
ACCELERATION SENSOR WSEN-ITDS USER MANUAL

2533020201601

VERSION 1.3

OCTOBER 10, 2019

Revision history

Manual version	Product version	Notes	Date
1.0	1.0	<ul style="list-style-type: none">Initial release of the manual	April 2019
1.1	1.0	<ul style="list-style-type: none">Additional table in the register description chapter	May 2019
1.2	1.0	<ul style="list-style-type: none">Device ID changed in the chapter 7.3.1	July 2019
1.3	1.0	<ul style="list-style-type: none">Chapter 2.3 Current consumption in power down mode changed to nA	October 2019

Abbreviations

Abbreviation	Description
BDU	Block update data
DRDY	Data ready
DC	Direct current
ESD	Electrostatic discharge
FIFO	First-in first-out
I ² C	Inter integrated circuit
LGA	Land grid array
MEMS	Micro-Electro Mechanical system
MSB	Most significant bit
ODR	Output data rate
PCB	Printed circuit board
LSB	Least significant bit

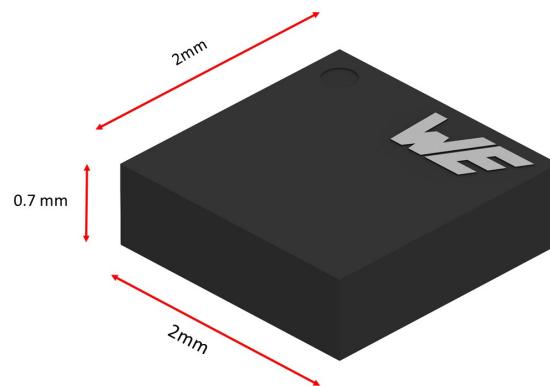
Contents

1 Product description	7
1.1 Introduction	7
1.2 Applications	7
1.3 Sensor features	7
1.4 Block diagram	8
1.5 Ordering information	8
2 Sensor and electrical specifications	9
2.1 Acceleration sensor specifications	9
2.1.1 Acceleration sensitivity parameter	10
2.2 Temperature sensor specifications	10
2.3 Electrical specifications	11
2.4 Absolute maximum rating	12
2.5 General information	12
3 Pinning description	13
4 Application circuit	14
5 Digital interface	15
5.1 General characteristics	15
5.2 SDA and SCL logic levels	16
5.3 Communication phase	16
5.3.1 Idle state	16
5.3.2 START(S) and STOP(P) condition	16
5.3.3 Data validity	17
5.3.4 Byte format	17
5.3.5 Acknowledge(ACK) and No-Acknowledge(NACK)	17
5.3.6 Slave address for the sensor	18
5.3.7 Read/Write operation	19
5.4 I ² C timing parameters	20
6 Sensor specific parameters	21
6.1 Sensitivity	21
6.2 0 g Level offset	21
6.3 Noise density	21
7 Quick start guide	22
7.1 Power supply	22
7.2 Boot status	22
7.2.1 Soft reset	23
7.3 Flow chart	23
7.3.1 Communication check	23
7.3.2 Sensor in operation	24
8 Operating modes	26
8.1 High performance mode	26
8.2 Normal mode	26

8.3	Low power mode	26
8.4	Single data conversion mode	27
9	Output data rate	30
10	Acceleration bandwidth and filtering chain	31
10.1	Low pass filter_1	33
10.2	Low pass filter_1 + Low pass filter_2	33
10.3	Low pass filter_1 + High pass filter	34
10.4	User offset	34
10.5	High pass filter path	34
	10.5.1 Reference mode	35
11	First-In First-Out (FIFO) buffer	36
11.1	Bypass mode	37
11.2	FIFO mode	38
11.3	Continuous mode	39
11.4	Continuous to FIFO mode	40
11.5	Bypass to continuous mode	41
11.6	Understanding FIFO samples and interrupts	42
	11.6.1 FIFO samples	42
	11.6.2 FIFO interrupts	43
	11.6.2.1 FIFO threshold (FIFO_FTH bit)	43
	11.6.2.2 FIFO full (Diff5 bit)	43
	11.6.2.3 FIFO overrun (FIFO_OVR)	43
11.7	How to read data from FIFO Buffer	43
12	Interrupt pin and functionality	45
12.1	INT_0 and INT_1	45
12.2	Data ready - DRDY	46
13	Application specific sensor features	47
13.1	Single tap/Double tap	47
13.2	Activity/Inactivity	47
13.3	Stationary/Motion	47
13.4	6D Orientation	47
13.5	Wake-Up	47
13.6	Free-Fall	47
14	Self test	48
15	Sensor output data	50
15.1	Acceleration sensor	50
15.2	Temperature sensor	51
16	Register mapping	53
17	Register description	54
17.1	T_OUT_L (0x0D)	54
17.2	T_OUT_H (0x0E)	54

17.3	Device_ID (0x0F)	55
17.4	CTRL_1 (0x20)	55
17.5	CTRL_2 (0x21)	56
17.5.1	Block data update (BDU)	57
17.6	CTRL_3 (0x22)	57
17.7	CTRL_4 (0x23)	58
17.8	CTRL_5 (0x24)	59
17.9	CTRL_6 (0x25)	60
17.10	T_OUT (0x26)	60
17.11	STATUS (0x27)	61
17.12	X_OUT_L (0x28)	62
17.13	X_OUT_H (0x29)	62
17.14	Y_OUT_L (0x2A)	63
17.15	Y_OUT_H (0x2B)	63
17.16	Z_OUT_L (0x2C)	64
17.17	Z_OUT_H (0x2D)	64
17.18	FIFO_CTRL (0x2E)	64
17.19	FIFO_SAMPLES (0x2F)	65
17.20	TAP_X_TH (0x30)	65
17.21	TAP_Y_TH (0x31)	66
17.22	TAP_Z_TH (0x32)	67
17.23	INT_DUR (0x33)	67
17.24	WAKE_UP_TH (0x34)	68
17.25	WAKE_UP_DUR (0x35)	68
17.26	FREE_FALL (0x36)	69
17.27	STATUS_DETECT (0x37)	70
17.28	WAKE_UP_EVENT (0x38)	71
17.29	TAP_EVENT (0x39)	72
17.30	6D_EVENT (0x3A)	73
17.31	ALL_INT_EVENT (0x3B)	74
17.32	X_OFS_USR (0x3C)	75
17.33	Y_OFS_USR (0x3D)	75
17.34	Z_OFS_USR (0x3E)	75
17.35	CTRL_7 (0x3F)	76
18	Physical dimensions	77
18.1	Module drawing	77
18.2	Footprint	78
18.3	Measurement axis of the sensor	78
19	Manufacturing information	79
19.1	Moisture sensitivity level	79
19.2	Soldering	79
19.2.1	Reflow soldering	79
19.2.2	Cleaning and washing	81
19.2.3	Potting and coating	81
19.2.4	Storage conditions	81
19.2.5	Handling	81

20 Important notes	83
20.1 General customer responsibility	83
20.2 Customer responsibility related to specific, in particular safety-relevant applications	83
20.3 Best care and attention	83
20.4 Customer support for product specifications	83
20.5 Product improvements	84
20.6 Product life cycle	84
20.7 Property rights	84
20.8 General terms and conditions	84
21 Legal notice	85
21.1 Exclusion of liability	85
21.2 Suitability in customer applications	85
21.3 Usage restriction	85
22 License terms for Würth Elektronik eiSos GmbH & Co. KG sensor product software and source code	87
22.1 Limited license	87
22.2 Usage and obligations	87
22.3 Ownership	88
22.4 Disclaimer of warranty	88
22.5 Limitation of liability	88
22.6 Applicable law and jurisdiction	88
22.7 Severability clause	89
22.8 Miscellaneous	89


1 Product description

1.1 Introduction

The acceleration sensor is a 14-bit digital ultra-low-power and high-performance three-axis linear accelerometer with digital output interface. It measures user selectable acceleration range of $\pm 2g$, $\pm 4g$, $\pm 8g$, $\pm 16g$ with an output data rate up to 1600 Hz. It consists of a 32 level FIFO buffer to store the output data. It is embedded with a temperature sensor for ambient temperature measurement. The sensor is capable of detecting events like free fall, tap recognition, wake up, stationary/motion, activity/inactivity and 6D orientation. The dimension of the sensor is 2.0 mm×2.0 mm×0.7 mm. It is available in land grid array package (LGA).

1.2 Applications

- Industrial IoT and connected devices
- Industrial tools and factory equipment
- Vibration monitoring
- Tilt/inclination measurements
- Impact recognition and logging

1.3 Sensor features

• Selectable full scale:	$\pm 2g$, $\pm 4g$, $\pm 8g$, $\pm 16g$
• Output data rate:	Up to 1600 Hz
• Bandwidth:	400 Hz
• Operating modes:	High performance, normal, low power
• Noise density:	$90 \mu g / \sqrt{Hz}$ High performance mode: $155 \mu A$ Normal mode: $58 \mu A$ Low power mode: $16 \mu A$
• Current consumption:	
• FIFO:	32-Level
• Communication interface:	I ² C, two independent interrupt pins
• Motion detection functionality:	Free-fall, wake-up, tap, activity, motion, orientation: 4D/6D/portrait/landscape
• Embedded temperature sensor	
• Single data conversion on demand	
• Self-test functionality	

1.4 Block diagram

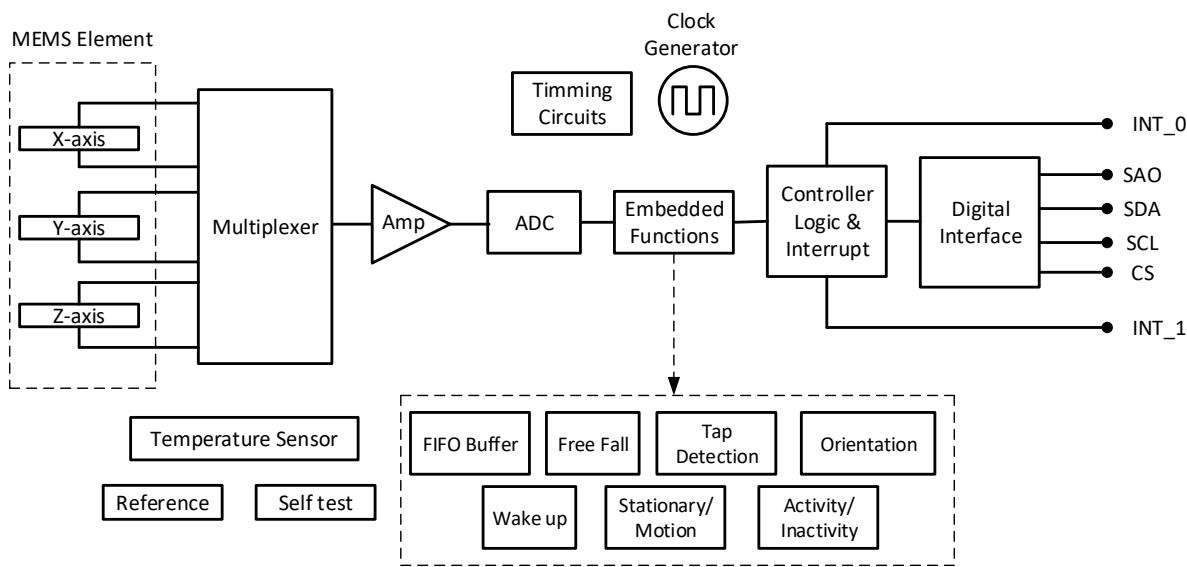


Figure 1: Block diagram

The sensor is a MEMS based capacitive acceleration sensor with an integrated ASIC. The MEMS element is capable of measuring both dynamic acceleration due to motion or vibration and also static acceleration due to gravity. The sensor measures the acceleration or vibration through MEMS capacitive sensing principle. The MEMS element consists of a fixed structure and movable structure. The movable structure is free to move in the direction of acceleration applied i.e. X, Y and Z direction. The force induced on the MEMS element produces change in the capacitance value that is proportional to the force exerted on it. Without any force on the sensor the capacitors will have a nominal capacitance value in the range of picofarad (pF). When an acceleration is applied, the change in the capacitance value is induced in the range of femtofarad (fF). The induced analog signal is converted to digital form using an analog to digital converter followed by filters and controller logic blocks. The final acceleration data from the output register can be accessed through an I²C digital communication interface using host processor.

1.5 Ordering information

WE order code	Temperature Range	Description
2533020201601	-40 °C to +85 °C	Tape & reel packaging

Table 1: Ordering information

2 Sensor and electrical specifications

T=25 °C, supply voltage VDD = 3.3V, unless otherwise stated.

2.1 Acceleration sensor specifications

Parameters	Symbol	Test conditions	Min. ¹	Typ.	Max. ¹	Unit
Axis					3	
Measurement range	a _{RANGE}	User selectable		±2,±4,±8,±16		g
Output data rate	ODR	User selectable	1,6		1600	Hz
Bandwidth	f _{BW}	User selectable	0,08		400	Hz
Resolution	RES _a	High performance / normal mode			14	bits
	RES _a	Low power mode			12	bits
Sensitivity accuracy	SEN _{a_ACC}		-3		+3	%
Sensitivity change over temperature	SEN _{a_TC}			0.01		%/°C
Noise density ²	n _D	High performance mode, ±2g, ODR 200 Hz, Low noise bit enabled		90	160	µg /√Hz
0g Offset accuracy ³	a _{OFF}		-30	±20	+30	mg
0g Offset change over temperature	a _{TCO}		-1	±0.2	+ 1	mg /°C
Resonant frequency	f _{res_X}	X		3.4		kHz
	f _{res_Y}	Y		3.4		kHz
	f _{res_Z}	Z		2.8		kHz

Table 2: Acceleration sensor specification

g: unit of acceleration, 1g = 9.81 m/s²

¹ Minimum and maximum values are based on characterization at 3σ.

² Noise density is same for all ODRs. Low noise setting enabled.

³ Values after calibration test and trimming.

2.1.1 Acceleration sensitivity parameter

Parameters	Symbol	Test conditions	Min. ¹	Typ.	Max. ¹	Unit
Sensitivity ($\pm 2g$) ²	SEN _a	High performance / Normal mode		0.244		mg /digit
Sensitivity ($\pm 4g$) ²	SEN _a	High performance / Normal mode		0.488		mg /digit
Sensitivity ($\pm 8g$) ²	SEN _a	High performance / Normal mode		0.976		mg /digit
Sensitivity ($\pm 16g$) ²	SEN _a	High performance / Normal mode		1.952		mg /digit
Sensitivity ($\pm 2g$) ²	SEN _a	Low power mode		0.976		mg /digit
Sensitivity ($\pm 4g$) ²	SEN _a	Low power mode		1.952		mg /digit
Sensitivity ($\pm 8g$) ²	SEN _a	Low power mode		3.904		mg /digit
Sensitivity ($\pm 16g$) ²	SEN _a	Low power mode		7.808		mg /digit

Table 3: Acceleration sensitivity parameter

¹ Minimum and maximum values are based on characterization at 3σ .

² Sensitivity values after factory calibration test and trimming.

2.2 Temperature sensor specifications

Parameters	Symbol	Test conditions	Min. ¹	Typ.	Max. ¹	Unit
Measurement range	T _{RANGE}		-40		+85	°C
Sensitivity	SEN _{T_8bit}	8 bit resolution		1		°C/LSB
	SEN _{T_12bit}	12 bit resolution		0.0625		°C/LSB
Offset	T _{OFF}		-15		+15	°C

Table 4: Temperature sensor specification

¹ Minimum and maximum values are based on characterization at 3σ .

2.3 Electrical specifications

Parameters	Symbol	Test conditions	Min. ¹	Typ.	Max. ¹	Unit
Operating supply voltage	V_{DD}		1.7	3.3	3.6	V
Operating supply voltage for I/O pins	V_{DD_IO}		1.7		$V_{DD} + 0.1$	V
Current consumption in high performance mode	I_{DD_HP}	ODR 200 Hz		155		μA
Current consumption in normal mode	I_{DD_NM}	ODR 200 Hz		58		μA
Current consumption in low power mode	I_{DD_LP}	ODR 200 Hz		16		μA
Current consumption in power down mode	I_{DD_PD}				100	nA
Digital input voltage - high-level	V_{IH}		$0.8 * V_{DD_IO}$			V
Digital input voltage - low-level	V_{IL}				$0.2 * V_{DD_IO}$	V
Digital output voltage - high-level	V_{OH}	$I_{OH} = 4$ mA ²	$V_{DD_IO} - 0.2$			V
Digital output voltage - low-level	V_{OL}	$I_{OL} = 4$ mA ²			0.2	V

Table 5: Electrical specification

¹ Minimum and maximum values are based on characterization at 3σ .

² 4 mA is the maximum driving capability i.e. the maximum DC current that can be sourced/-sunk by digital pin in order to guarantee correct digital output voltage levels V_{OH} and V_{OL} .

2.4 Absolute maximum rating

Parameter	Symbol	Test conditions	Min. ¹	Max. ¹	Unit
Input voltage V_{DD} pin	V_{DD_Max}		-0.3	4.8	V
Input voltage V_{DD_IO} pin	$V_{DD_IO_Max}$		-0.3	4.8	V
Input voltage SDA , SCL , CS & SAO pins	V_{IN_Max}		-0.3	$V_{DD_IO} + 0.3$	V
Acceleration	a_{MAX}	for 0.5 ms		3000	g

Table 6: Absolute maximum rating

¹ Minimum and maximum values are based on characterization at 3σ .

Supply voltage on any pin should never exceed 4.8 V

2.5 General information

Parameters	Values
Operating temperature	-40 °C to +85 °C
Storage temperature	-40 °C to +125 °C
Communication interface	I ² C
Moisture sensitivity level (MSL)	3
Electrostatic discharge protection(HBM)	2 kV

Table 7: General information

The device is susceptible to damage by electrostatic discharge (ESD). Always use proper ESD precautions when handling. Improper handling of the device can cause performance degradation or permanent damage to the part

3 Pinning description

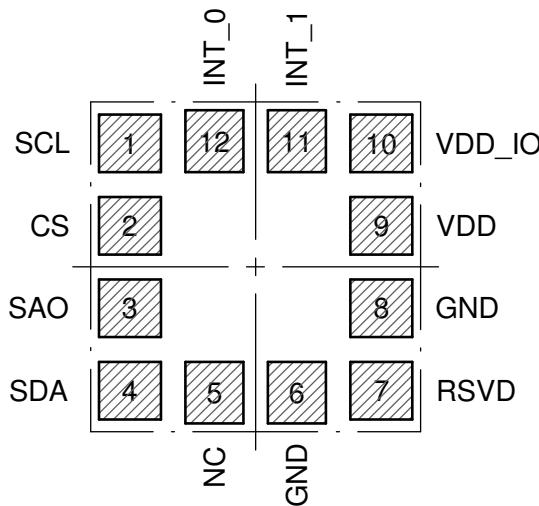


Figure 2: Pinout (top view)

No	Function	Description	Input/Output
1	<i>SCL</i>	I^2C serial clock	Input
2	<i>CS</i>	I^2C enable/disable	Input
3	<i>SAO</i>	I^2C device address selection	Input
4	<i>SDA</i>	I^2C serial data	Input/Output
5	<i>NC</i>	No connection	-
6	<i>GND</i>	Negative supply voltage	Supply
7	<i>RSVD</i>	Reserved, connect to GND	Input
8	<i>GND</i>	Negative supply voltage	Supply
9	<i>VDD</i>	Positive supply voltage	Supply
10	<i>VDD_IO</i>	Positive supply voltage for I/O pins	Supply
11	<i>INT_1</i>	Interrupt pin 1	Input/Output
12	<i>INT_0</i>	Interrupt pin 0	Output

Table 8: Pin description

4 Application circuit

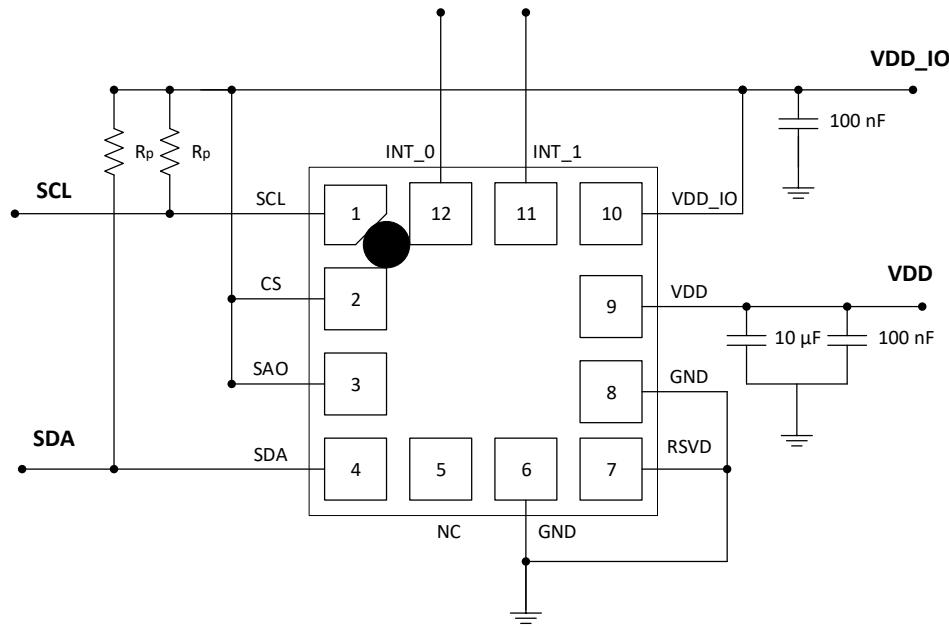


Figure 3: Electrical connection (top view)

A positive supply voltage is applied to the sensor through *VDD* pin and I/O supply voltage for digital interface through *VDD_IO*. The decoupling capacitor of 100 nF and 10μF in parallel is highly recommended and should be placed as close as possible to the *VDD* pin. The communication to the sensor is still possible, even if the supply voltage to the *VDD* pin is removed but maintaining the *VDD_IO*. In this case, measurement process of the sensor is not active.

