Introducing Adafruit Crickit
#MakeRobotFriend

Created by lady ada

https://learn.adafruit.com/adafruit-crickit-creative-robotic-interactive-construction-kit

Last updated on 2022-03-10 03:37:43 PM EST

©Adafruit Industries Page 1 of 183

Table of Contents

Overview 7
Crickit Tour 10
« Power Input 1
« 4 x Hobby Servos 12
« 2 x DC Motors 14
« 4 x High Power Drivers 15
- 8 x Signal I/0 17
« 4 x Capacitive Touch 18
« NeoPixel Drive 18
« Speaker Drive 19
« Connecting Your Microcontroller to your Crickit Board 21
« seesaw USB Debug and Indicators 22
Update Your Crickit 23
« Step 1. Plug in USB cable into seesaw/Crickit 23
« Step 2. Double-click the Crickit Reset button 24
« Step 3. Look for pulsing yellow LED and green NeoPixel 24
« Step 4. Look for a New Disk on Your Computer 25
« Step 5. Download the latest firmware 25
« Step 6. Drag UF2 file onto CRICKITBOOT 26
Powering Crickit 26
« How to Power your Crickit 27
« Plug In DC Power Supplies 27
« AA Battery Packs 28
« 4 x AA Battery Packs for NiMH ONLY 28
« 3 x AA Battery Packs for Alkaline ONLY 29
« Not Recommended Power supplies 30
Assembly 30
Troubleshooting Crickit 33
» My Crickit Is Doing Something Wrong 33
« My Crickit Motors Aren't Moving! 33
« My Crickit Keeps Resetting, It Works For a Bit... Then Fails! 33
« HELP! My Crickit isn't working in MakeCode, and in Python | see a message "No 12C Device at Address: 49" 34
« Python: No Pullups found on SDL and SCL 35
« micro:bit Crickit does not work 35
Recommended Motors 35
« DC Gearbox Motors 35
« Servo-style DC motor 36
« Non-Geared DC Motor 37
Recommended Chassis 38
Recommended Servos 39
« Servo Extensions 39
« Popular plastic-gear servos 40
« Continuous Rotation Servos 41

©Adafruit Industries Page 2 of 183

« High Torque Servos 42

Recommended Speakers 43
- 4Q) Speakers 43
- 8Q Speakers 44
« Wall or Bone Transducers 45
Recommended Drives 46
« Solenoids 46
« Vibration Motors 47
Recommended Capacitive Touch 47
Programming Options 49
« Crickit with Circuit Playground Express 50
« Crickit with Feather MO/M4 Express CircuitPython Supported Feather 51
« Crickit with micro:bit Support 51
« Crickit HAT for Raspberry Pi 52
MakeCode 52
« Get Comfy With MakeCode 53
« Adding Crickit Extension 53
« For Circuit Playground Express and Feather Crickit (micro:bit is below) 53
« For micro:bit Crickit 55
MakeCode Servos 56
« Precise Pulses 58
MakeCode Drives 59
« Changing the Drive Analog/PWM Frequency 61
MakeCode DC Motors 62
« Setting Motor Speed 63
MakeCode Steppers 64
« MakeCode for Using a Stepper on the Motor Port 65
« Move the Motor Port Stepper One Direction Forever 65
« Using a Stepper on the Drive Port in MakeCode 66
« Move the Drive Port Stepper One Direction Forever 67
MakeCode Signals 67
« Using Signals in MakeCode 68
- Digital Reads and Writes 69
- Analog Reads 70
« For Crickit and Circuit Playground Express 70
« For Crickit and micro:bit 71
MakeCode Touch 71
« Example for Crickit plus Circuit Playground Express or Feather 72
« Example for Crickit and micro:bit 73
MakeCode Audio 74
« Amplifier Details 75
« Playing Sounds on Crickit with MakeCode 76
« Circuit Playground and Feather Crickit Version (micro:bit below) 76

©Adafruit Industries Page 3 of 183

« micro:bit Version 77

MakeCode NeoPixels 79
- MakeCode for Crickit NeoPixels 80
» Using the Crickit Onboard Single NeoPixel 80
« Crickit for Circuit Playground Express and Feather (micro:bit is below) 81
« For micro:bit + Crickit 82
« For More Information 83
CircuitPython Code 83
« Install CPX Special Build 83
CircuitPython Servos 86
« Test Servos 87
« Control Servo 88
« More Servos! 88
« Min/Max Pulse control 89
« Continuous Rotation Servos 90
« Disconnecting Servos or Custom Pulses 90
CircuitPython Drives o1
« Test Drive 92
« Set PWM Frequency 93
« Control Drive Output 93
« More Drivers! 93
CircuitPython DC Motors 94
« Import Libraries 96
« Control Motor 96
CircuitPython Steppers 97
« Bi-Polar or Uni-Polar Motor Port 98
« Uni-Polar Only Drive Port 101
CircuitPython Signals 102
- Digital Pin Modes 104
- Digital Read 104
- Digital Write 104
« Analog Reads 105
CircuitPython Touch 106
CircuitPython Audio 108
« Audio File Formats 109
« Amplifier Details 109
« Basic Audio Playback 10
« Import Libraries 10
- Create wave file and audio output m
« Interactive Audio m
CircuitPython NeoPixels 112
« NeoPixels with Circuit Playground Express + Crickit 13
« NeoPixels and the Crickit FeatherWing or Crickit Hat 115
« Crickit for micro:bit 116
« For More Information 116

©Adafruit Industries Page 4 of 183

Python Docs
CircuitPython Examples

Bubble Bot

- Parts List
« Wiring Diagram
« Code

Feynman Simulator
« Parts List

« Wiring Diagram

« Code

Slime Night

- How to Make Slime
« Parts Used

« Wiring Diagram

« CircuitPython Code

Flying Trapeze
« Parts List

« Wiring

« Boot.py

« CircuitPython Code

R.O.B. GyroBot

- Parts List
« Wiring Diagram
« Codel!

Gear Tower

« Parts List

« Wiring

« CircuitPython Code For "Force Wave" demo
« CircuitPython Code For "Theremin" demo

CPX-1701

- Parts List
« Wiring Diagram
« CircuitPython Code

Mag Neat-o

« Parts List
« Wiring Diagram
« Codel!

(Don't Fear) The Crickit

« Parts List
« Wiring Diagram
« CircuitPython Code

Arduino Code

« Download Adafruit_Seesaw library
» Arduino with micro:bit

©Adafruit Industries

116

116

17

17
18
18

120

120
121
122

123

124
124
126
126

128

128
130
130
130

133

133
135
135

138

138
140
140

141

141

142
142
143

144

145
146
146

149

149
151
151

154

154
155

Page 5 of 183

« Pin Definitions for Seesaw and Crickit

Arduino Servos

« Test Servos

« More Servos!

« Min/Max Pulse control

« Continuous Rotation Servos

« Disconnecting Servos or Custom Pulses

Arduino Drives

« Test Drive
« More Drivers!

Arduino DC Motors
Arduino Signals
Arduino Capacitive Touch

Arduino NeoPixels

« Crickit for Circuit Playground Express
« Crickit Wing for Feather

« Crickit for micro:bit

« Crickit HAT for Raspberry Pi

« Advanced Use - Using Seesaw to Control NeoPixels

Hacks & Upgrades

« Speeding up many requests from Raspberry Pi to CRICKIT

« Brown Outs?

F.A.Q.

Downloads

- Files

« Datasheets

« Circuit Playground Crickit Schematics
« Crickit HAT Schematics

©Adafruit Industries

155

157

158
159
160
160

161

162

163
164

165

168

171

172

173
173
174
174
174

177

177
178

179

180

180
180
180
182

Page 6 of 183

Overview

Sometimes we wonder if robotics engineers ever watch movies. If they did, they'd
know that making robots into slaves always ends up in a robot rebellion. Why even go
down that path? Here at Adafruit we believe in making robots our friends!

: Z'r/c/ﬂl

#MakeRébotFnend

E487316
KX-D

So if you find yourself wanting a companion, consider the robot. They're fun to
program, and you can get creative with decorations.

©Adafruit Industries Page 7 of 183

With that in mind, we designed Crickit - That's our Creative Robotics & Interactive Con
struction Kit. It's an add-on to our popular Circuit Playground Express that lets you #M
akeRobotFriend using CircuitPython, MakeCode (coming soon), or Arduino.

Bolt on your Circuit Playground using the included stand-off bolts and start controlling
motors, servos, solenoids. You also get signal pins, capacitive touch sensors, a
NeoPixel driver and amplified speaker output. It complements & extends the Circuit
Playground so you can still use all the goodies on the CPX, but now you have a
robotics playground as well.

Here are the three Crickit versions
available:

Crickit for Circuit Playground Express

Crickit for Feather

Crickit for micro:bit

Crickit HAT for Raspberry Pi

©Adafruit Industries Page 8 of 183

https://learn.adafruit.com//assets/53974
https://learn.adafruit.com//assets/53974
https://learn.adafruit.com//assets/60956
https://learn.adafruit.com//assets/60956
https://learn.adafruit.com//assets/61005
https://learn.adafruit.com//assets/61005

The Crickit is powered by seesaw, our 12C-to-whatever bridge firmware. So you only
need to use two data pins to control the huge number of inputs and outputs on the
Crickit. All those timers, PWMs, sensors are offloaded to the co-processor.

You get:

« 4 x Analog or Digital Servo control, with precision 16-bit timers

« 2 x Bi-directional brushed DC motor control, 1 Amp current limited each, with 8-
bit PWM speed control (or one stepper)

« 4 x High current "Darlington" 500mA drive outputs with kick-back diode
protection. For solenoids, relays, large LEDs, or one uni-polar stepper

« 4 x Capacitive touch sensors with alligator-pads

- 8 x Signal pins, digital in/out or analog inputs

« 1 x NeoPixel driver with 5V level shifter

« 1x Class D, 4-8 ohm speaker, 3W-max audio amplifier

All are powered via 5V DC, so you can use any 5V-powered servos, DC motors,
steppers, solenoids, relays etc. To keep things simple and safe, we don't support
mixing voltages, so only 5V, not for use with 9V or 12V robotic components.

©Adafruit Industries Page 9 of 183

https://learn.adafruit.com//assets/68897
https://learn.adafruit.com//assets/68897

Since you'll be working with high-current devices, we wanted to have a good solid
power supply system that minimizes risk of damage. The power supply has an 'eFuse'
management chip (https://adafru.it/Bfj) that will automatically turn off if the voltage
goes above 5.5V or below 3V and has over-current protection at 4A. Every motor
driver has kick-back protection. We think this is a nice and durable board for robotics!

Crickit Tour

Although the Crickit HAT for Raspberry Pi is not octagonal like other Crickets, the

HAT still has the same features that are listed below, just rearranged to fit the
rectangular HAT shape.

©Adafruit Industries Page 10 of 183

http://www.ti.com/product/TPS2595
http://www.ti.com/product/TPS2595

Your project start here, where power
comes into the Crickit and is then used to
control various motors and parts. We cover
the various ways you can power your
Crickit in the next section, since there's a
lot of flexibility depending on the budget,
portability and complexity of your project.

For now, assume you will plug in a 5V wall adapter to the 2.1mm DC jack. This DC jack
is the only way to provide power to Crickit. There's a USB jack (covered at the bottom
of this section) but you cannot power the Crickit that way (the USB jack is only for
debugging seesaw!)

Use 5V DC (4V to 5.5VDC range works) with positive-center voltage. If you try to plug
in a negative-center power supply, the polarity-protection will kick in and you will not

see any lights on the Crickit.

The Crickit uses a power management chip to keep you from accidentally powering it
from 9V or 12V, damaging your electronics. Look for the OK and /\ warning LEDs. If

©Adafruit Industries Page 11 of 183

https://learn.adafruit.com//assets/53955
https://learn.adafruit.com//assets/53955

you see the green OK LED, the power is fine! If you see the red warning LED, the
voltage is too low, too high, or too much current is being used.

You can turn off the Crickit at any time with the On/Off switch. This will turn off the 5V
power, completely disabling all motors, as well as turning off the seesaw control chip.

There's also a Reset button. This button will reset the seesaw chip, and can be used
to load new seesaw firmware (you won't likely have to do that). On the Feather Crickit,
this button also connects to the Feather reset pin. On the Circuit Playground Crickit, it
does not connect to the Playground Reset button.

On the Feather Crickit only, if you double-click the Feather reset button to load new
firmware, such as a new version of CircuitPython, the Crickit will also go into double-
click firmware-update mode. After you load the new firmware on the Feather, wait for
the firmware to start up, and then click the reset button again, once, to get the Crickit
back into regular operation mode.

Power options to consider:

« 3 x AA Battery Holder (https://adafru.it/BzH) with On/Off Switch (needs JST to
5.5/2.1 adapters)

« Wall power supply (https://adafru.it/Bzl) - 5V, 2A, US

« And more options in the https://www.adafruit.com/categories (https://adafru.it/
BzC)!

4 x Hobby Servos

" Hobby servos are really popular in
robotics because they're fairly low cost,
very easy to use, and reliable.

*
AN
N
%
@_

Sy
00 (A
(000

©Adafruit Industries Page 12 of 183

https://www.adafruit.com/product/3287
https://www.adafruit.com/product/276
https://www.adafruit.com/categories
https://learn.adafruit.com//assets/53954
https://learn.adafruit.com//assets/53954

The Crickit gives you 4 slots for 4
independent servos. You can use micro,
mini, standard, large size servos. Analog
and digital work great. Continuous or 180-
degree are OK. As long as you've got a
servo with a 3-pin connector, you're
golden.

Servo notes:

« The white/yellow 'signal' wire goes next to the # marking on each port.

« Each servo is controlled by a 16-bit hardware timer at 50 Hz so you will not see
any jitter. The signal line is 3.3V logic

« The power to each servo comes from the DC power supply, 5VDC nominal.

« The Crickit can set the pulse width to any value, but in general you'll want to
stick to 500ms to 2500ms wide pulses. This is customized in the Arduino,
CircuitPython or MakeCode software.

» There is variation from servo to servo, so getting the exact same speed or angle
may require some calibration and tweaking. Again, this can be customized in the
driver code, the Crickit just generates whatever pulses you like!

The seesaw chip on the Crickit does all the management of these pins so your
Feather or CPX does not directly control them, it must send a message to Crickit.
They are on seesaw pins 17, 16, 15, 14 in that order.

Typical Adafruit Hobby Servos to consider:

« Sub-micro Servo (https://adafru.it/Bzy)

« Micro Servo (https://adafru.it/f1g)

« Micro Servo - High Powered, High Torque Metal Gear (https://adafru.it/Bzz)

« Standard Servo - TowerPro SG-5010 (https://adafru.it/BzA)

« Standard Servo - High Torque Metal Gears (https://adafru.it/BzB)

« And more in the Adafruit Shop (https://adafru.it/BzC) including Servo
Accessories

©Adafruit Industries Page 13 of 183

https://learn.adafruit.com//assets/54070
https://learn.adafruit.com//assets/54070
https://www.adafruit.com/product/2201
https://www.adafruit.com/product/169
https://www.adafruit.com/product/2307
https://www.adafruit.com/product/155
https://www.adafruit.com/product/1142
https://www.adafruit.com/categories

2 x DC Motors

fritzing

Round & round, DC motors are great
whenever you need something to spin.
They tend to be faster, stronger and less
expensive than continuous-rotation servos,
but you need a proper DC motor driver to
use them. Luckily, the Crickit can drive two
DC motors.

You get 2 independently-controllable
brushed DC motor drives. Each motor can
go forwards or backwards, with 8-bit
speed control. There's a 5-pin terminal
block to connect motors, 2 pins for each
motor and a middle ground pin. (The
ground pin is for some advanced
techniques)

The power to the motors comes from the DC jack, about 5VDC so you can control
3V-6VDC motors, which are very common. The motors can be bare motors or with a

gear-box attached

You won't be able to control 1.5V DC motors, they'll burn out. You might be able to
control 6-9VDC motors, but they'll be a little slow. Same with 12VDC motors. Likewise,
you cannot use the Crickit with brush-less (ESC) motors. Those require a more

advanced motor driver!

« Each motor has two wires, you can connect the wires either way. If the spin of

the motor is opposite what you want, swap the wires.
- Each motor drive has a 1 Amp peak output. After that, the over-current

protection will kick in

+ We don't recommend paralleling the output to get twice the current because the

seesaw chip cannot guarantee that both will turn on/off at the same time

©Adafruit Industries

Page 14 of 183

https://learn.adafruit.com//assets/53956
https://learn.adafruit.com//assets/53956
https://learn.adafruit.com//assets/54065
https://learn.adafruit.com//assets/54065

« Instead of 2 DC motors, you could also control a single bi-polar stepper motor
(5VDC power) or single uni-polar stepper motor. You'll use the ground pin for the
5th (and 6th, if it exists) wire of the uni-polar stepper.

« Uses the DRV8833 dual H-Bridge motor driver chip (https://adafru.it/Bfk)

The seesaw chip on the Crickit does all the management of these pins so your
Feather or CPX does not directly control them, it must send a message to Crickit.
They are on seesaw pins 22 + 23 (motor 1) and 19 + 18 (motor 2)

Typical Adafruit Motors to consider:

« DC Toy Hobby Motor (https://adafru.it/xan)

« DC Motor in Servo Body (https://adafru.it/BzD)

« DC Gearbox Motor (https://adafru.it/BzE) - "TT Motor"

« TT Motor All-Metal Gearbox (https://adafru.it/BzF)

« TT Motor Bi-Metal Gearbox (https://adafru.it/BzG)

« And more including accessories in the Adafruit Shop (https://adafru.it/BzC)!

4 x High Power Drivers

In addition to servos and DC motors, you
may find you want to drive other high-
power electronics like relays, solenoids,
powerful LEDs, vibration motors, etc. Some
of these devices are motor-like and need a
kick-back protection diode, so having a
proper driver is important to avoid
damage!

This is where you will want to use the high
power Drive terminal block. You get four
high current drivers. Each driver is a
'Darlington’ transistor that, when turned

on, connects the output pin to ground.

©Adafruit Industries Page 15 of 183

http://www.ti.com/product/DRV8833
https://www.adafruit.com/product/711
https://www.adafruit.com/product/2941
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3802
https://www.adafruit.com/product/3801
https://www.adafruit.com/categories
https://learn.adafruit.com//assets/53958
https://learn.adafruit.com//assets/53958

SV Solenoid That's a little different than most other
outputs on the Crickit: The Crickit can only
connect/disconnect the drive pins to
Ground! You cannot 'set' the Drive output

5V Vibration Motor

5V Relay
to be a high voltage. So, if you're driving a

solenoid, relay, vibration motor, etc.
connect one side to the 5V pin, and the
High curnt LED(s) other side to one of the driver pins. You

can connect multiple wires to the 5V pin if
necessary.

Drive details:

« 500mA current limit per output, you can double/triple/quadruple pins up to get
more current, if you like. Just make sure to tell the Crickit to turn on/off all four
pins in a row.

- Kick-back protection diodes for each output to 5V power.

« Uses a ULN2003 Darlington driver (https://adafru.it/Bfl)

« Instead of 4 solenoids/relays you can connect & control a single uni-polar
stepper motor, connect the 5th (and 6th if it exists) wire to 5V. Won't work with
bi-polar steppers, use the DC motor ports for that.

« The drive outputs are also PWM-able, so you can control LED brightness or
motor power. If using with solenoids or relays, set the duty cycle to 0% or 100%
only.

- Advanced usage: If you want to drive higher-voltage non-inductive/motor
devices, like 12V LEDs, you can power the positive line of the LEDs from 12V,
then connect the negative line of the LEDs to drive pins. Make sure your 12V
power supply ground is connected to the Crickit ground. Not recommended
unless you feel confident you won't accidentally put 12VDC into the Crickit! Kick-
back diode wont work in this case so not for use with motors/coils/solenoids...

The seesaw chip on the Crickit does all the management of these pins so your
Feather or CPX does not directly control them, it must send a message to Crickit.
They are on seesaw pins 13, 12, 43, 42 in that order.

©Adafruit Industries Page 16 of 183

https://learn.adafruit.com//assets/54066
https://learn.adafruit.com//assets/54066
http://www.ti.com/product/ULN2003A

8 x Signal I/0

= gy S e
.
LT AN 2
: 5 \y

Sure you can drive servos and motors but
sometimes you just want to blink an LED
or read a button. The Crickit has an eight-
signal port. You can use these as "general
purpose" input/output pins. We solder a
3x8 female socket header in so you can
plug wires in very easily. Each signal has
matching 3V and Ground power pins.

« All pins are 3.3V logic level

« All pins can read analog inputs (potentiometers, bend sensors, etc) at 12-bit
resolution

« All pins can be set to outputs with high (3.3V) or low (0V) voltage

« All pins can drive about 7mA when set to outputs

« All pins can have an internal Y50Kohm pull-up resistor set when used as an
input

« Bonus: If you absolutely need more capacitive touch pins, Signal #1, #2, #3, #4 a
re four more capacitive touch inputs.

Signal pin #1is special and can be set to be a true analog 'output' with 10-bit
precision.

The seesaw chip on the Crickit does all the management of these pins so your
Feather or CPX does not directly control them, it must send a message to Crickit.
They are on seesaw pins 2, 3, 40, 41, 11, 10, 9, 8 in that order

©Adafruit Industries Page 17 of 183

https://learn.adafruit.com//assets/53960
https://learn.adafruit.com//assets/53960

4 x Capacitive Touch

Capacitive touch sensing allows you to
add human-triggered control to your robot.
When you touch the pad (either directly or
through an alligator clip, copper tape or
conductive ink) the Crickit can detect that
signal. We give you four capacitive touch
inputs with alligator/croc clip compatible
PCB pads.

» Capacitive touch works best with highly-conductive materials like metal
« But you can have the metal also connect to salty-wet items such as fruit or
water. However, do not try to dunk the Crickit into water or squish a grape into

the pads - use an alligator clip!

- Bonus: if you absolutely need more signal I/O pins, all four capacitive touch
pads can also act as analog/digital signal I/0 pins!

The seesaw chip on the Crickit does all the management of these pins so your

Feather, micro:bit or CPX does not directly control them, it must send a message to
Crickit. They are on seesaw pins 4, 5, 6, 7 in order.

NeoPixel Drive

©Adafruit Industries

Blinky lights will make your robot fun and
fashionable. And we've made it really easy
to add NeoPixels (WS2812/WS2811/SK6812
chipsets) to your project. The Crickit has a
3-terminal block connector with Ground,
Signal and 5V power. The signal line has a
level shifter on it so it will be 5V logic
level, for nice clean signals.

Page 18 of 183

https://learn.adafruit.com//assets/53961
https://learn.adafruit.com//assets/53961
https://learn.adafruit.com//assets/53962
https://learn.adafruit.com//assets/53962

This output is slightly different depending on what kind of Crickit you have

« If you have a Feather Crickit then the NeoPixels are driven by the seesaw chip
on the Crickit, and you must send seesaw commands to set colors. But that
means no extra pins are needed from your Feather.

« If you have a Circuit Playground Crickit then the NeoPixels are driven by the
Circuit Playground A1 pad by default. This way you can use the MakeCode
emulator and built in Circuit Playground CircuitPython library. However, if you
want, you can cut the jumper underneath the Crickit and solder closed the ss
pad so that the seesaw chip controls the NeoPixels (for advanced hackers only).

« If you have a micro:bit Crickit, NeoPixels are driven by Pin 16. You can use the
NeoPixel Extension in MakeCode, specify Pin 16 as the pin the NeoPixels are
connected to and you're set. However, if you want, you can cut the jumper
underneath the Crickit and solder closed the ss pad so that the seesaw chip
controls the NeoPixels (for advanced hackers only).

If you choose to have the NeoPixel driven from the seesaw, note it is on seesaw pin
#20

Adafruit sells a very wide variety of NeoPixel products - shop here in the Adafruit
Store (https://adafru.it/dYn)!

Speaker Drive

| , “ Audio animatronics? Yes! Your Crickit can

| make fairly loud sounds thanks to the built
in Class-D speaker driver. This will let you
amplify audio. However please note that
the Crickit does not in-itself make audio.
The audio must come from the controlling
board, such as the Feather or Circuit
Playground.

At this time, we recommend using the speaker with CircuitPython. MakeCode and
Arduino can make tones but don't have easy to use features such as WAV file
support.

- Class D audio amplifier

©Adafruit Industries Page 19 of 183

https://www.adafruit.com/category/168
https://www.adafruit.com/category/168
https://learn.adafruit.com//assets/53963
https://learn.adafruit.com//assets/53963

« Can drive 4Q to 8Q speaker. Up to 3W with 4Q and up to 1W with 8Q

« There's a small potentiometer you can use to adjust the audio volume. By
default we set it to the halfway point. Please be gentle if adjusting, don't try to
crank it past the two stop-points.

« Ouput is 5VDC BTL (bridge-tied-load) so do not connect to a stereo system or
other line-input!

« On the Circuit Playground Crickit the speaker is connected directly to the AO
pad (the analog output).

« On the Feather Crickit the speaker input is marked Audio on the PCB and you
can solder a jumper to the Feather AO pin if desired.

- On the micro:bit Crickit, the speaker is connected to Pin O, the standard
micro:bit audio output pin.

Speakers to consider:

« Thin Plastic Speaker (https://adafru.it/fHu) w/Wires - 8 ohm

« Speaker (https://adafru.it/t1b) - 3" Diameter - 8 Ohm 1 Watt

« Mini Metal Speaker (https://adafru.it/dDb) w/ Wires - 8 ohm 0.5W

« Mono Enclosed Speaker - 3W 4 Ohm (https://adafru.it/uyB)

« Breadboard-Friendly PCB Mount Mini Speaker (https://adafru.it/'yFg) - 8 Ohm
0.2wW

« And more in the Adafruit shop (https://adafru.it/BzC)!

©Adafruit Industries Page 20 of 183

https://www.adafruit.com/product/1891
https://www.adafruit.com/product/1313
https://www.adafruit.com/product/1890
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/1898
https://www.adafruit.com/categories

Connecting Your Microcontroller to your
Crickit Board

If you have a Circuit Playground Crickit,
you can attach the Playground in the
middle using 6 standoff bolts that come
with the kit. Make sure you tighten these
as loose bolts can cause connection
issues.

There's six connections to make

Ground - signal and power ground
between Crickit and Playground

SDA and SCL - the 12C data connection
used to send/receive data from the Crickit
A1 - Used for the NeoPixel output default
AO - Used for the speaker output

VOUT - This bolt lets you safely power the
Circuit Playground from the Crickit so you
don't need to separately power the
Playground with batteries

If you have a Feather, you can plug it right
into the center of the Crickit.

Despite all the sockets, you only will be
using 4 connections total:

R N N ;2 Ground - signal and power ground
pg CO0C00000000 O O O 8 between Crickit and Feather

" SDA and SCL - the I12C data connection

v o 5 *8dm g ' -‘. used to send/receive data from the Crickit
'" Q00000000000 wrn 3.3V - This connection lets you power the

mm P '
Feather from the Crickit so you don't need

n‘
p» to separately power the Feather with

[#1- LN ﬂ.:m -;n—- " A

batteries or USB. Note it will only power
the 3.3V line, not VUSB or VBAT

There's an optional AUDIO jumper if you
want to connect the AO Feather line to the

Speaker.

©Adafruit Industries Page 21 of 183

https://learn.adafruit.com//assets/53964
https://learn.adafruit.com//assets/53964
https://learn.adafruit.com//assets/60959
https://learn.adafruit.com//assets/60959

LR R R R R RN
LA AR R R B R R R AR R R R R RN

fritzing

The micro:bit Crickit is the easiest of them
all! Just plug in your micro:bit with the LED
grid facing towards the pin numbers as
shown on the Crickit silkscreen.

You'll also see that Pin O is marked for
speaker use and Pin 16 for NeoPixels (sun
icon).

The Crickit HAT for Raspberry Pi uses the
standard Pi 40 pin header (at top in the
picture at left) to plug onto the Pi
expansion header.

The holes in the Crickit HAT align with the
holes in the Pi so you can use standoff
posts for a secure fit.

All of the functional blocks on the
octagonal Crickit boards are on the Crickit
HAT, they are just moved to fit the
rectangular HAT shape.

seesaw USB Debug and Indicators

©Adafruit Industries

The seesaw chipset is the programmed
ATSAMD21 processor in the south section
of the board. It comes with its own parts
too

Page 22 of 183

https://learn.adafruit.com//assets/60958
https://learn.adafruit.com//assets/60958
https://learn.adafruit.com//assets/62076
https://learn.adafruit.com//assets/62076
https://learn.adafruit.com//assets/53965
https://learn.adafruit.com//assets/53965

Across from the power input is the seesaw debug USB connection. This USB power ¢
annot power the Crickit and it also does not connect to the Feather or Circuit
Playground USB.

