

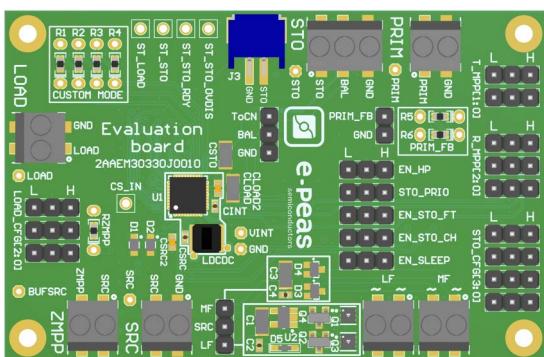
AEM30330 Evaluation Board User Guide

Description

The AEM30330 evaluation board is a printed circuit board (PCB) featuring all the needed components to operate the AEM30330 integrated circuit (IC).

The AEM30330 evaluation board allows users to test the e-peas IC and analyse its performances in a laboratory-like setting.

It allows easy connections to the energy harvester, the storage element and the load. It also provides all the configuration access to set the device in any one of the modes described in the datasheet. The control and status signals are available on standard pin headers, allowing users to wire for any usage scenario and evaluate the relevant performances.


The AEM30330 evaluation board is a plug and play, intuitive and efficient tool for making the appropriate decisions (component selection, operating modes, etc) for the design of a highly efficient subsystem in your target application.

More detailed information about AEM30330 features can be found in the datasheet.

Applications

- Asset Tracking/Monitoring
- Industrial applications
- Retail ESL/Smart sensors
- Aftermarket automotive
- Smart home/building

Appearance

Features

Six two-way screw terminals

- Source of energy (DC)
- Source of energy (AC low frequency)
- Source of energy (AC medium frequency)
- Load
- Primary energy storage element
- ZMPP configuration

One three-way screw terminal

- Energy storage element (battery or (super)capacitor)

One 2-pin "Shrouded Header"

- Alternative connector for the storage element

Eighteen 3-pin headers

- Maximum power point ratio (R_MPP) configuration
- Maximum power point timing (T_MPP) configuration
- Energy storage element threshold configuration
- Load voltage configuration
- Dual-cell supercapacitor configuration
- Modes configuration

