
Explore more resources
Altera® Design Hub

AN 1011: TinyML Applications in
Altera FPGAs Using LiteRT for
Microcontrollers

Online Version

Send Feedback

848984

2025.04.07

https://www.altera.com/design
https://www.intel.com/content/www/us/en/docs/programmable/848984.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Overview.. 4
1.1. Requirements..4

2. Preparing LiteRT Inference Model...5
2.1. Defining the Problem..5
2.2. Gathering and Preparing Sample Data.. 6

2.2.1. Preparing Dataset..6
2.2.2. Preprocessing Dataset..7

2.3. Building TensorFlow Model.. 7
2.3.1. Constructing Model Architecture.. 7
2.3.2. Configuring Model..8
2.3.3. Training Model...8
2.3.4. Evaluating the Model..9
2.3.5. Saving and Loading Model...10

2.4. Preparing the LiteRT Model..10
2.4.1. Converting into LiteRT Model... 10
2.4.2. Saving the LiteRT Model..10
2.4.3. Analyzing the LiteRT Model..10
2.4.4. Loading a LiteRT Interpreter..11
2.4.5. Evaluating the LiteRT Model...11

2.5. Preparing Binaries for C/C++.. 12
2.5.1. Converting LiteRT to a C Array...12
2.5.2. Preparing a Header File for LiteRT C Array... 12
2.5.3. Preparing Supporting Header File for LiteRT C Array......................................12
2.5.4. Preparing Main Function to Run TinyML... 13
2.5.5. Converting MNIST Sample into C Array... 13

3. Generating Nios V Processor System.. 16
3.1. Building Hardware Design in Platform Designer.. 16
3.2. Building Software Design with Ashling RiscFree IDE for Altera FPGAs.......................... 17

3.2.1. Creating a Board Support Package... 18
3.2.2. Building LiteRT for Microcontroller Static Library...20
3.2.3. Creating an Application Project File...21
3.2.4. Building the LiteRT TinyML Application.. 22

4. Generating Arm Processor System..23
4.1. GHRD Hardware Design.. 24
4.2. Building the Software Design...26

4.2.1. Arm-Trusted-Firmware..26
4.2.2. Building LiteRT for Microcontrollers Static Library... 28
4.2.3. Zephyr OS Environment Setup...29
4.2.4. Building the LiteRT TinyML Application.. 29

5. Programming and Running... 32
5.1. Nios V Processor System...32
5.2. Arm HPS Processor System... 33

5.2.1. Booting from QSPI... 34
5.2.2. Booting via the Debugger..34

Contents

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

2

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Appendix...39
6.1. main.cc for Nios V Processor... 39
6.2. main.cc for Arm HPS Processor..42

7. Document Revision History for the AN 1011: TinyML Applications in Altera FPGAs
Using LiteRT for Microcontrollers ..46

Contents

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

3

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Overview
This application note is a fundamental guide for developing LiteRT for Microcontrollers
software in a Nios® V processor system.

Altera recommends that you have the following skills or experience before starting this
project:

• Quartus® Prime software—Platform Designer, and Board Support Package Editor

• Ashling* RiscFree* IDE for Altera® FPGAs

• Fundamental in C/C++ - Running a simple Hello World application in Nios V
processor

Related Information

AN 985: Nios® V Processor Tutorial
For more information about for building a Nios® V processor system and running a
simple Hello World program.

1.1. Requirements

Hardware

• Any Altera FPGA Development Kit

• Power Adapter

• Intel FPGA Download Cable II

Software

• Quartus Prime

• Ashling RiscFree IDE for Altera FPGAs

Note: You need to acquire the license for the Nios V processor to compile the design in
Quartus Prime software.

848984 | 2025.04.07

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/784468.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2. Preparing LiteRT Inference Model
The LiteRT development workflow involves identifying a Machine Learning (ML)
problem, choosing a model that solves that problem, and implementing the model on
embedded devices. LiteRT is designed to run machine learning models on embedded
devices with only a few kilobytes of memory. It doesn't require operating system
support, any standard C or C++ libraries, or dynamic memory allocation.

The following example illustrates how to prepare a LiteRT model for digit classification.
It outlines the steps needed to prepare the model in a TensorFlow Python environment
before converting it into a LiteRT model.

Import the following Python libraries at the start of the Python script:

import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import random

2.1. Defining the Problem

Before developing any ML problem, determine the project's objective. Explore the
project's key characteristics and identify the type of problem as regression or
classification.

• Regression - Establish a relationship between input variables and output variables.

• Classification - Assign input data to specific predefined categories.

This example consists of the following aspects:

• The goal is to classify a single digit from 0 to 9, which presents a classification
problem.

• Based on the MNIST (Modified National Institute of Standards and Technology)
database that contains a large collection of handwritten digits.

• Implements the LeNet-5 Convolutional Neural Network (CNN) model architecture.

848984 | 2025.04.07

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2.2. Gathering and Preparing Sample Data

2.2.1. Preparing Dataset

Apply the following Python commands to load the MNIST dataset. The Matplotlib
library allows you to display random MNIST samples.

Load the MNIST Train and Test Dataset
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

rows, cols = 28, 28

Display Random Samples
fig = plt.figure(figsize=(9,9))
for i in range(8):
 ind = random.randint(0, len(x_train))
 plt.subplot(3,3,i+1)
 plt.imshow(x_train[ind], cmap="gray", interpolation=None)
 plt.title(y_train[ind])

Figure 1. Example of MNIST Samples

2. Preparing LiteRT Inference Model

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

6

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.2.2. Preprocessing Dataset

Perform data preprocessing by reshaping, normalizing, and encoding the dataset.

Reshape the data into a 4D Array
x_train = x_train.reshape(x_train.shape[0], rows, cols, 1)
x_test = x_test.reshape(x_test.shape[0], rows, cols, 1)

input_shape = (rows,cols,1)

Set type as float32 and normalize the values to [0,1]
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train = x_train / 255.0
x_test = x_test / 255.0

Transform labels to one hot encoding
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)

2.3. Building TensorFlow Model

2.3.1. Constructing Model Architecture

Construct a LeNet-5 model (or any other CNN model).

Construct a Sequential Model
model = tf.keras.Sequential()

Input Layer
model.add(tf.keras.layers.Input(shape=input_shape))
C1 Convolution Layer
model.add(tf.keras.layers.Conv2D(filters=6, strides=(1,1), kernel_size=(5,5),
activation='relu'))
S2 SubSampling Layer
model.add(tf.keras.layers.AveragePooling2D(pool_size=(2,2), strides=(2,2)))
C3 Convolution Layer
model.add(tf.keras.layers.Conv2D(filters=6, strides=(1,1), kernel_size=(5,5),
activation='relu'))
S4 SubSampling Layer
model.add(tf.keras.layers.AveragePooling2D(pool_size=(2,2), strides=(2,2)))
C5 Fully Connected Layer
model.add(tf.keras.layers.Dense(units=120, activation='relu'))
Flatten Layer
model.add(tf.keras.layers.Flatten())
FC6 Fully Connected Layer
model.add(tf.keras.layers.Dense(units=84, activation='relu'))
Output Layer
model.add(tf.keras.layers.Dense(units=10, activation='softmax'))

Display a Summary of the Model
model.summary()

2. Preparing LiteRT Inference Model

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

7

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Summary of the Model

2.3.2. Configuring Model

Specify the loss function, optimizer, and interested metrics for the model.

Compile the Model
model.compile(loss = tf.keras.metrics.categorical_crossentropy, optimizer =
"adam", metrics = ['accuracy'])

2.3.3. Training Model

Feed the training data into the model in batches and validate the model on the
validation set after each epoch to monitor performance. Using the Matplotlib library,
you can display the training and validation accuracy in a line graph.

Train and Validate the Model
epochs = 10
history = model.fit(x_train, y_train, epochs=epochs, batch_size=128,
validation_data = (x_test, y_test), verbose=1)

Display the Training Progress
def summary_history(history):
 plt.figure(figsize = (10,6))
 plt.plot(history.history['accuracy'], color = 'blue', label = 'train')
 plt.plot(history.history['val_accuracy'], color = 'red', label = 'val')
 plt.legend()
 plt.title('Accuracy')
 plt.show()

summary_history(history)

2. Preparing LiteRT Inference Model

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

8

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3. Training and Validation Logs

Figure 4. Training and Validation Accuracy per Epoches

train

Accuracy

val
0.98

0.96

0.94

0.92

0.90

0 2 4 6 8

2.3.4. Evaluating the Model

Assess the model's performance on the test set to estimate how well it generalizes to
unseen data.

Evaluate Accuracy of the Model
loss ,acc= model.evaluate(x_test, y_test)
print('Accuracy : ', acc)

Figure 5. Classification Accuracy of TensorFlow Model on Test Dataset

2. Preparing LiteRT Inference Model

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

9

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.3.5. Saving and Loading Model

Once you train a highly accurate model, Altera recommends that you save the model
data for future use. Training a model consumes a lot of time, and the final accuracy
can vary with each session. By saving the trained model, you can efficiently load it
whenever you need it.

