails when it is executed from different
directory.

Content of the tflite_app Folder

(] examples
(3 signal

(7 tensorflow
(3 third_party

(] Lcense

Altera recommends you complete the following tasks:

e Review the Hello World TinyML example in the examples folder. It is a prediction
model on the sine function. For more information, refer to LiteRT - Hello World
Example and LiteRT - Get started with microcontrollers.

e Modify the micro_time.cc to be compatible with the Nios V processor. You can
find the source code micro_time.cc in tensorflow\lite\micro folder. For
more information, refer to LiteRT - Porting to a new platform.

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for D send Feedback

Microcontrollers

20

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Generating Nios V Processor System a It e r d
848984 | 2025.04.07 ™

An Intel Company

Figure 15. Modification on micro_time.cc

B
—]¥1I d

Related Information
e LiteRT - Hello World Example
e LiteRT - Get started with microcontrollers

e LiteRT - Porting to a New Platform

3.2.3. Creating an Application Project File

Application Project (APP) stores the software TinyML application for Nios V/g processor
system.
Follow these steps to create an application project file:

1. In <Working directory>/software/app folder, copy the following LiteRT for
Microcontrollers libraries from tflite_app.

a. signal
b. tensorflow
c. third_party

2. Create a new folder in app called image_classification (or any preferred
name).

3. Navigate into the image_classification folder, create two folders named
image and model, and upload the main.cc binary (Refer to the examples in
Appendix).

4. In image folder, store the MNIST C array samples.

In model folder, store the model _data.cc, model _data.h and
model_settings.h source codes.

6. Launch the Nios V Command Shell.

$ niosv-shell

7. Execute the command below to generate an application CMakeLists. txt.

$ niosv-app --bsp-dir=software/bsp --app-dir=software/app \
--srcs-recursive=software/app/image_classification,\
software/app/signal ,\

software/app/tensorflow \

--incs=software/app,\
software/app/image_classification/model ,\

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

21

https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/hello_world
https://ai.google.dev/edge/litert/microcontrollers/get_started
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/docs/new_platform_support.md#porting-to-a-new-platform
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

q Iterd 3. Generating Nios V Processor System

848984 | 2025.04.07
An Intel Company

software/app/image_classification/image,\
software/app/tensorflow,\
software/app/third_party/flatbuffers/include,\
software/app/third_party/gemmlowp,\
software/app/third_party/kissfft,\
software/app/third_party/ruy

Figure 16. Content of app Folder with Generated CMakelLists File

/ / / / /
(27 image_classification ——} (7 image ——} Q Q Q Q g

£ signals 7 model == figure-0.h figure-1.h figure-2.h figure-3.h figure-4.h

(7 tensorflow & main.cc G’ G/ G/ ﬂ/ G/
(3 third_party] [/ [/ [[/

figure-5.h figure-6.h figure-7.h figure-8.h figure-9.h

G (MakeLists.txt

Q' model_data.cc
f:\' model_data.h
i model_settings.h

3.2.4. Building the LiteRT TinyML Application

Altera recommends importing the BSP and APP project into Ashling RiscFree IDE for
Altera FPGAs for better project management and user experience.

Alternatively, run the cmake and make command to build the application.
e For debug build, select Debug configuration

$ niosv-shell

$ cmake -S software/app -B software/app/build/Debug -G "Unix Makefiles™ \
-DCMAKE_BUILD_TYPE=Debug

$ make -C sw/app/build/Debug

e For release build, select Release configuration

$ niosv-shell

$ cmake -S software/app -B software/app/build/Release -G "Unix Makefiles™ \
-DCMAKE_BUILD_TYPE=Release

$ make -C sw/app/build/Release

Related Information

Ashling* RiscFree* Integrated Development Environment (IDE) for Intel® FPGAs User
Guide: Importing Nios® V Processor Project

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for Send Feedback
Microcontrollers

22

https://www.intel.com/content/www/us/en/docs/programmable/730783/current/importing-processor-project.html
https://www.intel.com/content/www/us/en/docs/programmable/730783/current/importing-processor-project.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

848984 | 2025.04.07 alterd

D Send Feedback An Intel Company

4. Generating Arm Processor System

You can implement Arm HPS in two stages: first, the hardware design, and then the
software design:

You can use the Altera Golden Hardware Reference Design (GHRD) to implement
the hardware design

The software design comprises two primary components: the Arm-Trusted-
Firmware (ATF) bootloader and the related application development.

The following figures summarizes the overall flow.

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera

Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to 1so

make changes to any products and services at any time without notice. Altera and Intel assume no 9005":2015
responsibility or liability arising out of the application or use of any information, product, or service described Registered
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to

obtain the latest version of device specifications before relying on any published information and before placing

orders for products or services.

*QOther names and brands may be claimed as the property of others.

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

q Iterd 4. Generating Arm Processor System

848984 | 2025.04.07
An Intel Company

Figure 17. Development Flow Summary on ARM Processor System

Download the Download and Download Zephyr
GHRD Compile the ATF Project

Environment Enable tflite-micro
Preparations in West manifest

Compile Quartus Customize BL2 if Modify DTS file to

Project debl:]%%gzaun s increase RAM size

Generate the Generate BL2 and Modify tflite-micro

i BL31 bootloader imi i
Modifications Bitstream timing functions

(reate zephyr
application

Compile the tflite-
micro application

bitstream.rbf Program via

Create qspi jic Quartus tools
A bl2.hex bl2.bin bi2.hex WM 1) ghrd.hps.rbf
H bI31.bin Program via Ashling
fip.bin Ii- RiscFree Debugger:

zephyr.bin 2) bI31.bin

Program QSPI 3) zephyr.bin

QSPI Boot Debugger Run

4.1. GHRD Hardware Design

Altera provides several GHRDs based on the FPGA SoC devices. This includes Stratix®
10, Agilex™ 7, and Agilex 5. The GHRD contains the following items:

e Arm* Cortex* processors

e Secure Digital/Embedded Multimedia Card (SD/eMMC) host controller

e FEthernet Media Access Controller (EMAC)

e USB UART

e HPS External Memory Interface (EMIF)

e FPGA peripherals, which can be customized based on the design needs.

A generic system-level design of Altera GHRD can be seen in the following figure. For

more information, refer to the Hard Processor System Technical Reference Manual for
specific Altera FPGA SoC devices.

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for Send Feedback
Microcontrollers

24

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Generating Arm Processor System
848984 | 2025.04.07

Figure 18.

altera.

An Intel Company

Altera GHRD System Level Design

HPS

[[[|

SPIS0/1
- L
2xA76
'—I

200.4
(oo

EMIF MPFE
1

:1 FZSDRAMH F25256 }:1 LWS2F32 H S2F32/64/128 ;
A A

‘ Addr Expander‘ ‘ Addr Expander ‘
]

Peripherals Subsystem

[o]

Onchip
Memory

A

Reset Release

FPGA Fabric

Refer to the following steps to prepare the GHRD:

1.

(;:J Send Feedback

Identify the target Altera FPGA SoC devices. This example uses the Agilex 5 FPGA
E-Series 065B Premium Development Kit.

Install the appropriate Quartus Prime Pro Edition software version. This example
uses Quartus Prime Pro Edition software version 24.3.

