
 

Introducing Adafruit Crickit
#MakeRobotFriend

Created by lady ada

 

https://learn.adafruit.com/adafruit-crickit-creative-robotic-interactive-construction-kit

Last updated on 2022-03-10 03:37:43 PM EST

©Adafruit Industries Page 1 of 183



7

10

11

12

14

15

17

18

18

19

21

22

23

23

24

24

25

25

26

26

27

27

28

28

29

30

30

33

33

33

33

34

35

35

35

35

36

37

38

39

39

40

41

Table of Contents

Overview

Crickit Tour

• Power Input

• 4 x Hobby Servos

• 2 x DC Motors

• 4 x High Power Drivers

• 8 x Signal I/O

• 4 x Capacitive Touch

• NeoPixel Drive

• Speaker Drive

• Connecting Your Microcontroller to your Crickit Board

• seesaw USB Debug and Indicators

Update Your Crickit

• Step 1. Plug in USB cable into seesaw/Crickit

• Step 2. Double-click the Crickit Reset button

• Step 3. Look for pulsing yellow LED and green NeoPixel

• Step 4. Look for a New Disk on Your Computer

• Step 5. Download the latest firmware

• Step 6. Drag UF2 file onto CRICKITBOOT

Powering Crickit

• How to Power your Crickit

• Plug In DC Power Supplies

• AA Battery Packs

• 4 x AA Battery Packs for NiMH ONLY

• 3 x AA Battery Packs for Alkaline ONLY

• Not Recommended Power supplies

Assembly

Troubleshooting Crickit

• My Crickit Is Doing Something Wrong

• My Crickit Motors Aren't Moving!

• My Crickit Keeps Resetting, It Works For a Bit... Then Fails!

• HELP! My Crickit isn't working in MakeCode, and in Python I see a message "No I2C Device at Address: 49"

• Python: No Pullups found on SDL and SCL

• micro:bit Crickit does not work

Recommended Motors

• DC Gearbox Motors

• Servo-style DC motor

• Non-Geared DC Motor

Recommended Chassis

Recommended Servos

• Servo Extensions

• Popular plastic-gear servos

• Continuous Rotation Servos

©Adafruit Industries Page 2 of 183



42

43

43

44

45

46

46

47

47

49

50

51

51

52

52

53

53

53

55

56

58

59

61

62

63

64

65

65

66

67

67

68

69

70

70

71

71

72

73

74

75

76

76

• High Torque Servos

Recommended Speakers

• 4Ω Speakers

• 8Ω Speakers

• Wall or Bone Transducers

Recommended Drives

• Solenoids

• Vibration Motors

Recommended Capacitive Touch

Programming Options

• Crickit with Circuit Playground Express

• Crickit with Feather M0/M4 Express CircuitPython Supported Feather

• Crickit with micro:bit Support

• Crickit HAT for Raspberry Pi

MakeCode

• Get Comfy With MakeCode

• Adding Crickit Extension

• For Circuit Playground Express and Feather Crickit (micro:bit is below)

• For micro:bit Crickit

MakeCode Servos

• Precise Pulses

MakeCode Drives

• Changing the Drive Analog/PWM Frequency

MakeCode DC Motors

• Setting Motor Speed

MakeCode Steppers

• MakeCode for Using a Stepper on the Motor Port

• Move the Motor Port Stepper One Direction Forever

• Using a Stepper on the Drive Port in MakeCode

• Move the Drive Port Stepper One Direction Forever

MakeCode Signals

• Using Signals in MakeCode

• Digital Reads and Writes

• Analog Reads

• For Crickit and Circuit Playground Express

• For Crickit and micro:bit

MakeCode Touch

• Example for Crickit plus Circuit Playground Express or Feather

• Example for Crickit and micro:bit

MakeCode Audio

• Amplifier Details

• Playing Sounds on Crickit with MakeCode

• Circuit Playground and Feather Crickit Version (micro:bit below)

©Adafruit Industries Page 3 of 183



77

79

80

80

81

82

83

83

83

86

87

88

88

89

90

90

91

92

93

93

93

94

96

96

97

98

101

102

104

104

104

105

106

108

109

109

110

110

111

111

112

113

115

116

116

• micro:bit Version

MakeCode NeoPixels

• MakeCode for Crickit NeoPixels

• Using the Crickit Onboard Single NeoPixel 

• Crickit for Circuit Playground Express and Feather (micro:bit is below)

• For micro:bit + Crickit

• For More Information

CircuitPython Code

• Install CPX Special Build

CircuitPython Servos

• Test Servos

• Control Servo

• More Servos!

• Min/Max Pulse control

• Continuous Rotation Servos

• Disconnecting Servos or Custom Pulses

CircuitPython Drives

• Test Drive

• Set PWM Frequency

• Control Drive Output

• More Drivers!

CircuitPython DC Motors

• Import Libraries

• Control Motor

CircuitPython Steppers

• Bi-Polar or Uni-Polar Motor Port

• Uni-Polar Only Drive Port

CircuitPython Signals

• Digital Pin Modes

• Digital Read

• Digital Write

• Analog Reads

CircuitPython Touch

CircuitPython Audio

• Audio File Formats

• Amplifier Details

• Basic Audio Playback

• Import Libraries

• Create wave file and audio output

• Interactive Audio

CircuitPython NeoPixels

• NeoPixels with Circuit Playground Express + Crickit

• NeoPixels and the Crickit FeatherWing or Crickit Hat

• Crickit for micro:bit

• For More Information

©Adafruit Industries Page 4 of 183



116

116

117

117

118

118

120

120

121

122

123

124

124

126

126

128

128

130

130

130

133

133

135

135

138

138

140

140

141

141

142

142

143

144

145

146

146

149

149

151

151

154

154

155

Python Docs

CircuitPython Examples

Bubble Bot

• Parts List

• Wiring Diagram

• Code

Feynman Simulator

• Parts List

• Wiring Diagram

• Code

Slime Night

• How to Make Slime

• Parts Used

• Wiring Diagram

• CircuitPython Code

Flying Trapeze

• Parts List

• Wiring

• Boot.py

• CircuitPython Code

R.O.B. GyroBot

• Parts List

• Wiring Diagram

• Code!

Gear Tower

• Parts List

• Wiring

• CircuitPython Code For "Force Wave" demo

• CircuitPython Code For "Theremin" demo

CPX-1701

• Parts List

• Wiring Diagram

• CircuitPython Code

Mag Neat-o

• Parts List

• Wiring Diagram

• Code!

(Don't Fear) The Crickit

• Parts List

• Wiring Diagram

• CircuitPython Code

Arduino Code

• Download Adafruit_Seesaw library

• Arduino with micro:bit

©Adafruit Industries Page 5 of 183



155

157

158

159

160

160

161

162

163

164

165

168

171

172

173

173

174

174

174

177

177

178

179

180

180

180

180

182

• Pin Definitions for Seesaw and Crickit

Arduino Servos

• Test Servos

• More Servos!

• Min/Max Pulse control

• Continuous Rotation Servos

• Disconnecting Servos or Custom Pulses

Arduino Drives

• Test Drive

• More Drivers!

Arduino DC Motors

Arduino Signals

Arduino Capacitive Touch

Arduino NeoPixels

• Crickit for Circuit Playground Express

• Crickit Wing for Feather

• Crickit for micro:bit

• Crickit HAT for Raspberry Pi

• Advanced Use - Using Seesaw to Control NeoPixels

Hacks & Upgrades

• Speeding up many requests from Raspberry Pi to CRICKIT

• Brown Outs?

F.A.Q.

Downloads

• Files

• Datasheets

• Circuit Playground Crickit Schematics

• Crickit HAT Schematics

©Adafruit Industries Page 6 of 183



Overview 

Sometimes we wonder if robotics engineers ever watch movies. If they did, they'd

know that making robots into slaves always ends up in a robot rebellion. Why even go

down that path? Here at Adafruit we believe in making robots our friends!

So if you find yourself wanting a companion, consider the robot. They're fun to

program, and you can get creative with decorations.

 

 

©Adafruit Industries Page 7 of 183



With that in mind, we designed Crickit - That's our Creative Robotics & Interactive Con

struction Kit. It's an add-on to our popular Circuit Playground Express that lets you #M

akeRobotFriend using CircuitPython, MakeCode (coming soon), or Arduino.

Bolt on your Circuit Playground using the included stand-off bolts and start controlling

motors, servos, solenoids. You also get signal pins, capacitive touch sensors, a

NeoPixel driver and amplified speaker output. It complements & extends the Circuit

Playground so you can still use all the goodies on the CPX, but now you have a

robotics playground as well.

 

 

 

Here are the three Crickit versions

available:

 

Crickit for Circuit Playground Express

 

Crickit for Feather

 

Crickit for micro:bit

 

Crickit HAT for Raspberry Pi

©Adafruit Industries Page 8 of 183

https://learn.adafruit.com//assets/53974
https://learn.adafruit.com//assets/53974
https://learn.adafruit.com//assets/60956
https://learn.adafruit.com//assets/60956
https://learn.adafruit.com//assets/61005
https://learn.adafruit.com//assets/61005


 

The Crickit is powered by seesaw, our I2C-to-whatever bridge firmware. So you only

need to use two data pins to control the huge number of inputs and outputs on the

Crickit. All those timers, PWMs, sensors are offloaded to the co-processor.

You get:

4 x Analog or Digital Servo control, with precision 16-bit timers

2 x Bi-directional brushed DC motor control, 1 Amp current limited each, with 8-

bit PWM speed control (or one stepper)

4 x High current "Darlington" 500mA drive outputs with kick-back diode

protection. For solenoids, relays, large LEDs, or one uni-polar stepper

4 x Capacitive touch sensors with alligator-pads

8 x Signal pins, digital in/out or analog inputs

1 x NeoPixel driver with 5V level shifter

1 x Class D, 4-8 ohm speaker, 3W-max audio amplifier

All are powered via 5V DC, so you can use any 5V-powered servos, DC motors,

steppers, solenoids, relays etc. To keep things simple and safe, we don't support

mixing voltages, so only 5V, not for use with 9V or 12V robotic components.

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 9 of 183

https://learn.adafruit.com//assets/68897
https://learn.adafruit.com//assets/68897


Since you'll be working with high-current devices, we wanted to have a good solid

power supply system that minimizes risk of damage. The power supply has an 'eFuse'

management chip (https://adafru.it/Bfj) that will automatically turn off if the voltage

goes above 5.5V or below 3V and has over-current protection at 4A. Every motor

driver has kick-back protection. We think this is a nice and durable board for robotics!

Crickit Tour 

 

Although the Crickit HAT for Raspberry Pi is not octagonal like other Crickets, the 

HAT still has the same features that are listed below, just rearranged to fit the 

rectangular HAT shape. 

©Adafruit Industries Page 10 of 183

http://www.ti.com/product/TPS2595
http://www.ti.com/product/TPS2595


Power Input

 

Your project start here, where power

comes into the Crickit and is then used to

control various motors and parts. We cover

the various ways you can power your

Crickit in the next section, since there's a

lot of flexibility depending on the budget,

portability and complexity of your project.

For now, assume you will plug in a 5V wall adapter to the 2.1mm DC jack. This DC jack

is the only way to provide power to Crickit. There's a USB jack (covered at the bottom

of this section) but you cannot power the Crickit that way (the USB jack is only for

debugging seesaw!)

Use 5V DC (4V to 5.5VDC range works) with positive-center voltage. If you try to plug

in a negative-center power supply, the polarity-protection will kick in and you will not

see any lights on the Crickit.

The Crickit uses a power management chip to keep you from accidentally powering it

from 9V or 12V, damaging your electronics. Look for the OK and /!\ warning LEDs. If

 

©Adafruit Industries Page 11 of 183

https://learn.adafruit.com//assets/53955
https://learn.adafruit.com//assets/53955


you see the green OK LED, the power is fine! If you see the red warning LED, the

voltage is too low, too high, or too much current is being used.

You can turn off the Crickit at any time with the On/Off switch. This will turn off the 5V

power, completely disabling all motors, as well as turning off the seesaw control chip.

There's also a Reset button. This button will reset the seesaw chip, and can be used

to load new seesaw firmware (you won't likely have to do that). On the Feather Crickit,

this button also connects to the Feather reset pin. On the Circuit Playground Crickit, it

does not connect to the Playground Reset button.

On the Feather Crickit only, if you double-click the Feather reset button to load new

firmware, such as a new version of CircuitPython, the Crickit will also go into double-

click firmware-update mode. After you load the new firmware on the Feather, wait for

the firmware to start up, and then click the reset button again, once, to get the Crickit

back into regular operation mode.

Power options to consider:

3 x AA Battery Holder (https://adafru.it/BzH) with On/Off Switch (needs JST to

5.5/2.1 adapters)

Wall power supply (https://adafru.it/BzI) - 5V, 2A, US

And more options in the https://www.adafruit.com/categories (https://adafru.it/

BzC)!

4 x Hobby Servos

 

Hobby servos are really popular in

robotics because they're fairly low cost,

very easy to use, and reliable. 

• 

• 

• 

©Adafruit Industries Page 12 of 183

https://www.adafruit.com/product/3287
https://www.adafruit.com/product/276
https://www.adafruit.com/categories
https://learn.adafruit.com//assets/53954
https://learn.adafruit.com//assets/53954


 

The Crickit gives you 4 slots for 4

independent servos. You can use micro,

mini, standard, large size servos. Analog

and digital work great. Continuous or 180-

degree are OK. As long as you've got a

servo with a 3-pin connector, you're

golden.

Servo notes:

The white/yellow 'signal' wire goes next to the # marking on each port.

Each servo is controlled by a 16-bit hardware timer at 50 Hz so you will not see

any jitter. The signal line is 3.3V logic

The power to each servo comes from the DC power supply, 5VDC nominal.

The Crickit can set the pulse width to any value, but in general you'll want to

stick to 500ms to 2500ms wide pulses. This is customized in the Arduino,

CircuitPython or MakeCode software.

There is variation from servo to servo, so getting the exact same speed or angle

may require some calibration and tweaking. Again, this can be customized in the

driver code, the Crickit just generates whatever pulses you like!

The seesaw chip on the Crickit does all the management of these pins so your

Feather or CPX does not directly control them, it must send a message to Crickit.

They are on seesaw pins 17, 16, 15, 14 in that order.

Typical Adafruit Hobby Servos to consider:

Sub-micro Servo (https://adafru.it/Bzy) 

Micro Servo (https://adafru.it/f1g) 

Micro Servo - High Powered, High Torque Metal Gear (https://adafru.it/Bzz) 

Standard Servo - TowerPro SG-5010 (https://adafru.it/BzA) 

Standard Servo - High Torque Metal Gears (https://adafru.it/BzB) 

And more in the Adafruit Shop (https://adafru.it/BzC) including Servo

Accessories

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 13 of 183

https://learn.adafruit.com//assets/54070
https://learn.adafruit.com//assets/54070
https://www.adafruit.com/product/2201
https://www.adafruit.com/product/169
https://www.adafruit.com/product/2307
https://www.adafruit.com/product/155
https://www.adafruit.com/product/1142
https://www.adafruit.com/categories


2 x DC Motors

 

Round & round, DC motors are great

whenever you need something to spin.

They tend to be faster, stronger and less

expensive than continuous-rotation servos,

but you need a proper DC motor driver to

use them. Luckily, the Crickit can drive two

DC motors.

 

You get 2 independently-controllable

brushed DC motor drives. Each motor can

go forwards or backwards, with 8-bit

speed control. There's a 5-pin terminal

block to connect motors, 2 pins for each

motor and a middle ground pin. (The

ground pin is for some advanced

techniques)

The power to the motors comes from the DC jack, about 5VDC so you can control

3V-6VDC motors, which are very common. The motors can be bare motors or with a

gear-box attached

You won't be able to control 1.5V DC motors, they'll burn out. You might be able to

control 6-9VDC motors, but they'll be a little slow. Same with 12VDC motors. Likewise,

you cannot use the Crickit with brush-less (ESC) motors. Those require a more

advanced motor driver!

Each motor has two wires, you can connect the wires either way. If the spin of

the motor is opposite what you want, swap the wires.

Each motor drive has a 1 Amp peak output. After that, the over-current

protection will kick in

We don't recommend paralleling the output to get twice the current because the

seesaw chip cannot guarantee that both will turn on/off at the same time

• 

• 

• 

©Adafruit Industries Page 14 of 183

https://learn.adafruit.com//assets/53956
https://learn.adafruit.com//assets/53956
https://learn.adafruit.com//assets/54065
https://learn.adafruit.com//assets/54065


Instead of 2 DC motors, you could also control a single bi-polar stepper motor

(5VDC power) or single uni-polar stepper motor. You'll use the ground pin for the

5th (and 6th, if it exists) wire of the uni-polar stepper.

Uses the DRV8833 dual H-Bridge motor driver chip (https://adafru.it/Bfk) 

The seesaw chip on the Crickit does all the management of these pins so your

Feather or CPX does not directly control them, it must send a message to Crickit.

They are on seesaw pins 22 + 23 (motor 1) and 19 + 18 (motor 2)

Typical Adafruit Motors to consider:

DC Toy Hobby Motor (https://adafru.it/xan) 

DC Motor in Servo Body (https://adafru.it/BzD) 

DC Gearbox Motor (https://adafru.it/BzE) - "TT Motor"

TT Motor All-Metal Gearbox (https://adafru.it/BzF) 

TT Motor Bi-Metal Gearbox (https://adafru.it/BzG) 

And more including accessories in the Adafruit Shop (https://adafru.it/BzC)!

4 x High Power Drivers

 

In addition to servos and DC motors, you

may find you want to drive other high-

power electronics like relays, solenoids,

powerful LEDs, vibration motors, etc. Some

of these devices are motor-like and need a

kick-back protection diode, so having a

proper driver is important to avoid

damage!

 

This is where you will want to use the high

power Drive terminal block. You get four

high current drivers. Each driver is a

'Darlington' transistor that, when turned

on, connects the output pin to ground.

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 15 of 183

http://www.ti.com/product/DRV8833
https://www.adafruit.com/product/711
https://www.adafruit.com/product/2941
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3802
https://www.adafruit.com/product/3801
https://www.adafruit.com/categories
https://learn.adafruit.com//assets/53958
https://learn.adafruit.com//assets/53958


 

That's a little different than most other

outputs on the Crickit: The Crickit can only

connect/disconnect the drive pins to

Ground! You cannot 'set' the Drive output

to be a high voltage. So, if you're driving a

solenoid, relay, vibration motor, etc.

connect one side to the 5V pin, and the

other side to one of the driver pins. You

can connect multiple wires to the 5V pin if

necessary.

Drive details:

500mA current limit per output, you can double/triple/quadruple pins up to get

more current, if you like. Just make sure to tell the Crickit to turn on/off all four

pins in a row.

Kick-back protection diodes for each output to 5V power.

Uses a ULN2003 Darlington driver (https://adafru.it/Bfl) 

Instead of 4 solenoids/relays you can connect & control a single uni-polar

stepper motor, connect the 5th (and 6th if it exists) wire to 5V. Won't work with

bi-polar steppers, use the DC motor ports for that.

The drive outputs are also PWM-able, so you can control LED brightness or

motor power. If using with solenoids or relays, set the duty cycle to 0% or 100%

only.

Advanced usage: If you want to drive higher-voltage non-inductive/motor

devices, like 12V LEDs, you can power the positive line of the LEDs from 12V,

then connect the negative line of the LEDs to drive pins. Make sure your 12V

power supply ground is connected to the Crickit ground. Not recommended

unless you feel confident you won't accidentally put 12VDC into the Crickit! Kick-

back diode wont work in this case so not for use with motors/coils/solenoids...

The seesaw chip on the Crickit does all the management of these pins so your

Feather or CPX does not directly control them, it must send a message to Crickit.

They are on seesaw pins 13, 12, 43, 42 in that order.

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 16 of 183

https://learn.adafruit.com//assets/54066
https://learn.adafruit.com//assets/54066
http://www.ti.com/product/ULN2003A


8 x Signal I/O

 

Sure you can drive servos and motors but

sometimes you just want to blink an LED

or read a button. The Crickit has an eight-

signal port. You can use these as "general

purpose" input/output pins. We solder a

3x8 female socket header in so you can

plug wires in very easily. Each signal has

matching 3V and Ground power pins.

All pins are 3.3V logic level

All pins can read analog inputs (potentiometers, bend sensors, etc) at 12-bit

resolution

All pins can be set to outputs with high (3.3V) or low (0V) voltage

All pins can drive about 7mA when set to outputs

All pins can have an internal ~50Kohm pull-up resistor set when used as an

input

Bonus: If you absolutely need more capacitive touch pins, Signal #1, #2, #3, #4 a

re four more capacitive touch inputs.

Signal pin #1 is special and can be set to be a true analog 'output' with 10-bit

precision.

The seesaw chip on the Crickit does all the management of these pins so your

Feather or CPX does not directly control them, it must send a message to Crickit.

They are on seesaw pins 2, 3, 40, 41, 11, 10, 9, 8 in that order

• 

• 

• 

• 

• 

• 

The Signal pins do not have configurable pull up or pull down resistors like on 

many microcontrollers. Please add external resistors to Vcc or Ground to read 

things such as buttons where a resistor is needed. 

©Adafruit Industries Page 17 of 183

https://learn.adafruit.com//assets/53960
https://learn.adafruit.com//assets/53960


4 x Capacitive Touch

 

Capacitive touch sensing allows you to

add human-triggered control to your robot.

When you touch the pad (either directly or

through an alligator clip, copper tape or

conductive ink) the Crickit can detect that

signal. We give you four capacitive touch

inputs with alligator/croc clip compatible

PCB pads.

Capacitive touch works best with highly-conductive materials like metal

But you can have the metal also connect to salty-wet items such as fruit or

water. However, do not try to dunk the Crickit into water or squish a grape into

the pads - use an alligator clip!

Bonus: if you absolutely need more signal I/O pins, all four capacitive touch

pads can also act as analog/digital signal I/O pins!

The seesaw chip on the Crickit does all the management of these pins so your

Feather, micro:bit or CPX does not directly control them, it must send a message to

Crickit. They are on seesaw pins 4, 5, 6, 7 in order.

NeoPixel Drive

 

Blinky lights will make your robot fun and

fashionable. And we've made it really easy

to add NeoPixels (WS2812/WS2811/SK6812

chipsets) to your project. The Crickit has a

3-terminal block connector with Ground, 

Signal and 5V power. The signal line has a

level shifter on it so it will be 5V logic

level, for nice clean signals.

• 

• 

• 

©Adafruit Industries Page 18 of 183

https://learn.adafruit.com//assets/53961
https://learn.adafruit.com//assets/53961
https://learn.adafruit.com//assets/53962
https://learn.adafruit.com//assets/53962


This output is slightly different depending on what kind of Crickit you have

If you have a Feather Crickit then the NeoPixels are driven by the seesaw chip

on the Crickit, and you must send seesaw commands to set colors. But that

means no extra pins are needed from your Feather.

If you have a Circuit Playground Crickit then the NeoPixels are driven by the

Circuit Playground A1 pad by default. This way you can use the MakeCode

emulator and built in Circuit Playground CircuitPython library. However, if you

want, you can cut the jumper underneath the Crickit and solder closed the ss

pad so that the seesaw chip controls the NeoPixels (for advanced hackers only).

If you have a micro:bit Crickit, NeoPixels are driven by Pin 16. You can use the

NeoPixel Extension in MakeCode, specify Pin 16 as the pin the NeoPixels are

connected to and you're set. However, if you want, you can cut the jumper

underneath the Crickit and solder closed the ss pad so that the seesaw chip

controls the NeoPixels (for advanced hackers only).

If you choose to have the NeoPixel driven from the seesaw, note it is on seesaw pin

#20

Adafruit sells a very wide variety of NeoPixel products - shop here in the Adafruit

Store (https://adafru.it/dYn)!

Speaker Drive

 

Audio animatronics? Yes! Your Crickit can

make fairly loud sounds thanks to the built

in Class-D speaker driver. This will let you

amplify audio. However please note that

the Crickit does not in-itself make audio.

The audio must come from the controlling

board, such as the Feather or Circuit

Playground.

At this time, we recommend using the speaker with CircuitPython. MakeCode and

Arduino can make tones but don't have easy to use features such as WAV file

support.

Class D audio amplifier

• 

• 

• 

• 

©Adafruit Industries Page 19 of 183

https://www.adafruit.com/category/168
https://www.adafruit.com/category/168
https://learn.adafruit.com//assets/53963
https://learn.adafruit.com//assets/53963


Can drive 4Ω to 8Ω speaker. Up to 3W with 4Ω and up to 1W with 8Ω 

There's a small potentiometer you can use to adjust the audio volume. By

default we set it to the halfway point. Please be gentle if adjusting, don't try to

crank it past the two stop-points.

Ouput is 5VDC BTL (bridge-tied-load) so do not connect to a stereo system or

other line-input!

On the Circuit Playground Crickit the speaker is connected directly to the A0

pad (the analog output). 

On the Feather Crickit the speaker input is marked Audio on the PCB and you

can solder a jumper to the Feather A0 pin if desired.

On the micro:bit Crickit, the speaker is connected to Pin 0, the standard

micro:bit audio output pin.

Speakers to consider:

Thin Plastic Speaker (https://adafru.it/fHu) w/Wires - 8 ohm

Speaker (https://adafru.it/t1b) - 3" Diameter - 8 Ohm 1 Watt

Mini Metal Speaker (https://adafru.it/dDb) w/ Wires - 8 ohm 0.5W

Mono Enclosed Speaker - 3W 4 Ohm (https://adafru.it/uyB) 

Breadboard-Friendly PCB Mount Mini Speaker (https://adafru.it/yFg) - 8 Ohm

0.2W

And more in the Adafruit shop (https://adafru.it/BzC)!

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 20 of 183

https://www.adafruit.com/product/1891
https://www.adafruit.com/product/1313
https://www.adafruit.com/product/1890
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/1898
https://www.adafruit.com/categories


Connecting Your Microcontroller to your
Crickit Board

 

If you have a Circuit Playground Crickit,

you can attach the Playground in the

middle using 6 standoff bolts that come

with the kit. Make sure you tighten these

as loose bolts can cause connection

issues.

There's six connections to make

Ground - signal and power ground

between Crickit and Playground

SDA and SCL - the I2C data connection

used to send/receive data from the Crickit

A1 - Used for the NeoPixel output default

A0 - Used for the speaker output

VOUT - This bolt lets you safely power the

Circuit Playground from the Crickit so you

don't need to separately power the

Playground with batteries

 

If you have a Feather, you can plug it right

into the center of the Crickit.

Despite all the sockets, you only will be

using 4 connections total:

Ground - signal and power ground

between Crickit and Feather

SDA and SCL - the I2C data connection

used to send/receive data from the Crickit

3.3V - This connection lets you power the

Feather from the Crickit so you don't need

to separately power the Feather with

batteries or USB. Note it will only power

the 3.3V line, not VUSB or VBAT 

There's an optional AUDIO jumper if you

want to connect the A0 Feather line to the

Speaker. 

©Adafruit Industries Page 21 of 183

https://learn.adafruit.com//assets/53964
https://learn.adafruit.com//assets/53964
https://learn.adafruit.com//assets/60959
https://learn.adafruit.com//assets/60959


 

The micro:bit Crickit is the easiest of them

all! Just plug in your micro:bit with the LED

grid facing towards the pin numbers as

shown on the Crickit silkscreen.

 

You'll also see that Pin 0 is marked for

speaker use and Pin 16 for NeoPixels (sun

icon).

 

The Crickit HAT for Raspberry Pi uses the

standard Pi 40 pin header (at top in the

picture at left) to plug onto the Pi

expansion header. 

 

The holes in the Crickit HAT align with the

holes in the Pi so you can use standoff

posts for a secure fit.

 

All of the functional blocks on the

octagonal Crickit boards are on the Crickit

HAT, they are just moved to fit the

rectangular HAT shape.

seesaw USB Debug and Indicators

 

The seesaw chipset is the programmed

ATSAMD21 processor in the south section

of the board. It comes with its own parts

too

©Adafruit Industries Page 22 of 183

https://learn.adafruit.com//assets/60958
https://learn.adafruit.com//assets/60958
https://learn.adafruit.com//assets/62076
https://learn.adafruit.com//assets/62076
https://learn.adafruit.com//assets/53965
https://learn.adafruit.com//assets/53965


Across from the power input is the seesaw debug USB connection. This USB power c

annot power the Crickit and it also does not connect to the Feather or Circuit

Playground USB.