One 2-pin header

- Primary battery configuration

Provision for seven resistors

- Custom mode configuration
- Primary battery configuration
- ZMPP configuration

Configuration by 0 Ohm resistance

- Cold start input configuration
- Input power configuration

Four 1-pin headers

- Access to status pins

Device Information

Part Number	Dimensions
2AAEM30330C0010	76 mm x 50 mm

1. Connections Diagram

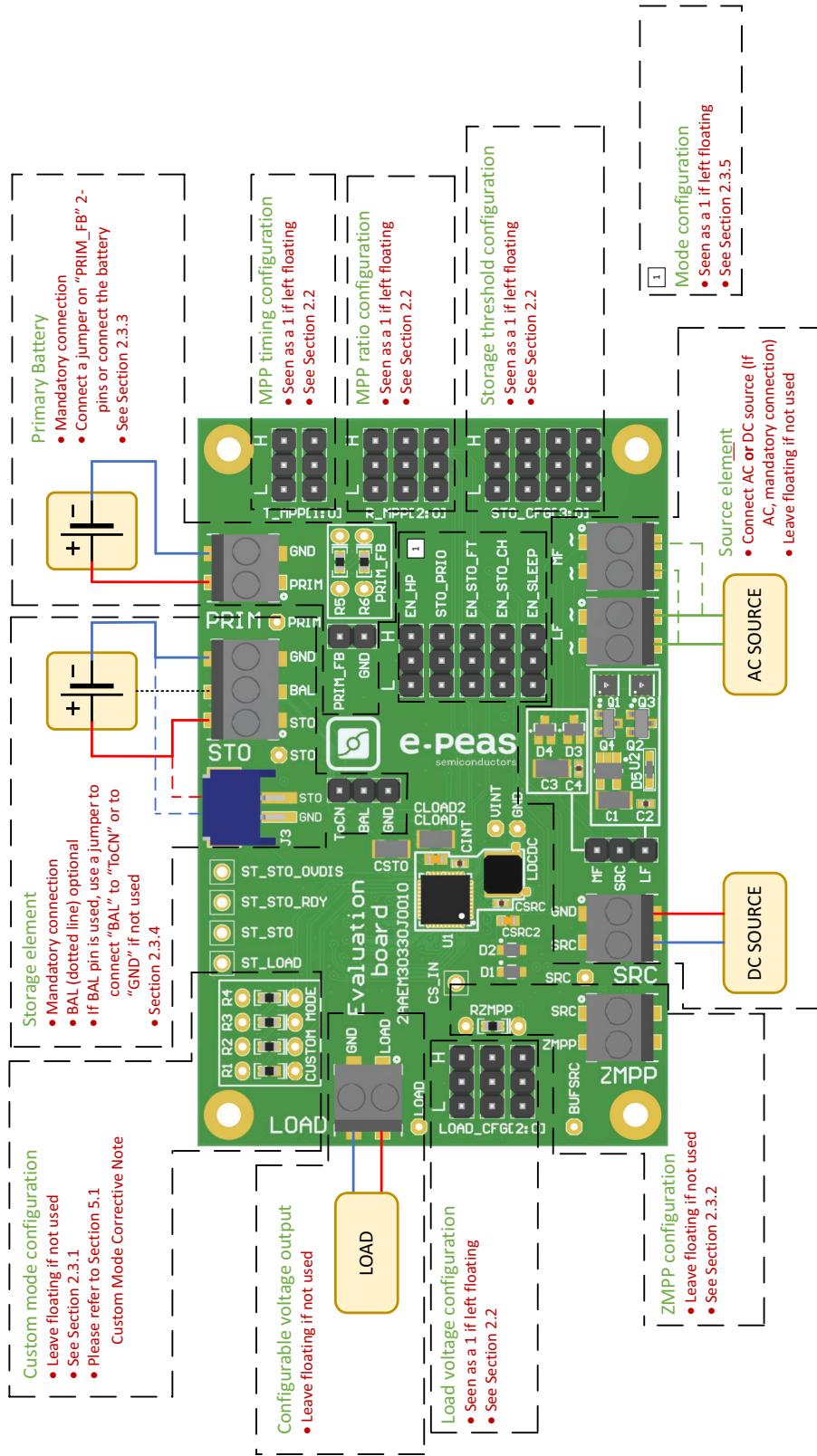


Figure 1: Connection diagram

1.1. Signals Description

NAME	FUNCTION	CONNECTION	
		If used	If not used
Power signals			
SRC	Connection to the harvested energy source.	Connect the source element.	
STO	Connection to the energy storage element.	Connect the storage element in addition to CSTO (150 μ F).	Do not remove CSTO.
BAL	Connection to balancing of the dual-cell supercapacitor.	Connect balancing and place a jumper shorting BAL and "ToCN".	Use a jumper to connect "BAL" to "GND".
PRIM	Connection to the primary battery.	Connect primary battery.	Connect a jumper to PRIM_FB.
LOAD	Connection to the load (Application).	Connect a load.	Leave floating.
LF	Connection to the AC harvested energy source. (Low frequency)	Connect the source element	Leave floating
MF	Connection to the AC harvested energy source. (Medium frequency)	Connect the source element	Leave floating
Debug signals			
VINT	Internal voltage supply.		
BUFSRC	Connection to an external capacitor buffering the buck-boost converter input.		
Configuration signals			
R_MPP[2:0]	Configuration of the MPP ratio.	Connect jumper	
T_MPP[1:0]	Configuration of the MPP timing	Connect jumper	
STO_CFG[3:0]	Configuration of the threshold voltages for the energy storage element.	Connect jumper	
LOAD_CFG[2:0]	Configuration of the load voltage	Connect jumper	
PRIM_FB	Configuration of the primary battery	Use Resistance R5-R6	Connect to GND
ZMPP	Configuration of the constant impedance MPP	Use resistor RZMPP	Leave floating
Control signals			
EN_HP	Enabling pin for the high-power mode	Connect jumper	
STO_PRIO	Pin for the storage/load priority	Connect jumper	
EN_STO_FT	Enabling pin for the feed-through feature	Connect jumper	
EN_STO_CH	Enabling pin for the storage charging	Connect jumper	
EN_SLEEP	Enabling pin for the sleep mode	Connect jumper	Can't be left floating