Start with the toolchain setup:

$ wget https://developer.arm.com/-/media/Files/downloads/gnu/11.2-2022.02/
binrel

/gcc-arm-11.2-2022.02-x86_64-aarch64-none-1inux-gnu.tar.xz
$ tar xFf gcc-arm-11.2-2022.02-x86_64-aarch64-none-1inux-gnu.tar.xz
$ rm -f gcc-arm-11.2-2022.02-x86_64-aarch64-none-linux-gnu.tar.xz
$ export PATH="pwd/gcc-arm-11.2-2022.02-x86_64-aarch64-none-linux-gnu/
bin:$PATH
$ export ARCH=armé4
$ export CROSS_COMPILE=aarch64-none-linux-gnu-

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

25

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

q Iterd 4. Generating Arm Processor System

848984 | 2025.04.07

An Intel Company

$ export QUARTUS ROOTDIR=~/intelFPGA pro/24.3/quartus/
$ export PATH=$QUARTUS_ROOTDIR/bin:$QUARTUS_ROOTDIR/
1 inux64:$QUARTUS_ROOTDIR/ . ./gsys/bin:$PATH

4. Follow the steps below to build the GHRD for Agilex 5 SoC:

$ mkdir tinyml_dev && cd tinyml_dev

$ export TOP_FOLDER=$(pwd)

$ git clone -b QPDS24.3_REL_GSRD_PR https://github.com/altera-opensource/
ghrd-socfpga

mv ghrd-socfpgaZagilex5_soc_devkit_ghrd .

rm -rf ghrd-socfpga

cd agilex5_soc_devkit_ghrd

make config

make DEVICE=A5EDO65BB32AE6SRO HPS_EMIF_MEM_CLK_FREQ_MHZ=800
HPS_EMIF_REF_CLK_FREQ_MHZ=100 generate_from_tcl

$ make all

HHAAR P

These steps generate the bitstream file that programs the board. You can start
programming the board once the ATF bootloader is generated.

Related Information
e Stratix® 10 Hard Processor System Technical Reference Manual

e Hard Processor System Technical Reference Manual: Agilex™ 5 SoCs

4.2. Building the Software Design

The software development has two major parts: the bootloader and the application.
Altera uses ATF as the first stage bootloader (FSBL) and second stage bootloader
(SSBL). You can build the application stage through the Zephyr operating system.
Therefore, you must set up and prepare the Zephyr environment before starting the
application development stage.

Note: You must complete Preparing LiteRT Inference Model before continuing this chapter.
The following binaries are required.
Table 5. LiteRT for Microcontrollers Binaries
Binaries Description
model_data.cc Model params stored within a C array.
model_data.h Header file of model_data.cc

model_settings.h List of classes to decode classification results in main.cc.

main.cc

Main LiteRT application to setup LiteRT model, uploading images, classifying images and profiling.

Multiple figure.h | Sample of MNIST images stored within a C array.

4.2.1. Arm-Trusted-Firmware

ATF is the reference implementation of secure world running on Arm processors. It
provides several services and drivers to initialize and configure the system
components, making the Arm* processor system ready to run applications. You need
two major software components from ATF to run Arm applications - BL2 and BL31.

BL2 runs at S-EL1 exception and performs all the needed initializations for system to
boot the second stage boot. BL2 loads the following images:

Microcontrollers

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for D send Feedback

26

https://www.intel.com/content/www/us/en/docs/programmable/683222.html
https://www.intel.com/content/www/us/en/docs/programmable/814346.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Generating Arm Processor System a It e r Q
848984 | 2025.04.07 ™

An Intel Company

1. BL31: EL3 runtime image (SSBL).
2. BL32: Secure partition manager.
3. Non-trusted firmware: BL33, U-boot

You can compile the ATF source code to generate the bootloader files. Use the
bootloader to start your application from QSPI, or start via a debugger. The following
sections explain each method.

4.2.1.1. Booting from QSPI Flash

Follow the steps below to generate the ATF bootloader files:

$ cd $TOP_FOLDER

$ git clone -b socfpga _v2.11.0 https://github.com/altera-opensource/arm-trusted-
firmware atf_tinyml

$ cd atf_tinyml

$ ARCH=arm64 CROSS_COMPILE=aarch64-none-linux-gnu- make PLAT=agilex5
SOCFPGA_BOOT_SOURCE_QSPI=1 bl2 bl31 PRELOADED_ BL33_BASE=0x80100000 -j$(nproc)

You can find the generate bootloader files bl12.bin and bI31.bin in the following
location: $TOP_FOLDER/atf_tinyml/build/agilex5/release/

4.2.1.2. Running through Ashling RiscFree IDE for Altera FPGAs Debugger

You can customize the ATF BL2 source code to generate a custom bl2.bin file that
allows you to download the SSBL (bl31.bin) and the application manually via the
Ashling RiscFree debugger tool

Follow these steps:

1. Download the ATF source code.

$ cd $TOP_FOLDER
$ git clone -b socfpga v2.11.0 https://github.com/altera-opensource/arm-
trusted-firmware atf_tinyml

2. Customize the ATF source code.

BL2 must be customized in a way that allows the developer to debug the
application or use the debugger tools to manually download the SSBL and the
application binary files. Without this customization, you can generate the default
BL2 version which expects the BL31 and the application to stored in QSPI flash (as
shown in Booting from QSPI Flash).

To generate a BL2 version that can be debugged, follow the steps below:

a. Navigate to bl2_plat_setup.c file
$ cd $TOP_FOLDER/atf_tinyml/plat/intel/soc/agilex5/

b. Before the end of switch (boot_source) function, add the following codes:

NOTICE(*"%s, %s: BL2: Dummy BP for loading next images \n", _ DATE_ ,
__TIME_);

mmio_write_32(0x10D12224, BIT(1));

while (mmio_read_32(0x10D12224) 1= 0);

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

27

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

q Itero 4. Generating Arm Processor System

848984 | 2025.04.07

An Intel Company

c. Save the bl2_plat_setup.c file.

d. Compile the ATF to generate BI2 and BL31 binary files using the command
below.

$ cd $TOP_FOLDER/atf_tinyml
$ ARCH=arm64 CROSS_COMPILE=aarch64-none-linux-gnu- make -j$(nproc)

PLAT=agilex5 bl2 bl31 SOCFPGA_BOOT_SOURCE_QSPI=1 DEBUG=1 LOG_LEVEL=50
PRELOADED_BL33_BASE=0x80100000

Where:
DEBUG=1 isto enable the debug build.
LOG_LEVEL=50 is to print some useful debug messages.
After that, you can navigate the build directory to find the required files, as below:
$ cd $TOP_FOLDER/atf_tinyml/build/agilex5/debug/
The above flow generates the required BL2 and BL31 images. These files are used for

debug purposes; the BL2 is loaded once the HPS .rbf file is loaded into the board, and
BL31 is loaded into the board via Ashling RiscFree debugger tool.