The *CS* pin should be connected to *VDD_IO* in order to enable the I²C communication interface. It is possible to have two I²C slave addresses by connecting *SAO* pin either to *VDD_IO* or *GND*. In the above connection the *SAO* pin is connected to *VDD_IO*. *R_p* are the recommended pull up resistors for I²C communication interface which should be connected parallel between I/O supply voltage *VDD_IO* and *SCL* and *SDA* pins.

The *SAO* and *CS* pins are internally pulled up. The internal pull up resistor values of *SAO* and *CS* pins for different supply voltage of the I/O pins are given below in table 9.

<i>VDD_IO</i>	Resistor value of <i>SAO</i> and <i>CS</i> (Typ.)
1.7V	54.4 KΩ
1.8V	49.2 KΩ
2.5V	30.4 KΩ
3.6V	20.4 KΩ

Table 9: Internal pull up values (typ) for *SAO* and *CS* pins

5 Digital interface

The acceleration sensor supports standard I²C (Inter-IC) bus protocol. Further information of the I²C interface can be found at <https://www.nxp.com/docs/en/user-guide/UM10204.pdf>. I²C is a serial 8-bit protocol with two-wire interface which supports communication between different ICs. For example, between the microcontroller and other peripheral devices.

5.1 General characteristics

A serial data line (*SDA*) and a serial clock line (*SCL*) are required for the communication between the devices connected via I²C bus. Both *SDA* and *SCL* lines are bidirectional. The output stages of devices connected to the bus must have an open-drain or open-collector. Hence, the *SDA* and *SCL* lines are connected to a positive supply voltage via pull-up resistors. In I²C protocol, the communication is realized through master-slave principle. The master device generates the clock pulse, a start command and a stop command for the data transfer. Each connected device on the bus is addressable via a unique address. Master and slave can act as a transmitter or a receiver depending upon whether the data needs to be transmitted or received.

The sensor behaves like a slave device on the I²C bus

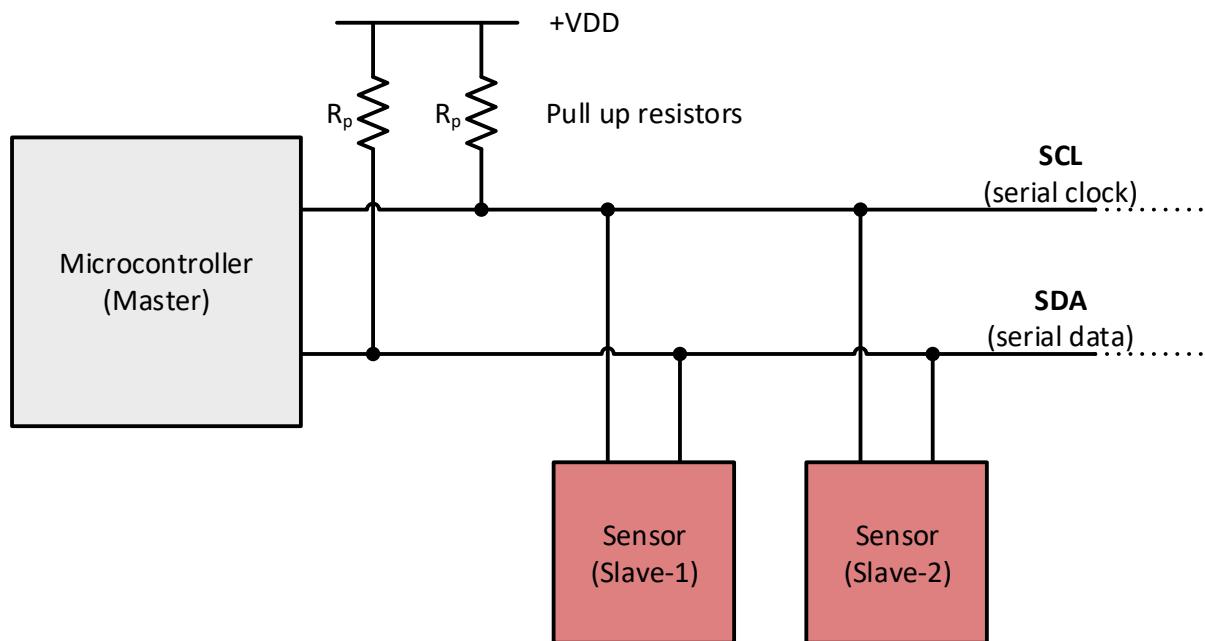


Figure 4: Master-slave concept

5.2 *SDA* and *SCL* logic levels

The positive supply voltage to which *SDA* and *SCL* lines are pulled up (through pull-up resistors), in turn determines the high level input for the slave devices. The sensor has separate supply voltage *VDD_{IO}* for the *SDA* and *SCL* lines. The logic high '1' and logic low '0' levels for the *SDA* and *SCL* lines then depend on the *VDD_{IO}*. Input reference levels for the acceleration sensor are set as $0.8 * VDD_{IO}$ (for logic high) and $0.2 * VDD_{IO}$ (for logic low). See in figure 5.

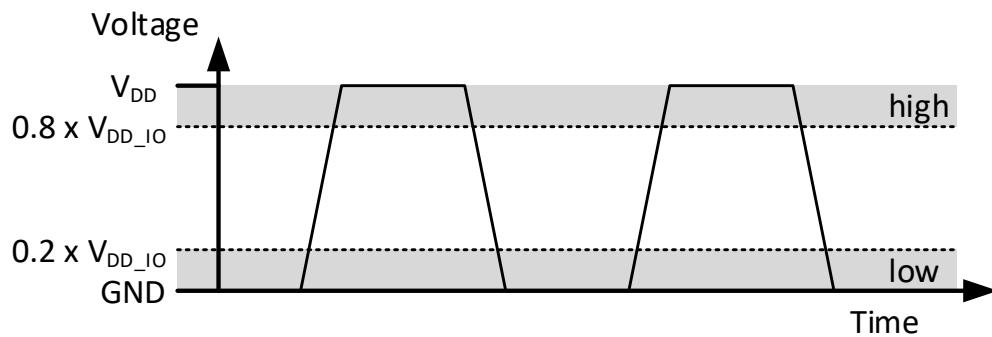


Figure 5: *SDA* and *SCL* logic levels

5.3 Communication phase

5.3.1 Idle state

During the idle state, the bus is free and both *SDA* and *SCL* lines are in logic high '1' state.

5.3.2 START(S) and STOP(P) condition

Data transfer on the bus starts with a START command, which is generated by the master. A start condition is defined as a high-to-low transition on the *SDA* line while the *SCL* line is held high. The bus is considered busy after the start condition.

Data transfer on the bus is terminated with a STOP command, which is also generated by the master. A low-to-high transition on the *SDA* line, while the *SCL* line being high is defined as a STOP condition. After the stop condition, the bus is again considered free and is in idle state. Figure 6 shows the I²C bus START and STOP conditions.

Master can also send a REPEATED START (SR) command instead of STOP command. REPEATED START condition is same as the START condition.

5.3.3 Data validity

After the start condition, one data bit is transmitted with each clock pulse. The transmitted data is only valid when the *SDA* line data is stable (high or low) during the high period of the clock pulse. High or low state of the data line can only change when the clock pulse is in low state.

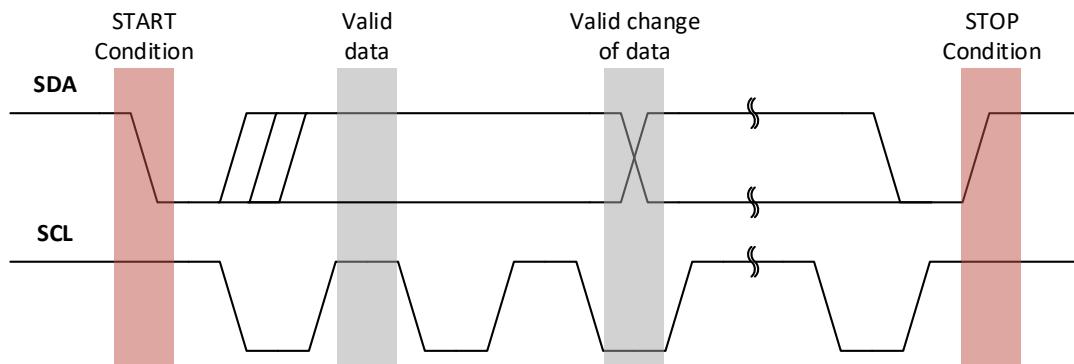


Figure 6: Data validity, START and STOP condition

5.3.4 Byte format

Data transmission on the *SDA* line is always done in bytes, with each byte being 8-bits long. Data is transmitted with the most significant bit (MSB) followed by other bits.

If the slave cannot receive or transmit another complete byte of data, it can force the master into a wait state by holding *SCL* LOW. Data transfer continues when the slave is ready which is indicated by releasing the *SCL* pin.

5.3.5 Acknowledge(ACK) and No-Acknowledge(NAACK)

Each byte transmitted on the data line must follow an Acknowledge bit. The receiver (master or slave) generates an Acknowledge signal to indicate that the data byte was received successfully and ready to receive next data byte.

After one byte is transmitted, the master generates an additional Acknowledge clock pulse to continue the data transfer. The transmitter releases the *SDA* line during this clock pulse so that the receiver can pull the *SDA* line to low state in such a way that the *SDA* line remains stable low during the entire high period of the clock pulse. It is considered as an Acknowledge signal.

If the receiver does not want to receive any further byte, it will not pull down the *SDA* line and it remains in stable high state during the entire clock pulse. It is considered as a No-Acknowledge signal and the master can generate either a stop condition to terminate the data transfer or a repeated start condition to initiate a new data transfer.

5.3.6 Slave address for the sensor

The slave address is transmitted after sending the start condition. Each device on the I²C bus has a unique address. Master selects the slave by sending corresponding slave address after the start condition. A slave address is a 7 bits long followed by a Read/Write bit.

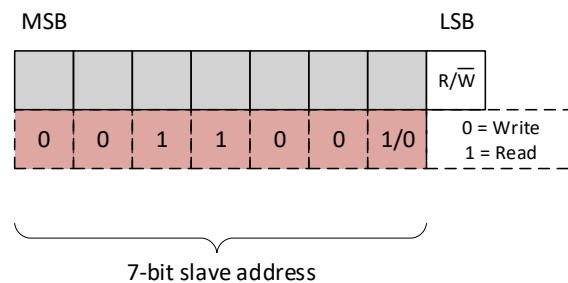


Figure 7: Slave address format

The 7-bit slave address of the acceleration sensor is 001100xb. LSB of the 7-bit slave address can be modified with the SAO pin. If SAO is connected to positive supply voltage i.e. LSB is '1', making 7-bit slave address 0011001b (0x19). If SAO is connected to ground i.e. LSB is '0', making 7-bit address 0011000b (0x18).

The R/W bit determines the data direction. A '0' indicates a write operation (transmission from master to slave) and a '1' indicates a read operation (data request from slave).

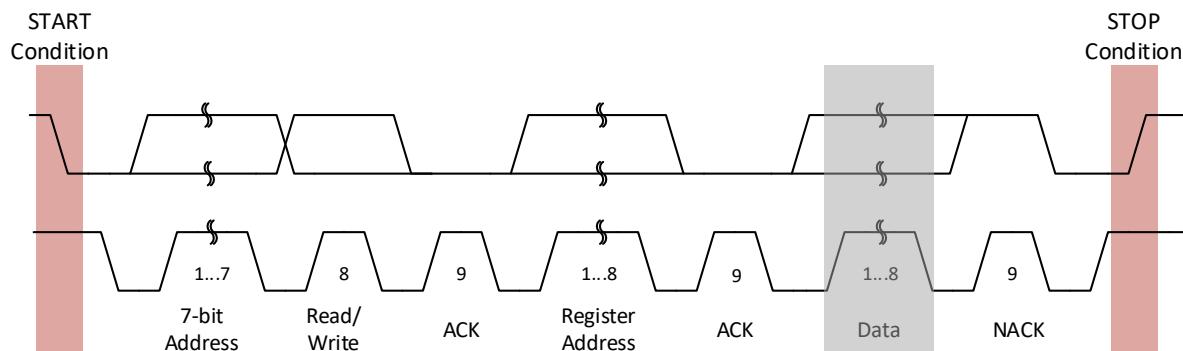


Figure 8: Complete data transfer

7-bit slave address of the acceleration sensor is 001100xb. LSB of the 7-bit slave address depends on the SAO pin connection

Slave address[6:1]	Slave address[0]	7-bit slave address	R/W	Slave address + R/W
001100	SAO = 0	0011000 (0x18)	0	00110000 (0x30)
001100			1	00110001 (0x31)
001100	SAO = 1	0011001 (0x19)	0	00110010 (0x32)
001100			1	00110011 (0x33)

Table 10: Slave address and Read/Write commands

5.3.7 Read/Write operation

a) I²C write: Master writing data to slave

S	Slave address + Write	ACK	Register address	ACK	Data	ACK	P
---	-----------------------	-----	------------------	-----	------	-----	---

b) I²C read: Master reading multiple data bytes from slave

S	Slave address + Write	ACK	Register address	ACK	SR	Slave address + Read	ACK	Data	ACK	Data	NACK	P
---	-----------------------	-----	------------------	-----	----	----------------------	-----	------	-----	------	------	---

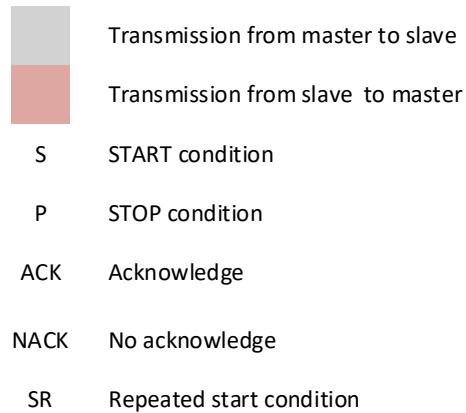


Figure 9: Write and read operations of the sensor

Once the slave-address and data direction bit is transmitted, the slave acknowledges the master. The next byte is transmitted by the master, which must be a register-address of the

sensor. It indicates the address of the register where data needs to be written to or read from.

After receiving the register address, the slave sends an Acknowledgement (ACK). If the master is still writing to the slave (R/W bit = 0), it will transmit the data to slave in the same direction. If the master wants to read from the addressed register (R/W bit =1), a repeated start (SR) condition must be transmitted to the slave. Master acknowledges the slave after receiving each data byte. If the master no longer wants to receive further data from the slave, it would send No-Acknowledge (NACK). Afterwards, master can send a STOP condition to terminate the data transfer. Figure 9 shows the writing and reading procedures between the master and the slave device (sensor).

5.4 I²C timing parameters

Parameter	Symbol	Standard mode		Fast mode		Unit
		Min	Max	Min	Max	
SCL clock frequency	f _{SCL}	0	100	0	400	kHz
LOW period for SCL clock	t _{LOW_SCL}	4.7		1.3		μs
HIGH period for SCL clock	t _{HIGH_SCL}	4.0		0.6		μs
Hold time for START condition	t _{HD_S}	4		0.6		μs
Setup time for (repeated) START condition	f _{SCL}	4.7		0.6	400	μs
SDA setup time	t _{SU_SDA}	250		100		ns
SDA data hold time	t _{HD_SDA}	0	3.45	0	0.9	μs
Setup time for STOP condition	t _{SU_P}	4		0.6		μs
Bus free time between STOP and START condition	t _{BUF}	4.7		1.3		μs

Table 11: I²C timing parameters

6 Sensor specific parameters

6.1 Sensitivity

Sensitivity is defined as the ratio of change in input acceleration to the change in the output signal. The unit of sensitivity is typically expressed in mg/digit. It can be measured by pointing the sensor horizontally downwards, an acceleration of 1g is measured due to earth's gravity (9.807 m/s²). Similarly by pointing sensor horizontally upwards (rotation of 180 degree), again an acceleration of 1g is measured due to earth's gravity (9.807 m/s²). By subtracting the larger measured output value from the smaller measured output value and dividing by two gives the actual sensitivity of the acceleration sensor.

The sensitivity value will drift over time and temperature.

$$\text{Sensitivity} = \frac{\text{larger value} - \text{smaller value}}{2} \quad (1)$$

6.2 0 g Level offset

0 g level is the output level when there is no acceleration or motion acting on the sensor i.e. zero input. A sensor placed on a perfect horizontal plane will give 0 g output on X-axis and Y-axis but 1 g on Z-axis. The deviation of an actual output value from the ideal value gives the 0 g level offset. 0 g offset value is influenced by external parameters like temperature and stress. External stress on the sensor will affect the sensor performance significantly. The 0 g level offset will also drift over temperature.

External stress: Vias under the sensor on a PCB, PCB warpage, external mechanical stress to the sensor.

6.3 Noise density

Noise density of the sensor is expressed as $\mu\text{g}/\sqrt{\text{Hz}}$. Noise density of the acceleration sensor is dependent on the output data rate. The values are expressed in the chapter 8. The noise of the acceleration sensor is determined by the equivalent noise bandwidth of the output filter and coefficient of the filter order. In general, the noise density is determined by the equation:

$$\text{Noise density} = \frac{\text{rms noise}}{\sqrt{\text{Bandwidth} * \text{filter coefficient}}} \quad [\mu\text{g}/\sqrt{\text{Hz}}] \quad (2)$$

7 Quick start guide

This chapter describes the start up sequence of the acceleration sensor.

7.1 Power supply

The sensor has two individual supply voltage pins.

- VDD is main supply voltage
- VDD_IO is the I/O pin supply voltage for the digital I²C communication interface

It should be noted that VDD level should never be lower than VDD_IO i.e. proper power up should be $VDD > VDD_IO$. It is possible to remove VDD by keeping VDD_IO pin without communication interruption but the measurement chain of the sensor is turned off i.e. $VDD = 0$ with VDD_IO "high" is allowed. In this case, the measurement chain is turned off but the communication to the sensor is possible without interruption.

Power up sequence should be $VDD > VDD_IO$.

7.2 Boot status

By proper powering up of the sensor with correct voltage level to the respective pins, the sensor enters into a 20 ms boot sequence to load the trimming parameters. After completion of the boot up sequence the sensor automatically enters to power down mode.

It is also possible to initiate the boot sequence manually by the user. It is performed by setting the BOOT bit of the *CTRL_2* register to '1', then the boot sequence is initiated and trimming parameters are reloaded. In this case, the device operation mode does not change after boot procedure. No toggle of the power is required and the content of the device control registers is not modified.

During the 20ms boot sequence the registers are not accessible.

The boot status signal is identified by setting the INT1_BOOT bit of the *CTRL_5* register to '1'. When the sensor is in boot sequence, INT_1 interrupt pin is driven high. Similarly when the boot sequence is completed, INT_0 interrupt pin is driven low.

7.2.1 Soft reset

If required, the soft reset of the sensor is possible. It resets the default value of the control registers. The soft reset procedure will take 5 μ s.

The below steps should be considered for setting the BOOT bit manually:

1. Write SOFT_RESET bit to '1'
2. Wait for 5 μ s
3. Write BOOT bit to '1'
4. wait for 20 ms

Parameter	Time
Boot sequence	20 ms
Soft reset duration	5 μ s

Table 12: Time consumption

7.3 Flow chart

7.3.1 Communication check

After proper powering of the sensor, the first step is to check the communication to the sensor with I²C digital interface. It can be verified by reading the *DEVICE_ID* register(0x0F). If the value from the *DEVICE_ID* register(0x0F) is 0x44, then the communication to the sensor is successful.

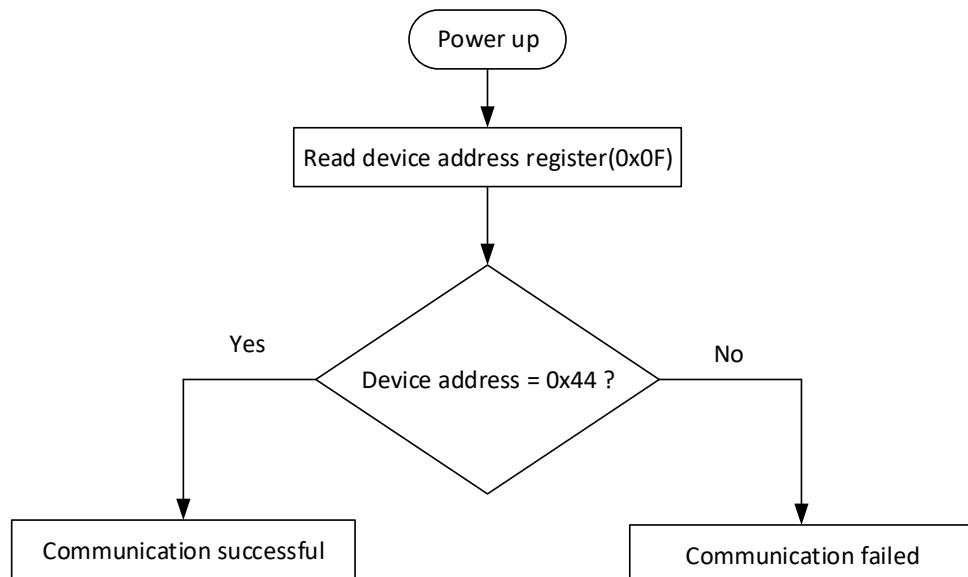


Figure 10: Communication check

7.3.2 Sensor in operation

The following flow chart is an initialization example to operate the sensor in high performance mode with output data rate of 200 Hz.