It's only for debugging/reloading seesaw firmware. Basically, if we add more Crickit

capabilities, you could load new firmware over this USB connection. In general, you

won't be using this port, you may want to cover it with some masking tape!

To the right is a yellow Activity LED, which will flash when seesaw sends/receives

commands from your Circuit Playground or Feather. To the left is a seesaw NeoPixel.

You can control this NeoPixel if you like, to give you status information, as an

advanced usage

The internal NeoPixel is on seesaw pin #27

Update Your Crickit 

Your Crickit contains a special interface chip we call seesaw. Like a see-saw you see

in a playground, it goes up/down back/forth. In this case, instead of holding children,

it sends commands and responses back and forth - motor movement, sensors inputs,

signal i/o...

The seesaw code is contained in a microcontroller near the bottom of the Crickit, and

that chip comes with the seesaw firmware on it already when  you get it!

But we do make improvements to the seesaw firmware, fix bugs, and improve

performance

So its a good idea to update your Crickit when you get it! It's easy and only takes a

few seconds.

Step 1. Plug in USB cable into seesaw/Crickit

There's a little USB connector at the bottom of your Crickit labeled seesaw only! Plug

a standard data-sync USB cable into that port and into your computer. You do not

need to plug in the DC power jack or power the Feather/CircuitPlayground.

Do check that the switch on the Crickit is switched to ON

©Adafruit Industries Page 23 of 183



Step 2. Double-click the Crickit Reset
button

 

 

On the Crickit for CPX, Feather or

Micro:bit, this button is next to the DC jack

and is pretty large.

 

On the Raspberry Pi, its more compact,

and is right below the status NeoPixel

Step 3. Look for pulsing yellow LED and
green NeoPixel

 

If you have a good USB connection and

you double-click right, you'll see the left

LED turn green and the right hand little

yellow LED start pulsing

©Adafruit Industries Page 24 of 183

https://learn.adafruit.com//assets/57189
https://learn.adafruit.com//assets/57189
https://learn.adafruit.com//assets/67690
https://learn.adafruit.com//assets/67690
https://learn.adafruit.com//assets/57190
https://learn.adafruit.com//assets/57190


Step 4. Look for a New Disk on Your
Computer

 

You'll see a new disk drive on your

computer called CRICKITBOOT (short for

crickit bootloader)

Step 5. Download the latest firmware

Click here to go to the download page for the latest Crickit firmware releases.

Latest Crickit seesaw Firmware

https://adafru.it/BMU

Download the correct file for your specific hardware:

Crickit HAT = seesaw-crickitHat.uf2

All others = seesaw-crickit.uf2

• 

• 

©Adafruit Industries Page 25 of 183

https://learn.adafruit.com//assets/57191
https://learn.adafruit.com//assets/57191
https://github.com/adafruit/seesaw/releases/latest


Step 6. Drag UF2 file onto CRICKITBOOT

 

Drag that file you downloaded onto the

disk drive, after it is completed the drive

will disappear (you may get a complaint

from the operating system)

 

 

That's it! You're now updated

Powering Crickit 

 

On the Crickit HAT, the 5V power plug is

next to the 2x20 connector

The first thing you'll learn when making robots is that they use a lot of power. So

making sure you have your power supply all worked out is super important. We've

tried to make the power supply as easy and safe as possible, so you don't have to

 

©Adafruit Industries Page 26 of 183

https://learn.adafruit.com//assets/57192
https://learn.adafruit.com//assets/57192
https://learn.adafruit.com//assets/67687
https://learn.adafruit.com//assets/67687


worry about damaging your electronics or robot. To do that we made some important

design decisions.

How to Power your Crickit

It's really important to read and understand how to power your Crickit!

You MUST provide about 4-5 Volts DC power to the Crickit to power the servos,

motors, solenoids, NeoPixels, etc.

You CANNOT provide this power by plugging the Crickit, micro:bit, Feather,

Raspberry Pi or  Circuit Playground into USB. Computer USB ports cannot

provide the 2 Amp + required to drive robotics, LEDs, speakers...

Power to the Crickit is provided via the 2.1mm DC Jack only! 

The Cricket has two LEDs to let you know how the power supply is doing. If you

see the green LED next to the smiley face, you're good to go. If you see the red

LED next to the warning triangle, the voltage is too high, too low or too much

current is being drawn.

The Crickit power will also power the Circuit Playground Express, micro:bit,

Raspberry Pi or Feather so you don't need separate power for your

microcontroller board (however, if you want to plug it into USB for programming,

that's totally OK too!)

Here's our recommended ways to power the Crickit:

Plug In DC Power Supplies

These get wall power and give you a nice clean 5V DC power option. 5V 2A works for

most project with a motor or two...

5V 2A (2000mA) switching power supply -

UL Listed 

This is an FCC/CE certified and UL listed

power supply. Need a lot of 5V power?

This switching supply gives a clean

regulated 5V output at up to 2000mA. 110

or 240 input, so it works...

https://www.adafruit.com/product/276 

• 

• 

• 

• 

• 

©Adafruit Industries Page 27 of 183

https://www.adafruit.com/product/276
https://www.adafruit.com/product/276
https://www.adafruit.com/product/276


And a 5V 4A supply will give you lots of power so you can drive 4 or more servos,

motors, etc. Use this if you notice you're running out of power with a 5V 2A adapter

5V 4A (4000mA) switching power supply -

UL Listed 

Need a lot of 5V power? This switching

supply gives a clean regulated 5V output

at up to 4 Amps (4000mA). 110 or 240

input, so it works in any country. The

plugs are "US...

https://www.adafruit.com/product/1466 

AA Battery Packs

On the go? Portable power is possible! Use AA battery packs.

The number of batteries you need depends on whether you are using Alkaline or

NiMH rechargeables.

We recommend NiMH rechargeables. For one, they have less waste, but they also

perform better than alkalines in high-current draw robotics. So if you can, please use

NiMH!

4 x AA Battery Packs for NiMH ONLY

NiMH batteries have a 1.3V max voltage, so 4 of them is 4 x 1.3 = 5.2 Volts. Perfect!

4 x AA Battery Holder with On/Off Switch 

Make a nice portable power pack with this

4 x AA battery holder. It fits any alkaline or

rechargeable AA batteries in series.

There's a snap on cover and an on/off

switch which can...

https://www.adafruit.com/product/830 

©Adafruit Industries Page 28 of 183

https://www.adafruit.com/product/1466
https://www.adafruit.com/product/1466
https://www.adafruit.com/product/1466
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830


3 x AA Battery Packs for Alkaline ONLY

Alkaline batteries have a 1.5V max voltage, so 4 of them is 4 x 1.5 = 6 Volts. That's too

high! Instead we recommend 3 in series for 3 x 1.5V = 4.5 VDC

3 x AA Battery Holder with 2.1mm Plug 

Here's another addition to our growing

family of AA battery holders. A holder for

three (3) AA batteries!...

https://www.adafruit.com/product/3842 

If you're making a custom battery pack you may want to pick up a 2.1mm DC jack

adapter, so you can connect battery pack wires

Waterproof 3xAA Battery Holder with On/

Off Switch 

Keep your power source safe and toasty

in these waterproof 3xAA battery holders.

They're just like classic switched battery

holders, but designed for survival! The

case has a rubber...

https://www.adafruit.com/product/771 

Male DC Power adapter - 2.1mm plug to

screw terminal block 

If you need to connect a battery pack or

wired power supply to a board that has a

DC jack - this adapter will come in very

handy! There is a 2.1mm DC plug on one

end, and a screw...

https://www.adafruit.com/product/369 

©Adafruit Industries Page 29 of 183

https://www.adafruit.com/product/3842
https://www.adafruit.com/product/3842
https://www.adafruit.com/product/771
https://www.adafruit.com/product/771
https://www.adafruit.com/product/771
https://www.adafruit.com/product/369
https://www.adafruit.com/product/369
https://www.adafruit.com/product/369


Not Recommended Power supplies

LiPoly Batteries - 1 battery is 3.7V, too low. 2 batteries is 7.2V, too high! You could

possibly use a 7.2V pack and then a UBEC to step down to 5V (https://adafru.it/

efD) but its not recommended

Lead Acid Batteries - These are heavy and you'll need a custom charging

solution. You can probably get away with a 2 x 2V cell pack, or a 3 x 2V cell

pack and then add some 1N4001 diodes to drop the voltage, but it's for

advanced hacking!

USB Power Packs - In theory you can use a USB to 2.1mm DC power adapter (htt

ps://adafru.it/Bfm), but power packs sometimes dislike the kinds of current draw

that motors have (high current peaks for short amounts of time) So

experimentation is key!

Assembly 

Only the Circuit Playground Express + Crickit combination needs assembly, the

Feather and micro:bit Crickits have sockets which the microcontroller plugs into.

The Crickit HAT for Raspberry Pi does not need assembly either, it has female

receptors for a male Raspberry Pi header.

 

The Circuit Playground Express version of

Crickit comes with a package of six

threaded, hexagonal brass standoffs.

These will hold the Circuit Playground

Express above and onto the Crickit.

• 

• 

• 

©Adafruit Industries Page 30 of 183

https://www.adafruit.com/product/1385
https://www.adafruit.com/product/2697
https://learn.adafruit.com//assets/57174
https://learn.adafruit.com//assets/57174


 

Using a Philips screwdriver and the

provided screws, attach the standoffs to

the six large holes on the inside ring of

Crickit. There are three holes near the

Adafruit logo and three more near the

Neopixel and speaker outputs. You do not

want to put the standoffs on the holes on

the outside edge of Crickit - there are 8

mounting holes there but these standoffs

are needed for the Circuit Playground

Express.

Tighten the screws firm but do not try to tighten excessively. A good mechanical and

electrical connection is needed but excessive torque could crack a circuit board or at

least make things hard to take apart later.

Once you have the six standoffs screwed into Crickit, place a Circuit Playground

Express board (ID 3333, not the Circuit Playground Classic board ID 3000) onto the

standoffs with the silver USB-B port of the Express pointing in the same direction as

the Crickit black power jack. This will align the standoffs to the following pads:

4 o'clock: A1, "4:30": A0, 5 o'clock: VOUT

10 o'clock: SDA, "10:30": SCL, 11 o'clock: GND

 

©Adafruit Industries Page 31 of 183

https://learn.adafruit.com//assets/53967
https://learn.adafruit.com//assets/53967


 

Once you have the Circuit Playground

Express lined up correctly, use the

remaining screws to attach the boards

together. Start with one screw into one

standoff, say GND, leave it loose a bit, then

put in the VOUT screw, loose, then the

others loosely. Ensure things are lined up,

then carefully tighten each screw. Again, a

firm connection but not overly tight.

 

Now the two boards should be attached to

one another.

 

There are circular markings on the bottom

of Crickit for four mounting pads (Adafruit

ID 550 (https://adafru.it/dLG)) if you would

like to use the board on a surface and

protect the surface and bottom of your

Crickit.

If you happen to lose a standoff or screw(s), a new package is available from Adafruit:

Watch out, the CircuitPlayground Express (CPX) can go on 'backwards' and it 

won't work. Make sure the USB connector on the CPX is right below the DC jack, 

and the labels on the silkscreen of the Crickit match the ones on the CPX! See 

the images below! 

©Adafruit Industries Page 32 of 183

https://learn.adafruit.com//assets/53970
https://learn.adafruit.com//assets/53970
https://learn.adafruit.com//assets/54006
https://learn.adafruit.com//assets/54006
https://learn.adafruit.com//assets/54007
https://learn.adafruit.com//assets/54007
https://www.adafruit.com/product/550
https://www.adafruit.com/product/550


Circuit Playground Bolt-On Kit 

You have a Circuit Playground Express,

but you need to mount it to your charming

cardboard robot friend, eh? Not so easy if

you...

https://www.adafruit.com/product/3816 

Little Rubber Bumper Feet - Pack of 4 

Keep your electronics from going

barefoot, give them little rubber feet!

These small sticky bumpers are our

favorite accessory for any electronic kit or

device. They are sticky, but...

https://www.adafruit.com/product/550 

Troubleshooting Crickit 

Your Crickit is well tested but there's things that can trip you up! Here's a few common

issues we see

My Crickit Is Doing Something Wrong

We do have bugs once in a while, so please always try updating to the latest Crickit

seesaw firmware (https://adafru.it/BMV) - then see if the bug persists

My Crickit Motors Aren't Moving!

My Crickit Keeps Resetting, It Works For a Bit... Then Fails!

Check the power supply. There's a few ways to know that power is good:

Check the "Happy Face" green LED below the power switch, it should stay lit!

Check the "Warning Symbol" red LED below the power switch, it should be off 

1. 

2. 

©Adafruit Industries Page 33 of 183

https://www.adafruit.com/product/3816
https://www.adafruit.com/product/3816
https://www.adafruit.com/product/550
https://www.adafruit.com/product/550
https://learn.adafruit.com/adafruit-crickit-creative-robotic-interactive-construction-kit/update-your-crickit
https://learn.adafruit.com/adafruit-crickit-creative-robotic-interactive-construction-kit/update-your-crickit


 

If you have updated the Crickit seesaw

firmware (see above) we have added

NeoPixel feedback, the LED will be green

when power is good and blink red when

power is bad!

HELP! My Crickit isn't working in MakeCode, and in
Python I see a message "No I2C Device at Address: 49"

A super common issue we see is people using the Crickit with Circuit Playground

Express (CPX) and the bolts/screws have come loose! Those bolts aren't just

mechanical, they pass signals back and forth between the CPX and the Crickit!

If you're having issue, first thing to check is that those screws are tightly attached!

Another common issue we see is not having good power to the Crickit. Check that

you have fresh batteries or a good 5V power supply. Also check the Crickit is on!

There's an on/off switch next to the power jack

 

©Adafruit Industries Page 34 of 183

https://learn.adafruit.com//assets/57212
https://learn.adafruit.com//assets/57212


Python: No Pullups found on SDL and SCL

This most often indicated the Crickit is not powered.

If you're running Crickit on battery power, you need fresh batteries.

If you use the wall power brick to provide power, ensure it is plugged in and the

power switch is on.

If batteries aren't an issue, try clicking reset on the Crickit board to kick it back into

running

micro:bit Crickit does not work

Be sure the micro:bit LED matrix faces towards the Crickit Seesaw chip and USB

firmware update plug and the micro:bit reset button faces the Crickit black power

jack. If you plug the micro:bit in backwards, it won't control things properly. Unplug

the micro:bit, make sure the 5x5 grid of LEDs faces the Crickit printing that says

"micro:bit LED grid faces this way" and you should be set.

Recommended Motors 

DC Gearbox Motors

These DC motors have a gear box already built in, and wires attached, so they're

super easy to use:

DC Gearbox Motor - "TT Motor" - 200RPM

- 3 to 6VDC 

Perhaps you've been assembling a new

robot friend, adding a computer for a

brain and other fun personality touches.

Now the time has come to let it leave the

nest and fly on...

https://www.adafruit.com/product/3777 

We also have a wide range of matching wheels:

©Adafruit Industries Page 35 of 183

https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777


Orange and Clear TT Motor Wheel for TT

DC Gearbox Motor 

Usually when one needs an orange

wheel it's a garnish for a cocktail, like a

tasty Sidecar. And speaking of cars, this

wheel is for driving, not...

https://www.adafruit.com/product/3766 

Thin White Wheel for TT DC Gearbox

Motors - 65mm Diameter 

We're keepin' it wheel with this one!

Plastic gear-box motors (also known as

'TT' motors) are an easy and low cost way

to get your projects moving. But...

https://www.adafruit.com/product/3763 

Skinny Wheel for TT DC Gearbox Motors 

Plastic gear-box motors (also known as

'TT' motors) are an easy and low cost way

to get your projects moving. But we've

noticed that there are not a lot of nice TT

motor...

https://www.adafruit.com/product/3757 

Other accessories are available, check the Adafruit shop for "TT Motor" items (https://

adafru.it/Bfn) for the wide range of add-ons available.

Servo-style DC motor

If you need a motor that is very compact (but not very powerful) these DC-in-servo-

body motors can do the job:

©Adafruit Industries Page 36 of 183

https://www.adafruit.com/product/3766
https://www.adafruit.com/product/3766
https://www.adafruit.com/product/3766
https://www.adafruit.com/product/3763
https://www.adafruit.com/product/3763
https://www.adafruit.com/product/3763
https://www.adafruit.com/product/3757
https://www.adafruit.com/product/3757
https://www.adafruit.com/?q=tt%20motor


DC Motor in Micro Servo Body 

This tiny DC Motor in Micro Servo Body is

an interesting motor - it's the same size

and shape as our micro servo but it isn't a

servo. It's...

https://www.adafruit.com/product/2941 

Which can be used with this wheel:

Wheel for Micro Continuous Rotation

FS90R Servo 

We're keepin' it wheel with this one!Need

a great drive solution for your little robotic

friends? This black plastic Micro

Continuos...

https://www.adafruit.com/product/2744 

Non-Geared DC Motor

Non-geared DC motors are very weak but very fast: great for fans:

DC Toy / Hobby Motor - 130 Size 

These are standard '130 size' DC hobby

motors. They come with a wider operating

range than most toy motors: from 4.5 to

9VDC instead of 1.5-4.5V. This range

makes them perfect...

https://www.adafruit.com/product/711 

©Adafruit Industries Page 37 of 183

https://www.adafruit.com/product/2941
https://www.adafruit.com/product/2941
https://www.adafruit.com/product/2744
https://www.adafruit.com/product/2744
https://www.adafruit.com/product/2744
https://www.adafruit.com/product/711
https://www.adafruit.com/product/711


Recommended Chassis 

This chassis is cute, red and has two DC motors so its super easy to drive from the

Crickit's dual DC motor port. You may need to use some wires to extend the DC motor

connections (they're a tad short)

Mini Round Robot Chassis Kit - 2WD with

DC Motors 

Unleash your inner Mad Max and make

your vehicle dreams a reality with the Mini

Red Round Robot Chassis...

https://www.adafruit.com/product/3216 

This chassis is nearly identical, but has 3 layers, so you can FIT MORE STUFF!

Mini 3-Layer Round Robot Chassis Kit -

2WD with DC Motors 

Does this guy look familiar? Of course it

does! It's our Black, 3-Layer Round Robot

Chassis Kit from 

https://www.adafruit.com/product/3244 

This chassis is not as nice as the above, but if you fancy it, it comes with two servo-

style DC motors and can use the DC motor control on the Crickit as well

©Adafruit Industries Page 38 of 183

https://www.adafruit.com/product/3216
https://www.adafruit.com/product/3216
https://www.adafruit.com/product/3216
https://www.adafruit.com/product/3244
https://www.adafruit.com/product/3244
https://www.adafruit.com/product/3244


Mini Robot Rover Chassis Kit - 2WD with

DC Motors 

Unleash your inner Mad Max and make

your vehicle dreams a reality with the Mini

Robot Rover...

https://www.adafruit.com/product/2939 

Recommended Servos 

You're in luck, you can use just about any kind of servo!

Note that many of the photos below don't show the additional motor horns, but every

servo comes with plastic clip-on parts!

Servo Extensions

People often ask us what they can do if the wire to their Servo is to short for their

project. Not a problem! These cables act as extension cords - now you've got plenty

of room.

 

©Adafruit Industries Page 39 of 183

https://www.adafruit.com/product/2939
https://www.adafruit.com/product/2939
https://www.adafruit.com/product/2939


Servo Extension Cable - 30cm / 12" long - 

Stretch out your servo connections with

this flexible servo extension cord. It has a

3 pin shrouded "male" connection to plug

your servo into and then, 30cm later, a 3

pin...

https://www.adafruit.com/product/972 

Servo Extension Cable - 50cm / 19.5" long 

Stretch out your servo connections with

this flexible servo extension cord. It has a

3 pin shrouded "male" connection to plug

your servo into and then, 50cm later, a 3

pin...

https://www.adafruit.com/product/973 

Popular plastic-gear servos

The most popular/common servos have plastic gears, they're plenty strong and not

too expensive!

These can go back and forth, rotating about 180 degrees

They come in 'standard' size:

Standard servo - TowerPro SG-5010 

This high-torque standard servo can

rotate approximately 180 degrees (90 in

each direction). You can use any servo

code, hardware, or library to control these

servos. Good for...

https://www.adafruit.com/product/155 

©Adafruit Industries Page 40 of 183

https://www.adafruit.com/product/972
https://www.adafruit.com/product/972
https://www.adafruit.com/product/973
https://www.adafruit.com/product/973
https://www.adafruit.com/product/155
https://www.adafruit.com/product/155


And 'micro' size, not as strong but much more compact

Micro servo 

Tiny little servo can rotate approximately

180 degrees (90 in each direction) and

works just like the standard kinds you're

used to but smaller. You can use any

servo...

https://www.adafruit.com/product/169 

Continuous Rotation Servos

These servos look a lot like the above but they rotate all the way around. Unlike

standard servos you can't control the location of the horn, just the speed and

direction it which it turns. Good as an alternative to DC motors for wheeled bots. For

that reason, they tend to get purchased with matching wheels!

Continuous Rotation Servo 

This servo rotates fully forward or

backward instead of moving to a position.

You can use any servo code, hardware, or

library to control these servos. Good for

making simple moving...

https://www.adafruit.com/product/154 

Continuous Rotation Servo Wheel 

Plastic wheel with a cutout specially

designed to allow attachment to our

larger continuous rotation servo. Makes it

easy to get your...

https://www.adafruit.com/product/167 

©Adafruit Industries Page 41 of 183

https://www.adafruit.com/product/169
https://www.adafruit.com/product/169
https://www.adafruit.com/product/154
https://www.adafruit.com/product/154
https://www.adafruit.com/product/167
https://www.adafruit.com/product/167


Continuous Rotation Micro Servo 

Need to make a tiny robot? This little

micro servo rotates 360 degrees fully

forward or backward, instead of moving to

a single position. You can use any servo

code, hardware,...

https://www.adafruit.com/product/2442 

Wheel for Micro Continuous Rotation

FS90R Servo 

We're keepin' it wheel with this one!Need

a great drive solution for your little robotic

friends? This black plastic Micro

Continuos...

https://www.adafruit.com/product/2744 

High Torque Servos

If you need more power, metal-gear servos can give you better torque, but at

additional cost (since the gears have to be machined)

These are not continuous rotation

Standard Size - High Torque - Metal Gear

Servo 

This high-torque standard servo now

comes in a metal-gear flavor, for extra-

high torque (10 kg*cm!) and reliability! It

can rotate at least 120 degrees (60 in

each direction) with a...

https://www.adafruit.com/product/1142 

©Adafruit Industries Page 42 of 183

https://www.adafruit.com/product/2442
https://www.adafruit.com/product/2442
https://www.adafruit.com/product/2744
https://www.adafruit.com/product/2744
https://www.adafruit.com/product/2744
https://www.adafruit.com/product/1142
https://www.adafruit.com/product/1142
https://www.adafruit.com/product/1142


Micro Servo - High Powered, High Torque

Metal Gear 

Add even more power to your robot with

this metal-geared servo. The tiny little

servo can rotate approximately 180

degrees (~90 in each direction), and

works just like the...

https://www.adafruit.com/product/2307 

Micro Servo - MG90D High Torque Metal

Gear 

Add more power to your robot with this

metal-geared MG90D servo. The tiny little

servo can rotate approximately 90

degrees (45 in each direction) and works

just like the standard...

https://www.adafruit.com/product/1143 

Recommended Speakers 

The Class-D amplifier on the Crickit is pretty powerful, so you can make quite a bit of

noise!

4Ω Speakers

You'll get a lot louder audio from 4Ω speakers.

We recommend this speaker, you'll  have to either poke wires into the connector, or

cut it off and strip the wires to connect to the terminal block, but its nice and durable

©Adafruit Industries Page 43 of 183

https://www.adafruit.com/product/2307
https://www.adafruit.com/product/2307
https://www.adafruit.com/product/2307
https://www.adafruit.com/product/1143
https://www.adafruit.com/product/1143
https://www.adafruit.com/product/1143


Mono Enclosed Speaker - 3W 4 Ohm 

Listen up! This 2.8" x 1.2"

speaker is a great addition to any audio

project where you need 4 ohm

impedance and 3W or less of power. We

particularly like...

https://www.adafruit.com/product/3351 

This speaker is less expensive but you'll need to solder wires to the back

Speaker - 3" Diameter - 4 Ohm 3 Watt 

Listen up! This 3" diameter speaker cone

is the perfect addition to any audio

project where you need an 4 ohm

impedance and 3W or less of power. We

particularly like this cone as...

https://www.adafruit.com/product/1314 

8Ω Speakers

8 ohm speakers won't be as loud, but that's OK!

This speaker is inexpensive, but you'll need to solder wires to the back

Speaker - 3" Diameter - 8 Ohm 1 Watt 

Listen up! This 3" diameter speaker cone

is the perfect addition to any audio

project where you need an 8 ohm

impedance and 1W or less of power. We

particularly like this cone as...

https://www.adafruit.com/product/1313 

©Adafruit Industries Page 44 of 183

https://www.adafruit.com/product/3351
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/1314
https://www.adafruit.com/product/1314
https://www.adafruit.com/product/1313
https://www.adafruit.com/product/1313


The speakers below work just fine, but because the audio amp is pretty strong so you

have to make sure not to damage the speakers by turning up the potentiometer on

the Crickit to make the audio really loud.

If you're getting buzzy sounds from them, turn that little trimmer potentiometer down.

Mini Metal Speaker w/ Wires - 8 ohm

0.5W 

Listen up! This tiny 1" diameter speaker

cone is the perfect addition to any small

audio project where you need an 8 Ω

impedance and will be using 0.5W or less

of power. We...

https://www.adafruit.com/product/1890 

Thin Plastic Speaker w/Wires - 8 ohm

0.25W 

Listen up! This 1.5" diameter speaker cone

is the perfect addition to any audio

project where you need an 8Ω

impedance and are using 0.25W of power.

The speakers are rated...

https://www.adafruit.com/product/1891 

Wall or Bone Transducers

You can also use surface transducers if you like; attach/bolt/clamp the transducer to a

surface:

©Adafruit Industries Page 45 of 183

https://www.adafruit.com/product/1890
https://www.adafruit.com/product/1890
https://www.adafruit.com/product/1890
https://www.adafruit.com/product/1891
https://www.adafruit.com/product/1891
https://www.adafruit.com/product/1891


Medium Surface Transducer with Wires - 4

Ohm 3 Watt 

Turn any surface/wall/table etc into a

speaker with a surface transducer. This

type of speaker does not have a moving

cone like most speakers you've seen.

Instead, a small metal...

https://www.adafruit.com/product/1785 

Bone Conductor Transducer with Wires - 8

Ohm 1 Watt 

Drown out the voices in your head with a

bone conduction transducer! This

incredible speaker does not have a

moving cone like most speakers you've

seen, instead, a small metal rod...

https://www.adafruit.com/product/1674 

Recommended Drives 

Solenoids

Since the Crickit can only drive 5V power, you'll need to stick to this small 5V

solenoid

Mini Push-Pull Solenoid - 5V 

Solenoids are basically electromagnets:

they are made of a coil of copper wire

with an armature (a slug of metal) in the

middle. When the coil is energized, the

slug is pulled into the...

https://www.adafruit.com/product/2776 

©Adafruit Industries Page 46 of 183

https://www.adafruit.com/product/1785
https://www.adafruit.com/product/1785
https://www.adafruit.com/product/1785
https://www.adafruit.com/product/1674
https://www.adafruit.com/product/1674
https://www.adafruit.com/product/1674
https://www.adafruit.com/product/2776
https://www.adafruit.com/product/2776


Vibration Motors

You'll need to extend these wires but they'll work great at 5V and buzz very strongly

Vibrating Mini Motor Disc 

*BZZZZZZZZZZ* Feel that? That's your

little buzzing motor, and for any haptic

feedback project you'll want to pick up a

few of them. These vibe motors are tiny

discs,...

https://www.adafruit.com/product/1201 

Recommended Capacitive Touch 

The capacitive touch pads on the Crickit have large holes so its easy to connect

alligator/croc clips. That's how we recommend you attach to them. The "small" size

clips work best:

Small Alligator Clip Test Lead (set of 12) 

Connect this to that without soldering

using these handy mini alligator clip test

leads. 15" cables with alligator clip on

each end, color coded. You get 12 pieces

in 6 colors....

https://www.adafruit.com/product/1008 

©Adafruit Industries Page 47 of 183

https://www.adafruit.com/product/1201
https://www.adafruit.com/product/1201
https://www.adafruit.com/product/1008
https://www.adafruit.com/product/1008


Small Alligator Clip to Male Jumper Wire

Bundle - 6 Pieces 

When working with unusual non-header-

friendly surfaces, these handy cables will

be your best friends! No longer will you

have long, cumbersome strands of

alligator clips. These...

https://www.adafruit.com/product/3448 

You can also use copper foil tape. Note that if you get foil with conductive adhesive,

you can tape the foil right onto the Crickit pads. Otherwise you'll need to use alligator

clips to grab onto the copper.

