
 www.TeamFDI.com

Rev 1.0 December 13, 2022 Page 1

FDI_AN_µEZ_009

µEZ GUI Start Here Guide
UEZGUI-4357-70WVN

Introduction

At Future Designs, our goal is to make it easy for our customers to get their projects up and running as

quickly as possible. In this guide, you will develop a simple graphical user interface (GUI) on the µEZ

platform to demonstrate how to use some of the core features of emWin and µEZ. Using this “Hello

World” type of walkthrough as a starting point, we hope to shorten the learning curve for GUI

development. Aside from this document, there are many additional resources available at

www.TeamFDI.com. If you ever need more help, contact us and we will be happy to assist you.

Hardware Used in This Guide: (Included in Kit)

• UEZGUI-4357-70WVN-BA

• SEGGER J-Link Lite Cortex-M Probe

• USB Type A to USB Type Mini B Cable (2x)

• Universal AC to 5V USB plug Power Supply Unit

• Micro SD Card

Software Used in This Guide:
(Installation and usage instructions are provided within the guide)

• SEGGER J-Link Software

• µEZ Source w/ Project Maker (v2.12 or later)

• One of the following IDEs:
o Rowley CrossWorks v4.8
o IAR Embedded Workbench v9.30.1

Files Used in This Guide:
(Installation and usage instructions are provided within the guide)

• uEZ Project Maker (Located in the µEZ source download)

• uEZ Project Maker Project (Created using the Project Maker)

http://www.teamfdi.com/
https://www.teamfdi.com/contact

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 2

Contents

1. Hardware Verification .. 3

2. Software Installation .. 4

A. IDE Installation .. 4

B. J-Link Installation ... 4

C. µEZ Installation.. 5

3. Connecting the J-Link to the µEZ GUI for programming 6

4. Using the uEZ Project Maker to Create a Basic Application 7

A) Running uEZ Project Maker ... 9

B) Building and Running SampleProject .. 11

5. Developing a Simple GUI Application with emWin 16

A. emWin Introduction .. 16

B. Adding a New Button to the Home Screen ... 16

C. Creating a New Window ... 21

D. Adding Callback Functionality ... 25

E. Setup for Interfacing with the Onboard Temperature Sensor 26

F. Creating a Task .. 28

G. Adding a Back Button .. 35

6. Restoring the Out-of-Box (OOB) Demo (Optional) 39

7. Guides and User’s Manuals .. 39

8. Website and Support .. 40

Important Legal Information

Information in this document is provided solely to enable the use of Future Designs products. FDI assumes no
liability whatsoever, including infringement of any patent or copyright. FDI reserves the right to make
changes to these specifications at any time, without notice. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of Future Designs, Inc. (FDI) 996 A Cleaner Way, Huntsville, AL 35805.

For more information on FDI or our products please visit www.teamfdi.com.

NOTE: The inclusion of vendor software products in this kit does not imply an endorsement.
© 2022 Future Designs, Inc. All rights reserved.

http://www.teamfdi.com/

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 3

µEZ® is a registered trademark of Future Designs, Inc. Windows is a registered trademarks of Microsoft.
emWin and J-Link are registered trademarks of SEGGER Microcontroller GmbH & Co. KG. IAR EMBEDDED
WORKBENCH is a registered trademark of I.A.R. Systems AB.

1. Hardware Verification
The µEZ GUI kit comes with a pre-installed 4GB or larger SD card that contains files

required for the demo application and slideshow to run. It also contains user manuals,

schematics, and documentation for the product including this guide. FDI recommends

that you visit the documentation tab of the product page of your µEZ GUI to get the

latest documentation.

Power is supplied via the USB power adapter and cable provided in the kit.

1. Insert the included SD Card into the uEZGUI.

2. Connect the USB cable to the mini USB Type B connector on the µEZ GUI.

3. Connect the other end of the USB cable to the provided universal AC power

supply’s 5V USB power output.

NOTE: The µEZ GUI must be powered with the included universal AC to 5V USB plug

power supply or through the alternate power and com port on the side. Do not try to

power the µEZ GUI from a computer’s USB port. The standard PC USB port does not

provide the necessary current to power the µEZ GUI. The JTAG port and J-Link probe do

not power the µEZ GUI.

The following screen will appear once power has been connected to the device:

Figure 1:

UEZGUI-

4357-

70WVN

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 4

You can now explore the out-of-box demos.

2. Software Installation

A. IDE Installation
All µEZ GUI projects require a development environment to compile and debug the projects.

µEZ currently officially supports IAR Embedded Workbench v9.30.1 and Rowley CrossWorks

4.8 on the LPC4357. This guide uses IAR Embedded Workbench for ARM version 9.30.1 and

Rowley Crossworks for ARM Version 4.8. Download your preferred IDE at the appropriate link

provided below and install according to the instructions provided on their respective

websites.

• IAR Embedded Workbench 9.30.1 30-day free trial: (select Evaluation License option on install)

Windows: https://tinyurl.com/3m93kyfh (.7z)

o IAR 30-day evaluation license manual activation instructions: http://tinyurl.com/zyctkha

• Rowley CrossWorks for ARM version 4.8 30-day free trial:

Windows: https://tinyurl.com/3yps2nff

Mac: https://tinyurl.com/yrrkbrxs

Linux x64: https://tinyurl.com/5n283eyu

o Activating Crossworks 30-day evaluation license instructions: http://tinyurl.com/hlsn9qf

B. J-Link Installation
The µEZ GUI uses a mini-J-Link debugger probe. The SEGGER version 6.86b driver (or later)

must be installed. Download and install the software from the link below:

• SEGGER J-Link Software 6.86b:

Windows (x86): https://tinyurl.com/yn7dxxd3

Mac (x64): https://tinyurl.com/ywpcxp62

Figure 2:

Out-of-Box

(OOB)

Demo

https://tinyurl.com/3m93kyfh
http://tinyurl.com/zyctkha
https://tinyurl.com/3yps2nff
https://tinyurl.com/yrrkbrxs
https://tinyurl.com/5n283eyu
http://tinyurl.com/hlsn9qf
https://tinyurl.com/yn7dxxd3
https://tinyurl.com/ywpcxp62

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 5

Linux ARM (x64): https://tinyurl.com/y3wzrwcm

C. µEZ Installation
µEZ is a middleware API library built on FreeRTOS and emWin. It is created, managed, and

regularly updated by FDI. Download the latest µEZ release at the link provided below:

• EZ (v2.12): https://sourceforge.net/projects/uez/

Extract the µEZ .7z, or .zip file, to the desired location. This folder contains the µEZ source

library, helpful tools, documentation, project files referenced in this guide, and the µEZ

project maker. The library files will be compiled in subsequent steps.

