

UFM-02

Ultrasonic Flow Sensing Modules

UFM-02 Datasheet

Revision: 3

Release Date: 2025-11-21

Document Status: Product Preview

The UFM-02 is a family of ultrasonic flow sensing modules with diameters ranging from 3/8" to 1.5". The modules are based on ScioSense static, contactless ultrasonic flow sensor technology, which goes away from moving rotors in traditional Hall sensor-based flow sensors. By contrast, the ultrasonic UFM-02 contain no moving parts and offer an extended lifetime when operated according to datasheet specifications.

The UFM-02 devices come with various interface options, starting with SPI and a pulse interface. They can easily be integrated into embedded systems.

The UFM-02 are suitable for use with food-grade material, and can directly measure drinking water flow. Accurate to at least $\pm 5\%$ at higher flow rates, the UFM-02 enables precise control of water flow and - via a built-in temperature calculation - liquid temperature in the control systems of products such as boilers, smart taps, beverage brewing machines and more. The capability to detect very low flow rates allows the application for leakage detection.

Key Features & Benefits

- Long-time reliability**
Solve the pain point, no movable parts, no risk of getting stuck
- Wide sensing range**
Various diameters available, from 4 to 800 l/h with 3/8" to 40 to 8000 l/h with 1.5"
- High accuracy**
5% accuracy at higher flow
10% accuracy at low flow
- Low power**
50 μ A average current with single 3.6 to 6 V power supply
- Standard interface**
SPI and pulse interface
- Cost effective**
Simplified system design to optimize the overall cost
- Food grade material**
Can be used for drinking water directly

Applications

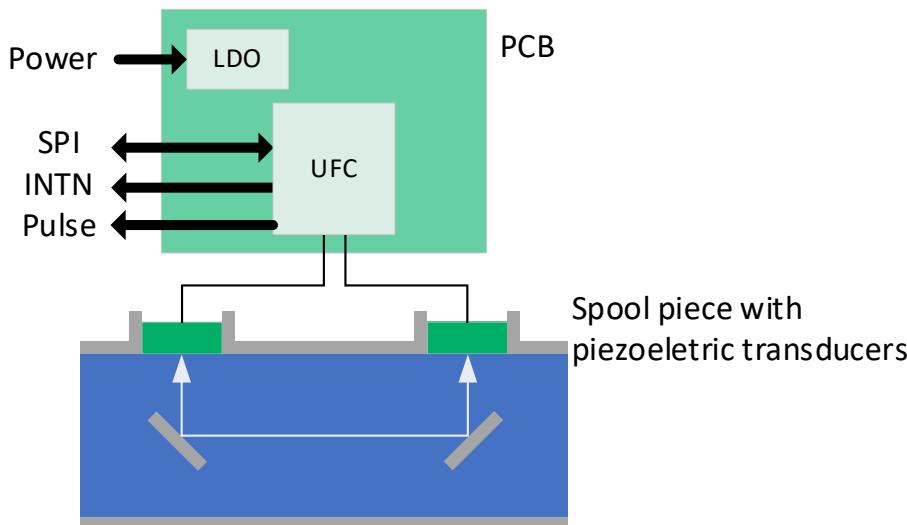

- Boilers
- Water purifiers
- Water dispenser
- Coffee machines
- Smart toilets
- Smart faucets & showers
- Cooling systems

Table of Contents

Key Features & Benefits	2
Applications	2
Table of Contents	3
1 Block diagram	4
2 Absolute Maximum Ratings	4
3 Electrical characteristics	5
4 Sensor hydraulic characteristics	6
5 Mechanical Outline	8
6 Interface Description	9
6.1 Cable and Connector	9
6.2 Pulse Interface	10
6.3 SPI Interface	10
6.3.1 SPI Timing	10
6.3.2 SPI Commands	11
6.3.3 Read Registers	12
7 Application Information	13
7.1 Pulse Interface	13
7.2 SPI	13
7.3 Mounting Restrictions	13
8 Ordering information	14
8.1 Product naming structure	14
8.2 Order codes	15
9 RoHS Compliance & ScioSense Green Statement	16
10 Copyrights & Disclaimer	16
11 Document status	17
12 Revision information	17

1 Block diagram

The internal block diagram of UFM-02 is shown in [Figure 1](#).

