SparkFun
Inventor’s Kit

VERSION 4.1

Your Guide to the SIK
for the SparkFun RedBoard

sparkfun.

START SOMETHING

SparkFun Inventor’'s Kit, Version 4.1

WELCOME TO THE

SPARKFUN INVENTOR'’S

KIT (S1IK) GUIDE.

This is your map for navigating beginning embedded electronics.
This booklet contains all the information you will need to build five
projects encompassing the 16 circuits of the SIK for the SparkFun
RedBoard. At the center of this manual is one core philosophy: that
anyone can (and should) play around with electronics. When you’re
done with this guide, you will have built five great projects and
acquired the know-how to create countless more. Now enough talk
— let’s start something!

For a digital version of this guide with more in-depth information for
each circuit and links explaining relevant terms and concepts, visit:

(sparkfun.com/SIKquide]

sparkfun.

TART SOMETHING

Contents

INTRODUCTION

2 The RedBoard Platform
3 Baseplate Assembly

4 RedBoard Anatomy

5 Breadboard Anatomy
6 The Arduino IDE

10 Inventory of Parts

PROJECT 1: LIGHT

13 Circuit 1A: Blinking an LED
20 Circuit 1B: Potentiometer
26 Circuit 1C: Photoresistor
31 Circuit 1D: RGB Night-Light

PROJECT 2: SOUND

37 Circuit 2A: Buzzer
42 Circuit 2B: Digital Trumpet

47 Circuit 2C: “Simon Says” Game

PROJECT 3: MOTION

54 Circuit 3A: Servo Motors
60 Circuit 3B: Distance Sensor
65 Circuit 3C: Motion Alarm

PROJECT 4: DISPLAY

72 Circuit 4A: LCD “Hello, World!”
77 Circuit 4B: Temperature Sensor
82 Circuit 4C: “DIY Who Am I?” Game

PROJECT 5: ROBOT

89 Circuit 5A: Motor Basics
96 Circuit 5B: Remote-Controlled Robot
102 Circuit 5C: Autonomous Robot

GOING FURTHER

12

36

53

7

88

106

1 : INTRO

The RedBoard Platform

THE DIY REVOLUTION: At SparkFun we believe that an understanding of electronics
is a core literacy that opens up a world of opportunities in the fields of robotics, Internet
of Things (IoT), engineering, fashion, medical industries, environmental sciences,
performing arts and more. This guide is designed to explore the connection between
software and hardware, introducing Arduino code and SparkFun parts as they are

used in the context of building engaging projects. The circuits in this guide progress

in difficulty as new concepts and components are introduced. Completing each circuit
means much more than just “experimenting”; you will walk away with a fun project you
can use — and a sense of accomplishment that is just the beginning of your electronics
journey. At the end of each circuit, you'll find coding challenges that extend your learning

and fuel ongoing innovation.

A COMPUTER FOR THE
PHYSICAL WORLD

The SparkFun RedBoard Qwiic is your]] i @

development platform. At its roots, the
RedBoard is essentially a small, portable

computer, also known as a microcontroller. -

RESET
m3.3V
m5v

-l
mGND T
mEND =

m
mVIN T

It is capable of taking inputs (such as the
push of a button or a reading from a light

sensor) and interpreting that information

to control various outputs (like blinking an

= A0
» A1
- A2
»A3
m A4
m A5

ONIHLIIWOS LdVLS

LED light or spinning an electric motor).

That’s where the term “physical computing”

aaannn
NI 90TYNY
gessesseseym

comes in; this board is capable of taking the
world of electronics and relating it to the
physical world in a real and tangible way.

THE SPARKFUN REDBOARD QWIIC is one of a multitude of development boards
based on the ATmega328 microprocessor. It has 14 digital input/output pins (six of which
can be PWM outputs), six analog inputs, a 16MHz crystal oscillator, a USB connection, a
power jack, and a reset button. Youw’ll learn more about each of the RedBoard's features as
you progress through this guide.

Baseplate Assembly

Before you can build circuits, youw’ll want to first assemble the breadboard baseplate. This
apparatus makes circuit building easier by keeping the RedBoard microcontroller and the

breadboard connected without the worry of disconnecting or damaging your circuit.