Note: This walkthrough uses “C:/Users/(user)/Desktop/uEZ-Workspace” as the destination

https://tinyurl.com/y3wzrwcm
https://sourceforge.net/projects/uez/

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 6

3. Connecting the J-Link to the µEZ GUI for programming

1. Connect the J-Link Lite to a PC with an included USB cable.

2. Connect the J-Link Lite to the 20-to-10-pin JTAG adapter and connect to the JTAG

connector (J1) on the bottom side of the µEZ GUI. The J-Link 10-pin ribbon cable for

the µEZ GUI is supplied in the kit.

3. The red part of the ribbon cable indicates Pin 1

4. Locate Pin 1 on J1 on the uEZGUI

Figure 3:

J-Link Lite

Hardware

Note: Care must be taken when connecting to J1, as J1 is not keyed, thus allowing the user

to mistakenly connect to J1 backwards

Figure 4:

JTAG Pin 1

location

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 7

5. Connect the 10-pin cable to J1 as shown:

6. If not already done, connect the µEZ GUI to the power supply with the second

included USB cable.

4. Using the uEZ Project Maker to Create a Basic Application
The uEZ Project Maker is standalone software that comes packaged with uEZ downloads. The

Project Maker gets you started by creating a basic demo project from which you can build your

own fully customizable application for the following uEZGUIs:

• uEZGUI-1788-43WQR

• uEZGUI-1788-56VI

• uEZGUI-1788-70WVT

• uEZGUI-1788-70WVM

Figure 6:

J-Link and

Power

Connected

to µEZ GUI

Figure 5:

Jlink

connected

to JTAG

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 8

• uEZGUI-4088-43WQN

• uEZGUI-4357-50WVN

• uEZGUI-4357-70WVN

This document covers the 4357-70WVN.

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 9

A) Running uEZ Project Maker
1. Locate uEZProjectMaker.exe in your uEZ-Workspace directory

2. When you start it, you will see a generic welcome screen.

3. Click <Next>, and select “FreeRTOS”.

4. Click <Next> and select “NXP LPC4357” from the list of processors

5. Click <Next> and select “uEZGUI-4357-70WVN” from the list of platforms

6. Click <Next> and select the Development Suite you will use from the list of

development suites.

 NOTE: Do not select “Test Project” for this walkthrough

Figure 7:

uEZ Project

Maker in our

uEZ-Workspace

Figure 8:

Selecting the

correct

processor

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 10

7. Click <Next>

8. You will need to specify your project’s name and path

a. Name your project “SampleProject”

b. Set the Project Path to “C:\Users\(user)\Desktop\uEZ-Workspace”

9. Click <Next>

10. You will see a summary window. Verify all settings are correct for your project, then

click <Create>

11. After a few seconds pass, a “Finished” window will appear. Click <Exit>

12. Your SampleProject will now show up in your uEZ-Workspace

Figure 9:

Selecting a

development

suite

Figure 10:

SampleProject

created in the

uEZ

Workspace

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 11

B) Building and Running SampleProject

1. In order to build and run the Sample Project, you will first need to build the uEZ

Library

2. Navigate to the project directory for the IDE you chose in the Project Maker.

3. For this walkthrough, it will be either:

a. “C:\Users\(user)\Desktop\uEZ-

Workspace\uEZ\Build\Generic\NXP\LPC4357\FreeRTOS\CrossWorks”

 or

“C:\Users\(user)\Desktop\uEZ-

Workspace\uEZ\Build\Generic\NXP\LPC4357\FreeRTOS\IAR”

4. Open the relevant Project file for the IDE you are going to use

“uEZ_NXP_LPC4357_FreeRTOS_CrossWorks.hzp” for Crossworks

 or

“uEZ_NXP_LPC4357_FreeRTOS_CrossWorks.eww” for IAR

5. After the project opens:

a. For IAR: Select the “Debug” Build from the workspace menu if not already

selected.

b. For Crossworks: Select the “Project Explorer” sub-window if not already

selected.

6. Building the project:

a. For IAR: Select “Project > Make” or press <F7> to build the µEZ library

project.

b. For Crossworks: Select “Build->Build (project name)” or press <F7> to build

the µEZ library project.

NOTE: The following example demonstrates using both Crossworks AND IAR, but you must use the

same development suite when building both the uEZ Library and the Sample Project

Figure 11:

uEZ Library

Project files

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 12

7. Once building completes, verify there are 0 errors

8. Close the IDE.

9. Navigate to:

“C:\Users\(user)\Desktop\uEZ-

Workspace\SampleProject\Build\uEZGUI_4357_70WVN\Crossworks”

or

“C:\Users\(user)\Desktop\uEZ-

Workspace\SampleProject\Build\uEZGUI_4357_70WVN\IAR”

10. Open the project file:

“SampleProject.hzp”

or

SampleProject.eww“

11. If using IAR…

a. Right click the main project name in the workspace and select “Options”

IAR Crossworks

IAR Crossworks

Figure 12:

Building the

µEZ library

project

Figure 13:

Build

Finished

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 13

b. Select “Debugger” and verify that the “Driver” is set to “J-Link/J-Trace”.

c. Click the <OK> button to exit the dialog.

d. Press <F7>, or select “Project > Make” from the menu at the top

e. It should build with no errors

Figure 15:

Debug

Settings

Figure 14:

Debug

Settings

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 14

f. Press <Ctrl> + <D> to download and debug, or click the green circle with a

white arrow on the toolbar

g. Proceed to step 13

12. If using Crossworks…

h. Click “Target > Connect > SEGGER J-Link” from the menu at the top. This

activates the J-Link.

i. Press <F7>, or select “Build -> Build uEZGUI-4357-70WVN” from the menu

at the top

j. It should build with 0 errors

Figure 16:

Debug

Settings

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 15

13. Press <F5> or select “Debug > Go” from the menu at the top.

14. If the debugger has halted on a breakpoint, press <F5> to make the project run.

15. The uEZGUI startup tone will play and you will see the following screen:

16. Click on the buttons to see a simple example of the accelerometer and temperature

sensors, and a demonstration of the uEZGUI RTC (Real-Time Clock).

a. Note: the RTC will be incorrect when the board is newly programmed or

reprogrammed

17. All of the source code used to provide functionality to the project is within the

“Source\App” directory. The “Source\App\emWin” directory contains the code that

uses emWin to create and manage windows and other graphic designs for the GUI.

Figure 17:

Default Project

Maker

Application

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 16

5. Developing a Simple GUI Application with emWin

A. emWin Introduction
emWin (segger.com/emwin.html) is a software library from SEGGER which provides an

efficient GUI library that is processor and LCD controller independent. emWin enables

you to easily add graphics to an application and is included with µEZ. Some of the

features of emWin include:

• Basic drawing functions such as drawing lines, squares, circles and polygons.

• More complex functions such as managing windows, button widgets, list-view

widgets, edit widgets, etc.

• Displaying images.

• Support for multiple displays.

• Support for multiple layers and transparency settings.