Copper Foil Tape with Conductive

Adhesive - 6mm x 15 meter roll 

Copper tape can be an interesting

addition to your toolbox. The tape itself is

made of thin pure copper so its extremely

flexible and can take on nearly any shape.

You can easily...

https://www.adafruit.com/product/1128 

Copper Foil Tape with Conductive

Adhesive - 25mm x 15 meter roll 

Copper tape can be an interesting

addition to your toolbox. The tape itself is

made of thin pure copper so its extremely

flexible and can take on nearly any shape.

You can easily...

https://www.adafruit.com/product/1127 

You can use other conductive materials like paints! Either drip the paint into the pad

itself and let it harden, or use alligator clips to connect from one pad to a paper with

conductive paint on it.

©Adafruit Industries Page 48 of 183

https://www.adafruit.com/product/3448
https://www.adafruit.com/product/3448
https://www.adafruit.com/product/3448
https://www.adafruit.com/product/1128
https://www.adafruit.com/product/1128
https://www.adafruit.com/product/1128
https://www.adafruit.com/product/1127
https://www.adafruit.com/product/1127
https://www.adafruit.com/product/1127


Bare Conductive Paint Pen - 10mL 

Bare Conductive Paint is a multipurpose

electrically conductive material perfect for

all of your DIY projects! Bare Paint is

water based, nontoxic and dries at room

temperature.

https://www.adafruit.com/product/1306 

Bare Conductive Paint - 50mL 

Bare Conductive Paint is a multipurpose

electrically conductive material perfect for

all of your DIY projects! Bare Paint is

water based, nontoxic and dries at room

temperature.

https://www.adafruit.com/product/1305 

Remember: If you absolutely need more capacitive touch pins, Signal #1, #2, #3, #4 ar

e four more capacitive touch inputs.

Programming Options 

The method you choose to program your microcontroller and Crickit depends on what

type of environment you are looking to use and available options. The chart below

details which options are available with detailed descriptions on this page.

Crickit Compatibility

Matrix

Arduino IDE CircuitPython MakeCode CPython

Circuit Playground

Express and Crickit
Great! Great! Great! Nope

©Adafruit Industries Page 49 of 183

https://www.adafruit.com/product/1306
https://www.adafruit.com/product/1306
https://www.adafruit.com/product/1305
https://www.adafruit.com/product/1305


Crickit with Circuit Playground Express

Programming this combination offers great flexibility. Here are the options:

Microsoft MakeCode provides complete Circuit Playground Express support and

complete Crickit support with the Crickit Extension available in the current

releases. MakeCode is excellent for beginning students with a block interface.

Support for sensors and peripherals not on the Circuit Playground Express is

generally not available.

CircuitPython is supported for all Circuit Playground Express and Crickit

functionality. While CircuitPython may have require a bit more study, it is

definitely worth it for the rich programmability, through high level and lower

level libraries. CircuitPython support for various sensors and add-ons is

excellent and under continual development. Development with the Mu editor

offers error checking, serial output and plotting capabilities. Very fast to upload

and make changes due to being an interpreted language.

The Arduino IDE works with Circuit Playground Express and with Crickit as an

add-on library. The number of drivers for peripherals and sensors is generally

excellent and Arduino is suitable for creating new drivers depending on

complexity. The learning curve is very high to understand both the built-in

functionality and the underlying C/C++ syntax. Error messages may not be

intuitive. Compilation times can slow down development. Serial monitor support

is included.

Native CPython support for this combination is not supported. Adafruit suggests

using CircuitPython which has better CPython support than MicroPython.

Feather M0/M4 Express

and Crickit
Great! Great! Great! Nope

micro:bit and Crickit for

micro:bit

With

Extension
Nope

Great in

Beta!

Only

MicroPython

Raspberry Pi and

Crickit HAT
Nope Great! Nope

Use

CircuitPython

• 

• 

• 

• 

©Adafruit Industries Page 50 of 183



Crickit with Feather M0/M4 Express CircuitPython
Supported Feather

Programming this combination offers great flexibility. Here are the options:

Microsoft MakeCode requires a beta version which includes support for other

processors.

CircuitPython is supported for all CircuitPython compatible Feather boards and

Crickit functionality. CircuitPython will NOT work on non-CircuitPython Feather

boards such as the 32u4 Feathers, 328P Feather, M0 Basic Feathers. nRF52

support is still in development. ESP8266 support is limited. While CircuitPython

may have require a bit more study, it is definitely worth it for the rich

programmability, through high level and lower level libraries. CircuitPython

support for various sensors and add-ons is excellent and under continual

development. Development with the Mu editor offers error checking, serial

output and plotting capabilities. Very fast to upload and make changes due to

being an interpreted language.

The Arduino IDE works with all Feather boards and with Crickit as an add-on

library. The number of drivers for peripherals and sensors is generally excellent

and Arduino is suitable for creating new drivers depending on complexity. The

learning curve is very high to understand both the built-in functionality and the

underlying C/C++ syntax. Error messages may not be intuitive. Compilation times

can slow down development. Serial monitor support is included.

Native CPython support for this combination is not supported. Adafruit suggests

using CircuitPython which has better CPython support than MicroPython.

Crickit with micro:bit Support

Programming this combination is good but is very limited for Python:

Microsoft MakeCode provides complete micro:bit support and complete Crickit

support with the Crickit Extension available in the current beta release.

MakeCode is excellent for beginning students with a block interface. Support for

sensors and peripherals not on the Circuit Playground Express is generally not

available.

CircuitPython is not currently supported for micro:bit. There is MicroPython for

micro:bit. See this Adafruit Guide for using CRICKIT with MicroPython and the

micro:bit (https://adafru.it/EP2).

The Arduino IDE works with Circuit Playground Express and with Crickit as an

add-on library. The number of drivers for peripherals and sensors is generally

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 51 of 183

https://learn.adafruit.com/using-micro-bit-and-crickit-with-micropython/
https://learn.adafruit.com/using-micro-bit-and-crickit-with-micropython/


excellent and Arduino is suitable for creating new drivers depending on

complexity. The learning curve is very high to understand both the built-in

functionality and the underlying C/C++ syntax. Error messages may not be

intuitive. Compilation times can slow down development. Serial monitor support

is included.

Native CPython support for this combination is not supported. Adafruit suggests

using  MicroPython if Python programmability is needed, but there is no Crickit

or driver support from Adafruit.

Crickit HAT for Raspberry Pi

Programming this combination offers flexibility for CPython only.

Microsoft MakeCode support is not available.

CircuitPython is supported for Raspberry Pi and Crickit HAT. CircuitPython

requiresa bit of study, but it is definitely worth it for the rich programmability,

through high level and lower level libraries. CircuitPython support for various

sensors and add-ons is excellent and under continual development.

Development with the Mu editor offers error checking, serial output and plotting

capabilities. Very fast to upload and make changes due to being an interpreted

language.

The Arduino IDE does not work with the Raspberry Pi and Crickit HAT.

Native CPython does not provide the library for Crickit. You should consider

CircuitPython which is a subset of CPython with support for the Crickit HAT

capabilities.

MakeCode 

With MakeCode, you can create robots simply and easily, using a drag-and-drop block

interface. It's perfect for first time robot-makers, people who don't have a lot of coding

experience, or even programmers who just want to get something going fast

MakeCode uses a web browser only, so no IDE is required to install. When you

download a binary from MakeCode it is compiled for the Circuit Playground Express

and you will overwrite any Arduino code or the CircuitPython runtime. You can always

• 

• 

• 

• 

• 

MakeCode is currently not available for Crickit for micro:bit or the Crickit HAT for 

Raspberry Pi. 

©Adafruit Industries Page 52 of 183



go back to programming other ways including Arduino (just use the Arduino IDE) or

CircuitPython (by re-installing CircuitPython as shown here (https://adafru.it/Bfh))

Get Comfy With MakeCode

We recommend starting out by trying out the simple blinking NeoPixel example in our

MakeCode guide, so you get a hang of how to install MakeCode apps on your Circuit

Playground Express (https://adafru.it/wWd)

Once you feel comfortable with MakeCode, come back here and we'll add Crickit

support!

Adding Crickit Extension

Now you're a MakeCode'r and you are ready to add Crickit support.

At this time, MakeCode support is being worked on and we're improving it every day,

but it is Beta

For Circuit Playground Express and Feather Crickit
(micro:bit is below)

 

Start by visiting https://

makecode.adafruit.com (https://adafru.it/

Bly)

 

Click on New Project

©Adafruit Industries Page 53 of 183

https://learn.adafruit.com/adafruit-crickit-creative-robotic-interactive-construction-kit/circuitpython-code
https://learn.adafruit.com/makecode
https://learn.adafruit.com/makecode
https://learn.adafruit.com/makecode
https://learn.adafruit.com//assets/54680
https://learn.adafruit.com//assets/54680
https://makecode.adafruit.com/beta
https://makecode.adafruit.com/beta


 

In the list of blocks, select ADVANCED and

then EXTENSIONS

 

In the Search Bar type in Crickit and click

the magnifying glass.

 

Click on the Crickit block that shows up to

install Crickit support!

 

You will now have a new CRICKIT bin of

blocks you can use! Continue on to learn

how to use these blocks

©Adafruit Industries Page 54 of 183

https://learn.adafruit.com//assets/54681
https://learn.adafruit.com//assets/54681
https://learn.adafruit.com//assets/54684
https://learn.adafruit.com//assets/54684
https://learn.adafruit.com//assets/54685
https://learn.adafruit.com//assets/54685


For micro:bit Crickit

 

Start by visiting https://

makecode.microbit.org/beta (https://

adafru.it/Csj), be sure to use the beta

version unless you see that Microsoft has

made Crickit support standard in the

Extensions category.

 

 

 

In the list of blocks, select Advanced and

then Add Package

 

In the Add Package... ? screen, place the

following web address into the Search or

enter project URL box:

 

https://github.com/adafruit/pxt-

crickit (https://adafru.it/Csk)

 

Click on the Crickit block that shows up to

install Crickit support!

©Adafruit Industries Page 55 of 183

https://learn.adafruit.com//assets/61035
https://learn.adafruit.com//assets/61035
https://makecode.microbit.org/beta
https://makecode.microbit.org/beta
https://learn.adafruit.com//assets/61036
https://learn.adafruit.com//assets/61036
https://learn.adafruit.com//assets/61038
https://learn.adafruit.com//assets/61038
https://github.com/adafruit/pxt-crickit
https://github.com/adafruit/pxt-crickit


 

You will now have a new CRICKIT bin of

blocks you can use! Continue on to learn

how to use these blocks

MakeCode Servos 

 

You can plug up to four servos in the 

Servo block of Crickit. The pin spacing is

just right for servo connections.

 

At left are the connections for the Circuit

Playground Express and Crickit

combination.

 

And here is the Crickit for micro:bit (the

micro:bit plugs into the Crickit but is not

shown for clarity).

 

The servo connections are identical to the

other Crickits.

Note - some of the example MakeCode block screen shots are from the Circuit 

Playground Express version of MakeCode. In all cases like this, there are 

micro:bit MakeCode equivalents. If things differ significantly, we'll show the 

micro:bit MakeCode separately. 

©Adafruit Industries Page 56 of 183

https://learn.adafruit.com//assets/61039
https://learn.adafruit.com//assets/61039
https://learn.adafruit.com//assets/54720
https://learn.adafruit.com//assets/54720
https://learn.adafruit.com//assets/60945
https://learn.adafruit.com//assets/60945


Servos are so easy to use, you can control four independent servos - micro, mini,

standard, metal gear or continuous rotation. Basically, if it has a 3-pin plug on the end

and has 'servo' in the name, it'll work just fine.

Let's start with a simple demo that moves two servos back and forth:

Open this example in MakeCode for

Circuit Playground Express

https://adafru.it/CyB

Open this example in MakeCode for

micro:bit

https://adafru.it/CyC

Controlling servos is basically the same through a Crickit as through MakeCode

directly.

There's two blocks you can use, one for setting the angle and one for setting the

pulse width directly

 

Are your servos not moving a full 180 degrees? Don't fret! This is normal, see 

below about putting in custom pulse lengths to get the 'max range' your servo! 

©Adafruit Industries Page 57 of 183

https://makecode.com/_6gxi7y3VACDF
https://makecode.microbit.org/_MuY7DPdLKXt1


We recommend using the angle block, its easier! Select which servo you want to use,

from 1 through 4

Then adjust the angle. Remember it does take a little time for the servo motor to

move, so you can't just set it back and forth instantly, try adding a delay of a second

after moving to make sure it got to the angle you want!

Although the angles range from 0 to 180, servos may have different ranges

depending on the make and model. Also, each servo is a little different, so you may

not get precisely the same angle even if its the same servo! Tweaking/adjusting the

angle may be necessary.

Precise Pulses

For advanced use, you can hand-tune the pulse width. The 'standard' for servos is

that 0 degrees is 1000 microseconds (us), 90 degrees is 1500 and 180 degrees is

2000 us. But...like we said, it can vary. You may want to try values as low as 750us

and as high as 2500us! Just go slow, changing the values only 100us at a time, so you

 

 

 

©Adafruit Industries Page 58 of 183



dont thwack the servo gears too far, they could be damaged if they push too far! For

that reason, we recommend using angles only until you're comfy with servo usage

MakeCode Drives 

 

The Drives block on Crickit makes it super

easy to connect higher current devices.

 

At left shows the Circuit Playground

Express and Crickit combination

connected to several devices.

 

The Crickit for micro:bit is just as versatile.

 

Note the micro:bit is not shown at left, it

would have to be plugged into the Crickit.

The Drive output of your Crickit is perfect for 5V-powered solenoids, relays, vibration

motors or high powered LEDs. You can drive up to 500mA per output, and 4 outputs

available.

 

©Adafruit Industries Page 59 of 183

https://learn.adafruit.com//assets/54712
https://learn.adafruit.com//assets/54712
https://learn.adafruit.com//assets/60946
https://learn.adafruit.com//assets/60946


Note that the 'positive' side of the electronic part you're driving has to connect to 5V

not Ground. You can just double/triple/quadruple wires into the same 5V terminal

block.

Open this example in MakeCode for

Circuit Playground Express

https://adafru.it/CyD

Open this example in MakeCode for

micro:bit

https://adafru.it/CyE

Each Drive output is a PWM output, that means you can change the amount of current

or speed of whatever is connected.

Select which Drive pin you want to control with the pull down, Drive 1 through 4 are

labeled on the Crickit

 

 

©Adafruit Industries Page 60 of 183

https://makecode.com/_aXzg5iFaeUu9
https://makecode.microbit.org/_CCHdgiU3o2ek


Then you can set the value from 0 (drive off) to 1023 (drive all the way on). If you want

to dim an LED or run a vibration motor at half power, use 512. For quarter power, use

256!

Remember you get 4 drive pins, so you can control them independently

Changing the Drive Analog/PWM
Frequency

You can set the analog frequency in an On Start block. We recommend 1000 Hz (1

KHz) its a good standard number. Advanced makers can tweak this!

 

 

 

©Adafruit Industries Page 61 of 183



MakeCode DC Motors 

 

Zoom! Cricket is a great motor driver

platform and with MakeCode, it's super

easy to use. Just connect to the Crickit 

Motor block.

 

The Crickit with Circuit Playground

Express is shown first at left.

 

Note the GND terminal is not usually used

with motors.

 

And using motors with micro:bit is just as

easy.

 

Note: the micro:bit is not shown in the

diagram at left for clarity, you'll need to

plug one into the Crickit slot to have

everything work.

You can drive two separate DC motors, so lets go ahead and get right to it!

DC motors are controlled by 4 PWM (adjustable speed) output pins, the 4 pins let you

control speed and direction. And we'll use our CRICKIT Motors block set to help us

manage the speed and direction for us, making it very easy to control motors

Note that each DC motor is a little different, so just because you have two at the same

speed does not mean they'll rotate at the exact same speed! Some tweaking may be

required

©Adafruit Industries Page 62 of 183

https://learn.adafruit.com//assets/54686
https://learn.adafruit.com//assets/54686
https://learn.adafruit.com//assets/60947
https://learn.adafruit.com//assets/60947


Here's an example program that will move a single motor in different speeds and

directions

Setting Motor Speed

You can set the speed of the motor from 0% to 100% with this block. You can select

which motor to use, 1 or 2. Once you set the speed of the motor it will continue at that

speed until you change it or ask it to stop.

You can change direction by having a negative percentage speed!

You may want to have two motors move at the same time so they act like wheels on a

car. In that case, you can use this handy block that will control two motors at once!

 

 

 

©Adafruit Industries Page 63 of 183



You can set the two speeds at once. If both move at the same positive speed, the

tank/car will move forward. Same negative speed it will move backward. If one side

moves faster than the other, the car will turn.

If you want to 'invert' the motor, it will flip which direction positive/negative numbers

go. That is, if positive was forward, now positive will mean backwards

This is sometimes handy if you want to use only positive numbers or to keep your

code looking tidy.

MakeCode Steppers 

 

Stepper motors are used in many projects

and you can use them with Crickit and

MakeCode.

 

The Circuit Playground Express + Crickit

connections are shown at left.

 

And the micro:bit can control stepper

motors also when plugged into the

micro:bit version of Crickit (micro:bit not

shown for clarity).

 

 

©Adafruit Industries Page 64 of 183

https://learn.adafruit.com//assets/57319
https://learn.adafruit.com//assets/57319
https://learn.adafruit.com//assets/60948
https://learn.adafruit.com//assets/60948


You can control one or two stepper motors on Crickit. The Motor block can drive one

bipolar stepper (wiring shown above) or one unipolar stepper. In addition, the Drive

block can control one stepper also but it must be unipolar (bipolar will not work on

the Drive port).

MakeCode for Using a Stepper on the Motor Port

In the CRICKIT block group, scroll down until you see the Stepper heading and the

block crickit stepper move  block. Be sure not to use the crickit drive

stepper move block , that is for using a unipolar stepper on the Drive port,

discussed further down the page.

Move the Motor Port Stepper One Direction Forever

Here is a simple program that tells the stepper to move 20 steps, then wait 10

milliseconds, and repeats forever:

The  MakeCode blocks to control a unipolar/bipolar stepper on the Motor port is 

DIFFERENT from the block used to control a unipolar stepper on the Drive port. 

Be sure you use the correct block depending on the block you are wiring the 

stepper motor to. 

 

©Adafruit Industries Page 65 of 183



You'll see the motor shaft slowly turning in the "positive" direction. If you use a bit of

solid tape on the stepper's shaft as a small flag, you can see the rotation better. If the

rotation is in the wrong direction, use a negative value for the number of steps, re. -2

0 .

At this point, you can vary the parameters: increase or decrease the number of steps

moved every loop. If you want the stepper to move faster, increase the steps. This

may make the action a bit "jerky". If so, you can decrease the steps. This will be

smooth, but slow. To increase the pause between steps, you can use the pause  bloc

k to get times greater than 10 milliseconds.

Using a Stepper on the Drive Port in
MakeCode

In the CRICKIT block group, scroll down until you see the Stepper heading and the

block crickit drive stepper move  block.

 

 

©Adafruit Industries Page 66 of 183



Move the Drive Port Stepper One Direction Forever

Here is a simple program that tells a stepper on the Drive port to move 20 steps, then

waits ten milliseconds, and repeats forever. 10 milliseconds delay between step

blocks is the minimum to ensure the stepper doesn't miss any steps between blocks.

If you want to move the motor in the opposite direction, make the movement value

negative, re. -20 . The block takes positive and negative values.

MakeCode Signals 

 

The Signals block on Crickit allows you to

expand your general-purpose inputs and

outputs (GPIO).

 

The Circuit Playground Express and Crickit

combination is at left.

 

Crickit Inputs such as reading analog/signals can sometimes lock up when using 

MakeCode with CircuitPlayground - we recommend using the alligator 

connection pads on the 'bare' CPX instead of the Crickit until this is fixed! Or you 

can use Arduino, CircuitPython, micro:bit, etc. 

©Adafruit Industries Page 67 of 183

https://learn.adafruit.com//assets/75493
https://learn.adafruit.com//assets/75493


You may want to add buttons, LEDs, switches or simple sensors to your robot project.

With Crickit, you get 8 x 'general purpose in/out' (GPIO) pins called signals. Each

signal can be a digital input (button/switch), digital output (LED, for example), or analo

g input.

This lets you add a ton of external components easily, and its all handled by seesaw.

Perfect when you have a Feather without analog inputs (like the ESP8266) or just

need a ton of extra pins.

The signal pins are on a 3x8 female header, so you can poke wires directly in!

Using Signals in MakeCode

MakeCode has three blocks under the CRICKIT group to help you work with signals:

crickit digital read signal  allows you to read digital values in 

crickit analog read signal  reads a signal and provides an analog value

from 0-1023

crickit digital write signal  allows you to write out to a signal line

Analog read returns a number so the block is rounded to place where a number may

be used. Digital read is angled so it fits where a decision like if..then..else

blocks use. Write signal is a block of its own and will set a signal (Make it HIGH   / 3.3

volts or LOW  / 0 volts).

The Signal pins in MakeCode currently do not have configurable pull up resistors 

like in CircuitPython or Arduino. Please add external resistors between 3.3V and 

the signal wire to read things such as buttons where a resistor is needed. 

• 

• 

• 

 

©Adafruit Industries Page 68 of 183



Digital Reads and Writes

 

Here's an example wiring that goes with

the code below.

We have two switch buttons, connected to 

signals #1 and #2, the other side of the

buttons connect to ground

There's also two LEDs, connected to the 

signals #3 and #4 and the negative wires

connected to ground. (All the 3.3V and

Ground pins are connected together so

you don't have to use the ones right next

to the signal pin!)

Note the pull up resistors for the buttons.

Seesaw does not allow enabling internal

pullup or pulldown resistors at present.

Also 330 ohm current limit resistors are

shown for the LEDs.

Here is the MakeCode that reads the buttons on signal #1 and #2 and lights signal #3

and signal #4 if the corresponding button is pressed:

Open this example in MakeCode for

Circuit Playground Express

 

©Adafruit Industries Page 69 of 183

https://learn.adafruit.com//assets/75492
https://learn.adafruit.com//assets/75492
https://makecode.com/_czXMKci2L9px


https://adafru.it/CyF

Open this example in MakeCode for

micro:bit

https://adafru.it/CyG

Analog Reads

 

You can also read analog values like from

a potentiometer or sensor.

 

Lets do a demonstration where the center

tap of a potentiometer is hooked up to 

Signal #3 - don't forget to also connect

one side of the potentiometer to 3.3V and

the other side to ground.

And here is the example code. You can see we read the signal with crickit analog

read signal  which returns a value from 0 to 1023.

For Crickit and Circuit Playground Express

The map  MATH function changes 0 to 1023 to 0 to 9. The graph  NEOPIXEL block

will light the number of NeoPixels map  returns in rainbow colors.

Be sure the potentiometer is connected to Crickit Signal 3 and not one of the other

Signal terminals.

Load this Circuit Playground Express

example into MakeCode

https://adafru.it/C35

 

©Adafruit Industries Page 70 of 183

https://makecode.microbit.org/_Efx6U732c76H
https://learn.adafruit.com//assets/57380
https://learn.adafruit.com//assets/57380
https://makecode.com/_Hx1DzPKCHL4i


For Crickit and micro:bit

The code displays a heart icon  on the micro:bit display. The brightness is changed

by taking the reading from the potentiometer connected to Crickit Signal 3 (0 to 1023)

and dividing by 4 to get a brightness  from 0 to 255. So the potentiometer is

essentially a manual brightness control for the micro:bit LED array.

Load this micro:bit example in

MakeCode

https://adafru.it/Cso

MakeCode Touch 

 

There are four capacitive touch pads you

can use to detect human touch. They have

big pads you can use to attach alligator

clips to extend the pads' reach.

 

You can connect the other end of the

alligator wires to fruit and make your own

fruit-touch robot. Or move servo motors

based on touch, it's all fun.

 

Crickit Inputs such as Touch can sometimes lock up when using MakeCode with 

CircuitPlayground - we recommend using the alligator connection pads on the 

'bare' CPX instead of the Crickit until this is fixed! Or you can use Arduino, 

CircuitPython, micro:bit, etc. 

©Adafruit Industries Page 71 of 183

https://makecode.microbit.org/_LHtAb1PgrbkH
https://learn.adafruit.com//assets/57434
https://learn.adafruit.com//assets/57434


 

Touch is identical on the micro:bit version

of Crickit.

You can read the value of the captouch pads from the MakeCode CRICKIT block

group, block crickit read touch . This will return a value that is the change in

value, touched vs. not.

Example for Crickit plus Circuit Playground Express or
Feather

The program below sets up Crickit capacitive touch on pads 1, 2, 3 and 4. It then

loops forever - if you touch a pad, it lights a NeoPixel. Pressing Button A clears the

NeoPixels.

©Adafruit Industries Page 72 of 183

https://learn.adafruit.com//assets/60950
https://learn.adafruit.com//assets/60950


Open this Circuit Playground

Express example in MakeCode

https://adafru.it/C36

You can set different actions: if a touch is detected, change the direction of a motor as

just one example.

Example for Crickit and micro:bit

If you touch the capacitive touch pads, the one NeoPixel on the Crickit will glow (pad

1), get broighter (pads 2 and 3) and go out (pad 4).

 

©Adafruit Industries Page 73 of 183

https://makecode.com/_cb64i53kKhFh


Open this micro:bit Example in

MakeCode

https://adafru.it/Csn

MakeCode Audio 

 

Crickit provides an amplified audio output

via the Speaker block.

 

For the Circuit Playground Express +

Crickit version, we take advantage of the

CPX ability to play WAV files over the true-

analog output pin A0.

 

©Adafruit Industries Page 74 of 183

https://makecode.microbit.org/_XhrJz5R2E0qx
https://learn.adafruit.com//assets/57436
https://learn.adafruit.com//assets/57436


 

The micro:bit version of Cricket also has

amplified audio output.

 

The micro:bit is not shown in the diagram

at left, just plug a micro:bit into the slot in

the middle of Cricket in the direction

indicated.

 

The audio pin used on the micro:bit is pin 

P0 which has a small speaker icon on it on

the Crickit where the micro:bit pin

numbers are listed.

Audio animatronics! By adding a voice or sound effects to your robot you can make a

cool interactive project. 

This is one of the few outputs that does not go through the Crickit's seesaw helper

chip. Instead, the audio is played directly from the microcontroller board and the

Crickit amplifies it!

Amplifier Details

The onboard amplifier is a mono "Class D" audio amp with BTL (Bridge Tied Load)

output.

That means you cannot plug the speaker output into another amplifier, it must

connect directly to a speaker!

You can use just about any 4 to 8Ω speaker (6 Ω is OK too, just not as common). The

amplifier can drive up to 3 Watts into 4Ω and 1 Watt into 8Ω. That means its ok to

drive a 5 Watt speaker, it just wont be as loud as it could be with a bigger amp (but

you wont damage the amp). You can also drive speakers that are smaller, like an 8Ω

0.5 W but make sure you don't turn the audio volume potentiometer up, as it could

damage the speaker by overpowering it.