4.2.2. Building LiteRT for Microcontrollers Static Library

You must build LiteRT for Microcontroller libraries in Linux environments. If you are
using Windows OS, you can invoke Windows* Subsystem for Linux* (WSL). Run the
following commands:

sudo apt update

sudo apt install make git python3 unzip python3-pip

pip3 install numpy Image

cd $TOP_FOLDER

git clone --depth 1 https://github.com/tensorflow/tflite-micro.git

cd tflite-micro

python3 tensorflow/lite/micro/tools/project_generation/create_tflm_tree.py\
-e hello_world tflite_app

AL LHPH R

Note: It is mandatory to change Directory command (cd) to tflite-micro. The execution of
create_tflm_tree.py Python script fails when it is executed from different
directory.

Figure 19. Contentofthetflite_ app Folder

[examples
(7 signals
(7 tensorflow
(O3 third_party
("] License
Altera recommends to review the Hello World TinyML example in the examples folder.
It is a prediction model on the sine function. For more information, please refer to
LiteRT - Hello World Example and LiteRT - Get started with microcontrollers.
AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for Send Feedback
Microcontrollers D

28

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Generating Arm Processor System a It e r Q
848984 | 2025.04.07 ™

An Intel Company

4.2.3. Zephyr OS Environment Setup

The example in this document uses Zephyr OS to run the LiteRT for Microcontrollers
application. However, the application and operating system requirements are not
dependent on each other.

e This example selects Zephyr OS for better user experience with the software
runtime environment setup, Zephyr OS configuration system, and built-in LiteRT
for Microcontrollers static libraries.

e You can refer to the Nios V processor build flow to build the LiteRT for
Microcontrollers application and static libraries in a bare-metal environment.

To prepare the Zephyr OS SDK, begin by installing all the necessary tools and
dependencies.

Related Information
Developing with Zephyr - Getting Started Guide

4.2.4. Building the LiteRT TinyML Application

To build a Zephyr application, you first need a Zephyr project. Once you've installed it,
you'll need to make several modifications to enable the built-in LiteRT for
Microcontrollers libraries in the Zephyr OS environment.

Follow these steps to integrate LiteRT for Microcontrollers platform using Zephyr and
Agilex 5 HPS:

1. Device tree modifications: By default, the Agilex 5 HPS device tree RAM size is 8
MBytes, which is insufficient for a common tinyML application. Increase the RAM
size to 1024 MBytes.

a. Navigate to the device tree file intel_socfpga agilex5.dtsi located in
the following path.

<install_Dir>/zephyrproject/zephyr/dts/armé64/intel/

b. Modify the RAM size

memO: memory@80100000 {
device_type = "memory";
reg = <0x80100000 DT_SIZE_M(1024)>;

2. Peripheral integration: The device tree file selects the UART controller as the
standard UART device by default. Keep the default UART device setup.

3. Enable LiteRT for Microcontrollers static library: To enable the static library within
the Zephyr project, apply the following commands:

$ west config manifest.project-filter -- +tflite-micro
$ west config manifest.group-filter -- +optional
$ west update

4. Use the generated LiteRT for Microcontrollers static library: Replace the library
files downloaded by Zephyr OS environment with the ones created in Building
LiteRT for Microcontrollers Static Library.

a. Navigate to the location of the downloaded LiteRT library files by Zephyr OS
environment.

<Install_Dir>/zephyrproject/optional/modules/lib/tflite-micro

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

29

https://docs.zephyrproject.org/latest/develop/getting_started/index.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

q Itero 4. Generating Arm Processor System

An Intel Company

848984 | 2025.04.07

b. Replace the following directories with its files:
e signal
o tensorflow
e third_party

Customize timing functions: The Agilex 5 HPS features a 64-bit Arm Cortex-A
architecture with 64-bit timers. In contrast, the LiteRT for Microcontroller library is
based on a 32-bit platform with a 32-bit timer. To prevent integer overflow,
enhance the LiteRT for Microcontroller timing functions to read a 64-bit input from
Arm’s 64-bit timer. Navigate to <zephyrproject_dir>/optional/
modules/lib/tflite-micro/tensorflow/lite/micro. Replace the
following timing function:

a. Inmicro_time.cc:
#define CLOCK_TICKS_PER_SEC 400000000
ﬁint32_t ticks_per_second() { return (uint32_t)(CLOCK_TICKS_PER_SEC); }

Gint64_t GetCurrentTimeTicks() { return (uint64_t)
(arch_k_cycle_get_64(0));:}

b. Inmicro_time.h:
uint64_t GetCurrentTimeTicks();
inline uint64_t TicksToMs(int64_t ticks)

{
return static_cast<uint64_t>(1000.0f *static_cast<float>(ticks) /
static_cast<float>(ticks_per_second()));

}

c. Inmicro_profiler.h, you must change all the 32-bit tick variables to 64-
bit size.

uint64_t start_ticks_[kMaxEvents];
uint64_t end_ticks_[kMaxEvents];

struct TicksPerTag {
const char* tag;
uint64_t ticks;

In micro_profiler.cc, any variable that applies the above 32-bit ticks
variables must be changed to a 64-bit size. With that, a newly modified TFLite
library and Zephyr OS are compatible with the Agilex 5 HPS processor.

Create the Application Project: Inside Zephyr directory, navigate to:
<Install_Dir>/zephyrproject/zephyr/samples/modules/tflite-micro
Create a new directory tinyml_mnist. Then, create the following files inside the
tinyml_mnist main directory:
a. CMakelLists.txt

cmake_minimum_required(VERSION 3.20.0)

find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})
project(tensorflow_hello_world)

set(NO_THREADSAFE_STATICS $<TARGET_PROPERTY:compiler-
cpp,no_threadsafe_statics>)
zephyr_compi le_options($<$<COMPILE_LANGUAGE:CXX>:$

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

30

E;:J Send Feedback

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Generating Arm Processor System a Ite rQ

848984 | 2025.04.07
An Intel Company

{NO_THREADSAFE_STATICS}>)

target_sources(app PRIVATE src/main.cc src/model/model_data.cc)

b. sample.yaml

sample:
description: LiteRT app sample
name: litert hps
common:
tags: tensorflow
modules:
- tflite-micro

c. prj-conf

CONFIG_CPP=y

CONFIG_STD_CPP17=y
CONFIG_REQUIRES_FULL_LIBC=y
CONFIG_POSIX_API=y
CONFIG_TENSORFLOW_LITE_MICRO=y
CONFIG_STACK_USAGE=y

CONFIG_DEBUG=y

CONFIG_MAIN_STACK_SIZE=262144
CONFIG_SYSTEM_WORKQUEUE_STACK_SI1ZE=262144
CONFIG_HEAP_MEM_POOL_SI1ZE=262144
CONFIG_THREAD_MONITOR=y
CONFIG_THREAD_STACK_INFO=y
CONFIG_THREAD_NAME=y
CONFIG_TIMER_READS_1TS_FREQUENCY_AT_RUNTIME=y
CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=400000000
CONFIG_SYS_CLOCK_TICKS_PER_SEC=400000000
CONFIG_ARM_ARCH_TIMER=y
CONFIG_TIMING_FUNCTIONS=y

Note that the stack and heap size are being increased to adapt the requirements
to run LiteRT application using CONFIG_MAIN_STACK_SIZE,
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE, and
CONFIG_HEAP_MEM_POOL_SIZE.