TO BEGIN, collect your parts: the RedBoard,
breadboard, included screwdriver, baseplate and
two baseplate screws.

Your screwdriver has both Phillips and
flatheads. If it is not already in position,
pull the shaft out and switch to the
Phillips head.

PEEL the adhesive backing off the breadboard.

CAREFULLY ALIGN the breadboard over its spot on the baseplate. The text on the
breadboard should face the same direction as the text on the baseplate. Firmly press the

breadboard to the baseplate to adhere it.

ALIGN THE REDBOARD with its spot
on the baseplate. The text on it should

face the same direction as the text on

the breadboard and the baseplate. Using
one of the two included screws, affix the
RedBoard to one of the four stand-off holes
found on the baseplate. The plastic holes
are not threaded, so you will need to apply
pressure as you twist the screwdriver.

Screw the second screw in the stand-off
hole diagonally across from the first. With
that, your baseplate is now assembled.

3 : INTRO

Anatomy of the SparkFun RedBoard

anaann
sssuesm
© BT O
[!

]
[]
-
(&)
» IGITAL (PWM ~

REDBOARD HARDWARE OVERVIEW

POWER IN

A (BARREL JACK) Can be used with either a 9V or 12V “wall-wart” or a battery pack.
B POWER IN Provides power and communicates with your board

(USB PORT) when plugged into your computer via USB.

LED g L L .
C (RX: RECEIVING) Shows when the USB-to-serial chip is receiving data bits from the computer.
LED . - . .
D (TX: TRANSMITTING) Shows when the USB-to-serial chip is transmitting data bits to the computer.
E ONBOARD LED This LED, connected to digital pin 13, can be controlled
PIN D13 in your program and is great for troubleshooting.

PINS AREF,

F GROUND, DIGITAL, These pins can be used for inputs, outputs, power and ground.
RX, TX, SDA, SCL

(o] POWER LED Mluminated when the board is connected to a power source.
H RESET BUTTON A manual reset switch that will restart the RedBoard and your code.

6D MRS This is the In-System Programming header. It is used to program the ATMega328
1 directly. It will not be used in this guide.

ANALOG IN,
3 VOLTAGE IN, The power bus has pins to power your circuits with various voltages. The analog

GROUND, 3.3 AND inputs allow you to read analog signals.
5V OUT, RESET

K RFU This stands for Reserved for Future Use.

SparkFun Qwiic® Cable Connector for IC Devices.

L QWICO CONNECTOR 1pis connection will not be used in this guide.

4 : INTRO

Anatomy of the Breadboard

A breadboard is a circuit-building platform that allows you to

connect multiple components without using a soldering iron.

POWER BUS
Each side of the breadboard has a pair of
vertical connections marked - and +

+ POWER: Each + sign runs power
anywhere in the vertical column.

- GROUND: Each - sign runs to ground

anywhere in the vertical column.

CENTERLINE
This line divides
the breadboard
in half, restricting

HORIZONTAL ROWS

Each series of 5 sockets marked
a-e and f-j are connected.
Components connected to a row
will be connected to any other

part inserted in the same row.

MAKING A
CONNECTION

Most of the
components in this

electricity to one
half or the other.

kit are breadboard-
friendly and can be
easily installed and

removed.

5 : INTRO

The Arduino IDE

IN ORDER TO GET YOUR

REDBOARD UP AND RUNNING,

you'll need to download the newest

version of the Arduino software

from www.arduino.cc (it's free!). E
This software, known as the Arduino

IDE (Integrated Development

Environment), will allow you to program the RedBoard to do exactly what you want.

It’s like a word processor for coding. With an internet-capable computer, open up your

favorite browser and type the following URL into the address bar:

1. DOWNLOAD AND INSTALL ARDUINO IDE

Select the installer option appropriate for the operating system you are using. Once

finished downloading, open the file and follow the instructions to install.

2. INSTALL USB DRIVERS

In order for the RedBoard hardware to work with your computer’s operating system, you
will need to install a few drivers. Please go to www.sparkfun.com/ch340 for specific

instructions on how to install the USB drivers onto your computer.