• Control of GUI by mouse and touch screen.

• Rapid development, even without targeted hardware, due to support for simulating

the GUI in Microsoft Visual Studio.

NXP® Semiconductors has a license with SEGGER that allows any device using an NXP

LPC microcontroller to use the full emWin library without requiring an additional

license. Since the UEZGUI-4357-70WVN-BA utilizes the LPC4357, the emWin license

applies. See here for more information: http://tinyurl.com/gueckmp, NXP emWin

introduction video: http://tinyurl.com/jrata57

This section of the guide will take a simple screen and develop it into a GUI to

demonstrate a few of the core features of the µEZ and emWin libraries.

B. Adding a New Button to the Home Screen
To demonstrate the process for adding widgets to a window, this section will walk you

through the steps to create a button on the home screen which, once pressed, will open

to a new window. To begin, open the HomeScreen.c file under App/emWin.

The HomeScreen.c file contains the information that is used to create a window and any

widgets (buttons, etc) that will load with the window. The beginning of the file contains

the #includes and a list of #defines that set the ID, size, and position of each object

within the window including the window itself.

The next section of code contains prototypes for button callback functions.

In the next section, “Local Data”, there are two array variables which define the window

and widgets and associate callback functions to them. The first array,

_iHomeScreenDialog[], is an emWin array that holds the ID, position, and size for each

widget. The second array, HomeScreenMapping[] is a µEZ array which holds their text

label, color, font, and callback functions.

https://www.segger.com/emwin.html
http://tinyurl.com/gueckmp
http://tinyurl.com/jrata57

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 17

NOTE: A callback function is a function which is called when an associated event occurs.

For buttons, this event is a touch event. When the button is pressed (or released), the

callback function is run to perform the desired task.

The remainder of the file contains the emWin event handler function and a window

setup function. Any callback function that is used for widgets will also be placed in this

section.

NOTE: Most of the code segments in this guide are formatted to be copied and pasted

to assist you in easily applying the code to your project.

2. We can add a new button below the FDI Logo by modifying the existing code. The

definitions associated with the “Home Screen” text and buttons are shown below:

NOTE: Each widget, including the window itself, has a unique ID defined as shown

above. Each additional widget increments by 1 and adding a new ID for an additional

widget is as simple as setting it to the next value. GUI_ID_USER is equal to 0x800 by

default and needs to be used to avoid conflicts with other areas of the program.

/*---*

 * Constants:

 --/

#define ID_WINDOW (GUI_ID_USER + 0x00)

#define ID_TITLE_TEXT (GUI_ID_USER + 0x01)

#define ID_LOGO (GUI_ID_USER + 0x02)

#define ID_BUTTON_RIGHT_TOP (GUI_ID_USER + 0x03) // The

top button on the right side

#define ID_BUTTON_RIGHT_MIDDLE (GUI_ID_USER + 0x04) // The

hidden middle button on the right side

#define ID_BUTTON_RIGHT_BOTTOM (GUI_ID_USER + 0x05) // The

bottom button on the right side

#define WINDOW_XSIZE (UEZ_LCD_DISPLAY_WIDTH)

#define WINDOW_YSIZE (UEZ_LCD_DISPLAY_HEIGHT)

#define WINDOW_XPOS (0)

#define WINDOW_YPOS (0)

#if(UEZ_DEFAULT_LCD == LCD_RES_WVGA)

#define SPACING (10)

#else

#define SPACING (5)

#endif

#define TITLE_TEXT_XSIZE (WINDOW_XSIZE)

#define TITLE_TEXT_YSIZE ((WINDOW_YSIZE/10))

#define TITLE_TEXT_XPOS (0)

#define TITLE_TEXT_YPOS (0)

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 18

2. Make the following addition to the code:

/*---*

 * Constants:

 --/

#define ID_WINDOW (GUI_ID_USER + 0x00)

#define ID_TITLE_TEXT (GUI_ID_USER + 0x01)

#define ID_LOGO (GUI_ID_USER + 0x02)

#define ID_BUTTON_RIGHT_TOP (GUI_ID_USER + 0x03) // The

top button on the right side

#define ID_BUTTON_RIGHT_MIDDLE (GUI_ID_USER + 0x04) // The

hidden middle button on the right side

#define ID_BUTTON_RIGHT_BOTTOM (GUI_ID_USER + 0x05) // The

bottom button on the right side

#define ID_MY_BUTTON (GUI_ID_USER + 0x06) // Our

custom button

#define WINDOW_XSIZE (UEZ_LCD_DISPLAY_WIDTH)

#define WINDOW_YSIZE (UEZ_LCD_DISPLAY_HEIGHT)

#define WINDOW_XPOS (0)

#define WINDOW_YPOS (0)

#if(UEZ_DEFAULT_LCD == LCD_RES_WVGA)

#define SPACING (10)

#else

#define SPACING (5)

#endif

#define TITLE_TEXT_XSIZE (WINDOW_XSIZE)

#define TITLE_TEXT_YSIZE ((WINDOW_YSIZE/10))

#define TITLE_TEXT_XPOS (0)

#define TITLE_TEXT_YPOS (0)

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 19

3. The two arrays under the section header “Local Data” contain the information from

the base application. Each widget is represented in one of the sections within each

array.

4. Within the array “_iHomeScreenDialog[]”, add the following:

/*---*

 * Local Data:

 *---

*/

/** Structure to hold all of the widgets used in this dialog*/

static const GUI_WIDGET_CREATE_INFO _iHomeScreenDialog[] = {

 //Function Name ID XP

YP XS YS

 { WINDOW_CreateIndirect , "" , ID_WINDOW ,

WINDOW_XPOS , WINDOW_YPOS , WINDOW_XSIZE ,

WINDOW_YSIZE , 0, 0, 0},

 { TEXT_CreateIndirect , "" , ID_TITLE_TEXT ,

TITLE_TEXT_XPOS , TITLE_TEXT_YPOS , TITLE_TEXT_XSIZE ,

TITLE_TEXT_YSIZE , TEXT_CF_HCENTER| TEXT_CF_VCENTER, 0, 0},

 { IMAGE_CreateIndirect , "" , ID_LOGO ,

LOGO_XPOS , LOGO_YPOS , LOGO_XSIZE ,

LOGO_YSIZE , 0, 0, 0},

 { BUTTON_CreateIndirect , "" , ID_BUTTON_RIGHT_TOP ,

BUTTON_XPOS , BUTTON_YPOS(1) , BUTTON_XSIZE ,

BUTTON_YSIZE , 0, 0, 0},

 { BUTTON_CreateIndirect , "" , ID_BUTTON_RIGHT_MIDDLE,

BUTTON_XPOS , BUTTON_YPOS(2) , BUTTON_XSIZE ,

BUTTON_YSIZE , 0, 0, 0},

 { BUTTON_CreateIndirect , "" , ID_BUTTON_RIGHT_BOTTOM,

BUTTON_XPOS , BUTTON_YPOS(3) , BUTTON_XSIZE ,

BUTTON_YSIZE , 0, 0, 0},

};