©Adafruit Industries Page 75 of 183

https://learn.adafruit.com//assets/60951
https://learn.adafruit.com//assets/60951


Playing Sounds on Crickit with MakeCode

If you are using a Crickit with Circuit Playground Express (CPX), the Crickit becomes

an amplified extension of the regular audio out. The sound is very clear and the

volume can be higher than the CPX on-board speaker. Below I've taken a cute song

snippet and reduced the volume from a previous value of  100  to 34  so one's ears

don't hurt when it starts. If the slide switch is moved left (towards the on-board

speaker on CPX), the song will play, moving the switch right silences it. If you think

the speed of the sound (the tempo) is too fast, press button A to slow it down. If you

think the tempo is too slow, press the B button.

Circuit Playground and Feather Crickit Version (micro:bit
below)

You can download the code by clicking this link to link to the MakeCode website.

 

©Adafruit Industries Page 76 of 183



Open this example in MakeCode for

Circuit Playground Express

https://adafru.it/BPC

Check out all the music blocks, you can have Crickit using sounds in projects with just

a couple of clicks!

micro:bit Version

The blocks available for music are a tiny bit different:

 

©Adafruit Industries Page 77 of 183

https://makecode.com/_atzgEEDeyEUK


Here is the song code for micro:bit:

 

There is no set volume block in MakeCode for micro:bit, so your volume is quite 

loud. It is suggested that you do not play tones forever like the example below to 

save your sanity. 

 

©Adafruit Industries Page 78 of 183



Load this example in MakeCode for

micro:bit

https://adafru.it/Csl

MakeCode NeoPixels 

 

The Circuit Playground Express version of

Crickit hardwires the NeoPixel control to

Circuit Playground Express pad A1 as

shown at left.

 

MakeCode knows all about it and provides

support via the LIGHTS block group which

will show a NEOPIXELS sub block group

for handling strips and other "off-board"

NeoPixels like the NeoPixel terminal on

Crickit.

 

There is also one Crickit NeoPixel

MakeCode allows you to control.

©Adafruit Industries Page 79 of 183

https://makecode.microbit.org/_XmxC48aC9Ty5
https://learn.adafruit.com//assets/57443
https://learn.adafruit.com//assets/57443


 

Cricket connected NeoPixels are

connected to the three terminals on the

NeoPixel block as shown at left for the

micro:bit version of Crickit.

 

GND is connected to GND, +5V to 5V, and

the middle arrow terminal to the NeoPixel's

Din pin.

 

You will need to add the appropriate

microcontroller (Circuit Playground

Express or micro:bit) to the appropriate

version of Crickit to control things, of

course (they are not shown for clarity).

Crickit easily allows you to work with NeoPixels. There is one on-board to the right of

the Capacitive Touch pads. There is also a terminal block called NeoPixel next to the

Crickit Speaker terminal output. The NeoPixel terminal connections makes it super

easy to use a strip or ring of NeoPixels to light up anything. 

MakeCode for Crickit NeoPixels

Using the Crickit Onboard Single NeoPixel 

 

©Adafruit Industries Page 80 of 183

https://learn.adafruit.com//assets/60952
https://learn.adafruit.com//assets/60952


You can use the three special NeoPixel blocks in the CRICKIT block group extension

to change the single NeoPixel on-board Crickit. They work just like the NeoPixel

blocks under the LIGHT block group but just for the one Crickit pixel. 

Crickit for Circuit Playground Express and Feather
(micro:bit is below)

Within MakeCode for Circuit Playground Express, in the LIGHT block group, there is a

special subgroup that pops below LIGHT when LIGHT is pushed called ... NEOPIXEL.

This provides a huge number of blocks to work with NeoPixels that are not on your

Crickit or the microcontroller on Crickit like a Circuit Playground Express.

When you use the MakeCode NeoPixel blocks to manipulate your Crickit connected

NeoPixels, you need to use the NEOPIXEL subgroup block labeled  set strip to

create strip .

 

 

©Adafruit Industries Page 81 of 183



For the code below, it assumes a connected 30 NeoPixel strip (https://adafru.it/BPD)

to the Crickit NeoPixel terminal block.

When the program starts, the on start  code up the variable named strip  to refer

to a NeoPixel strip connected to A1  (which all Circuit Playground Express Crickit

strips are connected to) with 30  NeoPixels on it (You have to click the +  on the block

to specify the pin A1  and add the number of NeoPixels.

Open this example in MakeCode for

Circuit Playground Express

https://adafru.it/CyH

For micro:bit + Crickit

For micro:bit, there is a small sun icon on Pin P16 on Crickit to help you remember that

is the pin connected for NeoPixels.

You will probably need to add the NeoPixels extension to MakeCode for NeoPixel

control. Click the Advanced button then Add Package. Select the Adafruit NeoPixels

extension. You will now have a new code block group called Neopixel which has the

blocks you want to control the NeoPixel strip.

The code below does what the above code does for CPX - creates a strip of 30

NeoPixels connected to Pin 16 and then displays a rainbow animation forever.

 

©Adafruit Industries Page 82 of 183

https://www.adafruit.com/product/1460?length=1
https://makecode.com/_hpg2VWMzTFA5


Open this example in MakeCode for

micro:bit

https://adafru.it/Cw0

Then the program shows the rainbow animation on the strip forever. You can do lots

of other things on your strip. It's that easy!

For More Information

See the tutorial Make It Glow with Crickit (https://adafru.it/Cxx).

CircuitPython Code 

To use Crickit, we recommend CircuitPython. Python is an easy programming

language to use, programming is fast, and its easy to read.

Install CPX Special Build

If you're using Circuit Playground Express (CPX), Please install this special 'seesaw'

version of the CPX firmware. Plug the USB cable into the CPX, double click the reset

button until you see CPLAYBOOT drive, then drag the UF2 file onto the disk drive:

 

The Crickit for micro:bit is not programmable in CircuitPython. 

©Adafruit Industries Page 83 of 183

https://makecode.microbit.org/_epmEWVYjhP0o
https://learn.adafruit.com/make-it-glow-with-crickit?view=all


Download the special version of

CircuitPython for CPX mounted on

Crickit

https://adafru.it/Fj6

What's nice about this special version is that the adafruit_crickit, adafruit_seesaw and 

adafruit_motor library is built in, which saves you tons of space and makes it really

fast to get started

 

Click the link above to download the latest

UF2 file

 

Download and save it to your Desktop (or

wherever is handy)

As this version of CircuitPython already has the Crickit and Seesaw libraries 

"baked in", ensure that the /lib directory on your CircuitPython device 

(CIRCUITPY) does NOT contain the adafruit_crickit or adafruit_seesaw library as 

they may conflict and it could unnecessarily use additional memory. 

©Adafruit Industries Page 84 of 183

https://circuitpython.org/board/circuitplayground_express_crickit/
https://learn.adafruit.com//assets/55066
https://learn.adafruit.com//assets/55066


 

 

Plug your Circuit Playground Express into

your computer using a known-good USB

cable

 

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync

 

Double-click the small Reset button in the

middle of the CPX, you will see all of the

LEDs turn green. If they turn all red, check

the USB cable, try another USB port, etc.

 

(If double-clicking doesn't do it, try a

single-click!)

 

 

You will see a new disk drive appear called

CPLAYBOOT

 

Drag the .uf2 file onto it.

©Adafruit Industries Page 85 of 183

https://learn.adafruit.com//assets/55067
https://learn.adafruit.com//assets/55067
https://learn.adafruit.com//assets/55068
https://learn.adafruit.com//assets/55068
https://learn.adafruit.com//assets/55069
https://learn.adafruit.com//assets/55069
https://learn.adafruit.com//assets/55070
https://learn.adafruit.com//assets/55070


 

The CPLAYBOOT drive will disappear and

a new disk drive will appear called 

CIRCUITPY

 

That's it! You're done :)

CircuitPython Servos 

 

To the left are the connections for the

Crickit with the Circuit Playground Express.

 

Note: The black wire on the servo

connectors always points inward towards

the microcontroller and center of Crickit.

The light wire: yellow, orange, white, etc.

faces outward from the Crickit.

 

Here is the Feather Crickit connected to

four servos.

©Adafruit Industries Page 86 of 183

https://learn.adafruit.com//assets/55071
https://learn.adafruit.com//assets/55071
https://learn.adafruit.com//assets/54068
https://learn.adafruit.com//assets/54068
https://learn.adafruit.com//assets/60930
https://learn.adafruit.com//assets/60930


 

The Crickit HAT for Raspberry Pi can also

control up to 4 servos like other Crickit

boards. Note the location of the Servo

header block with 4 rows of three male

pins.

Test Servos

Lets start by controlling some servos. You'll want at least one servo to plug in and test

out the servo code. Visit our recommended servo page to check that you have a

servo that works (https://adafru.it/Bfo). Once you do, plug in a servo into SERVO #1

spot, making sure the yellow or white wire is next to the 1 text label.

This example will show rotating one servo from 0 to 180 degrees with a stop at 90

degrees.

import time

from adafruit_crickit import crickit

print("1 Servo demo!")

while True:

    print("Moving servo #1")

    crickit.servo_1.angle = 0      # right

    time.sleep(1)

    crickit.servo_1.angle = 90     # middle

    time.sleep(1)

    crickit.servo_1.angle = 180    # left

    time.sleep(1)

    crickit.servo_1.angle = 90     # middle

    time.sleep(1)

    # and repeat!

We start by importing the libraries that we need to have time delays ( import time  )

and then the main crickit python library that will make it super easy to talk to the

motors and sensors on crickit ( from adafruit_crickit import crickit )

Are your servos not moving a full 180 degrees? Don't fret! This is normal, see 

below about min/max pulse lengths to 'tune' your servo! 

©Adafruit Industries Page 87 of 183

https://learn.adafruit.com//assets/62077
https://learn.adafruit.com//assets/62077
file:///home/cpx-crickit/recommended-servos
file:///home/cpx-crickit/recommended-servos


The crickit  object represents the motors and servos available for control. The

servos are available on the sub-objects named servo_1 , servo_2 , servo_3 , serv

o_4

Each of these are adafruit_motor.servo (https://adafru.it/BMX) type objects for the

curious

Control Servo

Now that we know the servo objects, we can simply assign the angle! 

crickit.servo_1.angle = 0  is all the way to the left,  crickit.servo_1.angle =

90  is in the middle, and  crickit.servo_1.angle = 180  is all the way to the right.

You'll want to test this to ensure it works with your specific servo, as 0 might be to the

right and 180 to the left if it was geared differently.

More Servos!

OK that was fun but you want MORE servos right? You can control up to four!

import time

from adafruit_crickit import crickit

print("4 Servo demo!")

# make a list of all the servos

servos = (crickit.servo_1, crickit.servo_2, crickit.servo_3, crickit.servo_4)

while True:

    # Repeat for all 4 servos

    for my_servo in servos:

        # Do the wave!

        print("Moving servo #", servos.index(my_servo)+1)

        my_servo.angle = 0      # right

        time.sleep(0.25)

        my_servo.angle = 90     # middle

        time.sleep(0.25)

        my_servo.angle = 180    # left

        time.sleep(0.25)

        my_servo.angle = 90     # middle

        time.sleep(0.25)

        my_servo.angle = 0      # right

This example is similar to the 1 servo example, but instead of accessing

the crickit.servo_1  object directly, we'll make a list called servos  that contains 4

servo objects with

servos = (crickit.servo_1, crickit.servo_2, crickit.servo_3,

crickit.servo_4)

©Adafruit Industries Page 88 of 183

https://circuitpython.readthedocs.io/projects/motor/en/latest/api.html?highlight=servo#adafruit-motor-servo


Then we can access the individual using servo[0].angle = 90  or iterate through

them as we do in the loop. You don't have to do it this way, but its very compact and

doesn't take a lot of code lines to create all 4 servos at once!

Min/Max Pulse control

Originally servos were defined to use 1.0 millisecond to 2.0 millisecond pulses, at 50

Hz to set the 0 and 180 degree locations. However, as more companies started

making servos they changed the pulse ranges to 0.5ms to 2.5ms or even bigger

ranges. So, not all servos have their full range at thoe 'standard' pulse widths. You can

easily tweak your code to change the min and max pulse widths, which will let your

servo turn more left and right. But don't set the widths too small/large or you can hit

the hard stops of the servo which could damage it, so try tweaking the numbers

slowly until you get a sense of what the limits are for your motor.

All you need to do is add a line at the top of your code like this

crickit.servo_1.set_pulse_width_range(min_pulse=500, max_pulse=2500)

The above is for Crickit Servo #1, you'll need to duplicate and adjust for all other

servos, but that way you can customize the range uniquely per servo!

Here we've change the minimum pulse from the default ~750 microseconds to 500,

and the default maximum pulse from 2250 microseconds to 2500. Again, each servo

differs. Some experimentation may be required!

import time

from adafruit_crickit import crickit

print("1 Servo demo with custom pulse widths!")

crickit.servo_1.set_pulse_width_range(min_pulse=500, max_pulse=2500)

while True:

    print("Moving servo #1")

    crickit.servo_1.angle = 0      # right

    time.sleep(1)

    crickit.servo_1.angle = 180    # left

    time.sleep(1)

One thing to watch for is that if you use a list like this, servo[0] is the name of the 

Servo #1 and servo[3] is Servo #4! 

©Adafruit Industries Page 89 of 183



Continuous Rotation Servos

If you're using continuous servos, you can use the angle assignments and just

remember that 0 is rotating one way, 90 is 'stopped' and 180 and rotating the other

way. Or, better yet, you can use the crickit.continuous_servo_1  object instead

of the plain servo_1

Again, you get up to 4 servos. You can mix 'plain' and 'continuous' servos

import time

from adafruit_crickit import crickit

print("1 Continuous Servo demo!")

while True:

    crickit.continuous_servo_1.throttle = 1.0 # Forwards

    time.sleep(2)

    crickit.continuous_servo_1.throttle = 0.5 # Forwards halfspeed

    time.sleep(2)

    crickit.continuous_servo_1.throttle = 0   # Stop

    time.sleep(2)

    crickit.continuous_servo_1.throttle = -0.5 # Backwards halfspeed

    time.sleep(2)

    crickit.continuous_servo_1.throttle = -1 # Forwards

    time.sleep(2)

    crickit.continuous_servo_1.throttle = 0   # Stop

    time.sleep(2)

If your continuous servo doesn't stop once the loop is finished you may need to tune

the min_pulse  and max_pulse  timings so that the center makes the servo stop. Or

check if the servo has a center-adjustment screw you can tweak.

Disconnecting Servos or Custom Pulses

If you want to 'disconnect' the Servo by sending it 0-length pulses, you can do that by

'reaching in' and adjusting the underlying PWM duty cycle with:

crickit.servo_1._pwm_out.duty_cycle = 0

or

crickit.servo_1._pwm_out.fraction = 0

Likewise you can set the duty cycle to a custom value with

crickit.servo_1._pwm_out.duty_cycle = number

©Adafruit Industries Page 90 of 183



where number  is between 0 (off) and 65535 (fully on). For example, setting it to

32767 will be 50% duty cycle, at the 50 Hz update rate

Or you can use fractions like crickit.servo_1._pwm_out.fraction = 0.5

import time

from adafruit_crickit import crickit

print("1 Servo release demo!")

while True:

    print("Moving servo #1")

    crickit.servo_1.angle = 0      # right

    time.sleep(10)

    print("Released")

    crickit.servo_1._pwm_out.duty_cycle = 0

    time.sleep(10)

    # and repeat!

CircuitPython Drives 

 

The Crickit with Circuit Playground

Express is shown at left.

 

All the red wires connect to the Drives 5V

terminal and the other wire connected to

individual Drive terminals.

 

Using Drives with the Feather-based

Crickit is shown at left.

 

Note: For CircuitPython, you need to use a

CircuitPython-compatible Feather board.

©Adafruit Industries Page 91 of 183

https://learn.adafruit.com//assets/54063
https://learn.adafruit.com//assets/54063
https://learn.adafruit.com//assets/60931
https://learn.adafruit.com//assets/60931


 

Crickit HAT for Raspberry Pi can also drive

four devices via the Drive ports.

Test Drive

Lets start by controlling a drive output. You'll need to plug something into the 5V and 

DRIVE1 terminal blocks. I'm just using a simple LED with resistor but anything that can

be powered by 5V will work.

Note that the drive outputs cannot have 5V output so you must connect the posi

tive pin of whatever you're driving to 5V. Don't try connecting the positive pin to

the drive, and the negative pin to GND, it wont work!

Drive outputs are PWM-able!

This example will show turning the drive output fully on and off once a second:

import time

from adafruit_crickit import crickit

print("1 Drive demo!")

crickit.drive_1.frequency = 1000

while True:

    crickit.drive_1.fraction = 1.0  # all the way on

    time.sleep(0.5)

    crickit.drive_1.fraction = 0.0  # all the way off

    time.sleep(0.5)

    crickit.drive_1.fraction = 0.5  # half on/off

    time.sleep(0.5)

    # and repeat!

We start by importing the libraries that we need to have time delays ( import time  )

and then the main crickit python library that will make it super easy to talk to the

motors and sensors on crickit ( from adafruit_crickit import crickit )

• 

• 

©Adafruit Industries Page 92 of 183

https://learn.adafruit.com//assets/62078
https://learn.adafruit.com//assets/62078


The crickit  object represents the drive outputs available for control. The drives are

available on the sub-objects named drive_1 , drive_2 , drive_3 , drive_4

Note that for the Feather Crickit, these are feather_drive_1 , feather_drive_2 , 

feather_drive_3 , and feather_drive_4 .

Set PWM Frequency

Drive outputs are all PWM outputs too, so not only can they turn fully on and off, but

you can also set it half-way on. In general, the default frequency for PWM outputs on

seesaw is 1000 Hz, so set the frequency to 1 KHz with crickit.drive_1.frequency

= 1000 . Even if you aren't planning to use the PWM output, please set the frequency!

Note that all the Drive outputs share the same timer so if you set the frequency for

one, it will be the same for all of them.

Control Drive Output

Now that we have a drive pwm object, we can simply assign the PWM duty cycle with

the fraction property!

crickit.drive_1.fraction = 0.0  turns the output completely off (no drive

to ground, no current draw).

crickit.drive_1.fraction = 1.0  turns the output completely on (fully drive

to ground)

And, not surprisingly crickit.drive_1.fraction = 0.5  sets it to 1/2 on and

1/2 off at the PWM frequency set above.

More Drivers!

OK that was fun but you want MORE drives right? You can control up to four!

import time

from adafruit_crickit import crickit

print("4 Drive demo!")

drives = (crickit.drive_1, crickit.drive_2, crickit.drive_3, crickit.drive_4)

for drive in drives:

    drive.frequency = 1000

while True:

• 

• 

• 

©Adafruit Industries Page 93 of 183



    for drive in drives:

        print("Drive #", drives.index(drive)+1)

        drive.fraction = 1.0  # all the way on

        time.sleep(0.25)

        drive.fraction = 0.0  # all the way off

        time.sleep(0.25)

        # and repeat!

This example is similar to the 1 drive example, but instead of accessing the 

crickit.drive_1  object directly, we'll make a list called drives  that contains 4

drive objects with

drives = (crickit.drive_1, crickit.drive_2, crickit.drive_3, crickit.drive_4)

Then we can access the individual using drives[0].fraction = 0.5  or iterate

through them as we do in the loop. You don't have to do it this way, but its very

compact and doesn't take a lot of code lines to create all 4 drives at once!

CircuitPython DC Motors 

 

Connections from DC motors to the Circuit

Playground Express Crickit is shown at left.

There are two Motor drivers, labeled 1 and 

2.

 

The center GND terminal is not used for

most DC Motor applications.

 

The Feather Crickit connections for the

Motor terminals is shown at left.

©Adafruit Industries Page 94 of 183

https://learn.adafruit.com//assets/54061
https://learn.adafruit.com//assets/54061
https://learn.adafruit.com//assets/60932
https://learn.adafruit.com//assets/60932


 

Motors are just as easy to use with the

Crickit HAT for Raspberry Pi as other

versions of Crickit.

You can drive two separate DC motors, so lets go ahead and get right to it!

DC motors are controlled by 4 PWM output pins, the 4 PWM pins let you control

speed and direction. And we'll use our adafruit_motor library to help us manage the

throttle (speed) and direction for us, making it very easy to control motors

Note that each DC motor is a little different, so just because you have two at the same

throttle does not mean they'll rotate at the exact same speed! Some tweaking may be

required

import time

from adafruit_crickit import crickit

print("Dual motor demo!")

# make two variables for the motors to make code shorter to type

motor_1 = crickit.dc_motor_1

motor_2 = crickit.dc_motor_2

while True:

    motor_1.throttle = 1  # full speed forward

    motor_2.throttle = -1 # full speed backward

    time.sleep(1)

    motor_1.throttle = 0.5  # half speed forward

    motor_2.throttle = -0.5 # half speed backward

    time.sleep(1)

    motor_1.throttle = 0  # stopped

    motor_2.throttle = 0  # also stopped

    time.sleep(1)

    motor_1.throttle = -0.5  # half speed backward

    motor_2.throttle = 0.5   # half speed forward

    time.sleep(1)

The two wires of the DC motor can be plugged in either way into each Crickit 

Motor port. If the motor spins the opposite way from what you want to call 

'forward', just flip the wires! 

©Adafruit Industries Page 95 of 183

https://learn.adafruit.com//assets/62079
https://learn.adafruit.com//assets/62079


    motor_1.throttle = -1  # full speed backward

    motor_2.throttle = 1   # full speed forward

    time.sleep(1)

    motor_1.throttle = 0  # stopped

    motor_2.throttle = 0  # also stopped

    time.sleep(0.5)

    

    # and repeat!

Import Libraries

We start by importing the libraries that we need to have time delays ( import time  )

and then the main crickit python library that will make it super easy to talk to the

motors and sensors on crickit ( from adafruit_crickit import crickit )

The crickit  object represents the motors and servos available for control. The

motors are available on the sub-objects named dc_motor_1  and dc_motor_2

Each of these are adafruit_motor.motor (https://adafru.it/BNE) type objects for the

curious

To make our code easier to read, we'll make new names for each motor:

# make two variables for the motors to make code shorter to type

motor_1 = crickit.dc_motor_1

motor_2 = crickit.dc_motor_2

Control Motor

Now that we have our motor objects, we can simply assign the throttle, this will set

the direction and speed. For example, to set the speed to full forward, use 

motor_1.throttle = 1  and to set to full speed backward use motor_1.throttle

= -1 . For speeds in between, use a fraction, such as 0.5  (half speed) or 0.25

(quarter speed). Setting the throttle = 0  will stop the motor.

©Adafruit Industries Page 96 of 183

https://circuitpython.readthedocs.io/projects/motor/en/latest/api.html#


CircuitPython Steppers 

 

Connecting Crickit with Circuit Playground

Express with stepper motors is shown at

left. 

 

The Crickit with Feather uses identical

connections with other Crickit boards to

stepper motors.

 

Note the Fritzing part for the blue stepper

has changed wire order but the color

connections shown are identical.

 

Likewise you can drive two stepper motors

with the Crickit HAT for Raspberry Pi. One

on the Motor ports, one on the Drive

ports. 

 

The coding for each port is a bit different

but the functionality is the same.

 

The Drive stepper must be Unipolar -

bipolar steppers are not supported on the

Drive port, only on the single Motor port.

©Adafruit Industries Page 97 of 183

https://learn.adafruit.com//assets/57244
https://learn.adafruit.com//assets/57244
https://learn.adafruit.com//assets/60933
https://learn.adafruit.com//assets/60933
https://learn.adafruit.com//assets/62081
https://learn.adafruit.com//assets/62081


Even though we don't make it really obvious, you can drive stepper motors from the

Crickit.

Stepper motors rotate all the way around but only one 'step' at a time. Usually there's

a few hundred steps per turn, making them great for precision motion. The trade off is

they're very slow compared to servos or steppers. Also, unlike servos they don't know

'where' they are in the rotation, they can only step forward and backwards.

There's two kinds of stepper motors: bipolar (4-wire) and unipolar (5 or 6-wire). We

can control both kinds but with some restrictions!

The voltage we use to power the motor is 5V only, so 5V power steppers are

best, but sometimes you can drive 12V steppers at a slower/weaker rate

You can drive one bi-polar stepper motor via the Motor port

You can drive two uni-polar stepper motors, one via the Motor port and one via

the Drive port

That means you have have two uni-polar steppers or one uni and one bi-polar.

But you cannot drive two bi-polar steppers.

Bi-Polar or Uni-Polar Motor Port

The Crickit Motor port can run a unipolar (5-wire and 6-wire) or bipolar (4-wire)

stepper. It cannot run steppers with any other # of wires!

The code is the same for unipolar or bipolar motors, the wiring is just slightly different.

Unlike DC motors, the wire order does matter. Connect one coil to the Motor pair #1.

Connect the other coil to the Motor pair #2

If you have a bipolar motor, connect one motor coil to #1 and the other coil to #2

and do not connect to the center GND block.

If you are using a unipolar motor with 5 wires, connect the common wire to the

center GND port.

If you are using a unipolar motor with 6 wires, you can connect the two 'center

coil wires' together to the center GND port

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 98 of 183



 

If you are using our "12V" bi-polar

stepper, (https://adafru.it/BxE) wire in this

order: red, yellow, (skip GND center),

green, gray

 

If you are using our 5V uni-polar

stepper (https://adafru.it/BxF), wire in this

order: orange, pink, red (ground), yellow,

blue.

Here is the CircuitPython code for stepping various ways. You can try tweaking the 

INTERSTEP_DELAY  to slow down the motor. 

CircuitPython supports 4 different waveform stepping techniques. More on each is

detailed at Wikipedia. (https://adafru.it/BxG)

SINGLE  stepping (one coil on at a time) - fast, lowest power usage, weak

strength

DOUBLE  stepping (two coils on at a time) - fast, highest power, high strength

INTERLEAVE  stepping (alternates between one and two coils on) - slow (half the

speed of single or double!), medium power, medium strength

MICROSTEPPING  - while this is supported its so slow with Crickit we're going to

just 'skip' this one!

Unless you have power limiting requirements, DOUBLE is great for most projects.

INTERLEAVE gives you smoother motion but is slower. SINGLE is simplest but

weakest turning strength.

• 

• 

• 

• 

©Adafruit Industries Page 99 of 183

https://learn.adafruit.com//assets/55245
https://learn.adafruit.com//assets/55245
https://www.adafruit.com/product/324
https://www.adafruit.com/product/324
https://learn.adafruit.com//assets/57247
https://learn.adafruit.com//assets/57247
https://www.adafruit.com/product/858
https://www.adafruit.com/product/858
https://en.wikipedia.org/wiki/Stepper_motor#Phase_current_waveforms
https://en.wikipedia.org/wiki/Stepper_motor#Phase_current_waveforms


import time

from adafruit_crickit import crickit

from adafruit_motor import stepper

print("Bi-Polar or Uni-Polar Stepper motor demo!")

# make stepper motor a variable to make code shorter to type!

stepper_motor = crickit.stepper_motor

# increase to slow down, decrease to speed up!

INTERSTEP_DELAY = 0.01

while True:

    print("Single step")

    for i in range(200):

        stepper_motor.onestep(direction=stepper.FORWARD)

        time.sleep(INTERSTEP_DELAY)

    for i in range(200):

        stepper_motor.onestep(direction=stepper.BACKWARD)

        time.sleep(INTERSTEP_DELAY)

    print("Double step")

    for i in range(200):

        stepper_motor.onestep(direction=stepper.FORWARD, style=stepper.DOUBLE)

        time.sleep(INTERSTEP_DELAY)

    for i in range(200):

        stepper_motor.onestep(direction=stepper.BACKWARD, style=stepper.DOUBLE)

        time.sleep(INTERSTEP_DELAY)

    print("Interleave step")

    for i in range(200):

        stepper_motor.onestep(direction=stepper.FORWARD, style=stepper.INTERLEAVE)

        time.sleep(INTERSTEP_DELAY)

    for i in range(200):

        stepper_motor.onestep(direction=stepper.BACKWARD, style=stepper.INTERLEAVE)

        time.sleep(INTERSTEP_DELAY)

CircuitPython stepper motor control is pretty simple - you can access the motor port

for stepper control via the crickit.stepper_motor object  (it's an adafruit_motor.s

tepper type object (https://adafru.it/BNE)).