7. Toolchain setup, compiler flags, and linker setup: This build uses the default
settings of a Zephyr project. The generated application has -O0 settings to enable
debugging. Compiling a release version can be enabled using
CONFIG_SPEED_OPTIMIZATIONS for the -O2 compiler setting or
CONFIG_SIZE_OPTIMIZATIONS for -Os in prj.conf file.

8. Build the application: Inside the tinyml_mnist directory, create two directories
named image and model, and upload the main.cc (Example in Appendix). In
image folder, store the MNIST C array samples, and in model folder, store the
model_data.cc, model_data.h and model_settings.h source codes
generated in chapter 2.

You can start building the application using the following command:

° $ west build -b intel_socfpga_agilex5 socdk samples/modules/tflite-

micro/tinyml_mnist/ -d agilex5_mnist -p

Where -b refers to the board used for this build, and -d is used to create the build
directory with all the generated files. Inside that directory, there is a sub-directory
named zephyr, where the zephyr.bin and zephyr.elf files reside.

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

31

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

848984 | 2025.04.07 altero

D Send Feedback An Intel Company

5. Programming and Running

5.1. Nios V Processor System

Use the Quartus Prime Programmer tool and the Ashling RiscFree IDE for Altera FPGAs
to program the Nios V processor-based system (hardware and software system
respectively) into the FPGA and to run your application.

Once you successfully program both the hardware SOF and software ELF files, the
application begins executing the TinyML application. Open the JTAG UART terminal to
display the print log through the JTAG UART interface.

$ juart-terminal

Figure 20. Example Print Logs Part 1 - Setting up TinyML

Hello from Nios V Processor TinyML Demonstration on MNIST
[INFO]Setting up TinyML...
Total output layers: 1

Input shape: U dimensions. Dimension: 1 28 28 1. Type: 1
Output shape ©: 2 dimensions. Dimension: 1 18. Type: 1
[INFO]Setting up TinyML...Done

Figure 21. Example Print Logs Part 2 - Uploading Image

[INFO]Uploading image...Done

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current

specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to Iso .
make changes to any products and services at any time without notice. Altera and Intel assume no :00}.‘:2013
egistere

responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.

*QOther names and brands may be claimed as the property of others.

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

5. Programming and Running a It e ro
848984 | 2025.04.07 ™

An Intel Company

Figure 22. Example Print Logs Part 3 - Classifying Image

[INFO]Classifying image...
[INFO]Classifying image...Done

Retrieve the inference output:
number O score: 1.080000
number score: 0.000000
number 2 score: 0.080000
number score: 6.000000
0.000000
number score: 6.000000
number 2]
number [¢]
number [2]
number 0]

.000e00
.00eE0e
.00eE0e
.000008

score:
score:
score:
score:

¢
1
p
3
number U4 score:
5
6
7
8
9

Inference made: number ©
Inference time: 8.839800 seconds

Figure 23. Example Print Logs Part 4 - Profiling TinyML Model

[INFO]Profiling TinyML model...

"Unique Tag","Total ticks across all events with that tag."
CONV_2D, 418

AVERAGE_POOL_2D, 12

FULLY_CONNECTED, 408

RESHAPE, 0

SOFTHAX, 1

"total number of ticks", 839

Ticks per seconds: 1000

Tensor Arena Allocation:

[RecordingMicroAllocator] Arena allocation total 19416 bytes

[RecordingMicroAllocator] Arena allocation head 17284 bytes

[RecordingMicroAllocator] Arena allocation tail 2132 bytes

[RecordingMicroAllocator] 'TfLiteEvalTensor data' used 252 bytes with alignment overhead (requested 252 bytes for 21 allocations)
[RecordingMicroAllocator] 'Persistent TfLiteTensor data' used 80 bytes with alignment overhead (requested 80 bytes for 2 tensors)
[RecordingMicroAllocator] 'Persistent buffer data' used 1052 bytes with alignment overhead (requested 936 bytes for 16 allocations)
[RecordingMicroAllocator] 'NodeAndRegistration struct' used 288 bytes with alignment overhead (requested 288 bytes for 9 NodeAndRegistration structs)
[INFOIProfiling TinyML model...Done

5.2. Arm HPS Processor System

You can run the application on HPS either through QSPI flash boot or using the Ashling
RiscFree IDE for Altera FPGAs debugger tool. Before starting any process, ensure you
have the necessary binary files ready to program the QSPI or run via the debugger.
Refer to the following steps:

1. Create a new directory. Name it tinyml_bins.

$ cd $TOP_FOLDER
$ mkdir tinyml_bins

2. Generate the fiptool from ATF repository downloaded in section Arm-Trusted-
Firmware. Use this tool to create the binary file that combines the SSBL
(b131.bin) and Zephyr application (zephyr._.bin).

$ cd $TOP_FOLDER/atf_tinyml
$ ARCH=arm64 CROSS_COMPILE=aarch64-none-linux-gnu- make fiptool
$ cp tools/fiptool/fiptool $TOP_FOLDER/tinyml_bins

3. Copy the bootloader files to the tinyml_bins.

$ cd $TOP_FOLDER/atf_tinyml/build/agilex5/<release_or_debug>
$ cp bl2_bin bl31 $TOP_FOLDER/tinyml_bins

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

33

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

q Itero 5. Programming and Running

848984 | 2025.04.07
An Intel Company

4. Copy the generated .sof file from the GHRD according to the steps in the topic
GHRD Hardware Design.

$ cd $TOP_FOLDER/agilex5_soc_devkit/
$ cp ghrd_a5ed065bb32ae6sr0.sof $TOP_FOLDER/tinyml_bins

5.2.1. Booting from QSPI

Using this process, you can generate a QSPI image file that includes the configuration
bitstream along with an embedded FSBL, including the firmware file that combines
SSBL (bl31.bin) and the zephyr application.

1. Create the Fip.bin image that contains both the SSBL and the Zephyr
application.

$ cd $TOP_FOLDER/tinyml_bins
$./fiptool create --soc-fw bl31.bin --nt-fw zephyr.bin fip.bin

2. Download the QSPI .pfg file to create the . jic file.

$ wget https://releases.rocketboards.org/2024.11/zephyr/agilex5/hps_zephyr/
hello_world/
qspi_boot/gspi_flash_image_agilex5_boot.pfg

3. Create the _jic file.
quartus_pfg -c gspi_flash_image_agilex5_boot.pfg

Set MSEL to JTAG (OFF-OFF-OFF-OFF).
5. Turn on the Device.
Program the QSPI flash.

quartus_pgm -c 1 -m jtag -o "pvi;qspi_image.jic"

Set MSEL to QSPI (OFF-ON-ON-OFF).
Power-on the Device.
9. Inspect the HPS terminal.

5.2.2. Booting via the Debugger

Use the Quartus Prime Programmer tool and the Ashling RiscFree IDE for Altera FPGAs
to program the Arm HPS processor-based system (hardware and software system
respectively) into the FPGA and to run your application.

1. Make sure you set MSEL dipswitch SW27 to JTAG: (OFF-OFF-OFF-OFF). Then
connect the HPS UART to a terminal on your machine, like Putty or MobaXterm on
Windows, or Minicom on Linux.