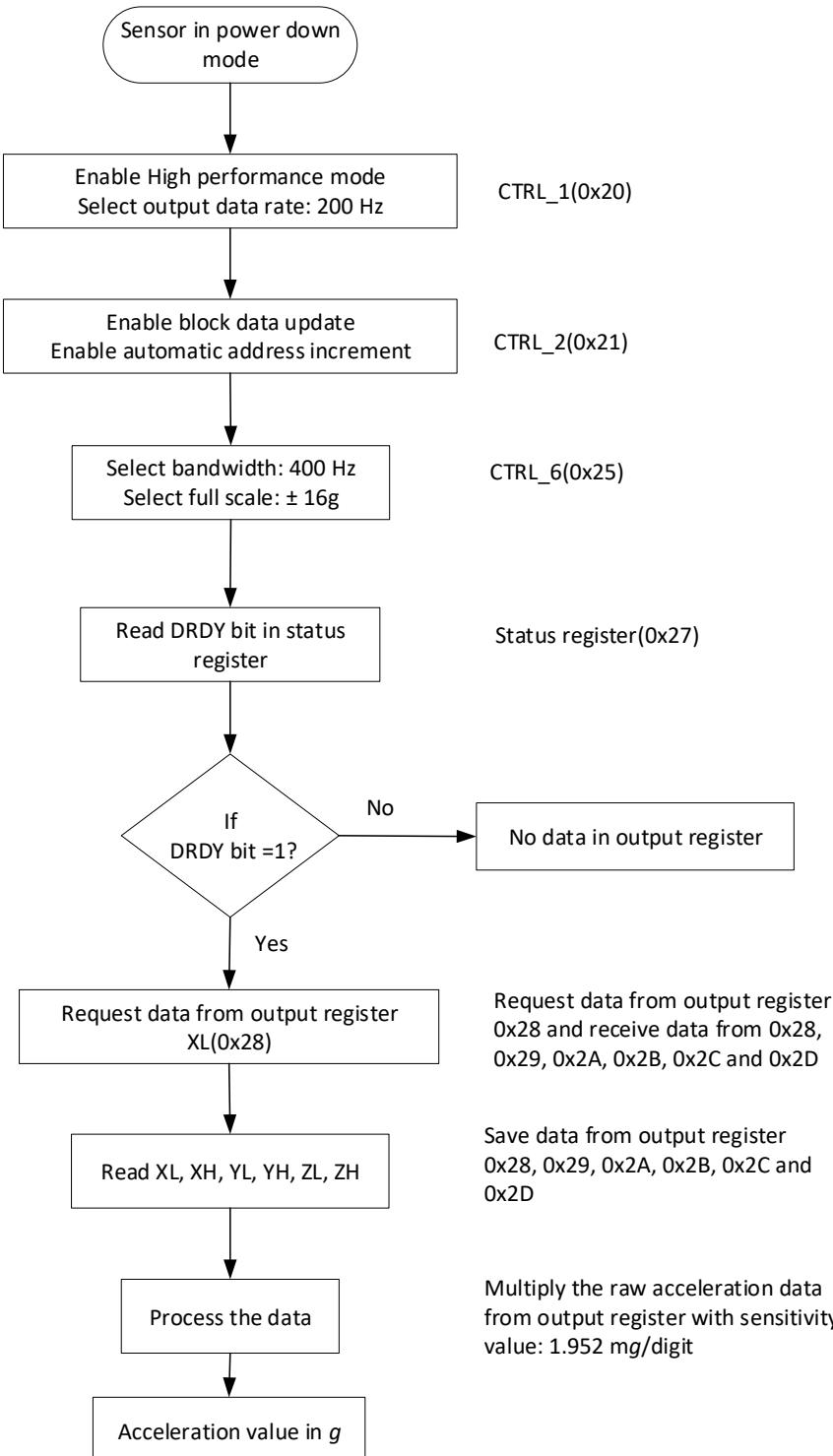


Figure 11: Sensor in operation

In order to set the sensor in one of the operation modes, the sensor needs to be initialized. The initialization of the sensor can be performed by defining output data rate, full scale setting and filtering path. After initializing the sensor, it is recommended to check if the data samples are available. It can be verified by reading DRDY bit in *STATUS* register(0x27). If the DRDY bit is enabled, the output data of three axes from the registers 0x28, 0x29, 0x2A, 0x2B, 0x2C and 0x2D are available. The acceleration value of the sensor is obtained by multiplying output data with necessary sensitivity parameter value based on the selected full scale range. Sensitivity parameter values are mentioned in the table 3.

8 Operating modes

The acceleration sensor can be operated in three different operation modes which provides different combination of noise and current consumption values. These operating modes are selected by using the MODE[1:0] bits in the *CTRL_1* register(0x20).

- High performance mode
- Normal mode
- Low power mode

High performance mode	Normal mode	Low power mode
14 bit	14 bit	12 bit

Table 13: Acceleration resolution

By default after powering up of the sensor, it goes to power down mode. In power down mode all internal blocks are turned off to minimize the power consumption. After selecting one of the three operating modes, two configurable noise parameter options are available. This configuration is selected by writing LOW_NOISE bit in the *CTRL_6* register(0x25).

- Low-noise enabled (Noise is reduced)
- Low-noise disabled (Current consumption is reduced)

8.1 High performance mode

High performance mode provides the best performance in terms of noise. For example, a low noise level of $90 \mu\text{g}/\sqrt{\text{Hz}}$ can be achieved with full scale range of $\pm 2g$, low noise bit enabled and ODR of 200 Hz. In this mode the output data rate can be configured between 12.5 Hz and 1600 Hz using *CTRL_1* register.

8.2 Normal mode

The normal mode operation is a trade off between the noise and current consumption of the sensor. In this mode the output data rate can be configured between 1.6 Hz and 200 Hz using *CTRL_1* register.

8.3 Low power mode

In this mode a low current consumption down to 1 μA with ODR of 1.6 Hz can be achieved. The output data rate (ODR) can be configured between 1.6 Hz and 200 Hz using *CTRL_1* register.

The table 14 and table 15 shows the noise and current consumption parameters for three different operating modes, which are verified at characterization level.

Output data rate	High performance mode		Normal mode		Low power mode	
	Low Noise bit: 0	Low Noise bit: 1	Low Noise bit: 0	Low Noise bit: 1	Low Noise bit: 0	Low Noise bit: 1
1.6 Hz	-	-	2.2	2.6	1	1.2
12.5 Hz	126	155	2.3	4	1.4	1.6
25.5 Hz	126	155	6.9	7.5	2.4	2.7
50 Hz	126	155	13	15	4	4.5
100 Hz	126	155	25	29	7.2	8.3
200 Hz	126	155	49.5	58	13.8	16
400/800/1600 Hz	126	155	-	-	-	-

Table 14: Current consumption (μ A)

Full scale	High performance mode		Normal mode		Low power mode	
	Low Noise bit: 0	Low Noise bit: 1	Low Noise bit: 0	Low Noise bit: 1	Low Noise bit: 0	Low Noise bit: 1
$\pm 2g$	110	90	210	180	550	450
$\pm 4g$	110	100	230	190	650	540
$\pm 8g$	130	120	240	210	680	580
$\pm 16g$	170	160	270	240	770	700

Table 15: Noise density at ODR = 200 Hz (μ g / $\sqrt{\text{Hz}}$)

8.4 Single data conversion mode

This mode is available only in the normal and low power mode. It is enabled by using the MODE[1:0] bits in *CTRL_1* register(0x20). In this mode, the sensor waits for a trigger signal or enabling SLP_MODE_SEL bit to generate new data. After that the sensor immediately goes to power down mode. The maximum output data rate using single data conversion mode is 200 Hz.

In this mode, the data generation is achieved by two following ways:

1. A rising edge trigger signal on the INT_1 pin

In this configuration, the sensor waits for a trigger signal to generate a new data. It can be performed by sending a trigger signal from the processor to INT_1 pin. In this case, the SLP_MODE_SEL should be set to '0'. The user can detect the status of the conversion using the DRDY bit in the *STATUS* register (0x27). The status signal can also be routed to the

INT_0 pin by writing '1' to INT0_DRDY bit in the register *CTRL_4* . The minimum duration of trigger signal high level is 20 ns.

2. Writing SLP_MODE_1 bit to '1' in *CTRL_3* register

In this configuration, the data generation takes place by enabling SLP_MODE_1 bit in *CTRL_3* register. In this case the SLP_MODE_SEL should be set to '0'. The user can detect the status of the conversion using DRDY bit/signal or by checking when the SLP_MODE_1 bit in *CTRL_3* register(0x22) is automatically cleared.

The conversion time (T_ON) in the normal and low power mode is mentioned in table 16

Operating mode	Conversion time (T_ON)
Normal mode	2.30 ms
Low power mode	1.20 ms

Table 16: Conversion time

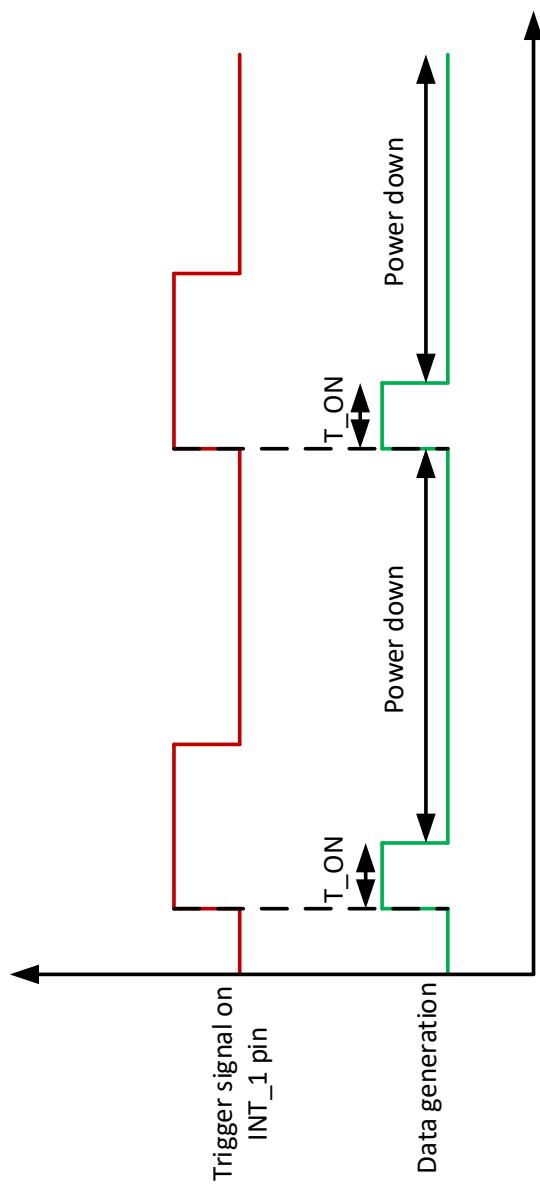


Figure 12: Single data conversion using an external trigger signal

9 Output data rate

The data sampling rate of the sensor is defined by output data rate. After the device is powered up with one of the three operating modes, the device is in continuous conversion of data. One of the following output data rates can be selected through the ODR bits in *CTRL_1*. In high performance mode the output data rate of the sensor can be configured between 12.5 Hz and 1600 Hz. In normal/low power mode the output data rate of the sensor can be configured between 1.6 Hz and 200 Hz.

Output data rate ODR[3:0]	High performance mode	Normal Mode / Low power mode
0000	Power down	
0001	12.5 Hz	1.6 Hz
0010	12.5 Hz	
0011	25 Hz	
0100	50 Hz	
0101	100 Hz	
0110	200 Hz	
0111	400 Hz	200 Hz
1000	800 Hz	200 Hz
1001	1600 Hz	200 Hz

Table 17: Output data rate

10 Acceleration bandwidth and filtering chain

The acceleration sensor sampling chain consists of a series of blocks from MEMS data to output register as shown in figure 13.

- MEMS data
- Anti-Aliasing filter
- Analog to digital converter
- Low pass filter 1 and Low pass filter 2
- High pass filter
- User offset
- Output register or FIFO buffer

The output data in the output registers can be generated through three different filtering paths as shown in the figure 13. The filter setting determines the data path.

The cut-off frequency and number of samples to discard for those three filtering paths are described in the chapter 10.1, chapter 10.2 and chapter 10.3. The register settings for the three different data paths are mentioned below.

- **Low pass filter _1** (red path)
By setting FDS bit to '0' and BW_FILT[1:0] to '00' in register *CTRL_6*
- **Low pass filter _1 + Low pass filter _2** (blue path)
By setting FDS bit to '0' and BW_FILT[1:0] to '01'/'10'/'11' in register *CTRL_6*
- **Low pass filter _1 + High pass filter** (green path)
By setting FDS bit to '1' in register *CTRL_6*

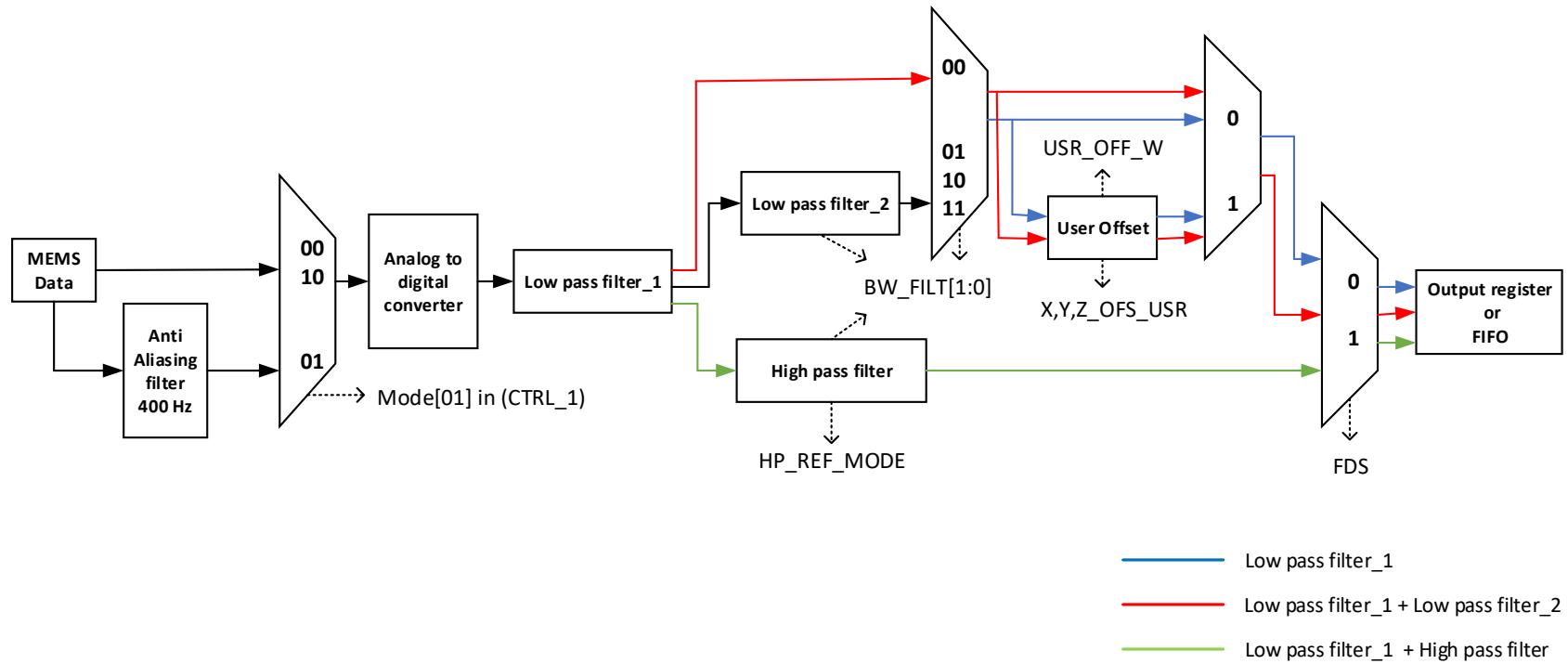


Figure 13: Block diagram of filtering chain

10.1 Low pass filter_1

Mode	Output date rate	BW_FILT[1:0]=00	
		Samples to discard ¹ Settling@95%	Cutoff (Hz)
Low power	1.6 Hz to 200 Hz	0	3200
Normal	1.6 Hz to 200 Hz	0	360
High performance	12.5 Hz to 50 Hz	0	ODR/2
	100 Hz to 800 Hz	1	ODR/2
	1600 Hz	2	400

Table 18: Low pass filter 1

¹The starting condition of output data rate, operating mode and bandwidth do not impact the sample values to discard. Turn-on time (first sample available starting from power-down condition) is 1 / ODR.

10.2 Low pass filter _1 + Low pass filter _2

Mode	Output date rate	BW_FILT[1:0]=01		BW_FILT[1:0]=10		BW_FILT[1:0]=11	
		Samples to discard ¹ Settling@95%	Cutoff (Hz)	Samples to discard ¹ Settling@95%	Cutoff (Hz)	Samples to discard ¹ Settling@95%	Cutoff (Hz)
Low power	1.6 Hz to 200 Hz	1	ODR/4	5	ODR/10	11	ODR/20
Normal	1.6 Hz to 200 Hz	1	ODR/4	5	ODR/10	11	ODR/20
High performance	12.5 Hz to 100 Hz	1	ODR/4	5	ODR/10	11	ODR/20
High performance	200 Hz to 800 Hz	2	ODR/4	5	ODR/10	11	ODR/20
High performance	1600 Hz	3	ODR/4	6	ODR/10	12	ODR/20

Table 19: Low pass filter_1 + Low pass filter _2

¹The starting condition of output data rate, operating mode and bandwidth do not impact the sample values to discard.

10.3 Low pass filter _1 + High pass filter

Mode	Output data rate	BW_FILT[1:0]=01 or 00		BW_FILT[1:0]=10		BW_FILT[1:0]=11	
		Samples to discard ¹ Settling@95%	Cutoff (Hz)	Samples to discard ¹ Settling@95%	Cutoff (Hz)	Samples to discard ¹ Settling@95%	Cutoff (Hz)
Low power	1.6 Hz to 200 Hz	1	ODR/4	5	ODR/10	11	ODR/20
Normal	1.6 Hz to 200 Hz	1	ODR/4	5	ODR/10	11	ODR/20
High performance	12.5 Hz to 100 Hz	1	ODR/4	5	ODR/10	11	ODR/20
High performance	200 Hz to 800 Hz	2	ODR/4	5	ODR/10	11	ODR/20
High performance	1600 Hz	3	ODR/4	6	ODR/10	12	ODR/20

Table 20: Low pass filter_1 + High pass filter

¹ The starting condition of output data rate, operating mode and bandwidth do not impact the sample values to discard.

10.4 User offset

In order to define user offset for X, Y, and Z axis, the USR_OFF_ON_OUT is set to '1' and FDS is set to '0'. User defined offsets are subtracted from the values measured. The weight of the bits in the offset registers X_OFS_USR, Y_OFS_USR, Z_OFS_USR is defined through the USR_OFF_W bit in CTRL_7 register.

The offset values are signed values with two's complement

10.5 High pass filter path

The acceleration sensor includes an embedded high-pass filtering capability to easily remove the DC component of the measured acceleration. As shown in the figure 13, with the FDS bit in register CTRL_6 the user can route the filter outputs to the output registers.

It is also possible to independently apply the filter to the embedded function data (Free-fall, wake up, tap detection and etc). This means that it is possible to get filtered data while the interrupt generation works on unfiltered data.

10.5.1 Reference mode

The high-pass filter can be configured in the reference mode. It can be activated using HP_REF_MODE bit in *CTRL_7* register. In this configuration the output data is calculated as the difference between the input acceleration and the values captured when reference mode was enabled. In this way only the difference is applied without any filtering.

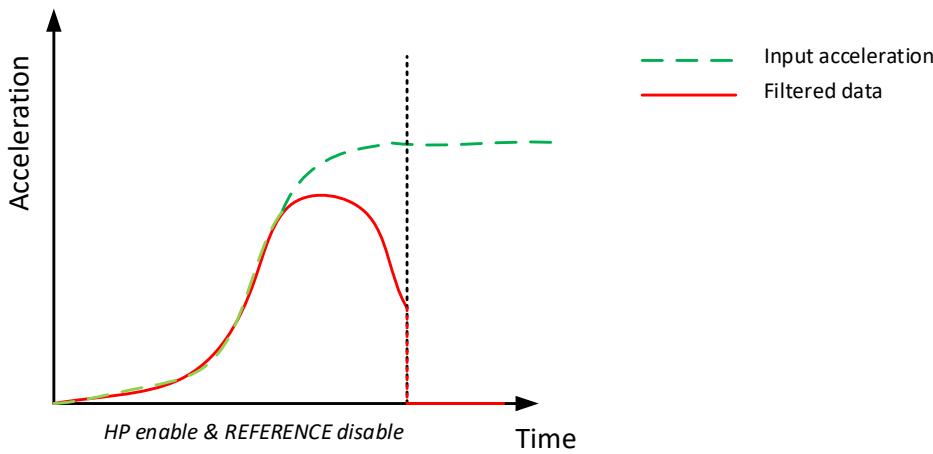


Figure 14: High pass filter without REFERENCE mode

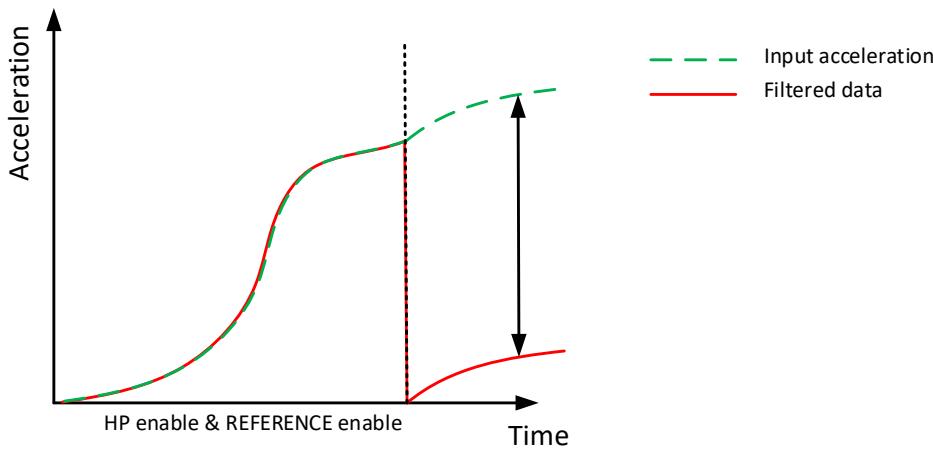


Figure 15: High pass filter with REFERENCE mode

11 First-In First-Out (FIFO) buffer

The acceleration sensor provides a FIFO (first-in first-out) buffer functionality to prevent continuous communication between the processor and sensor. As a result, it reduces considerable system power consumption. It can store up to 32 output data from all three axis X, Y and Z. The processor can be notified only when it is necessary to initiate burst read out of the FIFO buffer content. The interrupt pins INT_0 and/or INT_1 is used to generate interrupt signals, if the FIFO buffer is full.