It's only for debugging/reloading seesaw firmware. Basically, if we add more Crickit
capabilities, you could load new firmware over this USB connection. In general, you
won't be using this port, you may want to cover it with some masking tape!

To the right is a yellow Activity LED, which will flash when seesaw sends/receives
commands from your Circuit Playground or Feather. To the left is a seesaw NeoPixel.
You can control this NeoPixel if you like, to give you status information, as an
advanced usage

The internal NeoPixel is on seesaw pin #27

Update Your Crickit

Your Crickit contains a special interface chip we call seesaw. Like a see-saw you see
in a playground, it goes up/down back/forth. In this case, instead of holding children,
it sends commands and responses back and forth - motor movement, sensors inputs,
signal i/o...

The seesaw code is contained in a microcontroller near the bottom of the Crickit, and
that chip comes with the seesaw firmware on it already when you get it!

But we do make improvements to the seesaw firmware, fix bugs, and improve
performance

So its a good idea to update your Crickit when you get it! It's easy and only takes a
few seconds.

Step 1. Plug in USB cable into seesaw/Crickit

There's a little USB connector at the bottom of your Crickit labeled seesaw only! Plug
a standard data-sync USB cable into that port and into your computer. You do not
need to plug in the DC power jack or power the Feather/CircuitPlayground.

Do check that the switch on the Crickit is switched to ON

©Adafruit Industries Page 23 of 183

Step 2. Double-click the Crickit Reset
button

On the Crickit for CPX, Feather or
Micro:bit, this button is next to the DC jack
and is pretty large.

On the Raspberry Pi, its more compact,
and is right below the status NeoPixel

"\VE TOUCH

Step 3. Look for pulsing yellow LED and
green NeoPixel

If you have a good USB connection and
you double-click right, you'll see the left
LED turn green and the right hand little
yellow LED start pulsing

©Adafruit Industries Page 24 of 183

https://learn.adafruit.com//assets/57189
https://learn.adafruit.com//assets/57189
https://learn.adafruit.com//assets/67690
https://learn.adafruit.com//assets/67690
https://learn.adafruit.com//assets/57190
https://learn.adafruit.com//assets/57190

Step 4. Look for a New Disk on Your
Computer

Folders (7)

v Devices and drives (3)

- Local Disk (C:)
i | B . .
: 1.08 TB free of 1.81 TB You'll see a new disk drive on your
_ computer called CRICKITBOOT (short for
DVD Drive (D:)
i crickit bootloader)
CRICKITBOOT (F:)

L1
~ 3,36 MB free of 3.87 MB

Step 5. Download the latest firmware

Click here to go to the download page for the latest Crickit firmware releases.

Latest Crickit seesaw Firmware

https://adafru.it/BMU

Download the correct file for your specific hardware:

« Crickit HAT = seesaw-crickitHat.uf2
- All others = seesaw-crickit.uf2

©Adafruit Industries Page 25 of 183

https://learn.adafruit.com//assets/57191
https://learn.adafruit.com//assets/57191
https://github.com/adafruit/seesaw/releases/latest

Step 6. Drag UF2 file onto CRICKITBOOT

Folders (7) Drag that file you downloaded onto the

v Devices and drives (3)
' disk drive, after it is completed the drive

- Local Disk (C:) . . .
t j—| will disappear (you may get a complaint
1.08 TB free of 1.81 TB
from the operating system)
@ DVD Drive (D:)
]
CRICKITBOOT (F:)
-
-~ 3.36 MB free of 3.87 P'A'B . [if""’)' to CRICKITBOOT (F:) ‘

That's it! You're now updated

Powering Crickit

000000000
Q00000000

On the Crickit HAT, the 5V power plug is
next to the 2x20 connector

The first thing you'll learn when making robots is that they use a lot of power. So
making sure you have your power supply all worked out is super important. We've
tried to make the power supply as easy and safe as possible, so you don't have to

©Adafruit Industries Page 26 of 183

https://learn.adafruit.com//assets/57192
https://learn.adafruit.com//assets/57192
https://learn.adafruit.com//assets/67687
https://learn.adafruit.com//assets/67687

worry about damaging your electronics or robot. To do that we made some important
design decisions.

How to Power your Crickit

It's really important to read and understand how to power your Crickit!

« You MUST provide about 4-5 Volts DC power to the Crickit to power the servos,
motors, solenoids, NeoPixels, etc.

« You CANNOT provide this power by plugging the Crickit, micro:bit, Feather,
Raspberry Pi or Circuit Playground into USB. Computer USB ports cannot
provide the 2 Amp + required to drive robotics, LEDs, speakers...

« Power to the Crickit is provided via the 2.1mm DC Jack only!

« The Cricket has two LEDs to let you know how the power supply is doing. If you
see the green LED next to the smiley face, you're good to go. If you see the red
LED next to the warning triangle, the voltage is too high, too low or too much
current is being drawn.

« The Crickit power will also power the Circuit Playground Express, micro:bit,
Raspberry Pi or Feather so you don't need separate power for your
microcontroller board (however, if you want to plug it into USB for programming,
that's totally OK too!)

Here's our recommended ways to power the Crickit:

Plug In DC Power Supplies

These get wall power and give you a nice clean 5V DC power option. 5V 2A works for
most project with a motor or two...

5V 2A (2000mA) switching power supply -
UL Listed

This is an FCC/CE certified and UL listed
power supply. Need a lot of 5V power?
This switching supply gives a clean
regulated 5V output at up to 2000mA. 110
or 240 input, so it works...
https://www.adafruit.com/product/276

©Adafruit Industries Page 27 of 183

https://www.adafruit.com/product/276
https://www.adafruit.com/product/276
https://www.adafruit.com/product/276

And a 5V 4A supply will give you lots of power so you can drive 4 or more servos,
motors, etc. Use this if you notice you're running out of power with a 5V 2A adapter

5V 4A (4000mA) switching power supply -
UL Listed

Need a lot of 5V power? This switching
supply gives a clean regulated 5V output
at up to 4 Amps (4000mA). 110 or 240
input, so it works in any country. The
plugs are "US...
https://www.adafruit.com/product/1466

AA Battery Packs

On the go? Portable power is possible! Use AA battery packs.

The number of batteries you need depends on whether you are using Alkaline or
NiMH rechargeables.

We recommend NiMH rechargeables. For one, they have less waste, but they also
perform better than alkalines in high-current draw robotics. So if you can, please use
NiMH!

4 x AA Battery Packs for NiMH ONLY

NiMH batteries have a 1.3V max voltage, so 4 of them is 4 x 1.3 = 5.2 Volts. Perfect!

4 x AA Battery Holder with On/Off Switch
Make a nice portable power pack with this
4 x AA battery holder. It fits any alkaline or
rechargeable AA batteries in series.
There's a snap on cover and an on/off
switch which can...
https://www.adafruit.com/product/830

©Adafruit Industries Page 28 of 183

https://www.adafruit.com/product/1466
https://www.adafruit.com/product/1466
https://www.adafruit.com/product/1466
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830

3 x AA Battery Packs for Alkaline ONLY

Alkaline batteries have a 1.5V max voltage, so 4 of them is 4 x 1.5 = 6 Volts. That's too
high! Instead we recommend 3 in series for 3 x 1.5V = 4.5 VDC

3 x AA Battery Holder with 2.1mm Plug
Here's another addition to our growing
family of AA battery holders. A holder for
three (3) AA batteries!...
https://www.adafruit.com/product/3842

If you're making a custom battery pack you may want to pick up a 2.1mm DC jack

adapter, so you can connect battery pack wires

©Adafruit Industries

Waterproof 3xAA Battery Holder with On/
Off Switch

Keep your power source safe and toasty
in these waterproof 3xAA battery holders.
They're just like classic switched battery
holders, but designed for survivall The
case has a rubber...
https://www.adafruit.com/product/771

Male DC Power adapter - 2.1mm plug to
screw terminal block

If you need to connect a battery pack or
wired power supply to a board that has a
DC jack - this adapter will come in very
handy! There is a 21mm DC plug on one
end, and a screw...
https://www.adafruit.com/product/369

Page 29 of 183

https://www.adafruit.com/product/3842
https://www.adafruit.com/product/3842
https://www.adafruit.com/product/771
https://www.adafruit.com/product/771
https://www.adafruit.com/product/771
https://www.adafruit.com/product/369
https://www.adafruit.com/product/369
https://www.adafruit.com/product/369

Not Recommended Power supplies

« LiPoly Batteries - 1 battery is 3.7V, too low. 2 batteries is 7.2V, too high! You could
possibly use a 7.2V pack and then a UBEC to step down to 5V (https://adafru.it/
efD) but its not recommended

- Lead Acid Batteries - These are heavy and you'll need a custom charging
solution. You can probably get away with a 2 x 2V cell pack, or a 3 x 2V cell
pack and then add some 1N4001 diodes to drop the voltage, but it's for
advanced hacking!

« USB Power Packs - In theory you can use a USB to 2.1mm DC power adapter (htt
ps://adafru.it/Bfm), but power packs sometimes dislike the kinds of current draw
that motors have (high current peaks for short amounts of time) So
experimentation is key!

Assembly

Only the Circuit Playground Express + Crickit combination needs assembly, the
Feather and micro:bit Crickits have sockets which the microcontroller plugs into.

The Crickit HAT for Raspberry Pi does not need assembly either, it has female
receptors for a male Raspberry Pi header.

The Circuit Playground Express version of
Crickit comes with a package of six
threaded, hexagonal brass standoffs.
These will hold the Circuit Playground
Express above and onto the Crickit.

©Adafruit Industries Page 30 of 183

https://www.adafruit.com/product/1385
https://www.adafruit.com/product/2697
https://learn.adafruit.com//assets/57174
https://learn.adafruit.com//assets/57174

Using a Philips screwdriver and the
provided screws, attach the standoffs to
the six large holes on the inside ring of
Crickit. There are three holes near the
Adafruit logo and three more near the
Neopixel and speaker outputs. You do not
want to put the standoffs on the holes on
the outside edge of Crickit - there are 8
mounting holes there but these standoffs
are needed for the Circuit Playground
Express.

Tighten the screws firm but do not try to tighten excessively. A good mechanical and
electrical connection is needed but excessive torque could crack a circuit board or at
least make things hard to take apart later.

Once you have the six standoffs screwed into Crickit, place a Circuit Playground
Express board (ID 3333, not the Circuit Playground Classic board ID 3000) onto the
standoffs with the silver USB-B port of the Express pointing in the same direction as
the Crickit black power jack. This will align the standoffs to the following pads:

4 o'clock: A1, "4:30": AO, 5 o'clock: VOUT

10 o'clock: SDA, "10:30": SCL, 11 o'clock: GND

©Adafruit Industries Page 31 of 183

https://learn.adafruit.com//assets/53967
https://learn.adafruit.com//assets/53967

Once you have the Circuit Playground
Express lined up correctly, use the
remaining screws to attach the boards
together. Start with one screw into one
standoff, say GND, leave it loose a bit, then
put in the VOUT screw, loose, then the
others loosely. Ensure things are lined up,
then carefully tighten each screw. Again, a
firm connection but not overly tight.

Now the two boards should be attached to
one another.

There are circular markings on the bottom
- of Crickit for four mounting pads (Adafruit
il S %2 Y |D 550 (https://adafru.it/dLG)) if you would

“Be ~
fgg P b"/"h[© like to use the board on a surface and

0 oy

i
protect the surface and bottom of your
Crickit.

'a

.%Ep

2 {\‘? | A
% it

If you happen to lose a standoff or screw(s), a new package is available from Adafruit:

©Adafruit Industries Page 32 of 183

https://learn.adafruit.com//assets/53970
https://learn.adafruit.com//assets/53970
https://learn.adafruit.com//assets/54006
https://learn.adafruit.com//assets/54006
https://learn.adafruit.com//assets/54007
https://learn.adafruit.com//assets/54007
https://www.adafruit.com/product/550
https://www.adafruit.com/product/550

Circuit Playground Bolt-On Kit

You have a Circuit Playground Express,
but you need to mount it to your charming
cardboard robot friend, eh? Not so easy if
you...
https://www.adafruit.com/product/3816

Little Rubber Bumper Feet - Pack of 4
Keep your electronics from going
barefoot, give them little rubber feet!
These small sticky bumpers are our
favorite accessory for any electronic kit or
device. They are sticky, but...
https://www.adafruit.com/product/550

Troubleshooting Crickit

Your Crickit is well tested but there's things that can trip you up! Here's a few common

issues we see

My Crickit Is Doing Something Wrong

We do have bugs once in a while, so please always try updating to the latest Crickit
seesaw firmware (https://adafru.it/BMV) - then see if the bug persists

My Crickit Motors Aren't Moving!

My Crickit Keeps Resetting, It Works For a Bit... Then Fails!

Check the power supply. There's a few ways to know that power is good:

1. Check the "Happy Face" green LED below the power switch, it should stay lit!
2. Check the "Warning Symbol" red LED below the power switch, it should be off

©Adafruit Industries

Page 33 of 183

https://www.adafruit.com/product/3816
https://www.adafruit.com/product/3816
https://www.adafruit.com/product/550
https://www.adafruit.com/product/550
https://learn.adafruit.com/adafruit-crickit-creative-robotic-interactive-construction-kit/update-your-crickit
https://learn.adafruit.com/adafruit-crickit-creative-robotic-interactive-construction-kit/update-your-crickit

If you have updated the Crickit seesaw
firmware (see above) we have added
NeoPixel feedback, the LED will be green
when power is good and blink red when
power is bad!

HELP! My Crickit isn't working in MakeCode, and in
Python | see a message "No 12C Device at Address: 49"

A super common issue we see is people using the Crickit with Circuit Playground
Express (CPX) and the bolts/screws have come loose! Those bolts aren't just
mechanical, they pass signals back and forth between the CPX and the Crickit!

If you're having issue, first thing to check is that those screws are tightly attached!

Another common issue we see is not having good power to the Crickit. Check that
you have fresh batteries or a good 5V power supply. Also check the Crickit is on!
There's an on/off switch next to the power jack

©Adafruit Industries Page 34 of 183

https://learn.adafruit.com//assets/57212
https://learn.adafruit.com//assets/57212

Python: No Pullups found on SDL and SCL

This most often indicated the Crickit is not powered.
If you're running Crickit on battery power, you need fresh batteries.

If you use the wall power brick to provide power, ensure it is plugged in and the
power switch is on.

If batteries aren't an issue, try clicking reset on the Crickit board to kick it back into
running

micro:bit Crickit does not work

Be sure the micro:bit LED matrix faces towards the Crickit Seesaw chip and USB
firmware update plug and the micro:bit reset button faces the Crickit black power
jack. If you plug the micro:bit in backwards, it won't control things properly. Unplug
the micro:bit, make sure the 5x5 grid of LEDs faces the Crickit printing that says
"micro:bit LED grid faces this way" and you should be set.

Recommended Motors

DC Gearbox Motors

These DC motors have a gear box already built in, and wires attached, so they're
super easy to use:

DC Gearbox Motor - "TT Motor" - 200RPM
-3to 6VDC

Perhaps you've been assembling a new
robot friend, adding a computer for a
brain and other fun personality touches.
Now the time has come to let it leave the
nest and fly on...
https://www.adafruit.com/product/3777

We also have a wide range of matching wheels:

©Adafruit Industries Page 35 of 183

https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777

Orange and Clear TT Motor Wheel for TT
DC Gearbox Motor

Usually when one needs an orange
wheel it's a garnish for a cocktail, like a
tasty Sidecar. And speaking of cars, this
wheel is for driving, not...
https://www.adafruit.com/product/3766

Thin White Wheel for TT DC Gearbox
Motors - 65mm Diameter

We're keepin' it wheel with this onel!
Plastic gear-box motors (also known as
'TT' motors) are an easy and low cost way
to get your projects moving. But...
https://www.adafruit.com/product/3763

Skinny Wheel for TT DC Gearbox Motors
Plastic gear-box motors (also known as
'TT' motors) are an easy and low cost way
to get your projects moving. But we've
noticed that there are not a lot of nice TT
motor...
https://www.adafruit.com/product/3757

Other accessories are available, check the Adafruit shop for "TT Motor" items (https://
adafru.it/Bfn) for the wide range of add-ons available.

Servo-style DC motor

If you need a motor that is very compact (but not very powerful) these DC-in-servo-
body motors can do the job:

©Adafruit Industries Page 36 of 183

https://www.adafruit.com/product/3766
https://www.adafruit.com/product/3766
https://www.adafruit.com/product/3766
https://www.adafruit.com/product/3763
https://www.adafruit.com/product/3763
https://www.adafruit.com/product/3763
https://www.adafruit.com/product/3757
https://www.adafruit.com/product/3757
https://www.adafruit.com/?q=tt%20motor

DC Motor in Micro Servo Body

This tiny DC Motor in Micro Servo Body is
an interesting motor - it's the same size
and shape as our micro servo but itisn't a
servo. It's...
https://www.adafruit.com/product/2941

Which can be used with this wheel:

Wheel for Micro Continuous Rotation
FS90R Servo

We're keepin' it wheel with this one!Need
a great drive solution for your little robotic
friends? This black plastic Micro
Continuos...
https://www.adafruit.com/product/2744

Non-Geared DC Motor

Non-geared DC motors are very weak but very fast: great for fans:

DC Toy / Hobby Motor - 130 Size

These are standard 130 size' DC hobby
motors. They come with a wider operating
range than most toy motors: from 4.5 to
9VDC instead of 1.5-4.5V. This range
makes them perfect...
https://www.adafruit.com/product/711

©Adafruit Industries Page 37 of 183

https://www.adafruit.com/product/2941
https://www.adafruit.com/product/2941
https://www.adafruit.com/product/2744
https://www.adafruit.com/product/2744
https://www.adafruit.com/product/2744
https://www.adafruit.com/product/711
https://www.adafruit.com/product/711

Recommended Chassis

This chassis is cute, red and has two DC motors so its super easy to drive from the
Crickit's dual DC motor port. You may need to use some wires to extend the DC motor

connections (they're a tad short)

Mini Round Robot Chassis Kit - 2WD with
DC Motors

Unleash your inner Mad Max and make
your vehicle dreams a reality with the Mini
Red Round Robot Chassis...
https://www.adafruit.com/product/3216

This chassis is nearly identical, but has 3 layers, so you can FIT MORE STUFF!

Mini 3-Layer Round Robot Chassis Kit -
2WD with DC Motors

Does this guy look familiar? Of course it
does! It's our Black, 3-Layer Round Robot
Chassis Kit from
https://www.adafruit.com/product/3244

This chassis is not as nice as the above, but if you fancy it, it comes with two servo-
style DC motors and can use the DC motor control on the Crickit as well

©Adafruit Industries

Page 38 of 183

https://www.adafruit.com/product/3216
https://www.adafruit.com/product/3216
https://www.adafruit.com/product/3216
https://www.adafruit.com/product/3244
https://www.adafruit.com/product/3244
https://www.adafruit.com/product/3244

Mini Robot Rover Chassis Kit - 2WD with
DC Motors

Unleash your inner Mad Max and make
your vehicle dreams a reality with the Mini
Robot Rover...
https://www.adafruit.com/product/2939

Recommended Servos

You're in luck, you can use just about any kind of servo!

Note that many of the photos below don't show the additional motor horns, but every
servo comes with plastic clip-on parts!

o

\
l

Tower Pro
SG-5010
Tovae 634 B

Servo Extensions

People often ask us what they can do if the wire to their Servo is to short for their
project. Not a problem! These cables act as extension cords - now you've got plenty
of room.

©Adafruit Industries Page 39 of 183

https://www.adafruit.com/product/2939
https://www.adafruit.com/product/2939
https://www.adafruit.com/product/2939

Servo Extension Cable - 30cm /12" long -
Stretch out your servo connections with
this flexible servo extension cord. It has a
3 pin shrouded "male" connection to plug
your servo into and then, 30cm later, a 3

pin...
https://www.adafruit.com/product/972

Servo Extension Cable - 50cm /19.5" long
Stretch out your servo connections with
this flexible servo extension cord. It has a
3 pin shrouded "male" connection to plug
your servo into and then, 50cm later, a 3

pin...
https://www.adafruit.com/product/973

Popular plastic-gear servos

The most popular/common servos have plastic gears, they're plenty strong and not
too expensive!

These can go back and forth, rotating about 180 degrees

They come in 'standard’ size:

Standard servo - TowerPro SG-5010

This high-torque standard servo can
rotate approximately 180 degrees (90 in
each direction). You can use any servo
code, hardware, or library to control these
servos. Good for...
https://www.adafruit.com/product/155

©Adafruit Industries Page 40 of 183

https://www.adafruit.com/product/972
https://www.adafruit.com/product/972
https://www.adafruit.com/product/973
https://www.adafruit.com/product/973
https://www.adafruit.com/product/155
https://www.adafruit.com/product/155

And 'micro' size, not as strong but much more compact

Micro servo

Tiny little servo can rotate approximately
180 degrees (90 in each direction) and
works just like the standard kinds you're
used to but smaller. You can use any
servo...
https://www.adafruit.com/product/169

Continuous Rotation Servos

These servos look a lot like the above but they rotate all the way around. Unlike
standard servos you can't control the location of the horn, just the speed and
direction it which it turns. Good as an alternative to DC motors for wheeled bots. For
that reason, they tend to get purchased with matching wheels!

Continuous Rotation Servo

This servo rotates fully forward or
backward instead of moving to a position.
You can use any servo code, hardware, or
library to control these servos. Good for
making simple moving...
https://www.adafruit.com/product/154

Continuous Rotation Servo Wheel

Plastic wheel with a cutout specially
designed to allow attachment to our
larger continuous rotation servo. Makes it
easy to get your...
https://www.adafruit.com/product/167

©Adafruit Industries Page 41 of 183

https://www.adafruit.com/product/169
https://www.adafruit.com/product/169
https://www.adafruit.com/product/154
https://www.adafruit.com/product/154
https://www.adafruit.com/product/167
https://www.adafruit.com/product/167

High Torque Servos

Continuous Rotation Micro Servo

Need to make a tiny robot? This little
micro servo rotates 360 degrees fully
forward or backward, instead of moving to
a single position. You can use any servo
code, hardware,...
https://www.adafruit.com/product/2442

Wheel for Micro Continuous Rotation
FS90R Servo

We're keepin' it wheel with this one!Need
a great drive solution for your little robotic
friends? This black plastic Micro
Continuos...
https://www.adafruit.com/product/2744

If you need more power, metal-gear servos can give you better torque, but at
additional cost (since the gears have to be machined)

These are not continuous rotation

©Adafruit Industries

Standard Size - High Torque - Metal Gear
Servo

This high-torque standard servo now
comes in a metal-gear flavor, for extra-
high torque (10 kg*cm!) and reliability! It
can rotate at least 120 degrees (60 in
each direction) with a...
https://www.adafruit.com/product/1142

Page 42 of 183

https://www.adafruit.com/product/2442
https://www.adafruit.com/product/2442
https://www.adafruit.com/product/2744
https://www.adafruit.com/product/2744
https://www.adafruit.com/product/2744
https://www.adafruit.com/product/1142
https://www.adafruit.com/product/1142
https://www.adafruit.com/product/1142

Micro Servo - High Powered, High Torque
Metal Gear

Add even more power to your robot with
this metal-geared servo. The tiny little
servo can rotate approximately 180
degrees (Y90 in each direction), and
works just like the...
https://www.adafruit.com/product/2307

Micro Servo - MG90D High Torque Metal
Gear

Add more power to your robot with this
metal-geared MG9O0D servo. The tiny little
servo can rotate approximately 90
degrees (45 in each direction) and works
just like the standard...
https://www.adafruit.com/product/1143

Recommended Speakers

The Class-D amplifier on the Crickit is pretty powerful, so you can make quite a bit of

noise!

4Q) Speakers

You'll get a lot louder audio from 4Q speakers.

We recommend this speaker, you'll have to either poke wires into the connector, or
cut it off and strip the wires to connect to the terminal block, but its nice and durable

©Adafruit Industries Page 43 of 183

https://www.adafruit.com/product/2307
https://www.adafruit.com/product/2307
https://www.adafruit.com/product/2307
https://www.adafruit.com/product/1143
https://www.adafruit.com/product/1143
https://www.adafruit.com/product/1143

Mono Enclosed Speaker - 3W 4 Ohm
Listen up! This 2.8" x 1.2"

speaker is a great addition to any audio
project where you need 4 ohm
impedance and 3W or less of power. We
particularly like...
https://www.adafruit.com/product/3351

This speaker is less expensive but you'll need to solder wires to the back

8Q) Speakers

Speaker - 3" Diameter - 4 Ohm 3 Watt
Listen up! This 3" diameter speaker cone
is the perfect addition to any audio
project where you need an 4 ohm
impedance and 3W or less of power. We
particularly like this cone as...
https://www.adafruit.com/product/1314

8 ohm speakers won't be as loud, but that's OK!

This speaker is inexpensive, but you'll need to solder wires to the back

©Adafruit Industries

Speaker - 3" Diameter - 8 Ohm 1 Watt
Listen up! This 3" diameter speaker cone
is the perfect addition to any audio
project where you need an 8 ohm
impedance and 1W or less of power. We
particularly like this cone as...
https://www.adafruit.com/product/1313

Page 44 of 183

https://www.adafruit.com/product/3351
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/1314
https://www.adafruit.com/product/1314
https://www.adafruit.com/product/1313
https://www.adafruit.com/product/1313

The speakers below work just fine, but because the audio amp is pretty strong so you
have to make sure not to damage the speakers by turning up the potentiometer on
the Crickit to make the audio really loud.

If you're getting buzzy sounds from them, turn that little trimmer potentiometer down.

Mini Metal Speaker w/ Wires - 8 ohm
0.5wW

Listen up! This tiny 1" diameter speaker
cone is the perfect addition to any small
audio project where you need an 8 Q
impedance and will be using 0.5W or less
of power. We...
https://www.adafruit.com/product/1890

Thin Plastic Speaker w/Wires - 8 ohm
0.25W

Listen up! This 1.5" diameter speaker cone
is the perfect addition to any audio
project where you need an 8Q
impedance and are using 0.25W of power.
The speakers are rated...
https://www.adafruit.com/product/1891

Wall or Bone Transducers

You can also use surface transducers if you like; attach/bolt/clamp the transducer to a
surface:

©Adafruit Industries Page 45 of 183

https://www.adafruit.com/product/1890
https://www.adafruit.com/product/1890
https://www.adafruit.com/product/1890
https://www.adafruit.com/product/1891
https://www.adafruit.com/product/1891
https://www.adafruit.com/product/1891

Medium Surface Transducer with Wires - 4
Ohm 3 Watt

Turn any surface/wall/table etc into a
speaker with a surface transducer. This
type of speaker does not have a moving
cone like most speakers you've seen.
Instead, a small metal...
https://www.adafruit.com/product/1785

Bone Conductor Transducer with Wires - 8
Ohm 1 Watt

Drown out the voices in your head with a
bone conduction transducer! This
incredible speaker does not have a
moving cone like most speakers you've
seen, instead, a small metal rod...
https://www.adafruit.com/product/1674

Recommended Drives

Solenoids

Since the Crickit can only drive 5V power, you'll need to stick to this small 5V
solenoid

Mini Push-Pull Solenoid - 5V

Solenoids are basically electromagnets:
they are made of a coil of copper wire
with an armature (a slug of metal) in the
middle. When the coil is energized, the
slug is pulled into the...
https://www.adafruit.com/product/2776

©Adafruit Industries Page 46 of 183

https://www.adafruit.com/product/1785
https://www.adafruit.com/product/1785
https://www.adafruit.com/product/1785
https://www.adafruit.com/product/1674
https://www.adafruit.com/product/1674
https://www.adafruit.com/product/1674
https://www.adafruit.com/product/2776
https://www.adafruit.com/product/2776

Vibration Motors

You'll need to extend these wires but they'll work great at 5V and buzz very strongly

Vibrating Mini Motor Disc
BZZZ7ZZ727777 Feel that? That's your
little buzzing motor, and for any haptic
feedback project you'll want to pick up a
few of them. These vibe motors are tiny
discs,...
https://www.adafruit.com/product/1201

Recommended Capacitive Touch

The capacitive touch pads on the Crickit have large holes so its easy to connect
alligator/croc clips. That's how we recommend you attach to them. The "small" size
clips work best:

Small Alligator Clip Test Lead (set of 12)
Connect this to that without soldering
using these handy mini alligator clip test
leads. 15" cables with alligator clip on
each end, color coded. You get 12 pieces
in 6 colors....
https://www.adafruit.com/product/1008

©Adafruit Industries Page 47 of 183

https://www.adafruit.com/product/1201
https://www.adafruit.com/product/1201
https://www.adafruit.com/product/1008
https://www.adafruit.com/product/1008

Small Alligator Clip to Male Jumper Wire
Bundle - 6 Pieces

When working with unusual non-header-
friendly surfaces, these handy cables will
be your best friends! No longer will you
have long, cumbersome strands of
alligator clips. These...
https://www.adafruit.com/product/3448

You can also use copper foil tape. Note that if you get foil with conductive adhesive,
you can tape the foil right onto the Crickit pads. Otherwise you'll need to use alligator
clips to grab onto the copper.