/** Generic Mapping of Screen Layout*/

static T_LAFMapping HomeScreenMapping[] = {

 { ID_WINDOW , "" , GUI_BLACK, GUI_WHITE,

&FONT_SMALL, LAFSetupWindow , 0},

 { ID_LOGO , "" , GUI_BLACK, GUI_BLACK,

&FONT_SMALL, 0 , 0},

 { ID_TITLE_TEXT , "Project Maker" , GUI_BLACK, GUI_WHITE,

&FONT_LARGE, LAFSetupText , 0},

 { ID_BUTTON_RIGHT_TOP , "Sensors" , GUI_GRAY, GUI_BLACK,

&FONT_LARGE, LAFSetupButton , (TBool (*)(WM_MESSAGE *, int,

int))IHandleButtonRightTop},

 { ID_BUTTON_RIGHT_MIDDLE, "GUI Builder" , GUI_GRAY, GUI_BLACK,

&FONT_LARGE, LAFSetupButton , (TBool (*)(WM_MESSAGE *, int,

int))IHandleButtonRightMiddle},

 { ID_BUTTON_RIGHT_BOTTOM, "Time/Date" , GUI_GRAY, GUI_BLACK,

&FONT_LARGE, LAFSetupButton , (TBool (*)(WM_MESSAGE *, int,

int))IHandleButtonRightBottom},

 {0},

};

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 20

5. Within the array “T_LAFMapping HomeScreenMapping[]”, make the following

change:

6. Build, download, debug, and run the updated project to display the created button.

a. For IAR: Press <F7> then press <Ctrl> + <D>.

b. For Crossworks: Press <F7> then press <F5>.

The button does not do anything yet because it lacks a callback function, but this

will be added later once a second window has been created for the button to switch

to.

static const GUI_WIDGET_CREATE_INFO _iHomeScreenDialog[] = {

 //Function Name ID XP

YP XS YS

 { WINDOW_CreateIndirect , "" , ID_WINDOW ,

WINDOW_XPOS , WINDOW_YPOS , WINDOW_XSIZE ,

WINDOW_YSIZE , 0, 0, 0},

 { TEXT_CreateIndirect , "" , ID_TITLE_TEXT ,

TITLE_TEXT_XPOS , TITLE_TEXT_YPOS , TITLE_TEXT_XSIZE ,

TITLE_TEXT_YSIZE , TEXT_CF_HCENTER| TEXT_CF_VCENTER, 0, 0},

 { IMAGE_CreateIndirect , "" , ID_LOGO ,

LOGO_XPOS , LOGO_YPOS , LOGO_XSIZE ,

LOGO_YSIZE , 0, 0, 0},

 { BUTTON_CreateIndirect , "" , ID_BUTTON_RIGHT_TOP ,

BUTTON_XPOS , BUTTON_YPOS(1) , BUTTON_XSIZE ,

BUTTON_YSIZE , 0, 0, 0},

 { BUTTON_CreateIndirect , "" , ID_BUTTON_RIGHT_MIDDLE,

BUTTON_XPOS , BUTTON_YPOS(2) , BUTTON_XSIZE ,

BUTTON_YSIZE , 0, 0, 0},

 { BUTTON_CreateIndirect , "" , ID_BUTTON_RIGHT_BOTTOM,

BUTTON_XPOS , BUTTON_YPOS(3) , BUTTON_XSIZE ,

BUTTON_YSIZE , 0, 0, 0},

{ BUTTON_CreateIndirect, "", ID_MY_BUTTON, (BUTTON_XPOS - BUTTON_XSIZE) -

SPACING, BUTTON_YPOS(3), BUTTON_XSIZE, BUTTON_YSIZE, 0, 0, 0},

};

/** Generic Mapping of Screen Layout*/

static T_LAFMapping HomeScreenMapping[] = {

 { ID_WINDOW , "" , GUI_BLACK, GUI_WHITE,

&FONT_SMALL, LAFSetupWindow , 0},

 { ID_LOGO , "" , GUI_BLACK, GUI_BLACK,

&FONT_SMALL, 0 , 0},

 { ID_TITLE_TEXT , "Project Maker" , GUI_BLACK, GUI_WHITE,

&FONT_LARGE, LAFSetupText , 0},

 { ID_BUTTON_RIGHT_TOP , "Sensors" , GUI_GRAY, GUI_BLACK,

&FONT_LARGE, LAFSetupButton , (TBool (*)(WM_MESSAGE *, int,

int))IHandleButtonRightTop},

 { ID_BUTTON_RIGHT_MIDDLE, "GUI Builder" , GUI_GRAY, GUI_BLACK,

&FONT_LARGE, LAFSetupButton , (TBool (*)(WM_MESSAGE *, int,

int))IHandleButtonRightMiddle},

 { ID_BUTTON_RIGHT_BOTTOM, "Time/Date" , GUI_GRAY, GUI_BLACK,

&FONT_LARGE, LAFSetupButton , (TBool (*)(WM_MESSAGE *, int,

int))IHandleButtonRightBottom},

 { ID_MY_BUTTON, "My Window" , GUI_GRAY, GUI_BLACK,

&FONT_LARGE, LAFSetupButton , 0},

 {0},

};

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 21

C. Creating a New Window
In order to have the button open a new window, a new window file similar to the

HomeScreen.c file needs to be created. Since each window requires the same general

structure, copy the existing HomeScreen.c file, instead of creating a new file from

scratch.

1. Right click the HomeScreen.c file

a. For IAR: Select “Open Containing Folder…”.

b. For Crossworks: Select “Select in File Explorer”.

2. Copy the HomeScreen.c file located in the emWin directory and rename it

SecondScreen.c.

3. Back in the IDE, right click the emWin folder.

a. For IAR: Select “Add > Add Files…”.

b. For Crossworks: Select “Add Existing File...”.

4. In the browse files dialog that appears, select SecondScreen.c and click Open.

5. Open the new file by double clicking it in the IDE workspace or project explorer.

6. Rename all instances of “HomeScreen” to “SecondScreen” (only in that file).

Figure 18:

Button

Added

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 22

NOTE: To simplify this process, just press Ctrl+H to open the Find and Replace dialog.

Insert “HomeScreen” in the Find what field and “SecondScreen” in the Replace with

field. Select Match case and make sure Match whole word is unselected. Click Replace

All and the entire document will be updated.

7. If it does not exist, above the “Local Data” section, add a new section – “Global

Data” in the HomeScreen.c file.