2. Add the BL2 FSBL to the generated GHRD .sof file. First, convert bl2_bin file
into a hex format, then use quartus_pfg to embed the hex format of BL2 with
ghrd .sof file, and create the .rbf format file per the following steps:

$ cd $TOP_FOLDER/tinyml_bins

$ aarch64-none-linux-gnu-objcopy -v -1 binary -0 ithex --change-addresses 0x0
bl2_bin bl2_hex

$ quartus_pfg -c ghrd_a5ed065bb32ae6sr0.sof ghrd.rbf -o hps=1 -o
hps_path=bl2_hex

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for Send Feedback
Microcontrollers

34

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Programming and Running a It e ro
848984 | 2025.04.07 ™

An Intel Company

The quartus_pfg command converts the .sof file into two . rbf files: the core
and the hps files. Use the core file to configure the FPGA fabric, while the hps file
to configure the HPS IO.

3. Use the -0 hps_path argument to guide the tool to the location of the FSBL and
embed it with the ghrd.hps.rbf file. Ashling RiscFree IDE for Altera FPGAs
debugger tool loads the b131.bin file to the board. To run the application on
board, program the device with the following generated . rbf bitstream:

quartus_pgm -c 1 -m jtag -o "p;ghrd._hps.rbf"
Once the process is complete, you can see the FSBL boot on the HPS terminal.
The last message indicates that FSBL was booted successfully, and it is waiting for
SSBL to load using the debugger tool.

Figure 24. BL2 Boot on HPS Terminal (Debugger Flow)

I QsPI ref clock: 46)

ding next images

4. Next, open Ashling RiscFree IDE for Altera FPGAs tool, set your workspace
directory, and copy the required binary files generated earlier: b131.bin,
zephyr.bin, and zephyr.elf (if debug is needed). From Run menu, go to
Debug Configuration.

Figure 25. Ashling RiscFree IDE for Altera FPGAs Menus

t ashling_ws - Ashling RiscFree™ IDE

fle Edit Navigate Search Project Run Window Linux Help

i £ MNew Connection. @ Toggle Reverse Debugging »
Debug Project Explorer

Q, Run Curl+F11

Debug Al
Run History »

0O RunAs »
Run Configurations.
Debug History >

% Debug As ¥

| Debug Configurations 1

Breakpoint Types »

® Skip All Breakpoints Cri+An+B

% Remove All Breakpoints

Q. External Tools 3

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

35

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

q Iterd 5. Programming and Running

848984 | 2025.04.07
An Intel Company

5. Select Ashling Heterogeneous Multicore Hardware Debugging, then
configure the ARM Coresight SOC core 0.

Figure 26. Heterogeneous Multicore Hardware Debugging Configuration 1

Name: New_configuration
Device % Source [Common SVD Path

Target Configuration

Debug probe Agilex SE0658 Premiun JTAG/SWD frequency 6

MHz Transport type JTAG
[Issue TAP reset
Core Configuration
Auto-detect Scan Chain
=
m /! _ Debugger ARM GDB Server =1 Apply settings to other cores Cortex-AS5 core configuration
0x4BA06477 ARM CO...
e 0-Cortex-AS5 | Debugger| Target Application| Startup | OS Awareness
O 1-Cortex-AS5
A GDB Server Setup
o 2-Cortex-A76
| 3-Cortex-AT6 Additional command-line arguments
0x0364F0DD ASE(C06... GDRQ el
= 0-Nios V ent Setup

SO200100D VIAPID Executable name: $(eclipse_home}/./toolchain/Arm/aarch64-none-elf/bin/aarchb4-none- Browse.. Variables..

Other options:

Commands:

6. Go to Target Application tab:

Add the .elT file if you need the debug information. Otherwise, you can run
the application only.

e Keep Load image unchecked (because you need to load it later manually).

e Check Load symbols (if the .elf file is loaded for debugging).

7. In Startup tab, keep everything to default. In OS Awareness tab, turn on
Enable OS Aware Debugging and select Zephyr OS if you want to debug your
application. You can ignore this step if you want to run the application only without

debugging. Once done, click Apply O Debug. Your system should be ready to
receive the binary files via Debugger Console.

Figure 27. Heterogeneous Multicore Hardware Debugging Configuration 3

Debugger Target Application Startup OS Awareness

8 Enable OS Aware Debugging
0S: Zephyr < Version: 3.2.0
Custom Scripts

Script location

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for Send Feedback
Microcontrollers
36

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Programming and Running a Ite rQ

848984 | 2025.04.07

An Intel Company

Figure 28. Ashling RiscFree Debugger Console
B Console =5 Progress [£! Problems € Executables EDeIJu_gﬂg;e@lsE!g___‘j_E Disassembly
New_configuration [Ashling Heterogeneous Multicore Hardware Debugging] ARM_CORESIGHT_SOC_800[Core 0][Cortex-A55]aarché4-nol
GNU gdb (GDB) 13.2
Copyright (C) 2023 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type “show copying” and “show warranty” for details.
This GDB was configured as "--host=x86_64-w64-mingw32 --target=aarché4-none-elf”.
Type “show configuration™ for configuration details.
For bug reporting instructions, please see:
<https://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://wm.gnu.org/software/gdb/documentation/>.
For help, type "help”.
Type "apropos word" to search for commands related to "word".
Warning: 'set target-async', an alias for the command 'set mi-async', is deprecated.
Use 'set mi-async'.
The commands required in Debugger Console:
The needed commands in Debugger Console can be seen below:
set debug remote 1
restore <Absoulte Path_to_your_Workspace>/bl31_801.bin binary 0x80000000
restore <Absoulte Path_to_your_Workspace>/zephyr.bin binary 0x80100000
set $x1=0
The set debug remote 1 command is used to enable message transaction
acknowledgement
from the board to indicate the download completion of a binary file.
A sample screenshot can be seen below.
Use the set debug remote 1 command to enable message transaction
acknowledgement from the board to indicate the download completion of a binary
file. Refer to the following example.
Figure 29. Ashling RiscFree Debugger Console Output
Use the restore command to load the binary file to its destination memory. In this
example, the SSBL and Zephyr applications are loaded into HPS DDR memory.
Make sure to use the same addresses in the commands above. Refer to the
following sample screenshots of the application execution from the HPS UART
terminal.
Figure 30. Example Print Logs Part 1 - Setting up Zephyr and TinyML
0S build v3.6.0-153-g4c19a8b873c0 #x*
ary CPU core 1 (MPID:0x | D
Secondary CPU core 200) 1
Secondary CPU core 2 :
Hello from Agilex 5 SoC ARM P
[INFO]Setting up TinyML...
Total output layers: 1
Input shape: 4 dimensions. Dimension: 1 28 28 1. Type: 1
Output shape 0: 2 dimensions. Dimension: 1 10. Type: 1
[INFO]Setting up TinyML...Done
Send Feedback AN 1011: TinyML Applications in Altera FPGAs U§ing LiteRT for
Microcontrollers

37

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 32.

Figure 33.

altera.

An Intel Company

Figure 31.