3. CONNECT THE REDBOARD TO A COMPUTER

Use the USB cable provided in the SIK to connect the RedBoard to one of your computer’s
USB inputs.

4. DOWNLOAD AND INSTALL THE SIK CODE

Each of the circuits you will build in the SparkFun Inventor’s Kit has an Arduino
code sketch already written for it. This guide will show you how to manipulate that
code to control your hardware.

DI A N[N Y.\o 2 g o1 W ele]n] W[B sparkfun.com/SIKcode

COPY “SIK GUIDE CODE” INTO “EXAMPLES”
LIBRARY IN ARDUINO FOLDER

Your browser will download the code automatically or ask you if you would like to
download the .zip file. Select “Save File.” Locate the code (usually in your browser’s
“Downloads” folder). You'll need to relocate it to the “Examples” subfolder in your
Arduino IDE installation in order for it to function properly.

Unzip the file “SIK GUIDE CODE.” It should be located in your browser’s “Downloads”
folder. Right-click (or ctrl + click) the zipped folder and choose “unzip.”

WINDOWS: Copy or move the unzipped “SIK Guide Code” files from “Downloads” to the
Arduino application’s “Examples” folder.

0— e—
LOCAL PROGRAM ARDUINO EXAMPLES
DISK (C:) FILES

MAC OS: Find “Arduino” in your .
Arduino | Open

“Applications” folder in Finder.

Right-click (ctrl + click) on “Arduino” Show PaCkage Contents i
Move to Trash !

and select “Show Package Contents.”

Copy or move the unzipped “SIK Guide Code” folder from your
“Downloads” folder into the Arduino application’s folder named “Examples.”

AN AN
7 7

ARDUINO CONTENTS JAVA EXAMPLES

N\

LINUX: Distribution-specific setup instructions for Linux can be found at:

www.sparkfun.com/ch340

5. OPEN THE ARDUINO IDE:

Open the Arduino IDE software on your computer. Poke around and get to know the
interface. We aren’t going to code right away; this step is to set your IDE to identify

your RedBoard. q
Blink | Arduino 1.8.9

THE THREE MOST
IMPORTANT
COMMANDS IN
THE ARDUINO IDE

Arduino/Genuino Uno

GRAPHICAL USER INTERFACE (GUI)

Sends your code to the RedBoard. When you click it, you
should see the lights on your board blink rapidly.

UPLOAD

D OPEN Opens an existing sketch.
E NEW Opens up a new code window tab.
F DEBUG WINDOW Displays any errors generated by your sketch.
[« SKETCH NAME Displays the name of the sketch you are currently working on.
H CODE AREA Where you compose or edit the code for your sketch.
1 MESSAGE AREA Indicates if the code is compiling, uploading or has errors.

J CONNECTION AREA Displays the board and serial port currently selected.

Opens a window that displays any serial information

K SERIAL MONITOR your RedBoard is transmitting (useful for debugging).

8 : INTRO

6. SELECT YOUR BOARD AND SERIAL DEVICE

NOTE: Your SparkFun RedBoard and the Arduino/Genuino UNO are

interchangeable, but you won’t find the RedBoard listed in the Arduino
software. Select “ARDUINO/GENUINO UNO” instead.

Auto Format

Archive Sketch

Fix Encoding and Reload
Serial Monitor

Serial Plotter

Board: ‘Arduino/Genuino Uno” » Boards Manager...

Port >

n TeensyDuino
Teensy 3.6
Teensy 3.5
Teensy 3.2/3.1
Teensy 3.0
Teensy LC
Teensy++2.0
Teensy 2.0

Arduino AVR Boards
Arduino/Genuino Uno

Arduino Duemilanove or Dieciffiila

Auto Format
Archive Sketch
Fix Encoding and K SELECT YOUR PORT (WINDOWS)

Serial Monitor Tools > Port > COM#XX
Serial Plotter

Board: “Arduino/Genuino Uno”

Serial Ports
COM1
COM2

Get Board Info

R el
Auto Format
Archive Sketch
Fix Encoding and R
Serial Monitor
Serial Plotter

Board: “Arduino/Genuino Uno” »

Serial Ports
/dev/cu.usbseriaDNO18JWS |

=

Get Board Info

SELECT YOUR PORT (LINUX)

Distribution-specific serial device setup instructions can be found HERE:

http://arduino.cc/playground/Learning/Linux CASE SENSITIVE

9 : INTRO

Inventory of Parts

The SparkFun Inventor’s Kit contains an extensive array of electronic components. As
you work your way through each circuit, you will learn to use new and more complicated
parts to accomplish increasingly complex tasks.