With that object, you can call onestep()  to step once, with the direction  and

stepping style  included. The default direction is FORWARD  and the default style is S

INGLE .

Note that 'forward' and 'backward' are, like DC motors, dependent on your wiring and

coil order so you can flip around the coil wiring if you want to change what direction

'forward' and 'backward' means.

Putting time.sleep() 's between steps will let you slow down the stepper motor,

however most steppers are geared so you may not want any delays.

©Adafruit Industries Page 100 of 183

https://circuitpython.readthedocs.io/projects/motor/en/latest/api.html#adafruit-motor-stepper
https://circuitpython.readthedocs.io/projects/motor/en/latest/api.html#adafruit-motor-stepper


Uni-Polar Only Drive Port

The Drive port can also control steppers although it can only do uni-polar! Don't try

connecting a 4-wire bi-polar stepper, it won't work at all.

 

If you are using our 5V uni-polar

stepper (https://adafru.it/BxF), wire in this

order: red (5V), orange, yellow, pink, blue.

That should line up with the wires on the

plug

And here's the CircuitPython code. Note that the only difference is we're using the  cr

ickit.drive_stepper_motor  object now!

import time

from adafruit_crickit import crickit

from adafruit_motor import stepper

print("Uni-Polar Stepper motor demo!")

# make stepper motor a variable to make code shorter to type!

stepper_motor = crickit.drive_stepper_motor  # Use the drive port

# increase to slow down, decrease to speed up!

INTERSTEP_DELAY = 0.02

while True:

    print("Single step")

    for i in range(200):

        stepper_motor.onestep(direction=stepper.FORWARD)

        time.sleep(INTERSTEP_DELAY)

    for i in range(200):

        stepper_motor.onestep(direction=stepper.BACKWARD)

        time.sleep(INTERSTEP_DELAY)

    print("Double step")

    for i in range(200):

        stepper_motor.onestep(direction=stepper.FORWARD, style=stepper.DOUBLE)

        time.sleep(INTERSTEP_DELAY)

    for i in range(200):

        stepper_motor.onestep(direction=stepper.BACKWARD, style=stepper.DOUBLE)

        time.sleep(INTERSTEP_DELAY)

    print("Interleave step")

    for i in range(200):

        stepper_motor.onestep(direction=stepper.FORWARD, style=stepper.INTERLEAVE)

        time.sleep(INTERSTEP_DELAY)

    for i in range(200):

        stepper_motor.onestep(direction=stepper.BACKWARD, style=stepper.INTERLEAVE)

        time.sleep(INTERSTEP_DELAY)

©Adafruit Industries Page 101 of 183

https://learn.adafruit.com//assets/57298
https://learn.adafruit.com//assets/57298
https://www.adafruit.com/product/858
https://www.adafruit.com/product/858


CircuitPython Signals 

 

Connecting various sensors, switches, and

indicators is easy with Crickit.

The Crickit with Circuit Playground

Express is shown at the left.

Note that external pull up (or pull down)

resistors are needed on the Crickit Signals

block as Seesaw does not have the

capability to set internal pull up or pull

down resistors like on direct

microcontrollers.

 

Connections to a Crickit with Feather

board are identical.

Note that if you plan to use CircuitPython,

the Feather board you choose should be

one that is supported by CircuitPython

(there are a few Feathers that cannot be

programmed with CircuitPython).

 

The Signals block on the Crickit HAT for

Raspberry Pi gives you 8 bidirectional

general purpose input/output (GPIO)

(analog/digital) ports.

Since the Crickit HAT takes pins away from

the Raspberry pi to control everything, the

Signals block helps to provide some pins

back and they all can accept analog input

too (unlike RasPi pins).

You may want to add buttons, LEDs, switches or simple sensors to your robot project.

With Crickit, you get 8 x 'general purpose in/out' (GPIO) pins called signals. Each

signal can be a digital input (button/switch), digital output (LED, for example), or analo

g input.

©Adafruit Industries Page 102 of 183

https://learn.adafruit.com//assets/75510
https://learn.adafruit.com//assets/75510
https://learn.adafruit.com//assets/75512
https://learn.adafruit.com//assets/75512
https://learn.adafruit.com//assets/75513
https://learn.adafruit.com//assets/75513


This lets you add a ton of external components easily, and its all handled by seesaw.

Perfect when you have a Feather without analog inputs (like the ESP8266) or just

need a ton of extra pins.

The signal pins are on a 3x8 female header, so you can poke wires directly in!

 

Here's an example wiring that goes with

the code below.

We have two switch buttons, connected to

signals #1 and #2, the other side of the

buttons connect to ground

There's also two LEDs, connected to the

signals #3 and #4 and the negative wires

connected to ground. (All the 3.3V and

Ground pins are connected together so

you don't have to use the ones right next

to the signal pin!)

import time

from adafruit_crickit import crickit

# For signal control, we'll chat directly with seesaw, use 'ss' to shorted typing!

ss = crickit.seesaw

# Two buttons are pullups, connect to ground to activate

BUTTON_1 = crickit.SIGNAL1  # button #1 connected to signal port 1 &amp; ground

BUTTON_2 = crickit.SIGNAL2  # button #2 connected to signal port 2 &amp; ground

# Two LEDs are outputs, on by default

LED_1 = crickit.SIGNAL3    # LED #1 connected to signal port 3 &amp; ground

LED_2 = crickit.SIGNAL4    # LED #2 connected to signal port 4 &amp; ground

ss.pin_mode(LED_1, ss.OUTPUT)

ss.pin_mode(LED_2, ss.OUTPUT)

ss.pin_mode(BUTTON_1, ss.INPUT_PULLUP)

ss.pin_mode(BUTTON_2, ss.INPUT_PULLUP)

ss.digital_write(LED_1, True)

ss.digital_write(LED_2, True)

while True:

    if not ss.digital_read(BUTTON_1):

        print("Button 1 pressed")

        ss.digital_write(LED_1, True)

    else:

        ss.digital_write(LED_1, False)

    if not ss.digital_read(BUTTON_2):

        print("Button 2 pressed")

        ss.digital_write(LED_2, True)

    else:

        ss.digital_write(LED_2, False)

©Adafruit Industries Page 103 of 183

https://learn.adafruit.com//assets/75509
https://learn.adafruit.com//assets/75509


Each of the 8 signal pin numbers is available under the crickit  object as SIGNAL1

through SIGNAL8 . Note these are not DigitalInOut or Pin objects! We need to use the

crickit.seesaw  object to set the mode, direction, and readings

To simplify our code we shorted the crickit.seesaw  object to just ss

# For signal control, we'll chat directly with seesaw, use 'ss' to shorted typing!

ss = crickit.seesaw

Digital Pin Modes

You can set the mode of each signal pin with ss.pin_mode(signal, mode)  where 

signal  is the crickit.SIGNAL#  from above and mode can be ss.OUTPUT , ss.IN

PUT  or ss.INPUT_PULLUP .

ss.pin_mode(BUTTON_1, ss.INPUT_PULLUP)

ss.pin_mode(BUTTON_2, ss.INPUT_PullUP)

...

ss.pin_mode(LED_1, ss.OUTPUT)

ss.pin_mode(LED_2, ss.OUTPUT)

Digital Read

Then, you can read the values True or False with ss.digital_read(signal)

Don't forget you have to set it to be an INPUT first! And if you don't have an external

pull up resistor, you'll need to set it in the code.

ss.digital_read(BUTTON_1)

Digital Write

Or, you can set the signal you want to a high value with ss.digital_write(signal,

True) , or set to low value with ss.digital_write(signal, False) . Don't forget

you have to set it to be an OUTPUT first!

# LED On

ss.digital_write(LED_2, True)

# LED Off

ss.digital_write(LED_2, False)

©Adafruit Industries Page 104 of 183



Analog Reads

 

You can also read analog values like from

a potentiometer or sensor.

 

Let's do a demonstration where the center

tap of a potentiometer is hooked up to 

Signal #3 - don't forget to also connect

one side of the potentiometer to 3.3V and

the other side to ground.

And here is the example code. You can see we read the signal with ss.analog_read

(signal)  which returns a value from 0 to 1023.

import time

from adafruit_crickit import crickit

# For signal control, we'll chat directly with seesaw, use 'ss' to shorted typing!

ss = crickit.seesaw

# potentiometer connected to signal #3

pot = crickit.SIGNAL3

while True:

    print((ss.analog_read(pot),))

    time.sleep(0.25)

By printing the value in a python tuple (ss.analog_read(pot),)  we can use the

Mu plotter to see the values immediately!

 

©Adafruit Industries Page 105 of 183

https://learn.adafruit.com//assets/57257
https://learn.adafruit.com//assets/57257


CircuitPython Touch 

 

There's four capacitive touch pads you can

use to detect human touch. They have big

pads you can use to attach alligator/croc

clips

 

Whether you use a Circuit Playground

Crickit or Feather Crickit, the touch pads

are available.

 

The four capacitive touch pads on the

Crickit HAT for Raspberry pi are

conveniently on the edge and vave nice

holes for clipping alligator clips onto.

You can read the value of the captouch pads from crickit.touch_#.value  This will

return True  (if touched) or False  (if not). This is the simplest/easiest way to detect

touch, but it has a catch!

©Adafruit Industries Page 106 of 183

https://learn.adafruit.com//assets/57270
https://learn.adafruit.com//assets/57270
https://learn.adafruit.com//assets/60935
https://learn.adafruit.com//assets/60935
https://learn.adafruit.com//assets/62089
https://learn.adafruit.com//assets/62089


We determine if the touch is active by seeing the difference between the current 'raw'

reading value and the first value. That means you do need to read the crickit touch

pads without touching them first.

Try loading this code and touching the four pads while looking at the REPL

import time

from adafruit_crickit import crickit

# Capacitive touch tests

while True:

    if crickit.touch_1.value:

        print("Touched Cap Touch Pad 1")

    if crickit.touch_2.value:

        print("Touched Cap Touch Pad 2")

    if crickit.touch_3.value:

        print("Touched Cap Touch Pad 3")

    if crickit.touch_4.value:

        print("Touched Cap Touch Pad 4")

If you want to get more specific, you can read the ' raw_value ' value which is a

number between 0 and 1023. Because there's always some capacitance its reading

you'll see a starting value of about 250.

You can then test against a threshold, or use it to measure how hard someone is

pressing against something (a fingertip vs a palm will give different readings)

import time

from adafruit_crickit import crickit

# Capacitive touch graphing test

touches = (crickit.touch_1, crickit.touch_2, crickit.touch_3, crickit.touch_4)

# Open up the serial Plotter in Mu to see the values graphed!

while True:

    touch_raw_values = (crickit.touch_1.raw_value, crickit.touch_2.raw_value,

                        crickit.touch_3.raw_value, crickit.touch_4.raw_value)

    print(touch_raw_values)

    time.sleep(0.1)

©Adafruit Industries Page 107 of 183



CircuitPython Audio 

 

Amplified audio is available via the 

Speaker terminals.

 

At left is the Circuit Playground Express

and Crickit version.

 

And this is the Feather and Crickit version.

 

Be sure you order the correct Crickit board

for the type of microcontroller you plan to

use in your project. While the Crickits are

nearly identical in capability, they are not

the same in making connections to either

Circuit Playground Express or Feather.

 

©Adafruit Industries Page 108 of 183

https://learn.adafruit.com//assets/54071
https://learn.adafruit.com//assets/54071
https://learn.adafruit.com//assets/60936
https://learn.adafruit.com//assets/60936


 

The Speaker block on the Crickit HAT for

Raspberry Pi is easily to use, on the edge

of the board. The onboard amplifier is very

handy to provide audio for various

projects.

Audio animatronics! By adding a voice or sound effects to your robot you can make a

cool interactive project. We take advantage of CircuitPython's ability to play WAV files

over the true-analog output pin A0.

This is one of the few outputs that does not go through the seesaw chip. Instead, the

audio is played directly from the CircuitPython board and the Crickit only amplifies it!

Audio File Formats

CircuitPython supports Mono (not stereo) 22 KHz sample rate (or less) and 16-bit WAV

format. The reason for mono is that there's only one output, 22 KHz or less because

the Circuit Playground can't handle more data than that (and also it wont sound much

better) and the DAC output is 10-bit so anything over 16-bit will just take up room

without better quality

CircuitPython does not support OGG or MP3. Just WAV!

Since the WAV file must fit on the CircuitPython file system, it must be under 2 MB

We have a detailed guide on how to generate WAV files here (https://adafru.it/s8f)

Amplifier Details

The onboard amplifier is a mono "Class D" audio amp with BTL (Bridge Tied Load)

output.

That means you cannot plug the speaker output into another amplifier, it must

connect directly to a speaker!

©Adafruit Industries Page 109 of 183

https://learn.adafruit.com//assets/62091
https://learn.adafruit.com//assets/62091
file:///home/adafruit-wave-shield-audio-shield-for-arduino/convert-files


You can use just about any 4 to 8Ω speaker (6 Ω is OK too, just not as common). The

amplifier can drive up to 3 Watts into 4Ω and 1 Watt into 8Ω. That means its ok to

drive a 5 Watt speaker, it just wont be as loud as it could be with a bigger amp (but

you wont damage the amp). You can also drive speakers that are smaller, like an 8Ω

0.5 W but make sure you don't turn the audio volume potentiometer up, as it could

damage the speaker by overpowering it.

Basic Audio Playback

import audioio

import audiocore

import board

    

wavfile = "howto.wav"

f = open(wavfile, "rb")

wav = audiocore.WaveFile(f)

a = audioio.AudioOut(board.A0)

a.play(wav)

# You can now do all sorts of stuff here while the audio plays

# such as move servos, motors, read sensors...

# Or wait for the audio to finish playing:

while a.playing:

    pass

    

f.close()

Here is the audio file we're using for this example

howto.wav

https://adafru.it/Be4

You must drag/copy this onto your CIRCUITPY disk drive, it's a big file so it will take a

minute to copy over

Import Libraries

We start by importing the libraries that we need to make audio output  import

audioio  and import audiocore  Then we import board , our standard hardware

library.

If you are using a Circuit Playground Bluefruit, audioio is not available. Use 

audiopwmio instead. 

©Adafruit Industries Page 110 of 183

https://cdn-learn.adafruit.com/assets/assets/000/054/075/original/howto.wav?1526668791


Create wave file and audio output

Next we set the name of the file we want to open, which is a wave file wavfile =

"howto.wav"  and then open the file as a readable binary and store the file object in f

which is what we use to actually read audio from: f = open(wavfile, "rb")

Now we will ask the audio playback system to load the wave data from the file wav =

audiocore.WaveFile(f)  and finally request that the audio is played through the A0

analog output pin a = audioio.AudioOut(board.A0)

The audio file is now locked-and-loaded, and can be played at any time with a.play(

wav)

Audio playback occurs in the background, using "DMA" (direct memory access) so you

can control servos, motors, read sensors, whatever you like, while the DMA is

happening. Since it happens asynchronously, you may want to figure out when its

done playing. You can do that by checking the value of a.playing  if it's True  then

its still processing audio, it will return False  when complete.

Interactive Audio

OK just playing an audio file is one thing, but maybe you want to have some

interactivity, such as waiting for the person to touch something or press a button?

Here's an example of using a time-delay and then pausing until something occurs:

from busio import I2C

from adafruit_seesaw.seesaw import Seesaw

import audioio

import audiocore

import board

import time

# Create seesaw object

i2c = I2C(board.SCL, board.SDA)

seesaw = Seesaw(i2c)

# what counts as a 'touch'

CAPTOUCH_THRESH = 500

wavfile = "howto.wav"

f = open(wavfile, "rb")

wav = audiocore.WaveFile(f)

a = audioio.AudioOut(board.A0)

a.play(wav)

t = time.monotonic()  # this is the time when we started

# wait until we're at timecode 5.5 seconds into the audio

while time.monotonic() - t &lt; 5.5:

©Adafruit Industries Page 111 of 183



    pass

a.pause()   # pause the audio

print("Waiting for Capacitive touch!")

while seesaw.touch_read(0) &lt; CAPTOUCH_THRESH:

    pass

a.resume()   # resume the audio

# You can now do all sorts of stuff here while the audio plays

# such as move servos, motors, read sensors...

# Or wait for the audio to finish playing:

while a.playing:

    pass

print("Done!")

You may want to have the audio track match to motion or events in your robot. To do

that you can do some tricks with time.monotonic() . That's our way of know true

time passage, it returns a floating point (fractional) value in seconds. Note its hard to

get the exact precise second so use >  and <  rather than checking for =  equality

because minute variations will make it hard to get the time delta exactly when it

occurs.

CircuitPython NeoPixels 

 

You can connect any type of NeoPixels to

the NeoPixel port on the Crickit for Circuit

Playground Express. Be sure you connect

the Power and Ground connections

appropriately.

 

The center arrow terminal on Crickit

NeoPixel block is connected to Din on the

first NeoPixel or the beginning of a strip of

NeoPixels.

©Adafruit Industries Page 112 of 183

https://learn.adafruit.com//assets/62095
https://learn.adafruit.com//assets/62095


 

Likewise the Crickit Feather WIng has the

same NeoPixel block.

 

The board is just rotated a bit from the

above picture, same location).

 

The Crickit HAT for Raspberry Pi has the

NeoPixel block along the edge for easy

wiring.

Using NeoPixels in your Crickit project is easy and fun, providing a dedicated port on

the Crickit to directly wire NeoPixels easily.

The sample code for using NeoPixels on the Crickit vary slightly depending on which

version of Crickit you have. Look for the appropriate section on this page for your

combination of Crickit and microcontroller.

NeoPixels with Circuit Playground Express + Crickit

The NeoPixel terminal block is controlled by the Circuit Playground Express pad A1.

The pad A1 definition is obtained by  import board . Then the NeoPixel routine is

from  import neopixel .

If you are looking to use the NeoPixels on the Circuit Playground Express board 

itself, Adafruit has several tutorials that program them with CircuitPython. See 

Make It Glow with Crickit for details. 

©Adafruit Industries Page 113 of 183

https://learn.adafruit.com//assets/62096
https://learn.adafruit.com//assets/62096
https://learn.adafruit.com//assets/62099
https://learn.adafruit.com//assets/62099


Various animations are provided by  def ined

functions  wheel ,  color_chase  and  rainbow_cycle . Various solid colors are then

defined, you are free to use whichever colors you wish.

You can define a new color variable as a Python tuple with three values for red,

green, blue, for example  WHITE = (255, 255, 255) .

# SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

# SPDX-License-Identifier: MIT

# Drive NeoPixels on the NeoPixels Block on Crickit for

#  Circuit Playground Express

import time

from rainbowio import colorwheel

import neopixel

import board

num_pixels = 30  # Number of pixels driven from Crickit NeoPixel terminal

# The following line sets up a NeoPixel strip on Crickit CPX pin A1

pixels = neopixel.NeoPixel(board.A1, num_pixels, brightness=0.3,

                           auto_write=False)

def color_chase(color, wait):

    for i in range(num_pixels):

        pixels[i] = color

        time.sleep(wait)

        pixels.show()

    time.sleep(0.5)

def rainbow_cycle(wait):

    for j in range(255):

        for i in range(num_pixels):

            rc_index = (i * 256 // num_pixels) + j

            pixels[i] = colorwheel(rc_index & 255)

        pixels.show()

        time.sleep(wait)

RED = (255, 0, 0)

YELLOW = (255, 150, 0)

GREEN = (0, 255, 0)

CYAN = (0, 255, 255)

BLUE = (0, 0, 255)

PURPLE = (180, 0, 255)

while True:

    print("fill")

    pixels.fill(RED)

    pixels.show()

    # Increase or decrease to change the speed of the solid color change.

    time.sleep(1)

    pixels.fill(GREEN)

    pixels.show()

    time.sleep(1)

    pixels.fill(BLUE)

    pixels.show()

    time.sleep(1)

    print("chase")

    color_chase(RED, 0.1)  # Increase the number to slow down the color chase

    color_chase(YELLOW, 0.1)

©Adafruit Industries Page 114 of 183



    color_chase(GREEN, 0.1)

    color_chase(CYAN, 0.1)

    color_chase(BLUE, 0.1)

    color_chase(PURPLE, 0.1)

    print("rainbow")

    rainbow_cycle(0)  # Increase the number to slow down the rainbow

NeoPixels and the Crickit FeatherWing or Crickit Hat

The NeoPixel block signal wire is connected to the Crickit Seesaw control chip pin

#20. The following code sets up an external 30 NeoPixel strip connected to the

Crickit FeatherWing or HAT

On Raspberry Pi, you'll also need to add the library: from your command line run the

following command:

sudo pip3 install rpi_ws281x adafruit-circuitpython-neopixel

# SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

# SPDX-License-Identifier: MIT

# Drive NeoPixels on the NeoPixels Block on Crickit FeatherWing

import time

from rainbowio import colorwheel

from adafruit_crickit import crickit

from adafruit_seesaw.neopixel import NeoPixel

num_pixels = 30  # Number of pixels driven from Crickit NeoPixel terminal

# The following line sets up a NeoPixel strip on Seesaw pin 20 for Feather

pixels = NeoPixel(crickit.seesaw, 20, num_pixels)

def color_chase(color, wait):

    for i in range(num_pixels):

        pixels[i] = color

        time.sleep(wait)

        pixels.show()

    time.sleep(0.5)

def rainbow_cycle(wait):

    for j in range(255):

        for i in range(num_pixels):

            rc_index = (i * 256 // num_pixels) + j

            pixels[i] = colorwheel(rc_index & 255)

        pixels.show()

        time.sleep(wait)

RED = (255, 0, 0)

YELLOW = (255, 150, 0)

GREEN = (0, 255, 0)

CYAN = (0, 255, 255)

BLUE = (0, 0, 255)

PURPLE = (180, 0, 255)

while True:

    print("fill")

    pixels.fill(RED)

©Adafruit Industries Page 115 of 183



    pixels.show()

    # Increase or decrease to change the speed of the solid color change.

    time.sleep(1)

    pixels.fill(GREEN)

    pixels.show()

    time.sleep(1)

    pixels.fill(BLUE)

    pixels.show()

    time.sleep(1)

    print("chase")

    color_chase(RED, 0.1)  # Increase the number to slow down the color chase

    color_chase(YELLOW, 0.1)

    color_chase(GREEN, 0.1)

    color_chase(CYAN, 0.1)

    color_chase(BLUE, 0.1)

    color_chase(PURPLE, 0.1)

    print("rainbow")

    rainbow_cycle(0)  # Increase the number to slow down the rainbow

Crickit for micro:bit

Currently the micro:bit is not supported in CircuitPython. The micro:bit is

programmable in MicroPython but there is no Crickit drive support for MicroPython at

present.

For More Information

See the tutorial Make It Glow with Crickit (https://adafru.it/Cxx).

Python Docs 

Python Docs (https://adafru.it/CAJ) 

CircuitPython Examples 

Need some...err...inspiration? Here's some example projects with CircuitPython code

and wiring diagrams. They're not full-featured guides but they provide a good basis

for seeing how to use Crickit!

Most of the examples use the Circuit Playground Express version of Crickit as that

was the first Crickit released.

For CircuitPython based projects, the Feather Crickit should work fine as long as the

project does not use Circuit Playground Express based hardware. There are a couple

of differences noted in this guide for things like audio use.

©Adafruit Industries Page 116 of 183

https://learn.adafruit.com/make-it-glow-with-crickit?view=all
https://circuitpython.readthedocs.io/projects/crickit/en/latest/


Also you must choose a Feather that is compatible with CircuitPython.

For substituting one Crickit/microcontroller with another, we consider any changes

should be for intermediate users - if you're a beginner, try to use the exact hardware

specified for the best experience.

Bubble Bot 

Its summer time and that means tank tops, ice cream and bubbles! This robot friend

makes a bountiful burst of bubbles all on its own.

Parts List

Circuit Playground Express 

Circuit Playground Express is the next

step towards a perfect introduction to

electronics and programming. We've

taken the original Circuit Playground

Classic and...

https://www.adafruit.com/product/3333 

Adafruit CRICKIT for Circuit Playground

Express 

Sometimes we wonder if robotics

engineers ever watch movies. If they did,

they'd know that making robots into

servants always ends up in a robot

rebellion. Why even go down that...

https://www.adafruit.com/product/3093 

The micro:bit and Crickit combination do not support CircuitPython. Adafruit 

recommends using MakeCode for programming. 

©Adafruit Industries Page 117 of 183

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093


Standard servo - TowerPro SG-5010 

This high-torque standard servo can

rotate approximately 180 degrees (90 in

each direction). You can use any servo

code, hardware, or library to control these

servos. Good for...

https://www.adafruit.com/product/155 

DC Toy / Hobby Motor - 130 Size 

These are standard '130 size' DC hobby

motors. They come with a wider operating

range than most toy motors: from 4.5 to

9VDC instead of 1.5-4.5V. This range

makes them perfect...

https://www.adafruit.com/product/711 

Wiring Diagram

Code

This simple robot doesn't do a lot but it does it very well!

 

©Adafruit Industries Page 118 of 183

https://www.adafruit.com/product/155
https://www.adafruit.com/product/155
https://www.adafruit.com/product/711
https://www.adafruit.com/product/711


We have one DC motor with a fan attachment, and one servo motor where we

connect the bubble wand. Every few seconds, the wand goes down into the bubble

mix, then back up, the fan turns on for 3 seconds, then turns off and the process

repeats!

# SPDX-FileCopyrightText: 2018 Limor Fried for Adafruit Industries

#

# SPDX-License-Identifier: MIT

# CircuitPython 3.0 CRICKIT demo

import time

import board

from adafruit_motor import servo, motor

from adafruit_seesaw.pwmout import PWMOut

from adafruit_seesaw.seesaw import Seesaw

from busio import I2C

i2c = I2C(board.SCL, board.SDA)

ss = Seesaw(i2c)

print("Bubble machine!")

SERVOS = True

DCMOTORS = True

# Create 4 Servos

servos = []

if SERVOS:

    for ss_pin in (17, 16, 15, 14):

        pwm = PWMOut(ss, ss_pin)

        pwm.frequency = 50

        _servo = servo.Servo(pwm)

        _servo.angle = 90  # starting angle, middle

        servos.append(_servo)

# Create 2 DC motors

motors = []

if DCMOTORS:

    for ss_pin in ((18, 19), (22, 23)):

        pwm0 = PWMOut(ss, ss_pin[0])

        pwm1 = PWMOut(ss, ss_pin[1])

        _motor = motor.DCMotor(pwm0, pwm1)

        motors.append(_motor)

while True:

    print("servo down")

    servos[0].angle = 180

    time.sleep(1)

    print("fan on")

    motors[0].throttle = 1

    time.sleep(3)

    print("fan off")

    time.sleep(1)

    motors[0].throttle = 0

    print("servo up")

    servos[0].angle = 0

    time.sleep(1)

©Adafruit Industries Page 119 of 183



Feynman Simulator 

If you are a fan of physics wunderkind Richard Feynman and you like bongo drums,

this Feynman simulator will satisfy your every desire. Between wise quips, this Feyn-

bot will dazzle you with its drumming expertise (https://adafru.it/BxR).

Parts List

Circuit Playground Express 

Circuit Playground Express is the next

step towards a perfect introduction to

electronics and programming. We've

taken the original Circuit Playground

Classic and...

https://www.adafruit.com/product/3333 

Adafruit CRICKIT for Circuit Playground

Express 

Sometimes we wonder if robotics

engineers ever watch movies. If they did,

they'd know that making robots into

servants always ends up in a robot

rebellion. Why even go down that...

https://www.adafruit.com/product/3093 

Mini Push-Pull Solenoid - 5V 

Solenoids are basically electromagnets:

they are made of a coil of copper wire

with an armature (a slug of metal) in the

middle. When the coil is energized, the

slug is pulled into the...

https://www.adafruit.com/product/2776 

©Adafruit Industries Page 120 of 183

https://en.wikipedia.org/wiki/Richard_Feynman
https://en.wikipedia.org/wiki/Richard_Feynman
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/2776
https://www.adafruit.com/product/2776


Micro servo 

Tiny little servo can rotate approximately

180 degrees (90 in each direction) and

works just like the standard kinds you're

used to but smaller. You can use any

servo...

https://www.adafruit.com/product/169 

Mono Enclosed Speaker - 3W 4 Ohm 

Listen up! This 2.8" x 1.2"

speaker is a great addition to any audio

project where you need 4 ohm

impedance and 3W or less of power. We

particularly like...

https://www.adafruit.com/product/3351 

Wiring Diagram

Solenoids don't have 'direction' - any current will make them push. So even though

we wired the black wire to 5V and the red wires to the #1 and #2 drive ports, they'll

work just fine.