Copper Foil Tape with Conductive
Adhesive - 6mm x 15 meter roll

Copper tape can be an interesting
addition to your toolbox. The tape itself is
made of thin pure copper so its extremely
flexible and can take on nearly any shape.
You can easily...
https://www.adafruit.com/product/1128

Copper Foil Tape with Conductive
Adhesive - 25mm x 15 meter roll

Copper tape can be an interesting
addition to your toolbox. The tape itself is
made of thin pure copper so its extremely
flexible and can take on nearly any shape.
You can easily...
https://www.adafruit.com/product/1127

You can use other conductive materials like paints! Either drip the paint into the pad
itself and let it harden, or use alligator clips to connect from one pad to a paper with
conductive paint on it.

©Adafruit Industries Page 48 of 183

https://www.adafruit.com/product/3448
https://www.adafruit.com/product/3448
https://www.adafruit.com/product/3448
https://www.adafruit.com/product/1128
https://www.adafruit.com/product/1128
https://www.adafruit.com/product/1128
https://www.adafruit.com/product/1127
https://www.adafruit.com/product/1127
https://www.adafruit.com/product/1127

Bare Conductive Paint Pen - 10mL

Bare Conductive Paint is a multipurpose
electrically conductive material perfect for
all of your DIY projects! Bare Paint is
water based, nontoxic and dries at room
temperature.
https://www.adafruit.com/product/1306

Bare Conductive Paint - 50mL

Bare Conductive Paint is a multipurpose
electrically conductive material perfect for
all of your DIY projects! Bare Paint is
water based, nontoxic and dries at room
temperature.
https://www.adafruit.com/product/1305

Remember: If you absolutely need more capacitive touch pins, Signal #1, #2, #3, #4 ar
e four more capacitive touch inputs.

Programming Options

The method you choose to program your microcontroller and Crickit depends on what
type of environment you are looking to use and available options. The chart below
details which options are available with detailed descriptions on this page.

Crickit Compatibility
Matrix

Arduino IDE CircuitPython MakeCode CPython

Circuit Playground

o Great! Great! Great! Nope
Express and Crickit

©Adafruit Industries Page 49 of 183

https://www.adafruit.com/product/1306
https://www.adafruit.com/product/1306
https://www.adafruit.com/product/1305
https://www.adafruit.com/product/1305

Feather MO/M4 Express

o Great! Great! Great! Nope
and Crickit
micro:bit and Crickit for With N Great in Only
ope

micro:bit Extension P Beta! MicroPython
Raspberry Pi and Use

o Nope Great! Nope o
Crickit HAT CircuitPython

Crickit with Circuit Playground Express

Programming this combination offers great flexibility. Here are the options:

« Microsoft MakeCode provides complete Circuit Playground Express support and
complete Crickit support with the Crickit Extension available in the current
releases. MakeCode is excellent for beginning students with a block interface.
Support for sensors and peripherals not on the Circuit Playground Express is
generally not available.

CircuitPython is supported for all Circuit Playground Express and Crickit
functionality. While CircuitPython may have require a bit more study, it is

definitely worth it for the rich programmability, through high level and lower
level libraries. CircuitPython support for various sensors and add-ons is
excellent and under continual development. Development with the Mu editor
offers error checking, serial output and plotting capabilities. Very fast to upload
and make changes due to being an interpreted language.

« The Arduino IDE works with Circuit Playground Express and with Crickit as an
add-on library. The number of drivers for peripherals and sensors is generally
excellent and Arduino is suitable for creating new drivers depending on
complexity. The learning curve is very high to understand both the built-in
functionality and the underlying C/C++ syntax. Error messages may not be
intuitive. Compilation times can slow down development. Serial monitor support
is included.

Native CPython support for this combination is not supported. Adafruit suggests
using CircuitPython which has better CPython support than MicroPython.

©Adafruit Industries Page 50 of 183

Crickit with Feather MO/M4 Express CircuitPython
Supported Feather

Programming this combination offers great flexibility. Here are the options:

« Microsoft MakeCode requires a beta version which includes support for other
processors.

« CircuitPython is supported for all CircuitPython compatible Feather boards and
Crickit functionality. CircuitPython will NOT work on non-CircuitPython Feather
boards such as the 32u4 Feathers, 328P Feather, MO Basic Feathers. nRF52
support is still in development. ESP8266 support is limited. While CircuitPython
may have require a bit more study, it is definitely worth it for the rich
programmability, through high level and lower level libraries. CircuitPython
support for various sensors and add-ons is excellent and under continual
development. Development with the Mu editor offers error checking, serial
output and plotting capabilities. Very fast to upload and make changes due to
being an interpreted language.

« The Arduino IDE works with all Feather boards and with Crickit as an add-on
library. The number of drivers for peripherals and sensors is generally excellent
and Arduino is suitable for creating new drivers depending on complexity. The
learning curve is very high to understand both the built-in functionality and the
underlying C/C++ syntax. Error messages may not be intuitive. Compilation times
can slow down development. Serial monitor support is included.

Native CPython support for this combination is not supported. Adafruit suggests
using CircuitPython which has better CPython support than MicroPython.

Crickit with micro:bit Support

Programming this combination is good but is very limited for Python:

» Microsoft MakeCode provides complete micro:bit support and complete Crickit
support with the Crickit Extension available in the current beta release.
MakeCode is excellent for beginning students with a block interface. Support for
sensors and peripherals not on the Circuit Playground Express is generally not
available.

« CircuitPython is not currently supported for micro:bit. There is MicroPython for
micro:bit. See this Adafruit Guide for using CRICKIT with MicroPython and the
micro:bit (https://adafru.it/EP2).

« The Arduino IDE works with Circuit Playground Express and with Crickit as an

add-on library. The number of drivers for peripherals and sensors is generally

©Adafruit Industries Page 51 of 183

https://learn.adafruit.com/using-micro-bit-and-crickit-with-micropython/
https://learn.adafruit.com/using-micro-bit-and-crickit-with-micropython/

excellent and Arduino is suitable for creating new drivers depending on
complexity. The learning curve is very high to understand both the built-in
functionality and the underlying C/C++ syntax. Error messages may not be
intuitive. Compilation times can slow down development. Serial monitor support
is included.

« Native CPython support for this combination is not supported. Adafruit suggests
using MicroPython if Python programmability is needed, but there is no Crickit
or driver support from Adafruit.

Crickit HAT for Raspberry Pi

Programming this combination offers flexibility for CPython only.

- Microsoft MakeCode support is not available.

« CircuitPython is supported for Raspberry Pi and Crickit HAT. CircuitPython
requiresa bit of study, but it is definitely worth it for the rich programmability,
through high level and lower level libraries. CircuitPython support for various
sensors and add-ons is excellent and under continual development.
Development with the Mu editor offers error checking, serial output and plotting
capabilities. Very fast to upload and make changes due to being an interpreted
language.

« The Arduino IDE does not work with the Raspberry Pi and Crickit HAT.

« Native CPython does not provide the library for Crickit. You should consider
CircuitPython which is a subset of CPython with support for the Crickit HAT
capabilities.

MakeCode

MakeCode is currently not available for Crickit for micro:bit or the Crickit HAT for

Raspberry Pi.

With MakeCode, you can create robots simply and easily, using a drag-and-drop block
interface. It's perfect for first time robot-makers, people who don't have a lot of coding
experience, or even programmers who just want to get something going fast

MakeCode uses a web browser only, so no IDE is required to install. When you

download a binary from MakeCode it is compiled for the Circuit Playground Express
and you will overwrite any Arduino code or the CircuitPython runtime. You can always

©Adafruit Industries Page 52 of 183

go back to programming other ways including Arduino (just use the Arduino IDE) or
CircuitPython (by re-installing CircuitPython as shown here (https://adafru.it/Bfh))

Get Comfy With MakeCode

We recommend starting out by trying out the simple blinking NeoPixel example in our
MakeCode guide, so you get a hang of how to install MakeCode apps on your Circuit
Playground Express (https://adafru.it/wWd)

Once you feel comfortable with MakeCode, come back here and we'll add Crickit
support!

Adding Crickit Extension

Now you're a MakeCode'r and you are ready to add Crickit support.

At this time, MakeCode support is being worked on and we're improving it every day,
but it is Beta

For Circuit Playground Express and Feather Crickit
(micro:bit is below)

Start by visiting https://
My Projects makecode.adafruit.com (https://adafru.it/
Bly)

Creates a new empty project

Click on New Project

New Project

©Adafruit Industries Page 53 of 183

https://learn.adafruit.com/adafruit-crickit-creative-robotic-interactive-construction-kit/circuitpython-code
https://learn.adafruit.com/makecode
https://learn.adafruit.com/makecode
https://learn.adafruit.com/makecode
https://learn.adafruit.com//assets/54680
https://learn.adafruit.com//assets/54680
https://makecode.adafruit.com/beta
https://makecode.adafruit.com/beta

B MATH

ADVANCED
PINS

FUNCTIONS

In the list of blocks, select ADVANCED and
then EXTENSIONS

LULEN Y

CONSOLE
** CONTROL

EXTENSIONS

In the Search Bar type in Crickit and click
the magnifying glass.

crickit Click on the Crickit block that shows up to

pxt package for crickit platform

install Crickit support!

B uoHT

© war aidit rmmter 10 % @5

@ R
crickit stop motor 1w

@ musc You will now have a new CRICKIT bin of
W NETWORK e v @ @

c Loors Crickit set motor 1o inverted @
. how to use these blocks
B VARIABLES -

crickit @igitel write vigral 1+ to D

blocks you can use! Continue on to learn

crickit digitsl read pin sigrel 1w

©Adafruit Industries Page 54 of 183

https://learn.adafruit.com//assets/54681
https://learn.adafruit.com//assets/54681
https://learn.adafruit.com//assets/54684
https://learn.adafruit.com//assets/54684
https://learn.adafruit.com//assets/54685
https://learn.adafruit.com//assets/54685

For micro:bit Crickit

/

[+
.

Y

-
[+ .

Add Package... ?

devices bluetooth

©Adafruit Industries

Start by visiting https://
makecode.microbit.org/beta (https://
adafru.it/Csj), be sure to use the beta
version unless you see that Microsoft has
made Crickit support standard in the
Extensions category.

In the list of blocks, select Advanced and
then Add Package

In the Add Package... ? screen, place the
following web address into the Search or
enter project URL box:

https://github.com/adafruit/pxt-
crickit (https://adafru.it/Csk)

Click on the Crickit block that shows up to
install Crickit support!

Page 55 of 183

https://learn.adafruit.com//assets/61035
https://learn.adafruit.com//assets/61035
https://makecode.microbit.org/beta
https://makecode.microbit.org/beta
https://learn.adafruit.com//assets/61036
https://learn.adafruit.com//assets/61036
https://learn.adafruit.com//assets/61038
https://learn.adafruit.com//assets/61038
https://github.com/adafruit/pxt-crickit
https://github.com/adafruit/pxt-crickit

‘EZ=N - B

You will now have a new CRICKIT bin of
blocks you can use! Continue on to learn
how to use these blocks

Note - some of the example MakeCode block screen shots are from the Circuit
Playground Express version of MakeCode. In all cases like this, there are
micro:bit MakeCode equivalents. If things differ significantly, we'll show the

micro:bit MakeCode separately.

MakeCode Servos

©Adafruit Industries

fritzing

You can plug up to four servos in the
Servo block of Crickit. The pin spacing is
just right for servo connections.

At left are the connections for the Circuit
Playground Express and Crickit
combination.

And here is the Crickit for micro:bit (the
micro:bit plugs into the Crickit but is not
shown for clarity).

The servo connections are identical to the
other Crickits.

Page 56 of 183

https://learn.adafruit.com//assets/61039
https://learn.adafruit.com//assets/61039
https://learn.adafruit.com//assets/54720
https://learn.adafruit.com//assets/54720
https://learn.adafruit.com//assets/60945
https://learn.adafruit.com//assets/60945

Servos are so easy to use, you can control four independent servos - micro, mini,
standard, metal gear or continuous rotation. Basically, if it has a 3-pin plug on the end
and has 'servo' in the name, it'll work just fine.

Let's start with a simple demo that moves two servos back and forth:

forever

crickit set servo angle to o

pause @UIUED ms

crickit set servo angle to @Y

pause @UULLRD ms

crickit set servo angle to @Y

LN 1000 v WS

crickit set servo angle to o

pause @UIRD ms

Open this example in MakeCode for
Circuit Playground Express

https://adafru.it/CyB

Open this example in MakeCode for
micro:bit

https://adafru.it/CyC

Controlling servos is basically the same through a Crickit as through MakeCode
directly.

There's two blocks you can use, one for setting the angle and one for setting the
pulse width directly

©Adafruit Industries Page 57 of 183

https://makecode.com/_6gxi7y3VACDF
https://makecode.microbit.org/_MuY7DPdLKXt1

Servos

crickit set servo 1+ angle to o

crickit set servo 1+ pulse to o (us)

We recommend using the angle block, its easier! Select which servo you want to use,
from 1through 4

crickit set servo 1+ angle to

10 2 X s [«

Then adjust the angle. Remember it does take a little time for the servo motor to
move, so you can't just set it back and forth instantly, try adding a delay of a second
after moving to make sure it got to the angle you want!

crickit set servo 2+ angle to @

LU 1000 » EilS

Although the angles range from 0 to 180, servos may have different ranges
depending on the make and model. Also, each servo is a little different, so you may
not get precisely the same angle even if its the same servo! Tweaking/adjusting the
angle may be necessary.

Precise Pulses

For advanced use, you can hand-tune the pulse width. The 'standard' for servos is
that O degrees is 1000 microseconds (us), 90 degrees is 1500 and 180 degrees is
2000 us. But...like we said, it can vary. You may want to try values as low as 750us
and as high as 2500us! Just go slow, changing the values only 100us at a time, so you

©Adafruit Industries Page 58 of 183

dont thwack the servo gears too far, they could be damaged if they push too far! For

that reason, we recommend using angles only until you're comfy with servo usage

crickit set servo 1+« pulse to @aLLD (us)

MakeCode Drives

5V Solenoid

SV Vibration Motor

5V Relay

High current LED(s)
with limiting resistor

fritzing

SV Vibwation Motor

micro:bit %

o)
2 »
v tnelis
("w‘
o 13V A
‘F cricka
4
o Migh current LED(S)
, with lmeng reantor

fritzing

The Drives block on Crickit makes it super
easy to connect higher current devices.

At left shows the Circuit Playground
Express and Crickit combination
connected to several devices.

The Crickit for micro:bit is just as versatile.

Note the micro:bit is not shown at left, it
would have to be plugged into the Crickit.

The Drive output of your Crickit is perfect for 5V-powered solenoids, relays, vibration

motors or high powered LEDs. You can drive up to 500mA per output, and 4 outputs

available.

©Adafruit Industries

Page 59 of 183

https://learn.adafruit.com//assets/54712
https://learn.adafruit.com//assets/54712
https://learn.adafruit.com//assets/60946
https://learn.adafruit.com//assets/60946

Note that the 'positive' side of the electronic part you're driving has to connect to 5V
not Ground. You can just double/triple/quadruple wires into the same 5V terminal
block.

forever

crickit analog write drive

pause @ULR A ms

crickit analog write drive to @

crickit analog write drive 1 v to (ElZE

e -

Open this example in MakeCode for
Circuit Playground Express

https://adafru.it/CyD

Open this example in MakeCode for
micro:bit

https://adafru.it/CyE

Each Drive output is a PWM output, that means you can change the amount of current
or speed of whatever is connected.
aa2 | IGHT Drives

® INPUT
crickit analog write drive 1w to °

@ CRICKIT

O MUSIC crickit set drive 1 w frequency to °

Select which Drive pin you want to control with the pull down, Drive 1through 4 are
labeled on the Crickit

©Adafruit Industries Page 60 of 183

https://makecode.com/_aXzg5iFaeUu9
https://makecode.microbit.org/_CCHdgiU3o2ek

forever

analog write pin drive 1+ to @

1 > L s [

Then you can set the value from O (drive off) to 1023 (drive all the way on). If you want
to dim an LED or run a vibration motor at half power, use 512. For quarter power, use
256!

forever

analog write pindrive 1+ to .

Value 512

Remember you get 4 drive pins, so you can control them independently

Changing the Drive Analog/PWM
Frequency

You can set the analog frequency in an On Start block. We recommend 1000 Hz (1
KHz) its a good standard number. Advanced makers can tweak this!

on start

crickit set drive 1+« frequency to (@l

©Adafruit Industries Page 61 of 183

MakeCode DC Motors

Zoom! Cricket is a great motor driver
platform and with MakeCode, it's super
easy to use. Just connect to the Crickit
Motor block.

The Crickit with Circuit Playground
Express is shown first at left.

Note the GND terminal is not usually used
with motors.

And using motors with micro:bit is just as
easy.

Note: the micro:bit is not shown in the
diagram at left for clarity, you'll need to
plug one into the Crickit slot to have

everything work.

fritzing

You can drive two separate DC motors, so lets go ahead and get right to it!

DC motors are controlled by 4 PWM (adjustable speed) output pins, the 4 pins let you
control speed and direction. And we'll use our CRICKIT Motors block set to help us
manage the speed and direction for us, making it very easy to control motors

Note that each DC motor is a little different, so just because you have two at the same

speed does not mean they'll rotate at the exact same speed! Some tweaking may be
required

©Adafruit Industries Page 62 of 183

https://learn.adafruit.com//assets/54686
https://learn.adafruit.com//assets/54686
https://learn.adafruit.com//assets/60947
https://learn.adafruit.com//assets/60947

222 LIGHT

@ INPUT crickit run motor 1+ at @ %

@ CRICKIT |
il crickit stop motor 1w

¢ MUSIC
®, NETWORK crickit tank @ % @ %

C' LOOPS

crickit set motor 1< 1inverted ©OFF

3 LOGIC

Here's an example program that will move a single motor in different speeds and
directions

Setting Motor Speed

You can set the speed of the motor from 0% to 100% with this block. You can select
which motor to use, 1 or 2. Once you set the speed of the motor it will continue at that
speed until you change it or ask it to stop.

crickit run motor 1 e at @ y 4

You can change direction by having a negative percentage speed!

crickit run motor 1w at%

You may want to have two motors move at the same time so they act like wheels on a
car. In that case, you can use this handy block that will control two motors at once!

©Adafruit Industries Page 63 of 183

You can set the two speeds at once. If both move at the same positive speed, the
tank/car will move forward. Same negative speed it will move backward. If one side
moves faster than the other, the car will turn.

If you want to 'invert' the motor, it will flip which direction positive/negative numbers
go. That is, if positive was forward, now positive will mean backwards

This is sometimes handy if you want to use only positive numbers or to keep your
code looking tidy.

crickit set motor 1 e 1inverted ©FF

MakeCode Steppers

Stepper motors are used in many projects
and you can use them with Crickit and
MakeCode.

The Circuit Playground Express + Crickit
connections are shown at left.

And the micro:bit can control stepper
motors also when plugged into the
micro:bit version of Crickit (micro:bit not
shown for clarity).

©Adafruit Industries Page 64 of 183

https://learn.adafruit.com//assets/57319
https://learn.adafruit.com//assets/57319
https://learn.adafruit.com//assets/60948
https://learn.adafruit.com//assets/60948

You can control one or two stepper motors on Crickit. The Motor block can drive one
bipolar stepper (wiring shown above) or one unipolar stepper. In addition, the Drive
block can control one stepper also but it must be unipolar (bipolar will not work on
the Drive port).

The MakeCode blocks to control a unipolar/bipolar stepper on the Motor port is
DIFFERENT from the block used to control a unipolar stepper on the Drive port.

Be sure you use the correct block depending on the block you are wiring the
stepper motor to.

MakeCode for Using a Stepper on the Motor Port

In the CRICKIT block group, scroll down until you see the Stepper heading and the
block crickit stepper move block. Be sure not to use the crickit drive
stepper move block, thatis for using a unipolar stepper on the Drive port,
discussed further down the page.

R

Search... —Stepper

)

. 4

crickit stepper move stey
\\\ e

222 LIGHT

® INPUT S

Drive Stepp;r
@ CRICKIT

@ MUSIC

crickit drive stepper move @ steps

Move the Motor Port Stepper One Direction Forever

Here is a simple program that tells the stepper to move 20 steps, then wait 10
milliseconds, and repeats forever:

©Adafruit Industries Page 65 of 183

forever

crickit motor stepper move @ steps

pause QiZA 4N ms

You'll see the motor shaft slowly turning in the "positive" direction. If you use a bit of
solid tape on the stepper's shaft as a small flag, you can see the rotation better. If the

rotation is in the wrong direction, use a negative value for the number of steps, re. -2
0.

At this point, you can vary the parameters: increase or decrease the number of steps
moved every loop. If you want the stepper to move faster, increase the steps. This
may make the action a bit "jerky". If so, you can decrease the steps. This will be
smooth, but slow. To increase the pause between steps, you can use the pause bloc
k to get times greater than 10 milliseconds.

Using a Stepper on the Drive Port in
MakeCode

In the CRICKIT block group, scroll down until you see the Stepper heading and the
block crickit drive stepper move block.

Search... Stepper

ass
222 LIGHT crickit stepper move @ steps

@® INPUT =

“Drive Stepper

\
@ CRICKIT ‘]
crickit drive stepper move @ sty

@ MusIC g —

~—

©Adafruit Industries Page 66 of 183

Move the Drive Port Stepper One Direction Forever

Here is a simple program that tells a stepper on the Drive port to move 20 steps, then
waits ten milliseconds, and repeats forever. 10 milliseconds delay between step
blocks is the minimum to ensure the stepper doesn't miss any steps between blocks.

forever

crickit drive stepper move @ steps

pause QiR 4N ms

If you want to move the motor in the opposite direction, make the movement value
negative, re. -20 . The block takes positive and negative values.

MakeCode Signals

Crickit Inputs such as reading analog/signals can sometimes lock up when using
MakeCode with CircuitPlayground - we recommend using the alligator
connection pads on the 'bare' CPX instead of the Crickit until this is fixed! Or you
can use Arduino, CircuitPython, micro:bit, etc.

The Signals block on Crickit allows you to
expand your general-purpose inputs and
outputs (GPIO).

The Circuit Playground Express and Crickit
combination is at left.

fritzing

©Adafruit Industries Page 67 of 183

https://learn.adafruit.com//assets/75493
https://learn.adafruit.com//assets/75493

You may want to add buttons, LEDs, switches or simple sensors to your robot project.
With Crickit, you get 8 x 'general purpose in/out' (GPIO) pins called signals. Each
signal can be a digital input (button/switch), digital output (LED, for example), or analo
g input.

This lets you add a ton of external components easily, and its all handled by seesaw.
Perfect when you have a Feather without analog inputs (like the ESP8266) or just
need a ton of extra pins.

The signal pins are on a 3x8 female header, so you can poke wires directly in!

Using Signals in MakeCode

MakeCode has three blocks under the CRICKIT group to help you work with signals:

« crickit digital read signal allows you to read digital values in
« crickit analog read signal reads a signal and provides an analog value
from 0-1023

« crickit digital write signal allows you to write out to a signal line

Analog read returns a number so the block is rounded to place where a number may
be used. Digital read is angled so it fits where a decision like if..then..else
blocks use. Write signal is a block of its own and will set a signal (Make it HIGH /3.3
volts or LOW / O volts).

LIGHT Signals

INPUT

crickit digital write signal 1w to ¢ LOMW

@ CRICKIT

@ MUSIC

crickit digital read signal 1w

crickit analog read signal 1w

®, NETWORK

©Adafruit Industries Page 68 of 183

Digital Reads and Writes

Here's an example wiring that goes with
the code below.

We have two switch buttons, connected to
signals #1 and #2, the other side of the
buttons connect to ground

There's also two LEDs, connected to the
signals #3 and #4 and the negative wires
connected to ground. (All the 3.3V and
Ground pins are connected together so
you don't have to use the ones right next
to the signal pin!)

fritzing Note the pull up resistors for the buttons.
Seesaw does not allow enabling internal
pullup or pulldown resistors at present.
Also 330 ohm current limit resistors are
shown for the LEDs.

Here is the MakeCode that reads the buttons on signal #1 and #2 and lights signal #3
and signal #4 if the corresponding button is pressed:

forever
if crickit digital read signal 1w
crickit digital write signal 3+ +to

else

crickit digital write signal 3+ +to

®

if crickit digital read signal 2 ¥

crickit digital write signal 4+ +to
else

crickit digital write signal 4+ +to

C)

Open this example in MakeCode for
Circuit Playground Express

©Adafruit Industries Page 69 of 183

https://learn.adafruit.com//assets/75492
https://learn.adafruit.com//assets/75492
https://makecode.com/_czXMKci2L9px

https://adafru.it/CyF

Open this example in MakeCode for

micro:bit

https://adafru.it/CyG

Analog Reads

You can also read analog values like from
a potentiometer or sensor.

Lets do a demonstration where the center
tap of a potentiometer is hooked up to
Signal #3 - don't forget to also connect
one side of the potentiometer to 3.3V and
the other side to ground.

And here is the example code. You can see we read the signal with crickit analog
read signal which returns a value from O to 1023.

For Crickit and Circuit Playground Express

The map MATH function changes 0 to 1023 to O to 9. The graph NEOPIXEL block
will light the number of NeoPixels map returns in rainbow colors.

Be sure the potentiometer is connected to Crickit Signal 3 and not one of the other
Signal terminals.

forever

graph map crickit analog read signal 3 w from low o high to low o high ° @

Load this Circuit Playground Express
example into MakeCode

https://adafru.it/C35

©Adafruit Industries Page 70 of 183

https://makecode.microbit.org/_Efx6U732c76H
https://learn.adafruit.com//assets/57380
https://learn.adafruit.com//assets/57380
https://makecode.com/_Hx1DzPKCHL4i

For Crickit and micro:bit

The code displays a heart icon on the micro:bit display. The brightness is changed
by taking the reading from the potentiometer connected to Crickit Signal 3 (O to 1023)
and dividing by 4 to get a brightness from O to 255. So the potentiometer is
essentially a manual brightness control for the micro:bit LED array.

on start

Load this micro:bit example in
MakeCode

https://adafru.it/Cso

MakeCode Touch

There are four capacitive touch pads you
can use to detect human touch. They have
big pads you can use to attach alligator
clips to extend the pads' reach.

You can connect the other end of the
alligator wires to fruit and make your own
fruit-touch robot. Or move servo motors
based on touch, it's all fun.

fritzing

©Adafruit Industries Page 71 of 183

https://makecode.microbit.org/_LHtAb1PgrbkH
https://learn.adafruit.com//assets/57434
https://learn.adafruit.com//assets/57434

Touch is identical on the micro:bit version
of Crickit.

You can read the value of the captouch pads from the MakeCode CRICKIT block
group, block crickit read touch . This will return a value that is the change in
value, touched vs. not.

Example for Crickit plus Circuit Playground Express or
Feather

The program below sets up Crickit capacitive touch on pads 1, 2, 3 and 4. It then
loops forever - if you touch a pad, it lights a NeoPixel. Pressing Button A clears the
NeoPixels.

©Adafruit Industries Page 72 of 183

https://learn.adafruit.com//assets/60950
https://learn.adafruit.com//assets/60950

forever

if crickit read touch 1 w > w then

set pixel color at e to .

else if crickit read touch 2 w then @

set pixel color at ° to .

else if crickit read touch 3 w > w 400 then @

set pixel color at e to .

else if crickit read touch 4 = then @

set pixel color at a to '

else

on button A » click =

clear

Open this Circuit Playground
Express example in MakeCode

https://adafru.it/C36

You can set different actions: if a touch is detected, change the direction of a motor as
just one example.

Example for Crickit and micro:bit

If you touch the capacitive touch pads, the one NeoPixel on the Crickit will glow (pad
1), get broighter (pads 2 and 3) and go out (pad 4).

©Adafruit Industries Page 73 of 183

https://makecode.com/_cb64i53kKhFh

sz forever

(@ crickit read touch FIEJ
crickit set pixel color

((@ crickit read touch FHED

crickit set pixel color

(@ crickit read touch EHED

crickit set pixel color 255

([@ crickit read touch ENED

crickit set pixel color u

Open this micro:bit Example in
MakeCode

https://adafru.it/Csn

MakeCode Audio

Crickit provides an amplified audio output
via the Speaker block.

For the Circuit Playground Express +
Crickit version, we take advantage of the
CPX ability to play WAV files over the true-
analog output pin AO.

fritzing

©Adafruit Industries Page 74 of 183

https://makecode.microbit.org/_XhrJz5R2E0qx
https://learn.adafruit.com//assets/57436
https://learn.adafruit.com//assets/57436

The micro:bit version of Cricket also has
amplified audio output.