Secondary CPU co
Secondary CPU c
Secondary CPU co

[IN Setting up

Total output layers:

Input shape: 4 d
Out
[In

g TinyML mod

141921
982

“total number of ticks", 7711
Detailed Profiling

2D took 4116753 ticks (53
took 12768!
866 ticks (28

- AVERAGE_POOL

- RESHAPE took 14279 tic
- FULLY_CONNECTED took 1
- FULLY_CONNECTED took 784!

8 - SOFTMAX took 4578 ticks (0

“total number of tick:
Ticks per seconds: 40

Inference Time: 0.019286 sec

Tensor Arena Allocation:

[RecordingMicroAllocator] Arena allocation total 207!
[RecordingMicroAllocator] Arena all

[RecordingMicroAllocator] Ar
[RecordingMicroAllo:
[RecordingMicroAllo:
[RecordingMicroAllo:
RecordingMicroAllocator] '
[INFOJProfiling TinyML

2 dimensions.

[INFO]Uploading image...

[INFO]Uploading image. .

re 1 (MPID:0x100)
> 2 (MPID:0x200)
re 3 (MPID:0x300)

TinyML...
1
imens ion

.Done

ss all events with that tag.”

379

(10.00 ms).
(1.00%) (0.00 ms).
(5.00 ms).

(.00 ms)

ks (0.00%) .
(0.00 ms).

(1.00
)
- (2.60 ms).
(0.0 ms).
(6.00 ms).

, 7711379
000

bytes

a all

used 1576 byte
ed 576 byte

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

38

Dimension:
Dimension:

Example Print Logs Part 3 - Classifying Image

Zephyr 0S build v3.6.0-153-¢
is
is
is
Hello from Agilex 5 SoC ARM Proces

up

28 1. Type:
10. Type:

ignment overhead (requ:
th alignment overhea

with alignment overhead (

th alignment overhead

or TinyM

Example Print Logs Part 4 - Profiling TinyML model

ted 5

5. Programming and Running
848984 | 2025.04.07

Example Print Logs Part 1 - Setting up Zephyr and TinyML

9aBb873cO **x

Demonstration on

1
1

04 by

d (reques

quested

484 bytes for 16
ted 576 bytes for

MNIST

D Send Feedback

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

848984 | 2025.04.07 qltero

D Send Feedback An Intel Company

6. Appendix

6.1. main.cc for Nios V Processor

#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <math.h>

#include "system.h"
#include <time.h>

#include <unistd.h>

//1Import TensorFlow lite libraries

#include "tensorflow/lite/core/c/common.h"

#include "tensorflow/lite/micro/micro_interpreter.h™

#include "tensorflow/lite/micro/micro_log.-h"

#include "tensorflow/lite/micro/micro_time.h"

#include "tensorflow/lite/micro/micro_mutable_op_resolver.h™
#include "tensorflow/lite/micro/micro_profiler_h"

#include "tensorflow/lite/micro/recording_micro_interpreter.h"
#include "tensorflow/lite/micro/system_setup.h™

#include "tensorflow/lite/schema/schema_generated.h"

//Model data
#include "model/model_data.h"
#include "model/model_settings.h"

////Sample image

#include "image/figure-0.h"
#include "image/figure-1.h"
#include "image/figure-2.h"
#include "image/figure-3.h"
#include "image/figure-4._h"
#include "image/figure-5.h"
#include "image/figure-6.h"
#include "image/figure-7.h"
#include "image/figure-8.h"
#include "image/figure-9.h"

#define IMAGE_WIDTH 28

#define IMAGE_HEIGHT 28

#define NUM_CHANNELS 1

#define IMAGE_SIZE (IMAGE_WIDTH * IMAGE_HEIGHT * NUM_CHANNELS)

//ANSI Escape code
#define CRESET '"\033[m"

int count;
uint8_t test_image[IMAGE_HEIGHT][IMAGE_WIDTH] [NUM_CHANNELS];

namespace {
const tflite::Model* model = nullptr;

using OpResolver = tflite::MicroMutableOpResolver<5>;

TfLiteStatus RegisterOps(OpResolveré& op_resolver) {
TF_LITE_ENSURE_STATUS(op_resolver .AddConv2D());
TF_LITE_ENSURE_STATUS(op_resolver .AddAveragePool2D());
TF_LITE_ENSURE_STATUS(op_resolver .AddReshape());

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera

Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to 1so

make changes to any products and services at any time without notice. Altera and Intel assume no 900}:2015
responsibility or liability arising out of the application or use of any information, product, or service described Registered
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to

obtain the latest version of device specifications before relying on any published information and before placing

orders for products or services.

*QOther names and brands may be claimed as the property of others.

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

altera.

An Intel Company

TF_LITE_ENSURE_STATUS(op_resolver.AddFul lyConnected());
TF_LITE_ENSURE_STATUS(op_resolver.AddSoftmax());
return kTfLiteOk;

} // namespace
TfLiteStatus LoadModelandInference() {

printF("[INFO]Setting up TinyML...\n\r");
tflite::MicroProfiler profiler;

OpResolver op_resolver;
TF_LITE_ENSURE_STATUS(RegisterOps(op_resolver));

model = tflite::GetModel(lenet_tflite);
TFLITE_CHECK_EQ(model->version(), TFLITE_SCHEMA_VERSION);

/* Arena size is a round number, which is determined
* using the RecordingMicrolnterpreter.

*/

constexpr int kTensorArenaSize = 20000;

uint8_t tensor_arena[kTensorArenaSize];

constexpr int kNumResourceVariables = 24;

tflite::RecordingMicroAllocator* allocator(

6. Appendix
848984 | 2025.04.07

tflite::RecordingMicroAllocator: :Create(tensor_arena, kTensorArenaSize));

tflite::RecordingMicrolnterpreter Recordinginterpreter(
model, op_resolver, allocator,

tflite::MicroResourceVariables: :Create(allocator, kNumResourceVariables),

&profiler);

TF_LITE_ENSURE_STATUS(Recordinginterpreter._AllocateTensors());

TFLITE_CHECK_EQ(Recordinginterpreter.inputs_size(), 1);

//Print loaded model input and output shape
printf("Total output layers: %d\n\r",

Recordinginterpreter.outputs_size()); printf("Input shape: %d dimensions.

Dimension: %d %d %d %d. Type: %d\n\r',
Recordinginterpreter. input(0)->dims->size,
Recordinginterpreter. input(0)->dims->data[0],
Recordinginterpreter. input(0)->dims->data[1l],
Recordinginterpreter. input(0)->dims->data[2],
Recordinginterpreter. input(0)->dims->data[3],
Recordinginterpreter. input(0)->type

DE

for (int i = 0; i < (int)(Recordinginterpreter.outputs_size()); ++i)
printf("Output shape %d: %d dimensions. Dimension: %d %d. Type: %d\n\r",

I,

Recordinginterpreter.output(i)->dims->size,
Recordinginterpreter.output(i)->dims->data[0],
Recordinginterpreter.output(i)->dims->data[1],
Recordinginterpreter.output(i)->type

printF("[INFO]Setting up TinyML...Done\n\n\r");
printf("[INFO]Uploading image...-\n\r');

//Visualize sample image in terminal

int HashTag = 35;

for (int i = 0; i < IMAGE_HEIGHT; i=i+2){

for (int j = 0; j < IMAGE_WIDTH; j=j+2){
printf(*"\033[38;2;%d; %d ; %dm%c"

CRESET,
test_image[i]1[j1[0],
test_image[i1[j1[0]1,
test_image[i1[j1[0].,
HashTag) ;

>
printf(*'\n");
printf(''\n"");

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

40

E;:J Send Feedback

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

— altera.