The microservo is taped to a wooden stick that moves the paper cut-out mouth up

and down, for a Monty-Python-style puppet (https://adafru.it/BxS).

©Adafruit Industries Page 121 of 183

https://www.adafruit.com/product/169
https://www.adafruit.com/product/169
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/3351
https://www.youtube.com/watch?v=D1BKtrG7qxQ


Code

Our code plays through a few wave file quips and quotes we found online, with some

interstitial bongo drumming. Once all the audio has been played, it bongos for a long

time, then repeats!

# SPDX-FileCopyrightText: 2018 Limor Fried for Adafruit Industries

#

# SPDX-License-Identifier: MIT

# CircuitPython 3.0 CRICKIT demo

import gc

import time

import audioio

import audiocore

import board

from adafruit_motor import servo

from adafruit_seesaw.pwmout import PWMOut

from adafruit_seesaw.seesaw import Seesaw

from busio import I2C

i2c = I2C(board.SCL, board.SDA)

ss = Seesaw(i2c)

print("Feynbot demo!")

# 1 Servo

pwm = PWMOut(ss, 17)

pwm.frequency = 50

myservo = servo.Servo(pwm)

myservo.angle = 180  # starting angle, highest

# 2 Drivers

drives = []

for ss_pin in (13, 12):

    _pwm = PWMOut(ss, ss_pin)

    _pwm.frequency = 1000

    drives.append(_pwm)

# Audio files

 

©Adafruit Industries Page 122 of 183



wavfiles = ["01.wav", "02.wav", "03.wav", "04.wav", "05.wav"]

a = audioio.AudioOut(board.A0)

# Start playing the file (in the background)

def play_file(wavfile):

    f = open(wavfile, "rb")

    wav = audiocore.WaveFile(f)

    a.play(wav)

# Tap the solenoids back and forth

def bongo(t):

    for _ in range(t):

        drives[0].duty_cycle = 0xFFFF

        time.sleep(0.1)

        drives[0].duty_cycle = 0

        time.sleep(0.1)

        drives[1].duty_cycle = 0xFFFF

        time.sleep(0.1)

        drives[1].duty_cycle = 0

        time.sleep(0.1)

# Move mouth back and forth

def talk(t):

    for _ in range(t):

        myservo.angle = 150

        time.sleep(0.1)

        myservo.angle = 180

        time.sleep(0.1)

filenum = 0  # counter to play all files

while True:

    gc.collect()

    print(gc.mem_free())

    # time to play the bongos!

    bongo(5)

    time.sleep(1)

    # OK say something insightful

    play_file(wavfiles[filenum])

    # and move the mouth while it does

    while a.playing:

        talk(1)

    # Done being insightful, take a break

    time.sleep(1)

    # If we went thru all the files, JAM OUT!

    filenum += 1

    if filenum >= len(wavfiles):

        bongo(20)

        filenum = 0

Slime Night 

Ladyada was unable to get to sleep. Feeling restless she decided to visit her

workshop and make some slime to help soothe her soul. Then her companion

showed up to lend a hand and have fun together!

©Adafruit Industries Page 123 of 183



How to Make Slime

1 Bottle Elmers Glue - we like the glitter glue but you can use plain white glue

and add food coloring!

1/2 Tablespoon Baking Soda - not baking powder! You probably have some in

your freezer, fridge, or baking cabinet

1 Tablespoon Contact Lens Solution - make sure to get the stuff with Boric Acid! 

Put glue in a glass container, add soda and solution, mix & enjoy!

The quantities are flexible and you don't have to be exact. Add a little more or less to

change gooeyness.

Parts Used

Adafruit CRICKIT for Circuit Playground

Express 

Sometimes we wonder if robotics

engineers ever watch movies. If they did,

they'd know that making robots into

servants always ends up in a robot

rebellion. Why even go down that...

https://www.adafruit.com/product/3093 

Circuit Playground Express 

Circuit Playground Express is the next

step towards a perfect introduction to

electronics and programming. We've

taken the original Circuit Playground

Classic and...

https://www.adafruit.com/product/3333 

• 

• 

• 

©Adafruit Industries Page 124 of 183

https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333


DC Gearbox Motor - "TT Motor" - 200RPM

- 3 to 6VDC 

Perhaps you've been assembling a new

robot friend, adding a computer for a

brain and other fun personality touches.

Now the time has come to let it leave the

nest and fly on...

https://www.adafruit.com/product/3777 

Foot Pedal Potentiometer - Sewing

Machine Speed Controller 

We've had a foot pedal switch in the store

for a while but some people have

contacted us asking if there was a way to

retrofit it to perform variable speed

control, like a...

https://www.adafruit.com/product/3739 

3.5mm (1/8") Stereo Audio Jack Terminal

Block 

One truth about working with audio is you

always need the cable or adapter you

don't have in your toolbox. That's why we

love these terminal-block audio

connectors so...

https://www.adafruit.com/product/2791 

Mono Enclosed Speaker - 3W 4 Ohm 

Listen up! This 2.8" x 1.2"

speaker is a great addition to any audio

project where you need 4 ohm

impedance and 3W or less of power. We

particularly like...

https://www.adafruit.com/product/3351 

©Adafruit Industries Page 125 of 183

https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3739
https://www.adafruit.com/product/3739
https://www.adafruit.com/product/3739
https://www.adafruit.com/product/2791
https://www.adafruit.com/product/2791
https://www.adafruit.com/product/2791
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/3351


Adafruit NeoPixel LED Dots Strand - 20

LEDs at 2" Pitch 

Attaching NeoPixel strips to your costume

can be a struggle as the flexible PCBs can

crack when bent too much. So how to add

little dots of color? Use these stranded

NeoPixel dots!...

https://www.adafruit.com/product/3630 

Wiring Diagram

CircuitPython Code

This project has a foot pedal potentiometer that controls the speed of the TT motor

that spins the platter around. Since foot pedals are rheostats (variable resistors) you

need another resistor to finish the divider. We use a plain 10K, any value from about

4.7K to 47K will do fine.

When not pressed, the analog reading value is about 700. When pressed, the reading

goes down to about 50. You may need to calibrate these numbers for your foot pedal!

We map the analog press values to motor speed, our max speed we want is 0.5

throttle (1.0 was waaay to fast) using our simple mapper helper. If its our first time

pressing the pedal, we play the audio file 3 seconds later, to give some ambience.

You can also press the A button to turn on/off some pretty NeoPixels.

 

©Adafruit Industries Page 126 of 183

https://www.adafruit.com/product/3630
https://www.adafruit.com/product/3630
https://www.adafruit.com/product/3630


# SPDX-FileCopyrightText: 2018 Limor Fried for Adafruit Industries

#

# SPDX-License-Identifier: MIT

import time

from digitalio import DigitalInOut, Direction, Pull

from adafruit_seesaw.seesaw import Seesaw

from adafruit_seesaw.analoginput import AnalogInput

from adafruit_seesaw.pwmout import PWMOut

from adafruit_motor import motor

from busio import I2C

import neopixel

import audioio

import audiocore

import board

# Create seesaw object

i2c = I2C(board.SCL, board.SDA)

seesaw = Seesaw(i2c)

# built in CPX button A

button = DigitalInOut(board.BUTTON_A)

button.direction = Direction.INPUT

button.pull = Pull.DOWN

# NeoPixels

pixels = neopixel.NeoPixel(board.A1, 10, brightness=0)

pixels.fill((0,0,250))

# Analog reading from Signal #1 (ss. #2)

foot_pedal = AnalogInput(seesaw, 2)

# Create one motor on seesaw PWM pins 22 & 23

motor_a = motor.DCMotor(PWMOut(seesaw, 22), PWMOut(seesaw, 23))

motor_a.throttle = 0

def map_range(x, in_min, in_max, out_min, out_max):

    # Maps a number from one range to another.

    mapped = (x-in_min) * (out_max - out_min) / (in_max-in_min) + out_min

    if out_min <= out_max:

        return max(min(mapped, out_max), out_min)

    return min(max(mapped, out_max), out_min)

# Get the audio file ready

wavfile = "unchained.wav"

f = open(wavfile, "rb")

wav = audiocore.WaveFile(f)

a = audioio.AudioOut(board.A0)

time_to_play = 0  # when to start playing

played = False  # have we played audio already? only play once!

while True:

    # Foot pedal ranges from about 700 (unpressed) to 50 (pressed)

    # make that change the speed of the motor from 0 (stopped) to 0.5 (half)

    press = foot_pedal.value

    speed = map_range(press, 700, 50, 0, 0.5)

    print("%d -> %0.3f" % (press, speed))

    motor_a.throttle = speed

    if not time_to_play and speed > 0.1:

        print("Start audio in 3 seconds")

        time_to_play = time.monotonic() + 3

    elif time_to_play and time.monotonic() > time_to_play and not played:

        print("Playing audio")

        a.play(wav)

        played = True

    # turn on/off blue LEDs

©Adafruit Industries Page 127 of 183



    if button.value:

        if pixels.brightness < 0.1:

            pixels.brightness = 1

        else:

            pixels.brightness = 0

        time.sleep(0.5)

    # loop delay

    time.sleep(0.1)

Flying Trapeze 

Feel the excitement, the thrill, the rushing air beneath your wings - without having to

leave home or run any risk of injury or sweating!

This Flying Trapeze bot uses a servo claw to grip onto a willing gymnast, and release

it into the air when the detected acceleration has reached a sufficient peak!

Parts List

The servo claw we used had a built in metal gear servo that could draw significant

current when actuated! We found a 4xAA battery pack with good NiMH batteries

would last a while but 3xNiMH couldn't power it sufficiently

Adafruit CRICKIT for Circuit Playground

Express 

Sometimes we wonder if robotics

engineers ever watch movies. If they did,

they'd know that making robots into

servants always ends up in a robot

rebellion. Why even go down that...

https://www.adafruit.com/product/3093 

©Adafruit Industries Page 128 of 183

https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093


Circuit Playground Express 

Circuit Playground Express is the next

step towards a perfect introduction to

electronics and programming. We've

taken the original Circuit Playground

Classic and...

https://www.adafruit.com/product/3333 

4 x AA Battery Holder with On/Off Switch 

Make a nice portable power pack with this

4 x AA battery holder. It fits any alkaline or

rechargeable AA batteries in series.

There's a snap on cover and an on/off

switch which can...

https://www.adafruit.com/product/830 

Male DC Power adapter - 2.1mm plug to

screw terminal block 

If you need to connect a battery pack or

wired power supply to a board that has a

DC jack - this adapter will come in very

handy! There is a 2.1mm DC plug on one

end, and a screw...

https://www.adafruit.com/product/369 

©Adafruit Industries Page 129 of 183

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/830
https://www.adafruit.com/product/830
https://www.adafruit.com/product/369
https://www.adafruit.com/product/369
https://www.adafruit.com/product/369


Wiring

Boot.py

Since we want to have the ability to data log the accelerometer, we need to put the

CPX into 'filesystem write mode' - this boot.py will let you use the switch on the CPX

to select whether you want to log data or go into trapeze-release mode

# SPDX-FileCopyrightText: 2017 Limor Fried for Adafruit Industries

#

# SPDX-License-Identifier: MIT

# Save as boot.py to turn on/off datalogging capability

import digitalio

import board

import storage

switch = digitalio.DigitalInOut(board.D7)  # For Circuit Playground Express

switch.direction = digitalio.Direction.INPUT

switch.pull = digitalio.Pull.UP

# If the switch pin is connected to ground CircuitPython can write to the drive

storage.remount("/", switch.value)

CircuitPython Code

Our Python code is dual use. You can use the slide switch to select whether you want

to log the accelerometer data to the onboard storage. If you do, its easy to plot it and

see the magnitude of the forces on your trapeze artist!

 

©Adafruit Industries Page 130 of 183



We mostly used data log mode to calibrate how 'hard' we required the person to push

the trapeze to make the servo release the gymnast-stand-in.

We also have two buttons on the CPX we use for different tasks. In logging mode, you

use button A to turn on/off logging. The red LED blinks to let you know logging is

occuring. In trapeze mode, A and B let you manually open/close the servo gripper so

you can have it grab the gymnasts head. Hey life's tough all around!

Finally, if we're in trapeze mode, we look for when we're at the beginning of a swing,

that's when the Z axis acceleration drops below 3 m/s
2

 and the Y axis has positive

acceleration (we used the data log info to figure this out!) If so, the next time we reach

max-acceleration, at the lowest point of the swing, we start opening the gripper,

which takes a little time so that when we are at the end of the swing, it's opened

enough for the gymnast to be released!

We change the NeoPixel colors to help debug, by flashing when we reach the

different sensor states, since we don't have wireless data transfer on the CPX.

# SPDX-FileCopyrightText: 2018 Limor Fried for Adafruit Industries

#

# SPDX-License-Identifier: MIT

import time

from digitalio import DigitalInOut, Direction, Pull

import adafruit_lis3dh

from busio import I2C

from adafruit_seesaw.seesaw import Seesaw

from adafruit_seesaw.pwmout import PWMOut

from adafruit_motor import servo

import neopixel

import board

# create accelerometer

i2c1 = I2C(board.ACCELEROMETER_SCL, board.ACCELEROMETER_SDA)

lis3dh = adafruit_lis3dh.LIS3DH_I2C(i2c1, address=0x19)

lis3dh.range = adafruit_lis3dh.RANGE_8_G

# Create seesaw object

i2c = I2C(board.SCL, board.SDA)

seesaw = Seesaw(i2c)

# Create servo object

pwm = PWMOut(seesaw, 17)    # Servo 1 is on s.s. pin 17

pwm.frequency = 50          # Servos like 50 Hz signals

my_servo = servo.Servo(pwm) # Create my_servo with pwm signal

# LED for debugging

led = DigitalInOut(board.D13)

led.direction = Direction.OUTPUT

# two buttons!

button_a = DigitalInOut(board.BUTTON_A)

button_a.direction = Direction.INPUT

button_a.pull = Pull.DOWN

button_b = DigitalInOut(board.BUTTON_B)

button_b.direction = Direction.INPUT

©Adafruit Industries Page 131 of 183



button_b.pull = Pull.DOWN

# NeoPixels!

pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=1)

pixels.fill((0,0,0))

#################### log file for logging mode!

logfile = "/log.csv"

# check that we could append if wanted to

try:

    fp = None

    fp = open(logfile, "a")

    print("File system writable!")

# pylint: disable=bare-except

except:

    print("Not logging, trapeeze mode!")

# If we log, have some helper variables

logging = False

logpoints = 0

outstr = ""

# When its time to release the trapeze

release = False

while True:

    if button_a.value: # A pressed

        while button_a.value: # wait for release

            pass

        if fp:  # start or stop logging

            logging = not logging

            print("Logging: ", logging)

            time.sleep(0.25)

        else:

            my_servo.angle = 180      # open

    if button_b.value: # B pressed

        while button_b.value: # wait for release

            pass

        my_servo.angle = 0      # close

    x, y, z = lis3dh.acceleration

    # To keep from corrupting the filesys, take 25 readings at once

    if logging and fp:

        outstr += "%0.2F, %0.2F, %0.2F\n" % (x, y, z)

        logpoints += 1

        if logpoints > 25:

            led.value = True

            #print("Writing: "+outstr)

            fp.write(outstr+"\n")

            fp.flush()

            led.value = False

            logpoints = 0

    else:

        # display some neopixel output!

        if z > 20:

            # MAXIMUM EFFORT!

            pixels.fill((0, 255, 0))

            if release:

                my_servo.angle = 180

        elif z < 3 and y > 0: # means at the outer edge

            release = True

            # flash red when we peak

            pixels.fill((255, 0, 0))

        else:

©Adafruit Industries Page 132 of 183



            pixels.fill((0,0,int(abs(z)*2)))

    time.sleep(0.05)

For the curious, our data log file is here! (https://adafru.it/BkU)

R.O.B. GyroBot 

We picked up a Nintendo R.O.B. robot from our local online auction site and when it

appeared we decided to figure out how to get it working. There's 3 motors inside, and

the R.O.B. already comes with motor drivers and end-stops, so instead of driving the

robot directly, we decided to control the R.O.B. using Circuit Playground Express

(CPX) and Crickit!

The code is all in CircuitPython.

We use the Crickit for the amplified audio effects (we snagged some audio from

gameplay to give it that authentic chiptune sound), driving an IR LED for signalling at

500mA burst current so we could have it a few feet away, and the capacitive touch

inputs for our desk controller.

With the addition of a D battery for the gyro turner, we had a fun live-action game

without the need of a CRT!

Parts List

Circuit Playground Express 

Circuit Playground Express is the next

step towards a perfect introduction to

electronics and programming. We've

taken the original Circuit Playground

Classic and...

https://www.adafruit.com/product/3333 

©Adafruit Industries Page 133 of 183

https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Crickits/flying_trapeze/log.csv
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333


Adafruit CRICKIT for Circuit Playground

Express 

Sometimes we wonder if robotics

engineers ever watch movies. If they did,

they'd know that making robots into

servants always ends up in a robot

rebellion. Why even go down that...

https://www.adafruit.com/product/3093 

Super-bright 5mm IR LED 

Infrared LEDs are used for remote

controls (they're the little LED in the part

you point at your TV) and 'night-vision'

cameras, and these little blue guys are

high powered...

https://www.adafruit.com/product/387 

Small Alligator Clip Test Lead (set of 12) 

Connect this to that without soldering

using these handy mini alligator clip test

leads. 15" cables with alligator clip on

each end, color coded. You get 12 pieces

in 6 colors....

https://www.adafruit.com/product/1008 

Mono Enclosed Speaker - 3W 4 Ohm 

Listen up! This 2.8" x 1.2"

speaker is a great addition to any audio

project where you need 4 ohm

impedance and 3W or less of power. We

particularly like...

https://www.adafruit.com/product/3351 

©Adafruit Industries Page 134 of 183

https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/387
https://www.adafruit.com/product/387
https://www.adafruit.com/product/1008
https://www.adafruit.com/product/1008
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/3351


Wiring Diagram

The IR LED can handle up to 1 Amp peak current, so don't use a resistor, just wire it up

to Drive 1 directly!

We use 4 capacitive touch sensors from the Crickit and 2 from CPX for 6 total (there's

more capacitive touch inputs available on Crickit Signal pins but we wanted to use

plain alligator pads!)

Code!

Save to your CPX as code.py and touch the alligator clips to control your R.O.B.

The IR LED should be 1-2 feet away and pointed at the R.O.B's left eye (or, the right-

most eye when you are looking at R.O.B)

It will calibrate when first starting up, and play some tunes.

Flip the switch on/off on the CPX to turn on/off the capacitive touch detection/

command sending (if you need to adjust your cables without having the robot turn

around on you!

 

©Adafruit Industries Page 135 of 183



To help you know what's going on, the NeoPixels on the CPX will glow to match the

colors of the alligator clips shown above, so use those same colors! Only exception is

black shows up as purple LEDs.

You may need to tweak the capacitive touch threshholds. Try uncommenting 

#touch_vals = (touch2.raw_value, touch3.raw_value,

seesaw.touch_read(0), seesaw.touch_read(1), seesaw.touch_read(2),

seesaw.touch_read(3))

#print(touch_vals)

And watching the REPL to see what the values read are.

# SPDX-FileCopyrightText: 2018 Limor Fried for Adafruit Industries

#

# SPDX-License-Identifier: MIT

import time

import gc

from digitalio import DigitalInOut, Direction, Pull

from busio import I2C

from adafruit_seesaw.seesaw import Seesaw

from adafruit_seesaw.pwmout import PWMOut

import touchio

import audioio

import audiocore

import neopixel

import board

pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=1)

pixels.fill((0,0,0))

# Create seesaw object

i2c = I2C(board.SCL, board.SDA)

seesaw = Seesaw(i2c)

# switch

switch = DigitalInOut(board.SLIDE_SWITCH)

switch.direction = Direction.INPUT

switch.pull = Pull.UP

# We need some extra captouches

touch2 = touchio.TouchIn(board.A2)

touch3 = touchio.TouchIn(board.A3)

# LED for debugging

led = DigitalInOut(board.D13)

led.direction = Direction.OUTPUT

# Create drive (PWM) object

INFRARED_LED_SS = 13

my_drive = PWMOut(seesaw, INFRARED_LED_SS)    # Drive 1 is on s.s. pin 13

my_drive.frequency = 1000        # Our default frequency is 1KHz

CAPTOUCH_THRESH = 850

# Commands, each 8 bit command is preceded by the 5 bit Init sequence

Init = [0, 0, 0, 1, 0]            # This must precede any command

Calibrate = [1, 0, 1, 0, 1, 0, 1, 1]  # the initial calibration

Up = [1, 0, 1, 1, 1, 0, 1, 1]     # Move arms/body down

©Adafruit Industries Page 136 of 183



Down = [1, 1, 1, 1, 1, 0, 1, 1]   # Move arms/body up

Left = [1, 0, 1, 1, 1, 0, 1, 0]   # Twist body left

Right = [1, 1, 1, 0, 1, 0, 1, 0]  # Twist body right

Close = [1, 0, 1, 1, 1, 1, 1, 0]  # Close arms

Open = [1, 1, 1, 0, 1, 1, 1, 0]   # Open arms

Test = [1, 1, 1, 0, 1, 0, 1, 1]   # Turns R.O.B. head LED on

print("R.O.B. Start")

def IR_Command(cmd):

    print("Sending ", cmd)

    gc.collect()                     # collect memory now, timing specific!

    # Output initialization and then command cmd

    for val in Init+cmd:             # For each value in initial+command

        if val:                      # if it's a one, flash the IR LED

            seesaw.analog_write(INFRARED_LED_SS, 65535)  # on

            seesaw.analog_write(INFRARED_LED_SS, 0)      # off 2ms later

        time.sleep(0.013)       # 17 ms total

    # pylint: disable=useless-else-on-loop

    else:

        time.sleep(0.015)       # 17 ms total

a = audioio.AudioOut(board.A0)

startfile = "startup.wav"

loopfile = "loop.wav"

with open(startfile, "rb") as f:

    wav = audiocore.WaveFile(f)

    a.play(wav)

    for _ in range(3):

        IR_Command(Calibrate)

        time.sleep(0.5)

    while a.playing:

        IR_Command(Open)

        time.sleep(1)

        IR_Command(Close)

        time.sleep(1)

f = open(loopfile, "rb")

wav = audiocore.WaveFile(f)

a.play(wav, loop=True)

while True:                          # Main Loop poll switches, do commands

    led.value = switch.value         # easily tell if we're running

    if not switch.value:

        continue

    #touch_vals = (touch2.raw_value, touch3.raw_value, seesaw.touch_read(0), 

seesaw.touch_read(1),

    #              seesaw.touch_read(2), seesaw.touch_read(3))

    #print(touch_vals)

    if touch2.raw_value > 3000:

        print("Open jaws")

        pixels.fill((50,50,0))

        IR_Command(Open)             # Button A opens arms

    elif touch3.raw_value > 3000:

        print("Close jaws")

        pixels.fill((0,50,0))

        IR_Command(Close)            # Button B closes arms

    elif seesaw.touch_read(0) > CAPTOUCH_THRESH:

        print("Up")

        pixels.fill((50,0,50))

        IR_Command(Up)

    elif seesaw.touch_read(1) > CAPTOUCH_THRESH:

        print("Down")

        pixels.fill((50,50,50))

©Adafruit Industries Page 137 of 183



        IR_Command(Down)

    elif seesaw.touch_read(2) > CAPTOUCH_THRESH:

        print("Left")

        pixels.fill((50,0,0))

        IR_Command(Left)

    elif seesaw.touch_read(3) > CAPTOUCH_THRESH:

        print("Right")

        pixels.fill((0,0,50))

        IR_Command(Right)

    time.sleep(0.1)

    pixels.fill((0,0,0))

Gear Tower 

Plastic toys are great for hacking, modding and improving using Crickit! This box o'

gears is fun for about 10 minutes...but when you add motors, sensors and robotics you

can make cool interactive art

This example shows how to use the light sensor on the Circuit Playground Express to

trigger a motor to rotate. With some audio effects it becomes a Force trainer, or a

moving Theremin

Parts List

Adafruit CRICKIT for Circuit Playground

Express 

Sometimes we wonder if robotics

engineers ever watch movies. If they did,

they'd know that making robots into

servants always ends up in a robot

rebellion. Why even go down that...

https://www.adafruit.com/product/3093 

©Adafruit Industries Page 138 of 183

https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093


Circuit Playground Express 

Circuit Playground Express is the next

step towards a perfect introduction to

electronics and programming. We've

taken the original Circuit Playground

Classic and...

https://www.adafruit.com/product/3333 

DC Gearbox Motor - "TT Motor" - 200RPM

- 3 to 6VDC 

Perhaps you've been assembling a new

robot friend, adding a computer for a

brain and other fun personality touches.

Now the time has come to let it leave the

nest and fly on...

https://www.adafruit.com/product/3777 

TT Motor Pulley - 36mm Diameter 

Mechanical transmission for the win, this

simple plastic pulley can attach to your TT

motor to transmit rotation from the motor

axle to...somewhere else.This is a very...

https://www.adafruit.com/product/3789 

Mono Enclosed Speaker - 3W 4 Ohm 

Listen up! This 2.8" x 1.2"

speaker is a great addition to any audio

project where you need 4 ohm

impedance and 3W or less of power. We

particularly like...

https://www.adafruit.com/product/3351 

©Adafruit Industries Page 139 of 183

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3789
https://www.adafruit.com/product/3789
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/3351


Wiring

CircuitPython Code For "Force Wave" demo

This project is pretty simple, it looks to see when the light sensor is shaded by your

hand and changes the motor from running to off or vice versa.

import time

from busio import I2C

import analogio

from adafruit_seesaw.seesaw import Seesaw

from adafruit_seesaw.pwmout import PWMOut

from adafruit_motor import motor

import board

light = analogio.AnalogIn(board.LIGHT)

print("Wave on/off to turn")

# Create seesaw object

i2c = I2C(board.SCL, board.SDA)

seesaw = Seesaw(i2c)

# Create one motor on seesaw PWM pins 22 & 23

motor_a = motor.DCMotor(PWMOut(seesaw, 22), PWMOut(seesaw, 23))

motor_a.throttle = 0  # motor is stopped

while True:

    print((light.value,))

    # light value drops when a hand passes over

    if light.value < 4000:

        if motor_a.throttle:

            motor_a.throttle = 0

        else:

            motor_a.throttle = 1  # full speed forward

 

©Adafruit Industries Page 140 of 183



    while light.value < 5000:

        # wait till hand passes over completely

        pass

    time.sleep(0.1)

CircuitPython Code For "Theremin" demo

We can adapt the code above to speed up or slow down the motor based on how far

our hand is. The darker the sensor, the faster the motor spins!

import time

from busio import I2C

import analogio

from adafruit_seesaw.seesaw import Seesaw

from adafruit_seesaw.pwmout import PWMOut

from adafruit_motor import motor

import board

light = analogio.AnalogIn(board.LIGHT)

print("Theramin-like turning")

# Create seesaw object

i2c = I2C(board.SCL, board.SDA)

seesaw = Seesaw(i2c)

# Create one motor on seesaw PWM pins 22 & 23

motor_a = motor.DCMotor(PWMOut(seesaw, 22), PWMOut(seesaw, 23))

motor_a.throttle = 0 # motor is stopped

def map_range(x, in_min, in_max, out_min, out_max):

    # Maps a number from one range to another.

    mapped = (x-in_min) * (out_max - out_min) / (in_max-in_min) + out_min

    if out_min <= out_max:

        return max(min(mapped, out_max), out_min)

    return min(max(mapped, out_max), out_min)

while True:

    print((light.value,))

    motor_a.throttle = map_range(light.value, 500, 8000, 1.0, 0)

    time.sleep(0.1)

CPX-1701 

This is the adventure of the United Space Ship CircuitPlayground.