The micro:bit is not shown in the diagram
at left, just plug a micro:bit into the slot in
the middle of Cricket in the direction
indicated.

The audio pin used on the micro:bit is pin
fritzing PO which has a small speaker icon on it on
the Crickit where the micro:bit pin

numbers are listed.

Audio animatronics! By adding a voice or sound effects to your robot you can make a
cool interactive project.

This is one of the few outputs that does not go through the Crickit's seesaw helper
chip. Instead, the audio is played directly from the microcontroller board and the
Crickit amplifies it!

Amplifier Details

The onboard amplifier is a mono "Class D" audio amp with BTL (Bridge Tied Load)
output.

That means you cannot plug the speaker output into another ampilifier, it must
connect directly to a speaker!

You can use just about any 4 to 8Q speaker (6 Q is OK too, just not as common). The
amplifier can drive up to 3 Watts into 4Q and 1 Watt into 8Q. That means its ok to
drive a 5 Watt speaker, it just wont be as loud as it could be with a bigger amp (but
you wont damage the amp). You can also drive speakers that are smaller, like an 8Q
0.5 W but make sure you don't turn the audio volume potentiometer up, as it could
damage the speaker by overpowering it.

©Adafruit Industries Page 75 of 183

https://learn.adafruit.com//assets/60951
https://learn.adafruit.com//assets/60951

Playing Sounds on Crickit with MakeCode

If you are using a Crickit with Circuit Playground Express (CPX), the Crickit becomes
an amplified extension of the regular audio out. The sound is very clear and the
volume can be higher than the CPX on-board speaker. Below I've taken a cute song
snippet and reduced the volume from a previous value of 100 to 34 so one's ears
don't hurt when it starts. If the slide switch is moved left (towards the on-board
speaker on CPX), the song will play, moving the switch right silences it. If you think
the speed of the sound (the tempo) is too fast, press button A to slow it down. If you
think the tempo is too slow, press the B button.

Circuit Playground and Feather Crickit Version (micro:bit
below)

on start
on button A w click »

set volume e
change tempo by » (bpm)
set tempo to @ (bpm)

on button B ¥ click »

on switch moved left w change tempo by @ (bpm)

[QEYARTIEEEIE Middle D JRFIY
[DEYRGUEEETE Middle E JREIY
[QEVARCITEEIE Middle F JREy
[QEYARCITEEIE Middle E JREIY
play tone at QUULICE for
[IERGIUEEEIE Middle D g
play tone at (GIGLICNIY for
play tone at QUULIEE for
(IERGIUEEEIE Middle A JREd
[QEVARCUTREIE Middle E Ry

play tone at QQUULITEZY for

[QEYARCUTREIE Middle D Ry

You can download the code by clicking this link to link to the MakeCode website.

©Adafruit Industries Page 76 of 183

Open this example in MakeCode for

Circuit Playground Express

https://adafru.it/BPC

Check out all the music blocks, you can have Crickit using sounds in projects with just
a couple of clicks!

Search... Music

LIGHT play sound power up ¥
INPUT

play sound power up * until done

CRICKIT

@ MUSIC

NETWORK play tone at for 1/2 w beat

LOOPS ring tone at

LOGIC

stop all sounds

rest for 1/2 ¥ beat

VARIABLES

MATH set volume @

ADVANCED change tempo by @ (bpm)

PINS set tempo to @ (bpm)

FUNCTIONS

tempo (bpm)

1/2 * beat

ARRAYS

>_ CONSOLE

micro:bit Version

The blocks available for music are a tiny bit different:

©Adafruit Industries Page 77 of 183

https://makecode.com/_atzgEEDeyEUK

Search... Q play tone Middle C BBy _

222 Basic .
ring tone (Hz) Middle C

-
© Led start melody repeating TS

il Radio

® Input

[TESCNG N melody note played -

Crickit

Loops
(7l Middle C)

8 Q

Logic
&) beat

Variables

i)

Math & tempo (bpm)

Advanced @ change tempo by (bpm) MEL)

>

fw Functions © set tempo to (bpm) MIEPH

Here is the song code for micro:bit:

® on button 383 pressed
E} set tempo to (bpm) L)

® on button 383 pressed
(e

@ change tempo by (bpm) (KL}
-

forever

@ play tone Middle D 1/4 ~

¢ play tone Middle E

¢ play tone Middle F

@ play tone Middle E

@ play tone Middle D

Middle D

play tone

play tone Middle E

play tone Middle F

play tone Middle A

play tone Middle E 1/4 ~

play tone Middle F

- - - - [
~ ~N ~ ~ ~
(8] » » > »
« « « « «

play tone Middle D

©Adafruit Industries Page 78 of 183

Load this example in MakeCode for

micro:bit

https://adafru.it/Csl

MakeCode

©Adafruit Industries

NeoPixels

The Circuit Playground Express version of
Crickit hardwires the NeoPixel control to
Circuit Playground Express pad A1l as
shown at left.

MakeCode knows all about it and provides
support via the LIGHTS block group which
will show a NEOPIXELS sub block group
for handling strips and other "off-board"
NeoPixels like the NeoPixel terminal on
Crickit.

There is also one Crickit NeoPixel
MakeCode allows you to control.

Page 79 of 183

https://makecode.microbit.org/_XmxC48aC9Ty5
https://learn.adafruit.com//assets/57443
https://learn.adafruit.com//assets/57443

Cricket connected NeoPixels are
connected to the three terminals on the
NeoPixel block as shown at left for the
micro:bit version of Crickit.

GND is connected to GND, +5V to 5V, and
the middle arrow terminal to the NeoPixel's
Din pin.

You will need to add the appropriate
microcontroller (Circuit Playground
Express or micro:bit) to the appropriate
version of Crickit to control things, of
course (they are not shown for clarity).

Crickit easily allows you to work with NeoPixels. There is one on-board to the right of
the Capacitive Touch pads. There is also a terminal block called NeoPixel next to the
Crickit Speaker terminal output. The NeoPixel terminal connections makes it super
easy to use a strip or ring of NeoPixels to light up anything.

MakeCode for Crickit NeoPixels

Using the Crickit Onboard Single NeoPixel

NeoPixel

222 LIGHT

@ INPUT crickit set pixel color O

. CRICKIT crickit set pixel off

@ MUSIC

crickit set pixel brightness @
) NETWORK

©Adafruit Industries Page 80 of 183

https://learn.adafruit.com//assets/60952
https://learn.adafruit.com//assets/60952

@® crickit set pixel color ﬂ

@ crickit set pixel off

@ crickit set pixel brightness

You can use the three special NeoPixel blocks in the CRICKIT block group extension
to change the single NeoPixel on-board Crickit. They work just like the NeoPixel
blocks under the LIGHT block group but just for the one Crickit pixel.

Crickit for Circuit Playground Express and Feather
(micro:bit is below)

Within MakeCode for Circuit Playground Express, in the LIGHT block group, there is a
special subgroup that pops below LIGHT when LIGHT is pushed called ... NEOPIXEL.
This provides a huge number of blocks to work with NeoPixels that are not on your
Crickit or the microcontroller on Crickit like a Circuit Playground Express.

When you use the MakeCode NeoPixel blocks to manipulate your Crickit connected
NeoPixels, you need to use the NEOPIXEL subgroup block labeled set strip to
create strip.

Search... Light > NeoPixel
55 LIGHT onboard strip

=== NEOPIXEL set stripv to create strip@

@ INPUT strip v range from ° with o pixels

@ CRICKIT

strip v show animation v for ms
MUSIC

NETWORK strip v show frame of v animation

LOOPS

strip ¥ stop all animations

set all pixels to |)
VARIABLES

MATH set pixel color at o to O

LOGIC

©Adafruit Industries Page 81 of 183

For the code below, it assumes a connected 30 NeoPixel strip (https://adafru.it/BPD)
to the Crickit NeoPixel terminal block.

When the program starts, the on start code up the variable named strip to refer
to a NeoPixel strip connected to Al (which all Circuit Playground Express Crickit
strips are connected to) with 30 NeoPixels on it (You have to click the + on the block
to specify the pin A1 and add the number of NeoPixels.

on start

set strip® to create strip on Al v with @ pixels @

forever
strip v show frame of o animation
strip ¢ show

pause @R A ms

Open this example in MakeCode for
Circuit Playground Express

https://adafru.it/CyH

For micro:bit + Crickit

For micro:bit, there is a small sun icon on Pin P16 on Crickit to help you remember that
is the pin connected for NeoPixels.

You will probably need to add the NeoPixels extension to MakeCode for NeoPixel
control. Click the Advanced button then Add Package. Select the Adafruit NeoPixels
extension. You will now have a new code block group called Neopixel which has the
blocks you want to control the NeoPixel strip.

The code below does what the above code does for CPX - creates a strip of 30
NeoPixels connected to Pin 16 and then displays a rainbow animation forever.

©Adafruit Industries Page 82 of 183

https://www.adafruit.com/product/1460?length=1
https://makecode.com/_hpg2VWMzTFA5

on start

set strip * to | NeoPixel at pin P16 ¥ with e leds as RGB (GRB format) w

strip * | show rainbow from o to @

forever

strip * |rotate pixels by °

strip * | show

pause (ms) @

Open this example in MakeCode for
micro:bit

https://adafru.it/CwO

Then the program shows the rainbow animation on the strip forever. You can do lots
of other things on your strip. It's that easy!

For More Information

See the tutorial Make It Glow with Crickit (https://adafru.it/Cxx).

CircuitPython Code

The Crickit for micro:bit is not programmable in CircuitPython.

To use Crickit, we recommend CircuitPython. Python is an easy programming
language to use, programming is fast, and its easy to read.

Install CPX Special Build

If you're using Circuit Playground Express (CPX), Please install this special 'seesaw'
version of the CPX firmware. Plug the USB cable into the CPX, double click the reset
button until you see CPLAYBOOT drive, then drag the UF2 file onto the disk drive:

©Adafruit Industries Page 83 of 183

https://makecode.microbit.org/_epmEWVYjhP0o
https://learn.adafruit.com/make-it-glow-with-crickit?view=all

Download the special version of

CircuitPython for CPX mounted on
Crickit

https://adafru.it/Fj6

What's nice about this special version is that the adafruit_crickit, adafruit_seesaw and
adafruit_motor library is built in, which saves you tons of space and makes it really
fast to get started

Click the link above to download the latest
UF2 file

Download and save it to your Desktop (or
wherever is handy)

©Adafruit Industries Page 84 of 183

https://circuitpython.org/board/circuitplayground_express_crickit/
https://learn.adafruit.com//assets/55066
https://learn.adafruit.com//assets/55066

Plug your Circuit Playground Express into
your computer using a known-good USB
cable

A lot of people end up using charge-only
USB cables and it is very frustrating! So
make sure you have a USB cable you
know is good for data sync

Double-click the small Reset button in the
middle of the CPX, you will see all of the
LEDs turn green. If they turn all red, check
the USB cable, try another USB port, etc.

(If double-clicking doesn't do it, try a
single-click!)

o
:.l., g/ Local Ovk (C
9?\"[’-."9 vl""t“:’c’
ettt e You will see a new disk drive appear called
> ==n CPLAYBOOT
‘/ e 337 M8
-
' Drag the .uf2 file onto it.
rage (2)
VBOOT (E)

S 777 M free of 387 MB

|4 Copy to CPLAYBOOT (E:) |

©Adafruit Industries Page 85 of 183

https://learn.adafruit.com//assets/55067
https://learn.adafruit.com//assets/55067
https://learn.adafruit.com//assets/55068
https://learn.adafruit.com//assets/55068
https://learn.adafruit.com//assets/55069
https://learn.adafruit.com//assets/55069
https://learn.adafruit.com//assets/55070
https://learn.adafruit.com//assets/55070

Owgesize > AwcPley Eet Propemies System propenes

" & Hard Disk Drives (1
i .) Lecal Dk (C)

> 4
Swbversion $ VD Orive (D)
B viders =

* Devices with Removable Storage (2

B

- -

Urinctall o change & program »

CRCUITPY (E)

The CPLAYBOOT drive will disappear and
a new disk drive will appear called
CIRCUITPY

That's it! You're done)

©Adafruit Industries

To the left are the connections for the
Crickit with the Circuit Playground Express.

Note: The black wire on the servo
connectors always points inward towards
the microcontroller and center of Crickit.
The light wire: yellow, orange, white, etc.
faces outward from the Crickit.

Here is the Feather Crickit connected to
four servos.

Page 86 of 183

https://learn.adafruit.com//assets/55071
https://learn.adafruit.com//assets/55071
https://learn.adafruit.com//assets/54068
https://learn.adafruit.com//assets/54068
https://learn.adafruit.com//assets/60930
https://learn.adafruit.com//assets/60930

The Crickit HAT for Raspberry Pi can also
control up to 4 servos like other Crickit
boards. Note the location of the Servo
header block with 4 rows of three male

pins.

fritzing

Test Servos

Lets start by controlling some servos. You'll want at least one servo to plug in and test
out the servo code. Visit our recommended servo page to check that you have a
servo that works (https://adafru.it/Bfo). Once you do, plug in a servo into SERVO #1
spot, making sure the yellow or white wire is next to the 1 text label.

This example will show rotating one servo from O to 180 degrees with a stop at 90
degrees.

import time
from adafruit crickit import crickit

print("1 Servo demo!")

while True:

print("Moving servo #1")

crickit.servo 1l.angle = 0 # right
time.sleep(1)
crickit.servo 1l.angle
time.sleep(1)
crickit.servo 1l.angle
time.sleep(1)
crickit.servo 1l.angle
time.sleep(1)

and repeat!

90 # middle

180 # left

90 # middle

We start by importing the libraries that we need to have time delays (import time)
and then the main crickit python library that will make it super easy to talk to the
motors and sensors on crickit (from adafruit crickit import crickit)

©Adafruit Industries Page 87 of 183

https://learn.adafruit.com//assets/62077
https://learn.adafruit.com//assets/62077
file:///home/cpx-crickit/recommended-servos
file:///home/cpx-crickit/recommended-servos

The crickit object represents the motors and servos available for control. The
servos are available on the sub-objects named servo 1, servo 2, servo 3, serv
o 4

Each of these are adafruit_motor.servo (https://adafru.it/BMX) type objects for the

curious

Control Servo

Now that we know the servo objects, we can simply assign the angle!
crickit.servo l.angle = 0 is all the way to the left, crickit.servo 1l.angle =
90 isin the middle, and crickit.servo 1l.angle = 180 is all the way to the right.
You'll want to test this to ensure it works with your specific servo, as 0 might be to the
right and 180 to the left if it was geared differently.

More Servos!

OK that was fun but you want MORE servos right? You can control up to four!

import time
from adafruit crickit import crickit

print("4 Servo demo!")

make a list of all the servos
servos = (crickit.servo 1, crickit.servo 2, crickit.servo 3, crickit.servo 4)

while True:
Repeat for all 4 servos
for my servo in servos:
Do the wave!
print("Moving servo #", servos.index(my servo)+1)

my_servo.angle = 0 # right
time.sleep(0.25)

my servo.angle = 90 # middle
time.sleep(0.25)

my servo.angle = 180 # left
time.sleep(0.25)

my_servo.angle = 90 # middle
time.sleep(0.25)

my servo.angle = 0 # right

This example is similar to the 1 servo example, but instead of accessing
the crickit.servo 1 object directly, we'll make a list called servos that contains 4
servo objects with

servos = (crickit.servo 1, crickit.servo 2, crickit.servo 3,
crickit.servo 4)

©Adafruit Industries Page 88 of 183

https://circuitpython.readthedocs.io/projects/motor/en/latest/api.html?highlight=servo#adafruit-motor-servo

Then we can access the individual using servo[0].angle = 90 or iterate through
them as we do in the loop. You don't have to do it this way, but its very compact and
doesn't take a lot of code lines to create all 4 servos at once!

Min/Max Pulse control

Originally servos were defined to use 1.0 millisecond to 2.0 millisecond pulses, at 50
Hz to set the O and 180 degree locations. However, as more companies started
making servos they changed the pulse ranges to 0.5ms to 2.5ms or even bigger
ranges. So, not all servos have their full range at thoe 'standard' pulse widths. You can
easily tweak your code to change the min and max pulse widths, which will let your
servo turn more left and right. But don't set the widths too small/large or you can hit
the hard stops of the servo which could damage it, so try tweaking the numbers
slowly until you get a sense of what the limits are for your motor.

All you need to do is add a line at the top of your code like this
crickit.servo 1l.set pulse width range(min pulse=500, max pulse=2500)

The above is for Crickit Servo #1, you'll need to duplicate and adjust for all other
servos, but that way you can customize the range uniquely per servo!

Here we've change the minimum pulse from the default “750 microseconds to 500,
and the default maximum pulse from 2250 microseconds to 2500. Again, each servo
differs. Some experimentation may be required!

import time
from adafruit crickit import crickit

print("1 Servo demo with custom pulse widths!")
crickit.servo 1l.set pulse width range(min pulse=500, max pulse=2500)

while True:
print("Moving servo #1")
crickit.servo l.angle = 0 # right
time.sleep(1)
crickit.servo 1l.angle = 180 # left
time.sleep(1)

©Adafruit Industries Page 89 of 183

Continuous Rotation Servos

If you're using continuous servos, you can use the angle assignments and just
remember that O is rotating one way, 90 is 'stopped' and 180 and rotating the other
way. Or, better yet, you can use the crickit.continuous servo 1 object instead
of the plain servo 1

Again, you get up to 4 servos. You can mix 'plain' and 'continuous' servos

import time
from adafruit crickit import crickit

print("1l Continuous Servo demo!")

while True:
crickit.continuous servo 1l.throttle
time.sleep(2)
crickit.continuous servo 1l.throttle
time.sleep(2)
crickit.continuous servo l.throttle
time.sleep(2)
crickit.continuous servo 1l.throttle
time.sleep(2)
crickit.continuous servo 1l.throttle
time.sleep(2)
crickit.continuous servo 1l.throttle
time.sleep(2)

1.0 # Forwards

0.5 # Forwards halfspeed

0 # Stop

-0.5 # Backwards halfspeed

-1 # Forwards

0 # Stop

If your continuous servo doesn't stop once the loop is finished you may need to tune
the min pulse and max pulse timings so that the center makes the servo stop. Or
check if the servo has a center-adjustment screw you can tweak.

Disconnecting Servos or Custom Pulses

If you want to 'disconnect' the Servo by sending it O-length pulses, you can do that by
'reaching in' and adjusting the underlying PWM duty cycle with:

crickit.servo 1. pwm out.duty cycle = 0

or

crickit.servo 1. pwm out.fraction = 0

Likewise you can set the duty cycle to a custom value with

crickit.servo 1. pwm out.duty cycle = number

©Adafruit Industries Page 90 of 183

where number is between O (off) and 65535 (fully on). For example, setting it to
32767 will be 50% duty cycle, at the 50 Hz update rate

Or you can use fractions like crickit.servo 1. pwm out.fraction = 0.5

import time
from adafruit crickit import crickit

print("1l Servo release demo!")

while True:
print("Moving servo #1")
crickit.servo l.angle = 0 # right
time.sleep(10)
print("Released")
crickit.servo 1. pwm out.duty cycle = 0
time.sleep(10)
and repeat!

CircuitPython Drives

SV Solencid

5V Vibration Motor

The Crickit with Circuit Playground
Express is shown at left.

5V Relay

All the red wires connect to the Drives 5V
terminal and the other wire connected to

High cusrent LED(s)
with limiting resistor

individual Drive terminals.

Using Drives with the Feather-based
Crickit is shown at left.

Note: For CircuitPython, you need to use a
CircuitPython-compatible Feather board.

High current LED(S)
mth limeng resator

©Adafruit Industries Page 91 of 183

https://learn.adafruit.com//assets/54063
https://learn.adafruit.com//assets/54063
https://learn.adafruit.com//assets/60931
https://learn.adafruit.com//assets/60931

SV Vibration Motor

Crickit HAT for Raspberry Pi can also drive
four devices via the Drive ports.

Hagh current LED(S)
meth lemting revtor

Test Drive

Lets start by controlling a drive output. You'll need to plug something into the 5V and
DRIVE1 terminal blocks. I'm just using a simple LED with resistor but anything that can
be powered by 5V will work.

« Note that the drive outputs cannot have 5V output so you must connect the posi
tive pin of whatever you're driving to 5V. Don't try connecting the positive pin to
the drive, and the negative pin to GND, it wont work!

« Drive outputs are PWM-able!

This example will show turning the drive output fully on and off once a second:

import time
from adafruit crickit import crickit

print("1 Drive demo!")
crickit.drive 1.frequency = 1000

while True:

crickit.drive 1.fraction
time.sleep(0.5)
crickit.drive 1.fraction
time.sleep(0.5)
crickit.drive 1.fraction
time.sleep(0.5)

and repeat!

1.0 # all the way on

0.0 # all the way off

0.5 # half on/off

We start by importing the libraries that we need to have time delays (import time)
and then the main crickit python library that will make it super easy to talk to the
motors and sensors on crickit (from adafruit crickit import crickit)

©Adafruit Industries Page 92 of 183

https://learn.adafruit.com//assets/62078
https://learn.adafruit.com//assets/62078

The crickit object represents the drive outputs available for control. The drives are
available on the sub-objects named drive 1, drive 2, drive 3, drive 4

Note that for the Feather Crickit, these are feather drive 1, feather drive 2,
feather drive 3, and feather drive 4.

Set PWM Frequency

Drive outputs are all PWM outputs too, so not only can they turn fully on and off, but
you can also set it half-way on. In general, the default frequency for PWM outputs on
seesaw is 1000 Hz, so set the frequency to 1 KHz with crickit.drive 1.frequency
= 1000 . Even if you aren't planning to use the PWM output, please set the frequency!

Note that all the Drive outputs share the same timer so if you set the frequency for
one, it will be the same for all of them.

Control Drive Output

Now that we have a drive pwm object, we can simply assign the PWM duty cycle with
the fraction property!

« crickit.drive 1.fraction 0.0 turns the output completely off (no drive
to ground, no current draw).

« crickit.drive 1.fraction
to ground)

« And, not surprisingly crickit.drive 1.fraction = 0.5 setsitto 1/2 on and

1/2 off at the PWM frequency set above.

1.0 turns the output completely on (fully drive

More Drivers!

OK that was fun but you want MORE drives right? You can control up to four!
import time
from adafruit crickit import crickit
print("4 Drive demo!")
drives = (crickit.drive 1, crickit.drive 2, crickit.drive 3, crickit.drive 4)

for drive in drives:
drive.frequency = 1000

while True:

©Adafruit Industries Page 93 of 183

for drive in drives:
print("Drive #", drives.index(drive)+1)
drive.fraction = 1.0 # all the way on
time.sleep(0.25)
drive.fraction = 0.0 # all the way off
time.sleep(0.25)
and repeat!

This example is similar to the 1 drive example, but instead of accessing the
crickit.drive 1 object directly, we'll make a list called drives that contains 4
drive objects with

drives = (crickit.drive 1, crickit.drive 2, crickit.drive 3, crickit.drive 4)

Then we can access the individual using drives[0].fraction = 0.5 or iterate
through them as we do in the loop. You don't have to do it this way, but its very
compact and doesn't take a lot of code lines to create all 4 drives at once!

CircuitPython DC Motors

Connections from DC motors to the Circuit
Playground Express Crickit is shown at left.
There are two Motor drivers, labeled 1 and
2.

The center GND terminal is not used for
most DC Motor applications.

fritzing

The Feather Crickit connections for the
Motor terminals is shown at left.

(i
1
2
3
4
5
13
7
8
[

fritzing

©Adafruit Industries Page 94 of 183

https://learn.adafruit.com//assets/54061
https://learn.adafruit.com//assets/54061
https://learn.adafruit.com//assets/60932
https://learn.adafruit.com//assets/60932

You can drive two separate DC motors, so lets go ahead and get right to it!

fritzing

Motors are just as easy to use with the
Crickit HAT for Raspberry Pi as other
versions of Crickit.

DC motors are controlled by 4 PWM output pins, the 4 PWM pins let you control

speed and direction. And we'll use our adafruit_motor library to help us manage the

throttle (speed) and direction for us, making it very easy to control motors

Note that each DC motor is a little different, so just because you have two at the same

throttle does not mean they'll rotate at the exact same speed! Some tweaking may be

required

The two wires of the DC motor can be plugged in either way into each Crickit

Motor port. If the motor spins the opposite way from what you want to call
'forward', just flip the wires!

import time

from adafruit crickit import crickit

print("Dual motor demo!")

make two variables for the motors to make code shorter to type
crickit.dc
crickit.dc

motor_1
motor 2

while True:

motor 1.throttle
motor 2.throttle

time.sleep(1l)

motor 1l.throttle
motor_2.throttle
time.sleep(1)

motor_1l.throttle
motor 2.throttle
time.sleep(1l)

motor 1l.throttle
motor 2.throttle
time.sleep(1)

©Adafruit Industries

motor_1
motor 2

1 # full speed forward
-1 # full speed backward

0.5 # half speed forward
-0.5 # half speed backward

0 # stopped
0 # also stopped

-0.5 # half speed backward
0.5 # half speed forward

Page 95 of 183

https://learn.adafruit.com//assets/62079
https://learn.adafruit.com//assets/62079

motor 1l.throttle
motor 2.throttle
time.sleep(1)

-1 # full speed backward
1 # full speed forward

motor_1.throttle
motor 2.throttle
time.sleep(0.5)

0 # stopped
0 # also stopped

and repeat!

Import Libraries

We start by importing the libraries that we need to have time delays (import time)
and then the main crickit python library that will make it super easy to talk to the
motors and sensors on crickit (from adafruit crickit import crickit)

The crickit object represents the motors and servos available for control. The
motors are available on the sub-objects named dc motor 1 and dc motor 2

Each of these are adafruit_motor.motor (https://adafru.it/BNE) type objects for the
curious

To make our code easier to read, we'll make new names for each motor:

make two variables for the motors to make code shorter to type
motor 1 = crickit.dc motor 1
motor 2 = crickit.dc motor 2

Control Motor

Now that we have our motor objects, we can simply assign the throttle, this will set
the direction and speed. For example, to set the speed to full forward, use

motor 1.throttle = 1 and to set to full speed backward use motor 1.throttle
= -1.Forspeeds in between, use a fraction, such as 0.5 (half speed) or 0.25
(quarter speed). Setting the throttle = 0 will stop the motor.

©Adafruit Industries Page 96 of 183

https://circuitpython.readthedocs.io/projects/motor/en/latest/api.html#

CircuitPython Steppers

©Adafruit Industries

Connecting Crickit with Circuit Playground
Express with stepper motors is shown at
left.

The Crickit with Feather uses identical
connections with other Crickit boards to
stepper motors.

Note the Fritzing part for the blue stepper
has changed wire order but the color
connections shown are identical.

Likewise you can drive two stepper motors
with the Crickit HAT for Raspberry Pi. One
on the Motor ports, one on the Drive

ports.

The coding for each port is a bit different
but the functionality is the same.

The Drive stepper must be Unipolar -
bipolar steppers are not supported on the
Drive port, only on the single Motor port.

Page 97 of 183

https://learn.adafruit.com//assets/57244
https://learn.adafruit.com//assets/57244
https://learn.adafruit.com//assets/60933
https://learn.adafruit.com//assets/60933
https://learn.adafruit.com//assets/62081
https://learn.adafruit.com//assets/62081

Even though we don't make it really obvious, you can drive stepper motors from the
Crickit.

Stepper motors rotate all the way around but only one 'step' at a time. Usually there's
a few hundred steps per turn, making them great for precision motion. The trade off is
they're very slow compared to servos or steppers. Also, unlike servos they don't know
'where' they are in the rotation, they can only step forward and backwards.

There's two kinds of stepper motors: bipolar (4-wire) and unipolar (5 or 6-wire). We
can control both kinds but with some restrictions!

- The voltage we use to power the motor is 5V only, so 5V power steppers are
best, but sometimes you can drive 12V steppers at a slower/weaker rate

« You can drive one bi-polar stepper motor via the Motor port

« You can drive two uni-polar stepper motors, one via the Motor port and one via
the Drive port

- That means you have have two uni-polar steppers or one uni and one bi-polar.
But you cannot drive two bi-polar steppers.

Bi-Polar or Uni-Polar Motor Port

The Crickit Motor port can run a unipolar (5-wire and 6-wire) or bipolar (4-wire)
stepper. It cannot run steppers with any other # of wires!

The code is the same for unipolar or bipolar motors, the wiring is just slightly different.

Unlike DC motors, the wire order does matter. Connect one coil to the Motor pair #1.
Connect the other coil to the Motor pair #2

- If you have a bipolar motor, connect one motor coil to #1 and the other coil to #2
and do not connect to the center GND block.
« If you are using a unipolar motor with 5 wires, connect the common wire to the

center GND port.
« If you are using a unipolar motor with 6 wires, you can connect the two 'center
coil wires' together to the center GND port

©Adafruit Industries Page 98 of 183

If you are using our "12V" bi-polar
stepper, (https://adafru.it/BxE) wire in this
order: red, yellow, (skip GND center),
green, gray

If you are using our 5V uni-polar

stepper (https://adafru.it/BxF), wire in this
order: orange, pink, red (ground), yellow,
blue.