[Figure 1: Functional blocks](#)

2 Absolute Maximum Ratings

Stresses beyond those listed in this section may cause permanent damage to the device. These are - each at a time - stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under [Electrical characteristics](#) is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[Table 1: UFM-02 absolute maximum ratings](#)

Symbol	Parameter	Min	Max	Units	Comments
Electrical Parameters					
V_{DD}	Supply voltage	-0.30	7.0	V	
V_{IO}	IO voltage level SPI	-0.30	4.0	V	
V_{OD}	Open drain voltage level		60	V	
I_{OD}	Open drain on current		100	mA	
Electrostatic Discharge					
ESD_{IEC}	Contact discharge, all pins	± 4000		V	IEC 61000-4-2
Water Pressure					
p_{Watr}	Maximum water pressure	4.0		MPa	

Operating and Storage Conditions					
T_{STRG}	Storage temperature	-25	100	°C	
T_A	Operating ambient temperature	-25	85	°C	
T_{Water}	Operating water temperature	0	60	°C	Not frozen
H_A	Operating ambient relative humidity	0	85	%RH	85/85 (85% at 85°C for 96h)
p_{Water}	Operating water pressure		1.75	MPa	

3 Electrical characteristics

All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods. All values refer to $T_A = 25$ °C and at 5V supply voltage, unless otherwise specified.

Table 2: Electrical characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{DD}	Supply voltage		3.6		6.0	V
I_{DDavg}	Average Supply current	25 °C		50		µA
V_{IH}	High-level input voltage		$0.7 \times V_{DD}$		$V_{DD} + 0.3$	V
V_{IL}	Low-level input voltage		-0.5		0.7	V
V_{OH}	High-level output voltage	$I_{OH} = 4$ mA	3.3V-0.4V			V
V_{OL}	Low-level output voltage	$I_{OL} = -4$ mA			0.4V	V
R_{od}	Open drain Static On-State Resistance	$I_{OL} = -4$ mA	3		4	Ω

4 Sensor hydraulic characteristics

Table 3: *Hydraulic characteristics*

Module	Thread	Q0 Leak Flow	Q1 Min. Flow	Q2 10% ▶ 5%	Q3 ¹ Nom. Flow	Q4 ² Max. Flow	Unit
UFM-02-03	3/8"	0.03	0.07	0.40	13.30	20	lpm Liters per minute
UFM-02-05	1/2"	0.08	0.17	1.00	33.30	50	
UFM-02-10	1"	0.33	0.67	4.00	133.30	200	
UFM-02-15	1.5"	0.75	1.50	9.00	300.00	450	
UFM-02-03	3/8"	0.01	0.02	0.11	3.50	5.25	gpm Gallons per minute
UFM-02-05	1/2"	0.02	0.04	0.26	8.80	13.2	
UFM-02-10	1"	0.09	0.18	1.06	35.20	52.8	
UFM-02-15	1.5"	0.20	0.40	2.30	79.20	118.89	
UFM-02-03	3/8"	2	4	24	800	1200	l/h Liters per hour
UFM-02-05	1/2"	5	10	60	2000	3000	
UFM-02-10	1"	20	40	240	8000	12000	
UFM-02-15	1.5"	45	90	540	18000	27000	
UFM-02-03	3/8"	0.002	0.004	0.024	0.8	1.2	m ³ /h
UFM-02-05	1/2"	0.005	0.01	0.06	2	3	
UFM-02-10	1"	0.020	0.04	0.24	8	12	
UFM-02-15	1.5"	0.045	0.09	0.54	18	27	

¹ Above this nominal flow the pulse interface precision is no longer guaranteed.

² Output on SPI only

Table 4: Pressure drop

Module	Thread	10 * Q2 l/h	Q3 l/h	Δp bar	Δp psi	Δp kPa
UFM-02-03	3/8"	240		t.b.d.	t.b.d.	t.b.d.
UFM-02-05	1/2"	600		0.06	0.9	6
UFM-02-10	1"	3500		0.06	0.9	6
UFM-02-15	1.5"	5400		0.06	0.9	6
UFM-02-03	3/8"		800	t.b.d.	t.b.d.	t.b.d.
UFM-02-05	1/2"		2000	0.68	9.9	68
UFM-02-10	1"		8000	0.71	10.4	71
UFM-02-15	1.5"		18000	0.67	9.7	67