Assigned a five year galaxy patrol, the bold crew of the giant starship

explores the excitement of strange new worlds, uncharted civilizations, and

exotic code. These are its voyages and its adventures.

Explore exciting new modes of propulsion by creating a really big vibrating motor.

This Crickit project attaches a bunch of CD's to an up-cycled CD-ROM motor for a cool

©Adafruit Industries Page 141 of 183



looking warp drive. Some popsicle sticks, NeoPixels and sound effects complete the

space craft and it's now ready for your command, captain!

Parts List

Circuit Playground Express 

Circuit Playground Express is the next

step towards a perfect introduction to

electronics and programming. We've

taken the original Circuit Playground

Classic and...

https://www.adafruit.com/product/3333 

Adafruit CRICKIT for Circuit Playground

Express 

Sometimes we wonder if robotics

engineers ever watch movies. If they did,

they'd know that making robots into

servants always ends up in a robot

rebellion. Why even go down that...

https://www.adafruit.com/product/3093 

Thin Plastic Speaker w/Wires - 8 ohm

0.25W 

Listen up! This 1.5" diameter speaker cone

is the perfect addition to any audio

project where you need an 8Ω

impedance and are using 0.25W of power.

The speakers are rated...

https://www.adafruit.com/product/1891 

Wiring Diagram

 

©Adafruit Industries Page 142 of 183

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/1891
https://www.adafruit.com/product/1891
https://www.adafruit.com/product/1891


CircuitPython Code

This project is pretty simple, it plays some audio clips, and then lights up the built in

NeoPixels and powers up the motor in time with the effects.

# SPDX-FileCopyrightText: 2018 Limor Fried for Adafruit Industries

#

# SPDX-License-Identifier: MIT

import time

from busio import I2C

from adafruit_seesaw.seesaw import Seesaw

from adafruit_seesaw.pwmout import PWMOut

from adafruit_motor import motor

import neopixel

import audioio

import audiocore

import board

print("The voyages of the CPX-1701!")

# Create seesaw object

i2c = I2C(board.SCL, board.SDA)

seesaw = Seesaw(i2c)

# Create one motor on seesaw PWM pins 22 & 23

motor_a = motor.DCMotor(PWMOut(seesaw, 22), PWMOut(seesaw, 23))

# audio output

cpx_audio = audioio.AudioOut(board.A0)

# neopixels!

pixels = neopixel.NeoPixel(board.NEOPIXEL, 10, brightness=1)

pixels.fill((0, 0, 0))

# give me a second before starting

time.sleep(1)

motor_a.throttle = 0  # warp drive off

 

©Adafruit Industries Page 143 of 183



f = open("01space.wav", "rb")

wav = audiocore.WaveFile(f)

cpx_audio.play(wav)

t = time.monotonic()  # take a timestamp

# slowly power up the dilithium crystals

for i in range(50):

    pixels.fill((0, 0, i))

    time.sleep(0.05)

# 6 seconds after audio started...

while time.monotonic() - t < 6:

    pass

motor_a.throttle = 1  # full warp drive on!

# wait for music to end

while cpx_audio.playing:

    pass

f.close()

# play the warp drive and theme music!

f = open("02warp.wav", "rb")

wav = audiocore.WaveFile(f)

cpx_audio.play(wav)

time.sleep(1)

# blast off!

pixels.fill((255, 0, 0))

# pulse the warp core

while True:

    for i in range(255, 0, -5):

        pixels.fill((i, 0, 0))

    for i in range(0, 255, 5):

        pixels.fill((i, 0, 0))

# wait for music to end

while cpx_audio.playing:

    pass

f.close()

Mag Neat-o 

We picked up a magnetic foam shape kit, to make a fridge-mounted marble run. But

picking up the marble after each run is such a drag - wouldn't it be fun if you could

use your Crickit to help lift the ball back up and re-start the marble run?

With an electromagnet, we can pick up the stainless steel balls. A DC motor acts as a

pulley, and a servo helps align the electromagnet so it can navigate around the foam.

You can DIY, as we did, using the two Circuit Playground Express buttons and switch

to control the motors - or you could even automate the whole thing!

©Adafruit Industries Page 144 of 183



Parts List

Circuit Playground Express 

Circuit Playground Express is the next

step towards a perfect introduction to

electronics and programming. We've

taken the original Circuit Playground

Classic and...

https://www.adafruit.com/product/3333 

Adafruit CRICKIT for Circuit Playground

Express 

Sometimes we wonder if robotics

engineers ever watch movies. If they did,

they'd know that making robots into

servants always ends up in a robot

rebellion. Why even go down that...

https://www.adafruit.com/product/3093 

DC Gearbox Motor - "TT Motor" - 200RPM

- 3 to 6VDC 

Perhaps you've been assembling a new

robot friend, adding a computer for a

brain and other fun personality touches.

Now the time has come to let it leave the

nest and fly on...

https://www.adafruit.com/product/3777 

©Adafruit Industries Page 145 of 183

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777


1 x 5V Electromagnet 

Use a "50N" one for good pick up ability!

Standard servo - TowerPro SG-5010 

This high-torque standard servo can

rotate approximately 180 degrees (90 in

each direction). You can use any servo

code, hardware, or library to control these

servos. Good for...

https://www.adafruit.com/product/155 

Wiring Diagram

Even though an electromagnet doesn't have 'direction' and thus could be controlled

by a Drive pin, we opted for a Motor port because these electromagnets can draw up

to 700mA and that's more than the Drive pin. But, you could almost certainly get away

with using a Drive pin if you like!

Code!

Save to your CPX as code.py and press the CPX buttons to move the pulley up and

down. Capacitive touch pads #1 and #4 twist the servo and then the switch enables

and disables the electromagnet.

 

©Adafruit Industries Page 146 of 183

https://www.adafruit.com/product/155
https://www.adafruit.com/product/155


The most interesting part is smooth_move  which is our gentle servo movement

helper, it will carefully move the servo rather than jostling it and the magnet which

would possibly cause the balls to fall.

import time

from busio import I2C

from adafruit_seesaw.seesaw import Seesaw

from adafruit_seesaw.pwmout import PWMOut

from adafruit_motor import motor, servo

from digitalio import DigitalInOut, Direction, Pull

import board

print("Mag Neat-o!")

# Create seesaw object

i2c = I2C(board.SCL, board.SDA)

seesaw = Seesaw(i2c)

# Create one motor on seesaw PWM pins 22 & 23

motor_a = motor.DCMotor(PWMOut(seesaw, 22), PWMOut(seesaw, 23))

# Create another motor on seesaw PWM pins 19 & 18

motor_b = motor.DCMotor(PWMOut(seesaw, 19), PWMOut(seesaw, 18))

# Create servo object

pwm = PWMOut(seesaw, 17)     # Servo 1 is on s.s. pin 17

pwm.frequency = 50           # Servos like 50 Hz signals

my_servo = servo.Servo(pwm)  # Create my_servo with pwm signa

my_servo.angle = 90

def smooth_move(start, stop, num_steps):

    return [(start + (stop-start)*i/num_steps) for i in range(num_steps)]

buttona = DigitalInOut(board.BUTTON_A)

buttona.direction = Direction.INPUT

buttona.pull = Pull.DOWN

buttonb = DigitalInOut(board.BUTTON_B)

buttonb.direction = Direction.INPUT

buttonb.pull = Pull.DOWN

switch = DigitalInOut(board.SLIDE_SWITCH)

switch.direction = Direction.INPUT

switch.pull = Pull.UP

last_buttona = buttona.value

last_buttonb = buttonb.value

last_switch = switch.value

last_touch1 = False

last_touch4 = False

while True:

    touch_vals = (seesaw.touch_read(0), seesaw.touch_read(3))

    # print(touch_vals)

    touch1 = False

    if seesaw.touch_read(0) > 500:

        touch1 = True

    if touch1 != last_touch1:

        if touch1:

            start_angle = my_servo.angle

            end_angle = start_angle - 20

            end_angle = max(0, min(end_angle, 180))

            print("left from", start_angle, "to", end_angle)

©Adafruit Industries Page 147 of 183



            for a in smooth_move(start_angle, end_angle, 25):

                my_servo.angle = a

                time.sleep(0.03)

        last_touch1 = touch1

    touch4 = False

    if seesaw.touch_read(3) > 500:

        touch4 = True

    if touch4 != last_touch4:

        if touch4:

            start_angle = my_servo.angle

            end_angle = start_angle + 20

            end_angle = max(0, min(end_angle, 180))

            print("right from", start_angle, "to", end_angle)

            for a in smooth_move(start_angle, end_angle, 25):

                my_servo.angle = a

                time.sleep(0.03)

        last_touch4 = touch4

    if buttona.value != last_buttona:

        if buttona.value:

            print("down")

            if motor_a.throttle:

                print("haulin!")

                motor_b.throttle = -0.1

            else:

                motor_b.throttle = -0.1

        else:

            motor_b.throttle = 0

        last_buttona = buttona.value

    if buttonb.value != last_buttonb:

        if buttonb.value:

            print("up")

            if motor_a.throttle:

                print("haulin!")

                motor_b.throttle = 0.4

            else:

                motor_b.throttle = 0.3

        else:

            motor_b.throttle = 0

        last_buttonb = buttonb.value

    if switch.value != last_switch:

        motor_a.throttle = switch.value

    if motor_a.throttle:

        print("GRAB")

    else:

        print("RELEASE")

        last_switch = switch.value

    time.sleep(0.01)

©Adafruit Industries Page 148 of 183



(Don't Fear) The Crickit 

Parts List

Adafruit CRICKIT for Circuit Playground

Express 

Sometimes we wonder if robotics

engineers ever watch movies. If they did,

they'd know that making robots into

servants always ends up in a robot

rebellion. Why even go down that...

https://www.adafruit.com/product/3093 

Circuit Playground Express 

Circuit Playground Express is the next

step towards a perfect introduction to

electronics and programming. We've

taken the original Circuit Playground

Classic and...

https://www.adafruit.com/product/3333 

Panel Mount Right Angle 10K Linear

Potentiometer w/On-Off Switch 

This Panel Mount Right Angle 10K Linear

Potentiometer w/ On-Off Switch is a two-

in-one, with both a breadboard-friendly

potentiometer and a switch. For the...

https://www.adafruit.com/product/3395 

©Adafruit Industries Page 149 of 183

https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3395
https://www.adafruit.com/product/3395
https://www.adafruit.com/product/3395


1 x Fog Machine with Remote 

https://www.amazon.com/Virhuck-400-Watt-Portable-

Halloween-Christmas/dp/B074WMWWS5

1 x Cow Bell 

Craft store cowbell

Solid Machined Metal Knob - 1" Diameter 

This is really the fanciest, best feeling

knob we've ever seen. Using this knob

sort of reminded us of driving along the

Amalfi coast in a perfectly restored '65

Porsche...

https://www.adafruit.com/product/2056 

Mono Enclosed Speaker - 3W 4 Ohm 

Listen up! This 2.8" x 1.2"

speaker is a great addition to any audio

project where you need 4 ohm

impedance and 3W or less of power. We

particularly like...

https://www.adafruit.com/product/3351 

Adafruit NeoPixel LED Dots Strand - 20

LED 4" Pitch 

Attaching NeoPixel strips to your costume

can be a struggle as the flexible PCBs can

crack when bent too much. So how to add

little dots of color? Use these stranded

NeoPixel dots!...

https://www.adafruit.com/product/3631 

©Adafruit Industries Page 150 of 183

https://www.adafruit.com/product/2056
https://www.adafruit.com/product/2056
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/3631
https://www.adafruit.com/product/3631
https://www.adafruit.com/product/3631


Wiring Diagram

 

For the remote, we soldered four wires

Black ground wire to the battery spring

(negative) terminal

Red +5V wire to the battery flat (positive)

terminal

White and Purple go to the 'switched' part

of each switch, which, when connected to

5V activates that switch

CircuitPython Code

# SPDX-FileCopyrightText: 2018 Limor Fried for Adafruit Industries

#

# SPDX-License-Identifier: MIT

import time

import audioio

import audiocore

from digitalio import DigitalInOut, Pull, Direction

from adafruit_seesaw.seesaw import Seesaw

from adafruit_seesaw.pwmout import PWMOut

from adafruit_motor import servo

from busio import I2C

import neopixel

import board

# Create seesaw object

 

©Adafruit Industries Page 151 of 183

https://learn.adafruit.com//assets/55368
https://learn.adafruit.com//assets/55368


i2c = I2C(board.SCL, board.SDA)

seesaw = Seesaw(i2c)

led = DigitalInOut(board.D13)

led.direction = Direction.OUTPUT

# Two onboard CPX buttons for FOG

buttona = DigitalInOut(board.BUTTON_A)

buttona.direction = Direction.INPUT

buttona.pull = Pull.DOWN

buttonb = DigitalInOut(board.BUTTON_B)

buttonb.direction = Direction.INPUT

buttonb.pull = Pull.DOWN

# Use the signal port for potentiometer w/switch

MORECOW = 2    # A switch on Signal #1

SWITCH = 3     # A potentiometer on Signal #2

# Add a pullup on the switch

seesaw.pin_mode(SWITCH, seesaw.INPUT_PULLUP)

# Servo angles

BELL_START = 60

BELL_END = 75

MOUTH_START = 95

MOUTH_END = 105

# Create servos list

servos = []

for ss_pin in (17, 16): #17 is labeled 1 on CRICKIT, 16 is labeled 2

    pwm = PWMOut(seesaw, ss_pin)

    pwm.frequency = 50 #must be 50 cannot change

    _servo = servo.Servo(pwm, min_pulse=400, max_pulse=2500)

    servos.append(_servo)

# Starting servo locations

servos[0].angle = BELL_START

servos[1].angle = MOUTH_START

# For the fog machine we actually use the PWM on the motor port cause it really 

needs 5V!

fog_off = PWMOut(seesaw, 22)

fog_off.duty_cycle = 0

fog_on = PWMOut(seesaw, 23)

fog_on.duty_cycle = 0

# Audio playback object and helper to play a full file

a = audioio.AudioOut(board.A0)

def play_file(wavfile):

    with open(wavfile, "rb") as file:

        wavf = audiocore.WaveFile(file)

        a.play(wavf)

        while a.playing:

            servos[1].angle = MOUTH_START

            time.sleep(.2)

            servos[1].angle = MOUTH_END

            time.sleep(.2)

# NeoPixels for EYES

pixels = neopixel.NeoPixel(board.A1, 9, brightness=0.5)

pixels[8] = (255, 255, 0)

pixels[7] = (255, 255, 0)

# Maps a number from one range to another.

def map_range(x, in_min, in_max, out_min, out_max):

    mapped = (x-in_min) * (out_max - out_min) / (in_max-in_min) + out_min

    if out_min <= out_max:

©Adafruit Industries Page 152 of 183



        return max(min(mapped, out_max), out_min)

    return min(max(mapped, out_max), out_min)

# Wait before starting up

time.sleep(3)

play_file("i-gotta-have-more-cowbell.wav")

# a pause between audio clips

time.sleep(1)

play_file("only-prescription-more-cowbell.wav")

while seesaw.digital_read(SWITCH):

    pass

print("Ready for playing audio")

time.sleep(1)

f = open("fear11.wav", "rb")

wav = audiocore.WaveFile(f)

a.play(wav)

while True:

    if seesaw.digital_read(SWITCH):

        break    # time to bail!

    pot = seesaw.analog_read(MORECOW)

    print(pot)

    eyecolor = (int(map_range(pot, 0, 1023, 255, 0)), int(map_range(pot, 0, 1023, 0, 

255)), 0)

    pixels[8] = eyecolor

    pixels[7] = eyecolor

    if buttonb.value:

        fog_on.duty_cycle = 65535

    else:

        fog_on.duty_cycle = 0

    if buttona.value:

        fog_off.duty_cycle = 65535

    else:

        fog_off.duty_cycle = 0

    if pot < 200:  # wait for a bit before we start

        continue

    delay = map_range(pot, 200, 1023, 1.0, 0.1)

    servos[0].angle = BELL_END

    time.sleep(0.1)

    servos[0].angle = BELL_START

    time.sleep(delay)

a.stop()

f.close()

# Fog machine test

fog_off.duty_cycle = 65535

fog_on.duty_cycle = 0

time.sleep(0.1)

fog_off.duty_cycle = 0

pixels[8] = (255, 255, 0)

pixels[7] = (255, 255, 0)

time.sleep(1.5)

play_file("i-coulda-used-more-cow-bell.wav")

©Adafruit Industries Page 153 of 183



Arduino Code 

The microcontrollers installed on top of Crickit communicate to execute Crickit

commands via the seesaw chip located on the Crickit. Seesaw is a helper

microcontroller which talks to the main microcontroller via the serial I2C protocol.

There is a bit of setup to get things working in your Arduino code but it is not difficult.

Download Adafruit_Seesaw library

To begin using your Crickit with the Arduino IDE, you will need to install the Adafruit_s

eesaw library (https://adafru.it/BkT).

Start up the IDE and open the Library Manager:

Type in seesaw until you see the Adafruit Library pop up. Click Install!

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://

adafru.it/aYM)

The Crickit HAT for Raspberry Pi is not programmable in Arduino. 

 

 

©Adafruit Industries Page 154 of 183

https://github.com/adafruit/Adafruit_Seesaw/
https://github.com/adafruit/Adafruit_Seesaw/
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use


Arduino with micro:bit

For basic usage of Arduino with the micro:bit, see this tutorial to get started (https://

adafru.it/CiL). 

Once you have the basic support down, you can use an attached Crickit via the

Seesaw library.

Pin Definitions for Seesaw and Crickit

There are two files you should include in your sketches, Adafruit_seesaw.h  and 

Adafruit_Crickit.h . Pin definitions for controlling Crickit functions are in Adafrui

t_Crickit.h  for reference.

#ifndef _CRICKIT_TERSTER_H

#define _CRICKIT_TERSTER_H

#include "Adafruit_seesaw.h"

#define CRICKIT_SIGNAL1 2

#define CRICKIT_SIGNAL2 3

#define CRICKIT_SIGNAL3 40

#define CRICKIT_SIGNAL4 41

#define CRICKIT_SIGNAL5 11

#define CRICKIT_SIGNAL6 10

#define CRICKIT_SIGNAL7 9

#define CRICKIT_SIGNAL8 8

#define CRICKIT_SERVO4 14

#define CRICKIT_SERVO3 15

#define CRICKIT_SERVO2 16

#define CRICKIT_SERVO1 17

#define CRICKIT_MOTOR_A1 22

#define CRICKIT_MOTOR_A2 23

#define CRICKIT_MOTOR_B1 19

#define CRICKIT_MOTOR_B2 18

#define CRICKIT_DRIVE1 13

#define CRICKIT_DRIVE2 12

#define CRICKIT_DRIVE3 43

#define CRICKIT_DRIVE4 42

#define CRICKIT_TOUCH1 0

#define CRICKIT_TOUCH2 1

#define CRICKIT_TOUCH3 2

#define CRICKIT_TOUCH4 3

#define CRICKIT_DUTY_CYCLE_OFF 0

#define CRICKIT_DUTY_CYCLE_MAX 65535

Using Arduino with both micro:bit and the Seesaw library is not generally a 

beginner level experience. We recommend this be for intermediate or more 

advanced coders. 

©Adafruit Industries Page 155 of 183

https://learn.adafruit.com/use-micro-bit-with-arduino/overview


/**************************************************************************/

/*!

    @brief  Class that stores state and functions for interacting with Crickit

   variant of seesaw helper IC

*/

/**************************************************************************/

class Adafruit_Crickit : public Adafruit_seesaw {

public:

  Adafruit_Crickit(){};

  ~Adafruit_Crickit(){};

  void analogWrite(uint8_t pin, uint16_t value, uint8_t width = 8);

  uint16_t analogRead(uint8_t pin);

  void setPWMFreq(uint8_t pin, uint16_t freq);

};

#endif

©Adafruit Industries Page 156 of 183



Arduino Servos 

 

 

 

The location of the Servo connections on

Crickit are similar on all three versions of

the board: Circuit Playground Express,

Feather, and micro:bit.

©Adafruit Industries Page 157 of 183

https://learn.adafruit.com//assets/54252
https://learn.adafruit.com//assets/54252
https://learn.adafruit.com//assets/62015
https://learn.adafruit.com//assets/62015
https://learn.adafruit.com//assets/62016
https://learn.adafruit.com//assets/62016


 

Test Servos

Lets start by controlling some servos. You'll want at least one servo to plug in and test

out the servo code. Visit our recommended servo page to check that you have a

servo that works (https://adafru.it/Bfo). Once you do, plug in a servo into SERVO #1

spot, making sure the yellow or white wire is next to the 1 text label.

This example will show rotating one servo from 0 to 180 degrees with a stop at 90

degrees.

#include "Adafruit_Crickit.h"

#include "seesaw_servo.h"

Adafruit_Crickit crickit;

seesaw_Servo myservo(&crickit);  // create servo object to control a servo

void setup() {

  Serial.begin(115200);

  

  if(!crickit.begin()){

    Serial.println("ERROR!");

    while(1) delay(1);

  }

  else Serial.println("Crickit started");

  

  myservo.attach(CRICKIT_SERVO1);  // attaches the servo to CRICKIT_SERVO1 pin

}

void loop() {

  myservo.write(0);

  delay(1000);

  myservo.write(90);

  delay(1000);

  myservo.write(180);

  delay(1000);

  myservo.write(90);

  delay(1000);

}

©Adafruit Industries Page 158 of 183

https://learn.adafruit.com//assets/62100
https://learn.adafruit.com//assets/62100
file:///home/cpx-crickit/recommended-servos
file:///home/cpx-crickit/recommended-servos


More Servos!

OK that was fun but you want MORE servos right? You can control up to four! The

servos are on the seesaw pins 17 (CIRCKIT_SERVO1), 16 (CIRCKIT_SERVO2), 15 (CIRCK

IT_SERVO3), 14 (CIRCKIT_SERVO4)

This example is similar to the 1 servo example, but instead of creating one myservo

object, we'll make an array called servos  that contains 4 servo objects. Then we can

assign them using servo[0].write(90);  or iterate through them as we do in the

loop. You don't have to do it this way, but its very compact and doesn't take a lot of

code lines to create all 4 servos at once!

#include "Adafruit_Crickit.h"

#include "seesaw_servo.h"

Adafruit_Crickit crickit;

#define NUM_SERVOS 4

//create an array of 4 servos with our crickit object

seesaw_Servo servos[] = { seesaw_Servo(&crickit), 

                          seesaw_Servo(&crickit), 

                          seesaw_Servo(&crickit),

                          seesaw_Servo(&crickit) };

//these are the pins they will be attached to

int servoPins[] = { CRICKIT_SERVO1, CRICKIT_SERVO2, CRICKIT_SERVO3, 

CRICKIT_SERVO4 };

void setup() {

  Serial.begin(115200);

  //begin the crickit

  if(!crickit.begin()){

    Serial.println("ERROR!");

    while(1) delay(1);

  }

  else Serial.println("Crickit started");

  //attach the servos to their pins

  for(int i=0; i<NUM_SERVOS; i++)

    servos[i].attach(servoPins[i]);  // attaches the servo to the pin

}

void loop() {

  //repeat for all 4 servos

  for(int i=0; i<NUM_SERVOS; i++){

    servos[i].write(0);

    delay(1000);

    servos[i].write(90);

    delay(1000);

    servos[i].write(180);

    delay(1000);

Are your servos not moving a full 180 degrees? Don't fret! This is normal, see 

below about min/max pulse lengths to 'tune' your servo! 

©Adafruit Industries Page 159 of 183



    servos[i].write(90);

    delay(1000);

  }

}

Min/Max Pulse control

In theory, servos should all use 1ms to 2ms long pulses, at 50 Hz to set the 0 and 180

degree locations. However, not all servos have their full range at those pulse widths.

You can easily tweak your code to change the min and max pulse widths, which will

let your servo turn more left and right. But don't set the widths too small/large or you

can hit the hard stops of the servo which could damage it, so try tweaking the

numbers slowly until you get a sense of what the limits are for your motor.

All you need to do is change the

myservo.attach(CRICKIT_SERVO1);

to, say,

myservo.attach(CRICKIT_SERVO1, 750, 2250);

Here we've change the minimum pulse from the default 1000 microseconds to 750,

and the default maximum pulse from 2000 microseconds to 2250. Again, each servo

differs. Some experimentation may be required!

Continuous Rotation Servos

If you're using continuous servos, you can use the angle assignments and just

remember that 0 is rotating one way, 90 is 'stopped' and 180 and rotating the other

way.

If your continuous servo doesn't stop once the script is finished you may need to tune

the min  and max  pulse timings so that the center makes the servo stop. Or check if

the servo has a center-adjustment screw you can tweak.

©Adafruit Industries Page 160 of 183



Disconnecting Servos or Custom Pulses

If you want to 'disconnect' the Servo by sending it 0-length pulses, you can do that by

'reaching in' and adjusting the underlying PWM duty cycle with:

myservo.writeMicroseconds(0);

Likewise you can set the duty cycle to a custom value with

myservo.writeMicroseconds(number);

where  number  is the pulse length is microseconds between 0 (off) and 20000 (fully

on). For example, setting it to 10000 will be 50% duty cycle, at the 50 Hz update rate

©Adafruit Industries Page 161 of 183



Arduino Drives 

 

 

 

The Drives port provides the ability to

drive higher current devices.

 

The functionality is identical on all versions

of Crickit shown at left.

©Adafruit Industries Page 162 of 183

https://learn.adafruit.com//assets/54253
https://learn.adafruit.com//assets/54253
https://learn.adafruit.com//assets/62017
https://learn.adafruit.com//assets/62017
https://learn.adafruit.com//assets/62018
https://learn.adafruit.com//assets/62018


 

Test Drive

Lets start by controlling a drive output. You'll need to plug something into the 5V and 

DRIVE1 terminal blocks. I'm just using a simple LED with resistor but anything that can

be powered by 5V will work.

Note that the drive outputs cannot have 5V output so you must connect the posi

tive pin of whatever you're driving to 5V. Don't try connecting the positive pin to

the drive, and the negative pin to GND, it wont work!

Drive outputs are PWM-able!

PWM values can be anywhere between 0 (0% duty cycle or always off) and 6553

5 (100% duty cycle or always on). A value of 32768 would be 50% duty cycle, or

on for half of the period and then off for half the period.

This example will show turning the drive output fully on and off once a second. The

macros CRICKIT_DUTY_CYCLE_OFF and CRICKIT_DUTY_CYCLE_MAX correspond to

0 and 65535 respectively and are used for readability:

#include "Adafruit_Crickit.h"

Adafruit_Crickit crickit;

void setup() {

  Serial.begin(115200);

  Serial.println("1 Drive demo!");

  

  if(!crickit.begin()){

    Serial.println("ERROR!");

    while(1) delay(1);

  }

  else Serial.println("Crickit started");

  //our default frequency is 1khz

  crickit.setPWMFreq(CRICKIT_DRIVE1, 1000);

}

• 

• 

• 

©Adafruit Industries Page 163 of 183

https://learn.adafruit.com//assets/62101
https://learn.adafruit.com//assets/62101


void loop() {

  //turn all the way on

  crickit.analogWrite(CRICKIT_DRIVE1, CRICKIT_DUTY_CYCLE_OFF);

  delay(500);

  

  //turn all the way off

  crickit.analogWrite(CRICKIT_DRIVE1, CRICKIT_DUTY_CYCLE_MAX);

  delay(500);

}

More Drivers!