Status signals			
ST_LOAD	Logic output. Asserted when the Load voltage rises above the $V_{LOAD,TYP}$ threshold. Reset when the LOAD voltage drops below $V_{LOAD,MIN}$ threshold. High level is V_{LOAD} .		
ST_STO	Logic output. Asserted when the storage device voltage rises above the V_{CHRDY} threshold. Reset when the storage device voltage drops below V_{OVDIS} threshold. High level is V_{STO} .		
ST_STO_RDY	Logic output. Asserted when the storage element is above V_{CHRDY} . High level is V_{LOAD} .		
ST_STO_OVDIS	Logic output. Asserted when the storage element voltage V_{STO} drops below V_{OVDIS} . High level is V_{LOAD} .		

Table 1: Pin description

2. General Considerations

2.1. Safety Information

Always connect the elements in the following order:

1. Reset the board: Short VINT, LOAD, STO and SRC test points to GND.

2. Completely configure the PCB (Jumpers/resistors);

- MPP configuration (Ratio/Timing)
- Battery configuration
- Primary battery configuration
- Load voltage configuration
- Balancing circuit configuration
- Mode configuration

3. Connect the storage elements on STO and optionally the primary battery on PRIM.

4. Connect the Load on LOAD

5. Connect the source (DC or AC) to the SRC connector.

To avoid damaging the board, users are required to follow this procedure. In fact, the pins PRIM_FB, PRIM, BAL and EN_SLEEP cannot remain floating.

2.2. Basic Configurations

Configuration pins				Storage element threshold voltages			Typical use
STO_CFG[3]	STO_CFG[2]	STO_CFG[1]	STO_CFG[0]	V_{OVCH}	V_{CHRDY}	V_{OVDIS}	
0	0	0	0	4.08 V	3.51 V	3.03 V	Li-ion battery
0	0	0	1	3.64 V	3.08 V	2.82 V	LiFePO4 battery
0	0	1	0	2.74 V	2.41 V	1.85 V	NiMH battery
0	0	1	1	4.65 V	1.00 V	0.20 V	Dual-cell supercapacitor
0	1	0	0	2.63 V	1.00 V	0.20V	Single-cell supercapacitor
0	1	0	1	2.99 V	1.20 V	1.00 V	Single-cell supercapacitor
0	1	1	0	2.63 V	2.30 V	1.85 V	NGK
0	1	1	1	Custom Mode			
1	0	0	0	1.49 V	1.25 V	1.1 V	Ni-Cd 1 cells
1	0	0	1	2.99 V	2.50 V	2.22 V	Ni-Cd 2 cells
1	0	1	0	4.65 V	2.00 V	1.49 V	Dual-cell supercapacitor
1	0	1	1	2.63 V	1.20 V	1.00 V	Single-cell supercapacitor
1	1	0	0	2.63 V	2.30 V	2.00 V	ITEN / Umal Murata
1	1	0	1	4.35 V	3.51 V	3.03 V	Li-Po battery
1	1	1	0	4.00 V	2.70 V	2.60 V	Tadiran TLI1020A
1	1	1	1	3.92 V	3.51 V	2.60 V	Tadiran HLC1020