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
F_{acc}	Flow sensing accuracy of reading	Q1 to Q2			± 10	%
		Q2 to Q3		± 3	± 5	
T_{range}	Water temperature measurement range ³	Pure water	5		60	°C
T_{acc}	Water temperature accuracy			± 1		°C
f_{data}	Measuring and data update rate			10		Hz

³ The calculation of temperature is based on the speed of sound of pure water

5 Mechanical Outline

Table 5: Electrical characteristics

Nominal pipe diameter and Thread	3/8"	1/2"	1"	1½"	Unit
Module width a	21.3	21.3	34.5	47.8	mm
Inner diameter d	10.5	13.3	22	35.5	mm
Thread length b	11.5	11.5	18.5	21.5	mm
Total spool piece length c	60	60	75	80	mm

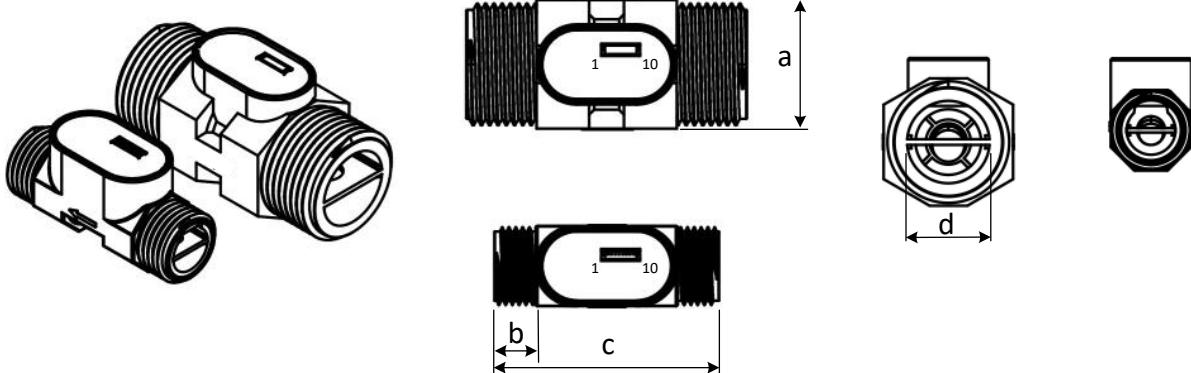


Figure 2: Mechanical drawings

Thread variants:

- BSPP British standard pipe parallel. 55° angle, rounded (Whitworth pipe thread, ISO 228-1 (DIN 259), external thread, parallel)
- NPS American national pipe straight. 60° angle, pointed (ASME B 1.20.1, external thread, parallel)

6 Interface Description

6.1 Cable and Connector

The UFM-02 family comes with two cable variants:

- 4-wire, pulse interface, power and ground, open end
- 10-wire, SPI and pulse interface, power and ground,
CWB: TJC1004 connector. Alternative connector: JST: SHR-10V-S[-B]
Compatible PCB connectors, e.g. from JST:
Top entry type: BM10B-SRSS-TB,
Side entry type: SM10B-SRSS-TB

