

UM12359

FRDM-MCXW23 Board User Manual

Rev. 1.0 — 10 July 2025

User manual

Document information

Information	Content
Keywords	UM12359, FRDM-MCXW23, MCX W, MCXW236B, Arduino, mikroBUS, MCU-Link, PMOD, MCXW23x, MCX W23, FRDM MCXW23, FRDMMCXW23, FRDM MCX W23, user manual, NHS5204, Ultra-low power, small footprint, Bluetooth Low Energy, Integrated flash, Security, IoT, Coin battery, Small body-worn device
Abstract	The FRDM-MCXW23 board is a design and evaluation platform based on the NXP MCX W23 Bluetooth Low Energy MCU.

1 Board overview

The FRDM-MCXW23 board is a design and evaluation platform based on the NXP MCX W23 Bluetooth Low Energy microcontroller (MCU). The MCX W23 features a 32 MHz Arm Cortex-M33 core coupled with a Bluetooth Low Energy. Because of the integrated ultra-low power radio and flash, the MCX W23 provides extended battery lifetime.

The MCX W23 provides a cost-effective solution within a small solution area required for body-worn sensors and actuators applications.

The board is compatible with the Arduino UNO R3 and Mikroe click boards. It can be used with a wide range of development tools, including NXP MCUXpresso IDE, IAR Embedded Workbench, and Arm Keil MDK. The board is lead-free and RoHS-compliant.

For debugging the MCX W23 MCU, the FRDM-MCXW23 board uses an onboard (OB) debug probe, MCU-Link OB, which is based on another NXP MCU: LPC55S69. For simplicity, the MCX W23 MCU and the LPC55S69 MCU are respectively referred to as "target MCU" and "debug MCU" at some places in this document.

This document provides details about the FRDM-MCXW23 board interfaces, accelerometer, temperature power supplies, clocks, connectors, jumpers, push buttons, LEDs, and MCU-Link OB.

1.1 Radio Equipment Directive 2014/53/EU

The following information is provided in alignment with Article 10.8 of the Radio Equipment Directive 2014/53/EU:

- Frequency range in which the equipment operates
- The maximum RF power transmitted

Part number	RF technology	Frequency range (EU)	Maximum RF power transmitted
FRDM-MCXW23	Bluetooth Low Energy	2.400 GHz to 2.480 GHz	+6 dBm

European Declaration of Conformity (Simplified DoC, Article 10.9 of the Radio Equipment Directive 2014/53/EU). This apparatus, namely FRDM-MCXW23 Freedom Development Platform, conforms to the Radio Equipment Directive 2014/53/EU. The full EU Declaration of Conformity for this apparatus can be found at this location: [MCX W23](#)

1.2 Block diagram

[Figure 1](#) shows the FRDM-MCXW23 board block diagram.

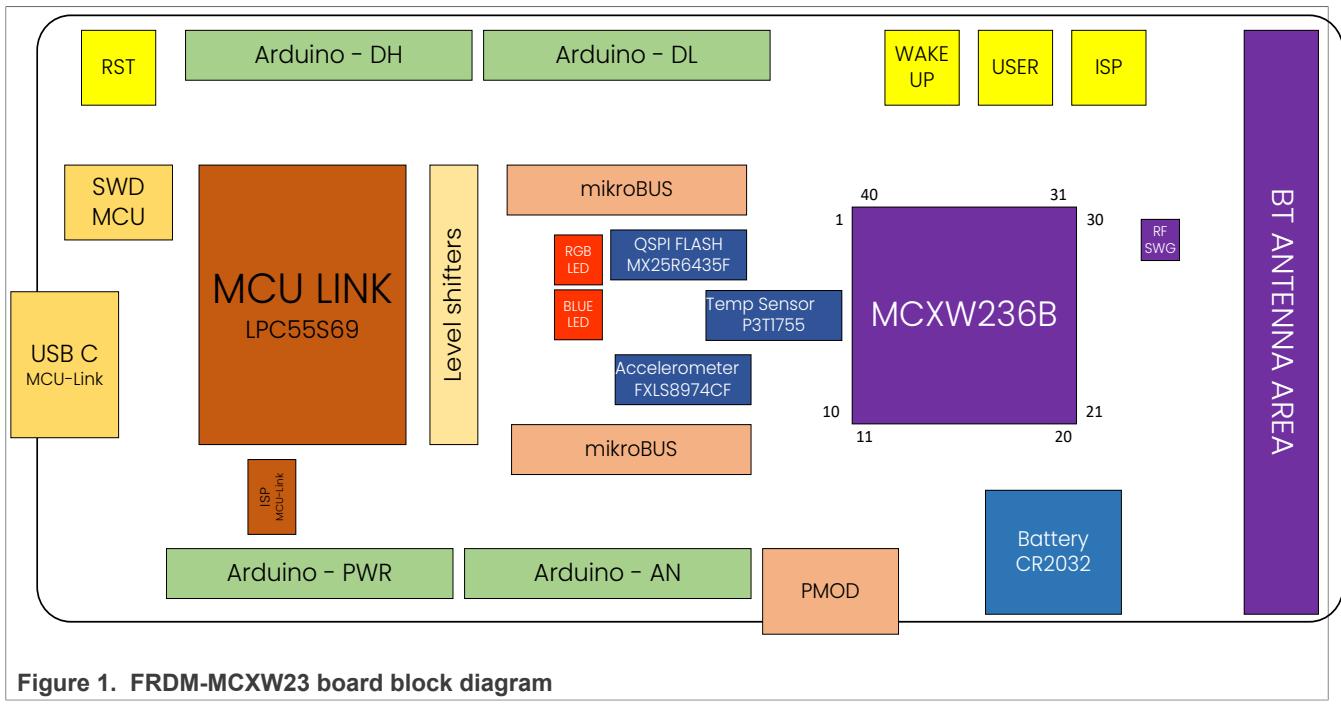


Figure 1. FRDM-MCXW23 board block diagram

1.3 Board features

[Table 1](#) lists the features of the FRDM-MCXW23 board.

Table 1. FRDM-MCXW23 features

Board feature	Target MCU features used	Description
MCU (target MCU)		<p>NXP MCXW23IHNAR wireless MCU based on an Arm Cortex- M33 core, running at speeds of up to 33 MHz.</p> <p>Note: For details on the MCX W23, see <i>MCX W23 Reference Manual</i> and <i>MCX W23 Product Family Data Sheet</i>.</p>
UART interface	UART0 module	<ul style="list-style-type: none"> Supports an external UART connection through Arduino socket connector J1 Supports an external UART connection through mikroBUS socket connector J5 Supports a USB-to-UART bridge connection using MCU-Link (enabled by default)
	UART2 module	<ul style="list-style-type: none"> Supports a USB-to-UART bridge connection using MCU-Link (disabled by default) Supports an external UART connection through Arduino socket connector J1 Supports an external UART connection through Arduino socket connector J4
SPI interface	SPI module	<ul style="list-style-type: none"> Supports an external SPI connection through Arduino socket connector J2 Supports an external SPI connection through mikroBUS socket connector J6 Supports an external SPI connection through Pmod connector J22 (DNP) Supports an SPI connection with onboard QSPI flash memory

Table 1. FRDM-MCXW23 features...continued

Board feature	Target MCU features used	Description
I ² C interface	I ² C module	<ul style="list-style-type: none"> Provides an I²C bus to an accelerometer, temperature sensor, Arduino socket connector J2 and J4, mikroBUS socket connector J5, and Pmod connector J22 (DNP) Supports a USB-to-I²C bridge connection using MCU-Link (disabled by default)
RF interface	2.4 GHz radio	Supports RF operations through a PCB-integrated monopole antenna (default option) or SWG connector J21 (alternative option)
Accelerometer (I ² C sensor)	I ² C module	Provides a 12-bit, 3-axis, low-power digital accelerometer (FXLS8974CFR3)
Temperature sensor	I ² C module	A ±0.5 °C accurate temperature-to-digital converter with a -40 °C to +125 °C range (P3T1755)
Arduino socket	UART0, UART2, SPI, and I ² C	Arduino socket with four connectors J1, J2, J3, and J4
mikroBUS socket	UART0, SPI, and I ² C	mikroBUS socket with a pair of connectors J5 and J6
Pmod connector	SPI and I ² C modules	Pmod connector J22 (DNP)
Debug interface	UART0 and UART2 modules	Onboard MCU-Link debug probe with USB Type-C connector J10 for debugging the MCX W23 MCU
Power supply		The following options are available to power up the board: <ul style="list-style-type: none"> External 5 V power through USB Type-C connector J10 5-9 V power from Arduino socket connector J3, pin 8
Battery power		Possibility to power the MCX W23 by a 3 V battery (type CR2032)
Clocks		<ul style="list-style-type: none"> 32 MHz and 32.768 kHz clocks for the MCX W23 MCU 16 MHz clock for the LPC55S69 MCU
Orderable part number		FRDM-MCXW23

1.4 Kit contents

[Table 2](#) lists the items included in the FRDM-MCXW23 board hardware kit.

Table 2. Kit contents

Item	Quantity
FRDM-MCXW23 board hardware assembly	1
USB 2.0 Type-A to Type-C cable, 1 meter	1
FRDM-MCXW23 Quick Start Guide	1

1.5 Board pictures

[Figure 2](#) shows the top-side view of the FRDM-MCXW23 board with the MCX W23 MCU (target MCU), monopole antenna, QSPI flash, accelerometer (I²C sensor), and temperature sensor highlighted.

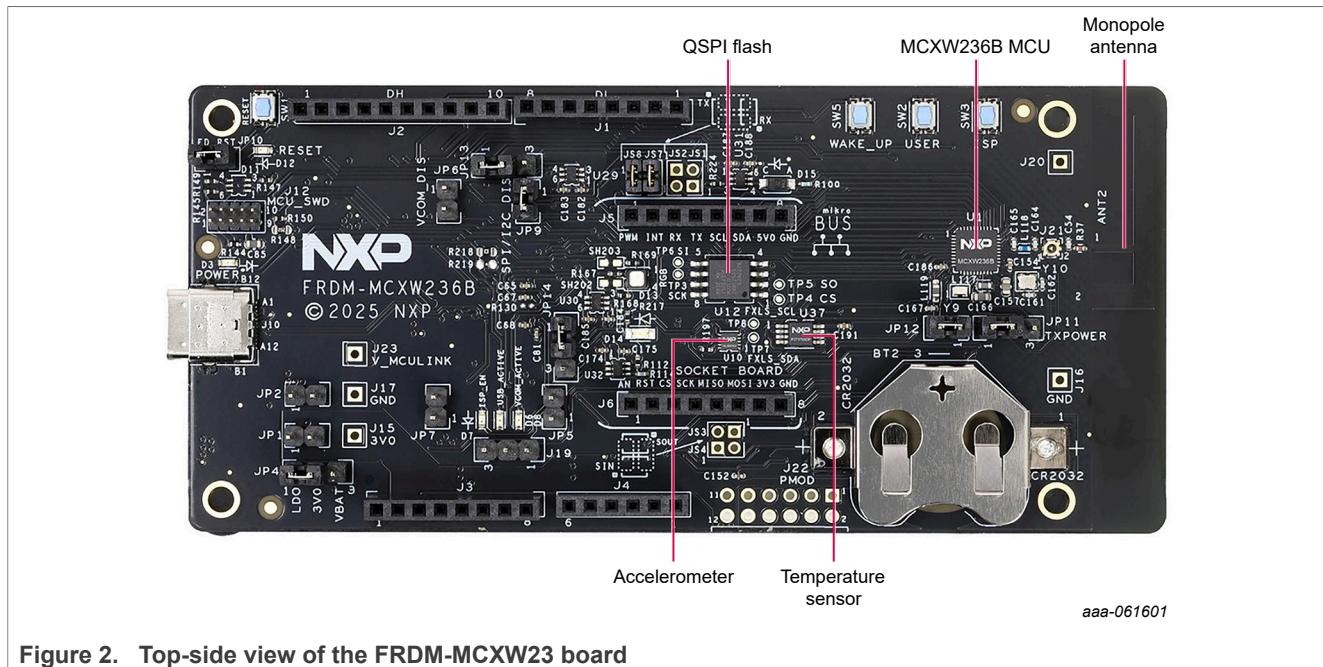


Figure 2. Top-side view of the FRDM-MCXW23 board

Figure 3 shows the bottom-side view of the FRDM-MCXW23 board with the LPC55S69 MCU (debug MCU) highlighted.