Table 2: Storage Element Configuration Pins

Configuration pins			MPPT ratio
R_MPP[2]	R_MPP[1]	R_MPP[0]	V_{MPP} / V_{OC}
0	0	0	35%
0	0	1	50%
0	1	0	60%
0	1	1	65%
1	0	0	70%
1	0	1	75%
1	1	0	80%
1	1	1	ZMPP

Table 3: MPP Ratio Configuration Pins

Configuration pins		MPPT timing	
T_MPP[1]	T_MPP[0]	Sampling duration	Sampling period
0	0	2.67 ms	21.30 ms
0	1	5.33 ms	341 ms
1	0	85.30 ms	1.37 s
1	1	1.37 s	87.40 s

Table 4: MPP Timing Configuration Pins

Configuration pins			LOAD output voltage			Use-case
LOAD_CFG[2]	LOAD_CFG[1]	LOAD_CFG[0]	MAX	MID	MIN	TYP
0	0	0	3.34 V	3.23 V	3.15 V	3.28 V
0	0	1	2.53 V	2.47 V	2.35 V	2.50 V
0	1	0	1.82 V	1.75 V	1.64 V	1.79 V
0	1	1	1.23 V	1.16 V	1.14 V	1.20 V
1	0	0	2.63 V	1.56 V	1.39 V	1.61 V
1	0	1	4.65 V	1.56 V	1.39 V	1.61 V
1	1	0	5.13 V	4.88 V	4.76 V	5.00 V

Table 5: Load Configuration Pins

2.3. Advanced Configurations

A complete description of the system constraints and configurations is available in Section 8 “System configuration” of the AEM30330 datasheet.

A reminder on how to calculate the configuration resistors value is provided below. Calculation can be made with the help of the spreadsheet found on the e-peas website.

2.3.1. Custom Mode

In addition to the pre-defined protection levels, the custom mode allows users to define their own levels via resistors R1 to R4.

By defining $RT = R1 + R2 + R3 + R4$ ($1\text{ M} \leq RT \leq 100\text{ M}$)

- $R1 = RT (1\text{ V} / V_{OVCH})$
- $R2 = RT (1\text{ V} / V_{CHRDY} - 1\text{ V} / V_{OVCH})$
- $R3 = RT (1\text{ V} / V_{OVDIS} - 1\text{ V} / V_{CHRDY})$
- $R4 = RT (1 - 1\text{ V} / V_{OVDIS})$

Make sure the protection levels satisfy the following conditions:

- $V_{CHRDY} + 0.05\text{ V} \leq V_{OVCH} \leq 4.5\text{ V}$
- $V_{OVDIS} + 0.05\text{ V} \leq V_{CHRDY} \leq V_{OVCH} - 0.05\text{ V}$
- $1\text{ V} \leq V_{OVDIS}$

If unused, leave the resistor footprints (R1 to R4) empty.

2.3.2. ZMPP Configuration

If this configuration is chosen (see Table 3), the AEM30330 regulates V_{src} at a voltage equals to the product of R_{ZMPP} times the current available at the source SRC.

- $10\text{ }\Omega \leq R_{ZMPP} \leq 1\text{ M}\Omega$

If unused, leave the resistor footprint R_{ZMPP} empty.

2.3.3. Primary Battery Configuration

For the main storage element, the primary battery protection levels have to be defined. To do so, use resistors R5-R6.

- $100\text{ k} \leq R_P \leq 500\text{ k}$
- $R5 = 1\text{ V} * R_P / V_{PRIM,MIN}$
- $R6 = R_P - R5$

If unused, connect a jumper to “PRIM_FB” 2-pins.

2.3.4. Balancing Circuit Configuration

When using a dual-cell supercapacitor (that does not already include a balancing circuit), enable the balun circuit configuration to ensure equal voltage on both cells. To do so:

- Connect the node between the two supercapacitor cells to BAL (on STO connector)
- Use a jumper to connect “BAL” to “ToCN”

If unused, use a jumper to connect “BAL” to “GND”

2.3.5. Mode Configuration

HP_EN

When EN_HP is pulled up to V_{INT} , the DCDC converter is set to **HIGH POWER MODE**. This allows higher currents to be extracted from the buck-boost input (**SRC, STO or PRIM**) to the buck-boost output (**LOAD, STO or VINT**).