LCD DISPLAY LEDS POTENTIOMETER
ULTRASONIC PIEZO MOTOR

DISTANCE SENSOR BUZZER DRIVER UTT

PUSH
o]

TOKQ RESISTORS JUMPER GEARMOTORS
it WIRES
3300 RESISTORS ’ ’
S
| |
PHOTORESISTOR ‘ '
& vy 'l
> AN #H
TEMPERATURE
SENSOR I I III I

©

BREADBOARD
SERVO SPARKFUN REDBOARD

10 : INTRO

Let's Get
Starteao
With Your
~irst Circult!

&) &)
PROJECT 1

Welcome to your first SparkFun Inventor’s Kit
project. Each project is broken up into several
circuits, the last circuit being a culmination of

the technologies that came before. There are five
projects total, each designed to help you learn about
new technologies and concepts. This first project
will set the foundation for the rest and will aid in
helping you understand the fundamentals of circuit

building and electricity!

In Project 1, you will learn about Light-
Emitting Diodes (LEDs),resistors,
inputs, outputs and sensors. The first
project will be to build and program your own
multicolored night-light! The night-light uses a
sensor to turn on an RGB (Red, Green, Blue) LED
when it gets dark, and you will be able to change the

color using an input knob.

12 : CIRCUIT 1A

NEW IDEAS

Each project will introduce new

concepts and components, which will

be described in more detail as you

progress through the circuits.

NEW COMPONENTS INTRODUCED
IN THIS PROJECT

LEDS

RESISTORS
POTENTIOMETERS
PHOTORESISTORS

NEW CONCEPTS INTRODUCED IN THIS PROJECT

POLARITY

OHM'S LAW

DIGITAL OUTPUT

ANALOG VS. DIGITAL

ANALOG INPUT

ANALOG TO DIGITAL CONVERSION
VOLTAGE DIVIDER

PULSE-WIDTH MODULATION
FUNCTIONS

YOU WILL LEARN

HOW TO UPLOAD A PROGRAM TO
YOUR REDBOARD
CIRCUIT-BUILDING BASICS

HOW TO CONTROL LEDS WITH
DIGITAL OUTPUTS

HOW TO READ SENSORS

WITH ANALOG INPUTS

Circuit TA:
Blinking an LED

NEW COMPONENTS

LIGHT-EMITTING DIODES (LEDS)
are small lights made from a silicon diode.
They come in different colors, brightnesses
and sizes. LEDs (pronounced el-ee-dees)
have a positive (+) leg and a negative (-)
leg, and they will only let electricity flow
through them in one direction. LEDs can
also burn out if too much electricity flows
through them, so you should always use a
resistor to limit the current when you wire

an LED into a circuit.

¥

SIS IS IS IS 20

RESISTORS resist the flow of electricity.
You can use them to protect sensitive
components like LEDs. The strength of a
resistor (measured in ohms) is marked on
the body of the resistor using small colored
bands. Each color stands for a number,
which you can look up using a resistor chart.
One can be found at the back of this book.

You can find LEDs in just about any source
of light, from the bulbs lighting your home
to the tiny status lights flashing on your
home electronics. Blinking an LED is the
classic starting point for learning how to
program embedded electronics. It’s the
“Hello, World!” of microcontrollers. In this
circuit, yowll write code that makes an LED
blink on and off.

[
330Q 4 RESISTOR

NEW CONCEPTS

POLARITY: Many electronics r’
components have polarity, 9
meaning electricity can (and
should) flow through them in
only one direction. Polarized
components, like an LED, have a

positive and a negative leg and

only work when electricity flows

through them in one direction.

Some components, like resistors,
do not have polarity; electricity
can flow through them in either direction.