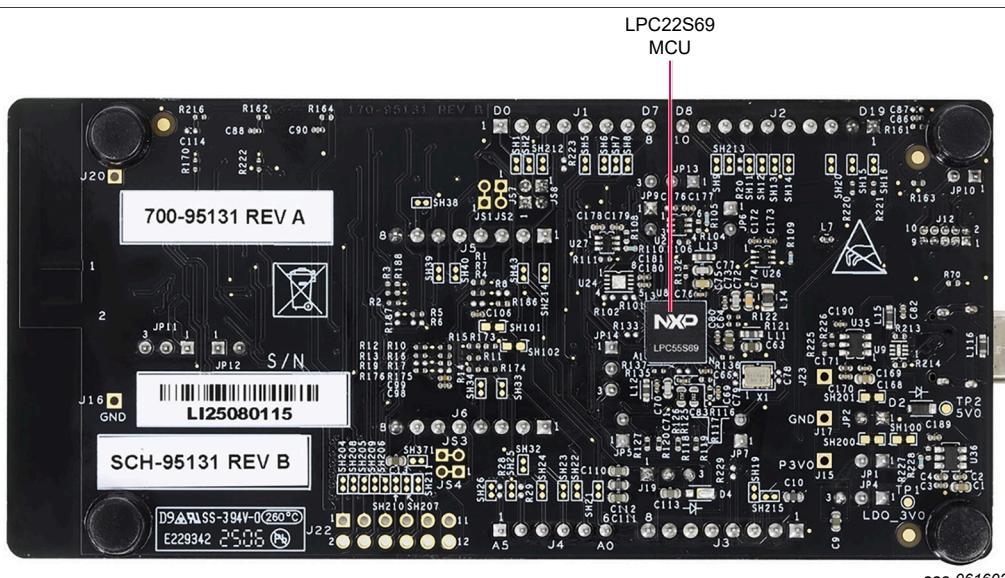
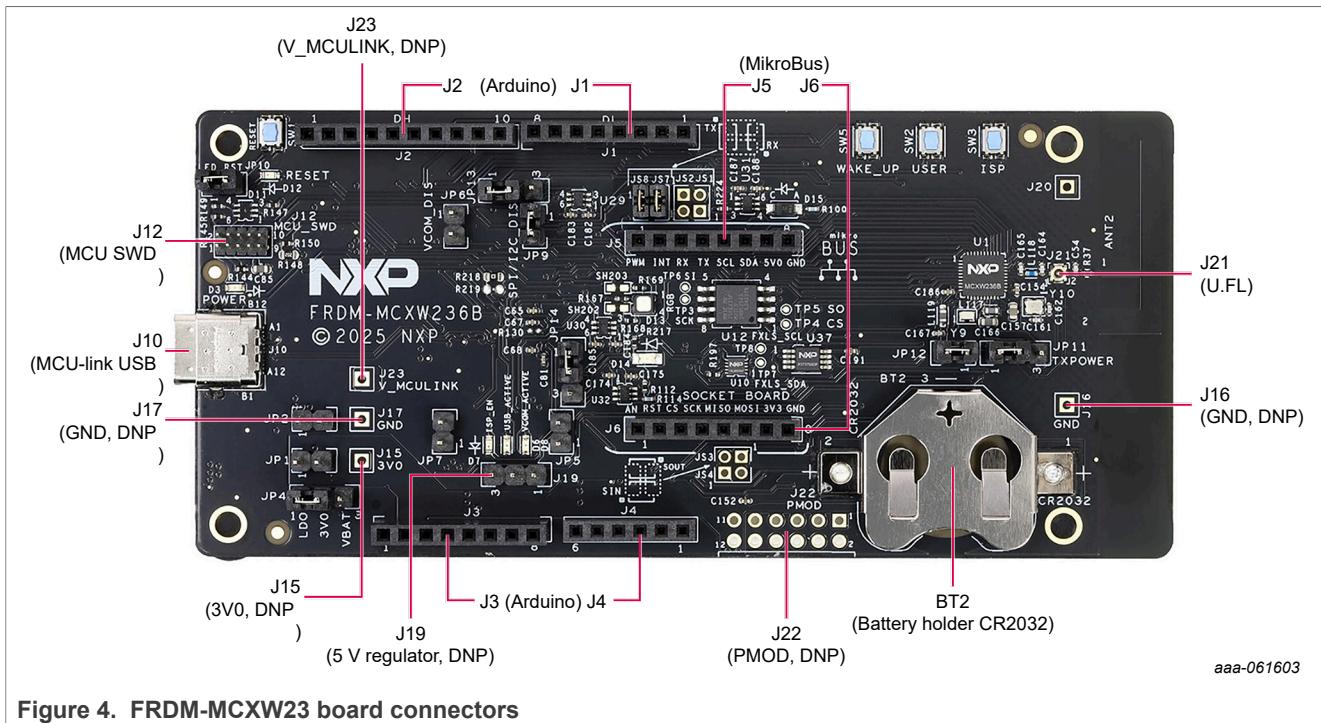



Figure 3. Bottom-side view of the FRDM-MCXW23 board

1.6 Connectors

Figure 4 shows the FRDM-MCXW23 board connectors.

aaa-061603

Figure 4. FRDM-MCXW23 board connectors

Table 3 describes the connectors available on the FRDM-MCXW23 board.

Table 3. FRDM-MCXW23 connectors

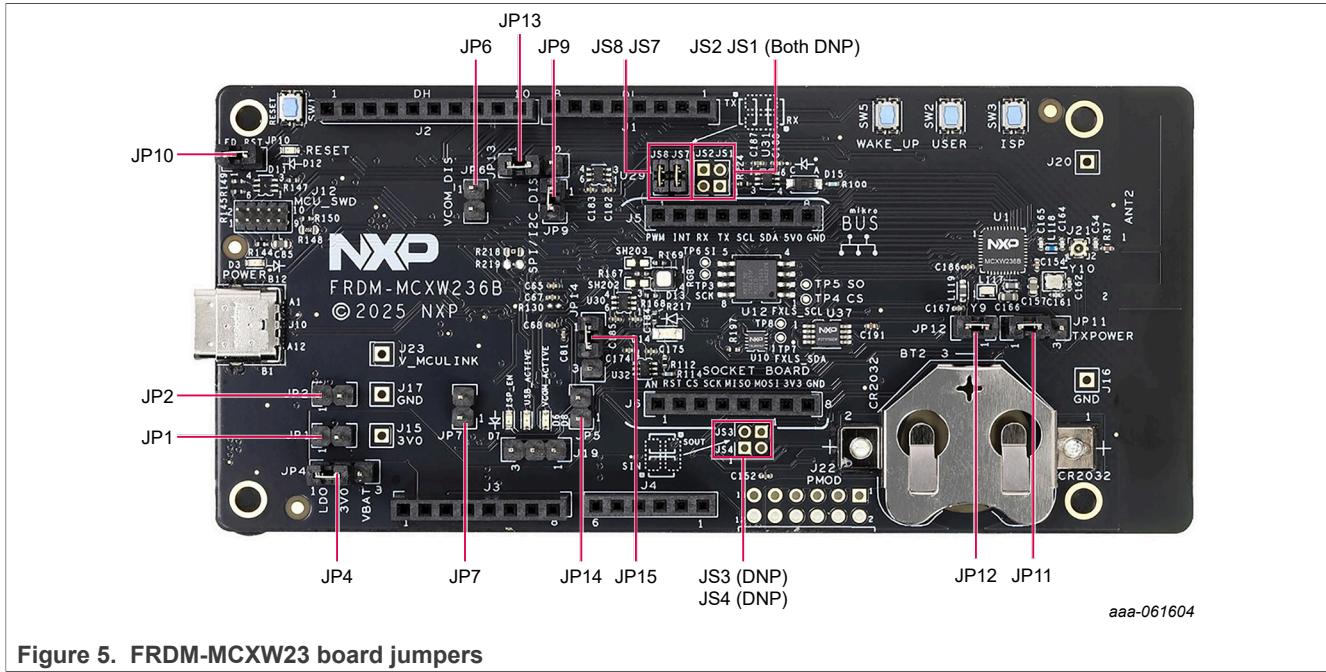

Part identifier	PCB label	Connector type	Description	Reference section	
J1	DL	1x8-position receptacle	Arduino socket connectors	Section 2.10	
J2	DH	1x10-position receptacle			
J3		1x8-position receptacle			
J4		1x6-position receptacle			
J5		1x8-position receptacle	mikroBUS socket connectors	Section 2.11	
J6		1x8-position receptacle			
J9		U.FL connector	U.FL RF connector – type SWG	Section 2.8	
J10		USB Type-C connector	MCU-Link USB connector	Section 3.6	
J19 (DNP)		1x3-pin/position connector	5 V DC voltage regulator connector	Section 2.1	
J12	MCU SWD	2x5-pin connector	Target MCU (MCX W23) external debugger connector	Section 3.2	
J22 (DNP)	PMOD	2x6-pin/position connector	Pmod connector	Section 2.12	
J15 (DNP)	3V3	1-pin/position connector	Power supply test points	For more information on these connectors, see FRDM-MCXW23 board schematics.	
J23 (DNP)	V_MCULINK	1-pin/position connector			
J16 (DNP)	GND	1-pin/position connector	GND test points		
J17 (DNP)	GND	1-pin/position connector			
BT2	CR2032	Battery holder	Coin cell battery holder CR2032		

Table 3. FRDM-MCXW23 connectors...continued

Part identifier	PCB label	Connector type	Description	Reference section
J20 (DNP)	VREF_OUT	1-pin/position connector		

1.7 Jumpers

[Figure 5](#) shows the FRDM-MCXW23 board jumpers.

Figure 5. FRDM-MCXW23 board jumpers

[Table 4](#) describes the FRDM-MCXW23 board jumpers.

Table 4. FRDM-MCXW23 jumpers

Part identifier	Jumper type	Description	Reference section
JP1	1x2-pin header	<p>Board power (VBOARD) measurement jumper. JP1 is not closed by default. It can be used to measure the current for the VBOARD supply. When measuring, ensure to cut the PCB trace on the bottom side between the pads of the shunt resistor SH200.</p> <p>When open, JP1 can be used to measure the current for the VBOARD supply. When shorted, JP1 produces the VBOARD supply.</p>	Section 2.1
JP2	1x2-pin header	<p>Target MCU (MCX W23) power (P3V0_DUT) measurement jumper. JP2 is not closed by default. It can be used to measure the current for the P3V0_DUT supply. When measuring, ensure to cut the PCB trace on the bottom side between the pads of the shunt resistor SH201.</p> <p>When open, JP2 can be used to measure the current for the target MCU power including some digital buffers (P3V3_DUT), JP2 produces the P3V0_DUT supply.</p>	
JP4	1x3-pin header	<p>P3V3 supply power source selection jumper:</p> <ul style="list-style-type: none"> 1-2 shorted (default setting): The P3V3 supply is produced from the LDO_3V3 supply. 	