848984 | 2025.04.07
An Intel Company

//Input sample image to tflite model input.
int len = 0;
for (int i = 0; i < IMAGE_HEIGHT; i++){
for (int j = 0; j < IMAGE_WIDTH; j++){
for (int k = 0; k < NUM_CHANNELS; k++){
Recordinginterpreter. input(0)->data.f[len] =
float(test_image[i]1[j1[k])/7255.0;
len++;
3
}

3
printf("[INFO]JUploading image. . .Done\n\n\r");

printf("[INFO]Classifying image.._-\n\r");

clock_t startTime = clock();
TF_LITE_ENSURE_STATUS(Recordinginterpreter. Invoke());
clock_t endTime = clock();

printfF("[INFO]Classifying image...Done\n\n\r");

//Retrieve inference output
int answer = O;
printf(""Retrieve the inference output:\n");
for (int i = 0; i1 < kCategoryCount; ++i){
printf(""%s score: %f\n\r",
kCategorylLabels[i],
Recordinginterpreter.output(0)->data.f[i]);
if (Recordinginterpreter._output(0)->data.f[i] >
Recordinginterpreter.output(0)->data. f[answer]) answer = i;

printf(""\nInference made: %s\n\r', kCategoryLabels[answer]);
int time_spent = int(endTime - startTime) / ALT_CPU_TICKS_PER_SEC;
printf(*'Inference time: %d seconds\n\n\r', time_spent);

printf("[INFO]Profiling TinyML model..._\n\r");
profiler._LogTicksPerTagCsv();
printf("Ticks per seconds: %d\n\n'", ALT_CPU_TICKS PER_SEC);

printf(""Tensor Arena Allocation:\n");
Recordinginterpreter.GetMicroAllocator() .PrintAllocations();
printf("[INFO]Profiling TinyML model..._Done\n\n\r");
return kTfLiteOkK;
int Selectlmage(uint8_t (*image)[IMAGE_WIDTH][NUM_CHANNELST){
for (int 1 = 0; 1 < IMAGE_HEIGHT; i++){
for (int j = 0; j < IMAGE_WIDTH; j++){
for (int k = 0; k < NUM_CHANNELS; k++){
test_image[i1[J1[k] = image[il1[j1[K];

3
} 3
TF_LITE_ENSURE_STATUS(LoadModelandInference());

return O;

int mainQ) {

printf('"\tHello from Nios V Processor TinyML Demonstration on MNIST\n\r");
/ TFLITE-MICRO TINYML /

SelectImage(test_image0);
Selectlmage(test_imagel);
Selectlmage(test_image2);
Selectlmage(test_image3);

Microcontrollers
41

D Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

altera.

An Intel Company

Selectlmage(test_image4);
Selectlmage(test_image5);
Selectlmage(test_image6) ;
SelectlImage(test_image7);
Selectlmage(test_image8);
Selectlmage(test_image9);

return O;

6.2. main.cc for Arm HPS Processor

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>

#include <zephyr/kernel .h>

//1mport TensorFlow lite libraries

#include "tensorflow/lite/core/c/common._h"

#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_log.h"

#include "tensorflow/lite/micro/micro_time._h"

#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/micro/micro_profiler.h"

#include "tensorflow/lite/micro/recording_micro_interpreter_h"

#include "tensorflow/lite/micro/system_setup.h"
#include "tensorflow/lite/schema/schema_generated.h"

//Model data
#include " model/model_data.h"
#include " model/model_settings.h"

////Sample image

#include "image/figure-0.h"
#include "image/figure-1.h"
#include "image/figure-2.h"
#include "image/figure-3.h"
#include "image/figure-4_h
#include "image/figure-5.h"
#include "image/figure-6.h"
#include "image/figure-7.h
#include "image/figure-8.h"
#include "image/figure-9.h"

#define IMAGE_WIDTH 28

#define IMAGE_HEIGHT 28

#define NUM_CHANNELS 1

#define IMAGE_SIZE (IMAGE_WIDTH * IMAGE_HEIGHT * NUM_CHANNELS)

//ANSI Escape code
#define CRESET '"\0O33[m"

#define SEC_TO_MSEC 1000ul
#define CLOCK_TICKS_PER_SEC 400000000
int count;

uint8_t test_image[IMAGE_HEIGHT] [IMAGE_WIDTH] [NUM_CHANNELS] ;

namespace {
const tflite::Model* model = nullptr;

using OpResolver = tflite::MicroMutableOpResolver<5>;
TfLiteStatus RegisterOps(OpResolver& op_resolver) {
TF_LITE_ENSURE_STATUS(op_resolver _AddConv2D());

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for

Microcontrollers
42

6. Appendix
848984 | 2025.04.07

E;:J Send Feedback

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Appendix
848984 | 2025.04.07

altera.

An Intel Company

TF_LITE_ENSURE_STATUS(op_resolver.AddAveragePool2D());
TF_LITE_ENSURE_STATUS(op_resolver.AddReshape());
TF_LITE_ENSURE_STATUS(op_resolver .AddFul lyConnected());
TF_LITE_ENSURE_STATUS(op_resolver.AddSoftmax());

return kTfLiteOk;

} // namespace

TfLiteStatus LoadModelandInference() {

(;:J Send Feedback

printf("[INFO]Setting up TinyML.._\n\r");

tflite: :MicroProfiler profiler;

OpResolver op_resolver;
TF_LITE_ENSURE_STATUS(RegisterOps(op_resolver));

model = tflite::GetModel(lenet_tflite);
TFLITE_CHECK_EQ(model->version(), TFLITE_SCHEMA_VERSION);

/* Arena size is a round number, which is determined
* using RecordingMicrolnterpreter.

*/

constexpr int kTensorArenaSize = 30000;

uint8_t tensor_arena[kTensorArenaSize];

constexpr int kNumResourceVariables = 24;

tflite::RecordingMicroAllocator* allocator(
tflite::RecordingMicroAllocator: :Create(tensor_arena, kTensorArenaSize));
tflite: :RecordingMicrolnterpreter Recordinginterpreter(
model, op_resolver, allocator,
tflite::MicroResourceVariables::Create(allocator, kNumResourceVariables),
&profiler);

TF_LITE_ENSURE_STATUS(Recordinginterpreter.AllocateTensors());
TFLITE_CHECK_EQ(Recordinginterpreter.inputs_size(), 1);

//Print loaded model input and output shape
printf("Total output layers: %d\n\r', Recordinginterpreter.outputs_size());
printf(""Input shape: %d dimensions. Dimension: %d %d %d %d. Type: %d\n\r",
Recordinginterpreter. input(0)->dims->size,
Recordinginterpreter. input(0)->dims->data[0],
Recordinginterpreter. input(0)->dims->data[1],
Recordinginterpreter. input(0)->dims->data[2],
Recordinginterpreter. input(0)->dims->data[3],
Recordinginterpreter. input(0)->type
)

for (int 1 = 0; 1 < (int)(Recordinginterpreter.outputs_size()); ++i)
printf("'Output shape %d: %d dimensions. Dimension: %d %d. Type: %d\n\r",
i