- Use a jumper to connect EN_HP to 1 to enable the high-power mode.
- Use a jumper to connect EN_HP to 0 to disable the high-power mode.

STO_PRIO

It is possible to define a priority between **STO** and **LOAD**.

- Use a jumper to connect the **STO_PRIO** to 1 to supply the storage element to V_{CHRDY} before start supplying the **LOAD**.
- Use a jumper to connect the **STO_PRIO** to 0 to supply in the first place the **LOAD**, charging the storage element with the remaining energy.

EN_STO_CH

To disable battery charging, the 3-pin header is available.

- Use a jumper to connect the **EN_STO_CH** to 1 to enable the charge of the storage element
- Use a jumper to connect the **EN_STO_CH** to 0 to disable the charge of the storage element

EN_SLEEP

The **SLEEP STATE** reduces the AEM30330 quiescent current by no longer extracting energy from the **SRC** and reducing V_{LOAD} and V_{INT} monitoring period.

- Use a jumper to connect the **EN_SLEEP** to 1 to activate the feature.
- Use a jumper to connect the **EN_SLEEP** to 0 to disable the feature.

Do not leave EN_SLEEP floating, you risk damaging the AEM

EN_STO_FT

To disable the source to storage element feed-through, the 3-pin header is available.

- Use a jumper to connect the **EN_STO_FT** to 1 to activate the feature.
- Use a jumper to connect the **EN_STO_FT** to 0 to disable the feature.

2.3.6. Rectifier Use

When a rectifier is used, it is recommended to use the ZMPP configuration. With a MPP ratio, the voltage level of the MPPT will not be the right one. In fact, due to the rectifier capacitor, the open-circuit evaluation will not be done correctly.

3. Functional Tests

This section presents a few simple tests that allow the user to understand the functional behaviour of the AEM30330. **To avoid damaging the board, follow the procedure found in Section 2.1 “Safety Information”.** If a test has to be restarted make sure to properly reset the system to obtain reproducible results.

The following functional tests were made using the following setup:

- Configuration: $R_{MPP}[2:0] = LLL$, $T_{MPP}[1:0] = LH$, $STO_{CFG}[3:0] = LLLL$, $EN_{HP} = H$, $STO_{PRIO} = H$, $EN_{STO_FT} = L$, $EN_{STO_CH} = H$, $EN_{SLEEP} = L$
- Storage element: Capacitor (4.7 mF + CSTO)
- Load: 10kOhm on **LOAD**
- **SRC**: current source (1mA or 100uA) with voltage compliance (4V)

The user can adapt the setup to match your system as long as you respect the input and cold-start constraints (see Section 1 “Introduction” of AEM30330 datasheet).

3.1. Start-up

The following example allows the user to observe the behavior of the AEM30330 in the Wake-up state.

Setup

- Place the probes on the nodes to be observed.
- Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1 “Safety Information”.

Observations and measurements

- **STO**: Voltage rises as the power provided by the source is transferred to the storage element
- **LOAD**: Regulated when voltage on STO first rises above V_{CHRDY}
- **ST_STO** and **ST_STO_RDY**: Asserted when the voltage on STO rises above V_{CHRDY}
- **ST_LOAD**: Asserted when **LOAD** is supplied

3.2. Shutdown

This test allows users to observe the behaviour of the AEM30330 when the system is running out of energy.

Setup

- Place the probes on the nodes to be observed.
- Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1 “Safety Information”. Configure the board in the desired state and start the system (see Section 3.1). Do not use a primary battery.

- Let the system reach a steady state (i.e. voltage on **STO** between V_{CHRDY} and V_{OVCH} and **ST_STO** asserted).
- Remove your source element and let the system discharge through quiescent current and load.