Table 4. FRDM-MCXW23 jumpers...continued

Part identifier	Jumper type	Description	Reference section
		<ul style="list-style-type: none"> 2-3 shorted: The P3V3 supply is produced from the Battery supply. 	
JP5	1x2-pin header	<p>MCU-Link (LPC55S69) ISP mode enable jumper:</p> <ul style="list-style-type: none"> Open (default setting): MCU-Link (LPC55S69) follows the normal boot sequence (MCU-Link boots from its internal flash if a boot image is found). With the internal flash erased, the MCU-Link normal boot sequence falls through to In-System Programming (ISP) boot mode. Shorted: MCU-Link is forced to ISP mode (USB1). Use this setting to reprogram the MCU-Link internal flash with a new image or use the MCUXpresso IDE with the CMSIS-DAP protocol. <p>Note: By default, the MCU-Link internal flash is preprogrammed with a version of the CMSIS-DAP firmware.</p>	Section 3.4
JP6	1x2-pin header	<p>MCU-Link VCOM port disable jumper:</p> <ul style="list-style-type: none"> Open (default setting): The MCU-Link virtual communication (VCOM) port (USB-to-UART bridge) is enabled. Shorted: The MCU-Link VCOM port (USB-to-UART bridge) is disabled. 	Section 3.7
JP7	1x2-pin header	<p>MCU-Link SWD disable jumper:</p> <ul style="list-style-type: none"> Open (default setting): The MCU-Link serial wire debug (SWD) feature is enabled. MCU-Link can be used to drive the SWD of the target MCU. Shorted: The MCU-Link SWD feature is disabled. This jumper setting can be used for debugging the target MCU, using an external debugger connected through connector J12. 	Section 3.2
JP9	1x2-pin header	<p>USB-to-I²C bridge disable jumper:</p> <ul style="list-style-type: none"> Open: MCU-Link acts as a USB-to-I²C bridge between the host computer and the target MCU. Shorted (default setting): The USB-to-I²C bridge is disabled (DNP). 	For more information on these jumpers, see FRDM-MCXW23 board schematics.
JP10	1x2-pin header	<p>Reset LED enable jumper:</p> <ul style="list-style-type: none"> Open: The reset LED is disabled. Shorted (default setting): The reset LED is enabled, and it turns ON when the reset button (SW1) is pressed. 	Section 1.7
JP11	1x3-pin header	<p>BLE Tx transmit power selection jumper:</p> <ul style="list-style-type: none"> 1-2 shorted (default setting): VDD_RF is connected to VBAT_HV. The RF transmitter level is configured in TX Mode 2 (TXM2). The maximum RF output power equals +6 dBm. 2-3 shorted: VDD_RF is connected to VBAT_LV. The RF transmitter level is configured in TX Mode 1 (TXM1). The maximum RF output power equals +2 dBm. <p>For more information, see <i>MCX W23 Data Sheet</i>.</p>	
JP12	1x2-pin header	Current SNS Jumper:	

Table 4. FRDM-MCXW23 jumpers...continued

Part identifier	Jumper type	Description	Reference section
		<ul style="list-style-type: none"> • 1-2 shorted (default setting): works as a buck mode 	
JS1 ^[1] (DNP)	1x2-pin header	<p>mikroBUS socket UART transmit signal control jumper. JS1 is not populated by default, but JS1 pads are shorted via a physical (trace) connection on the secondary (bottom) side of the PCB. Therefore, a UART signal can be transmitted from mikroBUS socket connector J5 to the MCX W23 UART0 module.</p> <p>To populate JS1 (if needed to control the mikroBUS socket UART transmit signal), cut the PCB trace between the JS1 pads.</p>	Section 2.4
JS2 ^[1] (DNP)	1x2-pin header	<p>mikroBUS socket UART receive signal control jumper. JS2 is not populated by default, but JS2 pads are shorted via a trace connection on the bottom side of the PCB.</p> <p>Therefore, a UART signal can be received at mikroBUS socket connector J5 from the MCX W23 UART0 module.</p> <p>To populate JS2 (if needed to control the mikroBUS socket UART receive signal), cut the PCB trace between the JS2 pads.</p>	
JS3 ^[1] (DNP)	1x2-pin header	<p>mikroBUS socket SPI input signal control jumper. JS3 is not populated by default, but JS3 pads are shorted via a trace connection on the bottom side of the PCB.</p> <p>Therefore, an SPI signal can be received at mikroBUS socket connector J6 from the MCX W23 SPI module. To populate JS3 (if needed to control the mikroBUS socket SPI input signal), cut the PCB trace between the JS3 pads.</p>	Section 2.5
JS4 ^[1] (DNP)	1x2-pin header	<p>mikroBUS socket SPI output signal control jumper. JS4 is not populated by default, but JS4 pads are shorted via a trace connection on the bottom side of the PCB.</p> <p>Therefore, an SPI signal can be transmitted from mikroBUS socket connector J6 to the MCX W23 SPI module.</p> <p>To populate JS4 (if needed to control the mikroBUS socket SPI output signal), cut the PCB trace between the JS4 pads.</p>	
JS7 ^[1]	1x2-pin header	<p>Arduino shield UART receive signal control jumper.</p> <ul style="list-style-type: none"> • Populated (default setting): MCX W23 is the controller of the UART port. An Arduino shield can be attached to the FRDM-MCXW23 board. A UART signal can be received from Arduino shield connector J1 to the MCX W23 UART0 module. • POKA-YOKE setting: An Arduino Uno board is the controller of the UART port. The FRDM-MCXW236 acts as an Arduino shield. 	
JS8 ^[1]	1x2-pin header	<p>Arduino shield UART transmit signal control jumper.</p> <ul style="list-style-type: none"> • Populated (default setting): MCX W23 is the controller of the UART port. An Arduino shield can be attached to the FRDM-MCXW23 board. An UART signal can be transmitted to Arduino shield connector J1 from the MCX W23 UART0 module. 	

Table 4. FRDM-MCXW23 jumpers...continued

Part identifier	Jumper type	Description	Reference section
		<ul style="list-style-type: none"> POKA-YOKE setting: A Arduino Uno board is the controller of the UART port. The FRDM-MCXW23 acts as an Arduino shield. 	

[1] The 1pitch of jumper is 2.00 mm.

1.8 Push buttons

[Figure 6](#) shows the FRDM-MCXW23 board push buttons.

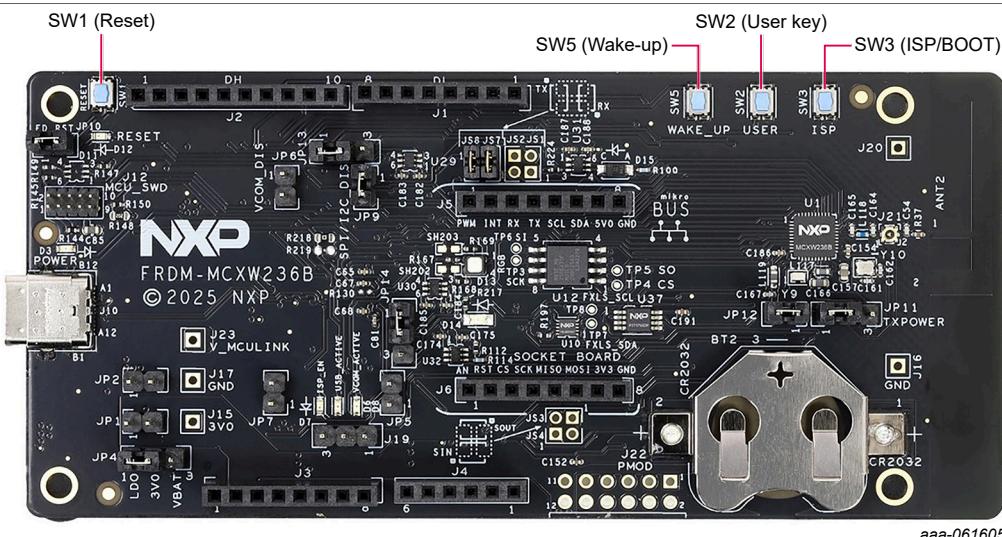


Figure 6. Push buttons

[Table 5](#) describes the FRDM-MCXW23 board push buttons.

Table 5. FRDM-MCXW23 push buttons

Part identifier	PCB label	Name/function	Description
SW1	RESET	Reset button	Pressing SW1 asserts the MCX W23 MCU pin (RST_TGTMU_B), which wakes up the MCU from any mode. When SW1 is pressed with jumper JP10 shorted, the reset LED D12 turns ON.
SW5	SW_WAKE_UP	Power (wake-up) button	Pressing SW5 asserts the MCX W23 MCU pin SWITCH_WAKEUP_B (PIO0_21). This switch can trigger a wake-up from low-power modes.
SW3	ISP	ISP/boot configuration button	Pressing SW3 asserts the MCX W23 MCU pin PIO0_20 (BOOT_CONFIG), which forces the MCU ROM bootloader to run in In-System Programming (ISP) mode. To boot the MCU in ISP mode, hold down SW3 while pressing SW1 (reset button) or while supplying power to the board. For more information on the MCX W23 MCU ISP mode, see MCX W23 Reference Manual .
SW2	PB_WU	User wake-up button	User-application-specific push buttons (PIO0_18)

1.9 LEDs

The FRDM-MCXW23 board provides light-emitting diodes (LEDs) for monitoring system status. The information collected from the LEDs can be used for debugging purposes.

Figure 7 shows the FRDM-MCXW23 board LEDs.

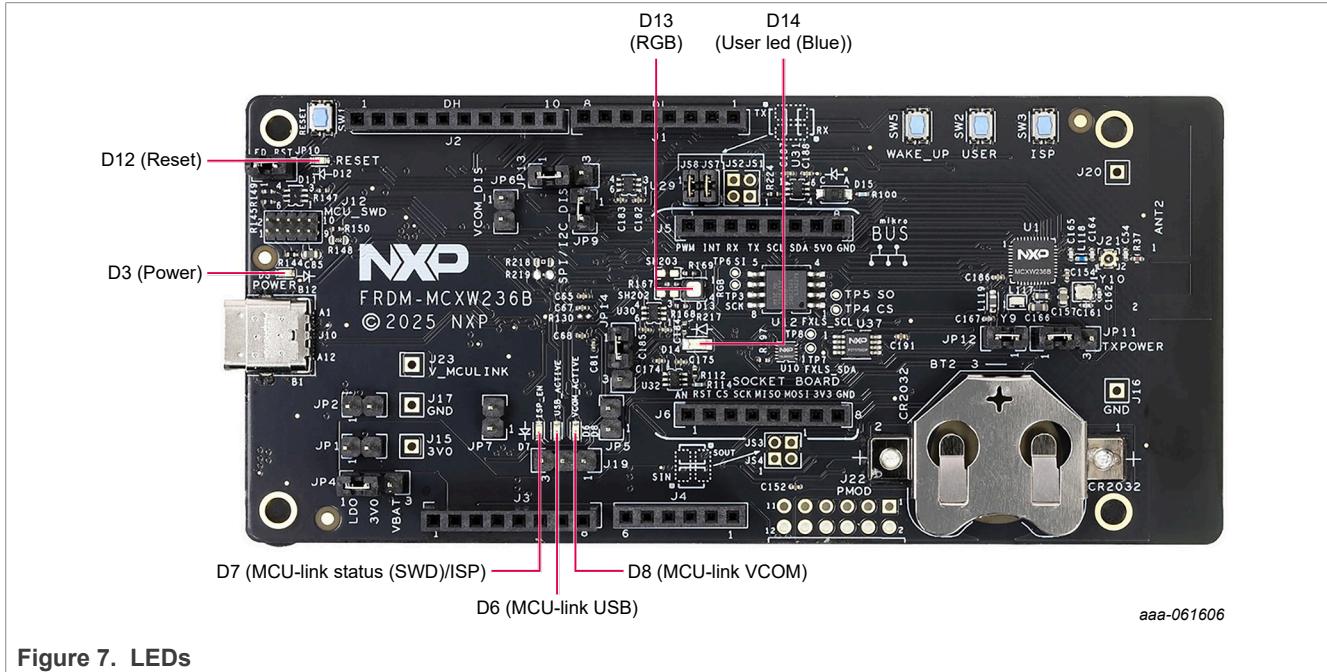


Figure 7. LEDs

Table 6 describes the FRDM-MCXW23 board LEDs except for MCU-Link-specific LEDs, which are described in Section 3.9.