The FIFO buffer can be operated using five different modes:

- Bypass mode
- FIFO mode
- Continuous to FIFO mode
- Bypass to Continuous mode
- Continuous mode

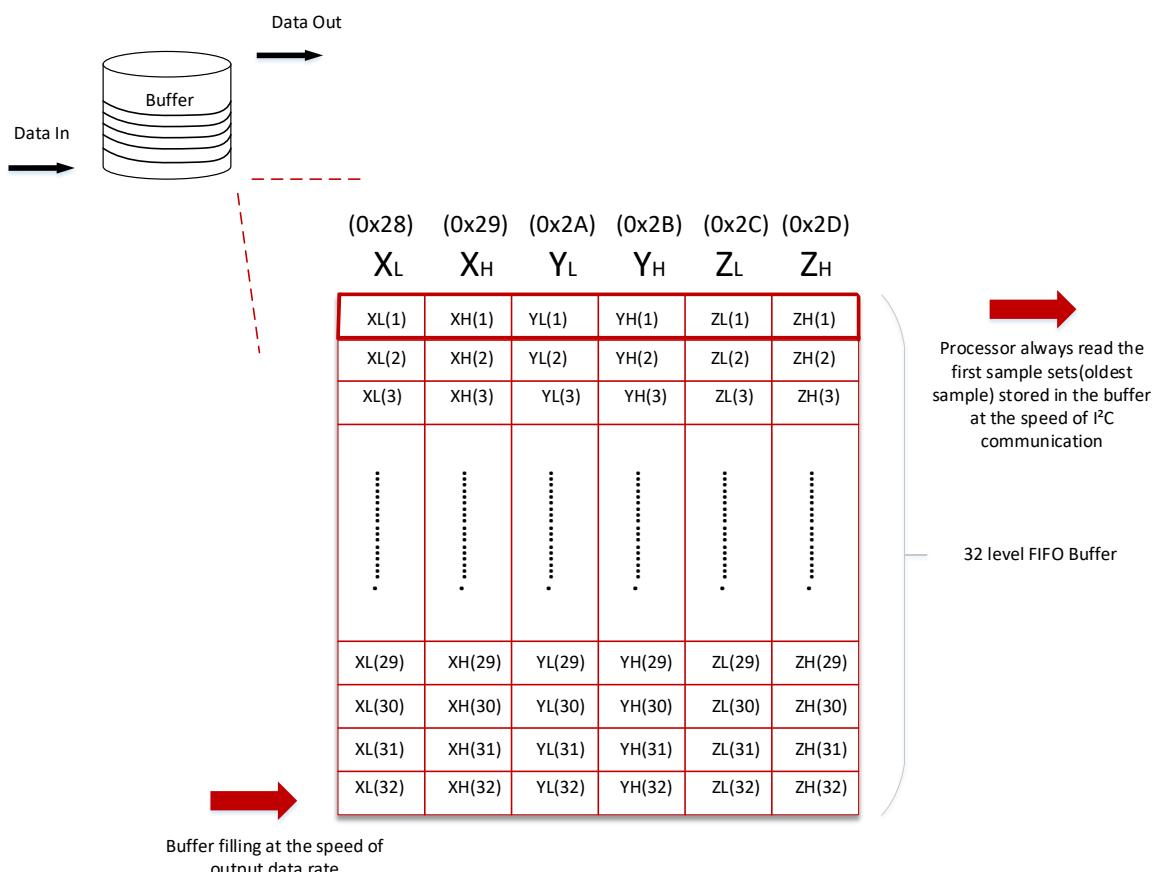


Figure 16: First-in First-out Buffer

The FIFO buffer stores new data sets in the blocks until all the 32 slots are full. If additional new data is available, the new data replaces the old data in the buffer. The first data enters the lowest level of the buffer. When the second data is available to be stored in FIFO buffer, the first data moves one level up and the second data is stored in the lowest level and this process repeats until the buffer is full. The FIFO buffer can store the data samples with respect to the selected resolution i.e high performance/normal mode - 14 bits and low power mode - 12 bits. The rate at which data is stored in the FIFO buffer depends on the selected output data rate in *CTRL_1* register. After enabling the buffer, the output registers (from 0x28 to 0x2D) will get the oldest data sets from the FIFO buffer except for bypass mode.

11.1 Bypass mode

In Bypass mode, the generated data is directly available in the output registers. FIFO buffer is not active in this mode. This mode is activated by writing FMODE[2:0] bits in *FIFO_CTRL* register. Bypass mode is also used to clear the content of the FIFO buffer or to reset the buffer in FIFO mode.

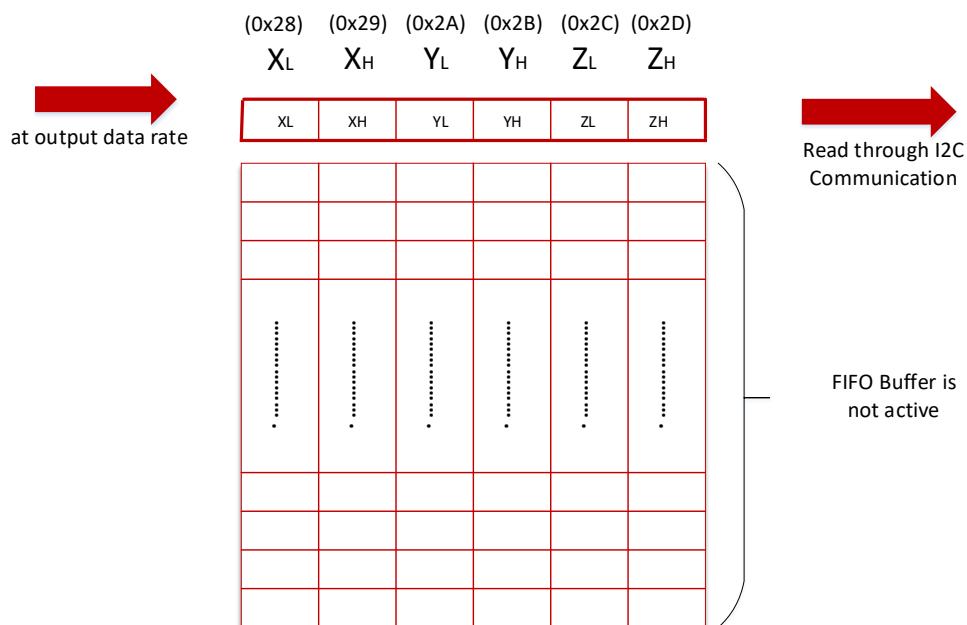


Figure 17: Bypass mode

11.2 FIFO mode

In FIFO mode, the 32 levels in FIFO buffer are filled with data samples continuously. When the buffer is completely filled, the FIFO_OVR bit goes to '1', the buffer stops collecting the data. The FIFO mode is activated by writing '001' in FMODE[2:0] field in the *FIFO_CTRL* register.

While FIFO buffer starts collecting data, DIFF[5:0] bits in the *FIFO_SAMPLES* register changes with respect to the number of samples stored. The speed at which the processor reads the data from the FIFO buffer is not important. Because the data collection is stopped after the buffer is full and there is no risk that buffer will overwrite the data.

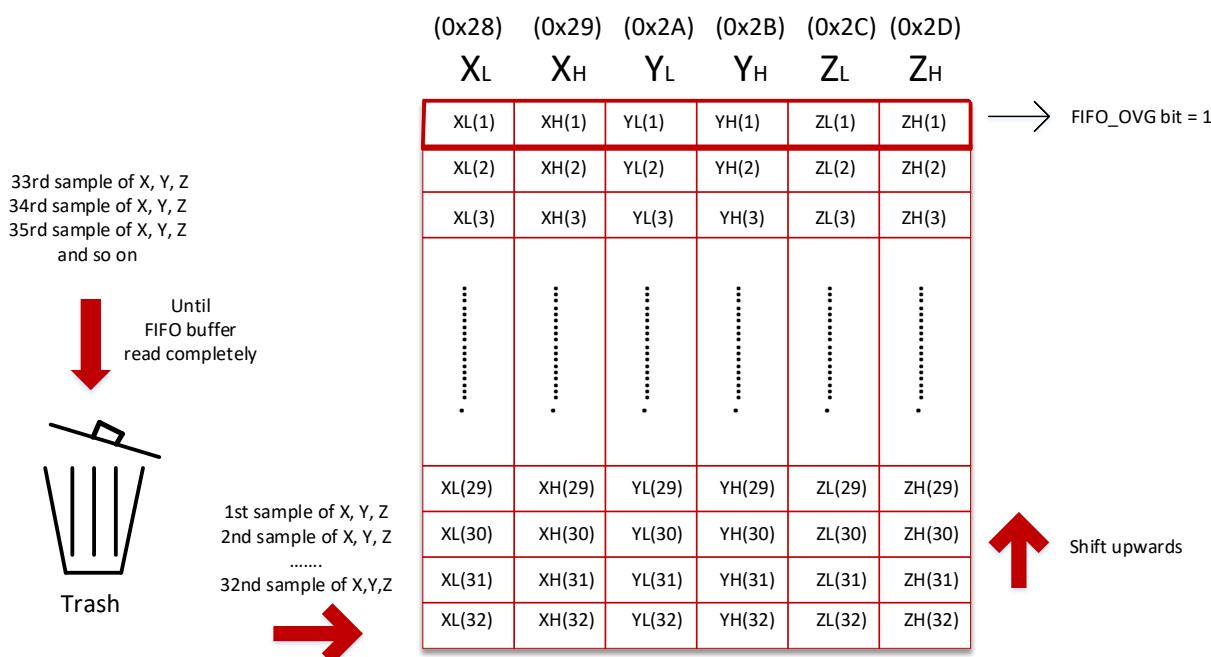


Figure 18: FIFO mode

In order to serve the FIFO full (DIFF[5] bit) event as soon as possible, it is recommended to route the Diff5 bit to the interrupt pin (INT_0 or INT_1) in order to generate an interrupt rather than FIFO_OVR bit. The difference between the FIFO_OVR bit and Diff5 bit is explained in figure 19.

When the FIFO mode is enabled, the buffer starts collecting the data at selected output data rate. The buffer stops collecting the data after the 32 levels are filled i.e. the incoming new data samples are ignored. The user can read the data from FIFO buffer any time, it is maintained unchanged until the Bypass mode is enabled. The FIFO_OVR bit is reset when the first sample set has been read by the processor. By enabling the Bypass mode the FIFO mode will be reset.

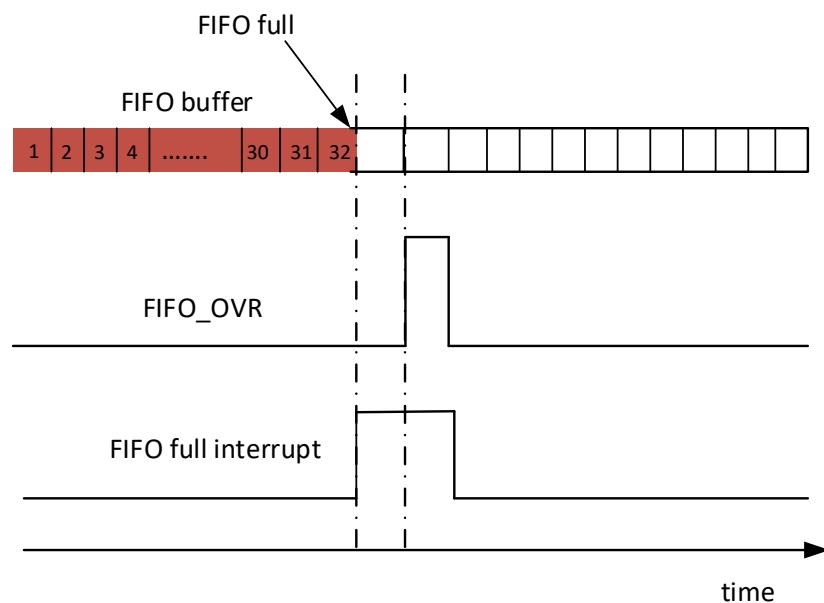


Figure 19: FIFO mode interrupts

11.3 Continuous mode

In continuous mode, the 32 levels of the FIFO buffer is continuously filled and starts to replace new data in the place of old data, when the buffer is full. This process continues until the processor initiates a read operation to the output registers. When the 32 level buffer is completely filled, the FIFO_FTH bit goes to '1' and it can be routed to interrupt pin which triggers the processor to read the content of FIFO buffer. This mode can be terminated by enabling Bypass mode.

The speed at which the processor read the data sets should be faster than output data rate of the sensor in order to not lose the stored data sets

When a read operation is initiated by the processor to the sensor, the content of the output registers is moved to the I²C register. The current oldest FIFO sample is shifted into the output registers in order to allow the next read operation.

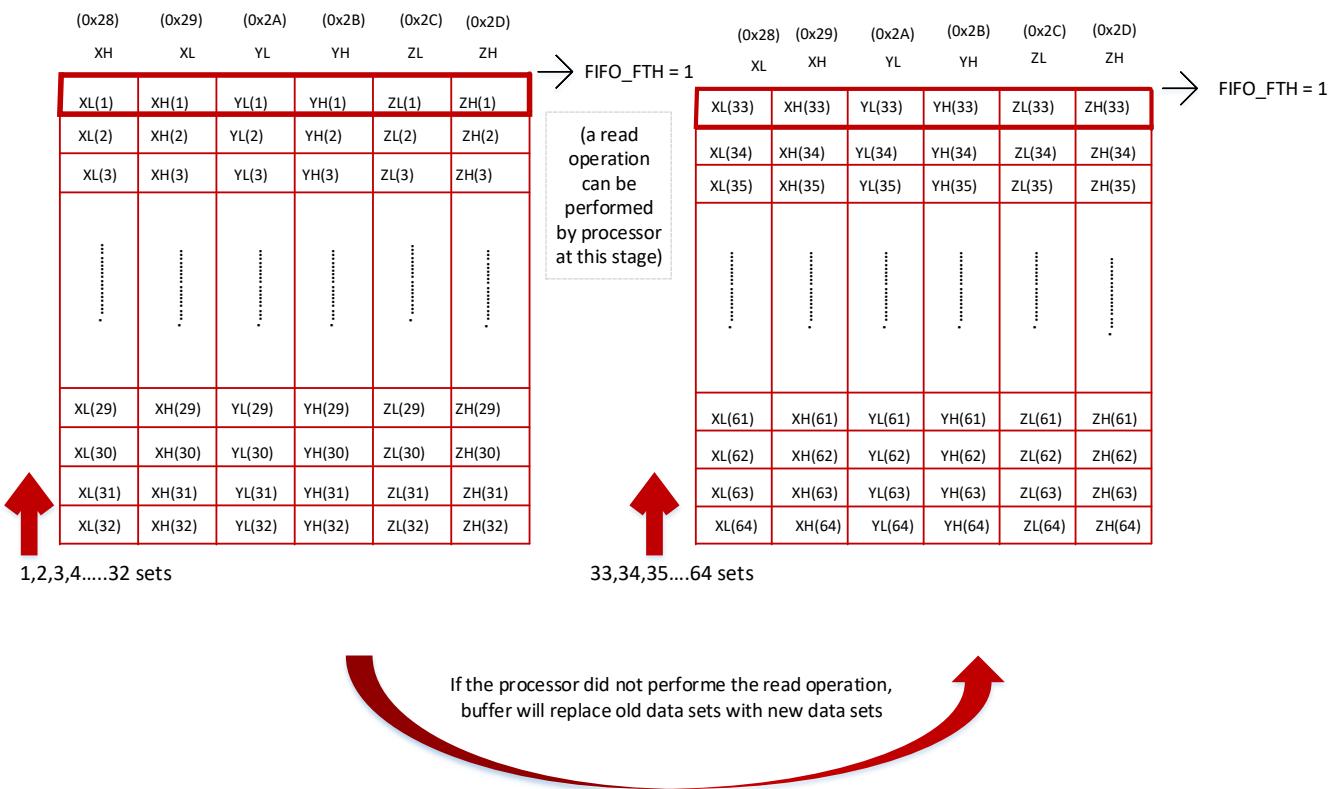


Figure 20: Continuous mode

11.4 Continuous to FIFO mode

In this mode, initially the buffer starts operating in continuous mode and switches to FIFO mode when the selected interrupt (wake-up, free-fall, motion, etc) occurs. This mode helps to collect and analyse the output data samples after an interrupt signal (tap, motion, free-fall, etc) is generated. During this mode, the buffer works initially in continuous mode. In continuous mode, the buffer starts collecting the data samples continuously. As soon as the activated interrupt signal is generated, the FIFO mode is active and it starts collecting the output samples until it is full. When the buffer is full, the FIFO_OVG bit is set to '1' when the next samples overwrite the oldest and the FIFO stops collecting the data.

When the selected interrupt occurs, the FIFO mode change is triggered only if the interrupt signal is routed to INT_0 or INT_1 pin.

The following steps are recommended to enable continuous to FIFO mode.

- Step 1: Enable interrupt features (tap, free-fall, motion and etc)
- Step 2: Route the interrupt signal to either INT_0 or INT_1 pin
- Step 2: Enable the continuous to FIFO mode using FMODE[2:0] in *FIFO_CTRL* register

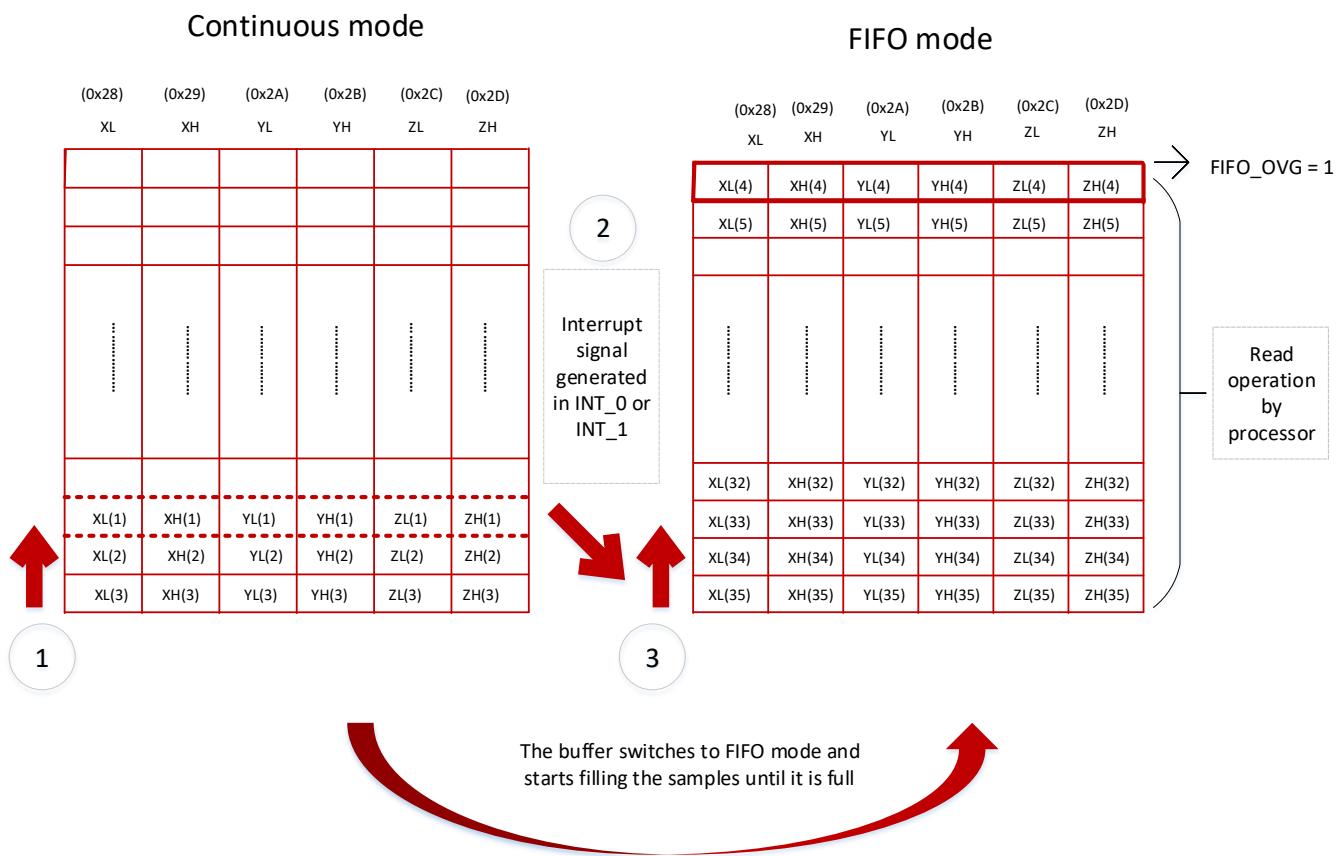


Figure 21: Continuous to FIFO mode

11.5 Bypass to continuous mode

In this mode, initially the buffer works in bypass mode and as soon as the selected interrupt signal is generated the buffer switches to continuous mode.