Observations and measurements

- **STO**: Voltage decreases as the system consumes the power accumulated in the storage element. The voltage reaches V_{OVDIS} .
- **ST_STO_RDY**: De-asserted when the voltage on STO goes below V_{CHRDY} .
- **ST_STO**: De-asserted when the storage element is running out of energy (V_{OVDIS}).
- **ST_LOAD**: De-asserted when the load is no longer available.
- **ST_STO_OVDIS**: Asserted for 600 ms when the storage element voltage (STO) falls below V_{OVDIS} .

3.3. Switching on primary battery

This example allows users to observe switching from the main storage element to the primary battery when the system is running out of energy.

Setup

- Place the probes on the nodes to be observed.
- Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1 “Safety Information”. Configure the board in the desired state and start the system (see Section 3.1). Connect a primary battery (example: 3.1V coil cell with protection level at 2.47V, $R5 = 68k\Omega$ and $R6 = 100k\Omega$).
- Let the system reach a steady state (i.e. voltage on **STO** between V_{CHRDY} and V_{OVCH} and **ST_STO** asserted).
- Remove your source element and let the system discharge through quiescent current and load.

Observations and measurements

- **STO**: Voltage decreases as the system consumes the power accumulated in the storage element. The voltage reaches V_{OVDIS} and then rises again to V_{CHRDY} as it is recharged from the primary battery.
- **LOAD**: Stable and not affected by switching on the primary battery
- **ST_STO**: Never de-asserted as the Load is still functional

Do not leave PRIM_FB floating, you risk damaging the AEM.

3.4. Cold start

The following test allows the user to observe the minimum voltage required to coldstart the AEM30330. To prevent leakage current induced by the probe the user should avoid probing any unnecessary node. Make sure to properly reset the board to observe the cold-start behaviour.

Setup

- Place the probes on the nodes to be observed.
- Referring Figure 1, follow steps 1 and 2 explained in Section 2.1. Configure the board in the desired state. Do not plug any storage element in addition to CSTO.
- **SRC**: Connect your source element.

Observations and measurements

- **SRC**: Equal to the cold-start voltage during the coldstart phase. Regulated at the selected MPPT percentage of Voc when cold start is over. Be careful that the cold-start phase time will shorten with the input power. Limit it to ease the observation.
- **STO**: Starts to charge when the cold-start phase is over

3.5. Dual-cell supercapacitor balancing circuit

This test allows users to observe the balancing circuit behaviour that maintains the voltage on BAL equilibrated.

Setup

- Following steps 1 and 2 explained in Section 2.1 and referring to Figure 1, configure the board in the desired state. Plug the jumper linking “BAL” to “ToCN”.
- **STO**: Plug capacitor C1 between the positive (+) and the BAL pins and a capacitor C2 between BAL and the negative (-) pins.

Select $C1 \neq C2$ such that:

- $C1 & C2 > 1\text{mF}$
- $(C2 * V_{CHRDY})/C1 \geq 0.9V$

- **SRC**: Plug your source element to start the power flow to the system

Observations and measurements

- **BAL**: Equal to half the voltage on **STO**

Do not leave BAL floating, you risk damaging the AEM.

3.6. Source to Storage Element Feed-Through

This example allows users to observe the feed-through feature.

Setup

- Place the probes on the nodes to be observed.
- Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1 “Safety Information”. Configure the board in the desired state and start the system (see Section 3.1).
- Let the system reach a steady state (i.e. voltage on **STO** between V_{CHRDY} and V_{OVCH} and **ST_STO** asserted).
- **EN_STO_FT**: Connect to H
- **SRC**: current source (1mA or 100uA) with voltage compliance (5V)
- Put a capacitor ($>1\text{mF}$) on **SRC** and **STO** to avoid perturbation due to the SMU behavior.