Table 6. FRDM-MCXW23 LEDs

Part identifier	PCB label	LED color	LED name/function	Description (when LED is ON)
D3	POWER	Green	Power-on indicator LED	Indicates system power-on status. When the board is powered up, D3 turns ON.
D12	RESET	Red	Reset LED	Indicates system reset activity. When board reset is initiated, for example, by pressing the reset button (SW1), D12 turns ON.
D13	RGB	Red/green/blue	RGB LED	User-defined LEDs, which can be controlled through a user application.
D14	User LED	Blue	General-purpose LED	

Note: MCU-Link-specific LEDs D6, D7, and D8 are described in Section 3.9.

2 Functional description

This section contains the following subsections:

- [Section 2.1 "Power supplies"](#)
- [Section 2.2 "Clocks"](#)
- [Section 2.3 "UART interface"](#)
- [Section 2.4 "SPI interface"](#)
- [Section 2.5 "I2C interface"](#)
- [Section 2.6 "RF interface"](#)
- [Section 2.7 "Accelerometer"](#)
- [Section 2.8 "Temperature sensor"](#)
- [Section 2.9 "Arduino socket"](#)
- [Section 2.10 "mikroBUS socket"](#)
- [Section 2.11 "Pmod connector"](#)

2.1 Power supplies

2.1.1 External power supply

The FRDM-MCXW23 board is powered up using one of the following primary external power supply options:

- External 5 V power through USB Type-C connector J10.
- 5-9 V power from Arduino socket connector J3, pin 8.

The primary power supply is used to produce secondary power supplies on the board. The secondary power supplies provide power to board components, including the MCX W23 MCU, MCU-Link, QSPI flash memory, accelerometer, temperature sensor, LED's, Arduino socket, mikroBUS socket, and Pmod connector.

2.1.2 Power supplies

describes the FRDM-MCXW23 board power supplies.

Table 7

Table 7. FRDM-MCXW23 power supplies

Power source	Manufacturer and part number	Power supply	Description
External supply through MCU-Link USB Type-C connector J10		P5V_MCU_LINK_USB (5 V)	<ul style="list-style-type: none"> • One of the two power source options (default option) for the SYS_5V supply • Provides the USB1_VBUS power to the LPC55 S69 MCU (MCU-Link)
External supply through Arduino socket power connector J3, pin 8		P5-9V_VIN (5-9 V)	Supplies power to 5 V DC voltage regulator connector J19
DC voltage regulator attached to connector J19 (DNP)		P5V_HDR_IN (5 V)	Second power source option for the SYS_5V supply
From the P5V_MCU_LINK_USB/P5V_HDR_IN supply		SYS_5V (5 V)	Produces the P5V0 supply
Note: By default, the option to produce the SYS_5V			

Table 7. FRDM-MCXW23 power supplies...continued

Power source	Manufacturer and part number	Power supply	Description
<i>supply from the P5V_HDR_IN supply is disabled.</i>			
From the SYS_5V supply		P5V0 (5 V)	Supplies power to LDO voltage regulator U36, Arduino socket power connector J3, and mikroBUS
LDO voltage regulator U36	Torex Semiconductor RT9065GE	LDO_3V0 (3.0 V)	One of the two power source options (default option) for the P3V0 supply through jumper JP4
CR2032 battery		CR2032 3V0	Battery holder for a 3V Lithium battery, type CR2032 Second power source option for the P3V3 supply through jumper JP4 Note: <i>By default, the battery is not installed.</i>
From the P3V0 supply, through shunt resistor SH200 or jumper JP1 (DNP)		VBOARD	<ul style="list-style-type: none"> • Produces the VDD_MEM supply through shunt resistor SH101 • Produces the VDD_SENSOR supply through shunt resistor SH102 • Produces the P_LED supply through shunt resistor SH100 • Provides the VIO power to the CAN transceiver U13 • Supplies power to MCU-Link/produces other secondary supplies (MCU_LINK_3V3 and VREF_MCULINK) for MCU-Link • Supplies power to: <ul style="list-style-type: none"> – Arduino socket power connector J3 (pins 2 and 4) – mikroBUS socket connector J6 – Pmod connector J22 (DNP) – External debugger connector J12 – ISP/boot configuration switch SW3 – MCU-Link LEDs D6, D7, and D8 – Ambient light sensor Q2 • Enables reset signal from reset switch SW1 • Enables wake-up signal from power switch SW5 • Enables non-maskable interrupt (NMI) signal from user-defined NMI switch SW4 • Enables MCU-Link status/SWD/ISP signal, which can be disabled by shorting jumper JP5 <p>Note:</p> <ul style="list-style-type: none"> • <i>The VBOARD supply can also be used to enable wake-up signal from user-defined wake-up switch SW2, by populating resistor R162.</i> • <i>The VBOARD supply can also be used to enable I²C signals from/to MCU-Link, by populating resistors R157 and R158.</i> • <i>The VBOARD supply can also be used to enable UART signals from/to Arduino socket analog connector J4, by populating resistors R28 and R29.</i>

Table 7. FRDM-MCXW23 power supplies...continued

Power source	Manufacturer and part number	Power supply	Description
From the P3V3 supply, through shunt resistor SH201 or jumper JP2 (DNP)		P3V3_DUT (3.3 V)	<ul style="list-style-type: none"> One of the two power source options (default option) for the VDD_REG and VDD_DCDC supplies Produces the VDD_SWITCH supply
From the VBOARD supply, through shunt resistor SH101		VDD_MEM	Supplies power to QSPI flash memory U12
From the VBOARD supply, through shunt resistor SH102		VDD_SENSOR	Supplies power to accelerometer U10
From the VBOARD supply, through shunt resistor SH100		P_LED	Supplies power to power-on indicator LED D3, reset LED D12, RGB LED D13, and user LED D14
From the P3V3_DUT supply or the VOUT_SWITCH power of the MCX W23 MCU (through shunt resistor SH105)		VDD_REG	Produces the VDD_IO_ABC and VDD_ANA supplies
From the P3V3_DUT supply or the VOUT_SWITCH power of the MCX W23 MCU (through shunt resistors SH105 and SH107)		VDD_DCDC	<ul style="list-style-type: none"> Alternative option to produce the VDD_SYS supply Provides the VDD_IO_D/VDD_DCDC power to the MCX W23 MCU
From the P3V3_DUT supply (through shunt resistor SH104)		VDD_SWITCH	Provides the VDD_SWITCH power to the MCX W23 MCU
From the VDD_REG supply (through shunt resistor SH108)		VDD_IO_ABC	Provides the VDD_IO_ABC power to the MCX W23 MCU
From the VDD_REG supply (through shunt resistor SH109)		VDD_ANA	Provides the VDD_ANA power to the MCX W23 MCU
Internally within the MCX W23 MCU or from the VDD_DCDC supply		VDD_SYS (1.71 V – 2.75 V)	Provides the VDD_SYS power to the MCX W23 MCU
From the DCDC_LX power of the MCX W23 MCU		1V8_DCDC (1.8 V)	Produces the VDD_LDO_CORE and VDD_RF supplies
From the 1V8_DCDC supply (through shunt resistor SH110)		VDD_LDO_CORE	Provides the VDD_LDO_CORE power to the MCX W23 MCU
From the 1V8_DCDC supply (through shunt resistor SH111)		VDD_RF	Provides the VDD_RF power to the MCX W23 MCU
From the VPA_2P4GHZ power of the MCX W23 MCU		VDD_PA_2_G4	Supplies power to the RF (antenna) circuit
From the VREFO power of the MCX W23 MCU		VREF_OUT	Provides reference voltage to the plugged-in Arduino board through Arduino socket connector J2, pin 3

2.1.3 Current measurement

The FRDM-MCXW23 board supports current measurement using an ampere meter (ammeter) on the power supplies shown in [Table 8](#).

Table 8. Power supplies with current measurement support

Power supply	Description	Shunt resistor	Jumper (2-pin)
VBOARD	Board power	SH200	JP1 (DNP)
P3V3_DUT	Target MCU (MCX W23) total power	SH201	JP2 (DNP)
VDD_HV	Target MCU VDD_HV power	-	JP11
VDD_RF	Target MCU VDD_RF power	-	JP12

2.2 Clocks

[Table 9](#) describes the clocks available on the FRDM-MCXW23 board.

Table 9. FRDM-MCXW23 Clocks

Clock generator	Manufacturer and part number	Clock	Frequency	Destination
Crystal Y10	ECS Inc. ECS-320-8-37B-CKY-TR	XI_32M, XO_32M	32 MHz	MCX W23 MCU (RF section)
Crystal Y9	MICRO CRYSTAL CM9V-T1A-32.768KHZ-7PF-20PPM-TA-QC	XI_32K, XO_32K	32.768 kHz	MCX W23 MCU (RTC section)
Crystal X1	Würth Elektronik 830064296	MCU_LINK_[P, N]_16 MHz	16 MHz	LPC55S69 MCU

2.3 UART interface

The MCX W23 MCU can be configured as an SPI, UART, or I²C interface. The FRDM-MCXW23 board supports communication with two UART modules: UART0 and UART2.

[Figure 8](#) shows the FRDM-MCXW23 UART diagram.