The following steps are recommended to enable Bypass to Continuous mode.

- Step 1: Enable interrupt features (tap, free-fall, motion and etc)
- Step 1: Set FTH[4:0] to 31
- Step 2: Route the interrupt signal to either INT_0 or INT_1 pin
- Step 2: Enable the Continuous to FIFO mode using FMODE[2:0] in *FIFO_CTRL* register

Initially the buffer works in Bypass mode, so no data is stored in the buffer. When a selected interrupt signal is generated, the buffer switches to continuous mode and starts to fill the data at selected output data rate. When the programmed threshold is reached, the FIFO_FTH interrupt goes high, and the processor can start reading all FIFO samples (32 * 6 bytes) as soon as possible to avoid loss of data. If the FIFO_OVG bit was set, it will change to '0', when the first FIFO data is read creating space for new data.

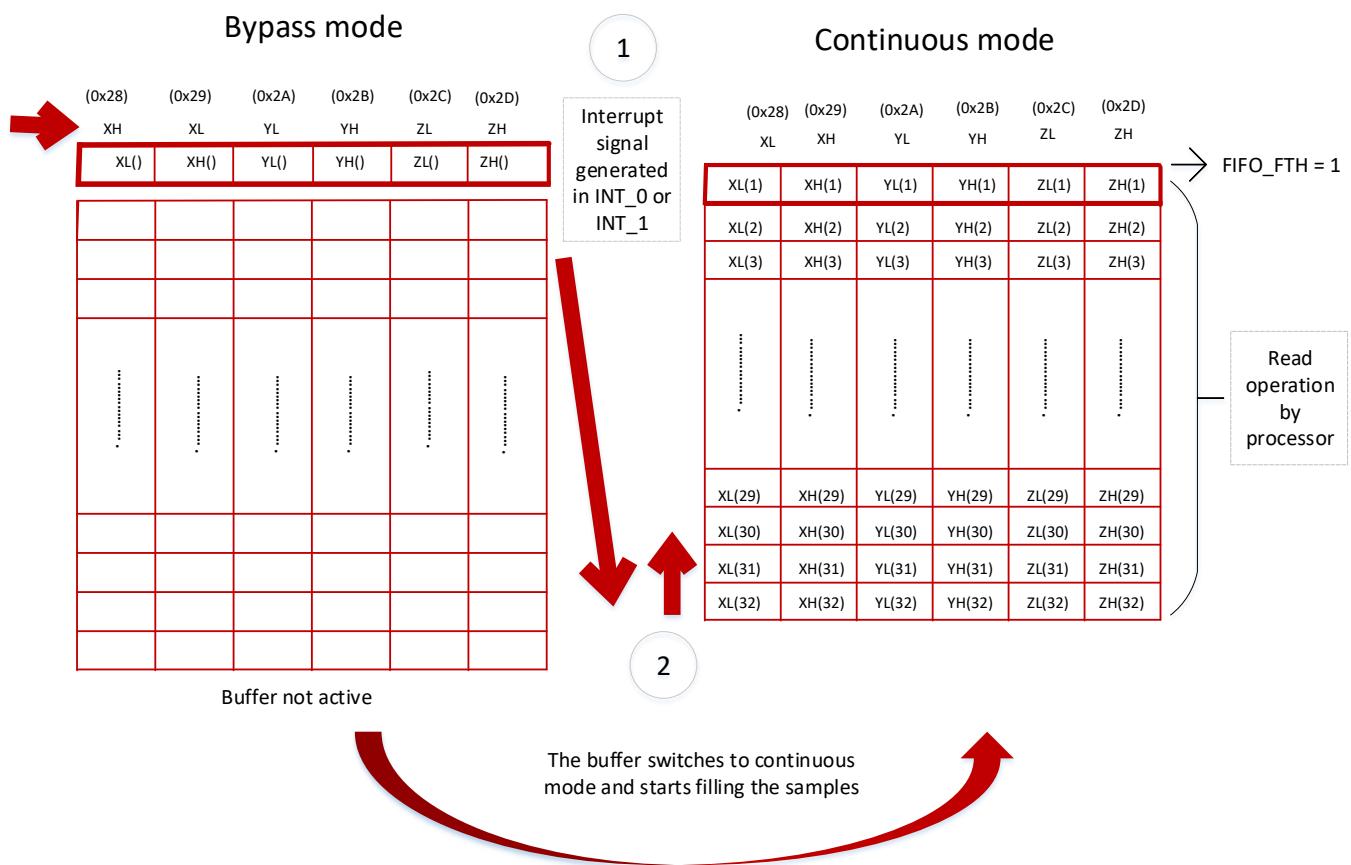


Figure 22: Bypass to Continuous mode

If the processor does not initiate read operation, the buffer starts replacing old data with new data. This process will continue until the generated interrupt flag is cleared or buffer goes to Bypass mode, then the buffer stops collecting the data.

11.6 Understanding FIFO samples and interrupts

11.6.1 FIFO samples

The samples are stored in the buffer at the rate of selected output data rate. The threshold values are defined using the FIFO_SAMPLES register.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FIFO_FTH	FIFO_OVR			DIFF[5:0]			

Table 21: FIFO_Samples register

- FIFO_FTH bit is used to notify whether the FIFO content is greater than or equal to the watermark level defined by DIFF[5:0]. This signal can be routed to either INT_0 or INT_1 pin.

- FIFO_OVR bit defines whether the 32 level buffer is full or not. It can be used to notify the processor to read whole content of the buffer. When the processor starts reading the first sample in the buffer, this bit is set to '0'.
- DIFF[5:0] gives the information about number of levels in the buffer filled with data samples or number of samples in the buffer read by processor('000000b' for FIFO empty and '100000b' for FIFO is full). This signal also be routed to either INT_0 or INT_1

11.6.2 FIFO interrupts

11.6.2.1 FIFO threshold (FIFO_FTH bit)

The FIFO threshold is a configurable feature which can be used to produce a specific interrupt, to know whether the FIFO buffer contains at least the number of samples defined as the threshold level. The user can select the desired level in a range from 0 to 31 using the FTH[4:0] bits in the *FIFO_CTRL* register. If the number of entries in FIFO (Diff[5:0]) is greater than or equal to the value programmed in FTH[4:0], the FIFO_FTH bit is set high in the *FIFO_SAMPLES* register. Diff[5:0] increases by one step at the ODR frequency and decreases by one step every time that a sample reading is performed by the host controller.

11.6.2.2 FIFO full (Diff5 bit)

When the buffer is full, the sensor can be configured to generate an interrupt signal using Diff5 bit. In order to perform this, set the INT0_DIFF5 bit in the *CTRL_4* register to '1' or INT1_DIFF5 bit in the *CTRL_5* register to '1'. To avoid losing samples, the FIFO reading operation must start and complete inside 1 ODR window.

11.6.2.3 FIFO overrun (FIFO_OVR)

It is possible to configure the device to generate an interrupt using FIFO_OVR, if the overrun event occurs in FIFO buffer. In order to initiate this, set the INT1_OVR bit of the *CTRL_5* register to '1'.

11.7 How to read data from FIFO Buffer

When any of the operating FIFO buffer mode is selected except Bypass mode, the first sample stored in the buffer is always read from the output registers. After reading the output data registers, the FIFO blocks are moved one level up vertically to allocate space to store new samples. The whole content of the FIFO buffer i.e. 32 level of 6 bytes (total of 192 bytes) of data samples from X_L, X_H, Y_L, Y_H, Z_L and Z_H can be read at once. The content of the FIFO buffer will be the same even after reading the data and it will be replaced only when new set of samples stored in FIFO buffer. When the processor initiates a read operation to the output register 0x28, the automatic increment of the address 0x29, 0x2A, 0x2B, 0x2C and 0x2D will be performed, if the IF_ADD_INC bit is enabled in *CTRL_2* register.

The standard I²C communication protocol has two clock frequencies, standard mode of 100 kHz and full speed mode of 400 kHz clock. In order to perform read operation, the I²C communication takes 29 clock signals to initiate read operation for a specific register. It starts

with a start condition + slave address + write register + read register. Additionally, to read every byte (8 bit register value) 9 clock pulses are necessary. In total 83 clock pulses are used to read a one sample set from the output registers of X, Y and Z axis (0x28, 0x29, 0x2A, 0x2B, 0x2C and 0x2D). In order to read single sample set from output register it takes 83 pulses * 1/100 kHz (830 µs). To read the whole content of the buffer, a total of 17.57 ms (29 + 9 * 192) time is necessary.

In order to not lose samples, the application should read samples before the FIFO becomes full, setting a threshold and using the FTH interrupt.

Output data rate (Hz)	FTH_TH (I ² C - 100 kHz)	FTH_TH (I ² C - 400 kHz)
50	32	32
100	17	32
200	8	32
400	4	17
800	1	8
1600	-	4

Table 22: Threshold function

12 Interrupt pin and functionality

The two independent interrupt pins INT_0 and INT_1 of the sensor can be used to route the following signals.

- Motion detection interrupt signal
- DRDY signal
- FIFO notification signal

12.1 INT_0 and INT_1

All the motion detection interrupt signals can be routed to the physical interrupt (either INT_0 or INT_1) pins by writing '1' to INTERRUPTS_ENABLE bit in *CTRL_7* register, otherwise it can be identified by reading their corresponding status or source register. By default, the bits in the control registers (*CTRL_4* and *CTRL_5*) are disabled i.e '0'. Any specific motion detection interrupt signals can be routed to the physical interrupt pins by enabling the following bits in the registers *CTRL_4* and *CTRL_5*.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INT0_6D	INT0_SINGLE_TAP	INT0_WU	INT0_FF	INT0_TAP	INT0_DIFF5	INT0_FTH	INT1_DRDY

Table 23: *CTRL_4*

- INT0_6D: 6D orientation event detect is routed to the INT_0 pin
- INT0_SINGLE_TAP: Single-tap event detect is routed to the INT_0 pin
- INT0_WU: Wakeup event detect is routed to the INT_0 pin
- INT0_FF: Free-fall event detect is routed to the INT_0 pin
- INT0_TAP: Double-tap event detect is routed to the INT_0 pin
- INT0_DIFF5: FIFO full event is routed to the INT_0 pin
- INT0_FTH: FIFO threshold event is routed to the INT_0 pin
- INT0_DRDY: DRDY is routed to the INT_0 pin

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INT1_SLEEP_STATE	INT1_SLEEP_CHG	INT1_BOOT	INT1_DRDY_T	INT1_OVR	INT1_DIFF5	INT1_FTH	INT1_DRDY

Table 24: *CTRL_5*

- INT1_SLEEP_STATE: SLEEP_STATE enable is routed to the INT_1 pin
- INT1_SLEEP_CHG: Sleep change status is routed to the INT1 pin
- INT1_BOOT: Boot state is routed to the INT_1 pin
- INT1_DRDY_T: Temperature DRDY is routed to the INT_1 pin
- INT1_OVR: FIFO overrun interrupt is routed to the INT_1 pin
- INT1_DIFF5: FIFO full detect is routed to the INT_1 pin
- INT1_FTH: FIFO threshold event is routed to the INT_1 pin
- INT1_DRDY: Acceleration DRDY is routed to the INT_1 pin

There is a possibility that more than one interrupt signal is routed to the same interrupt pin. In that case, a logic level OR combination of the selected interrupt signal is generated. To know which motion detection event has triggered the interrupt signal, the respective status register has to be read. After reading the status register, the generated bit in the status register will be cleared.

12.2 Data ready - DRDY

The DRDY bit status can either be read from *STATUS* register (0x27) or can be routed directly to interrupt pins. When new data is generated the DRDY bit is set to '1' and it is set to '0' when no data is generated. This DRDY signal can be routed to INT_0 interrupt pin by enabling the INT0_DRDY bit in *CTRL_4* register or to INT_1 interrupt pin by enabling INT1_DRDY bit in *CTRL_5* register. If any of the output channel registers (0x29, 0x2B, 0x2D) are read, the DRDY signal goes LOW.

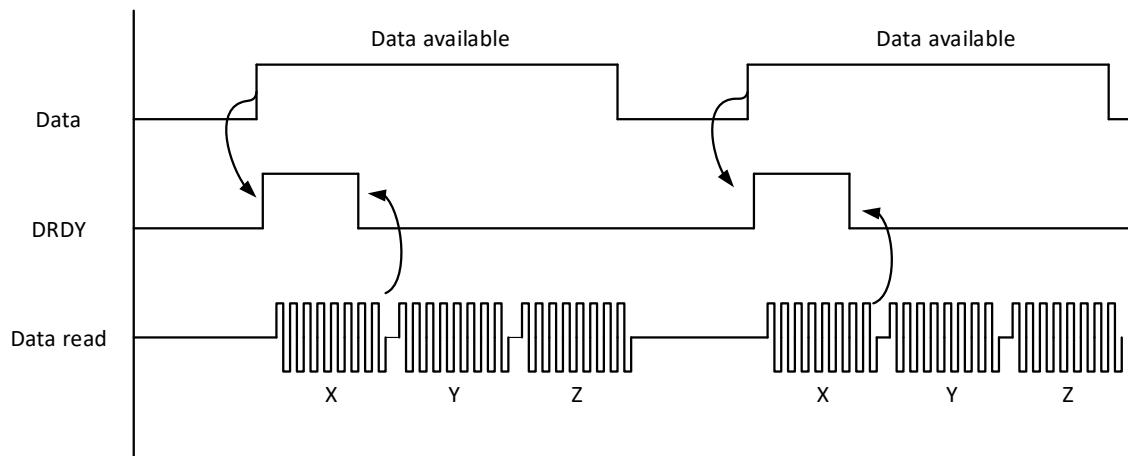


Figure 23: DRDY signal

13 Application specific sensor features

13.1 Single tap/Double tap

The single tap event interrupt is generated when the applied tap acceleration to any axis is greater than defined threshold and returns below within specific interval time. Similarly in double tap event an interrupt is generated, if two consecutive tap acceleration applied to any axis is greater than the threshold with the duration time after first tap acceleration.

13.2 Activity/Inactivity

The activity/inactivity function monitors the sensor, which defines whether the sensor is active or not. This function allows to develop application with low power consumption. If the sensor is not active, the output data rate automatically goes to output data rate of 12.5 Hz with low power operating mode. As soon as the sensor detects an activity, the output data rate is switched back to the selected output data rate.

13.3 Stationary/Motion

Stationary/motion function is similar to the activity/inactivity function but the output data rate and operating mode will not change after the motion is detected.

13.4 6D Orientation

Six dimension (6D) orientation of the sensor is detected when one axis exceeds a selected threshold and the acceleration values from other two axes are lower than the defined threshold value.

13.5 Wake-Up

If a number of data samples exceed the defined threshold on both positive and negative acceleration a wake-up interrupt signal is generated. It can either be achieved by setting high-pass filter or user defined offset function.

13.6 Free-Fall

Free fall detection interrupt is generated when the device is in free-fall i.e. the acceleration measured in all axes goes to zero. In a real case, a free-fall zone is defined around the zero-g level where all the acceleration values from the three axes are small enough to generate the interrupt.

14 Self test

The acceleration sensor includes a self test feature which tests the sensor functionality without any external force. When the self test feature is enabled, an actuation force is applied to the sensor which causes the non-stationary part to move. This change in the movement provides the change in the DC level of the sensor.

The self test function is enabled by writing '01' to ST[7:6] in *CTRL_3* register which causes movement in positive direction of the axis. Similarly by writing '10' to ST[7:6] in *CTRL_3* register causes the movement in negative direction of the axis. When the accelerometer self test functionality is enabled, the sensor output level is given by the algebraic sum of the data produced by the electrostatic test force and gravity.

The device should be fixed without any movement during self test procedure

The following procedure is recommended for the self test verification. Refer to the block diagram in the figure 24 for further details.

- Average five data samples before enabling the self test
- Average five data samples after enabling the self test
- The difference in the absolute value of each axis provides the self test induced DC acceleration value.
- Verify the value, whether it is in the range of 70 mg to 1500 mg

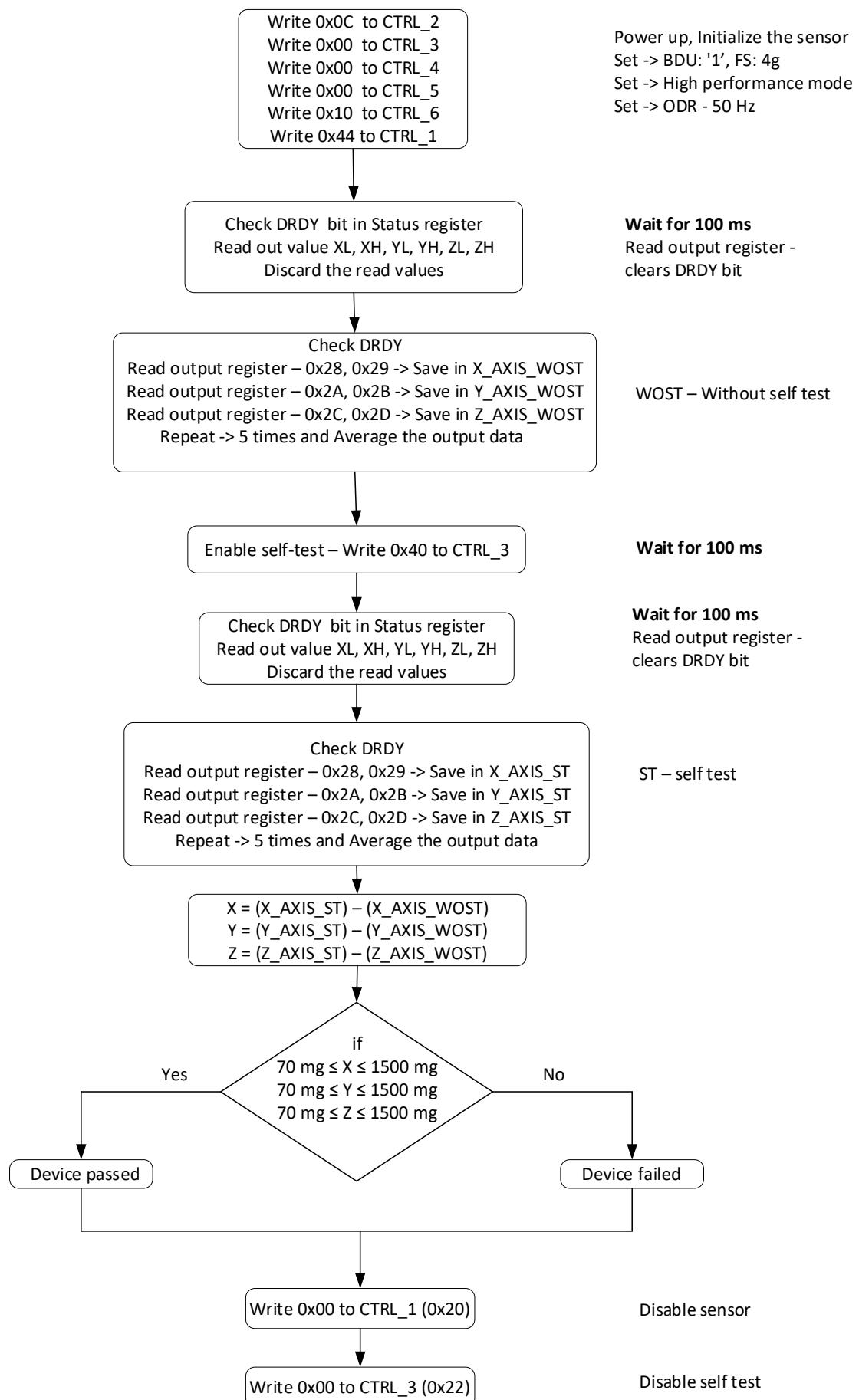


Figure 24: Self test procedure

15 Sensor output data

15.1 Acceleration sensor

The acceleration output data is obtained by reading output registers (0x28, 0x29, 0x2A, 0x2B, 0x2C and 0x2D). The 8 bit output data from the registers of least significant bit and most significant bit are concatenated to get 16 bit data for each axis i.e. X, Y and Z axis. The acceleration data is represented as 16 bit value, left aligned and provided in two's complement. The value is multiplied with respective sensitivity parameter to convert the data related to the value in mg.

Below is an example of how to use data from output registers and convert it to value in mg. With an assumption of sensor operating in high performance mode with full scale selection of $\pm 16g$.

Step 1: Read output registers

1. X_OUT_L (0x28)
2. X_OUT_H (0x29)
3. Y_OUT_L (0x2A)
4. Y_OUT_H (0x2B)
5. Z_OUT_L (0x2C)
6. Z_OUT_H (0x2D)

Step 2: Register concatenation

1. $X_{16} = X_{OUT_H} \& X_{OUT_L}$
2. $Y_{16} = Y_{OUT_H} \& Y_{OUT_L}$
3. $Z_{16} = Z_{OUT_H} \& Z_{OUT_L}$

Step 3: Dividing the register value after concatenation by 4 will left shift the data by 2 bits.

1. $X_{shift} = X_{16} / 4$
2. $Y_{shift} = Y_{16} / 4$
3. $Z_{shift} = Z_{16} / 4$

Step 4: Multiply with sensitivity value (14 bit resolution, 1.952 at FS: $\pm 16g$).