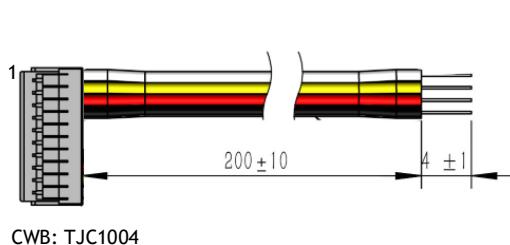


Figure 3: 4-wire pulse interface cable

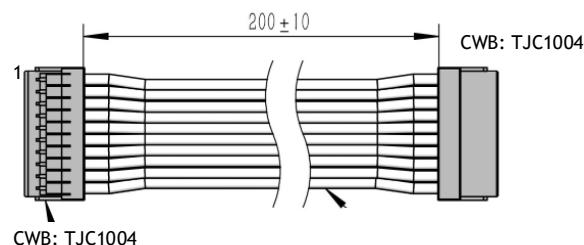


Figure 4: 10-wire SPI interface cable

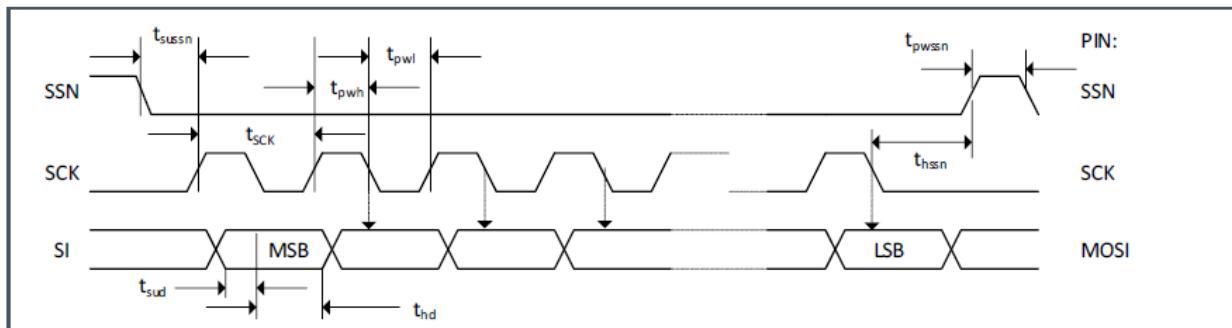
Table 6: Pinout

Pin	Pin Name	4-wire		10-wire
1	IO1	Pulse output. error	White	Pulse output error
2	IO0	Pulse output	Yellow	Pulse output
3	VCC	Power supply 3.6 to 28 V	Red	Power supply 3.6 to 7 V
4	GND	Ground	Black	Ground
5	VDD33			Regulated voltage output
6	CS			SPI Chip select
7	MO			SPI Master out
8	SCK			SPI clock
9	MI			SPI Master in
10	INT			Interrupt

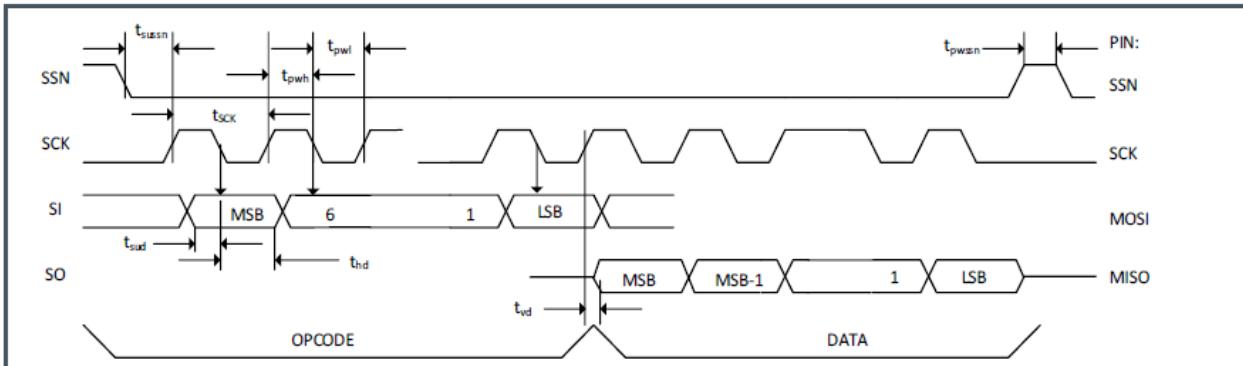
6.2 Pulse Interface

At pin IO0 of the pulse interface the user gets a pulse per a specific volume that passed. IO1 can indicate an error when the amplitude is low like e.g. in no water situations.

The volume per pulse depends of course on the diameter of the sensor. The number of pulses per liter is chosen such that a minimum pulse period of 9 ms is not undercut and that it does not exceed 111 pulses per second at maximum flow.


Table 7: Pulse interface characteristics

Symbol	Parameter	Conditions	ml/pulse	Pulses/l	Max. Pulses/s
	Pulse output. pulses per liter	UFM-02-03	2	500	111
		UFM-02-05	5	200	111
		UFM-02-10	20	50	111
		UFM-02-15	50	20	100


6.3 SPI Interface

The serial interface is SPI compatible, with clock phase bit =1 and clock polarity bit =0. It's strongly recommended to keep SSN = HIGH when SPI interface is in IDLE state.