Save Model
model.save('lenet.keras')

Load Model
model = tf.keras.models.load_model('lenet.keras')

2.4. Preparing the LiteRT Model

2.4.1. Converting into LiteRT Model

A good starting point is converting a TensorFlow model to a LiteRT model without
quantization, which generates a 32-bit floating-point LiteRT model.

Convert the model from Tensorflow to LiteRT model
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()

Alternatively, you can use full integer-only quantization to reduce the model size and
increase processing speed. However, this may impact the model's accuracy.

2.4.2. Saving the LiteRT Model

Save the LiteRT Model for reuse purposes.

Save the LiteRT model
open("lenet.tflite", "wb").write(tflite_model)

2.4.3. Analyzing the LiteRT Model

Identify the type of op resolver needed to run the model using LiteRT for
Microcontrollers libraries. Refer to Appendix for more information about op resolver
registration in the main() function. For this LeNet-5 example, the op resolvers are:

• CONV_2D

• AVERAGE_POOL_2D

• FULLY_CONNECTED

• RESHAPE

• SOFTMAX

Analyse the LiteRT Model
tf.lite.experimental.Analyzer.analyze(model_path="lenet.tflite")

2. Preparing LiteRT Inference Model

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

10

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Results from Analyzer

Related Information

Appendix on page 39

2.4.4. Loading a LiteRT Interpreter

Setup the LiteRT Interpreter to test the newly converted LiteRT model.

Load the LiteRT model in TFLite Interpreter
interpreter = tf.lite.Interpreter(model_path="lenet.tflite")

Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

Adjust the model interpreter to take 10,000 inputs at once instead of just 1
interpreter.resize_tensor_input(input_details[0]["index"], (x_test.shape[0],
rows, cols, 1))
interpreter.resize_tensor_input(output_details[0]["index"], (y_test.shape[0],
10))
interpreter.allocate_tensors()

Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

2.4.5. Evaluating the LiteRT Model

Since the LiteRT model is generated without quantization, the final accuracy is
expected to be preserved, which is the same as 0.9872 from the TensorFlow model.

It's important to check how much accuracy is lost after using post-training
quantization. If the loss is significant, consider using quantization-aware training.

Set the test input and run
interpreter.set_tensor(input_details[0]["index"], x_test)
interpreter.invoke()

Get the result and check its accuracy
output_data = interpreter.get_tensor(output_details[0]["index"])

a = [np.argmax(y, axis=None, out=None) for y in output_data]
b = [np.argmax(y, axis=None, out=None) for y in y_test]

accuracy = (np.array(a) == np.array(b)).mean()
print("TFLite Accuracy:", accuracy)

Figure 7. Classification Accuracy of LiteRT Model on Test Dataset

2. Preparing LiteRT Inference Model

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

11

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.5. Preparing Binaries for C/C++

Ensure you have acquired the following binaries before proceeding to the next
chapters.

Table 1. LiteRT for Microcontrollers Binaries

Binaries Description

model_data.cc Model params stored within a C array.

model_data.h Header file of model_data.h.

model_settings.h List of classes to decode classification results in main.cc.

main.cc Main LiteRT application to setup LiteRT model, uploading images, classifying images
and profiling.

Multiple figure.h Sample of MNIST images stored within a C array.

2.5.1. Converting LiteRT to a C Array

In a microcontroller environment, the LiteRT model is included as a C array and
compiled into the C application. Use the following Python script to convert the LiteRT
model into a C array:

! xxd -i lenet.tflite > model_data.cc

Example 1. Content of model_data.cc

unsigned char lenet_tflite[] = {…};
unsigned int lenet_tflite_len = 660296;

Apply the follow changes to improve the processor execution:

#include "model_data.h"

alignas(8) const unsigned char lenet_tflite[] = {…};
const unsigned int lenet_tflite_len = 660296;

2.5.2. Preparing a Header File for LiteRT C Array

Example 2. Content of model_data.h

#ifndef MODEL_DATA_H
#define MODEL_DATA_H

extern const unsigned char lenet_tflite[];
extern const unsigned int lenet_tflite_len;

#endif // MODEL_DATA_H

2.5.3. Preparing Supporting Header File for LiteRT C Array

The example main() function implements the supporting model_settings.h
header file to decode the output of the LiteRT model.

2. Preparing LiteRT Inference Model

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

12

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Example 3. Content of model_settings.h

#ifndef IMAGE_CLASSIFICATION_MODEL_SETTINGS_H_
#define IMAGE_CLASSIFICATION_MODEL_SETTINGS_H_

// Keeping these as constant expressions allow us to allocate fixed-sized arrays
// on the stack for our working memory.

// All of these values are derived from the values used during model training,
// if you change your model you'll need to update these constants.
constexpr int kNumCols = 28;
constexpr int kNumRows = 28;
constexpr int kNumChannels = 1;

constexpr int kMaxImageSize = kNumCols * kNumRows * kNumChannels;

constexpr int kCategoryCount = 10;
constexpr int k0Index = 0;
constexpr int k1Index = 1;
constexpr int k2Index = 2;
constexpr int k3Index = 3;
constexpr int k4Index = 4;
constexpr int k5Index = 5;
constexpr int k6Index = 6;
constexpr int k7Index = 7;
constexpr int k8Index = 8;
constexpr int k9Index = 9;

constexpr const char* kCategoryLabels[kCategoryCount] = {
 "number 0",
 "number 1",
 "number 2",
 "number 3",
 "number 4",
 "number 5",
 "number 6",
 "number 7",
 "number 8",
 "number 9"
};

#endif // IMAGE_CLASSIFICATION_MODEL_SETTINGS_H_

2.5.4. Preparing Main Function to Run TinyML

Altera recommends reading and understanding the LiteRT documentation before
writing the main() function in the Appendix. Refer to the following links for more
information.

Related Information

• LiteRT – Hello World Example

• LiteRT - Get started with microcontrollers

• Appendix on page 39

2.5.5. Converting MNIST Sample into C Array

You can prepare a collection of C arrays representing MNIST samples. These arrays
serve as static inputs to test the LiteRT C array model in the Nios V processor before
deployment.

2. Preparing LiteRT Inference Model

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

13

https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/hello_world
https://ai.google.dev/edge/litert/microcontrollers/get_started
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Repeat this Python script for a few rounds until every class (0 to 9) is collected. The
script replaces duplicated class, thus resulting in a single sample for each class.

Convert MNIST samples into a C array
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import random
import sys

Load the MNIST Train and Test Dataset
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

rows, cols = 28, 28

Reshape the data into a 4D Array
x_test = x_test.reshape(x_test.shape[0], rows, cols, 1)

input_shape = (rows,cols,1)

Set type as float32 and normalize the values to [0,1]
x_test = x_test.astype('float32')
x_test = x_test / 255.0

Transform labels to one hot encoding
y_test = tf.keras.utils.to_categorical(y_test, 10)

img = x_test*255.0
img = img.astype(np.uint8)
img_label=np.argmax(y_test, axis=1)

Repeat for a few rounds to get all numbers (0-9)
fig = plt.figure(figsize=(9,9))
for i in range(9):
 ind = random.randint(0, len(img))
 np.set_printoptions(threshold=sys.maxsize)
 string1 = np.array2string(img[ind], separator=', ')
 c_array = string1.replace('[', '{').replace(']', '}').replace('.', '')
 c_array_label = img_label[ind]

 plt.subplot(3,3,i+1)
 plt.imshow(img[ind], cmap="gray", interpolation=None)
 plt.title(c_array_label)

 base_path = "figure-"
 label_name = str(c_array_label)
 file_type = ".h"
 file_name = base_path + label_name + file_type
 with open(file_name, "w") as f:
 f.write("#include <stdint.h>\n\n")
 f.write("#define IMAGE_WIDTH 28\n")
 f.write("#define IMAGE_HEIGHT 28\n")
 f.write("#define NUM_CHANNELS 1\n")
 f.write("#define IMAGE_SIZE (IMAGE_WIDTH * IMAGE_HEIGHT * NUM_CHANNELS)\n\n")
 f.write("uint8_t test_image[IMAGE_HEIGHT][IMAGE_WIDTH][NUM_CHANNELS] = ")
 f.write(c_array)
 f.write(";")

2. Preparing LiteRT Inference Model

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

14

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8. Randomly Selected MNIST Samples

Figure 9. Complete Set of MNIST Samples

figure-0.h figure-1.h figure-2.h figure-3.h figure-4.h

figure-5.h figure-6.h figure-7.h figure-8.h figure-9.h

2. Preparing LiteRT Inference Model

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

15

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Generating Nios V Processor System
The general implementation of the Nios V processor system has two parts: hardware
design and software design. The hardware design, which comprises the Nios V
processor and peripherals, is developed using the Quartus Prime software.