8. Add the “G_WhichWindow” variable in the “Global Data” section.

9. Delete all the widget definitions that were specific to the home screen.

10. Delete all function definitions that were specific to the home screen

a. IHandleButtonRightTop

b. IHandleButtonRightMiddle

c. IHandleButtonRightBottom

d. ISetLogo

/*--

-------*

 * Global Data:

 *--

-------*/

TInt32 G_WhichWindow;

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 23

11. Delete all function prototypes that were specific to the home screen

e. IHandleButtonRightTop

f. IHandleButtonRightMiddle

g. IHandleButtonRightBottom

h. IHandleMyButton

12. In the function definition for “_SecondScreenDialog”, delete the call to

“ISetLogo(pMsg)” and the WM_GetDialogItem function calls.

13. The two arrays that hold the information for the various widgets on a window are

shown below. Delete the lines highlighted in red that are specific to the first window.

The only remaining values within each of these array variables define the window’s

properties and title text that will be used by emWin to setup the window.

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 24

14. This file now contains the minimum required information to setup a blank window. The

final step to creating the window is to update the WindowManager.c file. Open the file

and update the WindowManager_Create_All_Active _Windows function as shown

below:

/*--

---------------*

 * Routine: WindowManager_Create_All_Active_Windows

 *--

---------------*/

/** Create all the windows that the system will use.

 *

 */

 /*---

----------------*/

void WindowManager_Create_All_Active_Windows(void)

{

 static TBool iHaveRun = EFalse;

 if(!iHaveRun){

 TimeDate_Initialize();

 Sensor_Initialize();

 G_SystemWindows[HOME_SCREEN] = HomeScreen_Create();

 G_SystemWindows[TIMEDATE_SCREEN] = TimeDate_Create();

 G_SystemWindows[SENSOR_SCREEN] = Sensor_Create();

 //TODO add new window creation function here.

 G_SystemWindows[SECOND_SCREEN] =

SecondScreen_Create();

 }

}

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 25

You also need to add a #define identifier for SECOND_SCREEN to the top of the

WindowManager.h file as shown below if not already present:

D. Adding Callback Functionality
Now that the second screen has been created, return to HomeScreen.c and add a

callback function to the previously created button. Once this callback function is

created, the button will switch to the newly created second window when it is pressed.

1. Add the name of the callback function into HomeScreenMapping matrix. (the “My

Window” button) You can choose any name to give the callback function. In this

example we used

(TBool (*)(WM_MESSAGE *, TInt32, TInt32)) IHandleSecondScreen to make the

function name easily understandable.

2. Declare the prototype for the IHandleSecondSCreen callback function in the

“Prototypes” sections of the HomeScreen.c file.

//each window has a unique identifier

#define HOME_SCREEN (0)

#define TIMEDATE_SCREEN (1)

#define SENSOR_SCREEN (2)

#define SECOND_SCREEN (3)

/** Generic Mapping of Screen Layout*/

static T_LAFMapping HomeScreenMapping[] = {

 { ID_WINDOW , "" , GUI_BLACK, GUI_WHITE,

&FONT_SMALL, LAFSetupWindow , 0},

 { ID_LOGO , "" , GUI_BLACK, GUI_BLACK,

&FONT_SMALL, 0 , 0},

 { ID_TITLE_TEXT , "Project Maker" , GUI_BLACK,

GUI_WHITE, &FONT_LARGE, LAFSetupText , 0},

 { ID_BUTTON_RIGHT_TOP , "Sensors" , GUI_GRAY, GUI_BLACK,

&FONT_LARGE, LAFSetupButton , (TBool (*)(WM_MESSAGE *, int,

int))IHandleButtonRightTop},

 { ID_BUTTON_RIGHT_MIDDLE, "GUI Builder" , GUI_GRAY, GUI_BLACK,

&FONT_LARGE, LAFSetupButton , (TBool (*)(WM_MESSAGE *, int,

int))IHandleButtonRightMiddle},

 { ID_BUTTON_RIGHT_BOTTOM, "Time/Date" , GUI_GRAY, GUI_BLACK,

&FONT_LARGE, LAFSetupButton , (TBool (*)(WM_MESSAGE *, int,

int))IHandleButtonRightBottom},

 { ID_MY_BUTTON, "My Window" , GUI_GRAY, GUI_BLACK,

&FONT_LARGE, LAFSetupButton , (TBool (*)(WM_MESSAGE *, int,

int))IHandleSecondScreen},

 {0},

};

/*---

--------*

 * Prototypes:

 *---

--------*/

static TBool IHandleButtonRightTop(WM_MESSAGE * pMsg, int aNCode, int

aID);

static TBool IHandleButtonRightMiddle(WM_MESSAGE * pMsg, int aNCode,

int aID);

static TBool IHandleButtonRightBottom(WM_MESSAGE * pMsg, int aNCode,

int aID);

static TBool IHandleSecondScreen(WM_MESSAGE * pMsg, int aNCode, int

aID);

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 26

3. Create the callback function below the “Local Data” section. This function takes a

message from the event handler and switches windows when the button is pressed.

4. Use the appropriate steps to Build, download, debug, and run the updated project

to test the functionality. Since the second window contains no widgets, all we will

see is a blank screen.

E. Setup for Interfacing with the Onboard Temperature Sensor
In the following steps of this guide, we will demonstrate how to interface with the uEZ

GUI hardware by recreating the temperature sensor demo that is built into the Project

Maker, and how to update the temperature on the screen by creating a task (More

details below in Section F – Creating a Task). For now we will focus on setting up our

SecondScreen.

/*---

------------*

 * Routine: IHandleSecondScreen

 *---

------------*

 * Description:

 * Change to the second screen when our new button is

pressed

 *

 *---

------------*/

static TBool IHandleSecondScreen(WM_MESSAGE * pMsg, int aNCode,

int aID)

{

 if (aNCode == WM_NOTIFICATION_RELEASED)

 {

 WindowManager_Show_Window(SECOND_SCREEN);

 }

 return EFalse;

}

Figure 19:

Blank window

after clicking

our button

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 27

Start by returning to the SecondScreen.c file in the IDE, then creating two new text

widgets. One text widget will be a title for the temperature screen, and the other will

show the onboard temperature sensor value.

1. Open SecondScreen.c to add the new text fields and give the temperature text an

update function.

2. Define a new ID for the Temperature Text and Title Text.

3. Define the temperature widgets’ positions and sizes.

NOTE: We use WINDOW_XSIZE and WINDOW_YSIZE to size and place all GUI elements

relative to the screen, so it is easy to change to a different LCD screen resolution

without need to re-write the element placement code.

NOTE: The µEZ GUI screen coordinates are defined such that the coordinates (0,0) are

located at the upper left corner of the screen.

4. Add the temperature widget to each of the “Local Data” arrays. This text field will not

need a callback function. Instead, the temperature update function will be called

periodically by its own task which will be created later. Also, rename the title text to

display “Temperature Screen”.