OK that was fun but you want MORE drives right? You can control up to four! The four

drive outputs are on the seesaw pins 13 (CRICKIT_DRIVE1), 12 (CRICKIT_DRIVE2), 43 (

CRICKIT_DRIVE3), 42 (CRICKIT_DRIVE4)

#include "Adafruit_Crickit.h"

Adafruit_Crickit crickit;

#define NUM_DRIVES 4

int drives[] = {CRICKIT_DRIVE1, CRICKIT_DRIVE2, CRICKIT_DRIVE3, CRICKIT_DRIVE4};

void setup() {

  Serial.begin(115200);

  Serial.println("4 Drive demo!");

  

  if(!crickit.begin()){

    Serial.println("ERROR!");

    while(1) delay(1);

  }

  else Serial.println("Crickit started");

  //our default frequency is 1khz

  for(int i=0; i<NUM_DRIVES; i++)

    crickit.setPWMFreq(drives[i], 1000);

}

void loop() {

  for(int i=0; i<NUM_DRIVES; i++){

    //turn all the way on

    crickit.analogWrite(drives[i], CRICKIT_DUTY_CYCLE_OFF);

    delay(100);

    

    //turn all the way off

    crickit.analogWrite(drives[i], CRICKIT_DUTY_CYCLE_MAX);

    delay(100);

  }

}

This example is similar to the 1 drive example, but instead of using just 1 PWM driver,

we'll make an array called drives  that contains the pin numbers of 4 PWM drivers.

Then we can assign them using crickit.analogWrite(drives[0],

CRICKIT_DUTY_CYCLE_MAX);  or iterate through them as we do in the loop. You don't 

have to do it this way, but its very compact and doesn't take a lot of code lines to

create all 4 drivers at once!

©Adafruit Industries Page 164 of 183



Arduino DC Motors 

 

 

 

The hexagonal Crickets at left all have a

similar Motor port which can drive two DC

motors. 

©Adafruit Industries Page 165 of 183

https://learn.adafruit.com//assets/54263
https://learn.adafruit.com//assets/54263
https://learn.adafruit.com//assets/62019
https://learn.adafruit.com//assets/62019
https://learn.adafruit.com//assets/62020
https://learn.adafruit.com//assets/62020


 

DC motors are controlled by 4 PWM output pins, the 4 PWM pins let you control

speed and direction. And we'll use our seesaw_Motor library to help us manage the

throttle (speed) and direction for us, making it very easy to control motors

Note that each DC motor is a little different, so just because you have two at the same

throttle does not mean they'll rotate at the exact same speed! Some tweaking may be

required

#include "Adafruit_Crickit.h"

#include "seesaw_motor.h"

Adafruit_Crickit crickit;

seesaw_Motor motor_a(&crickit);

seesaw_Motor motor_b(&crickit);

void setup() {

  Serial.begin(115200);

  Serial.println("Dual motor demo!");

  

  if(!crickit.begin()){

    Serial.println("ERROR!");

    while(1) delay(1);

  }

  else Serial.println("Crickit started");

  //attach motor a

  motor_a.attach(CRICKIT_MOTOR_A1, CRICKIT_MOTOR_A2);

  //attach motor b

  motor_b.attach(CRICKIT_MOTOR_B1, CRICKIT_MOTOR_B2);

}

void loop() {

  motor_a.throttle(1);

  motor_b.throttle(-1);

  delay(1000);

The two wires of the DC motor can be plugged in either way into each Crickit 

Motor port. If the motor spins the opposite way from what you want to call 

'forward', just flip the wires! 

©Adafruit Industries Page 166 of 183

https://learn.adafruit.com//assets/62102
https://learn.adafruit.com//assets/62102


  motor_a.throttle(.5);

  motor_b.throttle(-.5);

  delay(1000);

  motor_a.throttle(0);

  motor_b.throttle(0);

  delay(1000);

  motor_a.throttle(-.5);

  motor_b.throttle(.5);

  delay(1000);

  motor_a.throttle(-1);

  motor_b.throttle(1);

  delay(1000);

  motor_a.throttle(0);

  motor_b.throttle(0);

  delay(500);

}

©Adafruit Industries Page 167 of 183



Arduino Signals 

 

 

 

The 8 GPIO pins on the Crickit are in the

Signals block of pins. You have the 8 data

pins, each input/output, 3.3v logic, analog

or digital.

These GPIO are controlled by the Crickit's

seesaw chip, not directly by the

microcontroller or the Raspberry Pi. Thus

programming them takes a bit more work

but they provide some great benefits.

Signals on the Crickit are available on the following pins:

Silkscreen Label Arduino Macro Seesaw Pin

©Adafruit Industries Page 168 of 183

https://learn.adafruit.com//assets/75503
https://learn.adafruit.com//assets/75503
https://learn.adafruit.com//assets/75504
https://learn.adafruit.com//assets/75504
https://learn.adafruit.com//assets/75507
https://learn.adafruit.com//assets/75507


You can use these as analog or digital I/O pins, setting the mode, value and reading

with the seesaw library directly:

#include "Adafruit_Crickit.h"

Adafruit_Crickit crickit;

#define BUTTON_1 CRICKIT_SIGNAL1

#define BUTTON_2 CRICKIT_SIGNAL2

#define LED_1 CRICKIT_SIGNAL3

#define LED_2 CRICKIT_SIGNAL4

void setup() {

  Serial.begin(9600);

  

  if(!crickit.begin()){

    Serial.println("ERROR!");

    while(1) delay(1);

  }

  else Serial.println("Crickit started");

  //Two buttons are pullups, connect to ground to activate

  crickit.pinMode(BUTTON_1, INPUT_PULLUP);

  crickit.pinMode(BUTTON_2, INPUT_PULLUP);

  // Two LEDs are outputs, on by default

  crickit.pinMode(LED_1, OUTPUT);

1 CRICKIT_SIGNAL1 2

2 CRICKIT_SIGNAL2 3

3 CRICKIT_SIGNAL3 40

4 CRICKIT_SIGNAL4 41

5 CRICKIT_SIGNAL5 11

6 CRICKIT_SIGNAL6 10

7 CRICKIT_SIGNAL7 9

8 CRICKIT_SIGNAL8 8

©Adafruit Industries Page 169 of 183



  crickit.pinMode(LED_2, OUTPUT);

  crickit.digitalWrite(LED_1, HIGH);

  crickit.digitalWrite(LED_2, HIGH);

}

void loop() {

  if(!crickit.digitalRead(BUTTON_1))

    crickit.digitalWrite(LED_1, HIGH);

  else

    crickit.digitalWrite(LED_1, LOW);

  if(!crickit.digitalRead(BUTTON_2))

    crickit.digitalWrite(LED_2, HIGH);

  else

    crickit.digitalWrite(LED_2, LOW);

}

©Adafruit Industries Page 170 of 183



Arduino Capacitive Touch 

 

 

 

Capacitive touch capability is in two

places:

 

On the four alligator clip friendly pads on

the Capacitive Touch area on Crickit.

Capacitive touch is very useful for activating things in your projects.

The following code demonstrates the features of the Crickit cap touch pads.

// Adafruit Crickit Capacitive Touch Demo for Arduino

//

// Displays the value of Adafruit Crickit touchpad values when touched

//

©Adafruit Industries Page 171 of 183

https://learn.adafruit.com//assets/62021
https://learn.adafruit.com//assets/62021
https://learn.adafruit.com//assets/62022
https://learn.adafruit.com//assets/62022
https://learn.adafruit.com//assets/62023
https://learn.adafruit.com//assets/62023


// Tested with the Crickit + micro:bit, all good

#include "Adafruit_Crickit.h"

Adafruit_Crickit crickit;

#define CRICKIT_NUM_TOUCH   4

#define CAPTOUCH_THRESH   500

void setup() {

  Serial.begin(9600);  // Set up serial monitor - be sure it is set to 9600 

  Serial.println("Cap Touch Demo");

  if(!crickit.begin()) {                         // Check if Crickit is attached

     Serial.println("ERROR Starting crickit");   // If an error, print and

     while(1) ;                                  //   go to a infinite loop to 

stop                       

  }

  else Serial.println("seesaw started");         // success, we have a Crickit

}

void loop() {

  for(int i=0; i<CRICKIT_NUM_TOUCH; i++){  // check each touch input

    uint16_t val = crickit.touchRead(i);   // read the touch input

    if(val > CAPTOUCH_THRESH){             // if the value read is > the threshold

      Serial.print("CT");                  //  print info to serial monitor

      Serial.print(i + 1);

      Serial.print(" touched! value: ");

      Serial.println(val);

    }

  }

  delay(100);  // wait tiny bit between checks

}

Arduino NeoPixels 

Crickit makes it really easy to add NeoPixels (WS2812/WS2811/SK6812 chipsets) to

your project. The Crickit has a 3-terminal block connector with Ground, Signal and 5V 

power. The signal line has a level shifter on it so it will be 5V logic level, for nice clean

signals.

This output is slightly different depending on what kind of Crickit you have.

©Adafruit Industries Page 172 of 183



Crickit for Circuit Playground Express

 

If you have a Circuit Playground

Crickit then the NeoPixels are driven by

the Circuit Playground A1 pad by default. 

 

Use the Adafruit_NeoPixel library (https://

adafru.it/aZU) to control NeoPixels

connected to Crickit through Circuit

Playground Express pin A1.

 

However, if you want, you can cut the

jumper underneath the Crickit and solder

closed the ss pad so that the seesaw chip

controls the NeoPixels (for advanced

hackers only). See below for use.

Crickit Wing for Feather

 

If you have a Feather Crickit then the

NeoPixels are driven by the seesaw chip

on the Crickit, and you must send seesaw

commands to set colors. But that means

no extra pins are needed from your

Feather. See below for use.

©Adafruit Industries Page 173 of 183

https://learn.adafruit.com//assets/62142
https://learn.adafruit.com//assets/62142
https://github.com/adafruit/Adafruit_NeoPixel
https://learn.adafruit.com//assets/62139
https://learn.adafruit.com//assets/62139


Crickit for micro:bit

 

If you have a micro:bit Crickit, NeoPixels

are driven by micro:bit Pin P16. 

 

Use the Adafruit_NeoPixel library (https://

adafru.it/aZU) to control NeoPixels

connected to Crickit through micro:bit P16.

 

However, if you want, you can cut the

jumper underneath the Crickit and solder

closed the ss pad so that the seesaw chip

controls the NeoPixels (for advanced

hackers only). See below.

Crickit HAT for Raspberry Pi

Advanced Use - Using Seesaw to Control NeoPixels

Your microcontroller can communicate to the Crickit seesaw chip to have seesaw

control the NeoPixels. Adafruit considers this advanced use at the Arduino level and

recommends MakeCode or CircuitPython for Crickit NeoPixel. With this in mind, read

on.

If you choose to have the NeoPixel driven from the seesaw, note it is on seesaw pin

#20. To use seesaw pin 20 on Circuit Playground Express and micro:bit Crickit, you

must cut a jumper on the Crickit circuit board on the back. You can always mend this

with solder, but it's NOT something you change back and forth.

For FeatherWing for Crickit, the NeoPixels are already connected to seesaw pin 20,

you don't need to do the surgery below.

©Adafruit Industries Page 174 of 183

https://learn.adafruit.com//assets/62140
https://learn.adafruit.com//assets/62140
https://github.com/adafruit/Adafruit_NeoPixel


 

 

Turn the Crickit over and locate the jumper

block on the bottom as circled in yellow in

the first image.

 

You will need to take a knife and cut the

tiny gold trace pointed by the red arrow to

sever the current NeoPixel to

microcontroller connection.

 

Using a soldering iron, put a mice bright

solder connection between the pads as

marked by the blue arrow.

 

The Seesaw Pin 20 is now connected to

the NeoPixel connections on Crickit.

The Adafruit_seesaw library (https://adafru.it/BrV) has seesaw NeoPixel support. You

can get the latest version of this library through the Arduino board manager as

described in this guide on the Arduino page (https://adafru.it/EvT).

Your Arduino sketch should include seesaw_neopixel.h which provides the NeoPixel

functions for seesaw.

The following example sets up a strand of NeoPixels and runs through some

animations.

#include <seesaw_neopixel.h>

#define PIN 10

// Parameter 1 = number of pixels in strip

// Parameter 2 = Arduino pin number (most are valid)

// Parameter 3 = pixel type flags, add together as needed:

//   NEO_KHZ800  800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)

//   NEO_KHZ400  400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)

//   NEO_GRB     Pixels are wired for GRB bitstream (most NeoPixel products)

//   NEO_RGB     Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2)

//   NEO_RGBW    Pixels are wired for RGBW bitstream (NeoPixel RGBW products)

seesaw_NeoPixel strip = seesaw_NeoPixel(12, PIN, NEO_GRB + NEO_KHZ800);

// IMPORTANT: To reduce NeoPixel burnout risk, add 1000 uF capacitor across

// pixel power leads, add 300 - 500 Ohm resistor on first pixel's data input

// and minimize distance between Arduino and first pixel.  Avoid connecting

©Adafruit Industries Page 175 of 183

https://learn.adafruit.com//assets/62055
https://learn.adafruit.com//assets/62055
https://learn.adafruit.com//assets/62056
https://learn.adafruit.com//assets/62056
https://github.com/adafruit/Adafruit_Seesaw
https://learn.adafruit.com/adafruit-crickit-creative-robotic-interactive-construction-kit/arduino-code


// on a live circuit...if you must, connect GND first.

void setup() {

  Serial.begin(115200);

  

  while (!Serial) delay(10);   // wait until serial port is opened

  

  if(!strip.begin()){

    Serial.println("seesaw not found!");

    while(1) delay(10);

  }

  

  Serial.println(F("seesaw started OK!"));

  

  strip.show(); // Initialize all pixels to 'off'

}

void loop() {

  // Some example procedures showing how to display to the pixels:

  colorWipe(strip.Color(255, 0, 0), 50); // Red

  colorWipe(strip.Color(0, 255, 0), 50); // Green

  colorWipe(strip.Color(0, 0, 255), 50); // Blue

//colorWipe(strip.Color(0, 0, 0, 255), 50); // White RGBW

  // Send a theater pixel chase in...

  theaterChase(strip.Color(127, 127, 127), 50); // White

  theaterChase(strip.Color(127, 0, 0), 50); // Red

  theaterChase(strip.Color(0, 0, 127), 50); // Blue

  rainbow(20);

  rainbowCycle(20);

  theaterChaseRainbow(50);

}

// Fill the dots one after the other with a color

void colorWipe(uint32_t c, uint8_t wait) {

  for(uint16_t i=0; i<strip.numPixels(); i++) {

    strip.setPixelColor(i, c);

    strip.show();

    delay(wait);

  }

}

void rainbow(uint8_t wait) {

  uint16_t i, j;

  for(j=0; j<256; j++) {

    for(i=0; i<strip.numPixels(); i++) {

      strip.setPixelColor(i, Wheel((i+j) & 255));

    }

    strip.show();

    delay(wait);

  }

}

// Slightly different, this makes the rainbow equally distributed throughout

void rainbowCycle(uint8_t wait) {

  uint16_t i, j;

  for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel

    for(i=0; i< strip.numPixels(); i++) {

      strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));

    }

    strip.show();

    delay(wait);

  }

}

//Theatre-style crawling lights.

void theaterChase(uint32_t c, uint8_t wait) {

©Adafruit Industries Page 176 of 183



  for (int j=0; j<10; j++) {  //do 10 cycles of chasing

    for (int q=0; q < 3; q++) {

      for (uint16_t i=0; i < strip.numPixels(); i=i+3) {

        strip.setPixelColor(i+q, c);    //turn every third pixel on

      }

      strip.show();

      delay(wait);

      for (uint16_t i=0; i < strip.numPixels(); i=i+3) {

        strip.setPixelColor(i+q, 0);        //turn every third pixel off

      }

    }

  }

}

//Theatre-style crawling lights with rainbow effect

void theaterChaseRainbow(uint8_t wait) {

  for (int j=0; j < 256; j++) {     // cycle all 256 colors in the wheel

    for (int q=0; q < 3; q++) {

      for (uint16_t i=0; i < strip.numPixels(); i=i+3) {

        strip.setPixelColor(i+q, Wheel( (i+j) % 255));    //turn every third pixel 

on

      }

      strip.show();

      delay(wait);

      for (uint16_t i=0; i < strip.numPixels(); i=i+3) {

        strip.setPixelColor(i+q, 0);        //turn every third pixel off

      }

    }

  }

}

// Input a value 0 to 255 to get a color value.

// The colours are a transition r - g - b - back to r.

uint32_t Wheel(byte WheelPos) {

  WheelPos = 255 - WheelPos;

  if(WheelPos < 85) {

    return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);

  }

  if(WheelPos < 170) {

    WheelPos -= 85;

    return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);

  }

  WheelPos -= 170;

  return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);

}

Hacks & Upgrades 

Speeding up many requests from Raspberry Pi to CRICKIT

If your project is making a large number of requests from your Raspberry Pi to

CRICKIT, the speed of the I2C connection between boards may be an issue.

Fortunately this can be changed.

©Adafruit Industries Page 177 of 183



For the best performance, you'll want to consider tweaking the I2C core to run at

1MHz. By default it may be 100KHz or 400KHz

To do this edit the config with sudo nano /boot/config.txt

and add to the end of the file

dtparam=i2c_baudrate=1000000

Brown Outs?

The power supply on the Crickit will let you draw 4 Amps at once, which is a lot. But

perhaps you are turning on all the motors at once, causing the power supply to

flicker? An extra large capacitor on the 5V and GND pads may help smooth out that

power draw!

Use a large electrolytic capacitor, rated for 10V or higher. Even though the power

supply is 5V, you may think you can use a 6.3V capacitor, but you want at least 2x the

voltage rating if possible so stick to 10V!

 

©Adafruit Industries Page 178 of 183



4700uF 10v Electrolytic Capacitor 

This Big Freaking Capacitor is just the

trick when you have a lot of current

sloshing around your project. They'll help

smooth out voltage spikes by providing a

little buffering....

https://www.adafruit.com/product/1589 

Connect the capacitor using the NeoPixel terminal blocks. The 5V and GND lines are

shared across the board so even if its a DC motor or servo causing the issues, this will

help! It's just the most convenient place to attach a large capacitor because the two

terminal blocks are nicely spaced.

 

Connect the capacitor using the NeoPixel

terminal blocks. The 5V and GND lines are

shared across the board so even if its a

DC motor or servo causing the issues, this

will help!

 

Connect the Positive (longer leg) to 5V

and the Negative (shorter leg) to GND

F.A.Q. 

Why did you misspell "Cricket"?

We wanted a unique name, inspired by the original Cricket robotics platform from

MIT (https://adafru.it/PhF) (which then became the PicoCricket (https://adafru.it/

Pia)), but not with the exact same name!

My code gives the following error in the REPL/Serial window:

The code from adafruit_crickit import crickit  always throws

Traceback (most recent call last):

File "code.py", line 1, in 

©Adafruit Industries Page 179 of 183

https://www.adafruit.com/product/1589
https://www.adafruit.com/product/1589
https://learn.adafruit.com//assets/53986
https://learn.adafruit.com//assets/53986
http://cricket.csail.mit.edu/
http://cricket.csail.mit.edu/
https://en.wikipedia.org/wiki/Programmable_Cricket


File "adafruit_crickit.py", line 66, in 

MemoryError: memory allocation failed, allocating 152 bytes

CircuitPython will pull in libraries from /lib on the device before looking for any "baked

in" ("Frozen" libraries) in the main CircuitPython code. If you are using, for example,

the Circuit Playground Express + Crickit build of CircuitPython and you also have the a

dafruit_crickit and/or adafruit_seesaw libraries in /lib, CircuitPython will load the /lib

version and still have the frozen version in memory. Your program will quickly run out

of memory on the Circuit Playground Express.

The fix is fairly easy. Only put the libraries you need in the /lib folder of your CIRCUITP

Y drive. For Crickit, use the special Crickit builds of CircuitPython and be sure that the

libraries adafruit_crickit and adafruit_seesaw are not in your /lib folder. You still have

that functionality, but they are already loaded due to the special build.

Downloads 

Files

PCB Files on GitHub (https://adafru.it/BEj) 

Fritzing objects in Adafruit Fritzing Library (https://adafru.it/aP3) 

Datasheets

TPS259573 eFuse power supply protection chip (https://adafru.it/Bfj) 

DRV8833 DC motor driver chip (https://adafru.it/Bfk) 

ULN2003A Darlington driver chip (https://adafru.it/Bfl) 

Circuit Playground Crickit Schematics

Click to embiggen

• 

• 

• 

• 

• 

©Adafruit Industries Page 180 of 183

https://github.com/adafruit/Adafruit_Crickit_PCBs
https://github.com/adafruit/Fritzing-Library
http://www.ti.com/product/TPS2595
http://www.ti.com/product/DRV8833
http://www.ti.com/product/ULN2003A


 

 

 

©Adafruit Industries Page 181 of 183



Crickit HAT Schematics

 

 

©Adafruit Industries Page 182 of 183



 

©Adafruit Industries Page 183 of 183


	Introducing Adafruit Crickit #MakeRobotFriend
	Table of Contents
	Overview
	Crickit Tour
	Update Your Crickit
	Powering Crickit
	Assembly
	Troubleshooting Crickit
	Recommended Motors
	Recommended Chassis
	Recommended Servos
	Recommended Speakers
	Recommended Drives
	Recommended Capacitive Touch
	Programming Options
	MakeCode
	MakeCode Servos
	MakeCode Drives
	MakeCode DC Motors
	MakeCode Steppers
	MakeCode Signals
	MakeCode Touch
	MakeCode Audio
	MakeCode NeoPixels
	CircuitPython Code
	CircuitPython Servos
	CircuitPython Drives
	CircuitPython DC Motors
	CircuitPython Steppers
	CircuitPython Signals
	CircuitPython Touch
	CircuitPython Audio
	CircuitPython NeoPixels
	Python Docs
	CircuitPython Examples
	Bubble Bot
	Feynman Simulator
	Slime Night
	Flying Trapeze
	R.O.B. GyroBot
	Gear Tower
	CPX-1701
	Mag Neat-o
	(Don't Fear) The Crickit
	Arduino Code
	Arduino Servos
	Arduino Drives
	Arduino DC Motors
	Arduino Signals
	Arduino Capacitive Touch
	Arduino NeoPixels
	Hacks & Upgrades
	F.A.Q.
	Downloads


	Overview
	Crickit Tour
	Power Input
	4 x Hobby Servos
	2 x DC Motors
	4 x High Power Drivers
	8 x Signal I/O
	4 x Capacitive Touch
	NeoPixel Drive
	Speaker Drive
	Connecting Your Microcontroller to your Crickit Board
	seesaw USB Debug and Indicators
	Update Your Crickit
	Step 1. Plug in USB cable into seesaw/Crickit

	Step 2. Double-click the Crickit Reset button
	Step 3. Look for pulsing yellow LED and green NeoPixel
	Step 4. Look for a New Disk on Your Computer
	Step 5. Download the latest firmware
	Step 6. Drag UF2 file onto CRICKITBOOT
	Powering Crickit
	How to Power your Crickit
	Plug In DC Power Supplies
	AA Battery Packs
	4 x AA Battery Packs for NiMH ONLY
	3 x AA Battery Packs for Alkaline ONLY

	Not Recommended Power supplies
	Assembly
	Troubleshooting Crickit
	My Crickit Is Doing Something Wrong
	My Crickit Motors Aren't Moving!
	My Crickit Keeps Resetting, It Works For a Bit... Then Fails!
	HELP! My Crickit isn't working in MakeCode, and in Python I see a message "No I2C Device at Address: 49"
	Python: No Pullups found on SDL and SCL
	micro:bit Crickit does not work

	Recommended Motors
	DC Gearbox Motors
	Servo-style DC motor
	Non-Geared DC Motor
	Recommended Chassis
	Recommended Servos
	Servo Extensions
	Popular plastic-gear servos
	Continuous Rotation Servos
	High Torque Servos
	Recommended Speakers
	4Ω Speakers
	8Ω Speakers
	Wall or Bone Transducers
	Recommended Drives
	Solenoids
	Vibration Motors
	Recommended Capacitive Touch
	Programming Options
	Crickit with Circuit Playground Express
	Crickit with Feather M0/M4 Express CircuitPython Supported Feather
	Crickit with micro:bit Support
	Crickit HAT for Raspberry Pi

	MakeCode
	Get Comfy With MakeCode
	Adding Crickit Extension
	For Circuit Playground Express and Feather Crickit (micro:bit is below)
	For micro:bit Crickit

	MakeCode Servos
	Precise Pulses
	MakeCode Drives
	Changing the Drive Analog/PWM Frequency
	MakeCode DC Motors
	Setting Motor Speed
	MakeCode Steppers
	MakeCode for Using a Stepper on the Motor Port
	Move the Motor Port Stepper One Direction Forever

	Using a Stepper on the Drive Port in MakeCode
	Move the Drive Port Stepper One Direction Forever

	MakeCode Signals
	Using Signals in MakeCode
	Digital Reads and Writes
	Analog Reads
	For Crickit and Circuit Playground Express
	For Crickit and micro:bit

	MakeCode Touch
	Example for Crickit plus Circuit Playground Express or Feather
	Example for Crickit and micro:bit

	MakeCode Audio
	Amplifier Details
	Playing Sounds on Crickit with MakeCode
	Circuit Playground and Feather Crickit Version (micro:bit below)
	micro:bit Version

	MakeCode NeoPixels
	MakeCode for Crickit NeoPixels
	Using the Crickit Onboard Single NeoPixel
	Crickit for Circuit Playground Express and Feather (micro:bit is below)
	For micro:bit + Crickit
	For More Information

	CircuitPython Code
	Install CPX Special Build
	CircuitPython Servos
	Test Servos
	Control Servo

	More Servos!
	Min/Max Pulse control
	Continuous Rotation Servos
	Disconnecting Servos or Custom Pulses
	CircuitPython Drives
	Test Drive
	Set PWM Frequency
	Control Drive Output

	More Drivers!
	CircuitPython DC Motors
	Import Libraries
	Control Motor

	CircuitPython Steppers
	Bi-Polar or Uni-Polar Motor Port
	Uni-Polar Only Drive Port
	CircuitPython Signals
	Digital Pin Modes
	Digital Read
	Digital Write
	Analog Reads
	CircuitPython Touch
	CircuitPython Audio
	Audio File Formats
	Amplifier Details
	Basic Audio Playback
	Import Libraries
	Create wave file and audio output

	Interactive Audio
	CircuitPython NeoPixels
	NeoPixels with Circuit Playground Express + Crickit
	NeoPixels and the Crickit FeatherWing or Crickit Hat
	Crickit for micro:bit
	For More Information

	Python Docs
	CircuitPython Examples
	Bubble Bot
	Parts List
	Wiring Diagram
	Code
	Feynman Simulator
	Parts List
	Wiring Diagram
	Code
	Slime Night
	How to Make Slime
	Parts Used
	Wiring Diagram
	CircuitPython Code
	Flying Trapeze
	Parts List
	Wiring
	Boot.py
	CircuitPython Code
	R.O.B. GyroBot
	Parts List
	Wiring Diagram
	Code!
	Gear Tower
	Parts List
	Wiring
	CircuitPython Code For "Force Wave" demo
	CircuitPython Code For "Theremin" demo
	CPX-1701
	Parts List
	Wiring Diagram
	CircuitPython Code
	Mag Neat-o
	Parts List
	Wiring Diagram
	Code!
	(Don't Fear) The Crickit
	Parts List
	Wiring Diagram
	CircuitPython Code
	Arduino Code
	Download Adafruit_Seesaw library
	Arduino with micro:bit
	Pin Definitions for Seesaw and Crickit

	Arduino Servos
	Test Servos
	More Servos!
	Min/Max Pulse control
	Continuous Rotation Servos
	Disconnecting Servos or Custom Pulses
	Arduino Drives
	Test Drive
	More Drivers!
	Arduino DC Motors
	Arduino Signals
	Arduino Capacitive Touch
	Arduino NeoPixels
	Crickit for Circuit Playground Express
	Crickit Wing for Feather
	Crickit for micro:bit
	Crickit HAT for Raspberry Pi
	Advanced Use - Using Seesaw to Control NeoPixels

	Hacks & Upgrades
	Speeding up many requests from Raspberry Pi to CRICKIT
	Brown Outs?

	F.A.Q.
	Why did you misspell "Cricket"?

	Downloads
	Files
	Datasheets
	Circuit Playground Crickit Schematics
	Crickit HAT Schematics