Developing a Nios V processor application requires a software design that
complements the processor hardware design. You can develop a Nios V processor
software design using Ashling RiscFree IDE for Altera FPGAs.

3.1. Building Hardware Design in Platform Designer

This document shows how to use a simple Nios V processor hardware design for image
classification with LiteRT for Microcontrollers libraries.

Table 2. Component Description

Components Description

Nios V/m Processor Intel® FPGA IP Runs application by executing instructions.

JTAG UART Intel FPGA IP Enables serial character communication between Nios V/m
processor and host computer

On-Chip Memory II Intel FPGA IP Stores data and instructions.

Reset Release Intel FPGA IP Recommended reset output in SDM-based devices.

Optionally, you can implement a Nios V/g processor with branch prediction, caches,
and floating-point units for better performance. Altera recommends starting the
project with large On-Chip RAM due to the size of the LiteRT C array model.

848984 | 2025.04.07

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 10. Enabling Cache and Floating-Point Unit

Related Information

AN 985: Nios® V Processor Tutorial
For more information about building the hardware design.

3.2. Building Software Design with Ashling RiscFree IDE for Altera
FPGAs

Note: Ensure you complete the steps in Preparing LiteRT Inference Model before continuing
this chapter.

Once the processor system is ready, start building the software design using Ashling
RiscFree IDE for Altera FPGAs. Follow these steps:

1. Create a Board Support Package (BSP) project.

2. Build LiteRT for Microcontrollers static library.

3. Create a Nios V application project with Hello World TinyML example source code.

4. Import both projects into RiscFree IDE’s workspace.

5. Build the Hello World application.

Altera recommends you create a similar directory tree in your design project to ensure
a streamlined build flow. The following software design flow is based on this directory
tree.

To create the software project directory tree:

3. Generating Nios V Processor System

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

17

https://www.intel.com/content/www/us/en/docs/programmable/784468/current/building-hardware-design-in.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• In your design project folder, create a folder called software.

• In the software folder, create two folders called app and bsp.

Figure 11. Software Project Directory Tree

software

app

bsp

Table 3. LiteRT for Microcontrollers Binaries at Prerequisite

Binaries Description

model_data.cc Model params stored within a C array.

model_data.h Header file of model_data.h.

model_settings.h List of classes to decode classification results in main.cc.

main.cc Main LiteRT application to setup LiteRT model, uploading images, classifying images
and profiling.

Multiple figure.h Sample of MNIST images stored within a C array.

3.2.1. Creating a Board Support Package

Board Support Package (BSP) provides a software runtime environment for embedded
systems, such as Nios V/m processor systems. Platform Designer includes the BSP
Editor tool to generate and configure BSP content.

Follow these steps to create a BSP:

1. In the Quartus Prime software, go to Tools ➤ Platform Designer.

2. In the Platform Designer window, go to File ➤ New BSP.

3. The Create New BSP window appears.

4. For BSP setting file, create a BSP file (settings.bsp) in <Working
directory>/software/bsp/settings.bsp.

5. For System file (qsys or sopcinfo), select the Nios V/m processor Platform
Designer system (niosv_top.qsys).

6. For Quartus project, select the example design Quartus Prime Project File
(niosv_top.qpf).

7. For Revision, select niosv_top.

8. For CPU name, select intel_niosv_m_0.

9. Select the Operating system as Altera HAL.

10. Click Create to create the BSP file.

3. Generating Nios V Processor System

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

18

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. Create New BSP Window

11. The BSP Editor tab appears.

12. Modify the GNU compiler flags as follows:

Table 4. GNU Compiler Flags Modification

BSP Settings Values

cflags_user_flags -ffunction-sections -fdata-sections -fno-rtti -fno-exceptions

cflags_defined_symbols -DTF_LITE_STATIC_MEMORY

cxx_flags -std=c++11

link_flags -Wl,--gc-sections

cflags_optimization -O3

13. Click Generate BSP to generate the BSP file.

14. The BSP Editor generates the BSP files in <Working directory>/
software/bsp folder.

3. Generating Nios V Processor System

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

19

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13. Generated BSP Files
drivers
HAL

linker.h

alt_sys_init.c
CMakeLists.txt

linker.x

memory.gdb

settings.bsp

summary.html

system.h

toolchain.cmake

3.2.2. Building LiteRT for Microcontroller Static Library

You must build LiteRT for Microcontroller libraries in Linux environments. If you are
using Windows OS, you can invoke Windows* Subsystem for Linux* (WSL) within Nios
V Command Shell.

Run the following commands:

$ sudo apt update
$ sudo apt install make git python3 unzip python3-pip
$ pip3 install numpy Image
$ git clone --depth 1 https://github.com/tensorflow/tflite-micro.git
$ cd tflite-micro
$ python3 tensorflow/lite/micro/tools/project_generation/create_tflm_tree.py\
 -e hello_world tflite_app

Note: Change Directory command (cd) to tflite-micro is mandatory. The execution of
create_tflm_tree.py Python script fails when it is executed from different
directory.

Figure 14. Content of the tflite_app Folder
examples
signal

LICENSE

tensorflow
third_party

Altera recommends you complete the following tasks:

• Review the Hello World TinyML example in the examples folder. It is a prediction
model on the sine function. For more information, refer to LiteRT – Hello World
Example and LiteRT - Get started with microcontrollers.

• Modify the micro_time.cc to be compatible with the Nios V processor. You can
find the source code micro_time.cc in tensorflow\lite\micro folder. For
more information, refer to LiteRT - Porting to a new platform.

3. Generating Nios V Processor System

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

20

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 15. Modification on micro_time.cc

Related Information

• LiteRT – Hello World Example

• LiteRT - Get started with microcontrollers

• LiteRT - Porting to a New Platform

3.2.3. Creating an Application Project File

Application Project (APP) stores the software TinyML application for Nios V/g processor
system.

Follow these steps to create an application project file:

1. In <Working directory>/software/app folder, copy the following LiteRT for
Microcontrollers libraries from tflite_app.

a. signal

b. tensorflow

c. third_party

2. Create a new folder in app called image_classification (or any preferred
name).

3. Navigate into the image_classification folder, create two folders named
image and model, and upload the main.cc binary (Refer to the examples in
Appendix).

4. In image folder, store the MNIST C array samples.

5. In model folder, store the model_data.cc, model_data.h and
model_settings.h source codes.

6. Launch the Nios V Command Shell.

$ niosv-shell

7. Execute the command below to generate an application CMakeLists.txt.

$ niosv-app --bsp-dir=software/bsp --app-dir=software/app \
--srcs-recursive=software/app/image_classification,\
software/app/signal,\
software/app/tensorflow \
--incs=software/app,\
software/app/image_classification/model,\

3. Generating Nios V Processor System

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

21

https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/hello_world
https://ai.google.dev/edge/litert/microcontrollers/get_started
https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/docs/new_platform_support.md#porting-to-a-new-platform
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

software/app/image_classification/image,\
software/app/tensorflow,\
software/app/third_party/flatbuffers/include,\
software/app/third_party/gemmlowp,\
software/app/third_party/kissfft,\
software/app/third_party/ruy

Figure 16. Content of app Folder with Generated CMakeLists File

image_classification

signals

image

model

main.cctensorflow

third_party

CMakeLists.txt

model_data.cc

model_data.h

model_settings.h

figure-0.h figure-1.h figure-2.h figure-3.h figure-4.h

figure-5.h figure-6.h figure-7.h figure-8.h figure-9.h

3.2.4. Building the LiteRT TinyML Application

Altera recommends importing the BSP and APP project into Ashling RiscFree IDE for
Altera FPGAs for better project management and user experience.

Alternatively, run the cmake and make command to build the application.

• For debug build, select Debug configuration

$ niosv-shell
$ cmake -S software/app -B software/app/build/Debug -G "Unix Makefiles" \
-DCMAKE_BUILD_TYPE=Debug
$ make -C sw/app/build/Debug

• For release build, select Release configuration

$ niosv-shell
$ cmake -S software/app -B software/app/build/Release -G "Unix Makefiles" \
-DCMAKE_BUILD_TYPE=Release
$ make -C sw/app/build/Release

Related Information

Ashling* RiscFree* Integrated Development Environment (IDE) for Intel® FPGAs User
Guide: Importing Nios® V Processor Project

3. Generating Nios V Processor System

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

22

https://www.intel.com/content/www/us/en/docs/programmable/730783/current/importing-processor-project.html
https://www.intel.com/content/www/us/en/docs/programmable/730783/current/importing-processor-project.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Generating Arm Processor System
You can implement Arm HPS in two stages: first, the hardware design, and then the
software design:

• You can use the Altera Golden Hardware Reference Design (GHRD) to implement
the hardware design

• The software design comprises two primary components: the Arm-Trusted-
Firmware (ATF) bootloader and the related application development.