6.3.1 SPI Timing

Figure 5: SPI write

Figure 6: SPI read

Table 8: SPI timing

Symbol	Parameter	Min	Typ	Max	Unit
f_{SCK}	Serial clock frequency			8	MHz
t_{SCK}	Serial clock time period	125			ns
t_{pwh}	Serial clock, pulse width high	$0.45 * t_{SCK}$			ns
t_{pwl}	Serial clock, pulse width low	$0.45 * t_{SCK}$			ns
t_{sussn}	SSN enable to valid latch clock	$0.5 * t_{SCK}$			ns
t_{hssn}	SSN hold time after SCK falling	$0.5 * t_{SCK}$			ns
t_{pwssn}	SSN pulse width between two cycles	t_{SCK}			ns
t_{sud}	Data set-up time prior to SCK falling	5			ns
t_{hd}	Data hold time before SCK falling	5			ns
t_{vd}	Data valid after SCK rising			25	ns

6.3.2 SPI Commands

Table 9: SPI commands

Remote Command	Code	Description
SYS_INIT	0x9A	Resets main part of digital core without register part and triggers bootloading process
RD_RAM	0x7A	Read from RAM or register area
RD_FWD	0x7B	Read from firmware data area (NVRAM)

For the read commands the 8 bit opcode is followed by the 8 bit address and then the 32-bit data.

In general, an interrupt-based communication is needed. Remote communication should be started when an interrupt is set via pin INTN.

6.3.3 Read Registers

The RAM is read with opcode RD_RAM. The result registers have 32 bit. The addresses have 8 bit.

Table 10: Read registers

Addr.	Variable name	Description	Format
0x00	VOLUME_INT	Signed integer part of total volume of water flow in cubic meters	1LSB = 1m ³
0x01	VOLUME_FRAC	Unsigned fractional part of total volume of water flow in cubic meters	1LSB = 1m ³ / 2 ³²
0x03	FLOW_LPH	Filtered flow volume (l/h),	1LSB = 1lph / 2 ¹⁶
0x04	TEMPERATURE	Temperature (°C) calculated based on the speed of sound of water	1LSB = 1 °C / 2 ¹⁶
0x27	ERROR_FLAGS	Error flags	Details below

Table 11: Error flags

Bit	Error Flags Description, address 0x27
6	Measurement not ok, e.g. low or no signal
14	Bubbles detected

7 Application Information

7.1 Pulse Interface

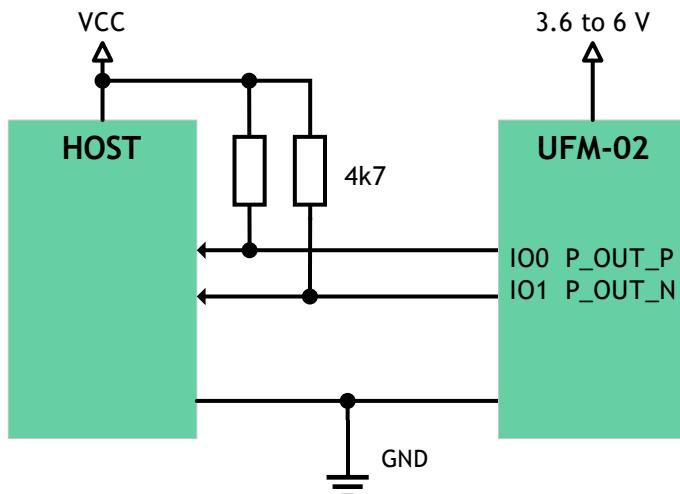


Figure 47: UFM-02 typical application with pulse interface connection

7.2 SPI

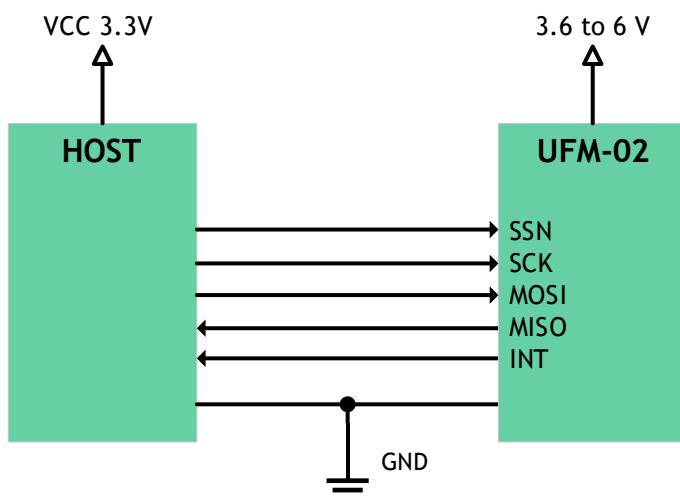


Figure 5: UFM-02 typical application with SPI connection

7.3 Mounting Restrictions

The following instructions must be observed for the sensor to function correctly:

- The inner diameter of the connecting pipe should never be smaller than the inner incoming/outcoming diameter of the measuring pipe.
- Mount the module 50cm away from elbows to avoid swirls in the sensor.
- Install the unit in a way that ensures that the measuring pipe is completely filled with water.