1. X axis = $X_{shift} * (1.952) = \text{value in mg}$
2. Y axis = $Y_{shift} * (1.952) = \text{value in mg}$
3. Z axis = $Z_{shift} * (1.952) = \text{value in mg}$

15.2 Temperature sensor

The acceleration sensor includes embedded temperature sensor for ambient temperature measurement. The temperature data is represented as a 12 bit in two's complement form and left aligned in the output registers T_OUT_L (0x0D) and T_OUT_H (0x0E). Similarly the temperature data is also represented as a 8 bit output data in two's complement form in the output register T_OUT (0x26). The table 25 shows the refresh rate of the temperature output data.

Parameter	Symbol	Test condition	Min.	Typ.	Max.	Unit
Temperature refresh rate		High performance mode for all ODRs / Normal Mode & Low power mode for ODRs equal to 200/100/50 Hz		50		Hz
		Normal mode & Low power mode at ODR - 25 Hz		25		
		Normal mode & Low power mode at ODR - 12.5 Hz		12.5		
		Normal mode & Low power mode at ODR - 1.6 Hz		1.6		

Table 25: Temperature refresh rate

The interpretation of temperature value from the output register value is calculated from the look up table (see table 26). The values listed in the table are provided under the hypothesis of perfect device calibration with no offset or error.

We recommend WSEN-ITDS temperature sensor for high accurate and precise temperature measurements.

Temperature values	T_Out (0x26)
-45 °C	0xB9
-44 °C	0xBA
-43 °C	0xBB
.	.
.	.
.	.
.	.
.	.
19 °C	0xFA
20 °C	0xFB
21 °C	0xFC
22 °C	0xFD
23 °C	0xFE
24 °C	0xFF
25 °C	0x00
26 °C	0x01
27 °C	0x02
28 °C	0x03
29 °C	0x04
30 °C	0x05
31 °C	0x06
.	.
.	.
.	.
.	.
.	.
83 °C	0x3A
84 °C	0x3B
85 °C	0x3C

Table 26: Temperature look up table

16 Register mapping

Register Addr (Hex)	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type	Comments
0x0D	<i>T_OUT_L</i>			TEMP[3:0]		0	0	0	0	R	Temperature data registers
0x0E	<i>T_OUT_H</i>				TEMP[7:0]					R	
0x0F	<i>DEVICE_ID</i>	0	1	0	0	0	1	0	0	R	Device address
0x10-1F	Reserved ¹				-					-	Reserved
0x20	<i>CTRL_1</i>		ODR[3:0]			MODE[1:0]		LP_MODE[1:0]		R/W	Control registers
0x21	<i>CTRL_2</i>	BOOT	SOFT_RESET	0	CS_PU_DISC	BDU	IF_ADD_INC	I2C_DISABLE	0	R/W	
0x22	<i>CTRL_3</i>	ST[1:0]		PP_OD	LIR	H_LACTIVE	0	SLP_MODE_SEL	SLP_MODE_1	R/W	
0x23	<i>CTRL_4</i>	INT0_6D	INT0_SINGLE_TAP	INT0_WU	INT0_FF	INT0_TAP	INT0_DIFF5	INT0_FTH	INT0_DRDY	R/W	
0x24	<i>CTRL_5</i>	INT1_SLEEP_STATE	INT1_SLEEP_CHG	INT1_BOOT	INT1_DRDY_T	INT1_OVR	INT1_DIFF5	INT1_FTH	INT1_DRDY	R/W	
0x25	<i>CTRL_6</i>	BW_FILT[1:0]		FS[1:0]		FDS	LOW_NOISE	0	0	R/W	
0x26	<i>T_OUT</i>			TEMP[7:0]						R	Temperature data register
0x27	<i>STATUS</i>	FIFO_THS	WU_IA	SLEEP_STATE	DOUBLE_TAP	SINGLE_TAP	6D_IA	FF_IA	DRDY	R	Status data register
0x28	<i>X_OUT_L</i>		X_L[3:0]			X_L[1:0] ²		0	0	R	Acceleration data registers
0x29	<i>X_OUT_H</i>			X_H[7:0]						R	
0x2A	<i>Y_OUT_L</i>		Y_L[3:0]			Y_L[1:0] ²		0	0	R	
0x2B	<i>Y_OUT_H</i>			Y_H[7:0]						R	
0x2C	<i>Z_OUT_L</i>		Z_L[3:0]			Z_L[1:0] ²		0	0	R	
0x2D	<i>Z_OUT_H</i>			Z_H[7:0]						R	
0x2E	<i>FIFO_CTRL</i>		FMODE[2:0]				FTH[4:0]			R/W	FIFO Control register
0x2F	<i>FIFO_SAMPLES</i>	FIFO_FTH	FIFO_OVR			DIFF[5:0]				R	Unread samples stored in FIFO
0x30	<i>TAP_X_TH</i>	4D_EN	6D_TH[1:0]				TAP_X_TH[4:0]			R/W	Tap thresholds
0x31	<i>TAP_Y_TH</i>		TAP_PRIOR[2:0]				TAP_Y_TH[4:0]			R/W	
0x32	<i>TAP_Z_TH</i>	TAP_X_EN	TAP_Y_EN	TAP_Z_EN			TAP_Z_TH[4:0]			R/W	
0x33	<i>INT_DUR</i>		LATENCY[3:0]			QUIET[1:0]		SHOCK[1:0]		R/W	Interrupt duration
0x34	<i>WAKE_UP_TH</i>	SINGLE_DOUBLE_TAP	SLEEP_ON			WK_TH[5:0]				R/W	Wake up threshold
0x35	<i>WAKE_UP_DUR</i>	FF_DUR5		WAKE_DUR[1:0]	STATIONARY		SLEEP_DUR[3:0]			R/W	Wake up duration
0x36	<i>FREE_FALL</i>			FF_DUR[4:0]			FF_TH[2:0]			R/W	Free fall configuration
0x37	<i>STATUS_DETECT</i>	OVR	DRDY_T	SLEEP_STATE_IA	DOUBLE_TAP	SINGLE_TAP	6D_IA	FF_IA	DRDY	R	Status register
0x38	<i>WAKE_UP_EVENT</i>	0	0	FF_IA	SLEEP_STATE_IA	WU_IA	X_WU	Y_WU	Z_WU	R	Wake up event
0x39	<i>TAP_EVENT</i>	0	TAP_IA	SINGLE_TAP	DOUBLE_TAP	TAP_SIGN	X_TAP	Y_TAP	Z_TAP	R	Tap event
0x3A	<i>6D_EVENT</i>	0	6D_IA	ZH	ZL	YH	YL	XH	XL	R	6D event
0x3B	<i>ALL_INT_EVENT</i>	0	0	SLEEP_CHANGE_IA	6D_IA	DOUBLE_TAP	SINGLE_TAP	WU_IA	FF_IA	R	
0x3C	<i>X_OFS_USR</i>			X_OFS_USR[7:0]						R/W	
0x3D	<i>Y_OFS_USR</i>			Y_OFS_USR[7:0]						R/W	
0x3E	<i>Z_OFS_USR</i>			Z_OFS_USR[7:0]						R/W	
0x3F	<i>CTRL_7</i>	DRDY_PULSED	INT1_ON_INT0	INTERRUPTS_ENABLE	USR_OFF_ON_OUT	USR_OFF_ON_WU	USR_OFF_W	HP_REF_MODE	LPASS_ON6D	R/W	

¹ The registers contents that are loaded at boot procedure should not be changed. They contain the factory calibration values and their content is automatically restored when the device is powered up.

Writing to Reserved registers(0x10 - 0x1F) is not allowed, it will cause permanent damage to the sensor

² If Low power mode is enabled this bit is set to '0'

17 Register description

17.1 T_OUT_L (0x0D)

The value of the temperature output registers T_OUT_L (0x0D) and T_OUT_H (0x0E) is expressed in 12-bit resolution.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
			TEMP[3:0]	0	0	0	0	R

Table 27: T_OUT_L register

bits	Description
TEMP[3:0]	4 least significant bits (LSB) of the temperature sensor output. Sensitivity = 1/16 °C/LSB. T_OUT_L (0x0D) together with T_OUT_H (0x0E) forms the value expressed as 16 bit word in 2's complement

Table 28: T_OUT_L register description

17.2 T_OUT_H (0x0E)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
				TEMP[7:0]				R

Table 29: T_OUT_H register

bits	Description
TEMP[7:0]	8 most significant bits (MSB) of the temperature sensor output. Sensitivity = 1/16°C/LSB. T_{OUT_L} (0x0D) together with T_{OUT_H} (0x0E) forms the value expressed as 16 bit word in 2's complement

Table 30: T_{OUT_H} register description

17.3 Device_ID (0x0F)

The value of this register gives the device ID, a value which is fixed: 0x44(b01000100).

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
0	1	0	0	0	1	0	0	R

Table 31: *Device_ID* register

17.4 CTRL_1 (0x20)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
			ODR[3:0]		MODE[1:0]		LP_MODE[1:0]	R/W

Table 32: *CTRL_1* register

ODR[3:0] is used to select the operating mode and output data rate.

ODR[3:0]	Power down / data rate configuration
0000	Power down
0001	High performance / Normal mode - 12.5 Hz & Low power mode 1.6 Hz
0010	High performance / Normal mode / Low power mode - 12.5 Hz /
0011	High performance / Normal mode / Low power mode - 25 Hz /
0100	High performance / Normal mode / Low power mode - 50 Hz /
0101	High performance / Normal mode / Low power mode - 100 Hz /
0110	High performance / Normal mode / Low power mode - 200 Hz /
0111	High performance / Normal mode - 400 Hz & Low power mode 200 Hz
1000	High performance / Normal mode - 800 Hz & Low power mode 200 Hz
1001	High performance / Normal mode - 1600 Hz & Low power mode 200 Hz

Table 33: Output data rate configuration

MODE[1:0]	Operating mode and resolution
00	Normal mode (14-bit resolution) / Low power mode (12-bit resolution)
01	High performance mode(14-bit resolution)
10	Single data conversion on demand mode (12/14-bit resolution)
11	-

Table 34: Mode selection

LP_MODE[1:0]	Operating mode and resolution
00	Low power mode (12-bit resolution)
10	Normal mode (14-bit resolution)

Table 35: Normal and Low power mode selection

17.5 CTRL_2 (0x21)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
BOOT	SOFT_RESET	0 ¹	CS_PU_DISC	BDU	IF_ADD_INC	I2C_DISABLE	0 ¹	R/W

Table 36: *CTRL_2* register

1. this bit must be set to 0 for proper operation of the sensor.

bits	Description
BOOT	This bit is set to '1' during boot sequence, the correct trimming parameters are retrieved from the non-volatile memory into the register. After boot sequence is completed this bit automatically returns to 0. Default value: 0 (0: disabled, 1: enabled)
SOFT_RESET	This bit is used to reset all control registers. After reset it is set back to '0'. Default value: 0 (0: disabled, 1: enabled)
CP_PU_DISC	Disconnect CS pull up. Default value: 0 (0: pull up connected to CS pin, 1: pull up disconnected to CS pin)
BDU	Block data update. Default value: 0 (0: Continuous update, 1: Output registers are not updated until MSB and LSB read)
IF_ADD_INC	Register address automatically incremented during multiple byte access with I ² C interface. Default value 0. (0: disabled, 1: enabled)
I2C_DISABLE	Disable I ² C communication. Default value: 0 (0: I ² C interface enabled, 1: I ² C interface disabled)

Table 37: *CTRL_2* register description

17.5.1 Block data update (BDU)

It is strongly recommended to set the BDU bit to '1' in the *CTRL_1* register. By default the BDU bit is '0' and the output registers are continuously updated. When the BDU bit is set to '1' the content of the output registers is not updated until both MSB and LSB are read. It avoids reading values related to different samples. As soon as the BDU is activated, the output registers always contain the most recent output data produced by the sensor. If the processor initiate the read function of a given pair (*X_OUT_L* and *X_OUT_H*, *Y_OUT_L* and *Y_OUT_H*, *Z_OUT_L* and *Z_OUT_H*), the update for that pair is blocked until both MSB and LSB of the data are read.

17.6 *CTRL_3* (0x22)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
ST[1:0]	PP_OD	LIR	H_LACTIVE	0	SLP_MODE_SEL	SLP_MODE_1	R/W	

Table 38: *CTRL_3* register

bits	Description
ST[1:0]	Self test enable. Default value: 00
PP_OD	Push-pull/open-drain selection on interrupt pid. Default: 0 (0: push-pull, 1: open-drain)
LIR	Latched interrupt. Switches between latched ('1'-logic) and pulsed ('0'-logic) mode for sensor function source signals and the signal routed to interrupt pins. Default value: 0 (0: Interrupt request not latched, 1: interrupt request latched)
H_LACTIVE	Interrupt active high, low. Default: 0 (0: active high, 1: active low)
SLP_MODE_SEL	Single data conversion on demand selection. 0: enabled by external trigger signal on INT_1, 1: enabled by I ² C writing SLP_MODE_1 to 1.
SLP_MODE_1	Single data conversion on demand mode enable. When SLP_MODE_SEL = '1' and this bit is set to '1', single data conversion on demand mode starts. When XL data are available in the registers, this bit is set to '0' automatically and the device is ready for another triggered session.

Table 39: *CTRL_3* register description

ST[1:0]	Self-test mode
00	Normal mode
01	Positive sign self-test
10	Negative sign self-test
11	-

Table 40: Self-test mode

17.7 CTRL_4 (0x23)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
INT0_6D	IN0_SINGLE_TAP	INT0_WU	INT0_FF	INT0_TAP	INT0_DIFF5	INT0_FTH	INT0_DRDY	R/W

Table 41: *CTRL_4* register

bits	Description
INT0_6D	6D recognition signal is routed to INT_0 pin. Default: 0 (0: disabled, 1: enabled)
INT0_SINGLE_TAP	Single-tap recognition signal is routed to INT_0 pin. Default value: 0 (0: disabled, 1: enabled)
INT0_WU	Wakeup recognition signal is routed to INT_0 pin. Default value: 0 (0: disabled, 1: enabled)
INT0_FF	Free-fall recognition signal is routed to INT_0 pin. Default value: 0 (0: disabled, 1: enabled)
INT0_TAP	Double-tap recognition signal is routed to INT_0 pin. Default value: 0 (0: disabled, 1: enabled)
INT0_DIFF5	FIFO full recognition signal is routed to INT_0 pin. Default value: 0 (0: disabled, 1: enabled)
INT0_FTH	FIFO threshold interrupt signal is routed to INT_0 pin. Default value: 0 (0: disabled, 1: enabled)
INT0_DRDY	Data-Ready interrupt signal is routed to INT_0 pin. Default value: 0 (0: disabled, 1: enabled)

Table 42: *CTRL_4* register description

17.8 CTRL_5 (0x24)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
INT1_SLEEP_STATE	INT1_SLEEP_CHG	INT1_BOOT	INT1_DRDY_T	INT1_OVR	INT1_DIFF5	INT1_FTH	INT1_DRDY	R/W

Table 43: *CTRL_5* register

bits	Description
INT1_SLEEP_STATE	Sleep state signal is routed to INT_1 pin. Default: 0 (0: disabled, 1: enabled)
INT1_SLEEP_CHG	Sleep change status signal is routed to INT_1 pin. Default value: 0 (0: disabled, 1: enabled)
INT1_BOOT	Boot status signal is routed to INT_1 pin. Default value: 0 (0: disabled, 1: enabled)
INT1_DRDY_T	Temperature data-ready signal is routed to INT_1 pin. Default value: 0 (0: disabled, 1: enabled)
INT1_OVR	FIFO overrun interrupt signal is routed to INT_1 pin. Default value: 0 (0: disabled, 1: enabled)
INT1_DIFF5	FIFO full recognition signal is routed to INT_1 pin. Default value: 0 (0: disabled, 1: enabled)
INT1_FTH	FIFO threshold interrupt signal is routed to INT_1 pin. Default value: 0 (0: disabled, 1: enabled)
INT1_DRDY	Data-Ready interrupt signal is routed to INT_1 pin. Default value: 0 (0: disabled, 1: enabled)

Table 44: *CTRL_5* register description

17.9 CTRL_6 (0x25)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
BW_FILT[1:0]		FS[1:0]		FDS	LOW_NOISE	0	0	R/W

Table 45: *CTRL_6* register

bits	Description
FDS	Filtered data type selection. Default: 0 (0: low-pass filter path selected, 1: high-pass filter path selected)
LOW_NOISE	Low noise configuration (0: disabled, 1: enabled)

Table 46: *CTRL_6* register description

BW_FILT[1:0]	Bandwidth selection
00	ODR/2 (except for ODR = 1600 Hz, 400 Hz)
01	ODR/4 (High pass / Low pass filter)
10	ODR/10 (High pass / Low pass filter)
11	ODR/20 (High pass / Low pass filter)

Table 47: Filtering cut-off selection

FS[1:0]	Full scale selection
00	$\pm 2g$
01	$\pm 4g$
10	$\pm 8g$
11	$\pm 16g$

Table 48: Full scale selection

17.10 T_OUT (0x26)

Temperature output data in 8-bit resolution.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
TEMP[7:0]								R

Table 49: *T_OUT* register

bits	Description
TEMP[7:0]	Temperature data in 8-bit resolution is expressed as two's complement sign with sensitivity = 1 °C/LSB. Please refer the table 26 for interpretation of temperature value.

Table 50: *T_OUT* register description

17.11 STATUS (0x27)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
FIFO_THS	WU_IA	SLEEP_STATE	DOUBLE_TAP	SINGLE_TAP	6D_IA	FF_IA	DRDY	R

Table 51: *STATUS* register

bits	Description
FIFO_THS	FIFO threshold status bit (0: FIFO filling is lower than threshold level, 1: FIFO filling is equal to or higher than the threshold level.))
WU_IA	Wakeup event detection status bit (0: Wakeup event not detected, 1: Wakeup event detected)
SLEEP_STATE	Sleep event status bit (0: Sleep event not detected, 1: Sleep event detected)
DOUBLE_TAP	Double-tap event status bit (0: Double-tap event not detected, 1: Double-tap event detected)
SINGLE_TAP	Single-tap event status bit (0: Single-tap event not detected, 1: Single-tap event detected)
6D_IA	Source of change in position portrait/landscape/face-up/face-down. (0: no event detected, 1: a change in position detected)
FF_IA	Free-fall event detection bit (0: free-fall event not detected; 1: free-fall event detected)
DRDY	Data-ready status bit (0: not ready, 1: X-, Y- and Z-axis new data available)

Table 52: *STATUS* register

17.12 X_OUT_L (0x28)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
				X_L[3:0]	X_L[1:0] ¹	0	0	R

Table 53: *X_OUT_L* register

bits	Description
X_L[3:0]	If low power mode is enabled, the data from this register gives the 4 least significant bits of X-axis acceleration sensor output. The remaining bits are zero in the register.
X_L[1:0]	If high performance mode/normal mode is enabled, the data from this register combined with X_L[3:0] (i.e. X_L[3:0] and X_L[1:0]) gives the 6 least significant bits of X-axis acceleration sensor output. The remaining bits are zero in the register.

Table 54: *X_OUT_L* register description

It gives the 8 least significant bits of X-axis acceleration sensor output. Combined with data from *X_OUT_H*(0x29) register, it gives the output value expressed as a 16-bit word in 2's complement.

1. If Low power mode 1 is enabled, this bit is set to '0'.

17.13 X_OUT_H (0x29)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
					X_H[7:0]			R

Table 55: *X_OUT_H* register

It gives the 8 most significant bits of X-axis acceleration sensor output. Combined with data from *X_OUT_L*(0x28) register, it gives the output value expressed as a 16-bit word in 2's complement.

17.14 Y_OUT_L (0x2A)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
				Y_L[3:0]	Y_L[1:0] ¹	0	0	R

Table 56: *Y_OUT_L* register

bits	Description
Y_L[3:0]	If low power mode is enabled, the data from this register gives the 4 least significant bits of Y-axis acceleration sensor output. The remaining bits are zero in the register.
Y_L[1:0]	If high performance mode/normal mode is enabled, the data from this register combined with Y_L[3:0] (i.e. Y_L[3:0] and Y_L[1:0]) gives the 6 least significant bits of Y-axis acceleration sensor output. The remaining bits are zero in the register.

Table 57: *Y_OUT_L* register description

It gives the 8 least significant bits of Y-axis acceleration sensor output. Combined with data from *Y_OUT_H*(0x2B) register, it gives the output value expressed as a 16-bit word in 2's complement.

1. If Low power mode 1 is enabled, this bit is set to '0'.

17.15 Y_OUT_H (0x2B)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
					Y_H[7:0]			R

Table 58: *Y_OUT_H* register

It gives the 8 most significant bits of Y-axis acceleration sensor output. Combined with data from *Y_OUT_L*(0x2A) register, it gives the output value expressed as a 16-bit word in 2's complement.

17.16 Z_OUT_L (0x2C)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
	Z_L[3:0]			Z_L[1:0] ¹		0	0	R

Table 59: *Z_OUT_L* register

bits	Description
Y_L[3:0]	If low power mode is enabled, the data from this register gives the 4 least significant bits of Z-axis acceleration sensor output. The remaining bits are zero in the register.
Y_L[1:0]	If High performance mode/normal mode is enabled, the data from this register combined with Z_L[3:0] (i.e. Z_L[3:0] and Z_L[1:0]) gives the 6 least significant bits of Z-axis acceleration sensor output. The remaining bits are zero in the register.

Table 60: *Z_OUT_L* register description

It gives the 8 least significant bits of Z-axis acceleration sensor output. Combined with data from *Z_OUT_H*(0x2D) register, it gives the output value expressed as a 16-bit word in 2's complement.

1. If Low power mode 1 is enabled, this bit is set to '0'.

17.17 Z_OUT_H (0x2D)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
	Z_H[7:0]							R

Table 61: *Z_OUT_H* register

It gives the 8 most significant bits of Z-axis acceleration sensor output. Combined with data from *Z_OUT_L*(0x2C) register, it gives the output value expressed as a 16-bit word in 2's complement.