The following figures summarizes the overall flow.

848984 | 2025.04.07

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 17. Development Flow Summary on ARM Processor System

Download the
GHRD

Compile Quartus
Project

Customize BL2 if
debugger run is

needed

Download and
Compile the ATF

Download Zephyr
Project

Enable tflite-micro
in West manifest

Modify DTS file to
increase RAM size

Generate BL2 and
BL31 bootloader

Modify tflite-micro
timing functions

Compile the tflite-
micro application

Create zephyr
application

Generate the
Bitstream

Create qspi jic
file

Program QSPI

bl2.hex bl2.hex

Program via
Quartus tools
1) ghrd.hps.rbf

Program via Ashling
RiscFree Debugger:
2) bl31.bin
3) zephyr.bin

bitstream.rbf

bl2.bin

bl31.bin

zephyr.bin
fip.bin

Modifications

QSPI Boot Debugger Run

Environment
Preparations

4.1. GHRD Hardware Design

Altera provides several GHRDs based on the FPGA SoC devices. This includes Stratix®

10, Agilex™ 7, and Agilex 5. The GHRD contains the following items:

• Arm* Cortex* processors

• Secure Digital/Embedded Multimedia Card (SD/eMMC) host controller

• Ethernet Media Access Controller (EMAC)

• USB UART

• HPS External Memory Interface (EMIF)

• FPGA peripherals, which can be customized based on the design needs.

A generic system-level design of Altera GHRD can be seen in the following figure. For
more information, refer to the Hard Processor System Technical Reference Manual for
specific Altera FPGA SoC devices.

4. Generating Arm Processor System

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

24

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Altera GHRD System Level Design

F2SDRAM F2S256

MPFEEMIF

CCU

DMA0

SDMMC NAND

DMA1

MPU
2x ASS
2x A76

LWS2F32 S2F32/64/128

Debug Subsystem

FPGA Fabric

HPS

FPGA Jtag Master

HPS Jtag Master

F2SDRAM Master

Reset Release

Addr Expander Addr Expander

SysID

Onchip
Memory

PIOO..2

UART0/1 GPIO0/1

SPIS0/1

I2C0..4

I3C0/1

USB2OTG

USB3.1

XGMAC0

XGMAC1

XGMAC2

Peripherals Subsystem

SPIM0/1

Loopback_en

Refer to the following steps to prepare the GHRD:

1. Identify the target Altera FPGA SoC devices. This example uses the Agilex 5 FPGA
E-Series 065B Premium Development Kit.

2. Install the appropriate Quartus Prime Pro Edition software version. This example
uses Quartus Prime Pro Edition software version 24.3.

3. Start with the toolchain setup:

$ wget https://developer.arm.com/-/media/Files/downloads/gnu/11.2-2022.02/
binrel

 /gcc-arm-11.2-2022.02-x86_64-aarch64-none-linux-gnu.tar.xz
$ tar xf gcc-arm-11.2-2022.02-x86_64-aarch64-none-linux-gnu.tar.xz
$ rm -f gcc-arm-11.2-2022.02-x86_64-aarch64-none-linux-gnu.tar.xz
$ export PATH=`pwd`/gcc-arm-11.2-2022.02-x86_64-aarch64-none-linux-gnu/
bin:$PATH
$ export ARCH=arm64
$ export CROSS_COMPILE=aarch64-none-linux-gnu-

4. Generating Arm Processor System

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

25

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

$ export QUARTUS_ROOTDIR=~/intelFPGA_pro/24.3/quartus/
$ export PATH=$QUARTUS_ROOTDIR/bin:$QUARTUS_ROOTDIR/
linux64:$QUARTUS_ROOTDIR/../qsys/bin:$PATH

4. Follow the steps below to build the GHRD for Agilex 5 SoC:

$ mkdir tinyml_dev && cd tinyml_dev
$ export TOP_FOLDER=$(pwd)
$ git clone -b QPDS24.3_REL_GSRD_PR https://github.com/altera-opensource/
ghrd-socfpga
$ mv ghrd-socfpga/agilex5_soc_devkit_ghrd .
$ rm -rf ghrd-socfpga
$ cd agilex5_soc_devkit_ghrd
$ make config
$ make DEVICE=A5ED065BB32AE6SR0 HPS_EMIF_MEM_CLK_FREQ_MHZ=800
HPS_EMIF_REF_CLK_FREQ_MHZ=100 generate_from_tcl
$ make all

These steps generate the bitstream file that programs the board. You can start
programming the board once the ATF bootloader is generated.

Related Information

• Stratix® 10 Hard Processor System Technical Reference Manual

• Hard Processor System Technical Reference Manual: Agilex™ 5 SoCs

4.2. Building the Software Design

The software development has two major parts: the bootloader and the application.
Altera uses ATF as the first stage bootloader (FSBL) and second stage bootloader
(SSBL). You can build the application stage through the Zephyr operating system.
Therefore, you must set up and prepare the Zephyr environment before starting the
application development stage.

Note: You must complete Preparing LiteRT Inference Model before continuing this chapter.
The following binaries are required.

Table 5. LiteRT for Microcontrollers Binaries

Binaries Description

model_data.cc Model params stored within a C array.

model_data.h Header file of model_data.cc.

model_settings.h List of classes to decode classification results in main.cc.

main.cc Main LiteRT application to setup LiteRT model, uploading images, classifying images and profiling.

Multiple figure.h Sample of MNIST images stored within a C array.

4.2.1. Arm-Trusted-Firmware

ATF is the reference implementation of secure world running on Arm processors. It
provides several services and drivers to initialize and configure the system
components, making the Arm* processor system ready to run applications. You need
two major software components from ATF to run Arm applications – BL2 and BL31.

BL2 runs at S-EL1 exception and performs all the needed initializations for system to
boot the second stage boot. BL2 loads the following images:

4. Generating Arm Processor System

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

26

https://www.intel.com/content/www/us/en/docs/programmable/683222.html
https://www.intel.com/content/www/us/en/docs/programmable/814346.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. BL31: EL3 runtime image (SSBL).

2. BL32: Secure partition manager.

3. Non-trusted firmware: BL33, U-boot

You can compile the ATF source code to generate the bootloader files. Use the
bootloader to start your application from QSPI, or start via a debugger. The following
sections explain each method.

4.2.1.1. Booting from QSPI Flash

Follow the steps below to generate the ATF bootloader files:

$ cd $TOP_FOLDER
$ git clone -b socfpga_v2.11.0 https://github.com/altera-opensource/arm-trusted-
firmware atf_tinyml
$ cd atf_tinyml
$ ARCH=arm64 CROSS_COMPILE=aarch64-none-linux-gnu- make PLAT=agilex5
SOCFPGA_BOOT_SOURCE_QSPI=1 bl2 bl31 PRELOADED_BL33_BASE=0x80100000 -j$(nproc)

You can find the generate bootloader files bl2.bin and bl31.bin in the following
location: $TOP_FOLDER/atf_tinyml/build/agilex5/release/

4.2.1.2. Running through Ashling RiscFree IDE for Altera FPGAs Debugger

You can customize the ATF BL2 source code to generate a custom bl2.bin file that
allows you to download the SSBL (bl31.bin) and the application manually via the
Ashling RiscFree debugger tool

Follow these steps:

1. Download the ATF source code.

$ cd $TOP_FOLDER
$ git clone -b socfpga_v2.11.0 https://github.com/altera-opensource/arm-
trusted-firmware atf_tinyml

2. Customize the ATF source code.

BL2 must be customized in a way that allows the developer to debug the
application or use the debugger tools to manually download the SSBL and the
application binary files. Without this customization, you can generate the default
BL2 version which expects the BL31 and the application to stored in QSPI flash (as
shown in Booting from QSPI Flash).
To generate a BL2 version that can be debugged, follow the steps below:

a. Navigate to bl2_plat_setup.c file

$ cd $TOP_FOLDER/atf_tinyml/plat/intel/soc/agilex5/

b. Before the end of switch (boot_source) function, add the following codes:

…
 NOTICE("%s, %s: BL2: Dummy BP for loading next images \n", __DATE__,
__TIME__);
 mmio_write_32(0x10D12224, BIT(1));
 while (mmio_read_32(0x10D12224) != 0);
…

4. Generating Arm Processor System

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

27

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

c. Save the bl2_plat_setup.c file.

d. Compile the ATF to generate Bl2 and BL31 binary files using the command
below.

$ cd $TOP_FOLDER/atf_tinyml
$ ARCH=arm64 CROSS_COMPILE=aarch64-none-linux-gnu- make -j$(nproc)
PLAT=agilex5 bl2 bl31 SOCFPGA_BOOT_SOURCE_QSPI=1 DEBUG=1 LOG_LEVEL=50
PRELOADED_BL33_BASE=0x80100000

Where:

DEBUG=1 isto enable the debug build.