#define ID_WINDOW (GUI_ID_USER + 0x00)

#define ID_TITLE_TEXT (GUI_ID_USER + 0x01)

#define ID_TEMP_TEXT (GUI_ID_USER + 0x02)

#define TITLE_TEXT_XSIZE (WINDOW_XSIZE)

#define TITLE_TEXT_YSIZE ((WINDOW_YSIZE/10))

#define TITLE_TEXT_XPOS (0)

#define TITLE_TEXT_YPOS (0)

#define TEMP_TEXT_XSIZE (WINDOW_XSIZE/3)

#define TEMP_TEXT_YSIZE (WINDOW_YSIZE/12)

#define TEMP_TEXT_XPOS ((WINDOW_XSIZE/2) -

(TEMP_TEXT_XSIZE/2))

#define TEMP_TEXT_YPOS (WINDOW_YSIZE/2) -

(TEMP_TEXT_YSIZE)

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 28

5. Add the function for updating the temperature. This function is a wrapper that calls the

emWin function to change the text value of the text widget. It updates the text to

whatever character array is passed to it through the “myString” argument.

6. Add the line shown below to the beginning of the _SecondScreenDialog, to update the

ID of the active window.

F. Creating a Task
The next set of steps will describe the process for setting up a new task to monitor the

data provided by the onboard I2C digital temperature sensor. Creating new tasks allows

multiple continuous processes to operate “simultaneously” by taking advantage of

FreeRTOS’ ability to simulate threading without the need for complex hardware. In

effect, tasks are equivalent to threads. It is important that a small delay is introduced

/*---*

 * Local Data:

 *---

*/

/** Structure to hold all of the widgets used in this dialog*/

static const GUI_WIDGET_CREATE_INFO _iSecondScreenDialog[] = {

 { WINDOW_CreateIndirect, "", ID_WINDOW, WINDOW_XPOS, WINDOW_YPOS,

WINDOW_XSIZE, WINDOW_YSIZE, 0, 0, 0},

 { TEXT_CreateIndirect, "", ID_TITLE_TEXT, TITLE_TEXT_XPOS,

TITLE_TEXT_YPOS, TITLE_TEXT_XSIZE, TITLE_TEXT_YSIZE, TEXT_CF_HCENTER|

TEXT_CF_VCENTER, 0, 0},

 { TEXT_CreateIndirect, "", ID_TEMP_TEXT, TEMP_TEXT_XPOS, TEMP_TEXT_YPOS,

TEMP_TEXT_XSIZE, TEMP_TEXT_YSIZE, 0, 0, 0},

};

/** Generic Mapping of Screen Layout*/

static T_LAFMapping SecondScreenMapping[] = {

 { ID_WINDOW , "" , GUI_BLACK, GUI_WHITE,

&FONT_LARGE, LAFSetupWindow , 0},

 { ID_TITLE_TEXT, "Temperature Screen", GUI_BLACK, GUI_WHITE, &FONT_LARGE,

LAFSetupText, 0},

 { ID_TEMP_TEXT, "Temp", GUI_BLACK, GUI_WHITE, &FONT_LARGE, LAFSetupText,

0},

 {0},

};

/*---*

 * Routine: UpdateTemp

 * Description:

 * Update the temperature text.

 ---/

void UpdateTemp(char *myString)

{

 TEXT_SetText(WM_GetDialogItem(G_WhichWindow, ID_TEMP_TEXT), (const

char*)myString);

}

static void _SecondScreenDialog(WM_MESSAGE *pMsg)

{

 int Id, NCode;

 WM_HWIN hItem;

 G_WhichWindow = pMsg->hWin;

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 29

into the task’s loop to avoid bogging down the processor. Doing this allows the other

tasks to take priority during the delayed time and doesn’t use unnecessary processing.

The following flow diagram describes the task as it will be designed.

In the Project Maker sensors demo, the temperature sensor is read periodically using a

timer.

We will create a task for reading the temperature sensor using delays.

1. If using IAR…

a. Navigate to your App directory in the file explorer

(“C:\Users\(user)\Desktop\uEZ-Workspace\SampleProjectIAR\Source\App”)

b. Right Click -> new -> text file

c. Name your text file “CustomTasks.c”

d. Right Click -> new -> text file

e. Name your text file “CustomTasks.h”

f. Back in IAR…

i. Right click on App in the project explorer

ii. Click Add -> Add Files…

iii. Select CustomTasks.c and CustomTasks.h

2. In Crossworks…

a. Right Click on the App folder in the project explorer

b. select “Add new file”

c. Select “C File” and enter the name “CustomTasks.c”.

d. Select <OK>

e. Right click the “App” directory again and select “add new file”

f. Select “Header File” and name it “CustomTasks.h”

Figure

120:

Temp Loop

Task Flow

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 30

3. We will declare our prototypes for our new task in CustomTasks.h, and define them

in CustomTasks.c

4. We first need a prototype for our temperature reading function.

5. We also need a custom type for storing the read temperature. We will use a struct

rather than a variable so that we can expand on this later if we wish, such as by

adding Fahrenheit readings.

6. CustomTasks.h will look as follows:

7. Our Header file is now complete for creating the temp-reading task.

8. In our CustomTasks.c file, we need to define our TemperatureReadLoopTask

9. In CustomTasks.c paste the following code:

/*--

-----*

 * File: CustomTasks.h

 *--

-----*/

/*--

-----*

 * uEZ(R) - Copyright (C) 2007-2016 Future Designs, Inc.

 *--

-----*/

/*--

-----*

 * Function Prototypes:

 *--

-----*/

TUInt32 TemperatureReadLoopTask(T_uezTask aMyTask, void *aParams);

/*--

-----*

 * Types:

 *--

-----*/

typedef struct {

 char iBoardTemp_celsius[32];

}T_TempReadings;

/*--

-----*

 * End of File: CustomTasks.h

 *--

-----*/

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 31

/*---

------*

 * File: CustomTasks.c

 *---

------*/

/*---

------*

 * uEZ(R) - Copyright (C) 2007-2016 Future Designs, Inc.

 *---

------*/

/*---

------*

 * Includes:

 *---

------*/

#include <uEZ.h>

#include <uEZTemperature.h>

#include <uEZGPIO.h>

#include <uEZProcessor.h>

#include "CustomTasks.h"

#include <stdio.h>

/*---

------*

 * Globals:

 *---

------*/

static T_TempReadings G_SensorSettings = {"00.0 C"}; // Initialize

the celsius reading

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 32

10. We currently do not have a way to report the temperature reading back to

SecondScreen. This can be resolved by adding an extern function prototype in the

file or function where we want the change to occur, and then defining the prototype

in the file where we want to see the change take place.