17.18 FIFO_CTRL (0x2E)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
	FMODE[2:0]			FTH[4:0]				R/W

Table 62: *FIFO_CTRL* register

FMODE[2:0]		Mode Description
000	Enable Bypass mode and FIFO buffer is turned off(not active)	
001	Enable FIFO mode	
010	Reserved	
011	Enable Continuous to FIFO mode	
100	Enable Bypass to Continuous mode	
101	Reserved	
110	Enable continuous mode	
111	Reserved	

Table 63: *FIFO_CTRL* register description

The functionality of the FTH bits are explained in the chapter 11.6.2

17.19 FIFO_SAMPLES (0x2F)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
FIFO_FTH	FIFO_OVR						DIFF[5:0]	R

Table 64: *FIFO_SAMPLES* register

bits	Description
FIFO_FTH	FIFO threshold status bit. (0: FIFO filling is lower than threshold level, 1: FIFO filling is equal to or higher than the threshold level)
FIFO_OVR	FIFO overrun status. (0: FIFO is not completely filled, 1: FIFO is completely filled and at least one sample has been overwritten)
Diff[5:0]	Defines the number of unread samples stored in FIFO. ('000000' = FIFO empty, '100000' = FIFO full, 32 unread samples)

Table 65: *FIFO_SAMPLES* register description

17.20 TAP_X_TH (0x30)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
4D_EN	6D_TH[1:0]						TAP_THSX[4:0]	R/W

Table 66: *TAP_X_TH* register

bits	Description
4D_EN	4D detection portrait/landscape position enable. (0: no position detected; 1: portrait/landscape detection and face-up/face-down position enabled).
TAP_THSX[4:0]	Threshold for TAP recognition at FS = $\pm 2g$ on X direction

Table 67: *TAP_X_TH* register description

6D_THS[1:0]	Threshold definition (degrees)
00	6 (80 degrees)
01	11(70 degrees)
10	16(60 degrees)
11	21(50 degrees)

Table 68: 4D/6D threshold setting FS: $\pm 2g$ description

17.21 TAP_Y_TH (0x31)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
TAP_PRIOR[2:0]			TAP_THSY[4:0]					R/W

Table 69: *TAP_Y_TH* register

bits	Description
TAP_THSY[4:0]	Threshold for tap recognition at FS: $\pm 2g$ on Y direction.

Table 70: *TAP_Y_TH* register description

TAP_PRIOR[2:0]	Max Priority	Mid Priority	Min Priority
000	X	Y	Z
001	Y	X	Z
010	X	Z	Y
011	Z	Y	X
100	X	Y	Z
101	Y	Z	X
110	Z	X	Y
111	Z	Y	X

Table 71: Axis priority for tap detection

17.22 TAP_Z_TH (0x32)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
TAP_X_EN	TAP_Y_EN	TAP_Z_EN		TAP_THSZ[4:0]				R/W

Table 72: *TAP_Z_TH* register

bits	Description
TAP_X_EN	Enables X direction in tap recognition. (0: disabled, 1: enabled)
TAP_Y_EN	Enables Y direction in tap recognition. (0: disabled, 1: enabled)
TAP_Z_EN	Enables Z direction in tap recognition. (0: disabled, 1: enabled)
TAP_THSZ_[4:0]	Threshold for tap recognition at FS: $\pm 2g$ on Z direction.

Table 73: *TAP_Z_TH* register description

17.23 INT_DUR (0x33)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
LATENCY[3:0]				QUIET[1:0]		SHOCK[1:0]		R/W

Table 74: *INT_DUR* register

bits	Description
LATENCY[3:0]	It defines the maximum duration time gap for double-tap recognition. When double-tap recognition is enabled, this register expresses the maximum time between two successive detected taps to determine a double-tap event. Default value is LATENCY[3:0] = 0000 (i.e. 16 * 1/ODR) 1 LSB = 32 * 1/ODR
QUIET[1:0]	It defines the expected quiet time after a tap detection. This register defines the time after the first detected tap in which there must not be any over-threshold event. Default value is QUIET[1:0] = 00 (i.e. 2 * 1/ODR) 1 LSB = 4 * 1/ODR
SHOCK[1:0]	It defines the maximum duration of over-threshold event. This register defines the maximum time of an over-threshold signal detection to be recognized as a tap event. Default value is SHOCK[1:0] = 00 (i.e. 4 * 1/ODR) 1 LSB = 8 * 1/ODR

Table 75: *INT_DUR* register description

17.24 WAKE_UP_TH (0x34)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
SINGLE_DOUBLE_TAP	SLEEP_ON						WK_TH[5:0]	R/W

Table 76: *WAKE_UP_TH* register

bits	Description
SINGLE_DOUBLE_TAP	Enable single/double-tap event. Default value: 0 (0: enable only single-tap, 1: enable both single and double-tap)
SLEEP_ON	Enables inactivity(sleep). Default value: 0 (0: sleep disabled, 1: sleep enabled)
WK_THS[5:0]	Defines Wakeup threshold, 6-bit unsigned 1 LSB = 1/64 of FS. Default value: 000000

Table 77: *WAKE_UP_TH* register description

17.25 WAKE_UP_DUR (0x35)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
FF_DUR5	WAKE_DUR[1:0]	STATIONARY					SLEEP_DUR[3:0]	R/W

Table 78: *WAKE_UP_DUR* register

bits	Description
FF_DUR5	this bit defines Free-fall duration. Combined with FF_DUR [4:0] bit in <i>FREE_FALL</i> (0x36) register. 1 LSB = 1 * 1/ODR
WAKE_DUR[1:0]	This bit defines Wakeup duration. 1 LSB = 1 * 1/ODR
STATIONARY	Enables stationary detection / motion detection with no automatic ODR change when detecting stationary state. Default value: 0 (0: disabled, 1: enabled)
SLEEP_DUR[3:0]	Defines the sleep mode duration. Default value is SLEEP_DUR[3:0] = 0000 (which is 16 * 1/ODR) 1 LSB = 512 * 1/ODR

Table 79: *WAKE_UP_DUR* register description

17.26 FREE_FALL (0x36)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
FF_DUR[4:0]						FF_TH[2:0]		R/W

Table 80: *FREE_FALL* register

bits	Description
FF_DUR[4:0]	Defines Free-fall duration. Combined with FF_DUR5 bit in <i>WAKE_UP_DUR</i> (0x35) register. 1 LSB = 1 * 1/ODR

Table 81: *FREE_FALL* register description

FF_TH[2:0]	Threshold decoding (LSB)
000	5
001	7
010	8
011	10
100	11
101	13
110	15
111	16

Table 82: *FREE_FALL* threshold

17.27 STATUS_DETECT (0x37)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
OVR	DRDY_T	SLEEP_STATE_IA	DOUBLE_TAP	SINGLE_TAP	6D_IA	FF_IA	DRDY	R

Table 83: *STATUS_DETECT* register

bits	Description
OVR	Defines the FIFO overrun status (0: FIFO is not completely filled, 1: FIFO is completely filled and at least one sample has been overwritten)
DRDY_T	Defines the temperature status (0: data not available, 1: a new set of data is available)
SLEEP_STATE_IA	Defines sleep event status (0: Sleep event not detected, 1: Sleep event detected)
DOUBLE_TAP	Enables Double-tap event status (0: Double-tap event not detected, 1: Double-tap event detected)
SINGLE_TAP	Enables Single-tap event status (0: Single-tap event not detected; 1: Single-tap event detected)
6D_IA	Defines the source of change in position portrait/landscape/face-up/face-down (0: no event detected, 1: a change in position is detected)
FF_IA	Defines Free-fall event detection status (0: free-fall event not detected, 1: free-fall event detected)
DRDY	Defines Data-ready status (0: not ready, 1: X-, Y- and Z-axis new data available)

Table 84: *STATUS_DETECT* register description

17.28 WAKE_UP_EVENT (0x38)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
0	0	FF_IA	SLEEP _STAT E_IA	WU_IA	X_WU	Y_WU	Z_WU	R

Table 85: *WAKE_UP_EVENT* register

bits	Description
FF_IA	Defines the Free-fall event detection status (0: FF event not detected, 1: FF event detected)
SLEEP_STATE _IA	Defines the Sleep event status (0: Sleep event not detected, 1: Sleep event detected)
WU_IA	Defines the Wake-up event detection status (0: Wake-up event not detected, 1: Wakeup event is detected)
X_WU	Enables Wake-up event detection status on X-axis (0: Wake-up event on X not detected; 1: Wake-up event on X-axis is detected)
Y_WU	Enables Wake-up event detection status on Y-axis (0: Wake-up event on Y not detected, 1: Wakeup event on Y-axis is detected)
Z_WU	Defines the Wake-up event detection status on Z-axis (0: Wake-up event on Z not detected, 1: Wake-up event on Z-axis is detected)

Table 86: *WAKE_UP_EVENT* register description

17.29 TAP_EVENT (0x39)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
0	TAP_IA	SINGLE_TAP	DOUBLE_TAP	TAP_SIGN	X_TAP	Y_TAP	Z_TAP	R

Table 87: *TAP_EVENT* register

bits	Description
TAP_IA	Defines the Tap event status (0: tap event not detected, 1: tap event detected)
SINGLE_TAP	Defines the single-tap event status (0: single-tap event not detected, 1: single-tap event detected)
DOUBLE_TAP	Defines the Double-tap event status (0: double-tap event not detected, 1: double-tap event detected)
TAP_SIGN	Defines the sign of acceleration detected by tap event (0: positive sign of acceleration detected, 1: negative sign of acceleration detected)
X_TAP	Defines Tap event detection status on X-axis (0: Tap event on X not detected, 1: Tap event on X-axis is detected)
Y_TAP	Defines Tap event detection status on Y-axis (0: Tap event on Y not detected, 1: Tap event on Y-axis is detected)
Z_TAP	Defines the Tap event detection status on Z-axis (0: Tap event on Z not detected, 1: Tap event on Z-axis is detected)

Table 88: *TAP_EVENT* register description

17.30 6D_EVENT (0x3A)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
0	6D_IA	ZH	ZL	YH	YL	XH	XL	R

Table 89: *6D_EVENT* register

bits	Description
6D_IA	Defines the source of change in position portrait/landscape/face-up/face-down (0: no event detected, 1: a change in position is detected)
ZH	Defines the ZH over threshold (0: ZH does not exceed the threshold, 1: ZH is over the threshold)
ZL	Defines the ZL over threshold (0: ZL does not exceed the threshold, 1: ZL is over the threshold)
YH	Defines the YH over threshold (0: YH does not exceed the threshold, 1: YH is over the threshold)
YL	Defines the YL over threshold (0: YL does not exceed the threshold, 1: YL is over the threshold)
XH	Defines the XH over threshold (0: XH does not exceed the threshold, 1: XH is over the threshold)
XL	Defines the XL over threshold (0: XL does not exceed the threshold, 1: XL is over the threshold)

Table 90: *6D_EVENT* register description

17.31 ALL_INT_EVENT (0x3B)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
0	0	SLEEP_CHANGE_IA	6D_IA	DOUBLE_TAP	SINGLE_TAP	WU_IA	FF_IA	R

Table 91: *ALL_INT_EVENT* register

By reading this register, all related interrupt events routed to the interrupt pins (INT_0 and INT_1) are reset.

bits	Description
SLEEP_CHANGE_IA	Defines the sleep change status (0: Sleep change not detected; 1: Sleep change detected)
6D_IA	Defines the source of change in position portrait/landscape/face-up/face-down (0: no event detected; 1: a change in position detected)
DOUBLE_TAP	Defines the double-tap event status (0: double-tap event not detected, 1: double-tap event detected)
SINGLE_TAP	Defines the single-tap event status (0: single-tap event not detected, 1: single-tap event detected)
WU_IA	Defines the Wakeup event detection status (0: wakeup event not detected, 1: wakeup event detected)
XH	Defines the XH over threshold (0: XH does not exceed the threshold, 1: XH is over the threshold)
FF_IA	Defines the Free-fall event detection status (0: free-fall event not detected, 1: free-fall event detected)

Table 92: *ALL_INT_EVENT* register description

17.32 X_OFs_USR (0x3C)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
X_OFs_USR[7:0]								R/W

Table 93: *X_OFs_USR* register

This register data gives the two's complement user offset value on X_axis data used for wakeup function.

17.33 Y_OFs_USR (0x3D)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
Y_OFs_USR[7:0]								R/W

Table 94: *Y_OFs_USR* register

This register data gives the two's complement user offset value on Y_axis data used for wakeup function.

17.34 Z_OFs_USR (0x3E)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
Z_OFs_USR[7:0]								R/W

Table 95: *Z_OFs_USR* register

This register data gives the two's complement user offset value on Z_axis data used for wakeup function.

17.35 CTRL_7 (0x3F)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Type
DRDY_PULSE_D	INT1_ON_INT0	INTERRUPTS_TS_ENABLE	USR_OFF_ON_OUT	USR_OFF_ON_WU	USR_OFF_W	HP_REF_MODE	LPASS_ON6D	R/W

Table 96: *CTRL_7* register

bits	Description
DRDY_PULSE_D	Defines the switches between latched and pulsed mode for data ready interrupt (0: latched mode is used, 1: pulsed mode enabled for data-ready)
INT1_ON_INT0	Defines the signal routing (1: all signals available only on INT_1 are routed on INT_0)
INTERRUPTS_ENABLE	Enable interrupts
USR_OFF_ON_OUT	Enable application of user offset value on XL output data registers. FDS bit in <i>CTRL_6</i> (0x25) must be set to '0'-logic (low-pass path selected)
USR_OFF_ON_WU	Enable application of user offset value on XL data for wakeup function only
USR_OFF_W	Defines the selection of weight of the user offset words specified by X_OFS_USR[7:0], Y_OFS_USR[7:0] and Z_OFS_USR[7:0] bits (0: 977 µg /LSB, 1: 15.6 mg /LSB)
HP_REF_MODE	Enables high-pass filter reference mode (0: high-pass filter reference mode disabled (default), 1: high-pass filter reference mode enabled)
LPASS_ON6D	(0: ODR/2 low pass filtered data sent to 6D interrupt function (default), 1: LPF_1 output data sent to 6D interrupt function)

Table 97: *CTRL_7* register description

18 Physical dimensions

18.1 Module drawing

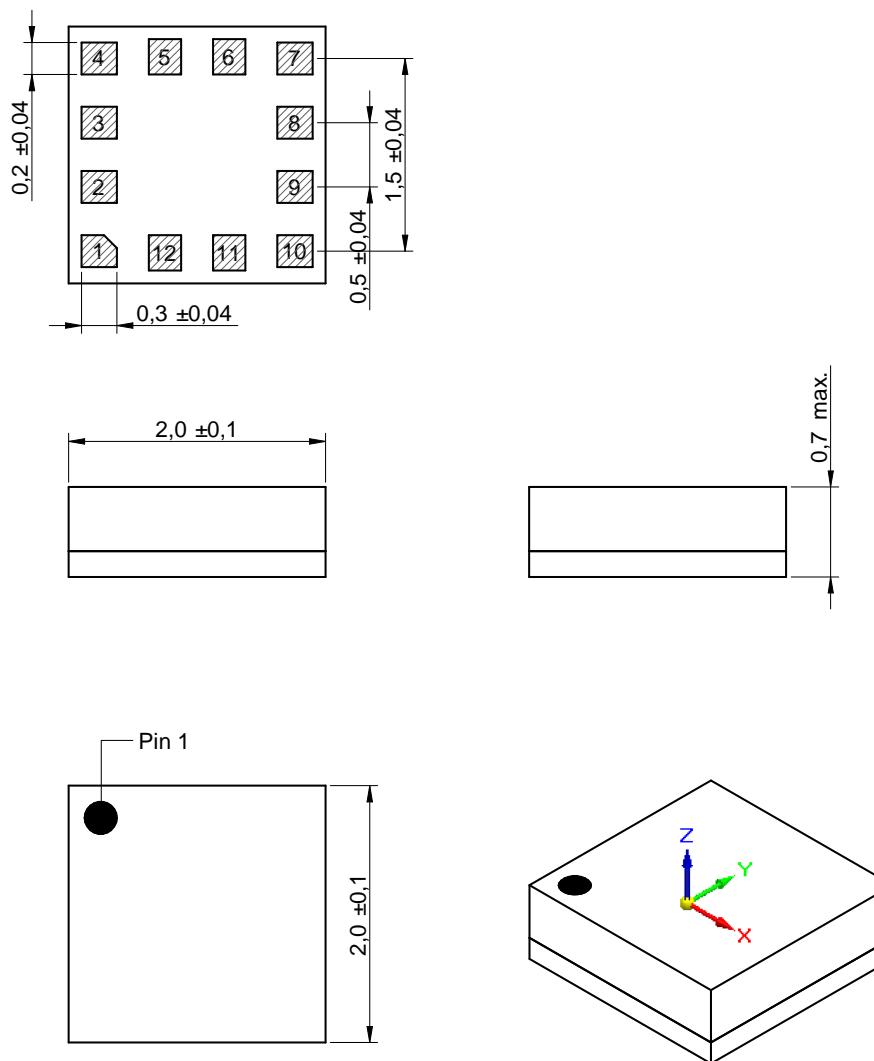


Figure 25: Sensor dimensions [mm]

18.2 Footprint

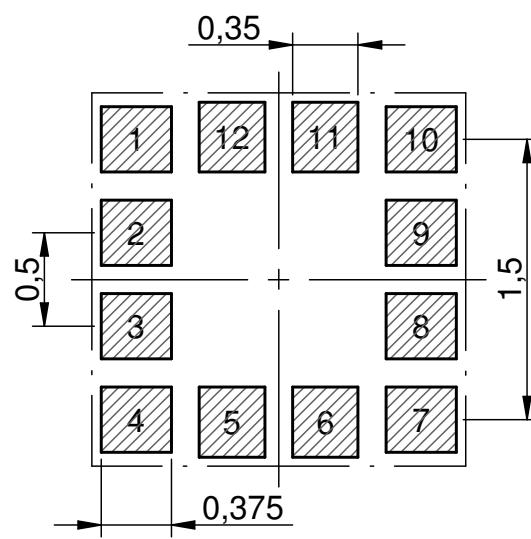


Figure 26: Recommended land pattern [mm] (top view)

18.3 Measurement axis of the sensor

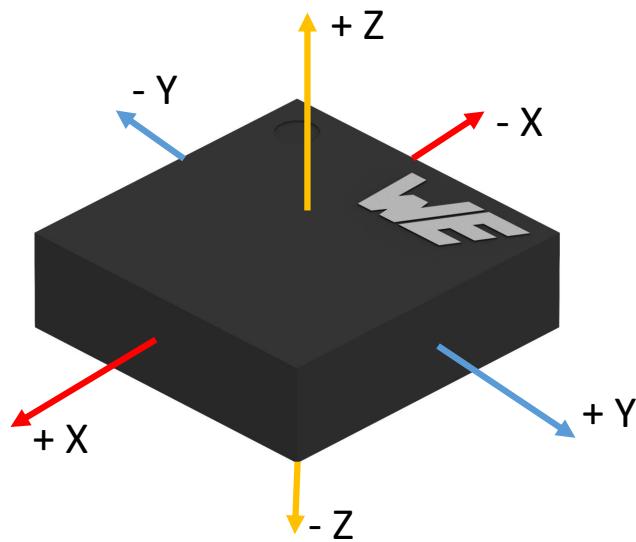


Figure 27: Measurement axis of the sensor

19 Manufacturing information

19.1 Moisture sensitivity level

The sensor product is categorized as JEDEC Moisture Sensitivity Level 3 (MSL3), which requires special handling.

More information regarding the MSL requirements can be found in the IPC/JEDEC J-STD-020 standard on www.jedec.org. More information about the handling, picking, shipping and the usage of moisture/re-flow and/or process sensitive products can be found in the IPC/JEDEC J-STD-033 standard on www.jedec.org.

19.2 Soldering

19.2.1 Reflow soldering

Attention must be paid on the thickness of the solder resist between the host PCB top side and the modules bottom side. Only lead-free assembly is recommended according to JEDEC J-STD020.

Profile feature		Value
Preheat temperature Min	T_S Min	150 °C
Preheat temperature Max	T_S Max	200 °C
Preheat time from T_S Min to T_S Max	t_S	60 - 120 seconds
Ramp-up rate (T_L to T_P)		3 °C / second max.
Liquidous temperature	T_L	217 °C
Time t_L maintained above T_L	t_L	60 - 150 seconds
Peak package body temperature	T_P	see table below
Time within 5 °C of actual preak temperature	t_P	20 - 30 seconds
Ramp-down Rate (T_P to T_L)*		6 °C / second max.
Time 20 °C to T_P		8 minutes max.

Table 98: Classification reflow soldering profile, Note: refer to IPC/JEDEC J-STD-020E

* In order to reduce residual stress on the sensor component, the recommended ramp-down temperature slope should be lower than 3 %/s.

Package thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
< 1.6mm	260 °C	260 °C	260 °C
1.6mm - 2.5mm	260 °C	250 °C	245 °C
> 2.5mm	250 °C	245 °C	245 °C

Table 99: Package classification reflow temperature, PB-free assembly, Note: refer to IPC-/JEDEC J-STD-020E

It is recommended to solder the sensor on the last re-flow cycle of the PCB. For solder paste use a LFM-48W or Indium based SAC 305 alloy (Sn 96.5 / Ag 3.0 / Cu 0.5 / Indium 8.9HF / Type 3 / 89%) type 3 or higher.

The reflow profile must be adjusted based on the thermal mass of the entire populated PCB, heat transfer efficiency of the re-flow oven and the specific type of solder paste used. Based on the specific process and PCB layout the optimal soldering profile must be adjusted and verified. Other soldering methods (e.g. vapor phase) have not been verified and have to be validated by the customer at their own risk. Rework is not recommended.