LOG_LEVEL=50 is to print some useful debug messages.

After that, you can navigate the build directory to find the required files, as below:

$ cd $TOP_FOLDER/atf_tinyml/build/agilex5/debug/

The above flow generates the required BL2 and BL31 images. These files are used for
debug purposes; the BL2 is loaded once the HPS .rbf file is loaded into the board, and
BL31 is loaded into the board via Ashling RiscFree debugger tool.

4.2.2. Building LiteRT for Microcontrollers Static Library

You must build LiteRT for Microcontroller libraries in Linux environments. If you are
using Windows OS, you can invoke Windows* Subsystem for Linux* (WSL). Run the
following commands:

$ sudo apt update
$ sudo apt install make git python3 unzip python3-pip
$ pip3 install numpy Image
$ cd $TOP_FOLDER
$ git clone --depth 1 https://github.com/tensorflow/tflite-micro.git
$ cd tflite-micro
$ python3 tensorflow/lite/micro/tools/project_generation/create_tflm_tree.py\
 -e hello_world tflite_app

Note: It is mandatory to change Directory command (cd) to tflite-micro. The execution of
create_tflm_tree.py Python script fails when it is executed from different
directory.

Figure 19. Content of the tflite_app Folder

examples

signals

tensorflow

third_party

LICENSE

Altera recommends to review the Hello World TinyML example in the examples folder.
It is a prediction model on the sine function. For more information, please refer to
LiteRT – Hello World Example and LiteRT - Get started with microcontrollers.

4. Generating Arm Processor System

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

28

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2.3. Zephyr OS Environment Setup

The example in this document uses Zephyr OS to run the LiteRT for Microcontrollers
application. However, the application and operating system requirements are not
dependent on each other.

• This example selects Zephyr OS for better user experience with the software
runtime environment setup, Zephyr OS configuration system, and built-in LiteRT
for Microcontrollers static libraries.

• You can refer to the Nios V processor build flow to build the LiteRT for
Microcontrollers application and static libraries in a bare-metal environment.

To prepare the Zephyr OS SDK, begin by installing all the necessary tools and
dependencies.

Related Information

Developing with Zephyr - Getting Started Guide

4.2.4. Building the LiteRT TinyML Application

To build a Zephyr application, you first need a Zephyr project. Once you've installed it,
you'll need to make several modifications to enable the built-in LiteRT for
Microcontrollers libraries in the Zephyr OS environment.

Follow these steps to integrate LiteRT for Microcontrollers platform using Zephyr and
Agilex 5 HPS:

1. Device tree modifications: By default, the Agilex 5 HPS device tree RAM size is 8
MBytes, which is insufficient for a common tinyML application. Increase the RAM
size to 1024 MBytes.

a. Navigate to the device tree file intel_socfpga_agilex5.dtsi located in
the following path.

<install_Dir>/zephyrproject/zephyr/dts/arm64/intel/

b. Modify the RAM size

 mem0: memory@80100000 {
 device_type = "memory";
 reg = <0x80100000 DT_SIZE_M(1024)>;

2. Peripheral integration: The device tree file selects the UART controller as the
standard UART device by default. Keep the default UART device setup.

3. Enable LiteRT for Microcontrollers static library: To enable the static library within
the Zephyr project, apply the following commands:

$ west config manifest.project-filter -- +tflite-micro
$ west config manifest.group-filter -- +optional
$ west update

4. Use the generated LiteRT for Microcontrollers static library: Replace the library
files downloaded by Zephyr OS environment with the ones created in Building
LiteRT for Microcontrollers Static Library.

a. Navigate to the location of the downloaded LiteRT library files by Zephyr OS
environment.

<Install_Dir>/zephyrproject/optional/modules/lib/tflite-micro

4. Generating Arm Processor System

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

29

https://docs.zephyrproject.org/latest/develop/getting_started/index.html
mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

b. Replace the following directories with its files:

• signal

• tensorflow

• third_party

5. Customize timing functions: The Agilex 5 HPS features a 64-bit Arm Cortex-A
architecture with 64-bit timers. In contrast, the LiteRT for Microcontroller library is
based on a 32-bit platform with a 32-bit timer. To prevent integer overflow,
enhance the LiteRT for Microcontroller timing functions to read a 64-bit input from
Arm’s 64-bit timer. Navigate to <zephyrproject_dir>/optional/
modules/lib/tflite-micro/tensorflow/lite/micro. Replace the
following timing function:

a. In micro_time.cc:

#define CLOCK_TICKS_PER_SEC 400000000
…
uint32_t ticks_per_second() { return (uint32_t)(CLOCK_TICKS_PER_SEC); }
…
uint64_t GetCurrentTimeTicks() { return (uint64_t)
(arch_k_cycle_get_64());}

b. In micro_time.h:

uint64_t GetCurrentTimeTicks();
…
inline uint64_t TicksToMs(int64_t ticks)
{
 return static_cast<uint64_t>(1000.0f *static_cast<float>(ticks) /
static_cast<float>(ticks_per_second()));
}

c. In micro_profiler.h, you must change all the 32-bit tick variables to 64-
bit size.

uint64_t start_ticks_[kMaxEvents];
uint64_t end_ticks_[kMaxEvents];
…
struct TicksPerTag {
 const char* tag;
 uint64_t ticks;
 };

In micro_profiler.cc, any variable that applies the above 32-bit ticks
variables must be changed to a 64-bit size. With that, a newly modified TFLite
library and Zephyr OS are compatible with the Agilex 5 HPS processor.

6. Create the Application Project: Inside Zephyr directory, navigate to:

<Install_Dir>/zephyrproject/zephyr/samples/modules/tflite-micro

Create a new directory tinyml_mnist. Then, create the following files inside the
tinyml_mnist main directory:

a. CMakeLists.txt

cmake_minimum_required(VERSION 3.20.0)

find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})
project(tensorflow_hello_world)

set(NO_THREADSAFE_STATICS $<TARGET_PROPERTY:compiler-
cpp,no_threadsafe_statics>)
zephyr_compile_options($<$<COMPILE_LANGUAGE:CXX>:$

4. Generating Arm Processor System

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

30

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

{NO_THREADSAFE_STATICS}>)

target_sources(app PRIVATE src/main.cc src/model/model_data.cc)

b. sample.yaml

sample:
 description: LiteRT app sample
 name: litert hps
common:
 tags: tensorflow
 modules:
 - tflite-micro

c. prj.conf

CONFIG_CPP=y
CONFIG_STD_CPP17=y
CONFIG_REQUIRES_FULL_LIBC=y
CONFIG_POSIX_API=y
CONFIG_TENSORFLOW_LITE_MICRO=y
CONFIG_STACK_USAGE=y
CONFIG_DEBUG=y
CONFIG_MAIN_STACK_SIZE=262144
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE=262144
CONFIG_HEAP_MEM_POOL_SIZE=262144
CONFIG_THREAD_MONITOR=y
CONFIG_THREAD_STACK_INFO=y
CONFIG_THREAD_NAME=y
CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME=y
CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=400000000
CONFIG_SYS_CLOCK_TICKS_PER_SEC=400000000
CONFIG_ARM_ARCH_TIMER=y
CONFIG_TIMING_FUNCTIONS=y

Note that the stack and heap size are being increased to adapt the requirements
to run LiteRT application using CONFIG_MAIN_STACK_SIZE,
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE, and
CONFIG_HEAP_MEM_POOL_SIZE.

7. Toolchain setup, compiler flags, and linker setup: This build uses the default
settings of a Zephyr project. The generated application has -O0 settings to enable
debugging. Compiling a release version can be enabled using
CONFIG_SPEED_OPTIMIZATIONS for the -O2 compiler setting or
CONFIG_SIZE_OPTIMIZATIONS for -Os in prj.conf file.

8. Build the application: Inside the tinyml_mnist directory, create two directories
named image and model, and upload the main.cc (Example in Appendix). In
image folder, store the MNIST C array samples, and in model folder, store the
model_data.cc, model_data.h and model_settings.h source codes
generated in chapter 2.

You can start building the application using the following command:

• $ west build -b intel_socfpga_agilex5_socdk samples/modules/tflite-
micro/tinyml_mnist/ -d agilex5_mnist -p

Where -b refers to the board used for this build, and -d is used to create the build
directory with all the generated files. Inside that directory, there is a sub-directory
named zephyr, where the zephyr.bin and zephyr.elf files reside.

4. Generating Arm Processor System

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

31

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Programming and Running

5.1. Nios V Processor System

Use the Quartus Prime Programmer tool and the Ashling RiscFree IDE for Altera FPGAs
to program the Nios V processor-based system (hardware and software system
respectively) into the FPGA and to run your application.

Once you successfully program both the hardware SOF and software ELF files, the
application begins executing the TinyML application. Open the JTAG UART terminal to
display the print log through the JTAG UART interface.