/*---

------*

 * Routine: TemperatureReadLoopTask

 *---

------*

 * Description:

 * Task to take temperature reading and update screen

 *---

------*/

TUInt32 TemperatureReadLoopTask(T_uezTask aMyTask, void *aParams)

{

 TInt32 reading;

 TInt32 whole, fract;

 T_uezDevice temp;

 TInt32 openSensorResult = UEZTemperatureOpen("Temp0", &temp);

 if(openSensorResult == UEZ_ERROR_NONE)

 {

 while (1)

 {

 T_uezError tempReadErr = UEZTemperatureRead(temp,

&reading);

 if (tempReadErr == UEZ_ERROR_NONE)

 {

 whole = reading >> 16;

 // Convert to 1 digit decimal

 fract = ((((TUInt32)reading) & 0xFFFF) * 10) >> 16;

 // Put the read temperature into the temp-reading

member of the struct

 sprintf(G_SensorSettings.iBoardTemp_celsius, "Temp:

%02d.%01d C", whole, fract);

 }

 UEZTaskDelay(250);

 }

 }

 else

 {

 printf("Error %d. Failed to open temp sensor.\r\n",

openSensorResult);

 }

 return openSensorResult;

}

/*---

------*

 * End of File: CustomTasks.c

 *---

------*/

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 33

11. Add the following section to “CustomTasks.c”:

12. Now, in “SecondScreen.c”, add the following function definition:

13. “TEXT_SetText” is an emWin function for setting the text of a text widget within a

specified window.

14. In “SecondScreen.c”, add the following #include at the top:

15. Now back in “CustomTasks.c”, add the following line to the

“TemperatureReadLoopTask” function:

/*---

----------*

 * Externs:

 *---

----------*/

extern void UpdateTempText(char *myString); // Access to the

update function in SecondScreen.c

/*---

----------*

 * Routine: UpdateTemp

 *---

----------*

 * Description:

 * Update the temperature text.

 *---

----------*/

void UpdateTempText(char *myString)

{

 TEXT_SetText(WM_GetDialogItem(G_WhichWindow, ID_TEMP_TEXT),

(const char*)myString);

}

#include "CustomTasks.h"

This will expose SecondScreen to CustomTasks so that UpdateTempText will

work.

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 34

/*--

-------*

 * Routine: TemperatureReadLoopTask

 *--

-------*

 * Description:

 * Task to take temperature reading and update screen

 *--

-------*/

TUInt32 TemperatureReadLoopTask(T_uezTask aMyTask, void *aParams)

{

 TInt32 reading;

 TInt32 whole, fract;

 T_uezDevice temp;

 TInt32 openSensorResult = UEZTemperatureOpen("Temp0", &temp);

 if(openSensorResult == UEZ_ERROR_NONE)

 {

 while (1)

 {

 T_uezError tempReadErr = UEZTemperatureRead(temp,

&reading);

 if (tempReadErr == UEZ_ERROR_NONE)

 {

 whole = reading >> 16;

 // Convert to 1 digit decimal

 fract = ((((TUInt32)reading) & 0xFFFF) * 10) >> 16;

 // Put the read temperature into the temp-reading

member of the struct

 sprintf(G_SensorSettings.iBoardTemp_celsius, "Temp:

%02d.%01d C", whole, fract);

 // Update the temperature text

 UpdateTempText(G_SensorSettings.iBoardTemp_celsius);

 }

 UEZTaskDelay(250);

 }

 }

 else

 {

 printf("Error %d. Failed to open temp sensor.\r\n",

openSensorResult);

 }

 return openSensorResult;

}

/*--

-------*

 * End of File: CustomTasks.c

 *--

-------*/

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 35

16. Lastly, we need to kick off this temperature-reading task when the application

starts.

17. In “main.c”, add the following include at the top:

18. Now add this line below the HeartBeat task’s initialization:

19. Build and run the program.

20. When you press the “My Window” button, the SecondScreen window will now

display the title and the temperature. The temperature will update periodically.

G. Adding a Back Button
In the following steps, we will add a back button to the second screen by defining the ID,

size, and position inside SecondScreen.c. Then, update the widget matrices and add a

callback function that will switch back to the home screen.

1. Open SecondScreen.c.

2. Define the new button widget’s ID and properties.

#include "CustomTasks.h"

// Start up the heart beat of the LED first thing.

 UEZTaskCreate(HeartbeatTask, "Heart", 64, (void *)0,

UEZ_PRIORITY_NORMAL, 0);

// Temp-reading task

UEZTaskCreate(TemperatureReadLoopTask, "TempTask", 1024, (void

*)0, UEZ_PRIORITY_NORMAL, 0);

Figure 21:

Second

Screen

with temp

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 36

#define ID_WINDOW (GUI_ID_USER + 0x00)

#define ID_TITLE_TEXT (GUI_ID_USER + 0X01)

#define ID_TEMP_TEXT (GUI_ID_USER + 0X02)

#define ID_BACK_BUTTON (GUI_ID_USER + 0X03)

#define WINDOW_XSIZE (UEZ_LCD_DISPLAY_WIDTH)

#define WINDOW_YSIZE (UEZ_LCD_DISPLAY_HEIGHT)

#define WINDOW_XPOS (0)

#define WINDOW_YPOS (0)

#define TITLE_TEXT_XSIZE (WINDOW_XSIZE)

#define TITLE_TEXT_YSIZE ((WINDOW_YSIZE / 10))

#define TITLE_TEXT_XPOS (0)

#define TITLE_TEXT_YPOS (0)

#define TEMP_TEXT_XSIZE (WINDOW_XSIZE / 2)

#define TEMP_TEXT_YSIZE (WINDOW_YSIZE / 12)

#define TEMP_TEXT_XPOS ((WINDOW_XSIZE / 2) -

(TEMP_TEXT_XSIZE / 2))

#define TEMP_TEXT_YPOS (WINDOW_YSIZE / 2) -

(TEMP_TEXT_YSIZE)

#define BACK_BUTTON_XSIZE (WINDOW_XSIZE / 4)

#define BACK_BUTTON_YSIZE ((WINDOW_YSIZE / 10))

#define BACK_BUTTON_XPOS ((WINDOW_XSIZE / 2) -

(BACK_BUTTON_XSIZE / 2))

#define BACK_BUTTON_YPOS ((WINDOW_YSIZE / 2) +

(TEMP_TEXT_YSIZE / 2))

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 37

3. Add a line in both of the local data arrays for the new back button.

4. Create the callback function for switching back to the home screen by adding the

associated handling function to the file below the local data arrays.