Recordinginterpreter.output(i)->dims->size,
Recordinginterpreter.output(i)->dims->data[0],
Recordinginterpreter.output(i)->dims->data[1l],
Recordinginterpreter.output(i)->type

)
printf("[INFO]Setting up TinyML...Done\n\n\r");
printf("[INFO]JUploading image..-\n\r');

//Visualize sample image in terminal

int HashTag = 35;

for (int i = 0; i < IMAGE_HEIGHT; i=i+2){

for (int j = 0; j < IMAGE_WIDTH; j=j+2){
printf(""\033[38;2;%d; %d ;%dm%c"*

CRESET,
test_image[i]1[j1[0],
test_image[i]1[j]1[0],
test_image[i]1[j1[0],
HashTag);

I
printf(''\n");

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

43

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

altera. A

An Intel Company

}

848984 | 2025.04.07

printf(''\n"");

//1nput sample image to tflite model input.
int len = 0;
for (int i = 0; i1 < IMAGE_HEIGHT; i++){
for (int j = 0; j < IMAGE_WIDTH; j++){
for (int k = 0; k < NUM_CHANNELS; k++){
Recordinginterpreter.input(0)->data.f[len] =
float(test_image[i]1[)]1[k])/255.0;
len++;
}
3

b

printf("[INFO]Uploading image...Done\n\n\r');
printF("[INFO]Classifying image...\n\r");

inté4_t startTime, endTime =0;

inté4_t tdelta = 0;

startTime = sys_clock_cycle_get 64();
TF_LITE_ENSURE_STATUS(Recordinginterpreter.Invoke());
endTime = sys_clock_cycle_get 64(Q);

tdelta = endTime - startTime;
printf("[INFO]Classifying image...Done\n\n\r");

//Retrieve inference output
int answer = O;
printf("'Retrieve the inference output:\n");
for (int i = 0; i < kCategoryCount; ++i){
printf(""%s score: %f\n\r",
kCategoryLabels[i],
Recordinginterpreter.output(0)->data.f[i]);
if (Recordinginterpreter.output(0)->data.f[i]>
Recordinginterpreter.output(0)->data.f[answer]) answer = i;

printf(""\nInference made: %s\n\r', kCategorylLabels[answer]);
printf("Ticks per seconds: %d\n\n', CLOCK_TICKS PER_SEC);
printf("Inference Time: %lf sec\n\n\r",

((double) (tdelta)) / CLOCK_TICKS_PER_SEC);
printf("[INFO]Profiling TinyML model.._\n\r");
profiler.LogTicksPerTagCsv();

printf("'Detailed Profiling\n\n");

profiler.Log(Q);

printfF(""Ticks per seconds: %d\n\n', CLOCK_TICKS_ PER_SEC);
printf("Inference Time: %If sec\n\n\r",

((double) (tdelta)) 7/ CLOCK_TICKS_PER_SEC);

printf(""Tensor Arena Allocation:\n");
Recordinginterpreter.GetMicroAllocator() -PrintAllocations();
printfF("[INFO]Profiling TinyML model.._Done\n\n\r");

return kTfLiteOk;

int Selectlmage(uint8_t (*image) [IMAGE_WIDTH] [NUM_CHANNELS]){

for (int 1 = 0; i < IMAGE_HEIGHT; i++){
for (int j = 0; j < IMAGE_WIDTH; j++){
for (int k = 0; k < NUM_CHANNELS; k++){
test_image[1101[Kk] = image[i]1J1IKk];
}

}

3
TF_LITE_ENSURE_STATUS(LoadModelandInference());
return O;

int mainQ) {

printf(""\tHello from Agilex 5 SoC ARM Processor TinyML Demonstration on MNIST

\n\r');
/ TFLITE-MICRO TINYML /
AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for Send Feedback
Microcontrollers

44

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

— altera.

848984 | 2025.04.07
An Intel Company

Selectlmage(test_image0);
Selectlmage(test_imagel);
Selectlmage(test_image2);
Selectlmage(test_image3);
SelectImage(test_imaged);
Selectlmage(test_image5);
Selectlmage(test_imageb);
Selectlmage(test_image7);
Selectlmage(test_image8);
Selectlmage(test_image9);

return O;

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

45

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

848984 | 2025.04.07

D Send Feedback

altera.

An Intel Company

7. Document Revision History for the AN 1011: TinyML

Applications in Altera FPGAs Using LiteRT for

Microcontrollers

Document Version

Changes

2025.04.07

Initial release.

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera

Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described

Iso
9001:2015
Registered

herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.

*QOther names and brands may be claimed as the property of others.

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

	AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for Microcontrollers
	Contents
	1. Overview
	1.1. Requirements

	2. Preparing LiteRT Inference Model
	2.1. Defining the Problem
	2.2. Gathering and Preparing Sample Data
	2.2.1. Preparing Dataset
	2.2.2. Preprocessing Dataset

	2.3. Building TensorFlow Model
	2.3.1. Constructing Model Architecture
	2.3.2. Configuring Model
	2.3.3. Training Model
	2.3.4. Evaluating the Model
	2.3.5. Saving and Loading Model

	2.4. Preparing the LiteRT Model
	2.4.1. Converting into LiteRT Model
	2.4.2. Saving the LiteRT Model
	2.4.3. Analyzing the LiteRT Model
	2.4.4. Loading a LiteRT Interpreter
	2.4.5. Evaluating the LiteRT Model

	2.5. Preparing Binaries for C/C++
	2.5.1. Converting LiteRT to a C Array
	2.5.2. Preparing a Header File for LiteRT C Array
	2.5.3. Preparing Supporting Header File for LiteRT C Array
	2.5.4. Preparing Main Function to Run TinyML
	2.5.5. Converting MNIST Sample into C Array

	3. Generating Nios V Processor System
	3.1. Building Hardware Design in Platform Designer
	3.2. Building Software Design with Ashling RiscFree IDE for Altera FPGAs
	3.2.1. Creating a Board Support Package
	3.2.2. Building LiteRT for Microcontroller Static Library
	3.2.3. Creating an Application Project File
	3.2.4. Building the LiteRT TinyML Application

	4. Generating Arm Processor System
	4.1. GHRD Hardware Design
	4.2. Building the Software Design
	4.2.1. Arm-Trusted-Firmware
	4.2.1.1. Booting from QSPI Flash
	4.2.1.2. Running through Ashling RiscFree IDE for Altera FPGAs Debugger

	4.2.2. Building LiteRT for Microcontrollers Static Library
	4.2.3. Zephyr OS Environment Setup
	4.2.4. Building the LiteRT TinyML Application

	5. Programming and Running
	5.1. Nios V Processor System
	5.2. Arm HPS Processor System
	5.2.1. Booting from QSPI
	5.2.2. Booting via the Debugger

	6. Appendix
	6.1. main.cc for Nios V Processor
	6.2. main.cc for Arm HPS Processor

	7. Document Revision History for the AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for Microcontrollers