$ juart-terminal

Figure 20. Example Print Logs Part 1 - Setting up TinyML

Figure 21. Example Print Logs Part 2 - Uploading Image

848984 | 2025.04.07

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 22. Example Print Logs Part 3 - Classifying Image

Figure 23. Example Print Logs Part 4 - Profiling TinyML Model

5.2. Arm HPS Processor System

You can run the application on HPS either through QSPI flash boot or using the Ashling
RiscFree IDE for Altera FPGAs debugger tool. Before starting any process, ensure you
have the necessary binary files ready to program the QSPI or run via the debugger.
Refer to the following steps:

1. Create a new directory. Name it tinyml_bins.

$ cd $TOP_FOLDER
$ mkdir tinyml_bins

2. Generate the fiptool from ATF repository downloaded in section Arm-Trusted-
Firmware. Use this tool to create the binary file that combines the SSBL
(bl31.bin) and Zephyr application (zephyr.bin).

$ cd $TOP_FOLDER/atf_tinyml
$ ARCH=arm64 CROSS_COMPILE=aarch64-none-linux-gnu- make fiptool
$ cp tools/fiptool/fiptool $TOP_FOLDER/tinyml_bins

3. Copy the bootloader files to the tinyml_bins.

$ cd $TOP_FOLDER/atf_tinyml/build/agilex5/<release_or_debug>
$ cp bl2.bin bl31 $TOP_FOLDER/tinyml_bins

5. Programming and Running

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

33

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Copy the generated .sof file from the GHRD according to the steps in the topic
GHRD Hardware Design.

$ cd $TOP_FOLDER/agilex5_soc_devkit/
$ cp ghrd_a5ed065bb32ae6sr0.sof $TOP_FOLDER/tinyml_bins

5.2.1. Booting from QSPI

Using this process, you can generate a QSPI image file that includes the configuration
bitstream along with an embedded FSBL, including the firmware file that combines
SSBL (bl31.bin) and the zephyr application.

1. Create the fip.bin image that contains both the SSBL and the Zephyr
application.

$ cd $TOP_FOLDER/tinyml_bins
$./fiptool create --soc-fw bl31.bin --nt-fw zephyr.bin fip.bin

2. Download the QSPI .pfg file to create the .jic file.

$ wget https://releases.rocketboards.org/2024.11/zephyr/agilex5/hps_zephyr/
hello_world/
qspi_boot/qspi_flash_image_agilex5_boot.pfg

3. Create the .jic file.

quartus_pfg -c qspi_flash_image_agilex5_boot.pfg

4. Set MSEL to JTAG (OFF-OFF-OFF-OFF).

5. Turn on the Device.

6. Program the QSPI flash.

quartus_pgm -c 1 -m jtag -o "pvi;qspi_image.jic"

7. Set MSEL to QSPI (OFF-ON-ON-OFF).

8. Power-on the Device.

9. Inspect the HPS terminal.

5.2.2. Booting via the Debugger

Use the Quartus Prime Programmer tool and the Ashling RiscFree IDE for Altera FPGAs
to program the Arm HPS processor-based system (hardware and software system
respectively) into the FPGA and to run your application.

1. Make sure you set MSEL dipswitch SW27 to JTAG: (OFF-OFF-OFF-OFF). Then
connect the HPS UART to a terminal on your machine, like Putty or MobaXterm on
Windows, or Minicom on Linux.

2. Add the BL2 FSBL to the generated GHRD .sof file. First, convert bl2.bin file
into a hex format, then use quartus_pfg to embed the hex format of BL2 with
ghrd .sof file, and create the .rbf format file per the following steps:

$ cd $TOP_FOLDER/tinyml_bins
$ aarch64-none-linux-gnu-objcopy -v -I binary -O ihex --change-addresses 0x0
bl2.bin bl2.hex
$ quartus_pfg -c ghrd_a5ed065bb32ae6sr0.sof ghrd.rbf -o hps=1 -o
hps_path=bl2.hex

5. Programming and Running

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

34

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The quartus_pfg command converts the .sof file into two .rbf files: the core
and the hps files. Use the core file to configure the FPGA fabric, while the hps file
to configure the HPS IO.

3. Use the -o hps_path argument to guide the tool to the location of the FSBL and
embed it with the ghrd.hps.rbf file. Ashling RiscFree IDE for Altera FPGAs
debugger tool loads the bl31.bin file to the board. To run the application on
board, program the device with the following generated .rbf bitstream:

quartus_pgm -c 1 -m jtag -o "p;ghrd.hps.rbf"

Once the process is complete, you can see the FSBL boot on the HPS terminal.
The last message indicates that FSBL was booted successfully, and it is waiting for
SSBL to load using the debugger tool.

Figure 24. BL2 Boot on HPS Terminal (Debugger Flow)

4. Next, open Ashling RiscFree IDE for Altera FPGAs tool, set your workspace
directory, and copy the required binary files generated earlier: bl31.bin,
zephyr.bin, and zephyr.elf (if debug is needed). From Run menu, go to
Debug Configuration.

Figure 25. Ashling RiscFree IDE for Altera FPGAs Menus

5. Programming and Running

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

35

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Select Ashling Heterogeneous Multicore Hardware Debugging, then
configure the ARM Coresight SOC core 0.

Figure 26. Heterogeneous Multicore Hardware Debugging Configuration 1

6. Go to Target Application tab:

• Add the .elf file if you need the debug information. Otherwise, you can run
the application only.

• Keep Load image unchecked (because you need to load it later manually).

• Check Load symbols (if the .elf file is loaded for debugging).

7. In Startup tab, keep everything to default. In OS Awareness tab, turn on
Enable OS Aware Debugging and select Zephyr OS if you want to debug your
application. You can ignore this step if you want to run the application only without
debugging. Once done, click Apply ➤ Debug. Your system should be ready to
receive the binary files via Debugger Console.

Figure 27. Heterogeneous Multicore Hardware Debugging Configuration 3

5. Programming and Running

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

36

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 28. Ashling RiscFree Debugger Console

The commands required in Debugger Console:

The needed commands in Debugger Console can be seen below:

set debug remote 1
restore <Absoulte_Path_to_your_Workspace>/bl31_801.bin binary 0x80000000
restore <Absoulte_Path_to_your_Workspace>/zephyr.bin binary 0x80100000
set $x1=0

The set debug remote 1 command is used to enable message transaction
acknowledgement
from the board to indicate the download completion of a binary file.
A sample screenshot can be seen below.

Use the set debug remote 1 command to enable message transaction
acknowledgement from the board to indicate the download completion of a binary
file. Refer to the following example.

Figure 29. Ashling RiscFree Debugger Console Output

8. Use the restore command to load the binary file to its destination memory. In this
example, the SSBL and Zephyr applications are loaded into HPS DDR memory.
Make sure to use the same addresses in the commands above. Refer to the
following sample screenshots of the application execution from the HPS UART
terminal.

Figure 30. Example Print Logs Part 1 - Setting up Zephyr and TinyML

5. Programming and Running

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

37

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 31. Example Print Logs Part 1 - Setting up Zephyr and TinyML

Figure 32. Example Print Logs Part 3 - Classifying Image

Figure 33. Example Print Logs Part 4 - Profiling TinyML model

5. Programming and Running

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

38

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Appendix

6.1. main.cc for Nios V Processor

#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <math.h>
#include "system.h"
#include <time.h>
#include <unistd.h>

//Import TensorFlow lite libraries
#include "tensorflow/lite/core/c/common.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_log.h"
#include "tensorflow/lite/micro/micro_time.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/micro/micro_profiler.h"
#include "tensorflow/lite/micro/recording_micro_interpreter.h"
#include "tensorflow/lite/micro/system_setup.h"
#include "tensorflow/lite/schema/schema_generated.h"

//Model data
#include "model/model_data.h"
#include "model/model_settings.h"

////Sample image
#include "image/figure-0.h"
#include "image/figure-1.h"
#include "image/figure-2.h"
#include "image/figure-3.h"
#include "image/figure-4.h"
#include "image/figure-5.h"
#include "image/figure-6.h"
#include "image/figure-7.h"
#include "image/figure-8.h"
#include "image/figure-9.h"

#define IMAGE_WIDTH 28
#define IMAGE_HEIGHT 28
#define NUM_CHANNELS 1
#define IMAGE_SIZE (IMAGE_WIDTH * IMAGE_HEIGHT * NUM_CHANNELS)

//ANSI Escape code
#define CRESET "\033[m"

int count;
uint8_t test_image[IMAGE_HEIGHT][IMAGE_WIDTH][NUM_CHANNELS];

namespace {
 const tflite::Model* model = nullptr;

 using OpResolver = tflite::MicroMutableOpResolver<5>;
 TfLiteStatus RegisterOps(OpResolver& op_resolver) {
 TF_LITE_ENSURE_STATUS(op_resolver.AddConv2D());
 TF_LITE_ENSURE_STATUS(op_resolver.AddAveragePool2D());
 TF_LITE_ENSURE_STATUS(op_resolver.AddReshape());