Here is the CircuitPython code for stepping various ways. You can try tweaking the
INTERSTEP DELAY to slow down the motor.

CircuitPython supports 4 different waveform stepping techniques. More on each is
detailed at Wikipedia. (https://adafru.it/BxG)

« SINGLE stepping (one coil on at a time) - fast, lowest power usage, weak
strength

- DOUBLE stepping (two coils on at a time) - fast, highest power, high strength

« INTERLEAVE stepping (alternates between one and two coils on) - slow (half the
speed of single or double!), medium power, medium strength

« MICROSTEPPING - while this is supported its so slow with Crickit we're going to
just 'skip' this one!

Unless you have power limiting requirements, DOUBLE is great for most projects.
INTERLEAVE gives you smoother motion but is slower. SINGLE is simplest but
weakest turning strength.

©Adafruit Industries Page 99 of 183

https://learn.adafruit.com//assets/55245
https://learn.adafruit.com//assets/55245
https://www.adafruit.com/product/324
https://www.adafruit.com/product/324
https://learn.adafruit.com//assets/57247
https://learn.adafruit.com//assets/57247
https://www.adafruit.com/product/858
https://www.adafruit.com/product/858
https://en.wikipedia.org/wiki/Stepper_motor#Phase_current_waveforms
https://en.wikipedia.org/wiki/Stepper_motor#Phase_current_waveforms

import time
from adafruit crickit import crickit
from adafruit motor import stepper

print("Bi-Polar or Uni-Polar Stepper motor demo!")

make stepper motor a variable to make code shorter to type!
stepper _motor = crickit.stepper _motor

increase to slow down, decrease to speed up!
INTERSTEP_DELAY = 0.01

while True:

print("Single step")

for i in range(200):
stepper motor.onestep(direction=stepper.FORWARD)
time.sleep (INTERSTEP DELAY)

for i in range(200):
stepper motor.onestep(direction=stepper.BACKWARD)
time.sleep (INTERSTEP DELAY)

print("Double step")

for i in range(200):
stepper motor.onestep(direction=stepper.FORWARD, style=stepper.DOUBLE)
time.sleep (INTERSTEP DELAY)

for i in range(200):
stepper motor.onestep(direction=stepper.BACKWARD, style=stepper.DOUBLE)
time.sleep (INTERSTEP DELAY)

print("Interleave step")

for i in range(200):
stepper motor.onestep(direction=stepper.FORWARD, style=stepper.INTERLEAVE)
time.sleep (INTERSTEP_DELAY)

for i in range(200):
stepper _motor.onestep(direction=stepper.BACKWARD, style=stepper.INTERLEAVE)
time.sleep (INTERSTEP DELAY)

CircuitPython stepper motor control is pretty simple - you can access the motor port
for stepper control via the crickit.stepper motor object (it's an adafruit_motor.s
tepper type object (https://adafru.it/BNE)).

With that object, you can call onestep() to step once, with the direction and
stepping style included. The default direction is FORWARD and the default styleis S
INGLE .

Note that 'forward' and 'backward' are, like DC motors, dependent on your wiring and
coil order so you can flip around the coil wiring if you want to change what direction

'forward' and 'backward' means.

Putting time.sleep() 's between steps will let you slow down the stepper motor,
however most steppers are geared so you may not want any delays.

©Adafruit Industries Page 100 of 183

https://circuitpython.readthedocs.io/projects/motor/en/latest/api.html#adafruit-motor-stepper
https://circuitpython.readthedocs.io/projects/motor/en/latest/api.html#adafruit-motor-stepper

Uni-Polar Only Drive Port

The Drive port can also control steppers although it can only do uni-polar! Don't try
connecting a 4-wire bi-polar stepper, it won't work at all.

O‘, If you are using our 5V uni-polar
| stepper (https://adafru.it/BxF), wire in this
order: red (5V), orange, yellow, pink, blue.
That should line up with the wires on the

plug

And here's the CircuitPython code. Note that the only difference is we're using the cr
ickit.drive stepper _motor object now!

import time
from adafruit crickit import crickit
from adafruit motor import stepper

print("Uni-Polar Stepper motor demo!")

make stepper motor a variable to make code shorter to type!
stepper motor = crickit.drive stepper motor # Use the drive port

increase to slow down, decrease to speed up!
INTERSTEP_DELAY = 0.02
while True:
print("Single step")
for i in range(200):
stepper motor.onestep(direction=stepper.FORWARD)
time.sleep (INTERSTEP_ DELAY)
for 1 in range(200):
stepper _motor.onestep(direction=stepper.BACKWARD)
time.sleep (INTERSTEP DELAY)

print("Double step")

for i in range(200):
stepper motor.onestep(direction=stepper.FORWARD, style=stepper.DOUBLE)
time.sleep(INTERSTEP DELAY)

for i in range(200):
stepper motor.onestep(direction=stepper.BACKWARD, style=stepper.DOUBLE)
time.sleep(INTERSTEP_ DELAY)

print("Interleave step")

for i in range(200):
stepper motor.onestep(direction=stepper.FORWARD, style=stepper.INTERLEAVE)
time.sleep (INTERSTEP DELAY)

for i in range(200):
stepper motor.onestep(direction=stepper.BACKWARD, style=stepper.INTERLEAVE)
time.sleep (INTERSTEP DELAY)

©Adafruit Industries Page 101 of 183

https://learn.adafruit.com//assets/57298
https://learn.adafruit.com//assets/57298
https://www.adafruit.com/product/858
https://www.adafruit.com/product/858

CircuitPython Signals

fritzing

Connecting various sensors, switches, and
indicators is easy with Crickit.

The Crickit with Circuit Playground
Express is shown at the left.

Note that external pull up (or pull down)
resistors are needed on the Crickit Signals
block as Seesaw does not have the
capability to set internal pull up or pull
down resistors like on direct
microcontrollers.

Connections to a Crickit with Feather
board are identical.

Note that if you plan to use CircuitPython,
the Feather board you choose should be
one that is supported by CircuitPython
(there are a few Feathers that cannot be
programmed with CircuitPython).

The Signals block on the Crickit HAT for
Raspberry Pi gives you 8 bidirectional
general purpose input/output (GPIO)
(analog/digital) ports.

Since the Crickit HAT takes pins away from
the Raspberry pi to control everything, the
Signals block helps to provide some pins
back and they all can accept analog input
too (unlike RasPi pins).

You may want to add buttons, LEDs, switches or simple sensors to your robot project.

With Crickit, you get 8 x 'general purpose in/out' (GPIO) pins called signals. Each
signal can be a digital input (button/switch), digital output (LED, for example), or analo

g input.

©Adafruit Industries

Page 102 of 183

https://learn.adafruit.com//assets/75510
https://learn.adafruit.com//assets/75510
https://learn.adafruit.com//assets/75512
https://learn.adafruit.com//assets/75512
https://learn.adafruit.com//assets/75513
https://learn.adafruit.com//assets/75513

This lets you add a ton of external components easily, and its all handled by seesaw.
Perfect when you have a Feather without analog inputs (like the ESP8266) or just

need a ton of extra pins.

The signal pins are on a 3x8 female header, so you can poke wires directly in!

import time
from adafruit crickit import crickit

Here's an example wiring that goes with
the code below.

We have two switch buttons, connected to
signals #1 and #2, the other side of the
buttons connect to ground

There's also two LEDs, connected to the
signals #3 and #4 and the negative wires
connected to ground. (All the 3.3V and
Ground pins are connected together so
you don't have to use the ones right next
to the signal pin!)

For signal control, we'll chat directly with seesaw, use 'ss' to shorted typing!

SIS]

= crickit.seesaw

Two buttons are pullups, connect to ground to activate

BUTTON 1
BUTTON_2

Two LEDs are outputs, on by default

LED 1
LED 2

SS.
SS.
.pin_mode (BUTTON 1, ss.INPUT PULLUP)

S8

SS.
SIS
SIS

crickit.SIGNAL3
crickit.SIGNAL4

pin _mode(LED 1, ss.OUTPUT)
pin_mode(LED 2, ss.OUTPUT)
(

pin_mode(BUTTON 2, ss.INPUT_PULLUP)
digital write(LED 1, True)
digital write(LED 2, True)

while True:

if not ss.digital read(BUTTON 1):
print("Button 1 pressed")
ss.digital write(LED 1, True)

else:
ss.digital write(LED 1, False)

if not ss.digital read(BUTTON 2):
print("Button 2 pressed")
ss.digital write(LED 2, True)

else:
ss.digital write(LED 2, False)

©Adafruit Industries

crickit.SIGNAL1 # button #1 connected to signal port 1 & ground
crickit.SIGNAL2 # button #2 connected to signal port 2 & ground

LED #1 connected to signal port 3 & ground
LED #2 connected to signal port 4 & ground

Page 103 of 183

https://learn.adafruit.com//assets/75509
https://learn.adafruit.com//assets/75509

Each of the 8 signal pin numbers is available under the crickit object as SIGNAL1
through SIGNALS8 . Note these are not DigitallnOut or Pin objects! We need to use the
crickit.seesaw object to set the mode, direction, and readings

To simplify our code we shorted the crickit.seesaw objectto just ss

For signal control, we'll chat directly with seesaw, use 'ss' to shorted typing!
ss = crickit.seesaw

Digital Pin Modes

You can set the mode of each signal pin with ss.pin mode(signal, mode) where
signal isthe crickit.SIGNAL# from above and mode can be ss.0OUTPUT, ss.IN
PUT or ss.INPUT PULLUP.

ss.pin_mode(BUTTON 1, ss.INPUT PULLUP)
ss.pin_mode(BUTTON 2, ss.INPUT PullUP)

ss.pin_mode(LED 1, ss.OUTPUT)
ss.pin _mode(LED 2, ss.OUTPUT)

Digital Read

Then, you can read the values True or False with ss.digital read(signal)

Don't forget you have to set it to be an INPUT first! And if you don't have an external
pull up resistor, you'll need to set it in the code.

ss.digital read(BUTTON 1)

Digital Write

Or, you can set the signal you want to a high value with ss.digital write(signal,
True) , or set to low value with ss.digital write(signal, False) .Don't forget
you have to set it to be an OUTPUT first!

LED On

ss.digital write(LED 2, True)
LED Off

ss.digital write(LED 2, False)

©Adafruit Industries Page 104 of 183

Analog Reads

You can also read analog values like from
a potentiometer or sensor.

Let's do a demonstration where the center
tap of a potentiometer is hooked up to
Signal #3 - don't forget to also connect
one side of the potentiometer to 3.3V and
the other side to ground.

And here is the example code. You can see we read the signal with ss.analog read
(signal) which returns a value from O to 1023.

import time
from adafruit crickit import crickit

For signal control, we'll chat directly with seesaw, use 'ss' to shorted typing!
ss = crickit.seesaw

potentiometer connected to signal #3

pot = crickit.SIGNAL3

while True:
print((ss.analog read(pot),))
time.sleep(0.25)

By printing the value in a python tuple (ss.analog read(pot),) we can use the
Mu plotter to see the values immediately!

Adafruit CircuitPython REPL Adafruit GircuitPython Plotter
(682,) Al
(687,) 1000
(660,)

(641,)

(570,)

(477,) 500
(494,)

(548,)

(553,)

(552,) 0
(551,)
(552,)
(551,)
(552,)
(552,)
(552,)
(551,)
(552,)

(551,)
| 4

-500

-1000

©Adafruit Industries Page 105 of 183

https://learn.adafruit.com//assets/57257
https://learn.adafruit.com//assets/57257

CircuitPython Touch

There's four capacitive touch pads you can
use to detect human touch. They have big
pads you can use to attach alligator/croc
clips

Whether you use a Circuit Playground
Crickit or Feather Crickit, the touch pads
are available.

The four capacitive touch pads on the
Crickit HAT for Raspberry pi are
conveniently on the edge and vave nice
holes for clipping alligator clips onto.

You can read the value of the captouch pads from crickit.touch #.value This will

return True (if touched) or False (if not). This is the simplest/easiest way to detect
touch, but it has a catch!

©Adafruit Industries Page 106 of 183

https://learn.adafruit.com//assets/57270
https://learn.adafruit.com//assets/57270
https://learn.adafruit.com//assets/60935
https://learn.adafruit.com//assets/60935
https://learn.adafruit.com//assets/62089
https://learn.adafruit.com//assets/62089

We determine if the touch is active by seeing the difference between the current 'raw
reading value and the first value. That means you do need to read the crickit touch
pads without touching them first.

Try loading this code and touching the four pads while looking at the REPL

import time
from adafruit crickit import crickit

Capacitive touch tests

while True:

if crickit.touch 1.value:
print("Touched Cap Touch Pad 1")

if crickit.touch 2.value:
print("Touched Cap Touch Pad 2")

if crickit.touch 3.value:
print("Touched Cap Touch Pad 3")

if crickit.touch 4.value:
print("Touched Cap Touch Pad 4")

If you want to get more specific, you can read the ' raw value ' value which is a
number between 0 and 1023. Because there's always some capacitance its reading
you'll see a starting value of about 250.

You can then test against a threshold, or use it to measure how hard someone is
pressing against something (a fingertip vs a palm will give different readings)

import time
from adafruit crickit import crickit

Capacitive touch graphing test
touches = (crickit.touch 1, crickit.touch 2, crickit.touch 3, crickit.touch 4)

Open up the serial Plotter in Mu to see the values graphed!

while True:
touch raw values = (crickit.touch 1.raw value, crickit.touch 2.raw value,
crickit.touch 3.raw value, crickit.touch 4.raw value)
print(touch raw values)
time.sleep(0.1)

©Adafruit Industries Page 107 of 183

2000

1000

CircuitPython Audio

fritzing

fritzing

©Adafruit Industries

Amplified audio is available via the
Speaker terminals.

At left is the Circuit Playground Express
and Crickit version.

And this is the Feather and Crickit version.

Be sure you order the correct Crickit board
for the type of microcontroller you plan to
use in your project. While the Crickits are
nearly identical in capability, they are not
the same in making connections to either
Circuit Playground Express or Feather.

Page 108 of 183

https://learn.adafruit.com//assets/54071
https://learn.adafruit.com//assets/54071
https://learn.adafruit.com//assets/60936
https://learn.adafruit.com//assets/60936

The Speaker block on the Crickit HAT for
Raspberry Pi is easily to use, on the edge
of the board. The onboard amplifier is very
handy to provide audio for various
projects.

Audio animatronics! By adding a voice or sound effects to your robot you can make a
cool interactive project. We take advantage of CircuitPython's ability to play WAV files
over the true-analog output pin AO.

This is one of the few outputs that does not go through the seesaw chip. Instead, the
audio is played directly from the CircuitPython board and the Crickit only amplifies it!

Audio File Formats

CircuitPython supports Mono (not stereo) 22 KHz sample rate (or less) and 16-bit WAV
format. The reason for mono is that there's only one output, 22 KHz or less because
the Circuit Playground can't handle more data than that (and also it wont sound much
better) and the DAC output is 10-bit so anything over 16-bit will just take up room
without better quality

CircuitPython does not support OGG or MP3. Just WAV!
Since the WAV file must fit on the CircuitPython file system, it must be under 2 MB

We have a detailed guide on how to generate WAV files here (https://adafru.it/s8f)

Amplifier Details

The onboard amplifier is a mono "Class D" audio amp with BTL (Bridge Tied Load)
output.

That means you cannot plug the speaker output into another amplifier, it must
connect directly to a speaker!

©Adafruit Industries Page 109 of 183

https://learn.adafruit.com//assets/62091
https://learn.adafruit.com//assets/62091
file:///home/adafruit-wave-shield-audio-shield-for-arduino/convert-files

You can use just about any 4 to 8Q speaker (6 Q is OK too, just not as common). The
amplifier can drive up to 3 Watts into 4Q and 1 Watt into 8Q. That means its ok to
drive a 5 Watt speaker, it just wont be as loud as it could be with a bigger amp (but
you wont damage the amp). You can also drive speakers that are smaller, like an 8Q)
0.5 W but make sure you don't turn the audio volume potentiometer up, as it could
damage the speaker by overpowering it.

If you are using a Circuit Playground Bluefruit, audioio is not available. Use

audiopwmio instead.

Basic Audio Playback

import audioio
import audiocore
import board

wavfile = "howto.wav"

f = open(wavfile, "rb")

wav = audiocore.WaveFile(f)

a = audioio.AudioOut(board.AQ)
a.play(wav)

You can now do all sorts of stuff here while the audio plays
such as move servos, motors, read sensors...

Or wait for the audio to finish playing:
while a.playing:
pass

f.close()

Here is the audio file we're using for this example

howto.wav

https://adafru.it/Be4

You must drag/copy this onto your CIRCUITPY disk drive, it's a big file so it will take a
minute to copy over

Import Libraries

We start by importing the libraries that we need to make audio output import
audioio and import audiocore Then we import board, our standard hardware
library.

©Adafruit Industries Page 110 of 183

https://cdn-learn.adafruit.com/assets/assets/000/054/075/original/howto.wav?1526668791

Create wave file and audio output

Next we set the name of the file we want to open, which is a wave file wavfile =
"howto.wav" and then open the file as a readable binary and store the file object in f
which is what we use to actually read audio from: f = open(wavfile, "rb")

Now we will ask the audio playback system to load the wave data from the file wav =
audiocore.WaveFile(f) and finally request that the audio is played through the AO
analog output pin a = audioio.AudioOut(board.A0)

The audio file is now locked-and-loaded, and can be played at any time with a.play(
wav)

Audio playback occurs in the background, using "DMA" (direct memory access) so you
can control servos, motors, read sensors, whatever you like, while the DMA is
happening. Since it happens asynchronously, you may want to figure out when its
done playing. You can do that by checking the value of a.playing ifit's True then
its still processing audio, it will return False when complete.

Interactive Audio

OK just playing an audio file is one thing, but maybe you want to have some
interactivity, such as waiting for the person to touch something or press a button?
Here's an example of using a time-delay and then pausing until something occurs:

from busio import I2C

from adafruit seesaw.seesaw import Seesaw
import audioio

import audiocore

import board

import time

Create seesaw object
i2c = I2C(board.SCL, board.SDA)
seesaw = Seesaw(i2c)

what counts as a 'touch'
CAPTOUCH_THRESH = 500

wavfile = "howto.wav"

f = open(wavfile, "rb")

wav = audiocore.WaveFile(f)

a = audioio.AudioQut(board.A0)
a.play(wav)

t = time.monotonic() # this is the time when we started

wait until we're at timecode 5.5 seconds into the audio
while time.monotonic() - t < 5.5:

©Adafruit Industries Page 111 of 183

pass
a.pause() # pause the audio

print("Waiting for Capacitive touch!")
while seesaw.touch read(0) < CAPTOUCH THRESH:
pass

a.resume() # resume the audio

You can now do all sorts of stuff here while the audio plays
such as move servos, motors, read sensors...

Or wait for the audio to finish playing:
while a.playing:

pass
print("Done!")

You may want to have the audio track match to motion or events in your robot. To do
that you can do some tricks with time.monotonic() . That's our way of know true
time passage, it returns a floating point (fractional) value in seconds. Note its hard to
get the exact precise second so use > and < rather than checking for = equality
because minute variations will make it hard to get the time delta exactly when it
ocCCurs.

CircuitPython NeoPixels

You can connect any type of NeoPixels to
the NeoPixel port on the Crickit for Circuit
Playground Express. Be sure you connect
the Power and Ground connections
appropriately.

The center arrow terminal on Crickit

NeoPixel block is connected to Din on the
first NeoPixel or the beginning of a strip of
NeoPixels.

©Adafruit Industries Page 112 of 183

https://learn.adafruit.com//assets/62095
https://learn.adafruit.com//assets/62095

Likewise the Crickit Feather Wing has the
same NeoPixel block.

The board is just rotated a bit from the
above picture, same location).

The Crickit HAT for Raspberry Pi has the
NeoPixel block along the edge for easy
wiring.

fritzing

Using NeoPixels in your Crickit project is easy and fun, providing a dedicated port on
the Crickit to directly wire NeoPixels easily.

The sample code for using NeoPixels on the Crickit vary slightly depending on which

version of Crickit you have. Look for the appropriate section on this page for your
combination of Crickit and microcontroller.

NeoPixels with Circuit Playground Express + Crickit

The NeoPixel terminal block is controlled by the Circuit Playground Express pad A1.
The pad A1 definition is obtained by import board . Then the NeoPixel routine is
from import neopixel.

©Adafruit Industries Page 113 of 183

https://learn.adafruit.com//assets/62096
https://learn.adafruit.com//assets/62096
https://learn.adafruit.com//assets/62099
https://learn.adafruit.com//assets/62099

Various animations are provided by def ined

functions wheel, color chase and rainbow cycle. Various solid colors are then

defined, you are free to use whichever colors you wish.

You can define a new color variable as a Python tuple with three values for red,

green, blue, for example WHITE = (255, 255, 255).

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#
SPDX-License-Identifier: MIT

Drive NeoPixels on the NeoPixels Block on Crickit for
Circuit Playground Express

import time

from rainbowio import colorwheel

import neopixel

import board

num pixels = 30 # Number of pixels driven from Crickit NeoPixel terminal

The following line sets up a NeoPixel strip on Crickit CPX pin Al
pixels = neopixel.NeoPixel(board.Al, num pixels, brightness=0.3,
auto write=False)

def color_chase(color, wait):
for i in range(num pixels):
pixels[i] = color
time.sleep(wait)
pixels.show()
time.sleep(0.5)

def rainbow_cycle(wait):
for j in range(255):
for i in range(num pixels):
rc_index = (i * 256 // num_pixels) + j
pixels[i] = colorwheel(rc_index & 255)
pixels.show()
time.sleep(wait)

RED = (255, 0, 0)
YELLOW = (255, 150, 0)

GREEN = (0, 255, 0)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)

while True:
print("fill")
pixels.fill(RED)
pixels.show()

Increase or decrease to change the speed of the solid color change.

time.sleep(1)
pixels.fill(GREEN)
pixels.show()
time.sleep(1)
pixels.fill(BLUE)
pixels.show()
time.sleep(1)

print("chase")

color chase(RED, 0.1) # Increase the number to slow down the color chase

color chase(YELLOW, 0.1)

©Adafruit Industries

Page 114 of 183

color chase(GREEN, 0.1)
color chase(CYAN, 0.1)
color chase(BLUE, 0.1)
color chase(PURPLE, 0.1)

print("rainbow")
rainbow _cycle(0) # Increase the number to slow down the rainbow

NeoPixels and the Crickit FeatherWing or Crickit Hat

The NeoPixel block signal wire is connected to the Crickit Seesaw control chip pin
#20. The following code sets up an external 30 NeoPixel strip connected to the
Crickit FeatherWing or HAT

On Raspberry Pi, you'll also need to add the library: from your command line run the
following command:

sudo pip3 install rpi ws281x adafruit-circuitpython-neopixel

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

Drive NeoPixels on the NeoPixels Block on Crickit FeatherWing
import time

from rainbowio import colorwheel

from adafruit crickit import crickit

from adafruit seesaw.neopixel import NeoPixel

num pixels = 30 # Number of pixels driven from Crickit NeoPixel terminal

The following line sets up a NeoPixel strip on Seesaw pin 20 for Feather
pixels = NeoPixel(crickit.seesaw, 20, num pixels)

def color_chase(color, wait):
for i in range(num pixels):
pixels[i] = color
time.sleep(wait)
pixels.show()
time.sleep(0.5)

def rainbow_cycle(wait):
for j in range(255):
for i in range(num pixels):
rc_index = (i * 256 // num_pixels) + j
pixels[i] = colorwheel(rc_index & 255)
pixels.show()
time.sleep(wait)

RED = (255, 0, 0)
YELLOW = (255, 150, 0)

GREEN = (0, 255, 0)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)

while True:
print("fill")
pixels.fill(RED)

©Adafruit Industries Page 115 of 183

pixels.show()

Increase or decrease to change the speed of the solid color change.
time.sleep(1)

pixels.fill(GREEN)

pixels.show()

time.sleep(1)

pixels.fill(BLUE)

pixels.show()

time.sleep(1)

print("chase")

color chase(RED, 0.1) # Increase the number to slow down the color chase
color chase(YELLOW, 0.1)

color chase(GREEN, 0.1)

color _chase(CYAN, 0.1)

color chase(BLUE, 0.1)

color chase(PURPLE, 0.1)

print("rainbow")
rainbow cycle(0) # Increase the number to slow down the rainbow

Crickit for micro:bit

Currently the micro:bit is not supported in CircuitPython. The micro:bit is
programmable in MicroPython but there is no Crickit drive support for MicroPython at
present.

For More Information

See the tutorial Make It Glow with Crickit (https://adafru.it/Cxx).

Python Docs

Python Docs (https://adafru.it/CAJ)

CircuitPython Examples

Need some...err...inspiration? Here's some example projects with CircuitPython code
and wiring diagrams. They're not full-featured guides but they provide a good basis
for seeing how to use Crickit!

Most of the examples use the Circuit Playground Express version of Crickit as that
was the first Crickit released.

For CircuitPython based projects, the Feather Crickit should work fine as long as the

project does not use Circuit Playground Express based hardware. There are a couple
of differences noted in this guide for things like audio use.

©Adafruit Industries Page 116 of 183

https://learn.adafruit.com/make-it-glow-with-crickit?view=all
https://circuitpython.readthedocs.io/projects/crickit/en/latest/

Also you must choose a Feather that is compatible with CircuitPython.

For substituting one Crickit/microcontroller with another, we consider any changes
should be for intermediate users - if you're a beginner, try to use the exact hardware
specified for the best experience.

The micro:bit and Crickit combination do not support CircuitPython. Adafruit
recommends using MakeCode for programming.

Bubble Bot

Ilts summer time and that means tank tops, ice cream and bubbles! This robot friend
makes a bountiful burst of bubbles all on its own.

Parts List

Circuit Playground Express

Circuit Playground Express is the next
step towards a perfect introduction to
electronics and programming. We've
taken the original Circuit Playground
Classic and...
https://www.adafruit.com/product/3333

Adafruit CRICKIT for Circuit Playground
Express

Sometimes we wonder if robotics
engineers ever watch movies. If they did,
they'd know that making robots into
servants always ends up in a robot
rebellion. Why even go down that...
https://www.adafruit.com/product/3093

©Adafruit Industries Page 117 of 183

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093

Standard servo - TowerPro SG-5010

This high-torque standard servo can
rotate approximately 180 degrees (90 in
each direction). You can use any servo
code, hardware, or library to control these
servos. Good for...
https://www.adafruit.com/product/155

DC Toy / Hobby Motor - 130 Size

These are standard 130 size' DC hobby
motors. They come with a wider operating
range than most toy motors: from 4.5 to
9VDC instead of 1.5-4.5V. This range
makes them perfect...
https://www.adafruit.com/product/711

1
2
3
4
5
6
7
8

fritzing

Code

This simple robot doesn't do a lot but it does it very well!

©Adafruit Industries Page 118 of 183

https://www.adafruit.com/product/155
https://www.adafruit.com/product/155
https://www.adafruit.com/product/711
https://www.adafruit.com/product/711

We have one DC motor with a fan attachment, and one servo motor where we
connect the bubble wand. Every few seconds, the wand goes down into the bubble
mix, then back up, the fan turns on for 3 seconds, then turns off and the process
repeats!

SPDX-FileCopyrightText: 2018 Limor Fried for Adafruit Industries
#
SPDX-License-Identifier: MIT

CircuitPython 3.0 CRICKIT demo
import time

import board

from adafruit motor import servo, motor
from adafruit seesaw.pwmout import PWMOut
from adafruit seesaw.seesaw import Seesaw
from busio import I2C

i2c = I2C(board.SCL, board.SDA)
ss = Seesaw(i2c)

print("Bubble machine!")

SERVOS

= True
DCMOTORS =

True

Create 4 Servos
servos = []
if SERVOS:
for ss pin in (17, 16, 15, 14):
pwm = PWMOut(ss, ss pin)
pwm. frequency = 50
_servo = servo.Servo(pwm)
_servo.angle = 90 # starting angle, middle
servos.append(_servo)

Create 2 DC motors

motors = []

if DCMOTORS:

for ss pin in ((18, 19), (22, 23)):

pwm@ = PWMOut(ss, ss pin[0])
pwml = PWMOut(ss, ss pin[1])
~motor = motor.DCMotor(pwm@, pwml)
motors.append(_motor)

while True:
print("servo down")
servos[0].angle = 180
time.sleep(1l)
print("fan on")

motors[0].throttle = 1
time.sleep(3)
print("fan off")
time.sleep(1)
motors[0].throttle = 0

print("servo up")
servos[0].angle = 0
time.sleep(1)

©Adafruit Industries Page 119 of 183

Feynman Simulator

If you are a fan of physics wunderkind Richard Feynman and you like bongo drums,
this Feynman simulator will satisfy your every desire. Between wise quips, this Feyn-
bot will dazzle you with its drumming expertise (https://adafru.it/BxR).