OHM'’S LAW describes the relationship between
the three fundamental elements of electricity:
voltage, resistance and current. This

relationship can be represented by this equation:

V=I*R

V = Voltage in volts
I = Current in amps
R = Resistance in ohms (Q)

This equation is used to calculate what resistor
values are suitable to sufficiently limit the current
flowing to the LED so that it does not get too hot
and burn out.

13 : CIRCUIT 1A

DIGITAL OUTPUT: When working with
microcontrollers such as the RedBoard, there

are a variety of pins to which you can connect
electronic components. Knowing which pins
perform which functions is important when
building your circuit. In this circuit, we will be
using what is known as a digital output. There
are 14 of these pins found on the RedBoard.
A digital output only has two states: ON or
OFF. These two states can also be thought of
as HIGH or LOW, TRUE or FALSE. When an LED is connected to one of these pins, the pin
can only perform two jobs: turning on the LED and turning off the LED. We’ll explore the
other pins and their functions in later circuits.

1)

RESISTOR
LEADS

Components like resistors need to have

their legs bent into 90° angles in order to

FLAT EDGE
correctly fit in the breadboard sockets.
+ -

- ~diLy
SHORT LEG
POLARIZED
COMPONENTS
Pay close attention to the LED. The

negative side of the LED is the short leg,
marked with a flat edge.

14 : CIRCUIT 1A

HOOKUP GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

\r——O FLAT EDGE

HOOKUP TABLES: Many electronics beginners find 4D13 0 = J2

it helpful to have a coordinate system when building their

circuits. For each circuit, you'll find a hookup table that

..means one end of a

component connects

lists the coordinates of each component or wire and where to digital pin 13 on

it connects to the RedBoard, the breadboard, or both. The your RedBoard and

breadboard has a letter/number coordinate system, just

like the game Battleship.

the other connects to

J2 on the breadboard

CIINASICIR AT ¢ REDBOARD CONNECTION = BREADBOARD CONNECTION

JUMPER WIRES (0D13 o J2)(®GNDw= El)

LED = Al(-) 0w A2(+)
3300 RESISTOR
(ORANGE, ORANGE, mE20m F2

BROWN)

In this table, a yellow
highlight indicates that a

component has polarity
and will only function if
properly oriented.

15 : CIRCUIT 1A

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch: File > Examples > SIK-Guide-Code-master > CIRCUIT_1A-BLINK

Select UPLOAD to program the sketch on the RedBoard.

womEdit Sketch Tools Help

16 :

New
Open
Open Recent
Sketchbook
Xampie
CIRCUIT 1A

01.Basics
02.Digital
03.Analog
04.Communication
05.Control
06.Sensors
07.Display
08.Strings

09.USB

10.Starter Kit
ArduinolSP
SIK-Guide-Code-master

VVVVVVVYYVYYVYY

WHAT YOU
SHOULD SEE

The LED will flash on for two seconds, then

off for two seconds. If it doesn’t, make sure

you have assembled the circuit correctly

and verified and uploaded the code to your
board. See the Troubleshooting section at the
end of this circuit if that doesn’t work. One
of the best ways to understand the code you
uploaded is to change something and see
how it affects the behavior of your circuit.
What happens when you change the number

TR LRSI delay (2000);

lines of code (try 100 or 5000)?

PROGRAM OVERVIEW

Turn the LED on by sending power (5V) to digital pin 13.

Wait 2 seconds (2000 milliseconds).

Turn the LED off by cutting power (0V) to digital pin 13.

Wait 2 seconds (2000 milliseconds).

Repeat.

ONBOARD LED PIN 13:

NEW IDEAS

CODE TO NOTE: The sketches that accompany each circuit introduce new programming techniques and

concepts as you progress through the guide. The Code to Note section highlights specific lines of code from the

sketch and explains them in greater detail.

CODE TO NOTE

SETUP AND LOOP: Every Arduino program needs these two functions. Code that goes in

between the curly brackets {} of setup () runs once. The code in
void setup(){} & between the Loop () curly brackets {} runs over and over until the
void loop(){} RedBoard is reset or powered off.

Before you can use one of the digital pins, you need to tell the RedBoard
INPUT OR OUTPUT?: whether it is an INPUT or OUTPUT. We use a built-in “function” called

pinMode(13, OUTPUT); pinMode() to make pin 13 a digital output. You'll learn more about

digital inputs in Project 2.