848984 | 2025.04.07

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

 TF_LITE_ENSURE_STATUS(op_resolver.AddFullyConnected());
 TF_LITE_ENSURE_STATUS(op_resolver.AddSoftmax());
 return kTfLiteOk;
 }
} // namespace

TfLiteStatus LoadModelandInference() {

 printf("[INFO]Setting up TinyML...\n\r");
 tflite::MicroProfiler profiler;
 OpResolver op_resolver;
 TF_LITE_ENSURE_STATUS(RegisterOps(op_resolver));
 model = tflite::GetModel(lenet_tflite);
 TFLITE_CHECK_EQ(model->version(), TFLITE_SCHEMA_VERSION);

 /* Arena size is a round number, which is determined
 * using the RecordingMicroInterpreter.
 */
 constexpr int kTensorArenaSize = 20000;
 uint8_t tensor_arena[kTensorArenaSize];
 constexpr int kNumResourceVariables = 24;

 tflite::RecordingMicroAllocator* allocator(
 tflite::RecordingMicroAllocator::Create(tensor_arena, kTensorArenaSize));
 tflite::RecordingMicroInterpreter Recordinginterpreter(
 model, op_resolver, allocator,
 tflite::MicroResourceVariables::Create(allocator, kNumResourceVariables),
 &profiler);

 TF_LITE_ENSURE_STATUS(Recordinginterpreter.AllocateTensors());
 TFLITE_CHECK_EQ(Recordinginterpreter.inputs_size(), 1);

 //Print loaded model input and output shape
 printf("Total output layers: %d\n\r",
Recordinginterpreter.outputs_size()); printf("Input shape: %d dimensions.
Dimension: %d %d %d %d. Type: %d\n\r",
 Recordinginterpreter.input(0)->dims->size,
 Recordinginterpreter.input(0)->dims->data[0],
 Recordinginterpreter.input(0)->dims->data[1],
 Recordinginterpreter.input(0)->dims->data[2],
 Recordinginterpreter.input(0)->dims->data[3],
 Recordinginterpreter.input(0)->type
);

 for (int i = 0; i < (int)(Recordinginterpreter.outputs_size()); ++i)
 printf("Output shape %d: %d dimensions. Dimension: %d %d. Type: %d\n\r",
 i,
 Recordinginterpreter.output(i)->dims->size,
 Recordinginterpreter.output(i)->dims->data[0],
 Recordinginterpreter.output(i)->dims->data[1],
 Recordinginterpreter.output(i)->type
);

 printf("[INFO]Setting up TinyML...Done\n\n\r");

 printf("[INFO]Uploading image...\n\r");

 //Visualize sample image in terminal
 int HashTag = 35;
 for (int i = 0; i < IMAGE_HEIGHT; i=i+2){
 for (int j = 0; j < IMAGE_WIDTH; j=j+2){
 printf("\033[38;2;%d;%d;%dm%c"
 CRESET,
 test_image[i][j][0],
 test_image[i][j][0],
 test_image[i][j][0],
 HashTag);
 }
 printf("\n");
 }
 printf("\n");

6. Appendix

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

40

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 //Input sample image to tflite model input.
 int len = 0;
 for (int i = 0; i < IMAGE_HEIGHT; i++){
 for (int j = 0; j < IMAGE_WIDTH; j++){
 for (int k = 0; k < NUM_CHANNELS; k++){
 Recordinginterpreter.input(0)->data.f[len] =
 float(test_image[i][j][k])/255.0;
 len++;
 }
 }
 }
 printf("[INFO]Uploading image...Done\n\n\r");

 printf("[INFO]Classifying image...\n\r");
 clock_t startTime = clock();
 TF_LITE_ENSURE_STATUS(Recordinginterpreter.Invoke());
 clock_t endTime = clock();
 printf("[INFO]Classifying image...Done\n\n\r");

 //Retrieve inference output
 int answer = 0;
 printf("Retrieve the inference output:\n");
 for (int i = 0; i < kCategoryCount; ++i){
 printf("%s score: %f\n\r",
 kCategoryLabels[i],
 Recordinginterpreter.output(0)->data.f[i]);
 if (Recordinginterpreter.output(0)->data.f[i] >
 Recordinginterpreter.output(0)->data.f[answer]) answer = i;
 }
 printf("\nInference made: %s\n\r", kCategoryLabels[answer]);
 int time_spent = int(endTime - startTime) / ALT_CPU_TICKS_PER_SEC;
 printf("Inference time: %d seconds\n\n\r", time_spent);

 printf("[INFO]Profiling TinyML model...\n\r");
 profiler.LogTicksPerTagCsv();
 printf("Ticks per seconds: %d\n\n", ALT_CPU_TICKS_PER_SEC);

 printf("Tensor Arena Allocation:\n");
 Recordinginterpreter.GetMicroAllocator().PrintAllocations();
 printf("[INFO]Profiling TinyML model...Done\n\n\r");

 return kTfLiteOk;
}

int SelectImage(uint8_t (*image)[IMAGE_WIDTH][NUM_CHANNELS]){
 for (int i = 0; i < IMAGE_HEIGHT; i++){
 for (int j = 0; j < IMAGE_WIDTH; j++){
 for (int k = 0; k < NUM_CHANNELS; k++){
 test_image[i][j][k] = image[i][j][k];
 }
 }
 }
 TF_LITE_ENSURE_STATUS(LoadModelandInference());

 return 0;
}

int main() {

 printf("\tHello from Nios V Processor TinyML Demonstration on MNIST\n\r");
 /*************************TFLITE-MICRO TINYML******************/

 SelectImage(test_image0);
 SelectImage(test_image1);
 SelectImage(test_image2);
 SelectImage(test_image3);

6. Appendix

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

41

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 SelectImage(test_image4);
 SelectImage(test_image5);
 SelectImage(test_image6);
 SelectImage(test_image7);
 SelectImage(test_image8);
 SelectImage(test_image9);

 return 0;
}

6.2. main.cc for Arm HPS Processor

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>

#include <zephyr/kernel.h>

//Import TensorFlow lite libraries
#include "tensorflow/lite/core/c/common.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_log.h"
#include "tensorflow/lite/micro/micro_time.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/micro/micro_profiler.h"
#include "tensorflow/lite/micro/recording_micro_interpreter.h"
#include "tensorflow/lite/micro/system_setup.h"
#include "tensorflow/lite/schema/schema_generated.h"

//Model data
#include " model/model_data.h"
#include " model/model_settings.h"

////Sample image
#include "image/figure-0.h"
#include "image/figure-1.h"
#include "image/figure-2.h"
#include "image/figure-3.h"
#include "image/figure-4.h"
#include "image/figure-5.h"
#include "image/figure-6.h"
#include "image/figure-7.h"
#include "image/figure-8.h"
#include "image/figure-9.h"

#define IMAGE_WIDTH 28
#define IMAGE_HEIGHT 28
#define NUM_CHANNELS 1
#define IMAGE_SIZE (IMAGE_WIDTH * IMAGE_HEIGHT * NUM_CHANNELS)

//ANSI Escape code
#define CRESET "\033[m"

#define SEC_TO_MSEC 1000ul
#define CLOCK_TICKS_PER_SEC 400000000

int count;
uint8_t test_image[IMAGE_HEIGHT][IMAGE_WIDTH][NUM_CHANNELS];

namespace {
 const tflite::Model* model = nullptr;

 using OpResolver = tflite::MicroMutableOpResolver<5>;
 TfLiteStatus RegisterOps(OpResolver& op_resolver) {
 TF_LITE_ENSURE_STATUS(op_resolver.AddConv2D());

6. Appendix

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

42

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 TF_LITE_ENSURE_STATUS(op_resolver.AddAveragePool2D());
 TF_LITE_ENSURE_STATUS(op_resolver.AddReshape());
 TF_LITE_ENSURE_STATUS(op_resolver.AddFullyConnected());
 TF_LITE_ENSURE_STATUS(op_resolver.AddSoftmax());
 return kTfLiteOk;
 }
} // namespace

TfLiteStatus LoadModelandInference() {

 printf("[INFO]Setting up TinyML...\n\r");
 tflite::MicroProfiler profiler;
 OpResolver op_resolver;
 TF_LITE_ENSURE_STATUS(RegisterOps(op_resolver));
 model = tflite::GetModel(lenet_tflite);
 TFLITE_CHECK_EQ(model->version(), TFLITE_SCHEMA_VERSION);