Parts List

Circuit Playground Express

Circuit Playground Express is the next
step towards a perfect introduction to
electronics and programming. We've
taken the original Circuit Playground
Classic and...
https://www.adafruit.com/product/3333

Adafruit CRICKIT for Circuit Playground
Express

Sometimes we wonder if robotics
engineers ever watch movies. If they did,
they'd know that making robots into
servants always ends up in a robot
rebellion. Why even go down that...
https://www.adafruit.com/product/3093

Mini Push-Pull Solenoid - 5V

Solenoids are basically electromagnets:
they are made of a coil of copper wire
with an armature (a slug of metal) in the
middle. When the coil is energized, the
slug is pulled into the...
https://www.adafruit.com/product/2776

©Adafruit Industries Page 120 of 183

https://en.wikipedia.org/wiki/Richard_Feynman
https://en.wikipedia.org/wiki/Richard_Feynman
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/2776
https://www.adafruit.com/product/2776

Micro servo

Tiny little servo can rotate approximately
180 degrees (90 in each direction) and
works just like the standard kinds you're
used to but smaller. You can use any
servo...
https://www.adafruit.com/product/169

Mono Enclosed Speaker - 3W 4 Ohm
Listen up! This 2.8" x 1.2"

speaker is a great addition to any audio
project where you need 4 ohm
impedance and 3W or less of power. We
particularly like...
https://www.adafruit.com/product/3351

Wiring Diagram

Solenoids don't have 'direction’ - any current will make them push. So even though
we wired the black wire to 5V and the red wires to the #1 and #2 drive ports, they!'ll
work just fine.

The microservo is taped to a wooden stick that moves the paper cut-out mouth up
and down, for a Monty-Python-style puppet (https://adafru.it/BxS).

©Adafruit Industries Page 121 of 183

https://www.adafruit.com/product/169
https://www.adafruit.com/product/169
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/3351
https://www.youtube.com/watch?v=D1BKtrG7qxQ

Co

de

Our code plays through a few wave file quips and quotes we found online, with some
interstitial bongo drumming. Once all the audio has been played, it bongos for a long
time, then repeats!

SP
#
SP

Ci

impo
impo

impo
impo
impo
from
from
from
from

i2c
ss =

prin

1
pwm
pwm.
myse
myse

2
driv
for

Au

DX-FileCopyrightText: 2018 Limor Fried for Adafruit Industries

DX-License-Identifier: MIT
rcuitPython 3.0 CRICKIT demo
rt gc

rt time

rt audioio

rt audiocore

rt board

adafruit motor import servo

adafruit seesaw.pwmout import PWMOut
adafruit seesaw.seesaw import Seesaw
busio import I2C

= I2C(board.SCL, board.SDA)
Seesaw(i2c)

t("Feynbot demo!")
Servo

= PWMOut(ss, 17)
frequency = 50

rvo = servo.Servo(pwm)

rvo.angle = 180 # starting angle, highest
Drivers

es = []

ss_pin in (13, 12):

pwm = PWMOut(ss, ss pin)
pwm. frequency = 1000
drives.append(_ pwm)

dio files

©Adafruit Industries

Page 122 of 183

wavfiles = ["Ol.wav", "02.wav", "03.wav", "04.wav", "05.wav"]
a = audioio.AudioOut(board.AQ)

Start playing the file (in the background)
def play file(wavfile):

f = open(wavfile, "rb")

wav = audiocore.WaveFile(f)

a.play(wav)

Tap the solenoids back and forth
def bongo(t):
for in range(t):

drives[0].duty cycle
time.sleep(0.1)
drives[0].duty cycle = 0
time.sleep(0.1)
drives[1].duty cycle
time.sleep(0.1)
drives[1].duty cycle = 0
time.sleep(0.1)

OXFFFF

OXFFFF

Move mouth back and forth
def talk(t):
for in range(t):
myservo.angle = 150
time.sleep(0.1)
myservo.angle = 180
time.sleep(0.1)

filenum = @ # counter to play all files

while True:
gc.collect()
print(gc.mem free())

time to play the bongos!
bongo(5)
time.sleep(1)

OK say something insightful
play file(wavfiles[filenum])
and move the mouth while it does
while a.playing:
talk(1)

Done being insightful, take a break
time.sleep(1l)

If we went thru all the files, JAM OUT!
filenum += 1
if filenum >= len(wavfiles):

bongo (20)

filenum = 0

Slime Night

Ladyada was unable to get to sleep. Feeling restless she decided to visit her
workshop and make some slime to help soothe her soul. Then her companion
showed up to lend a hand and have fun together!

©Adafruit Industries Page 123 of 183

How to Make Slime

- 1 Bottle EImers Glue - we like the glitter glue but you can use plain white glue
and add food coloring!

« 1/2 Tablespoon Baking Soda - not baking powder! You probably have some in
your freezer, fridge, or baking cabinet

- 1 Tablespoon Contact Lens Solution - make sure to get the stuff with Boric Acid!

Put glue in a glass container, add soda and solution, mix & enjoy!

The quantities are flexible and you don't have to be exact. Add a little more or less to
change gooeyness.

Parts Used

Adafruit CRICKIT for Circuit Playground
Express

Sometimes we wonder if robotics
engineers ever watch movies. If they did,
they'd know that making robots into
servants always ends up in a robot
rebellion. Why even go down that...
https://www.adafruit.com/product/3093

Circuit Playground Express

Circuit Playground Express is the next
step towards a perfect introduction to
electronics and programming. We've
taken the original Circuit Playground
Classic and...
https://www.adafruit.com/product/3333

©Adafruit Industries Page 124 of 183

https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333

DC Gearbox Motor - "TT Motor" - 200RPM
-3to 6VDC

Perhaps you've been assembling a new
robot friend, adding a computer for a
brain and other fun personality touches.
Now the time has come to let it leave the
nest and fly on...
https://www.adafruit.com/product/3777

Foot Pedal Potentiometer - Sewing
Machine Speed Controller

We've had a foot pedal switch in the store
for a while but some people have
contacted us asking if there was a way to
retrofit it to perform variable speed
control, like a...
https://www.adafruit.com/product/3739

3.5mm (1/8") Stereo Audio Jack Terminal
Block

One truth about working with audio is you
always need the cable or adapter you
don't have in your toolbox. That's why we
love these terminal-block audio
connectors so...
https://www.adafruit.com/product/2791

Mono Enclosed Speaker - 3W 4 Ohm
Listen up! This 2.8" x 1.2"

speaker is a great addition to any audio
project where you need 4 ohm
impedance and 3W or less of power. We
particularly like...
https://www.adafruit.com/product/3351

©Adafruit Industries Page 125 of 183

https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3739
https://www.adafruit.com/product/3739
https://www.adafruit.com/product/3739
https://www.adafruit.com/product/2791
https://www.adafruit.com/product/2791
https://www.adafruit.com/product/2791
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/3351

Adafruit NeoPixel LED Dots Strand - 20
LEDs at 2" Pitch

Attaching NeoPixel strips to your costume
can be a struggle as the flexible PCBs can
crack when bent too much. So how to add
little dots of color? Use these stranded
NeoPixel dots!...
https://www.adafruit.com/product/3630

Foot switch is like half of
a 20K potentiometer
Then a 10K resistor is a
pullup to 3.3V for the
other half

- @ // - =

fritzing

CircuitPython Code

This project has a foot pedal potentiometer that controls the speed of the TT motor
that spins the platter around. Since foot pedals are rheostats (variable resistors) you
need another resistor to finish the divider. We use a plain 10K, any value from about
4.7K to 47K will do fine.

When not pressed, the analog reading value is about 700. When pressed, the reading
goes down to about 50. You may need to calibrate these numbers for your foot pedall!

We map the analog press values to motor speed, our max speed we want is 0.5
throttle (1.0 was waaay to fast) using our simple mapper helper. If its our first time

pressing the pedal, we play the audio file 3 seconds later, to give some ambience.

You can also press the A button to turn on/off some pretty NeoPixels.

©Adafruit Industries Page 126 of 183

https://www.adafruit.com/product/3630
https://www.adafruit.com/product/3630
https://www.adafruit.com/product/3630

SPDX-FileCopyrightText: 2018 Limor Fried for Adafruit Industries
#
SPDX-License-Identifier: MIT

import time

from digitalio import DigitalInOut, Direction, Pull
from adafruit seesaw.seesaw import Seesaw

from adafruit seesaw.analoginput import AnalogInput
from adafruit seesaw.pwmout import PWMOut

from adafruit motor import motor

from busio import I2C

import neopixel

import audioio

import audiocore

import board

Create seesaw object
i2c = I2C(board.SCL, board.SDA)
seesaw = Seesaw(i2c)

built in CPX button A

button = DigitalInOut(board.BUTTON A)
button.direction = Direction.INPUT
button.pull = Pull.DOWN

NeoPixels
pixels = neopixel.NeoPixel(board.Al, 10, brightness=0)
pixels.fill((0,0,250))

Analog reading from Signal #1 (ss. #2)
foot pedal = AnalogInput(seesaw, 2)

Create one motor on seesaw PWM pins 22 & 23
motor_a = motor.DCMotor (PWMOut (seesaw, 22), PWMOut(seesaw, 23))
motor_a.throttle = 0

def map_range(x, in min, in _max, out min, out max):
Maps a number from one range to another.
mapped = (x-in min) * (out max - out min) / (in_max-in min) + out min
if out min <= out max:
return max(min(mapped, out max), out min)
return min(max(mapped, out max), out min)

Get the audio file ready
wavfile = "unchained.wav"

f = open(wavfile, "rb")

wav = audiocore.WaveFile(f)

a = audioio.AudioQut(board.A0)

time to play = 0 # when to start playing
played = False # have we played audio already? only play once!
while True:
Foot pedal ranges from about 700 (unpressed) to 50 (pressed)
make that change the speed of the motor from 0 (stopped) to 0.5 (half)
press = foot pedal.value
speed = map_range(press, 700, 50, 0, 0.5)
print("%d -> %0.3f" % (press, speed))
motor_a.throttle = speed

if not time to play and speed > 0.1:
print("Start audio in 3 seconds")
time to play = time.monotonic() + 3
elif time to play and time.monotonic() > time to play and not played:
print("Playing audio")
a.play(wav)
played = True

turn on/off blue LEDs

©Adafruit Industries Page 127 of 183

if button.value:
if pixels.brightness < 0.1:
pixels.brightness =1
else:
pixels.brightness = 0
time.sleep(0.5)

loop delay
time.sleep(0.1)

Flying Trapeze

Feel the excitement, the thrill, the rushing air beneath your wings - without having to
leave home or run any risk of injury or sweating!

This Flying Trapeze bot uses a servo claw to grip onto a willing gymnast, and release
it into the air when the detected acceleration has reached a sufficient peak!

Parts List

The servo claw we used had a built in metal gear servo that could draw significant
current when actuated! We found a 4xAA battery pack with good NiMH batteries
would last a while but 3xNiMH couldn't power it sufficiently

Adafruit CRICKIT for Circuit Playground
Express

Sometimes we wonder if robotics
engineers ever watch movies. If they did,
they'd know that making robots into
servants always ends up in a robot
rebellion. Why even go down that...
https://www.adafruit.com/product/3093

©Adafruit Industries Page 128 of 183

https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093

Circuit Playground Express

Circuit Playground Express is the next
step towards a perfect introduction to
electronics and programming. We've
taken the original Circuit Playground
Classic and...
https://www.adafruit.com/product/3333

4 x AA Battery Holder with On/Off Switch
Make a nice portable power pack with this
4 x AA battery holder. It fits any alkaline or
rechargeable AA batteries in series.
There's a snap on cover and an on/off
switch which can...
https://www.adafruit.com/product/830

Male DC Power adapter - 2.1mm plug to
screw terminal block

If you need to connect a battery pack or
wired power supply to a board that has a
DC jack - this adapter will come in very
handy! There is a 21mm DC plug on one
end, and a screw...
https://www.adafruit.com/product/369

©Adafruit Industries Page 129 of 183

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830
https://www.adafruit.com/product/369
https://www.adafruit.com/product/369
https://www.adafruit.com/product/369

[
|
w
) ‘

Assnzeg vvv
Aaanreg vvv

-
o
B
(]
o
<
«
«

| ARA Battery -l

U

T
|-

fritzing

Boot.py

Since we want to have the ability to data log the accelerometer, we need to put the
CPX into 'filesystem write mode' - this boot.py will let you use the switch on the CPX
to select whether you want to log data or go into trapeze-release mode

SPDX-FileCopyrightText: 2017 Limor Fried for Adafruit Industries

#
SPDX-License-Identifier: MIT

Save as boot.py to turn on/off datalogging capability

import digitalio
import board
import storage

switch = digitalio.DigitalInOQut(board.D7) # For Circuit Playground Express
switch.direction = digitalio.Direction.INPUT
switch.pull = digitalio.Pull.UP

If the switch pin is connected to ground CircuitPython can write to the drive
storage.remount("/", switch.value)

CircuitPython Code

Our Python code is dual use. You can use the slide switch to select whether you want
to log the accelerometer data to the onboard storage. If you do, its easy to plot it and
see the magnitude of the forces on your trapeze artist!

©Adafruit Industries Page 130 of 183

We mostly used data log mode to calibrate how 'hard' we required the person to push
the trapeze to make the servo release the gymnast-stand-in.

We also have two buttons on the CPX we use for different tasks. In logging mode, you
use button A to turn on/off logging. The red LED blinks to let you know logging is
occuring. In trapeze mode, A and B let you manually open/close the servo gripper so
you can have it grab the gymnasts head. Hey life's tough all around!

Finally, if we're in trapeze mode, we look for when we're at the beginning of a swing,

that's when the Z axis acceleration drops below 3 m/s2 and the Y axis has positive
acceleration (we used the data log info to figure this out!) If so, the next time we reach
max-acceleration, at the lowest point of the swing, we start opening the gripper,
which takes a little time so that when we are at the end of the swing, it's opened
enough for the gymnast to be released!

We change the NeoPixel colors to help debug, by flashing when we reach the
different sensor states, since we don't have wireless data transfer on the CPX.

SPDX-FileCopyrightText: 2018 Limor Fried for Adafruit Industries
#
SPDX-License-Identifier: MIT

import time

from digitalio import DigitalInOut, Direction, Pull
import adafruit lis3dh

from busio import I2C

from adafruit seesaw.seesaw import Seesaw

from adafruit seesaw.pwmout import PWMOut

from adafruit motor import servo

import neopixel

import board

create accelerometer

i2cl = I2C(board.ACCELEROMETER SCL, board.ACCELEROMETER SDA)
lis3dh = adafruit 1is3dh.LIS3DH I2C(i2cl, address=0x19)
lis3dh.range = adafruit lis3dh.RANGE 8 G

Create seesaw object
i2c = I2C(board.SCL, board.SDA)
seesaw = Seesaw(i2c)

Create servo object

pwm = PWMOut (seesaw, 17) # Servo 1 is on s.s. pin 17

pwm. frequency = 50 # Servos like 50 Hz signals

my _servo = servo.Servo(pwm) # Create my servo with pwm signal

LED for debugging
led = DigitalInQut(board.D13)
led.direction = Direction.OUTPUT

two buttons!

button a = DigitalInOut(board.BUTTON A)
button a.direction = Direction.INPUT
button a.pull = Pull.DOWN

button b = DigitalInOut(board.BUTTON B)
button b.direction = Direction.INPUT

©Adafruit Industries Page 131 of 183

button b.pull = Pull.DOWN

NeoPixels!
pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=1)
pixels.fill((0,0,0))

###BH AR ARHA##HE Log Tile for logging mode!
logfile = "/log.csv"
check that we could append if wanted to
try:
fp = None
fp open(logfile, "a")
print("File system writable!")
pylint: disable=bare-except
except:
print("Not logging, trapeeze mode!")

If we log, have some helper variables
logging = False

logpoints = 0

outstr = ""

When its time to release the trapeze
release = False

while True:
if button a.value: # A pressed
while button a.value: # wait for release
pass
if fp: # start or stop logging
logging = not logging

print("Logging: ", logging)
time.sleep(0.25)

else:
my servo.angle = 180 # open

if button b.value: # B pressed

while button b.value: # wait for release
pass
my servo.angle = 0 # close

X, Yy, z = lis3dh.acceleration

To keep from corrupting the filesys, take 25 readings at once
if logging and fp:

outstr += "%0.2F, %0.2F, %0.2F\n" % (x, y, z)

logpoints += 1

if logpoints > 25:
led.value = True
#print ("Writing: "+outstr)
fp.write(outstr+"\n")

fp.flush()
led.value = False
logpoints = 0
else:
display some neopixel output!
if z > 20:

MAXIMUM EFFORT!
pixels.fill((0, 255, 0))
if release:

my servo.angle = 180

elif z < 3 and y > 0: # means at the outer edge
release = True
flash red when we peak
pixels.fill((255, 0, 0))

else:

©Adafruit Industries Page 132 of 183

pixels.fill((0,0,int(abs(z)*2)))

time.sleep(0.05)

For the curious, our data log file is here! (https://adafru.it/BkU)

R.O.B. GyroBot

We picked up a Nintendo R.O.B. robot from our local online auction site and when it
appeared we decided to figure out how to get it working. There's 3 motors inside, and
the R.O.B. already comes with motor drivers and end-stops, so instead of driving the
robot directly, we decided to control the R.O.B. using Circuit Playground Express
(CPX) and Crickit!

The code is all in CircuitPython.

We use the Crickit for the amplified audio effects (we snagged some audio from
gameplay to give it that authentic chiptune sound), driving an IR LED for signalling at
500mA burst current so we could have it a few feet away, and the capacitive touch
inputs for our desk controller.

With the addition of a D battery for the gyro turner, we had a fun live-action game
without the need of a CRT!

Parts List

Circuit Playground Express

Circuit Playground Express is the next
step towards a perfect introduction to
electronics and programming. We've
taken the original Circuit Playground
Classic and...
https://www.adafruit.com/product/3333

©Adafruit Industries Page 133 of 183

https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Crickits/flying_trapeze/log.csv
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333

Adafruit CRICKIT for Circuit Playground
Express

Sometimes we wonder if robotics
engineers ever watch movies. If they did,
they'd know that making robots into
servants always ends up in a robot
rebellion. Why even go down that...
https://www.adafruit.com/product/3093

Super-bright 5mm IR LED

Infrared LEDs are used for remote
controls (they're the little LED in the part
you point at your TV) and 'night-vision'
cameras, and these little blue guys are
high powered...
https://www.adafruit.com/product/387

Small Alligator Clip Test Lead (set of 12)
Connect this to that without soldering
using these handy mini alligator clip test
leads. 15" cables with alligator clip on
each end, color coded. You get 12 pieces
in 6 colors....
https://www.adafruit.com/product/1008

Mono Enclosed Speaker - 3W 4 Ohm
Listen up! This 2.8" x 1.2"

speaker is a great addition to any audio
project where you need 4 ohm
impedance and 3W or less of power. We
particularly like...
https://www.adafruit.com/product/3351

©Adafruit Industries Page 134 of 183

https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/387
https://www.adafruit.com/product/387
https://www.adafruit.com/product/1008
https://www.adafruit.com/product/1008
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/3351

Wiring Diagram

The IR LED can handle up to 1 Amp peak current, so don't use a resistor, just wire it up
to Drive 1 directly!

We use 4 capacitive touch sensors from the Crickit and 2 from CPX for 6 total (there's
more capacitive touch inputs available on Crickit Signal pins but we wanted to use
plain alligator pads!)

fritzing

Codel

Save to your CPX as code.py and touch the alligator clips to control your R.O.B.

The IR LED should be 1-2 feet away and pointed at the R.O.B's left eye (or, the right-
most eye when you are looking at R.O.B)

It will calibrate when first starting up, and play some tunes.
Flip the switch on/off on the CPX to turn on/off the capacitive touch detection/

command sending (if you need to adjust your cables without having the robot turn
around on you!

©Adafruit Industries Page 135 of 183

To help you know what's going on, the NeoPixels on the CPX will glow to match the

colors of the alligator clips shown above, so use those same colors! Only exception is
black shows up as purple LEDs.

You may need to tweak the capacitive touch threshholds. Try uncommenting

#touch vals =

(touch2.raw value, touch3.raw value,

seesaw.touch read(0), seesaw.touch read(l), seesaw.touch read(2),
seesaw.touch read(3))
#print(touch vals)

And watching the

SPDX-FileCopyrightText:

#

REPL to see what the values read are.

SPDX-License-Identifier: MIT

import time
import gc

from digitalio import DigitalInOut, Direction, Pull
from busio import I2C

from adafruit seesaw.seesaw import Seesaw

from adafruit seesaw.pwmout import PWMOut

import touchio
import audioio

import audiocore

import neopixel
import board

pixels = neopixel.NeoPixel(board.NEOPIXEL,

pixels.fill((0,0,0))

Create seesaw
i2c = I2C(board.

object
SCL, board.SDA)

seesaw = Seesaw(i2c)

switch

switch = DigitalInOut(board.SLIDE SWITCH)
switch.direction = Direction.INPUT
switch.pull = Pull.UP

We need some extra captouches
touch2 = touchio.TouchIn(board.A2)
touch3 = touchio.TouchIn(board.A3)

LED for debugging
led = DigitalInOut(board.D13)

led.direction =

Create drive (
INFRARED LED_SS

my drive = PWMOut(seesaw, INFRARED LED SS)
my drive.frequency = 1000

CAPTOUCH_THRESH

Commands, each 8 bit command is preceded by the 5 bit Init sequence
1, 0] # This must precede any command
0, 1, 60, 1, 0, 1, 1] # the initial calibration

Init = [0, O, O,
Calibrate = [1,

Direction.OUTPUT

PWM) object
=13

= 850

Uup =11, 0, 1, 1, 1, 0, 1, 1] # Move arms/body down

©Adafruit Industries

2018 Limor Fried for Adafruit Industries

10, brightness=1)

_LED # Drive 1 is on s.s.
Our default frequency is 1KHz

pin 13

Page 136 of 183

Down = [1, 1, 1, 1, 1, 0, 1, 1] # Move arms/body up

Left = [1, 0, 1, 1, 1, O, 1, O] # Twist body left

Right = [1, 1, 1, 0, 1, O, 1, O0] # Twist body right

Close = [1, 0, 1, 1, 1, 1, 1, O] # Close arms

Open = [1, 1, 1, 0, 1, 1, 1, 0] # Open arms

Test = [1, 1, 1, O, 1, O, 1, 1] # Turns R.0.B. head LED on

def IR_Command(cmd):
print("Sending ", cmd)

gc.collect() # collect memory now, timing specific!
OQutput initialization and then command cmd
for val in Init+cmd: # For each value in initial+command
if val: # if it's a one, flash the IR LED
seesaw.analog write(INFRARED LED SS, 65535) # on
seesaw.analog write(INFRARED LED SS, 0) # off 2ms later
time.sleep(0.013) # 17 ms total
pylint: disable=useless-else-on-loop
else:
time.sleep(0.015) # 17 ms total
a = audioio.AudioQut(board.A0)
startfile = "startup.wav"
loopfile = "loop.wav"

with open(startfile, "rb") as f:
wav = audiocore.WaveFile(f)
a.play(wav)
for in range(3):
IR Command(Calibrate)
time.sleep(0.5)

while a.playing:
IR Command(Open)
time.sleep(1)
IR Command(Close)
time.sleep(1)

f = open(loopfile, "rb")

wav = audiocore.WaveFile(f)

a.play(wav, loop=True)

while True: # Main Loop poll switches, do commands
led.value = switch.value # easily tell if we're running
if not switch.value:
continue

#touch vals = (touch2.raw value, touch3.raw value, seesaw.touch read(0),
seesaw.touch read(1l),

seesaw.touch read(2), seesaw.touch read(3))

#print(touch_vals)

if touch2.raw value > 3000:
print("Open jaws")
pixels.fill((50,50,0))
IR Command(Open) # Button A opens arms

elif touch3.raw value > 3000:
print("Close jaws")
pixels.fill((0,50,0))
IR Command(Close) # Button B closes arms

elif seesaw.touch read(0) > CAPTOUCH THRESH:
print("Up")
pixels.fill((50,0,50))
IR Command(Up)

elif seesaw.touch read(1l) > CAPTOUCH THRESH:

print("Down")
pixels.fill((50,50,50))

©Adafruit Industries Page 137 of 183

IR Command (Down)

elif seesaw.touch read(2) > CAPTOUCH THRESH:
print("Left")
pixels.fill((50,0,0))
IR Command(Left)

elif seesaw.touch read(3) > CAPTOUCH THRESH:
print("Right")
pixels.fill((0,0,50))
IR Command(Right)

time.sleep(0.1)
pixels.fill((0,0,0))

Gear Tower

Plastic toys are great for hacking, modding and improving using Crickit! This box o'
gears is fun for about 10 minutes...but when you add motors, sensors and robotics you
can make cool interactive art

This example shows how to use the light sensor on the Circuit Playground Express to
trigger a motor to rotate. With some audio effects it becomes a Force trainer, or a
moving Theremin

Parts List

Adafruit CRICKIT for Circuit Playground
Express

Sometimes we wonder if robotics
engineers ever watch movies. If they did,
they'd know that making robots into
servants always ends up in a robot
rebellion. Why even go down that...
https://www.adafruit.com/product/3093

©Adafruit Industries Page 138 of 183

https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093

Circuit Playground Express

Circuit Playground Express is the next
step towards a perfect introduction to
electronics and programming. We've
taken the original Circuit Playground
Classic and...
https://www.adafruit.com/product/3333

DC Gearbox Motor - "TT Motor" - 200RPM
-3 to 6VDC

Perhaps you've been assembling a new
robot friend, adding a computer for a
brain and other fun personality touches.
Now the time has come to let it leave the
nest and fly on...
https://www.adafruit.com/product/3777

TT Motor Pulley - 36mm Diameter
Mechanical transmission for the win, this
simple plastic pulley can attach to your TT
motor to transmit rotation from the motor
axle to...somewhere else.This is a very...
https://www.adafruit.com/product/3789

Mono Enclosed Speaker - 3W 4 Ohm
Listen up! This 2.8" x 1.2"

speaker is a great addition to any audio
project where you need 4 ohm
impedance and 3W or less of power. We
particularly like...
https://www.adafruit.com/product/3351

©Adafruit Industries Page 139 of 183

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3789
https://www.adafruit.com/product/3789
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/3351

14
2.
3
44
5
64
7+
84

fritzing

CircuitPython Code For "Force Wave" demo

This project is pretty simple, it looks to see when the light sensor is shaded by your
hand and changes the motor from running to off or vice versa.

import time

from busio import I2C

import analogio

from adafruit seesaw.seesaw import Seesaw
from adafruit seesaw.pwmout import PWMOut
from adafruit motor import motor

import board

light = analogio.AnalogIn(board.LIGHT)
print("Wave on/off to turn")

Create seesaw object
i2c = I2C(board.SCL, board.SDA)
seesaw = Seesaw(i2c)

Create one motor on seesaw PWM pins 22 & 23
motor _a = motor.DCMotor (PWMOut(seesaw, 22), PWMOut(seesaw, 23))
motor a.throttle = 0 # motor is stopped

while True:
print((light.value,))
light value drops when a hand passes over
if light.value < 4000:
if motor a.throttle:
motor a.throttle
else:
motor a.throttle

0

1 # full speed forward

©Adafruit Industries Page 140 of 183

while light.value < 5000:
wait till hand passes over completely
pass

time.sleep(0.1)

CircuitPython Code For "Theremin" demo

We can adapt the code above to speed up or slow down the motor based on how far
our hand is. The darker the sensor, the faster the motor spins!

import time

from busio import I2C

import analogio

from adafruit seesaw.seesaw import Seesaw
from adafruit seesaw.pwmout import PWMOut
from adafruit motor import motor

import board

light = analogio.AnalogIn(board.LIGHT)

print("Theramin-like turning")

Create seesaw object
i2c = I2C(board.SCL, board.SDA)
seesaw = Seesaw(i2c)

Create one motor on seesaw PWM pins 22 & 23
motor a = motor.DCMotor (PWMOut(seesaw, 22), PWMOut(seesaw, 23))
motor_a.throttle = 0 # motor is stopped

def map_range(x, in _min, in _max, out min, out max):
Maps a number from one range to another.
mapped = (x-in min) * (out max - out min) / (in max-in min) + out min
if out min <= out max:
return max(min(mapped, out max), out min)
return min(max(mapped, out max), out min)

while True:
print((light.value,))
motor_a.throttle = map range(light.value, 500, 8000, 1.0, 0)
time.sleep(0.1)

CPX-1701

This is the adventure of the United Space Ship CircuitPlayground.
Assigned a five year galaxy patrol, the bold crew of the giant starship
explores the excitement of strange new worlds, uncharted civilizations, and
exotic code. These are its voyages and its adventures.