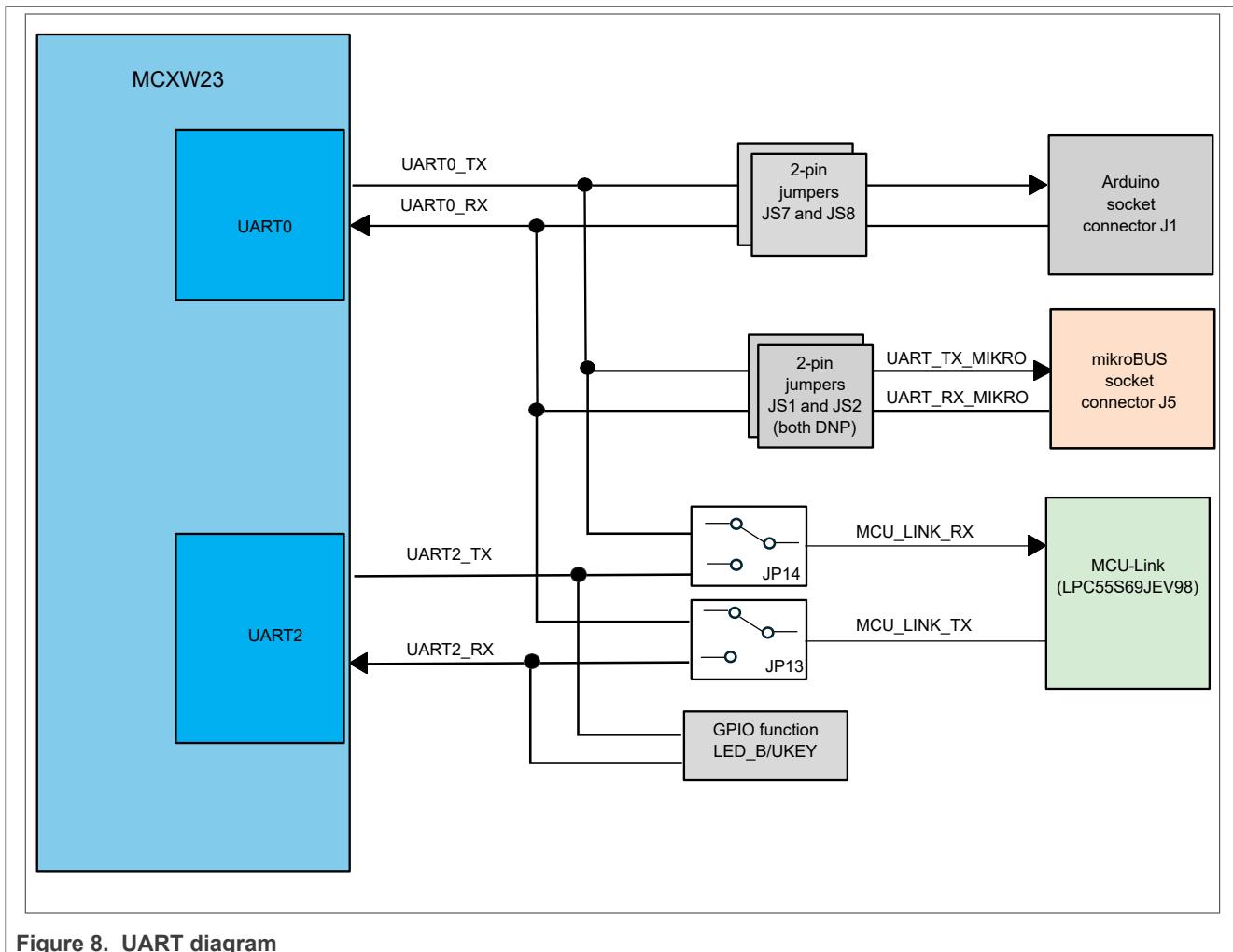


Figure 8. UART diagram

[Table 11](#) describes the FRDM-MCXW23 UART connections.

Table 10. UART connections

UART module	Peripheral devices		
	Part identifier	Manufacturer and part number	Description
UART0	J1		1x8-position Arduino socket connector that allows the plugged-in Arduino board to communicate with the MCX W23 MCU through a UART connection.
	J5		<p>1x8-position mikroBUS socket connector that allows the plugged-in mikroBUS click board to communicate with the MCX W23 MCU through a UART connection.</p> <p>The UART transmit (TX) and receive (RX) signals between the MCX W23 MCU and J5 connector pass through a pair of 2-pin jumpers JS1 (DNP) and JS2 (DNP). The JS1 and JS2 pads are shorted on the bottom side of the PCB. It implies that the TX and RX connections are active by default.</p> <p>To control the TX and RX signals, actual jumpers can be populated at the JS1 and JS2 footprints after cutting the traces on the PCB bottom side. The TX and RX signals can be cross-connected by:</p>

Table 10. UART connections...continued

UART module	Peripheral devices	
UART0	U8	<ul style="list-style-type: none"> Shorting pin 1 of JS1 with pin 2 of JS2 Shorting pin 2 of JS1 with pin 1 of JS2 <p>NXP LPC55S69JEV98</p> <p>MCU-Link, which is a 32-bit MCU based on the Arm Cortex-M33 core running at speeds of up to 150 MHz. MCU-Link can act as a USB-to-UART bridge between the host computer and the target MCU (MCX W23) for debugging the target MCU. For more details, see Section 3.7.</p>

In the FRDM-MCXW23 board, MCU-Link is connected to the UART0 module of the target MCU, by default. However, the board also allows connecting MCU-Link to the UART2 module of the target MCU, instead of the UART0 module.

Connecting to the UART2 module requires:

- Place JP13 and JP14 [2-3] pin

2.4 SPI interface

The MCX W23 MCU has a Low-Power Serial Peripheral Interface (SPI) module. The MCX W23 SPI module supports up to two peripheral chip selects (PCSs):

- CS0
- CS1

The FRDM-MCXW23 board only supports communication with the SPI module.

[Table 12](#) shows PCS mapping for the FRDM-MCXW23 SPI interface, with master-slave arrangement indicated.

Table 11. SPI PCS mapping

SPI module	Peripheral chip selects	Connected device
SPI (master/slave)	CS0 (default option) and CS1 (alternative option)	QSPI flash memory (slave)
	CS1 (default option) and CS0 (alternative option)	Arduino socket connector J2 (slave)
	CS1	mikroBUS socket connector J6 (slave)
	CS1	Pmod connector J22 (DNP) (slave)

[Figure 9](#) shows the FRDM-MCXW23 SPI diagram.

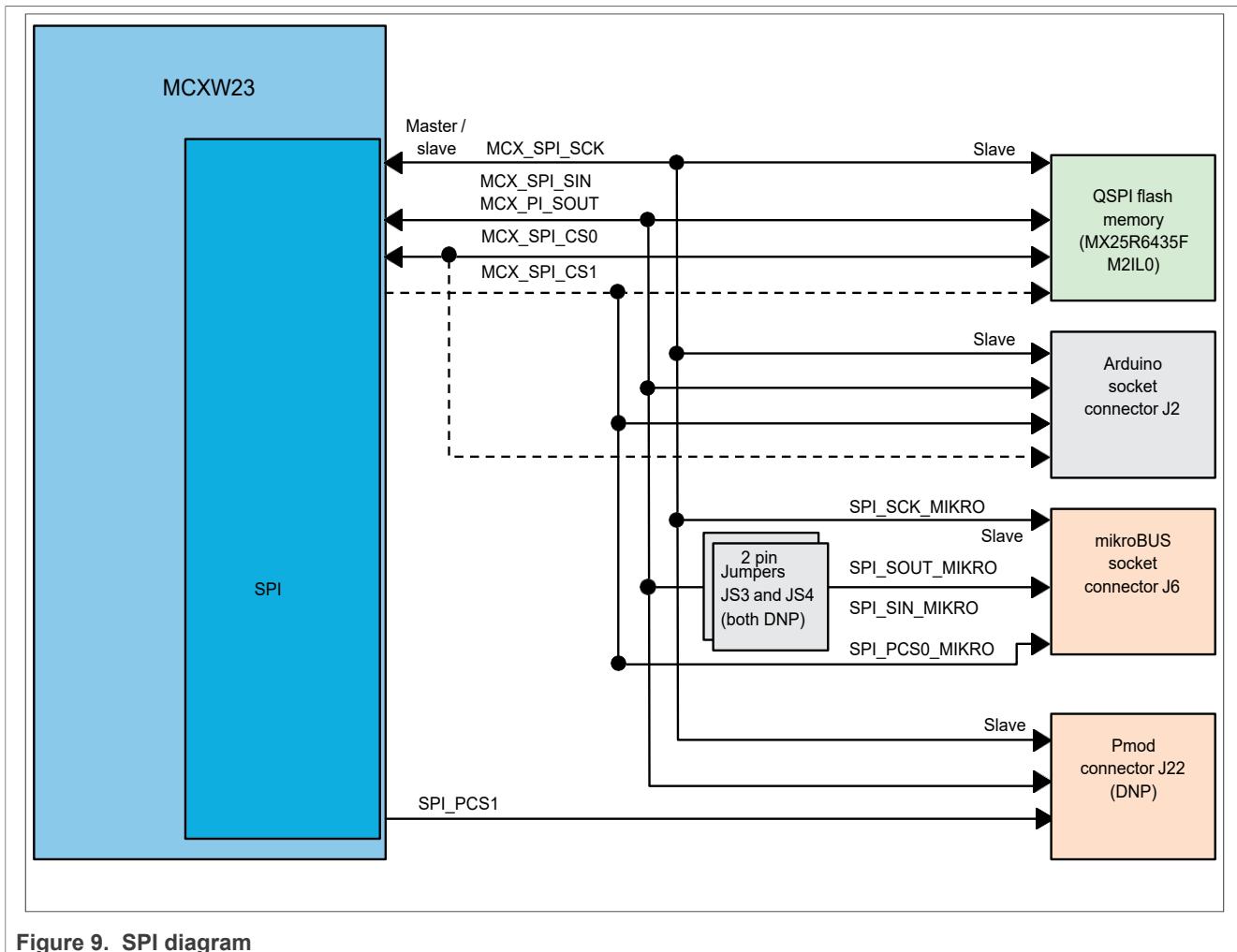


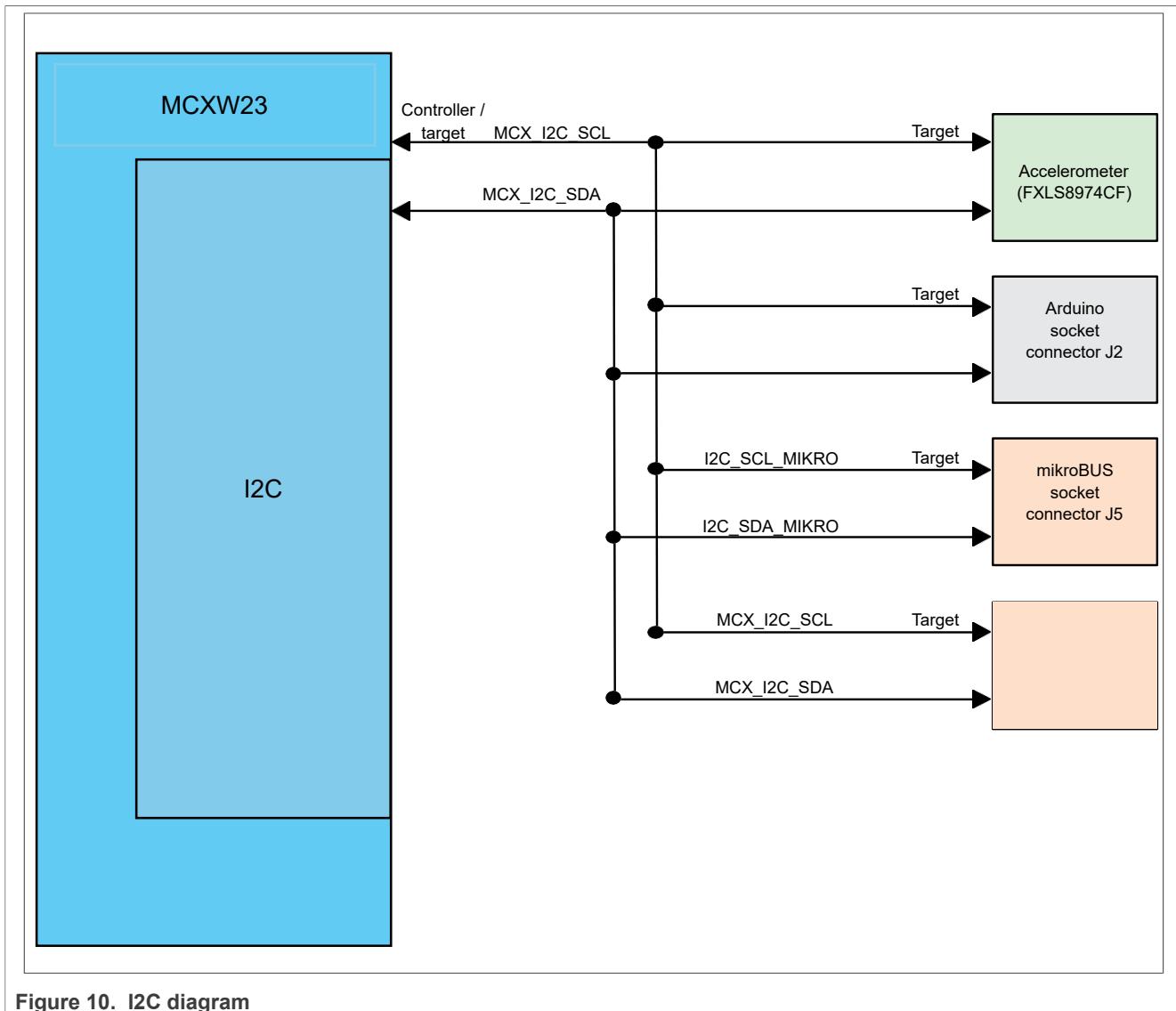
Figure 9. SPI diagram

[Table 13](#) describes the FRDM-MCXW23 SPI connections.