 /* Arena size is a round number, which is determined
 * using RecordingMicroInterpreter.
 */
 constexpr int kTensorArenaSize = 30000;
 uint8_t tensor_arena[kTensorArenaSize];
 constexpr int kNumResourceVariables = 24;

 tflite::RecordingMicroAllocator* allocator(
 tflite::RecordingMicroAllocator::Create(tensor_arena, kTensorArenaSize));
 tflite::RecordingMicroInterpreter Recordinginterpreter(
 model, op_resolver, allocator,
 tflite::MicroResourceVariables::Create(allocator, kNumResourceVariables),
 &profiler);

 TF_LITE_ENSURE_STATUS(Recordinginterpreter.AllocateTensors());
 TFLITE_CHECK_EQ(Recordinginterpreter.inputs_size(), 1);

 //Print loaded model input and output shape
 printf("Total output layers: %d\n\r", Recordinginterpreter.outputs_size());
 printf("Input shape: %d dimensions. Dimension: %d %d %d %d. Type: %d\n\r",
 Recordinginterpreter.input(0)->dims->size,
 Recordinginterpreter.input(0)->dims->data[0],
 Recordinginterpreter.input(0)->dims->data[1],
 Recordinginterpreter.input(0)->dims->data[2],
 Recordinginterpreter.input(0)->dims->data[3],
 Recordinginterpreter.input(0)->type
);

 for (int i = 0; i < (int)(Recordinginterpreter.outputs_size()); ++i)
 printf("Output shape %d: %d dimensions. Dimension: %d %d. Type: %d\n\r",
 i,
 Recordinginterpreter.output(i)->dims->size,
 Recordinginterpreter.output(i)->dims->data[0],
 Recordinginterpreter.output(i)->dims->data[1],
 Recordinginterpreter.output(i)->type
);

 printf("[INFO]Setting up TinyML...Done\n\n\r");

 printf("[INFO]Uploading image...\n\r");

 //Visualize sample image in terminal
 int HashTag = 35;
 for (int i = 0; i < IMAGE_HEIGHT; i=i+2){
 for (int j = 0; j < IMAGE_WIDTH; j=j+2){
 printf("\033[38;2;%d;%d;%dm%c"
 CRESET,
 test_image[i][j][0],
 test_image[i][j][0],
 test_image[i][j][0],
 HashTag);
 }
 printf("\n");
 }

6. Appendix

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

43

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 printf("\n");

 //Input sample image to tflite model input.
 int len = 0;
 for (int i = 0; i < IMAGE_HEIGHT; i++){
 for (int j = 0; j < IMAGE_WIDTH; j++){
 for (int k = 0; k < NUM_CHANNELS; k++){
 Recordinginterpreter.input(0)->data.f[len] =
 float(test_image[i][j][k])/255.0;
 len++;
 }
 }
 }
 printf("[INFO]Uploading image...Done\n\n\r");
 printf("[INFO]Classifying image...\n\r");
 int64_t startTime, endTime =0;
 int64_t tdelta = 0;
 startTime = sys_clock_cycle_get_64();
 TF_LITE_ENSURE_STATUS(Recordinginterpreter.Invoke());
 endTime = sys_clock_cycle_get_64();
 tdelta = endTime - startTime;
 printf("[INFO]Classifying image...Done\n\n\r");

 //Retrieve inference output
 int answer = 0;
 printf("Retrieve the inference output:\n");
 for (int i = 0; i < kCategoryCount; ++i){
 printf("%s score: %f\n\r",
 kCategoryLabels[i],
 Recordinginterpreter.output(0)->data.f[i]);
 if (Recordinginterpreter.output(0)->data.f[i]>
 Recordinginterpreter.output(0)->data.f[answer]) answer = i;
 }
 printf("\nInference made: %s\n\r", kCategoryLabels[answer]);
 printf("Ticks per seconds: %d\n\n", CLOCK_TICKS_PER_SEC);
 printf("Inference Time: %lf sec\n\n\r",
 ((double)(tdelta)) / CLOCK_TICKS_PER_SEC);
 printf("[INFO]Profiling TinyML model...\n\r");
 profiler.LogTicksPerTagCsv();
 printf("Detailed Profiling\n\n");
 profiler.Log();
 printf("Ticks per seconds: %d\n\n", CLOCK_TICKS_PER_SEC);
 printf("Inference Time: %lf sec\n\n\r",
 ((double)(tdelta)) / CLOCK_TICKS_PER_SEC);

 printf("Tensor Arena Allocation:\n");
 Recordinginterpreter.GetMicroAllocator().PrintAllocations();
 printf("[INFO]Profiling TinyML model...Done\n\n\r");

 return kTfLiteOk;
}

int SelectImage(uint8_t (*image)[IMAGE_WIDTH][NUM_CHANNELS]){
 for (int i = 0; i < IMAGE_HEIGHT; i++){
 for (int j = 0; j < IMAGE_WIDTH; j++){
 for (int k = 0; k < NUM_CHANNELS; k++){
 test_image[i][j][k] = image[i][j][k];
 }
 }
 }
 TF_LITE_ENSURE_STATUS(LoadModelandInference());
 return 0;
}

int main() {

 printf("\tHello from Agilex 5 SoC ARM Processor TinyML Demonstration on MNIST
\n\r");
 /*******************TFLITE-MICRO TINYML************************/

6. Appendix

848984 | 2025.04.07

AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Send Feedback

44

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 SelectImage(test_image0);
 SelectImage(test_image1);
 SelectImage(test_image2);
 SelectImage(test_image3);
 SelectImage(test_image4);
 SelectImage(test_image5);
 SelectImage(test_image6);
 SelectImage(test_image7);
 SelectImage(test_image8);
 SelectImage(test_image9);

 return 0;
}

6. Appendix

848984 | 2025.04.07

Send Feedback AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for
Microcontrollers

45

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Document Revision History for the AN 1011: TinyML
Applications in Altera FPGAs Using LiteRT for
Microcontrollers

Document Version Changes

2025.04.07 Initial release.

848984 | 2025.04.07

Send Feedback

© Altera Corporation. Altera, the Altera logo, the ‘a’ logo, and other Altera marks are trademarks of Altera
Corporation. Altera and Intel warrant performance of its FPGA and semiconductor products to current
specifications in accordance with Altera’s or Intel's standard warranty as applicable, but reserves the right to
make changes to any products and services at any time without notice. Altera and Intel assume no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to inwriting by Altera or Intel. Altera and Intel customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing
orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:techdocfeedback@altera.com?subject=Feedback%20on%20AN%201011:%20TinyML%20Applications%20in%20Altera%20FPGAs%20Using%20LiteRT%20for%20Microcontrollers%20(848984%202025.04.07)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

	AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for Microcontrollers
	Contents
	1. Overview
	1.1. Requirements

	2. Preparing LiteRT Inference Model
	2.1. Defining the Problem
	2.2. Gathering and Preparing Sample Data
	2.2.1. Preparing Dataset
	2.2.2. Preprocessing Dataset

	2.3. Building TensorFlow Model
	2.3.1. Constructing Model Architecture
	2.3.2. Configuring Model
	2.3.3. Training Model
	2.3.4. Evaluating the Model
	2.3.5. Saving and Loading Model

	2.4. Preparing the LiteRT Model
	2.4.1. Converting into LiteRT Model
	2.4.2. Saving the LiteRT Model
	2.4.3. Analyzing the LiteRT Model
	2.4.4. Loading a LiteRT Interpreter
	2.4.5. Evaluating the LiteRT Model

	2.5. Preparing Binaries for C/C++
	2.5.1. Converting LiteRT to a C Array
	2.5.2. Preparing a Header File for LiteRT C Array
	2.5.3. Preparing Supporting Header File for LiteRT C Array
	2.5.4. Preparing Main Function to Run TinyML
	2.5.5. Converting MNIST Sample into C Array

	3. Generating Nios V Processor System
	3.1. Building Hardware Design in Platform Designer
	3.2. Building Software Design with Ashling RiscFree IDE for Altera FPGAs
	3.2.1. Creating a Board Support Package
	3.2.2. Building LiteRT for Microcontroller Static Library
	3.2.3. Creating an Application Project File
	3.2.4. Building the LiteRT TinyML Application

	4. Generating Arm Processor System
	4.1. GHRD Hardware Design
	4.2. Building the Software Design
	4.2.1. Arm-Trusted-Firmware
	4.2.1.1. Booting from QSPI Flash
	4.2.1.2. Running through Ashling RiscFree IDE for Altera FPGAs Debugger

	4.2.2. Building LiteRT for Microcontrollers Static Library
	4.2.3. Zephyr OS Environment Setup
	4.2.4. Building the LiteRT TinyML Application

	5. Programming and Running
	5.1. Nios V Processor System
	5.2. Arm HPS Processor System
	5.2.1. Booting from QSPI
	5.2.2. Booting via the Debugger

	6. Appendix
	6.1. main.cc for Nios V Processor
	6.2. main.cc for Arm HPS Processor

	7. Document Revision History for the AN 1011: TinyML Applications in Altera FPGAs Using LiteRT for Microcontrollers