17 : CIRCUIT 1A

CODE TO NOTE

DIGITAL OUTPUT: When you're using a pin as an OUTPUT, you can command it to be

digitalirite(D13, HIGH); HIGH (output 5 volts) or LOW (output 0 volts).

Causes the program to wait on this line of code for the amount of
DELAY: time in between the brackets, represented in milliseconds (2000ms
delay(2000) = 2s). After the time has passed, the program will continue to the

next line of code.

COMMENTS: Comments are a great way to leave notes in your code explaining
//This i & why you wrote it the way you did. Single line comments use two
is is a commen

forward slashes / /, while multi-line comments start with a /* and

/* So is this */ end witha */.

NEW IDEAS

CODING CHALLENGES: The Coding Challenges section is where you will find suggestions for changes
to the circuit or code that will make the circuit more challenging. If you feel underwhelmed by the tasks in each

circuit, visit the Coding Challenges section to push yourself to the next level.

CODING CHALLENGES

PERSISTENCE OF VISION: Computer screens, movies and the lights in your house all flicker so
quickly that they appear to be on all of the time but are actually blinking faster than the human eye can detect.
See how much you can decrease the delay time in your program before the light appears to be on all the time

but is still blinking.

MORSE CODE: Try adding and changing the [EENEWI@) values and adding more
CRERRCIVIRELIOY commands to make your program blink a message in Morse code.

TROUBLESHOOTING

I get an error when The most likely cause is that you have the wrong board selected in the Arduino

uploading my code IDE. Make sure you have selected Tools > Board > Arduino/Genuino Uno.

18 : CIRCUIT 1A

TROUBLESHOOTING

i If you're sure you have the correct Board selected but you still can’t
Istill get an error when
upload, check that you have selected the correct serial port. You can

uploading my code change this in Tools > Serial Port > your_serial_port.
Depending on how many devices you have plugged into your computer,
you may have several active serial ports. Make sure you are selecting the
Which serial port is correct one. A simple way to determine this is to look at your list of serial
the right one? ports. Unplug your RedBoard from your computer. Look at the list again.

Whichever serial port has disappeared from the list is the one you want

to select once you plug your board back into your computer.

My code uploads, but my LEDs will only work in one direction. Try taking it out of your

LED won’t turn on breadboard, turning it 180 degrees and reinserting it.

Jumper wires unfortunately can go “bad” from getting bent too much.
The copper wire inside can break, leaving an open connection in your
Still not Kine? circuit. If you are certain that your circuit is wired correctly and that
notworking your code is error-free and uploaded, but you are still encountering
issues, try replacing one or more of the jumper wires for the component

that is not working.

You've completed
Circuit TAl

Continue to circuit 1B to learn about analog signals and potentiometers.

BLINKING READING A READING A RGB NIGHT-LIGHT
AN LED POTENTIOMETER PHOTORESISTOR

19 : CIRCUIT 1A

Circuit 1B:
Potentiometer

Potentiometers (also known as “trimpots”
or “knobs”) are one of the basic inputs for

electronic devices. By tracking the position

POTENTIOMETER

'..

NEW COMPONENTS

POTENTIOMETER: A potentiometer is

a 3-pin variable resistor. When powered

with 5V, the middle pin outputs a voltage
between 0V and 5V, depending
on the position of the knob on
the potentiometer. Internal to the
trimpot is a single resistor and a

wiper, which cuts the resistor in two and

moves to adjust the ratio between

both halves.

NEW CONCEPTS

ANALOG VS. DIGITAL: We live in an
analog world. There are an infinite number
of colors to paint an object, an infinite
number of tones we can hear, and an
infinite number of smells we can smell.
The common theme among these analog

signals is their infinite possibilities.

Digital signals deal in the realm of the
discrete or finite, meaning there is a
limited set of values they can be. The LED
from the previous circuit had only two
states it could exist in, ON or OFF, when

connected to a digital output.

20 : CIRCUIT 1B

of the knob with your RedBoard, you can
make volume controls, speed controls,
angle sensors and a ton of other useful
inputs for your projects. In this circuit,
youw’ll use a potentiometer as an input
device to control the speed at which your
LED blinks.