Table 12. SPI connections

SPI module	Peripheral devices		
	Part identifier	Manufacturer and part number	Description
SPI	U12	Macronix MX25R6435 FM2IL0	64 Mbit (8 MB) QSPI flash memory with clock frequencies of up to 80 MHz
	J2		1x10-position Arduino socket connector that allows the plugged-in Arduino board to communicate with the MCXW23 MCU through an SPI connection.
	J6		1x8-position mikroBUS socket connector that allows the plugged-in mikroBUS click board to communicate with the MCX W23 MCU through an SPI connection. The SPI data input (SIN) and SPI data output (SOUT) signals between the MCX W23 MCU and J6 connector pass through a pair of 2-pin jumpers JS3 (DNP) and JS4 (DNP). The JS3 and JS4 pads are shorted on the bottom side of the PCB. It implies that the SIN and SOUT connections are active by default.

Table 12. SPI connections...continued


SPI module	Peripheral devices	
		To control the SIN and SOUT signals, actual jumpers can be populated at the JS3 and JS4 footprints after cutting the traces on the PCB bottom side. The SIN and SOUT signals can be cross-connected by: <ul style="list-style-type: none"> • Shorting pin 1 of JS3 with pin 2 of JS4 • Shorting pin 2 of JS3 with pin 1 of JS4
J22 (DNP)	Sullins Connector Solutions PPPC062 LJBN-RC	Pmod connector

2.5 I2C interface

The MCX W23 MCU has A Low-Power Inter-Integrated Circuit (I2C) module. The I2C module supports serial I²C communication through a pair of control and data signals, and can act as a controller or target.

The FRDM-MCXW23 board only supports communication with the I2C module.

Figure shows the FRDM- MCXW23 I2C diagram.

Figure 10. I²C diagram

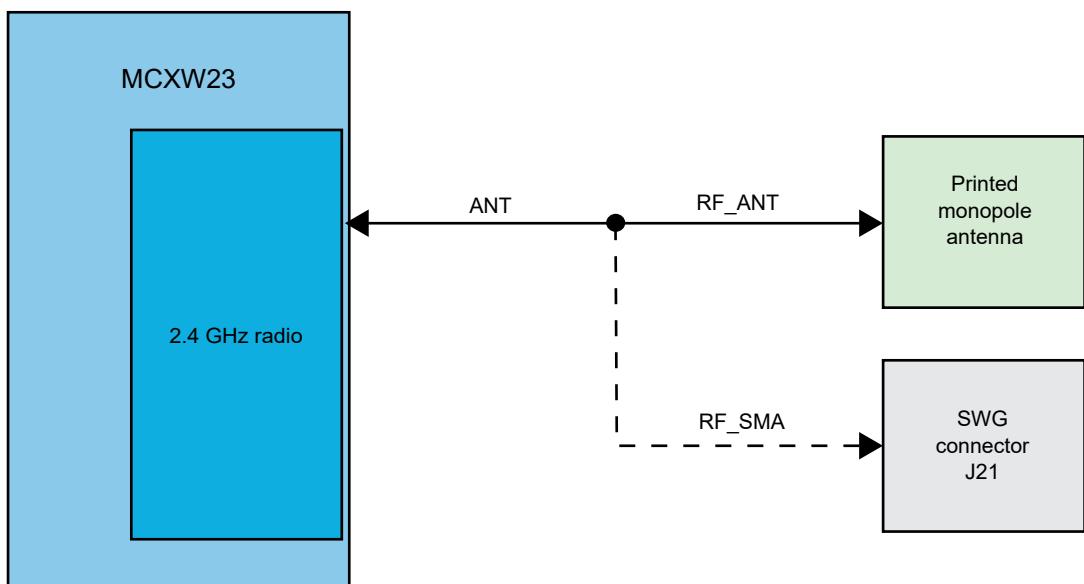
[Table 14](#) shows the FRDM-MCXW23 I²C bus device map.

Table 13. I²C bus device map

I2C bus	7-bit I2C address ^[1]	Device	Description
(All)		NXP MCXW236CMFTA (U1)	Target MCU. It acts as the I ² C controller for all I ² C connections on the board except for I ² C connection with MCU-Link.
I2C	0x19	NXP FXLS8964AF (U10)	Accelerometer (I ² C sensor)
	I ² C address depends on the plugged-in Arduino board.	Arduino board	Board/module attached to the Arduino socket comprising connectors J1, J2, J3, and J4. The I ² C signals connect through pins 1 and 2 of the J2 connector.
	I2C address depends on the	mikroBUS click board	Board/module attached to the mikroBUS socket comprising connectors J5 and J6. The I ² C signals connect through pins 5 and 6 of the J5 connector.

Table 13. I²C bus device map...continued

I ² C bus	7-bit I ² C address ^[1]	Device	Description
plugged-in mikroBUS click board.	plugged-in mikroBUS click board.		
	I ² C address depends on the plugged-in Pmod board.	Pmod board	Board/module attached to the Pmod connector J22 (not populated by default). The I ² C signals connect through J22 pins 6 and 8.
		NXP LPC55S69JEV98 (U8)	MCU-Link, which is a 32-bit MCU based on the Arm Cortex-M33 core running at speeds of up to 150 MHz. MCU-Link can act as a USB-to-I ² C bridge between the host computer and the target MCU (MCX W23) for debugging the target MCU. By default, the I ² C connection between MCU-Link and the target MCU is disabled (DNP).


[1] A 7-bit address does not include the read/write (R/W) bit.

2.6 RF interface

The MCX W23 MCU is compatible with Bluetooth Low Energy 5.3.

The FRDM-MCXW23 board supports communication with the 2.4 GHz radio through a monopole antenna or a U.FL connector. The various components of the radio frequency (RF) circuit are connected through a 50 Ω controlled impedance line.

[Figure 11](#) shows the FRDM-MCXW23 RF diagram.

[Figure 11](#). RF diagram

[Table 16](#) describes the FRDM-MCXW23 RF connections.

Table 14. RF connections

RF module	Peripheral devices	
	Part identifier	Description
2.4 GHz radio	ANT2	Monopole antenna (copper wire) printed on the PCB. It provides the default RF connection to communicate with the 2.4 GHz radio of the MCX W23 MCU.
	J21	U.FL connector, which provides an alternative RF connection to communicate with the 2.4 GHz radio of the MCX W23 MCU. By default, the RF connection is disabled.

2.7 Accelerometer

The FRDM-MCXW23 board has a 3-axis, compact digital accelerometer U10 (NXP FXLS8974CFR3) designed for use in a wide range of industrial and medical IOT applications that require ultra-low-power wake-up on motion.

The accelerometer supports:

- $\pm 2/4/8/16$ g user-selectable, full-scale measurement ranges
- 12-bit acceleration data
- 8-bit temperature sensor data
- I²C interface frequencies of up to 1 MHz
- 3- or 4-wire SPI interface with clock frequencies of up to 4 MHz The I²C addresses of the accelerometer are defined as follows:
 - Write address: 0x32
 - Read address: 0x33

For more information on FXLS8974CFR3, visit nxp.com.

2.8 Temperature sensor

The FRDM-MCXW23 board has a P3T1755 (U37) is a temperature-to-digital converter from -40 °C to +125 °C range. The P3T1755 can be configured for different operation conditions. It can be set in normal mode to periodically monitor the ambient temperature, or in shut-down mode to minimize power consumption. The temperature register always stores a 12-bit two's complement data, giving a temperature resolution of 0.0625 °C

The temperature sensor supports:

- I3C (up to 12.5 MHz) and I2C (up to 3.4 MHz) interface – 32 I2C target addresses – 32 I3C Provisional-ID
- Supply range: 1.4 V to 3.6 V
- Programmable overtemperature alerts
- Resolution: 12 bits (0.0625 °C)
- Accuracy: – 1.4 V < VCC < 3.6 V – ± 0.5 °C (maximum) from –20 °C to +85 °C – ± 1 °C (maximum) from -40 °C to +125 °C
- Low quiescent current: 4.1 μ A supply current (typical)
- ESD protection exceeds 2000 V HBM per JS-001-2017 and 1000 V CDM per JS-002-2018

For more information on P3T1755, visit nxp.com

2.9 Arduino socket

The FRDM-MCXW23 board has an Arduino socket with four connectors, as listed in [Table 17](#).

Table 15. Arduino socket connectors

Part identifier	Connector type	Description
J1	1x8-position receptacle	Destination address (low 32 bits) (DL)
J2	1x10-position receptacle	Destination address (high 32 bits) (DH)
J3	1x8-position receptacle	Power (PWR)
J4	1x6-position receptacle	Analog (AN)

The two 8-position receptacles are placed diagonally opposite to each other. The socket is pin-compatible with an Arduino Uno revision 3 (R3) board.

[Figure 12](#) shows the pinouts of the Arduino socket connectors.

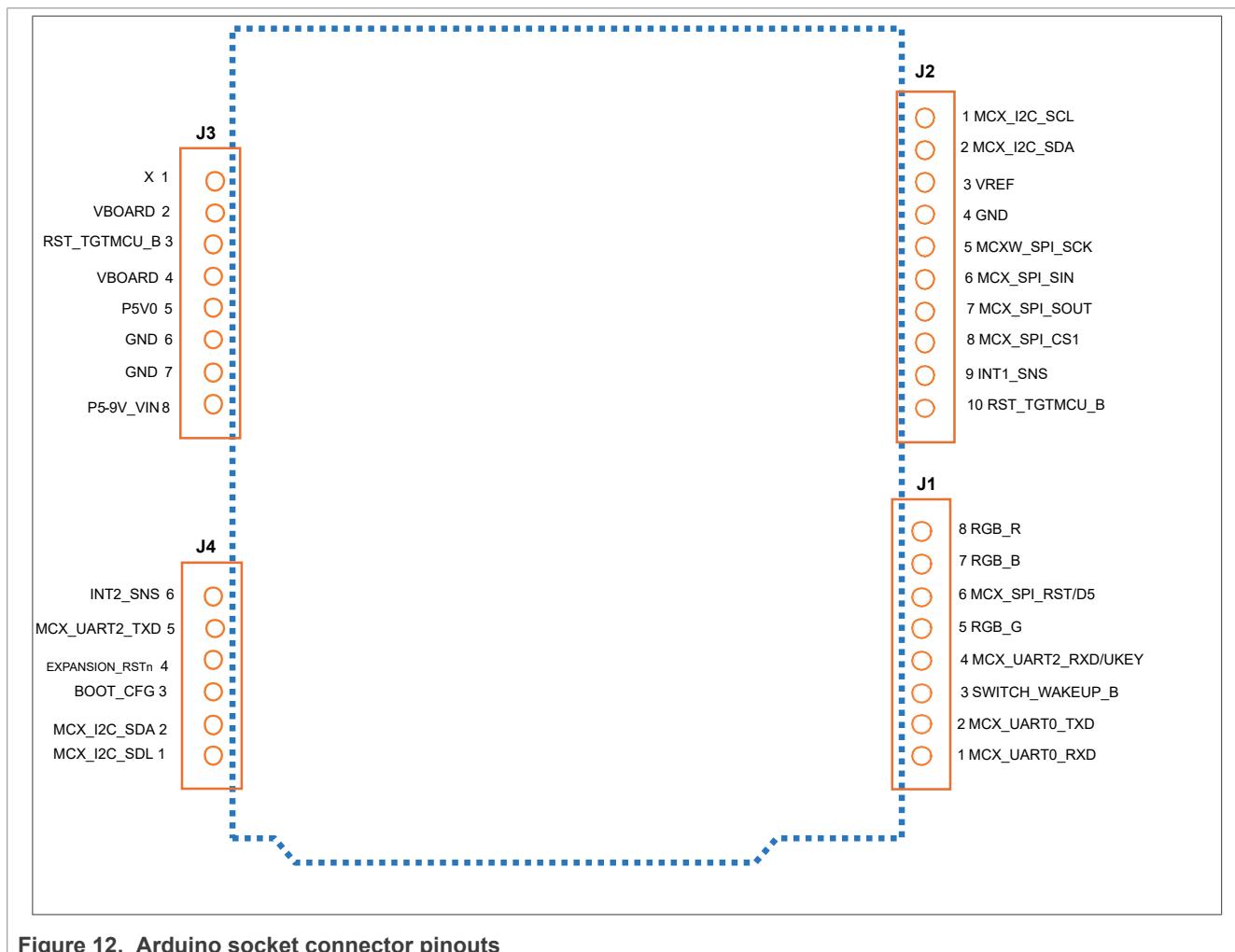


Figure 12. Arduino socket connector pinouts

The Arduino socket allows communication with the following modules of the MCX W23 MCU:

- Low-Power Universal Asynchronous Receiver/Transmitter 0 (UART0) and 1 (UART2)
- Low-Power Serial Peripheral Interface (SPI)
- Low-Power Inter-Integrated Circuit (I2C)

2.10 mikroBUS socket

A mikroBUS socket is a pair of 1x8-position receptacles (connectors) with a proprietary pin configuration and silkscreen markings. It provides many hardware expansion options with few pins.