Explore exciting new modes of propulsion by creating a really big vibrating motor.
This Crickit project attaches a bunch of CD's to an up-cycled CD-ROM motor for a cool

©Adafruit Industries Page 141 of 183

looking warp drive. Some popsicle sticks, NeoPixels and sound effects complete the
space craft and it's now ready for your command, captain!

Parts List

Circuit Playground Express

Circuit Playground Express is the next
step towards a perfect introduction to
electronics and programming. We've
taken the original Circuit Playground
Classic and...
https://www.adafruit.com/product/3333

Adafruit CRICKIT for Circuit Playground
Express

Sometimes we wonder if robotics
engineers ever watch movies. If they did,
they'd know that making robots into
servants always ends up in a robot
rebellion. Why even go down that...
https://www.adafruit.com/product/3093

Thin Plastic Speaker w/Wires - 8 ohm
0.25W

Listen up! This 1.5" diameter speaker cone
is the perfect addition to any audio
project where you need an 8Q
impedance and are using 0.25W of power.
The speakers are rated...
https://www.adafruit.com/product/1891

Wiring Diagram

©Adafruit Industries Page 142 of 183

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/1891
https://www.adafruit.com/product/1891
https://www.adafruit.com/product/1891

'|-
2.
3.
4

5-
6.
7-
8-

“ﬂ D7)
®, =@

S @i | 16 S

fritzing

CircuitPython Code

This project is pretty simple, it plays some audio clips, and then lights up the built in
NeoPixels and powers up the motor in time with the effects.

SPDX-FileCopyrightText: 2018 Limor Fried for Adafruit Industries
#
SPDX-License-Identifier: MIT

import time

from busio import I2C

from adafruit seesaw.seesaw import Seesaw
from adafruit seesaw.pwmout import PWMOut
from adafruit motor import motor

import neopixel

import audioio

import audiocore

import board

print("The voyages of the CPX-1701!'")
Create seesaw object

i2c = I2C(board.SCL, board.SDA)
seesaw = Seesaw(i2c)

Create one motor on seesaw PWM pins 22 & 23
motor_a = motor.DCMotor (PWMOut (seesaw, 22), PWMOut(seesaw, 23))

audio output
cpx_audio = audioio.AudioOut(board.A0)

neopixels!
pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=1)
pixels.fill((0, 0, 0))

give me a second before starting
time.sleep(1l)

motor a.throttle = 0 # warp drive off

©Adafruit Industries Page 143 of 183

f = open("0lspace.wav", "rb")
wav = audiocore.WaveFile(f)
cpx_audio.play(wav)

t = time.monotonic() # take a timestamp

slowly power up the dilithium crystals
for i in range(50):
pixels.fill((0, 0, 1))
time.sleep(0.05)

6 seconds after audio started...
while time.monotonic() - t < 6:
pass

motor_a.throttle = 1 # full warp drive on!

wait for music to end

while cpx audio.playing:
pass

f.close()

play the warp drive and theme music!
f = open("02warp.wav", "rb")

wav = audiocore.WaveFile(f)
cpx_audio.play(wav)

time.sleep(1)

blast off!
pixels.fill((255, 0, 0))

pulse the warp core
while True:
for i in range(255, 0,
pixels.fill((i, O,
for i in range(0, 255,
pixels.fill((i, O,

[oNG NoR |
————u

wait for music to end

while cpx audio.playing:
pass

f.close()

Mag Neat-o
We picked up a magnetic foam shape kit, to make a fridge-mounted marble run. But
picking up the marble after each run is such a drag - wouldn't it be fun if you could

use your Crickit to help lift the ball back up and re-start the marble run?

With an electromagnet, we can pick up the stainless steel balls. A DC motor acts as a
pulley, and a servo helps align the electromagnet so it can navigate around the foam.

You can DIY, as we did, using the two Circuit Playground Express buttons and switch
to control the motors - or you could even automate the whole thing!

©Adafruit Industries Page 144 of 183

Parts List

Circuit Playground Express

Circuit Playground Express is the next
step towards a perfect introduction to
electronics and programming. We've
taken the original Circuit Playground
Classic and...
https://www.adafruit.com/product/3333

Adafruit CRICKIT for Circuit Playground
Express

Sometimes we wonder if robotics
engineers ever watch movies. If they did,
they'd know that making robots into
servants always ends up in a robot
rebellion. Why even go down that...
https://www.adafruit.com/product/3093

DC Gearbox Motor - "TT Motor" - 200RPM
-3to 6VDC

Perhaps you've been assembling a new
robot friend, adding a computer for a
brain and other fun personality touches.
Now the time has come to let it leave the
nest and fly on...
https://www.adafruit.com/product/3777

©Adafruit Industries Page 145 of 183

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777

Standard servo - TowerPro SG-5010

This high-torque standard servo can
rotate approximately 180 degrees (90 in
each direction). You can use any servo
code, hardware, or library to control these
servos. Good for...
https://www.adafruit.com/product/155

1 x 5V Electromagnet
Use a "50N" one for good pick up ability!

Wiring Diagram

Even though an electromagnet doesn't have 'direction' and thus could be controlled
by a Drive pin, we opted for a Motor port because these electromagnets can draw up
to 700mA and that's more than the Drive pin. But, you could almost certainly get away
with using a Drive pin if you like!

1
2
3
4
5
6
7
8

fritzing

Codel

Save to your CPX as code.py and press the CPX buttons to move the pulley up and
down. Capacitive touch pads #1 and #4 twist the servo and then the switch enables
and disables the electromagnet.

©Adafruit Industries Page 146 of 183

https://www.adafruit.com/product/155
https://www.adafruit.com/product/155

The most interesting partis smooth move which is our gentle servo movement
helper, it will carefully move the servo rather than jostling it and the magnet which
would possibly cause the balls to fall.

import time

from busio import I2C

from adafruit seesaw.seesaw import Seesaw

from adafruit seesaw.pwmout import PWMOut

from adafruit motor import motor, servo

from digitalio import DigitalInOut, Direction, Pull
import board

print("Mag Neat-o!")

Create seesaw object
i2c = I2C(board.SCL, board.SDA)
seesaw = Seesaw(i2c)

Create one motor on seesaw PWM pins 22 & 23

motor a = motor.DCMotor (PWMOut(seesaw, 22), PWMOut(seesaw, 23))
Create another motor on seesaw PWM pins 19 & 18

motor b = motor.DCMotor (PWMOut (seesaw, 19), PWMOut(seesaw, 18))

Create servo object

pwm = PWMOut (seesaw, 17) # Servo 1 is on s.s. pin 17

pwm. frequency = 50 # Servos like 50 Hz signals

my servo = servo.Servo(pwm) # Create my servo with pwm signa
my servo.angle = 90

def smooth_move(start, stop, num steps):

return [(start + (stop-start)*i/num steps) for i in range(num steps)]

buttona = DigitalInOut(board.BUTTON A)
buttona.direction = Direction.INPUT
buttona.pull = Pull.DOWN

buttonb = DigitalInOut(board.BUTTON B)
buttonb.direction = Direction.INPUT
buttonb.pull = Pull.DOWN

switch = DigitalInOQut(board.SLIDE SWITCH)
switch.direction = Direction.INPUT
switch.pull = Pull.UP

buttona.value
buttonb.value
switch.value

last buttona
last buttonb
last switch

last _touchl = False
last touch4 = False

while True:
touch vals = (seesaw.touch read(0), seesaw.touch read(3))
print(touch vals)

touchl = False
if seesaw.touch read(0) > 500:
touchl = True

if touchl != last touchl:
if touchl:
start _angle = my servo.angle
end angle = start angle - 20
end angle = max(0, min(end angle, 180))
print("left from", start angle, "to", end angle)

©Adafruit Industries Page 147 of 183

for a in smooth move(start angle, end angle, 25):
my servo.angle = a
time.sleep(0.03)
last touchl = touchl

touch4 = False
if seesaw.touch read(3) > 500:
touch4 = True

if touch4 !'= last touch4:
if touch4:
start _angle = my servo.angle
end angle = start angle + 20
end angle = max(0, min(end angle, 180))
print("right from", start angle, "to", end angle)
for a in smooth move(start angle, end angle, 25):
my servo.angle = a
time.sleep(0.03)
last touch4 = touch4

if buttona.value != last buttona:
if buttona.value:
print("down")
if motor a.throttle:
print("haulin!")
motor b.throttle
else:
motor_b.throttle

-0.1

-0.1
else:

motor b.throttle = 0
last buttona = buttona.value

if buttonb.value != last buttonb:
if buttonb.value:
print("up")
if motor a.throttle:
print("haulin!")
motor b.throttle
else:
motor b.throttle

0.4

0.3
else:

motor b.throttle = 0
last buttonb = buttonb.value

if switch.value != last switch:
motor a.throttle = switch.value
if motor a.throttle:
print("GRAB")
else:
print("RELEASE")
last switch = switch.value

time.sleep(0.01)

©Adafruit Industries Page 148 of 183

(Don't Fear) The Crickit

Parts List

Adafruit CRICKIT for Circuit Playground
Express

Sometimes we wonder if robotics
engineers ever watch movies. If they did,
they'd know that making robots into
servants always ends up in a robot
rebellion. Why even go down that...
https://www.adafruit.com/product/3093

Circuit Playground Express

Circuit Playground Express is the next
step towards a perfect introduction to
electronics and programming. We've
taken the original Circuit Playground
Classic and...
https://www.adafruit.com/product/3333

Panel Mount Right Angle 10K Linear
Potentiometer w/On-Off Switch

This Panel Mount Right Angle 10K Linear
Potentiometer w/ On-Off Switch is a two-
in-one, with both a breadboard-friendly
potentiometer and a switch. For the...
https://www.adafruit.com/product/3395

©Adafruit Industries Page 149 of 183

https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3395
https://www.adafruit.com/product/3395
https://www.adafruit.com/product/3395

Solid Machined Metal Knob - 1" Diameter
This is really the fanciest, best feeling
knob we've ever seen. Using this knob
sort of reminded us of driving along the
Amalfi coast in a perfectly restored '65
Porsche...
https://www.adafruit.com/product/2056

Mono Enclosed Speaker - 3W 4 Ohm
Listen up! This 2.8" x 1.2"

speaker is a great addition to any audio
project where you need 4 ohm
impedance and 3W or less of power. We
particularly like...
https://www.adafruit.com/product/3351

Adafruit NeoPixel LED Dots Strand - 20
LED 4" Pitch

Attaching NeoPixel strips to your costume
can be a struggle as the flexible PCBs can
crack when bent too much. So how to add
little dots of color? Use these stranded
NeoPixel dots!...
https://www.adafruit.com/product/3631

1 x Fog Machine with Remote
https://www.amazon.com/Virhuck-400-Watt-Portable-
Halloween-Christmas/dp/BO074WMWWS5

1x Cow Bell
Craft store cowbell

©Adafruit Industries Page 150 of 183

https://www.adafruit.com/product/2056
https://www.adafruit.com/product/2056
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/3631
https://www.adafruit.com/product/3631
https://www.adafruit.com/product/3631

Wiring Diagram

Fog Machine Remote:
5V to Battery +

GND to Battery-
Motor 1A to Button 1
Motor 1B to Button 2

1
o
.

BRR

fritzing

For the remote, we soldered four wires

Black ground wire to the battery spring
(negative) terminal

Red +5V wire to the battery flat (positive)
terminal

White and Purple go to the 'switched' part
of each switch, which, when connected to
5V activates that switch

CircuitPython Code

SPDX-FileCopyrightText: 2018 Limor Fried for Adafruit Industries

#

SPDX-License-Identifier: MIT

import time
import audioio
import audiocore

from
from
from
from
from

digitalio import DigitalInOut, Pull, Direction
adafruit seesaw.seesaw import Seesaw

adafruit seesaw.pwmout import PWMOut

adafruit motor import servo

busio import I2C

import neopixel
import board

Create seesaw object

©Adafruit Industries Page 151 of 183

https://learn.adafruit.com//assets/55368
https://learn.adafruit.com//assets/55368

i2c = I2C(board.SCL, board.SDA)
seesaw = Seesaw(i2c)

led = DigitalInOQut(board.D13)
led.direction = Direction.OUTPUT

Two onboard CPX buttons for FOG
buttona = DigitalInOut(board.BUTTON A)
buttona.direction = Direction.INPUT
buttona.pull = Pull.DOWN

buttonb = DigitalInOut(board.BUTTON B)
buttonb.direction = Direction.INPUT
buttonb.pull = Pull.DOWN

Use the signal port for potentiometer w/switch
MORECOW = 2 # A switch on Signal #1

SWITCH = 3 # A potentiometer on Signal #2

Add a pullup on the switch
seesaw.pin mode (SWITCH, seesaw.INPUT PULLUP)

Servo angles
BELL START = 60
BELL END = 75
MOUTH_START = 95
MOUTH_END = 105

Create servos list

servos = []

for ss _pin in (17, 16): #17 is labeled 1 on CRICKIT, 16 is labeled 2
pwm = PWMOut(seesaw, ss pin)
pwm.frequency = 50 #must be 50 cannot change
_servo = servo.Servo(pwm, min pulse=400, max pulse=2500)
servos.append(_servo)

Starting servo locations

servos[0].angle = BELL START

servos[1l].angle = MOUTH_START

For the fog machine we actually use the PWM on the motor port cause it really
needs 5V!

fog off = PWMOut(seesaw, 22)

fog off.duty cycle = 0

fog _on = PWMOut(seesaw, 23)

fog on.duty cycle = 0

Audio playback object and helper to play a full file
a = audioio.AudioQOut(board.A0)
def play_file(wavfile):
with open(wavfile, "rb") as file:
wavf = audiocore.WaveFile(file)
a.play(wavf)
while a.playing:
servos[1l].angle
time.sleep(.2)
servos[1l].angle
time.sleep(.2)

MOUTH_START

MOUTH_END

NeoPixels for EYES

pixels = neopixel.NeoPixel(board.Al, 9, brightness=0.5)
pixels[8] (255, 255, 0)

pixels[7] (255, 255, 0)

Maps a number from one range to another.

def map_range(x, in min, in max, out min, out max):
mapped = (x=-in_min) * (out max - out min) / (in_max-in _min) + out min
if out min <= out max:

©Adafruit Industries Page 152 of 183

return max(min(mapped, out max), out min)
return min(max(mapped, out max), out min)

Wait before starting up

time.sleep(3)

play file("i-gotta-have-more-cowbell.wav")

a pause between audio clips

time.sleep(1)

play file("only-prescription-more-cowbell.wav")

while seesaw.digital read(SWITCH):
pass

print("Ready for playing audio")
time.sleep(1l)

f = open("fearll.wav", "rb")
wav = audiocore.WaveFile(f)
a.play(wav)

while True:
if seesaw.digital read(SWITCH):
break # time to bail!
pot = seesaw.analog read(MORECOW)
print(pot)
eyecolor = (int(map_range(pot, 0, 1023, 255, 0)), int(map_range(pot, 0, 1023, 0,
255)), 0)
pixels[8]
pixels[7]

eyecolor
eyecolor

if buttonb.value:

fog on.duty cycle
else:

fog on.duty cycle

65535

1]
(<)

if buttona.value:

fog off.duty cycle
else:

fog off.duty cycle

65535

0

if pot < 200: # wait for a bit before we start
continue

delay = map_range(pot, 200, 1023, 1.0, 0.1)

servos[0].angle = BELL END

time.sleep(0.1)

servos[0].angle = BELL START

time.sleep(delay)

a.stop()
f.close()

Fog machine test

fog off.duty cycle = 65535
fog on.duty cycle = 0
time.sleep(0.1)

fog off.duty cycle = 0

pixels[8] = (255, 255, 0)
pixels[7] = (255, 255, 0)
time.sleep(1l.5)

play file("i-coulda-used-more-cow-bell.wav")

©Adafruit Industries Page 153 of 183

Arduino Code

The Crickit HAT for Raspberry Pi is not programmable in Arduino.

The microcontrollers installed on top of Crickit communicate to execute Crickit
commands via the seesaw chip located on the Crickit. Seesaw is a helper
microcontroller which talks to the main microcontroller via the serial 12C protocol.
There is a bit of setup to get things working in your Arduino code but it is not difficult.

Download Adafruit_Seesaw library

To begin using your Crickit with the Arduino IDE, you will need to install the Adafruit_s
eesaw library (https://adafru.it/BKT).

Start up the IDE and open the Library Manager:

I Blink | Arduino 1.8.4 ——
File Edit [Sketch| Tools Help

Verify/Compile Ctrl+R
Upload Ctrl+U
Upload Using Programmer Ctrl+Shift+U

Export compiled Binary Ctrl+Alt+S =
Manage Libraries...

Show Sketch Folder Ctrl+K i1y.
Include Library Add .ZIP Library...
AAAAA Add File... Arduino libraries

Type in seesaw until you see the Adafruit Library pop up. Click Install!

Library Manager u

Type :AII v: Topic :AII v: seesaw

Adafruit seesaw Library by Adafruit Version 1.0.1 INSTALLED o
This is a library for the Adafruit seesaw helper IC. This is a library for the Adafruit seesaw helper IC.

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://
adafru.it/aYM)

©Adafruit Industries Page 154 of 183

https://github.com/adafruit/Adafruit_Seesaw/
https://github.com/adafruit/Adafruit_Seesaw/
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Arduino with micro:bit

For basic usage of Arduino with the micro:bit, see this tutorial to get started (https://

adafru.it/CilL).

Once you have the basic support down, you can use an attached Crickit via the
Seesaw library.

Pin Definitions for Seesaw and Crickit

There are two files you should include in your sketches, Adafruit seesaw.h and
Adafruit Crickit.h . Pin definitions for controlling Crickit functions are in Adafrui

t Crickit.h for reference.

#ifndef CRICKIT TERSTER_H
#define _CRICKIT_TERSTER_H

#include "Adafruit_seesaw.h"

#define CRICKIT_SIGNAL1 2
#define CRICKIT_SIGNAL2 3
#define CRICKIT_SIGNAL3 40
#define CRICKIT_SIGNAL4 41
#define CRICKIT_SIGNAL5 11
#define CRICKIT_SIGNAL6 10
#define CRICKIT_SIGNAL7 9
#define CRICKIT_SIGNAL8 8

#define CRICKIT_SERV04 14
#define CRICKIT_SERVO3 15
#define CRICKIT_SERVO02 16
#define CRICKIT_SERVO1l 17

#define CRICKIT_MOTOR_A1l 22
#define CRICKIT_MOTOR_A2 23
#define CRICKIT_MOTOR Bl 19
#define CRICKIT_MOTOR B2 18
#define CRICKIT_DRIVEL 13
#define CRICKIT_DRIVE2 12
#define CRICKIT_DRIVE3 43
#define CRICKIT_DRIVE4 42

#define CRICKIT_TOUCH1
#define CRICKIT_TOUCH2
#define CRICKIT_TOUCH3
#define CRICKIT_TOUCH4

WNEFEO

#define CRICKIT_DUTY_CYCLE_OFF 0
#define CRICKIT_DUTY_CYCLE_MAX 65535

©Adafruit Industries

Page 155 of 183

https://learn.adafruit.com/use-micro-bit-with-arduino/overview

/**/
/*!
@brief Class that stores state and functions for interacting with Crickit
variant of seesaw helper IC
*/
/KRR sk stk okosk sk sk ok sk ok sk ok sk ok ok sk sk ok ok sk sk ook sk ok ok sk sk ok ok sk sk ok sk sk ok ok sk skok ok sk sk ok sk sk ok ok sk sk ok ok sk k ok k f
class Adafruit Crickit : public Adafruit seesaw {
public:
Adafruit Crickit(){};
~Adafruit Crickit(){};
void analogWrite(uint8_ t pin, uintl6_t value, uint8_t width = 8);
uintl6_t analogRead(uint8_t pin);
void setPWMFreq(uint8_t pin, uintl6_t freq);
b

#endif

©Adafruit Industries Page 156 of 183

Arduino Servos

The location of the Servo connections on
Crickit are similar on all three versions of
the board: Circuit Playground Express,
Feather, and micro:bit.

©Adafruit Industries Page 157 of 183

https://learn.adafruit.com//assets/54252
https://learn.adafruit.com//assets/54252
https://learn.adafruit.com//assets/62015
https://learn.adafruit.com//assets/62015
https://learn.adafruit.com//assets/62016
https://learn.adafruit.com//assets/62016

fritzing

Test Servos

Lets start by controlling some servos. You'll want at least one servo to plug in and test
out the servo code. Visit our recommended servo page to check that you have a
servo that works (https://adafru.it/Bfo). Once you do, plug in a servo into SERVO #1

spot, making sure the yellow or white wire is next to the 1 text label.

This example will show rotating one servo from O to 180 degrees with a stop at 90
degrees.

#include "Adafruit_Crickit.h"
#include "seesaw_servo.h"

Adafruit Crickit crickit;
seesaw_Servo myservo(&crickit); // create servo object to control a servo

void setup() {
Serial.begin(115200);

if(!crickit.begin()){
Serial.println("ERROR!");
while(1) delay(1l);

else Serial.println("Crickit started");

myservo.attach(CRICKIT SERVO1l); // attaches the servo to CRICKIT SERVO1l pin
}

void loop() {
myservo.write(0);
delay(1000);
myservo.write(90);
delay(1000);
myservo.write(180);
delay(1000);
myservo.write(90);
delay(1000);

©Adafruit Industries Page 158 of 183

https://learn.adafruit.com//assets/62100
https://learn.adafruit.com//assets/62100
file:///home/cpx-crickit/recommended-servos
file:///home/cpx-crickit/recommended-servos

More Servos!

OK that was fun but you want MORE servos right? You can control up to four! The
servos are on the seesaw pins 17 (CIRCKIT_SERVO1), 16 (CIRCKIT_SERVO?2), 15 (CIRCK
IT_SERVO?3), 14 (CIRCKIT_SERVO4)

This example is similar to the 1 servo example, but instead of creating one myservo
object, we'll make an array called servos that contains 4 servo objects. Then we can
assign them using servo[0].write(90); or iterate through them as we do in the
loop. You don't have to do it this way, but its very compact and doesn't take a lot of
code lines to create all 4 servos at once!

#include "Adafruit_Crickit.h"
#include "seesaw_servo.h"

Adafruit Crickit crickit;
#define NUM_SERVOS 4

//create an array of 4 servos with our crickit object

seesaw _Servo servos[] = { seesaw Servo(&crickit),
seesaw Servo(&crickit),
seesaw _Servo(&crickit),
seesaw_Servo(&crickit) };

//these are the pins they will be attached to
int servoPins[] = { CRICKIT SERVO1l, CRICKIT SERV02, CRICKIT SERVO03,
CRICKIT SERV04 };

void setup() {
Serial.begin(115200);

//begin the crickit

if(!crickit.begin()){
Serial.println("ERROR!");
while(1l) delay(1l);

else Serial.println("Crickit started");

//attach the servos to their pins
for(int i=0; i<NUM_SERVOQS; i++)
servos[i].attach(servoPins[i]); // attaches the servo to the pin
}

void loop() {

//repeat for all 4 servos

for(int i=0; i<NUM SERVOS; i++){
servos[i].write(0);
delay(1000);
servos[i].write(90);
delay(1000);
servos[i].write(180);
delay(1000);

©Adafruit Industries Page 159 of 183

servos[i].write(90);
delay(1000);

}
}

Min/Max Pulse control

In theory, servos should all use 1ms to 2ms long pulses, at 50 Hz to set the 0 and 180
degree locations. However, not all servos have their full range at those pulse widths.
You can easily tweak your code to change the min and max pulse widths, which will
let your servo turn more left and right. But don't set the widths too small/large or you
can hit the hard stops of the servo which could damage it, so try tweaking the
numbers slowly until you get a sense of what the limits are for your motor.

All you need to do is change the

myservo.attach(CRICKIT SERVO1l);

to, say,

myservo.attach(CRICKIT SERVO1l, 750, 2250);

Here we've change the minimum pulse from the default 1000 microseconds to 750,

and the default maximum pulse from 2000 microseconds to 2250. Again, each servo
differs. Some experimentation may be required!

Continuous Rotation Servos

If you're using continuous servos, you can use the angle assignments and just
remember that O is rotating one way, 90 is 'stopped' and 180 and rotating the other
way.

If your continuous servo doesn't stop once the script is finished you may need to tune

the min and max pulse timings so that the center makes the servo stop. Or check if
the servo has a center-adjustment screw you can tweak.

©Adafruit Industries Page 160 of 183

Disconnecting Servos or Custom Pulses

If you want to 'disconnect' the Servo by sending it O-length pulses, you can do that by
'reaching in' and adjusting the underlying PWM duty cycle with:

myservo.writeMicroseconds(0);
Likewise you can set the duty cycle to a custom value with
myservo.writeMicroseconds (number);

where number is the pulse length is microseconds between 0 (off) and 20000 (fully
on). For example, setting it to 10000 will be 50% duty cycle, at the 50 Hz update rate

©Adafruit Industries Page 161 of 183

Arduino Drives

SV Solenoid

SV Vibration Motor

SV Relay

High current LED(s)
with limiting resistor
fr t Zn q

SV Vibration Moter

The Drives port provides the ability to
drive higher current devices.

The functionality is identical on all versions
of Crickit shown at left.

fritzing

SV Visration Mator

©Adafruit Industries Page 162 of 183

https://learn.adafruit.com//assets/54253
https://learn.adafruit.com//assets/54253
https://learn.adafruit.com//assets/62017
https://learn.adafruit.com//assets/62017
https://learn.adafruit.com//assets/62018
https://learn.adafruit.com//assets/62018

SV Vibration Motor

High current LEDI)
W e lieg ces stz

Test Drive

Lets start by controlling a drive output. You'll need to plug something into the 5V and
DRIVE1 terminal blocks. I'm just using a simple LED with resistor but anything that can
be powered by 5V will work.

« Note that the drive outputs cannot have 5V output so you must connect the posi
tive pin of whatever you're driving to 5V. Don't try connecting the positive pin to
the drive, and the negative pin to GND, it wont work!

« Drive outputs are PWM-able!

« PWM values can be anywhere between 0 (0% duty cycle or always off) and 6553
5 (100% duty cycle or always on). A value of 32768 would be 50% duty cycle, or
on for half of the period and then off for half the period.

This example will show turning the drive output fully on and off once a second. The
macros CRICKIT_DUTY_CYCLE_OFF and CRICKIT_DUTY_CYCLE_MAX correspond to
0 and 65535 respectively and are used for readability:

#include "Adafruit_Crickit.h"
Adafruit Crickit crickit;

void setup() {
Serial.begin(115200);
Serial.println("1l Drive demo!");

if(!crickit.begin()){
Serial.println("ERROR!");
while(1) delay(1);

}

else Serial.println("Crickit started");

//our default frequency is 1lkhz
crickit.setPWMFreq(CRICKIT DRIVE1, 1000);

©Adafruit Industries Page 163 of 183

https://learn.adafruit.com//assets/62101
https://learn.adafruit.com//assets/62101

void loop() {
//turn all the way on
crickit.analogWrite(CRICKIT DRIVE1l, CRICKIT DUTY_ CYCLE OFF);
delay(500);

//turn all the way off
crickit.analogWrite(CRICKIT DRIVE1l, CRICKIT DUTY_CYCLE MAX);
delay(500);

More Drivers!

OK that was fun but you want MORE drives right? You can control up to four! The four
drive outputs are on the seesaw pins 13 (CRICKIT_DRIVE1), 12 (CRICKIT_DRIVE2), 43 (
CRICKIT_DRIVE3), 42 (CRICKIT_DRIVE4)

#include "Adafruit_Crickit.h"
Adafruit Crickit crickit;

#define NUM_DRIVES 4
int drives[] = {CRICKIT DRIVE1l, CRICKIT DRIVE2, CRICKIT DRIVE3, CRICKIT DRIVE4};

void setup() {
Serial.begin(115200);
Serial.println("4 Drive demo!");

if(!'crickit.begin()){
Serial.println("ERROR!");
while(1) delay(1l);

else Serial.println("Crickit started");

//our default frequency is 1khz
for(int i=0; i<NUM DRIVES; i++)
crickit.setPWMFreq(drives[i], 1000);
}

void loop() {
for(int i=0; i<NUM DRIVES; i++){
//turn all the way on
crickit.analogWrite(drives[i], CRICKIT DUTY_ CYCLE OFF);
delay(100);

//turn all the way off
crickit.analogWrite(drives[i], CRICKIT DUTY CYCLE MAX);
delay(100);

This example is similar to the 1 drive example, but instead of using just 1 PWM driver,
we'll make an array called drives that contains the pin numbers of 4 PWM drivers.
Then we can assign them using crickit.analogWrite(drives[0],
CRICKIT DUTY CYCLE MAX); oriterate through them as we do in the loop. You don't
have to do it this way, but its very compact and doesn't take a lot of code lines to
create all 4 drivers at oncel!