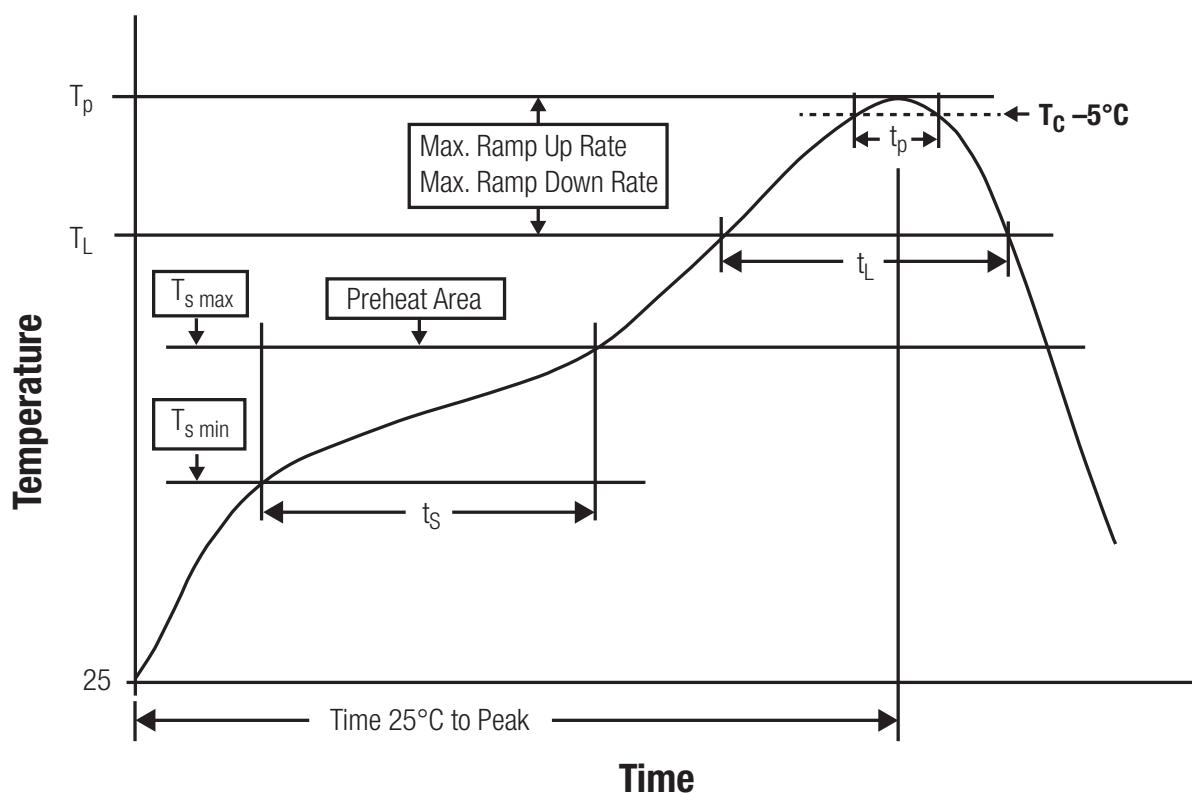


Figure 28: Reflow soldering profile

After reflow soldering, visually inspect the board to confirm proper alignment

19.2.2 Cleaning and washing

Do not clean the product. Any residue cannot be easily removed by washing. Use a "no clean" soldering paste and do not clean the board after soldering.

- Washing agents used during the production to clean the customer application might damage or change the characteristics of the component. Washing agents may have a negative effect on the long-term functionality of the product.
- Using a brush during the cleaning process may damage the component. Therefore, we do not recommend using a brush during the PCB cleaning process

19.2.3 Potting and coating

- Potting material might shrink or expand during and after hardening. This might apply mechanical stress on the components, which can influence the characteristics of the transfer function. In addition, potting material can close existing openings in the housing. This can lead to a malfunction of the component. Thus, potting is not recommended.
- Conformal coating may affect the product performance. We do not recommend coating the components.

19.2.4 Storage conditions

- A storage of Würth Elektronik eiSos products for longer than 12 months is not recommended. Within other effects, the terminals may suffer degradation, resulting in bad solderability. Therefore, all products shall be used within the period of 12 months based on the day of shipment.
- Do not expose the components to direct sunlight.
- The storage conditions in the original packaging are defined according to DIN EN 61760 - 2.
- For a moisture sensitive component, the storage condition in the original packaging is defined according to IPC/JEDEC-J-STD-033. It is also recommended to return the component to the original moisture proof bag and reseal the moisture proof bag again.

19.2.5 Handling

- Violation of the technical product specifications such as exceeding the nominal rated supply voltage, will void the warranty.
- Violation of the technical product specifications such as but not limited to exceeding the absolute maximum ratings will void the conformance to regulatory requirements.
- ESD prevention methods need to be followed for manual handling and processing by machinery.
- The edge castellation is designed and made for prototyping, i.e. hand soldering purposes only.

- The applicable country regulations and specific environmental regulations must be observed.
- Do not disassemble the product. Evidence of tampering will void the warranty.

20 Important notes

The following conditions apply to all goods within the sensors product range of Würth Elektronik eiSos GmbH & Co. KG:

20.1 General customer responsibility

Some goods within the product range of Würth Elektronik eiSos GmbH & Co. KG contain statements regarding general suitability for certain application areas. These statements about suitability are based on our knowledge and experience of typical requirements concerning the areas, serve as general guidance and cannot be estimated as binding statements about the suitability for a customer application. The responsibility for the applicability and use in a particular customer design is always solely within the authority of the customer. Due to this fact, it is up to the customer to evaluate, where appropriate to investigate and to decide whether the device with the specific product characteristics described in the product specification is valid and suitable for the respective customer application or not. Accordingly, the customer is cautioned to verify that the documentation is current before placing orders.

20.2 Customer responsibility related to specific, in particular safety-relevant applications

It has to be clearly pointed out that the possibility of a malfunction of electronic components or failure before the end of the usual lifetime cannot be completely eliminated in the current state of the art, even if the products are operated within the range of the specifications. The same statement is valid for all software and software parts contained in or used with or for products in the sensor product range of Würth Elektronik eiSos GmbH & Co. KG. In certain customer applications requiring a high level of safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health, it must be ensured by most advanced technological aid of suitable design of the customer application that no injury or damage is caused to third parties in the event of malfunction or failure of an electronic component.

20.3 Best care and attention

Any product-specific data sheets, manuals, application notes, PCN's, warnings and cautions must be strictly observed in the most recent versions and matching to the products revisions. This documents can be downloaded from the product specific sections on the wireless connectivity and sensors homepage.

20.4 Customer support for product specifications

Some products within the product range may contain substances, which are subject to restrictions in certain jurisdictions in order to serve specific technical requirements. Necessary information is available on request. In this case, the field sales engineer or the internal sales person in charge should be contacted who will be happy to support in this matter.

20.5 Product improvements

Due to constant product improvement, product specifications may change from time to time. As a standard reporting procedure of the Product Change Notification (PCN) according to the JEDEC-Standard, we inform about major changes. In case of further queries regarding the PCN, the field sales engineer, the internal sales person or the technical support team in charge should be contacted. The basic responsibility of the customer as per section 20.1 and 20.2 remains unaffected.

The sensor driver software "Sensor SDK" and its source codes are not subject to the Product Change Notification information process.

20.6 Product life cycle

Due to technical progress and economical evaluation we also reserve the right to discontinue production and delivery of products. As a standard reporting procedure of the Product Termination Notification (PTN) according to the JEDEC-Standard we will inform at an early stage about inevitable product discontinuance. According to this, we cannot ensure that all products within our product range will always be available. Therefore, it needs to be verified with the field sales engineer or the internal sales person in charge about the current product availability expectancy before or when the product for application design-in disposal is considered. The approach named above does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

20.7 Property rights

All the rights for contractual products produced by Würth Elektronik eiSos GmbH & Co. KG on the basis of ideas, development contracts as well as models or templates that are subject to copyright, patent or commercial protection supplied to the customer will remain with Würth Elektronik eiSos GmbH & Co. KG. Würth Elektronik eiSos GmbH & Co. KG does not warrant or represent that any license, either expressed or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, application, or process in which Würth Elektronik eiSos GmbH & Co. KG components or services are used.

20.8 General terms and conditions

Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms and Conditions of Würth Elektronik eiSos Group", last version available at www.we-online.com.

21 Legal notice

21.1 Exclusion of liability

Würth Elektronik eiSos GmbH & Co. KG considers the information in this document to be correct at the time of publication. However, Würth Elektronik eiSos GmbH & Co. KG reserves the right to modify the information such as technical specifications or functions of its products or discontinue the production of these products or the support of one of these products without any written announcement or notification to customers. The customer must make sure that the information used corresponds to the latest published information. Würth Elektronik eiSos GmbH & Co. KG does not assume any liability for the use of its products. Würth Elektronik eiSos GmbH & Co. KG does not grant licenses for its patent rights or for any other of its intellectual property rights or third-party rights.

Notwithstanding anything above, Würth Elektronik eiSos GmbH & Co. KG makes no representations and/or warranties of any kind for the provided information related to their accuracy, correctness, completeness, usage of the products and/or usability for customer applications. Information published by Würth Elektronik eiSos GmbH & Co. KG regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof.

21.2 Suitability in customer applications

The customer bears the responsibility for compliance of systems or units, in which Würth Elektronik eiSos GmbH & Co. KG products are integrated, with applicable legal regulations. Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Würth Elektronik eiSos GmbH & Co. KG components in its applications, notwithstanding any applications-related information or support that may be provided by Würth Elektronik eiSos GmbH & Co. KG. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences lessen the likelihood of failures that might cause harm and take appropriate remedial actions. The customer will fully indemnify Würth Elektronik eiSos GmbH & Co. KG and its representatives against any damages arising out of the use of any Würth Elektronik eiSos GmbH & Co. KG components in safety-critical applications.

21.3 Usage restriction

Würth Elektronik eiSos GmbH & Co. KG products have been designed and developed for usage in general electronic equipment only. This product is not authorized for use in equipment where a higher safety standard and reliability standard is especially required or where a failure of the product is reasonably expected to cause severe personal injury or death, unless the parties have executed an agreement specifically governing such use. Moreover, Würth Elektronik eiSos GmbH & Co. KG products are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc. Würth Elektronik eiSos GmbH & Co. KG must be

informed about the intent of such usage before the design-in stage. In addition, sufficient reliability evaluation checks for safety must be performed on every electronic component, which is used in electrical circuits that require high safety and reliability function or performance. By using Würth Elektronik eiSos GmbH & Co. KG products, the customer agrees to these terms and conditions.

22 License terms for Würth Elektronik eiSos GmbH & Co. KG sensor product software and source code

This License terms will take effect upon the purchase and usage of the Würth Elektronik eiSos GmbH & Co. KG sensor products. You hereby agree that this license terms are applicable to the product and the incorporated software, firmware and source codes (collectively, "Software") made available by Würth Elektronik eiSos in any form, including but not limited to binary, executable or source code form.

The software included in any Würth Elektronik eiSos sensor product is purchased to you on the condition that you accept the terms and conditions of this license terms. You agree to comply with all provisions under this license terms.

22.1 Limited license

Würth Elektronik eiSos hereby grants you a limited, non-exclusive, non-transferable and royalty-free license to use the software and under the conditions that will be set forth in this license terms. You are free to use the provided software only in connection with one of the products from Würth Elektronik eiSos to the extent described in this license terms.

You are entitled to change or alter the source code for the sole purpose of creating an application embedding the Würth Elektronik eiSos sensor product. The transfer of the source code to third parties is allowed to the sole extent that the source code is used by such third parties in connection with our product or another hardware provided by Würth Elektronik eiSos under strict adherence of this license terms. Würth Elektronik eiSos will not assume any liability for the usage of the incorporated software and the source code.

You are not entitled to transfer the source code in any form to third parties without prior written consent of Würth Elektronik eiSos.

You are not allowed to reproduce, translate, reverse engineer, decompile, disassemble or create derivative works of the incorporated software and the source code in whole or in part. No more extensive rights to use and exploit the products are granted to you.

22.2 Usage and obligations

The responsibility for the applicability and use of the Würth Elektronik eiSos sensor product with the incorporated software in a particular customer design is always solely within the authority of the customer. Due to this fact, it is up to you to evaluate and investigate, where appropriate, and to decide whether the device with the specific product characteristics described in the product specification is valid and suitable for your respective application or not.

You are responsible for using the Würth Elektronik eiSos sensor product with the incorporated software in compliance with all applicable product liability and product safety laws. You acknowledge to minimize the risk of loss and harm to individuals and bear the risk for failure leading to personal injury or death due to your usage of the product.

Würth Elektronik eiSos' products are not authorized for use in safety-critical applications, or where a failure of the product is reasonably expected to cause severe personal injury or death. Moreover, Würth Elektronik eiSos' products are neither designed nor intended for

use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc. You shall inform Würth Elektronik eisSos about the intent of such usage before design-in stage. In certain customer applications requiring a very high level of safety and in which the malfunction or failure of an electronic component could endanger human life or health, you must ensure to have all necessary expertise in the safety and regulatory ramifications of your applications. You acknowledge and agree that you are solely responsible for all legal, regulatory and safety-related requirements concerning your products and any use of Würth Elektronik eisSos' products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by Würth Elektronik eisSos. **YOU SHALL INDEMNIFY WÜRTH ELEKTRONIK EISOS AGAINST ANY DAMAGES ARISING OUT OF THE USE OF WÜRTH ELEKTRONIK EISOS' PRODUCTS IN SUCH SAFETY-CRITICAL APPLICATIONS.**

22.3 Ownership

The incorporated Software created by Würth Elektronik eisSos is and will remain the exclusive property of Würth Elektronik eisSos.

22.4 Disclaimer of warranty

THE SOFTWARE AND IT'S SOURCE CODE IS PROVIDED "AS IS". YOU ACKNOWLEDGE THAT WÜRTH ELEKTRONIK EISOS MAKES NO REPRESENTATIONS AND WARRANTIES OF ANY KIND RELATED TO, BUT NOT LIMITED TO THE NON-INFRINGEMENT OF THIRD PARTIES' INTELLECTUAL PROPERTY RIGHTS OR THE MERCHANTABILITY OR FITNESS FOR YOUR INTENDED PURPOSE OR USAGE. WÜRTH ELEKTRONIK EISOS DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS IN WHICH THE WÜRTH ELEKTRONIK EISOS' PRODUCT WITH THE INCORPORATED SOFTWARE IS USED. INFORMATION PUBLISHED BY WÜRTH ELEKTRONIK EISOS REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE A LICENSE FROM WÜRTH ELEKTRONIK EISOS TO USE SUCH PRODUCTS OR SERVICES OR A WARRANTY OR ENDORSEMENT THEREOF.

22.5 Limitation of liability

Any liability not expressly provided by Würth Elektronik eisSos shall be disclaimed. You agree to hold us harmless from any third-party claims related to your usage of the Würth Elektronik eisSos' products with the incorporated software and source code. Würth Elektronik eisSos disclaims any liability for any alteration, development created by you or your customers as well as for any combination with other products.

22.6 Applicable law and jurisdiction

Applicable law to this license terms shall be the laws of the Federal Republic of Germany. Any dispute, claim or controversy arising out of or relating to this license terms shall be

resolved and finally settled by the court competent for the location of Würth Elektronik eiSos registered office.

22.7 Severability clause

If a provision of this license terms are or becomes invalid, unenforceable or null and void, this shall not affect the remaining provisions of the terms. The parties shall replace any such provisions with new valid provisions that most closely approximate the purpose of the terms.

22.8 Miscellaneous

Würth Elektronik eiSos reserves the right at any time to change this terms at its own discretion. It is your responsibility to check at Würth Elektronik eiSos homepage for any updates. Your continued usage of the products will be deemed as the acceptance of the change. We recommend you to be updated about the status of new software, which is available on our website or in our data sheet, and to implement new software in your device where appropriate.

By ordering a sensor product, you accept this license terms in all terms.

List of Figures

1	Block diagram	8
2	Pinout (top view)	13
3	Electrical connection (top view)	14
4	Master-slave concept	15
5	SDA and SCL logic levels	16
6	Data validity, START and STOP condition	17
7	Slave address format	18
8	Complete data transfer	18
9	Write and read operations of the sensor	19
10	Communication check	23
11	Sensor in operation	24
12	Single data conversion using an external trigger signal	29
13	Block diagram of filtering chain	32
14	High pass filter without REFERENCE mode	35
15	High pass filter with REFERENCE mode	35
16	First-in First-out Buffer	36
17	Bypass mode	37
18	FIFO mode	38
19	FIFO mode interrupts	39
20	Continuous mode	40
21	Continuous to FIFO mode	41
22	Bypass to Continuous mode	42
23	DRDY signal	46
24	Self test procedure	49
25	Sensor dimensions [mm]	77
26	Recommended land pattern [mm] (top view)	78
27	Measurement axis of the sensor	78
28	Reflow soldering profile	80

List of Tables

1	Ordering information	8
2	Acceleration sensor specification	9
3	Acceleration sensitivity parameter	10
4	Temperature sensor specification	10
5	Electrical specification	11
6	Absolute maximum rating	12
7	General information	12
8	Pin description	13
9	Internal pull up values (typ) for SAO and CS pins	14
10	Slave address and Read/Write commands	19
11	I ² C timing parameters	20
12	Time consumption	23
13	Acceleration resolution	26
14	Current consumption (μ A)	27
15	Noise density at ODR = 200 Hz (μ g / $\sqrt{\text{Hz}}$)	27

16	Conversion time	28
17	Output data rate	30
18	Low pass filter 1	33
19	Low pass filter_1 + Low pass filter_2	33
20	Low pass filter_1 + High pass filter	34
21	FIFO_Samples register	42
22	Threshold function	44
23	CTRL_4	45
24	CTRL_5	45
25	Temperature refresh rate	51
26	Temperature look up table	52
27	<i>T_OUT_L</i> register	54
28	<i>T_OUT_L</i> register description	54
29	<i>T_OUT_H</i> register	54
30	<i>T_OUT_H</i> register description	55
31	<i>Device_ID</i> register	55
32	<i>CTRL_1</i> register	55
33	Output data rate configuration	55
34	Mode selection	56
35	Normal and Low power mode selection	56
36	<i>CTRL_2</i> register	56
37	<i>CTRL_2</i> register description	56
38	<i>CTRL_3</i> register	57
39	<i>CTRL_3</i> register description	57
40	Self-test mode	58
41	<i>CTRL_4</i> register	58
42	<i>CTRL_4</i> register description	58
43	<i>CTRL_5</i> register	59
44	<i>CTRL_5</i> register description	59
45	<i>CTRL_6</i> register	60
46	<i>CTRL_6</i> register description	60
47	Filtering cut-off selection	60
48	Full scale selection	60
49	<i>T_OUT</i> register	60
50	<i>T_OUT</i> register description	61
51	<i>STATUS</i> register	61
52	STATUS register	61
53	<i>X_OUT_L</i> register	62
54	<i>X_OUT_L</i> register description	62
55	<i>X_OUT_H</i> register	62
56	<i>Y_OUT_L</i> register	63
57	<i>Y_OUT_L</i> register description	63
58	<i>Y_OUT_H</i> register	63
59	<i>Z_OUT_L</i> register	64
60	<i>Z_OUT_L</i> register description	64
61	<i>Z_OUT_H</i> register	64
62	<i>FIFO_CTRL</i> register	64
63	<i>FIFO_CTRL</i> register description	65
64	<i>FIFO_SAMPLES</i> register	65

65	<i>FIFO_SAMPLES</i> register description	65
66	<i>TAP_X_TH</i> register	65
67	<i>TAP_X_TH</i> register description	66
68	4D/6D threshold setting FS: $\pm 2g$ description	66
69	<i>TAP_Y_TH</i> register	66
70	<i>TAP_Y_TH</i> register description	66
71	Axis priority for tap detection	66
72	<i>TAP_Z_TH</i> register	67
73	<i>TAP_Z_TH</i> register description	67
74	<i>INT_DUR</i> register	67
75	<i>INT_DUR</i> register description	67
76	<i>WAKE_UP_TH</i> register	68
77	<i>WAKE_UP_TH</i> register description	68
78	<i>WAKE_UP_DUR</i> register	68
79	<i>WAKE_UP_DUR</i> register description	68
80	<i>FREE_FALL</i> register	69
81	<i>FREE_FALL</i> register description	69
82	<i>FREE_FALL</i> threshold	69
83	<i>STATUS_DETECT</i> register	70
84	<i>STATUS_DETECT</i> register description	70
85	<i>WAKE_UP_EVENT</i> register	71
86	<i>WAKE_UP_EVENT</i> register description	71
87	<i>TAP_EVENT</i> register	72
88	<i>TAP_EVENT</i> register description	72
89	<i>6D_EVENT</i> register	73
90	<i>6D_EVENT</i> register description	73
91	<i>ALL_INT_EVENT</i> register	74
92	<i>ALL_INT_EVENT</i> register description	74
93	<i>X_OFS_USR</i> register	75
94	<i>Y_OFS_USR</i> register	75
95	<i>Z_OFS_USR</i> register	75
96	<i>CTRL_7</i> register	76
97	<i>CTRL_7</i> register description	76
98	Classification reflow soldering profile, Note: refer to IPC/JEDEC J-STD-020E	79
99	Package classification reflow temperature, PB-free assembly, Note: refer to IPC/JEDEC J-STD-020E	80

more than you expect

**Internet
of Things**

**Monitoring
& Control**

**Automated Meter
Reading**

Contact:

Würth Elektronik eiSos GmbH & Co. KG
Division Wireless Connectivity & Sensors

Rudi-Schillings-Str. 31
54296 Trier
Germany

Tel.: +49 651 99355-0
Fax.: +49 651 99355-69
www.we-online.com/wireless-connectivity