(o
A
ZBOQERESISTOR 7 JUMPER WIRES

ANALOG INPUTS: So far, we’ve only
dealt with outputs. The RedBoard also has
inputs. Both inputs and outputs can be
analog or digital. Based on our previous
definition of analog and digital, that means
an analog input can sense a wide range of
values versus a digital

input, which can only

sense two values, or

states.

You may have noticed

some pins labeled

Digital and some
labeled Analog In on
your RedBoard. There are only six pins
that function as analog inputs; they are
labeled A0-AS.

VOLTAGE DIVIDER

VOLTAGE DIVIDERS are simple

circuits that turn some voltage into a
smaller voltage using two resistors. A
potentiometer is a variable resistor that
can be used to create an adjustable voltage
divider. A wiper in the middle position
means the output voltage will be half of the
input. Voltage dividers will be covered in

more detail in the next circuit.

HOOKUP GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the
circuit diagram and hookup table below to see how everything is connected.

FLAT EDGE

[]
n
(] []
== (] »
LI] L] =
== (] 1 B
()] EE -
n
= Ll .: W I0REF 5
== (] RESET
L} [] E B :
LI] e = LI} -
== " a == -
" e = . -
L} []
L} . -
nn = = . =
L}] B
- == (] . = -
- L} [] w E B
" n L L " m > »
() L] u . = -
== L L] LI
L}]
- L]
= i
Ll
== " mEmE: |[Em
L} T EEmE BN
4 - ®mmEEE LIC LI B T
b oc o4 e e oh i

SITTHSICTRATICN ¢ REDBOARD CONNECTION = BREADBOARD CONNECTION

(@svonsv)(@GNDosGND(-))(®A0 0= E26)

JUMPER WIRES

(=E250w5v(+))(=E27m GND(-))(=E1 0= GND(-)) (# D130 = J2)

" AL(-) 0 = A2(+)

3300 RESISTOR
(ORANGE, ORANGE, = E20m G2
BROWN)

-
m
o

POTENTIOMETER (l C25-= C26+ = C27)

21 : CIRCUIT 1B

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch:
File > Examples >SIK-Guide-Code-master > CIRCUIT_1B-POTENTIOMETER

Select UPLOAD to program the sketch on the RedBoard.

WHAT YOU
SHOULD SEE

You should see the LED blink faster

or slower in accordance with your
potentiometer. The delay between each
flash will change based on the position
of the knob. If it isn’t working, make
sure you have assembled the circuit
correctly and verified and uploaded
the code to your board. If that doesn’t

work, see the Troubleshooting section.

PROGRAM OVERVIEW

Read the position of the potentiometer (from 0 to 1023) and store it in the variable potPosition.

Turn the LED on.

Wait from 0 to 1023 milliseconds, based on the position of the knob and the value of potPosition.

Turn the LED off.

Wait from 0 to 1023 milliseconds, based on the position of the knob and the value of potPosition.

Repeat.

22 : CIRCUIT 1B

ARDUINOJPROTIP

ARDUINO SERIAL MONITOR: The .

Serial Monitor is one of the Arduino IDE’s FUNCEES seria onitor [
many great included features. When
working with embedded systems, it helps
to see and understand the values that your

program is trying to work with, and it can

be a powerful debugging tool when you
run into issues where your code is not

behaving the way you expected it to. This

circuit introduces you to the Serial Monitor

Serial Monitor button
in the upper-right of

from your potentiometer to it. To see these the Arduino IDE.

by showing you how to print the values

values, click the Serial Monitor button,
found in the upper-right corner of the IDE in most recent versions. You can also select

Tools > Serial Monitor from the menu.

You should see numeric
values print out in the
monitor. Turning the
potentiometer changes the
value as well as the delay
between each print.

If you are having trouble
E' seeing the values, ensure
that you have selected 9600

Serial Monitor printout baud and have auto scroll
and baud-rate menu. dhedkel

CODE TO NOTE

A variable is a placeholder for values that may change

in your code. You must introduce, or “declare,”

INTEGER VARIABLES: variables before you use them. Here we’re declaring a

variable called potPosition of type int (integer). We

int potPosition;
will cover more types of variables in later circuits. Don’t

forget that variable names are case-sensitive!