©Adafruit Industries Page 164 of 183

Arduino DC Motors

fritzing

similar Motor port which can drive two DC
motors.

| . The hexagonal Crickets at left all have a

fritzing

micro:bit

ericka -

fritzing

©Adafruit Industries Page 165 of 183

https://learn.adafruit.com//assets/54263
https://learn.adafruit.com//assets/54263
https://learn.adafruit.com//assets/62019
https://learn.adafruit.com//assets/62019
https://learn.adafruit.com//assets/62020
https://learn.adafruit.com//assets/62020

fritzing

DC motors are controlled by 4 PWM output pins, the 4 PWM pins let you control
speed and direction. And we'll use our seesaw_Motor library to help us manage the
throttle (speed) and direction for us, making it very easy to control motors

Note that each DC motor is a little different, so just because you have two at the same
throttle does not mean they'll rotate at the exact same speed! Some tweaking may be
required

The two wires of the DC motor can be plugged in either way into each Crickit

Motor port. If the motor spins the opposite way from what you want to call
'forward', just flip the wires!

#include "Adafruit_Crickit.h"
#include "seesaw_motor.h"

Adafruit Crickit crickit;

seesaw Motor motor_a(&crickit);
seesaw _Motor motor_b(&crickit);

void setup() {
Serial.begin(115200);
Serial.println("Dual motor demo!");

if(!crickit.begin()){
Serial.println("ERROR!");
while(1) delay(1l);

else Serial.println("Crickit started");

//attach motor a
motor a.attach(CRICKIT MOTOR Al, CRICKIT MOTOR A2);

//attach motor b
motor b.attach(CRICKIT MOTOR B1l, CRICKIT MOTOR B2);
}

void loop() {
motor a.throttle(l);
motor _b.throttle(-1);
delay(1000);

©Adafruit Industries Page 166 of 183

https://learn.adafruit.com//assets/62102
https://learn.adafruit.com//assets/62102

motor a.throttle(.5);
motor b.throttle(-.5);
delay(1000);

motor a.throttle(0);
motor b.throttle(0);
delay(1000);

motor_a.throttle(-.5);
motor b.throttle(.5);
delay(1000);

motor a.throttle(-1);
motor_b.throttle(1);
delay(1000);

motor_a.throttle(0);

motor_b.throttle(0);
delay(500);

©Adafruit Industries Page 167 of 183

Arduino Signals

The 8 GPIO pins on the Crickit are in the
Signals block of pins. You have the 8 data
pins, each input/output, 3.3v logic, analog
or digital.

These GPIO are controlled by the Crickit's
seesaw chip, not directly by the
microcontroller or the Raspberry Pi. Thus
programming them takes a bit more work
but they provide some great benefits.

Signals on the Crickit are available on the following pins:

Silkscreen Label Arduino Macro Seesaw Pin

©Adafruit Industries Page 168 of 183

https://learn.adafruit.com//assets/75503
https://learn.adafruit.com//assets/75503
https://learn.adafruit.com//assets/75504
https://learn.adafruit.com//assets/75504
https://learn.adafruit.com//assets/75507
https://learn.adafruit.com//assets/75507

1 CRICKIT_SIGNAL1 2

2 CRICKIT_SIGNALZ2 3
3 CRICKIT_SIGNAL3 40
4 CRICKIT_SIGNAL4 41
5 CRICKIT_SIGNALS "
6 CRICKIT_SIGNAL®6 10
7 CRICKIT_SIGNAL7 9
8 CRICKIT_SIGNALS 8

You can use these as analog or digital I/O pins, setting the mode, value and reading
with the seesaw library directly:

#include "Adafruit_Crickit.h"
Adafruit Crickit crickit;

#define BUTTON_1 CRICKIT_SIGNAL1
#define BUTTON_2 CRICKIT_SIGNAL2
#define LED 1 CRICKIT_SIGNAL3
#define LED_2 CRICKIT_SIGNAL4

void setup() {
Serial.begin(9600);

if(!crickit.begin()){
Serial.println("ERROR!");
while(1) delay(1l);
else Serial.println("Crickit started");
//Two buttons are pullups, connect to ground to activate
crickit.pinMode (BUTTON_ 1, INPUT_PULLUP);
crickit.pinMode (BUTTON 2, INPUT PULLUP);

// Two LEDs are outputs, on by default
crickit.pinMode(LED 1, OUTPUT);

©Adafruit Industries Page 169 of 183

crickit.pinMode(LED 2, OUTPUT);

crickit.digitalWrite(LED 1, HIGH);

crickit.digitalWrite(LED 2, HIGH);
}

void loop() {
if(!crickit.digitalRead (BUTTON 1))
crickit.digitalWrite(LED 1, HIGH);
else
crickit.digitalWrite(LED 1, LOW);

if(!crickit.digitalRead (BUTTON 2))
crickit.digitalWrite(LED 2, HIGH);
else
crickit.digitalWrite(LED 2, LOW);

©Adafruit Industries Page 170 of 183

Arduino Capacitive Touch

fritzing

Capacitive touch capability is in two
places:

On the four alligator clip friendly pads on
the Capacitive Touch area on Crickit.

Capacitive touch is very useful for activating things in your projects.

The following code demonstrates the features of the Crickit cap touch pads.

// Adafruit Crickit Capacitive Touch Demo for Arduino

//
// Displays the value of Adafruit Crickit touchpad values when touched

//

©Adafruit Industries Page 171 of 183

https://learn.adafruit.com//assets/62021
https://learn.adafruit.com//assets/62021
https://learn.adafruit.com//assets/62022
https://learn.adafruit.com//assets/62022
https://learn.adafruit.com//assets/62023
https://learn.adafruit.com//assets/62023

// Tested with the Crickit + micro:bit, all good
#include "Adafruit_Crickit.h"
Adafruit Crickit crickit;

#define CRICKIT_NUM_TOUCH 4
#define CAPTOUCH_THRESH 500

void setup() {
Serial.begin(9600); // Set up serial monitor - be sure it is set to 9600
Serial.println("Cap Touch Demo");

if('crickit.begin()) { // Check if Crickit is attached
Serial.println("ERROR Starting crickit"); // If an error, print and
while(1) ; // go to a infinite loop to
stop
}
else Serial.println("seesaw started"); // success, we have a Crickit

}
void loop() {

for(int i=0; i<CRICKIT NUM TOUCH; i++){ // check each touch input

uintl6_t val = crickit.touchRead(i); // read the touch input
if(val > CAPTOUCH THRESH){ // if the value read is > the threshold
Serial.print("CT"); // print info to serial monitor

Serial.print(i + 1);
Serial.print(" touched! value: ");
Serial.println(val);

}

b
delay(100); // wait tiny bit between checks
}

Arduino NeoPixels

Crickit makes it really easy to add NeoPixels (WS2812/WS2811/SK6812 chipsets) to
your project. The Crickit has a 3-terminal block connector with Ground, Signal and 5V
power. The signal line has a level shifter on it so it will be 5V logic level, for nice clean

signals.

This output is slightly different depending on what kind of Crickit you have.

©Adafruit Industries Page 172 of 183

Crickit for Circuit Playground Express

If you have a Circuit Playground
Crickit then the NeoPixels are driven by
the Circuit Playground A1 pad by default.

Use the Adafruit_NeoPixel library (https://
adafru.it/aZU) to control NeoPixels
connected to Crickit through Circuit
Playground Express pin Al.

However, if you want, you can cut the
jumper underneath the Crickit and solder
closed the ss pad so that the seesaw chip
controls the NeoPixels (for advanced
hackers only). See below for use.

Crickit Wing for Feather

If you have a Feather Crickit then the
NeoPixels are driven by the seesaw chip
on the Crickit, and you must send seesaw
commands to set colors. But that means
no extra pins are needed from your
Feather. See below for use.

©Adafruit Industries Page 173 of 183

https://learn.adafruit.com//assets/62142
https://learn.adafruit.com//assets/62142
https://github.com/adafruit/Adafruit_NeoPixel
https://learn.adafruit.com//assets/62139
https://learn.adafruit.com//assets/62139

Crickit for micro:bit

If you have a micro:bit Crickit, NeoPixels
are driven by micro:bit Pin P16.

.*";a'{,"{ ’ | Use the Adafruit_NeoPixel library (https://
mICro:0It 7%

adafru.it/aZU) to control NeoPixels
connected to Crickit through micro:bit P16.

However, if you want, you can cut the
jumper underneath the Crickit and solder

closed the ss pad so that the seesaw chip
controls the NeoPixels (for advanced
hackers only). See below.

Crickit HAT for Raspberry Pi

Advanced Use - Using Seesaw to Control NeoPixels

Your microcontroller can communicate to the Crickit seesaw chip to have seesaw
control the NeoPixels. Adafruit considers this advanced use at the Arduino level and
recommends MakeCode or CircuitPython for Crickit NeoPixel. With this in mind, read
on.

If you choose to have the NeoPixel driven from the seesaw, note it is on seesaw pin
#20. To use seesaw pin 20 on Circuit Playground Express and micro:bit Crickit, you
must cut a jumper on the Crickit circuit board on the back. You can always mend this
with solder, but it's NOT something you change back and forth.

For FeatherWing for Crickit, the NeoPixels are already connected to seesaw pin 20,
you don't need to do the surgery below.

©Adafruit Industries Page 174 of 183

https://learn.adafruit.com//assets/62140
https://learn.adafruit.com//assets/62140
https://github.com/adafruit/Adafruit_NeoPixel

Turn the Crickit over and locate the jumper
block on the bottom as circled in yellow in
the first image.

You will need to take a knife and cut the
tiny gold trace pointed by the red arrow to
sever the current NeoPixel to
microcontroller connection.

Using a soldering iron, put a mice bright
solder connection between the pads as
marked by the blue arrow.

The Seesaw Pin 20 is now connected to
the NeoPixel connections on Crickit.

The Adafruit_seesaw library (https://adafru.it/BrV) has seesaw NeoPixel support. You
can get the latest version of this library through the Arduino board manager as
described in this guide on the Arduino page (https://adafru.it/EvT).

Your Arduino sketch should include seesaw_neopixel.h which provides the NeoPixel
functions for seesaw.

The following example sets up a strand of NeoPixels and runs through some
animations.

#include <seesaw_neopixel.h>
#define PIN 10
// Parameter 1 number of pixels in strip

// Parameter 2 Arduino pin number (most are valid)

// Parameter 3 pixel type flags, add together as needed:

// NEO KHZ800 800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)

// NEO KHZ400 400 KHz (classic 'vl' (not v2) FLORA pixels, WS2811 drivers)
// NEO_GRB Pixels are wired for GRB bitstream (most NeoPixel products)
// NEO RGB Pixels are wired for RGB bitstream (vl FLORA pixels, not v2)
// NEO RGBW Pixels are wired for RGBW bitstream (NeoPixel RGBW products)
seesaw NeoPixel strip = seesaw NeoPixel(12, PIN, NEO GRB + NEO KHZ800);

// IMPORTANT: To reduce NeoPixel burnout risk, add 1000 uF capacitor across
// pixel power leads, add 300 - 500 Ohm resistor on first pixel's data input
// and minimize distance between Arduino and first pixel. Avoid connecting

©Adafruit Industries Page 175 of 183

https://learn.adafruit.com//assets/62055
https://learn.adafruit.com//assets/62055
https://learn.adafruit.com//assets/62056
https://learn.adafruit.com//assets/62056
https://github.com/adafruit/Adafruit_Seesaw
https://learn.adafruit.com/adafruit-crickit-creative-robotic-interactive-construction-kit/arduino-code

// on a live circuit...if you must, connect GND first.

void setup() {
Serial.begin(115200);

while (!Serial) delay(10); // wait until serial port is opened

if(!strip.begin()){
Serial.println("seesaw not found!");
while(1) delay(10);

}

Serial.println(F("seesaw started OK!"));

strip.show(); // Initialize all pixels to ‘'off'
}

void loop() {
// Some example procedures showing how to display to the pixels:
colorWipe(strip.Color(255, 0, 0), 50); // Red
colorWipe(strip.Color(0, 255, 0), 50); // Green
colorWipe(strip.Color(0, 0, 255), 50); // Blue
//colorWipe(strip.Color(0, 0, 0, 255), 50); // White RGBW
// Send a theater pixel chase in...
theaterChase(strip.Color (127, 127, 127), 50); // White
theaterChase(strip.Color(127, 0, 0), 50); // Red
theaterChase(strip.Color(0, 0, 127), 50); // Blue

rainbow(20);

rainbowCycle(20);

theaterChaseRainbow(50) ;
}

// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
for(uintl6_t i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, c);
strip.show();
delay(wait);
}
}

void rainbow(uint8 t wait) {
uintlé_t i, j;

for(j=0; j<256; j++) {
for(i=0; i<strip.numPixels(); i++) {
strip.setPixelColor (i, Wheel((i+j) & 255));
}

strip.show();
delay(wait);
}
}

// Slightly different, this makes the rainbow equally distributed throughout
void rainbowCycle(uint8_t wait) {
uintl6_t i, j;

for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
for(i=0; i< strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));
}

strip.show();
delay(wait);
}
}

//Theatre-style crawling lights.
void theaterChase(uint32_t c, uint8 t wait) {

©Adafruit Industries Page 176 of 183

for (int j=0; j<10; j++) { //do 10 cycles of chasing
for (int g=0; q < 3; g++) {
for (uintl6 t i=0; i < strip.numPixels(); i=i+3) {

strip.setPixelColor(i+q, c); //turn every third pixel on

}

strip.show();

delay(wait);

for (uintl6_t i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off

}

}
}

}

//Theatre-style crawling lights with rainbow effect
void theaterChaseRainbow(uint8 t wait) {
for (int j=0; j < 256; j++) { // cycle all 256 colors in the wheel
for (int g=0; q < 3; q++) {

for (uintl6_t i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, Wheel((i+j) % 255)); //turn every third pixel
on
}
strip.show();
delay(wait);
for (uintl6_t i=0; i < strip.numPixels(); i=i+3) {
strip.setPixelColor(i+q, 0); //turn every third pixel off
}
}
}
}

// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
WheelPos = 255 - WheelPos;
if (WheelPos < 85) {
return strip.Color (255 - WheelPos * 3, 0, WheelPos * 3);

}
if (WheelPos < 170) {
WheelPos -= 85;
return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
WheelPos -= 170;
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);

Hacks & Upgrades

Speeding up many requests from Raspberry Pi to CRICKIT

If your project is making a large number of requests from your Raspberry Pi to
CRICKIT, the speed of the 12C connection between boards may be an issue.
Fortunately this can be changed.

©Adafruit Industries Page 177 of 183

For the best performance, you'll want to consider tweaking the 12C core to run at

1MHz. By default it may be 100KHz or 400KHz

To do this edit the config with sudo nano /boot/config.txt

and add to the end of the file

dtparam=i2c_baudrate=1000000

-
@ pi@raspberrypi: ~

=)

GNU nano 2.2.6 File: /boot/config.txt

Modified

Brown Outs?

The power supply on the Crickit will let you draw 4 Amps at once, which is a lot. But
perhaps you are turning on all the motors at once, causing the power supply to
flicker? An extra large capacitor on the 5V and GND pads may help smooth out that

power draw!

Use a large electrolytic capacitor, rated for 10V or higher. Even though the power
supply is 5V, you may think you can use a 6.3V capacitor, but you want at least 2x the

voltage rating if possible so stick to 10V!

©Adafruit Industries

Page 178 of 183

4700uF 10v Electrolytic Capacitor

This Big Freaking Capacitor is just the
trick when you have a lot of current
sloshing around your project. They'll help
smooth out voltage spikes by providing a
little buffering....
https://www.adafruit.com/product/1589

Connect the capacitor using the NeoPixel terminal blocks. The 5V and GND lines are
shared across the board so even if its a DC motor or servo causing the issues, this will
help! It's just the most convenient place to attach a large capacitor because the two
terminal blocks are nicely spaced.

Connect the capacitor using the NeoPixel
terminal blocks. The 5V and GND lines are
shared across the board so even if its a
DC motor or servo causing the issues, this
will help!

Connect the Positive (longer leg) to 5V
and the Negative (shorter leg) to GND

F.A.Q.

Why did you misspell "Cricket"?

We wanted a unique name, inspired by the original Cricket robotics platform from
MIT (https://adafru.it/PhF) (which then became the PicoCricket (https://adafru.it/
Pia)), but not with the exact same name!

My code gives the following error in the REPL/Serial window:

The code from adafruit crickit import crickit always throws

Traceback (most recent call last):
File "code.py", line 1, in

©Adafruit Industries Page 179 of 183

https://www.adafruit.com/product/1589
https://www.adafruit.com/product/1589
https://learn.adafruit.com//assets/53986
https://learn.adafruit.com//assets/53986
http://cricket.csail.mit.edu/
http://cricket.csail.mit.edu/
https://en.wikipedia.org/wiki/Programmable_Cricket

File "adafruit_crickit.py", line 66, in
MemoryError: memory allocation failed, allocating 152 bytes

CircuitPython will pull in libraries from /lib on the device before looking for any "baked
in" ("Frozen" libraries) in the main CircuitPython code. If you are using, for example,
the Circuit Playground Express + Crickit build of CircuitPython and you also have the a
dafruit_crickit and/or adafruit_seesaw libraries in /lib, CircuitPython will load the /lib
version and still have the frozen version in memory. Your program will quickly run out
of memory on the Circuit Playground Express.

The fix is fairly easy. Only put the libraries you need in the /lib folder of your CIRCUITP
Y drive. For Crickit, use the special Crickit builds of CircuitPython and be sure that the
libraries adafruit_crickit and adafruit_seesaw are not in your /lib folder. You still have
that functionality, but they are already loaded due to the special build.

Downloads

Files

« PCB Files on GitHub (https://adafru.it/BEj)
« Fritzing objects in Adafruit Fritzing Library (https://adafru.it/aP3)

Datasheets

« TPS259573 eFuse power supply protection chip (https://adafru.it/Bfj)
« DRV8833 DC motor driver chip (https://adafru.it/Bfk)
« ULN200O3A Darlington driver chip (https://adafru.it/Bfl)

Circuit Playground Crickit Schematics

Click to embiggen

©Adafruit Industries Page 180 of 183

https://github.com/adafruit/Adafruit_Crickit_PCBs
https://github.com/adafruit/Fritzing-Library
http://www.ti.com/product/TPS2595
http://www.ti.com/product/DRV8833
http://www.ti.com/product/ULN2003A

o

4 1 5 1

3.3V REGULATION

POWER DECOUPLING

TEE
\ N N N A
Ll LEL
BABA T:li & LA
AEARA L 547 |
I Rl A
41058 PWM or 2 Motors / - - - -
ke
450 o 36500 PN ke & Serves # CPX CONNECTION
8 8|
a
tY
312 koo «
%omo
Ci
eee QOO0
adafruit 0000 o
CPX CRCKIT rev C
5/16/2018 2:08 PH Sheet: 1/3
Drauing: >AUTHOR | Adafruit Industries
I 5 1 6
T 5 | 3
DC MOTOR DRIVE . SERVO OUTRUT
A sEavon 7-% A
= 7§
B 4w 8
C DARLINGTON DRIVES c
: Iﬁamnnm :
CPX CRCKIT rev C
5/16/2018 2:18 PM | Sheet: 2/3
Drauing: >AUTHOR | Adafruit Industries
1 I 2 I 3 I 5 1 [
1 I 3 I 3 I 5 I 6
SIGNAL /O
A A
8 B
|| NEOPIXEL BUFFER H
C. C
: ’%ﬁkmui :
CPX CRCKIT rev C
5/16/2018 2:11 PM | Sheet: 3/3
Drauing: >AUTHOR | Adafruit Industries
1 F] I 5 I [

©Adafruit Industries

Page 181 of 183

Crickit HAT Schematics

I 2 I 3 4 | 5 | 3
AUDIO AP
SIGNAL 1/0
A A
B B
NEOPIXEL BUFFER
lA b
c [: L 1 ,E| c
I' 1
o *adafrui :
Crickit HAT rev B
12/14/2018 5:03 PM | Sheet: 3/3
Drauing: >AUTHOR | Adafruit Industries
i I 2 I 3 L3 I 5 I 3
1 I 2 I 3 I 4 I 5 I 6
ON/OFF 3.3V REGULATION POWER DECOUPLING
I 5 T TEILILE |
! = [A R
o Loy = ! . O & -
N § — ~
on) T i) L3 A
v [23030 I 7
e PTTL]L
B
c
¢ o T ®®e®
o| T B [3F adafruit o
%‘ “ | | [Crickit HAT rev B
T == 1 12/14/2018 5:03 PM | Sheet: 1/3
&0 _‘ Drawing: >AUTHOR | Adafruit Industries
1 I 2 I 3 I i I 5 1 6

©Adafruit Industries

Page 182 of 183

I 3

"

e
Oual Herioge Moree Oriver

e

DC MOTOR DRIVE

felerele

E T T {

e 2710
T per Eridom 1.2

f —ry
TSy

e

SERVO QUTPUT

DARLINGTON DRIVES

*GM

(=]

Crickit HAT rev

12/14/2018 5:03

PM | Sheet: 2/3

Drauing: >AUTHOR
I 5

| Adafruit Industries
6

©Adafruit Industries

Page 183 of 183

	Introducing Adafruit Crickit #MakeRobotFriend
	Table of Contents
	Overview
	Crickit Tour
	Update Your Crickit
	Powering Crickit
	Assembly
	Troubleshooting Crickit
	Recommended Motors
	Recommended Chassis
	Recommended Servos
	Recommended Speakers
	Recommended Drives
	Recommended Capacitive Touch
	Programming Options
	MakeCode
	MakeCode Servos
	MakeCode Drives
	MakeCode DC Motors
	MakeCode Steppers
	MakeCode Signals
	MakeCode Touch
	MakeCode Audio
	MakeCode NeoPixels
	CircuitPython Code
	CircuitPython Servos
	CircuitPython Drives
	CircuitPython DC Motors
	CircuitPython Steppers
	CircuitPython Signals
	CircuitPython Touch
	CircuitPython Audio
	CircuitPython NeoPixels
	Python Docs
	CircuitPython Examples
	Bubble Bot
	Feynman Simulator
	Slime Night
	Flying Trapeze
	R.O.B. GyroBot
	Gear Tower
	CPX-1701
	Mag Neat-o
	(Don't Fear) The Crickit
	Arduino Code
	Arduino Servos
	Arduino Drives
	Arduino DC Motors
	Arduino Signals
	Arduino Capacitive Touch
	Arduino NeoPixels
	Hacks & Upgrades
	F.A.Q.
	Downloads

	Overview
	Crickit Tour
	Power Input
	4 x Hobby Servos
	2 x DC Motors
	4 x High Power Drivers
	8 x Signal I/O
	4 x Capacitive Touch
	NeoPixel Drive
	Speaker Drive
	Connecting Your Microcontroller to your Crickit Board
	seesaw USB Debug and Indicators
	Update Your Crickit
	Step 1. Plug in USB cable into seesaw/Crickit

	Step 2. Double-click the Crickit Reset button
	Step 3. Look for pulsing yellow LED and green NeoPixel
	Step 4. Look for a New Disk on Your Computer
	Step 5. Download the latest firmware
	Step 6. Drag UF2 file onto CRICKITBOOT
	Powering Crickit
	How to Power your Crickit
	Plug In DC Power Supplies
	AA Battery Packs
	4 x AA Battery Packs for NiMH ONLY
	3 x AA Battery Packs for Alkaline ONLY

	Not Recommended Power supplies
	Assembly
	Troubleshooting Crickit
	My Crickit Is Doing Something Wrong
	My Crickit Motors Aren't Moving!
	My Crickit Keeps Resetting, It Works For a Bit... Then Fails!
	HELP! My Crickit isn't working in MakeCode, and in Python I see a message "No I2C Device at Address: 49"
	Python: No Pullups found on SDL and SCL
	micro:bit Crickit does not work

	Recommended Motors
	DC Gearbox Motors
	Servo-style DC motor
	Non-Geared DC Motor
	Recommended Chassis
	Recommended Servos
	Servo Extensions
	Popular plastic-gear servos
	Continuous Rotation Servos
	High Torque Servos
	Recommended Speakers
	4Ω Speakers
	8Ω Speakers
	Wall or Bone Transducers
	Recommended Drives
	Solenoids
	Vibration Motors
	Recommended Capacitive Touch
	Programming Options
	Crickit with Circuit Playground Express
	Crickit with Feather M0/M4 Express CircuitPython Supported Feather
	Crickit with micro:bit Support
	Crickit HAT for Raspberry Pi

	MakeCode
	Get Comfy With MakeCode
	Adding Crickit Extension
	For Circuit Playground Express and Feather Crickit (micro:bit is below)
	For micro:bit Crickit

	MakeCode Servos
	Precise Pulses
	MakeCode Drives
	Changing the Drive Analog/PWM Frequency
	MakeCode DC Motors
	Setting Motor Speed
	MakeCode Steppers
	MakeCode for Using a Stepper on the Motor Port
	Move the Motor Port Stepper One Direction Forever

	Using a Stepper on the Drive Port in MakeCode
	Move the Drive Port Stepper One Direction Forever

	MakeCode Signals
	Using Signals in MakeCode
	Digital Reads and Writes
	Analog Reads
	For Crickit and Circuit Playground Express
	For Crickit and micro:bit

	MakeCode Touch
	Example for Crickit plus Circuit Playground Express or Feather
	Example for Crickit and micro:bit

	MakeCode Audio
	Amplifier Details
	Playing Sounds on Crickit with MakeCode
	Circuit Playground and Feather Crickit Version (micro:bit below)
	micro:bit Version

	MakeCode NeoPixels
	MakeCode for Crickit NeoPixels
	Using the Crickit Onboard Single NeoPixel
	Crickit for Circuit Playground Express and Feather (micro:bit is below)
	For micro:bit + Crickit
	For More Information

	CircuitPython Code
	Install CPX Special Build
	CircuitPython Servos
	Test Servos
	Control Servo

	More Servos!
	Min/Max Pulse control
	Continuous Rotation Servos
	Disconnecting Servos or Custom Pulses
	CircuitPython Drives
	Test Drive
	Set PWM Frequency
	Control Drive Output

	More Drivers!
	CircuitPython DC Motors
	Import Libraries
	Control Motor

	CircuitPython Steppers
	Bi-Polar or Uni-Polar Motor Port
	Uni-Polar Only Drive Port
	CircuitPython Signals
	Digital Pin Modes
	Digital Read
	Digital Write
	Analog Reads
	CircuitPython Touch
	CircuitPython Audio
	Audio File Formats
	Amplifier Details
	Basic Audio Playback
	Import Libraries
	Create wave file and audio output

	Interactive Audio
	CircuitPython NeoPixels
	NeoPixels with Circuit Playground Express + Crickit
	NeoPixels and the Crickit FeatherWing or Crickit Hat
	Crickit for micro:bit
	For More Information

	Python Docs
	CircuitPython Examples
	Bubble Bot
	Parts List
	Wiring Diagram
	Code
	Feynman Simulator
	Parts List
	Wiring Diagram
	Code
	Slime Night
	How to Make Slime
	Parts Used
	Wiring Diagram
	CircuitPython Code
	Flying Trapeze
	Parts List
	Wiring
	Boot.py
	CircuitPython Code
	R.O.B. GyroBot
	Parts List
	Wiring Diagram
	Code!
	Gear Tower
	Parts List
	Wiring
	CircuitPython Code For "Force Wave" demo
	CircuitPython Code For "Theremin" demo
	CPX-1701
	Parts List
	Wiring Diagram
	CircuitPython Code
	Mag Neat-o
	Parts List
	Wiring Diagram
	Code!
	(Don't Fear) The Crickit
	Parts List
	Wiring Diagram
	CircuitPython Code
	Arduino Code
	Download Adafruit_Seesaw library
	Arduino with micro:bit
	Pin Definitions for Seesaw and Crickit

	Arduino Servos
	Test Servos
	More Servos!
	Min/Max Pulse control
	Continuous Rotation Servos
	Disconnecting Servos or Custom Pulses
	Arduino Drives
	Test Drive
	More Drivers!
	Arduino DC Motors
	Arduino Signals
	Arduino Capacitive Touch
	Arduino NeoPixels
	Crickit for Circuit Playground Express
	Crickit Wing for Feather
	Crickit for micro:bit
	Crickit HAT for Raspberry Pi
	Advanced Use - Using Seesaw to Control NeoPixels

	Hacks & Upgrades
	Speeding up many requests from Raspberry Pi to CRICKIT
	Brown Outs?

	F.A.Q.
	Why did you misspell "Cricket"?

	Downloads
	Files
	Datasheets
	Circuit Playground Crickit Schematics
	Crickit HAT Schematics