Observations and measurements

- **STO**: The current from the source is transferred directly to the storage element

4. Schematics

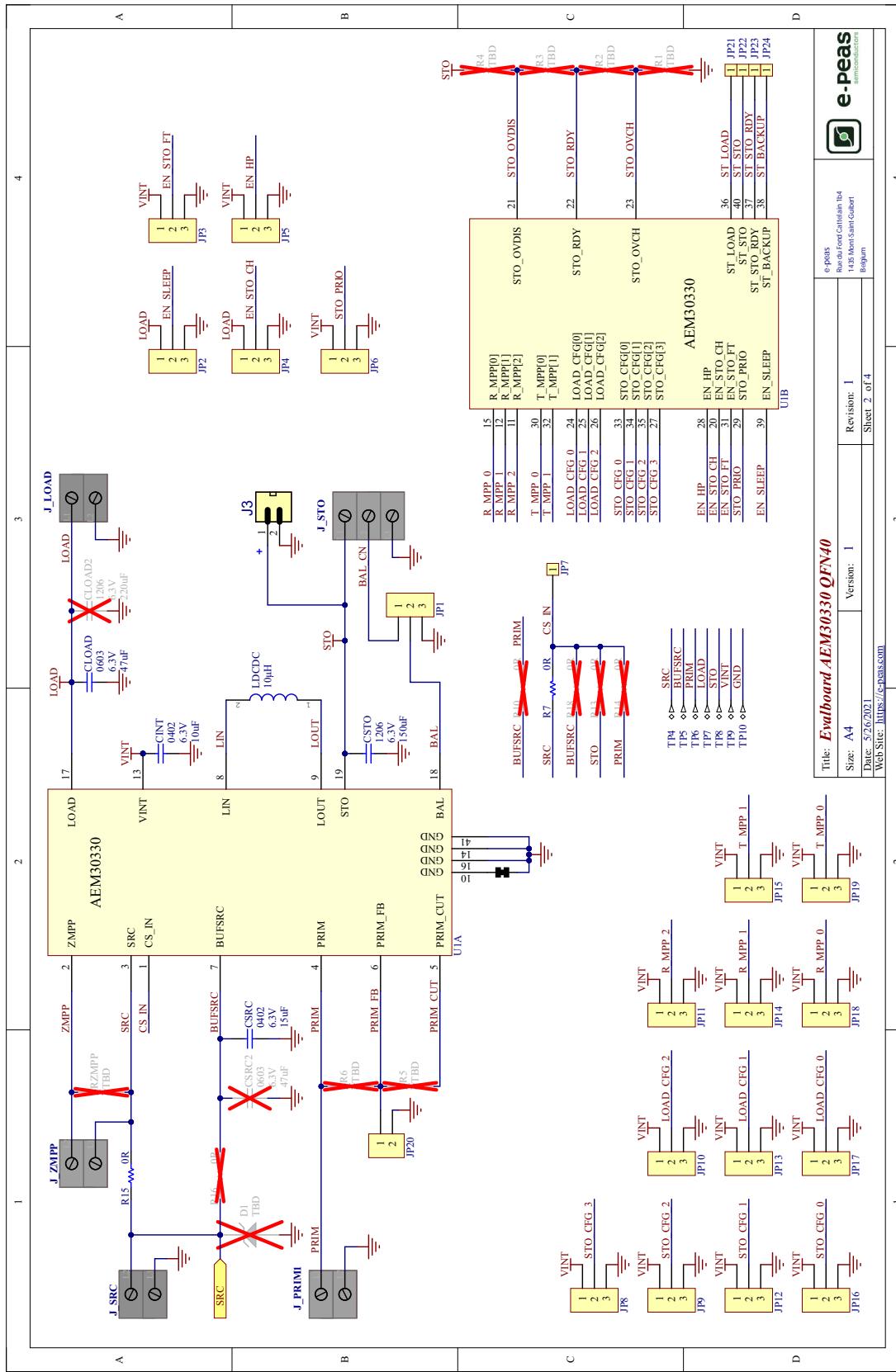


Figure 2: Schematic part 1

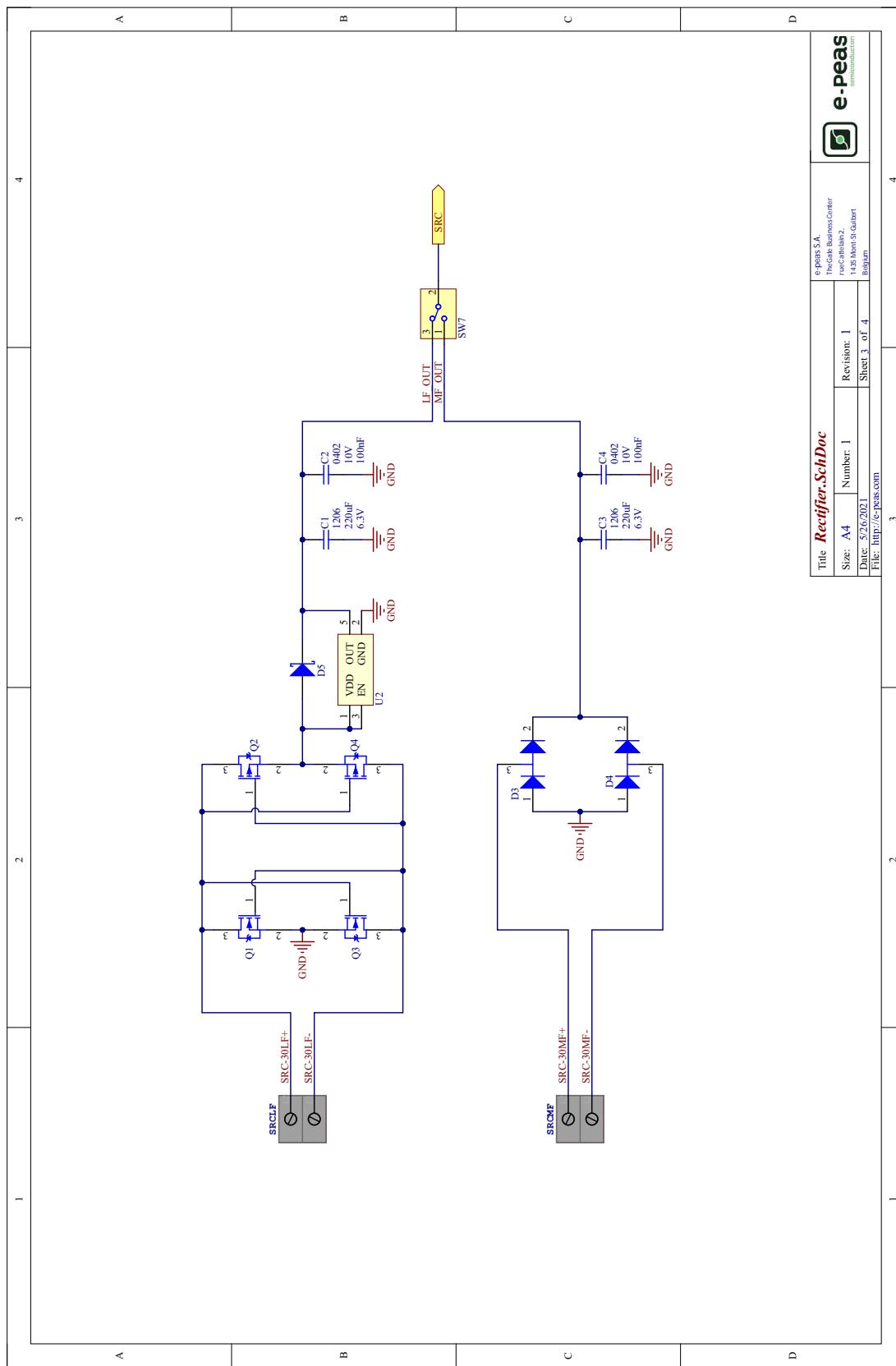


Figure 3: Schematic part 2