5. Add the function prototype after the “Global Data” section at the top of the file.

/*---*

 * Local Data:

 ---/

/** Structure to hold all of the widgets used in this dialog*/

static const GUI_WIDGET_CREATE_INFO _iSecondScreenDialog[] = {

 //Function, Name, ID, XP, YP, XS, YS

 { WINDOW_CreateIndirect, "", ID_WINDOW, WINDOW_XPOS, WINDOW_YPOS,

WINDOW_XSIZE, WINDOW_YSIZE, 0, 0, 0},

 { TEXT_CreateIndirect, "", ID_TITLE_TEXT, TITLE_TEXT_XPOS, TITLE_TEXT_YPOS,

TITLE_TEXT_XSIZE, TITLE_TEXT_YSIZE, TEXT_CF_HCENTER | TEXT_CF_VCENTER, 0, 0},

 { TEXT_CreateIndirect, "", ID_TEMP_TEXT, TEMP_TEXT_XPOS, TEMP_TEXT_YPOS,

TEMP_TEXT_XSIZE, TEMP_TEXT_YSIZE, TEXT_CF_HCENTER | TEXT_CF_VCENTER, 0, 0},

 { BUTTON_CreateIndirect, "", ID_BACK_BUTTON, BACK_BUTTON_XPOS,

BACK_BUTTON_YPOS, BACK_BUTTON_XSIZE, BACK_BUTTON_YSIZE, 0, 0, 0},

};

/** Generic Mapping of Screen Layout*/

static T_LAFMapping SecondScreenMapping[] = {

 { ID_WINDOW, "", GUI_BLACK, GUI_WHITE, &FONT_SMALL, LAFSetupWindow , 0},

 { ID_TITLE_TEXT, "Temperature Screen", GUI_BLACK, GUI_WHITE, &FONT_LARGE,

LAFSetupText , 0},

 { ID_TEMP_TEXT, "Temp", GUI_BLACK, GUI_WHITE, &FONT_LARGE, LAFSetupText ,

0},

 { ID_BACK_BUTTON, "Back", GUI_RED, GUI_WHITE, &FONT_LARGE, LAFSetupButton ,

0},

 {0},

};

/*---*

 * Routine: IHandleBackButton

 * Description:

 * Change to the home screen when the back button is pressed.

 ---/

static TBool IHandleBackButton(WM_MESSAGE * pMsg, int aNCode, int aID)

{

 if (aNCode == WM_NOTIFICATION_RELEASED)

 {

 WindowManager_Show_Window(HOME_SCREEN);

 }

 return EFalse;

}

/*---*

 * Function Prototypes:

 ---/

static TBool IHandleBackButton(WM_MESSAGE * pMsg, int aNCode, int aID);

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 38

6. Now add this function to the SecondScreenMapping array’s Back Button entry

7. Use the appropriate steps to Build, download, debug, and run the updated project

to test the new functionality.

Congratulations! This concludes the walkthrough for building a simple GUI! Professional

looking designs with complex functionality can be designed using advanced features

provided in the emWin and µEZ libraries. Documentation and support for learning these

features is available through Future Designs, Inc. for emWin and µEZ libraries.

The following optional section provides instructions for how to restore the factory demo

to the µEZ GUI if desired.

/** Generic Mapping of Screen Layout*/

static T_LAFMapping SecondScreenMapping[] = {

 { ID_WINDOW, "", GUI_BLACK, GUI_WHITE, &FONT_SMALL, LAFSetupWindow , 0},

 { ID_TITLE_TEXT, "Temperature Screen", GUI_BLACK, GUI_WHITE, &FONT_LARGE,

LAFSetupText , 0},

 { ID_TEMP_TEXT, "Temp", GUI_BLACK, GUI_WHITE, &FONT_LARGE, LAFSetupText ,

0},

 { ID_BACK_BUTTON, "Back", GUI_RED, GUI_WHITE, &FONT_LARGE, LAFSetupButton

, (TBool (*)(WM_MESSAGE *, TInt32, TInt32)) IHandleBackButton},

 {0},

};

Figure 22:

Final

Screen

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 39

6. Restoring the Out-of-Box (OOB) Demo (Optional)
1. Remove the SD card from the µEZ GUI.

2. Insert the µEZ GUI’s SD card into the PC (depending on your PC, an SD card reader or

adapter may be required).

3. Rename the file “INSTALL.FIN” to “INSTALL.INI”, and click OK when prompted with a

warning about changing the file extension.

4. In the root directory of the SD card, the folder titled “boot” contains the flash binary

and a J-Link script that will flash the original out-of-box to the connected µEZ GUI.

5. Connect the PC to the µEZ GUI via the J-Link debugger probe and double-click the

“Install OOB.jlink” script.

6. Re-insert the SD card into the uEZGUI

7. The OOB demo will now be restored.

7. Guides and User’s Manuals
Additional examples can be found on the www.TeamFDI.com website including but not limited to

the following application notes:

• RS-232 Serial Communications: .. http://tinyurl.com/j24l5ss

• TTL UART Serial Communications: .. http://tinyurl.com/zrc7gp2

• Video Conversion Guide: .. http://tinyurl.com/jxthcvv

Figure 24:

OOB

bootloader

and demo

Figure 23:

Boot

directory

Note: This will reinstall the base bootloader which was overwritten by the

project maker example we worked through above.

http://www.teamfdi.com/
http://tinyurl.com/j24l5ss
http://tinyurl.com/zrc7gp2
http://tinyurl.com/jxthcvv

uEZ GUI Start Here Guide UEZGUI-4357-70WVN

Rev 1.0 December 13, 2022 Page 40

FDI also provides documentation for using the demo bootloader for playing videos and slideshows

as well as running other applications from the menu.

• Slideshow Creation Guide: .. http://tinyurl.com/zlu9ood

• Bootloader User’s Manual: ... http://tinyurl.com/z6lw2fd

• JTAG Programming µEZ GUI: ... http://tinyurl.com/h9dnu96

8. Website and Support
Documentation:

• µEZ Library Online Documentation ... http://www.TeamFDI.com/uez/docs/

• emWin Documentation ... https://www.segger.com/emWin.html

• emWin 5.48 user’s manual .. http://tinyurl.com/go4lj4j

Support & Downloads:

• FDI Support Home Page ...http://www.TeamFDI.com/support

• FDI Forums .. http://www.teamfdi.com/forum

• emWin FAQs ... https://www.segger.com/emWin-faqs.html

• µEZGUI-4357-70WVN .. https://tinyurl.com/bdexh7mv

• µEZ Source w/ Project Maker (v2.12 or later) ... http://sourceforge.net/projects/uez/files/

• Start Here Guide .. http://www.teamfdi.com/StartHere

Contact Information:

Future Designs, Inc.

996 A Cleaner Way SW

Huntsville, AL 35805

Phone: (256) 883-1240

Fax: (256) 883-1241

Email: Sales@TeamFDI.com

http://www.TeamFDI.com

http://tinyurl.com/zlu9ood
http://tinyurl.com/z6lw2fd
http://tinyurl.com/h9dnu96
http://www.teamfdi.com/uez/docs/
https://www.segger.com/emwin.html
http://tinyurl.com/go4lj4j
http://www.teamfdi.com/support
http://www.teamfdi.com/forum
https://www.segger.com/emwin-faqs.html
https://tinyurl.com/bdexh7mv
http://sourceforge.net/projects/uez/files/
http://www.teamfdi.com/StartHere
http://www.teamfdi.com/