- Install the unit in that section of the plant where the medium flows under pressure. This avoids disturbance by air bubbles.

- Avoid mounting the module close to shut-offs, controls or pumps.

8 Ordering information

8.1 Product naming structure

Table 12: Ordering information

Product line	Thread	Mechanical Connector	Interface	Electrical Connector
UFM-02	- 03	B	S	A

03	3/8"	B	BSPP	N	No cable	0	no wire
05	1/2"	N	NPS	S	SPI	3	3-wire
07 ⁴	3/4"	F	Flat	P	Pulse	4	4-wire
10	1"			U	UART	A	10-wire
15	1.5"			V	Analog		
				J	I2C		

⁴ Grey: Optional variants for the future

8.2 Order codes

Table 13: Ordering information

Ordering Code	Material ID	Size & Thread	Interface	
UFM-02-05NSA	501020511	1/2" NPS	SPI	
UFM-02-05NP4	501020512	1/2" NPS	Pulse	
UFM-02-05BSA	501020501	1/2" BSPP	SPI	
UFM-02-05BP4	501020502	1/2" BSPP	Pulse	
UFM-02-10NSA	501021011	1" NPS	SPI	
UFM-02-10NP4	501021012	1" NPS	Pulse	
UFM-02-10BSA	501021001	1" BSPP	SPI	
UFM-02-10BP4	501021002	1" BSPP	Pulse	
UFM-02_EK V1	501020000	1" BSPP	SPI	Evaluation kit with UFM-02-05BSA, adapter board, PicoProg Lite and USB-C cable

9 RoHS Compliance & ScioSense Green Statement

RoHS: The term RoHS compliant means that Sciosense B.V. products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories. including the requirement that lead does not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures. RoHS compliant products are suitable for use in specified lead-free processes.

ScioSense Green (RoHS compliant and no Sb/Br): ScioSense Green defines that in addition to RoHS compliance. our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents Sciosense B.V. knowledge and belief as of the date that it is provided. Sciosense B.V. bases its knowledge and belief on information provided by third parties. and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Sciosense B.V. has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. Sciosense B.V. and Sciosense B.V. suppliers consider certain information to be proprietary. and thus CAS numbers and other limited information may not be available for release.

10 Copyrights & Disclaimer

Copyright Sciosense B.V High Tech Campus 10. 5656 AE Eindhoven. The Netherlands. Trademarks Registered. All rights reserved. The material herein may not be reproduced. adapted. merged. translated. stored. or used without the prior written consent of the copyright owner.

Devices sold by Sciosense B.V. are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. Sciosense B.V. makes no warranty. express. statutory. implied. or by description regarding the information set forth herein. Sciosense B.V. reserves the right to change specifications and prices at any time and without notice. Therefore. prior to designing this product into a system. it is necessary to check with Sciosense B.V. for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range. unusual environmental requirements. or high reliability applications. such as military. medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Sciosense B.V. for each application. This product is provided by Sciosense B.V. "AS IS" and any express or implied warranties. including. but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

This product is not intended for use as safety device and/or in applications where failure of the product could result in personal injury. Sciosense B.V. shall not be liable to recipient or any third party for any damages. including but not limited to personal injury. property damage. loss of profits. loss of use. interruption of business or indirect. special. incidental or consequential damages. of any kind. in connection with or arising out of the furnishing. performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Sciosense B.V. rendering of technical or other services.

11 Document status

Table 14: Document status

Document Status	Product Status	Definition
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice.
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ScioSense B.V. standard warranty as given in the General Terms of Trade.

12 Revision information

Table 15: Revision history

Revision	Date	Comment	Page
1	29.09.2025	First release version	All

Notes:

1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
2. Correction of typographical errors is not explicitly mentioned.

Address: Sciosense B.V.
High Tech Campus 10
5656 AE Eindhoven
The Netherlands

Contact: www.sciosense.com
info@sciosense.com