The FRDM-MCXW23 board has a mikroBUS socket with a pair of 1x8-position receptacles, J5 and J6.

[Figure 13](#) shows the pinouts of the mikroBUS socket connectors.

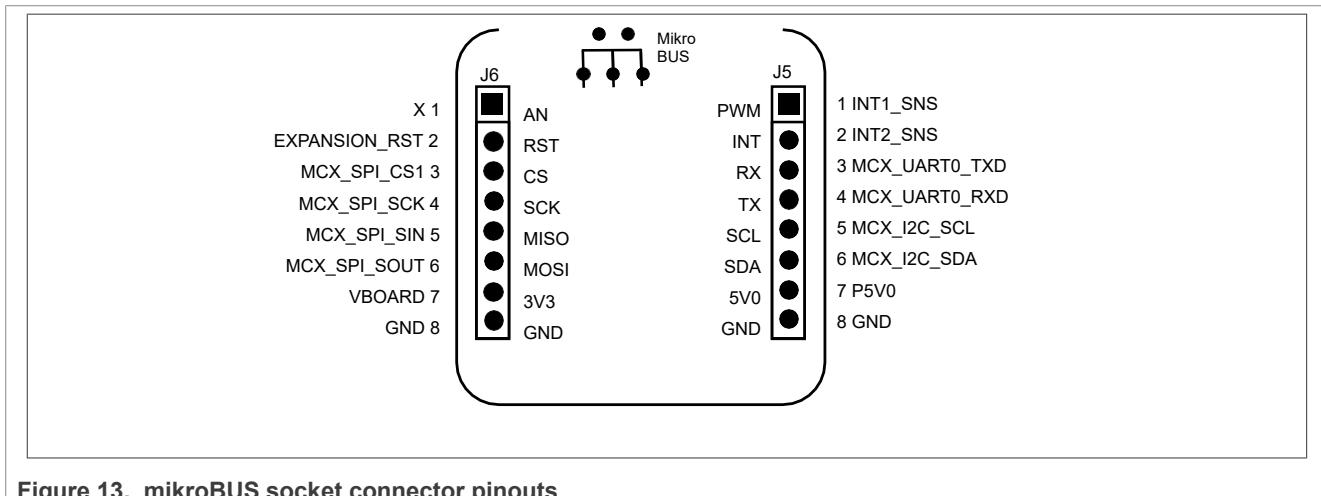


Figure 13. mikroBUS socket connector pinouts

The mikroBUS socket allows communication with the following modules of the MCX W23 MCU:

- Low-Power Universal Asynchronous Receiver/Transmitter 0 (UART0)
- Low-Power Serial Peripheral Interface (SPI)
- Low-Power Inter-Integrated Circuit (I2C)

An add-on board, called *click board*, can be installed on a mikroBUS socket. A click board provides a plug-and-play solution for adding new functionality to a board design. A click board has a pair of 1x8-pin headers that connects to the pair of receptacles on a mikroBUS socket. MikroElektronika (MIKROE) is one of the manufacturers of click boards. To find some example click boards for the FRDM-MCXW23 mikroBUS socket, visit [MIKROE website](#).

2.11 Pmod connector

Digilent Pmod (peripheral module) devices are small input/output interface boards that can be easily integrated with embedded control boards for expanding their capabilities.

The FRDM-MCXW23 board supports a Pmod connector J22 (Digilent PPPC062LJBN-RC) for expanding the capabilities of the board. J22 is not populated on the board. If populated, it can be used to work with a remote host, or as an interface to a Pmod expansion board.

[Table 18](#) shows the pinout of the Pmod connector J22.

Table 16. Pmod connector pinout

Pin number	Signal name	Description
1	MCX_SPI_PCS1	
3	MCX_SPI_SOUT	
5	MCX_SPI_SIN	
7	MCX_SPI_SCK	

Table 16. Pmod connector pinout...continued

Pin number	Signal name	Description
2	INT1_SNS	Interrupt signal
4	EXPANSION_RSTn	Reset signal
6	MCX_I2C_SCL	I ² C signals
8	MCX_I2C_SDA	
9, 10	GND	Ground
11, 12	VBOARD	Power supply

The Pmod connector allows communication with the following modules of the MCX W23 MCU:

- Low-Power Serial Peripheral Interface (SPI)
- Low-Power Inter-Integrated Circuit (I2C)

3 MCU-Link OB debug probe

MCU-Link is a debug probe architecture jointly developed by NXP and Embedded Artists. The MCU-Link architecture is based on the NXP LPC55S69 MCU, which is based on an Arm Cortex-M33 core. It can be configured to support different debug feature options.

The MCU-Link architecture is used in:

- Standalone debug probes, such as MCU-Link Pro.
- Onboard debug probes implemented on NXP evaluation boards, such as FRDM-MCXW23. The onboard implementation of MCU-Link is referred to as *MCU-Link OB*.

The FRDM-MCXW23 board implements a subset of the MCU-Link architecture features, as mentioned in [Section 3.1](#). For more details on the MCU-Link architecture, visit the [MCU-Link Debug Probe Architecture](#) page.

The MCU-Link OB on the FRDM-MCXW23 board is factory-programmed with the firmware based on the NXP CMSIS-DAP protocol. The firmware also supports all other features supported in the hardware. A custom version of the J-Link firmware to make MCU-Link OB compatible with J-Link LITE is also available. However, this firmware version only supports limited features, including debug/SWO and VCOM. For information on how to update the firmware, see [Section 3.4](#).

3.1 Supported MCU-Link features

MCU-Link includes several mandatory and optional features. [Table 19](#) summarizes the MCU-Link features supported on the FRDM-MCXW23 board.

Table 17. Supported MCU-Link features

Feature	Description
Serial wire debug (SWD)/serial wire debug trace output (SWO)	MCU-Link allows SWD-based debugging with SWO for profiling and/or low overhead debug standard I/O communication.
Virtual communication (VCOM) serial port	MCU-Link adds a serial COM port on the host computer and connects it to the target MCU, while acting as a USB-to-UART bridge.
USB serial input/output (USBSIO ^[1]) port	MCU-Link adds a USB serial I/O port on the host computer and connects it to the target MCU, while acting as a USB-to-I ² C bridge.
External debug probe support	The MCU-Link interface supports debugging the target MCU (MCX W23) using an external debug probe, instead of MCU-Link. Support for an external debug probe is enabled by disabling the SWD feature.

[1] J-Link firmware does not support this feature.

3.2 Supported debug scenarios

[Table 20](#) describes the debug scenarios supported on the FRDM-MCXW23 board.

Table 18. Supported debug scenarios

Debug scenario	Feature support	Required jumper/connector settings
Use MCU-Link for debugging the MCX W23 MCU	SWD: Enabled	MCU-Link SWD disable jumper JP7 is open.
		Target MCU external debugger connector J12 is not used for external connection.

Table 18. Supported debug scenarios...continued

Debug scenario	Feature support	Required jumper/connector settings
	VCOM: Enabled	MCU-Link VCOM port disable jumper JP6 is open.
Use an external debugger for debugging the MCX W23 MCU	SWD: Not supported	Short JP7.
		Connect the external debugger to J12.
	VCOM: Supported	JP6 is open.

3.3 MCU-Link firmware update utility installation

The MCU-Link debug probe is supported on a host computer running a Windows 10/11, MacOS X, or Ubuntu Linux operating system (OS). The debug probe works with standard OS drivers. For Windows, the MCU-Link firmware installation program also includes information files to provide user-friendly device names.

Support for MCU-Link can be enabled using the LinkServer utility, which is an NXP GDB server and flash utility that supports many NXP debug probes. For more details on this utility, visit the <https://nxp.com/linkserver> page.

Running the LinkServer installer also installs a firmware update utility and the drivers (information files) required for MCU-Link. NXP recommends you to use the LinkServer installer for installing the MCU-Link firmware update utility.

Note: *If the MCU-Link firmware version is 3.122 or later, an automatic firmware update can be done using LinkServer installer version 1.4.85 or later. For more details on automatic firmware update, refer to the Readme mark-down file in the LinkServer installation package. However, if the current firmware version is earlier than 3.122, you require to run manually the MCU-Link firmware update utility, which is included in the LinkServer installation package. To update the MCU-Link firmware using the firmware update utility, see [Section 3.4](#)*

To work with MCU-Link, NXP recommends using the latest MCU-Link firmware. The steps to update the MCU-Link firmware manually are provided in [Section 3.4](#). Before updating the MCU-Link firmware, check the versions of the MCUXpresso IDE and LIBUSBIO (if you are using these tools) installed on your host computer. Then, check the compatibility of these tools with the MCU-Link firmware by referring to [Table 21](#). If you are using the MCUXpresso for Visual Studio Code extension or a third-party IDE from IAR or Keil, NXP recommends using the latest MCU-Link firmware version.

Table 19. Compatibility check between MCUXpresso IDE and MCU-Link firmware

MCUXpresso IDE version	Supported MCU-Link firmware version	USB driver type	CMSIS-SWO support	FreeMASTER support via	
				SWD/JTAG	USB bridge
MCUXpresso 11.3 or later	V1.xxx and V2.xxx	HID	No	Yes	Yes
MCUXpresso 11.7.0 or later	V3.xxx (up to and including V3.108)	WinUSB	No	Yes	FreeMASTER V3.2.2 or later
MCUXpresso 11.7.1 or later	V3.117 and later	WinUSB	Yes	Yes	FreeMASTER V3.2.2 or later

3.4 Updating MCU-Link firmware using firmware update utility

To update the MCU-Link firmware using the firmware update utility included in the LinkServer installation package, the MCU-Link must be powered up in ISP mode. Follow these steps to configure MCU-Link in ISP mode and update MCU-Link firmware:

1. Disconnect the board from the host computer, short jumper JP5, and reconnect the board. The red MCU-Link status LED D7 lights up and stays on. For more details on MCU-Link LEDs, see [Section 3.9](#).
2. Download the LinkServer installation package from <https://nxp.com/linkserver> and install the LinkServer utility. For example, download and install "Linkserver 1.4.85 installer for Windows" or later.
3. Navigate to the `MCU-LINK_installer_Vx_xxx` directory, where `Vx_xxx` indicates the version number, for example, `V3.117`.
4. Follow the instructions in the `Readme.txt` to find and run the firmware update utility for CMSIS-DAP or J-Link firmware version.
5. Disconnect the board from the host computer, open jumper JP5, and reconnect the board. The board is enumerated on the host computer as a WinUSB or HID device (depending on the firmware version, see [Table 21](#)).

Note:

- *Starting version V3.xxx, the MCU-Link firmware uses WinUSB (instead of HID) for higher performance. However, it is not compatible with MCUXpresso IDE versions earlier than 11.7.0.*
- *To enable SWO-related features in non-NXP IDEs, CMSIS-SWO support was introduced in firmware version V3.117.*

3.5 Using MCU-Link with development tools

The MCU-Link debug probe can be used with IDEs supported within the MCUXpresso ecosystem, such as:

- MCUXpresso IDE
- MCUXpresso for Visual Studio Code
- IAR Embedded Workbench
- Arm Keil MDK

3.5.1 Using MCU-Link with MCUXpresso IDE

The MCUXpresso IDE recognizes any type of MCU-Link probe that uses either the CMSIS-DAP or J-Link firmware. When you start a new debug session, the IDE checks for all the available debug probes. For all the probes it finds, the IDE displays the probe types and unique identifiers in the **Probes discovered** dialog box.

If a debug probe requires a firmware update, the probe is displayed with a warning in the **Probes discovered** dialog box. For each such probe, the latest firmware version is indicated and a link to download the latest firmware package is provided. To update the firmware for the MCU-Link debug probe, see the instructions provided in [Section 3.4](#).

You are advised to use the latest MCU-Link firmware to take the benefit of the latest functionality. However, the MCU-Link firmware version you can use depends on the MCUXpresso IDE installed on your host computer. To check the compatibility of the MCU-Link firmware you want to use with your MCUXpresso IDE, see [Table 21](#).

3.5.2 Using MCU-Link with MCUXpresso for Visual Studio Code

The MCU-Link debug probe can be used with the MCUXpresso for Visual Studio Code extension from NXP. This extension uses the LinkServer debug server. To work with MCUXpresso for Visual Studio Code, install the LinkServer utility using the MCUXpresso Installer tool or as described in [Section 3.3](#). For more details on MCUXpresso for Visual Studio Code, visit the [MCUXpresso for Visual Studio Code](#) page.

3.5.3 Using MCU-Link with third-party IDEs

The MCU-Link debug probe can be used with third-party IDEs, such as IAR Embedded Workbench and Arm Keil MDK. For more details, refer to the third-party tool documentation, covering the use of generic CMSIS-DAP probes or J-Link probes (depending on the firmware image you are using).

3.6 MCU-Link USB connector

The FRDM-MCXW23 board has a USB Type-C connector J10, which allows you to connect MCU-Link with your host computer. It can also be used to supply 5 V power to the board.

3.7 VCOM port (USB to target UART bridge)

MCU-Link supports a feature, known as *virtual communication (VCOM) serial port*. This feature allows MCU-Link to add a serial COM port on the host computer and connect it to the target MCU. In this setup, MCU-Link acts as a USB-to-UART bridge.

In the FRDM-MCXW23 board, MCU-Link is connected to the UART0 module of the target MCU, by default. However, the board also allows connecting MCU-Link to the UART2 module of the target MCU, instead of the UART0 module. Connecting to the UART2 module requires:

- Place JP13 and JP14 [2-3]pin

To use MCU-Link as a USB-to-UART bridge, follow these steps:

1. Ensure that the jumper JP5 is open (MCU-Link boots normally).
2. Ensure that the jumper JP6 is open (MCU-Link VCOM port is enabled).
3. Connect the MCU-Link USB connector J10 to the USB port of the host computer.

When you boot the FRDM-MCXW23 board, a VCOM port with the name MCU-Link Vcom Port (COMxx) is enumerated on the host computer, where “xx” may vary from one computer to another. Each MCU-Link based board has a unique VCOM number associated with it.

The VCOM function can be disabled by shorting jumper JP6, before powering up the board. Changing the JP6 setting (open/short) after powering up the board has no impact on the MCU-Link VCOM function.

3.8 MCU-Link status LEDs

The FRDM-MCXW23 board has three status indicator LEDs for MCU-Link. [Table 22](#) lists these LEDs and describes how each LED behaves in different MCU-Link modes.

Table 20. MCU-Link LEDs

Part identifier	PCB label	LED color	LED function	Normal operation (with CMSIS-DAP)	Normal operation (with J-Link)	ISP (firmware update) mode
D6	USB_ACT	Green	Indicates USB communication. The LED lights up after successful USB enumeration at startup, and then stays ON.	The LED remains OFF.	The LED remains OFF.	
D7	ISP_EN	Red	Indicates MCU-Link status/ SWD activity. It acts as a heartbeat LED (fades in/ out repeatedly), with SWD activity overlaid. If an error occurs at startup, the D7 LED blinks rapidly.	The LED remains OFF.	The LED lights up when MCU-Link (LPC55S69) boots in ISP mode.	
D8	VCOM_ACT	Green	Indicates if the VCOM port is receiving/sending data. The LED lights up when MCU-Link boots, and then	Indicates if the VCOM port is receiving/sending data. The LED lights up when MCU-Link boots, and then	The LED remains OFF.	

Table 20. MCU-Link LEDs...*continued*

Part identifier	PCB label	LED color	LED function	
			blinks when debug activity happens.	blinks when debug activity happens.

4 Board errata

Not applicable for the current board revision.

5 Related documentation

[Table 23](#) lists some additional documents and resources that you can refer to for more information on the FRDM-MCXW23 board. Some of these documents may be available only under a nondisclosure agreement (NDA). To access such a document, contact your local NXP field applications engineer (FAE) or sales representative.

Table 21. Related documentation

Document	Description	Link/how to obtain
MCX W23 Reference Manual	Provides a detailed description about the MCX W23 MCU and its features, including memory maps, power supplies, and clocks.	Contact an NXP FAE or sales representative
MCX W23 Product Family Data Sheet	Provides information about the MCX W23 electrical characteristics, hardware design considerations, and ordering information.	
FRDM-MCXW23 board schematics	Provides a circuit representation showing the functionality and connectivity of the FRDM-MCXW23 board components.	

6 Acronyms

[Table 24](#) lists the acronyms used in this document.

Table 22. Acronyms

Acronym	Description
ADC	Analog-to-Digital Converter
CAN	Controller area network
DNP	Do not populate / do not place
DUT	Device under test
FlexCAN	Flexible Controller Area Network
FSK	Frequency shift keying
GFSK	Gaussian frequency shift keying
GMSK	Gaussian minimum shift keying
HID	Human interface device
I ² C	Inter-Integrated Circuit
IoT	Internet of Things
ISP	In-System Programming
LCD	Liquid-crystal display
LDO	Low-dropout regulator
LE	Low Energy
LED	Light-emitting diode
I2C	Low-Power Inter-Integrated Circuit
SPI	Low-Power Serial Peripheral Interface
UART	Low-Power Universal Asynchronous Receiver/Transmitter
MCU	Microcontroller unit
MSK	Minimum shift keying
NMI	Non-maskable interrupt
OB	Onboard
OS	Operating system
PCS	Peripheral chip select
PDA	Personal digital assistant
PWM	Pulse Width Modulator
RF	Radio frequency
RTC	Real-time clock
RX	Receive
SPI	Serial Peripheral Interface
SWD	Serial wire debug
SWO	Serial wire debug trace output

Table 24. Acronyms...continued

Acronym	Description
TFT	Thin-film transistor
TPM	Timer/PWM Module
TX	Transmit
UART	Universal Asynchronous Receiver/Transmitter
USB	Universal Serial Bus
USBSIO	USB serial input/output
VCOM	Virtual communication

7 Revision history

[Table 23](#) summarizes the revisions done to this document.

Table 23. Revision history

Document ID	Release date	Description
UM12359 v.1.0	10 July 2025	Initial public release

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <https://www.nxp.com/profile/terms>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

Suitability for use in industrial applications (functional safety) — This NXP product has been qualified for use in industrial applications. It has been developed in accordance with IEC 61508, and has been SIL-classified accordingly. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

IAR — is a trademark of IAR Systems AB.

I2C-bus — logo is a trademark of NXP B.V.

Tables

Tab. 1.	FRDM-MCXW23 features	3	Tab. 13.	I2C bus device map	20
Tab. 2.	Kit contents	4	Tab. 14.	RF connections	22
Tab. 3.	FRDM-MCXW23 connectors	6	Tab. 15.	Arduino socket connectors	23
Tab. 4.	FRDM-MCXW23 jumpers	7	Tab. 16.	Pmod connector pinout	24
Tab. 5.	FRDM-MCXW23 push buttons	10	Tab. 17.	Supported MCU-Link features	26
Tab. 6.	FRDM-MCXW23 LEDs	11	Tab. 18.	Supported debug scenarios	26
Tab. 7.	FRDM-MCXW23 power supplies	12	Tab. 19.	Compatibility check between MCUXpresso IDE and MCU-Link firmware	27
Tab. 8.	Power supplies with current measurement support	15	Tab. 20.	MCU-Link LEDs	29
Tab. 9.	FRDM-MCXW23 Clocks	15	Tab. 21.	Related documentation	32
Tab. 10.	UART connections	16	Tab. 22.	Acronyms	33
Tab. 11.	SPI PCS mapping	17	Tab. 23.	Revision history	35
Tab. 12.	SPI connections	18			

Figures

Fig. 1.	FRDM-MCXW23 board block diagram	3	Fig. 7.	LEDs	11
Fig. 2.	Top-side view of the FRDM-MCXW23 board	5	Fig. 8.	UART diagram	16
Fig. 3.	Bottom-side view of the FRDM-MCXW23 board	5	Fig. 9.	SPI diagram	18
Fig. 4.	FRDM-MCXW23 board connectors	6	Fig. 10.	I2C diagram	20
Fig. 5.	FRDM-MCXW23 board jumpers	7	Fig. 11.	RF diagram	21
Fig. 6.	Push buttons	10	Fig. 12.	Arduino socket connector pinouts	23
			Fig. 13.	mikroBUS socket connector pinouts	24

Contents

1	Board overview	2
1.1	Radio Equipment Directive 2014/53/EU	2
1.2	Block diagram	2
1.3	Board features	3
1.4	Kit contents	4
1.5	Board pictures	4
1.6	Connectors	5
1.7	Jumpers	7
1.8	Push buttons	10
1.9	LEDs	11
2	Functional description	12
2.1	Power supplies	12
2.1.1	External power supply	12
2.1.2	Power supplies	12
2.1.3	Current measurement	15
2.2	Clocks	15
2.3	UART interface	15
2.4	SPI interface	17
2.5	I2C interface	19
2.6	RF interface	21
2.7	Accelerometer	22
2.8	Temperature sensor	22
2.9	Arduino socket	22
2.10	mikroBUS socket	24
2.11	Pmod connector	24
3	MCU-Link OB debug probe	26
3.1	Supported MCU-Link features	26
3.2	Supported debug scenarios	26
3.3	MCU-Link firmware update utility installation	27
3.4	Updating MCU-Link firmware using firmware update utility	27
3.5	Using MCU-Link with development tools	28
3.5.1	Using MCU-Link with MCUXpresso IDE	28
3.5.2	Using MCU-Link with MCUXpresso for Visual Studio Code	28
3.5.3	Using MCU-Link with third-party IDEs	28
3.6	MCU-Link USB connector	29
3.7	VCOM port (USB to target UART bridge)	29
3.8	MCU-Link status LEDs	29
4	Board errata	31
5	Related documentation	32
6	Acronyms	33
7	Revision history	35
	Legal information	36

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.