23 : CIRCUIT 1B

CODE TO NOTE

Serial commands can be used to send and receive data from

your computer. This line of code tells the RedBoard that we
SERIAL BEGIN: want to “begin” that communication with the computer, the
same way we would say “Hi” to initiate a conversation. Notice
Serial.begin(9600); that the baud rate, 9600, is the same as the one we selected

in the monitor. This is the speed at which the two devices

communicate, and it must match on both sides.

We use the analogRead () function to read the value on an
ANALOG INPUT: analog pin. analogRead() takes one parameter, the analog

potPosition = pin you want to use, A0 in this case, and returns a number

analogRead (AB) between 0 (0 volts) and 1023 (5 volts), which is then assigned to

the variable potPosition.

This is the line that actually prints the trimpot value to

the monitor. It takes the variable potPosition and prints
SERIAL PRINT: whatever value it equals at that moment in the loop (). The
n at the end of printin tells the monitor to print a new

Serial.

. .y line at the end of each value; otherwise the values would all
println(potPosition)}
run together on one line. Try removing the 1n to see what

happens.

CODING CHALLENGES

CHANGING THE RANGE: Try multiplying, dividing or adding to your sensor reading so
that you can change the range of the delay in your code. For example, can you multiply the
sensor reading so that the delay goes from 0-2046 instead of 0-1023?

ADD MORE LEDS: Add more LEDs to your circuit. Don’t forget the current-limiting
resistors. You will need to declare the new pins in your code and set them all to ([(VL{VAD-

Try making individual LEDs blink at different rates by changing the range of each

using multipilcation or division.

TROUBLESHOOTING

A Make sure that your 5V, A0 and GND pins are properly
The potentiometer always . . .
connected to the three pins on your potentiometer. It is

reads as 0 or 1023 o . . .

easy to misalign a wire with the actual pot pin.

Make sure that you have selected the correct baud rate,
No values or random 9600. Also ensure that you are on the correct serial
characters in port. The same serial port you use when uploading
Serial Monitor code to your board is the same serial port you use to

print values to the Serial Monitor.

You've completed
Circuit 1B!

Continue to circuit 1C to learn about photoresistors and analog to digital conversion.

BLINKING READING A READING A
AN LED POTENTIOMETER PHOTORESISTOR RGB NIGHT-LIGHT

25 : CIRCUIT 1B

Circuit 1C:
Photoresistor

In circuit 1B, you got to use a

potentiometer, which varies resistance

based on the twisting of a knob. In this

8

PHOTORESISTOR

NEW
COMPONENTS

PHOTORESISTORS are light-
sensitive, variable resistors. As

Ao

more light shines on the sensor’s
head, the resistance between its
two terminals decreases. They’re

an easy-to-use component in

projects that require ambient-
light sensing.

NEW CONCEPTS

ANALOG TO DIGITAL CONVERSION:
In order to have the RedBoard sense analog
signals, we must first pass them through
an Analog to Digital Converter (or ADC).
The six analog inputs (A0-A5) covered

in the last circuit all use an ADC. These
pins sample the analog signal and create

a digital signal for the microcontroller to
interpret. The resolution of this signal is
based on the resolution of the ADC. In the
case of the RedBoard, that resolution is 10-
bit. With a 10-bit ADC, we get 2 A 10 = 1024
possible values, which is why the analog
signal can vary between 0 and 1023.

26 : CIRCUIT 1C

4
33OQERESISTOR

circuit, youw'll be using a photoresistor,
which changes resistance based on how
much light the sensor receives. Using this
sensor you can make a simple night-light
that turns on when the room gets dark

and turns off when it is bright.

1OKQiRESISTOR 7 JUMPER WIRES

&

VOLTAGE DIVIDERS CONTINUED:
Since the RedBoard can’t directly interpret
resistance (rather, it reads voltage), we
need to use a voltage divider to use our
photoresistor, a part that doesn’t output
voltage. The resistance of the photoresistor
changes as it gets darker or lighter. That
changes or “divides” the voltage going
through the divider circuit. That divided
voltage is then read in on the analog to
digital converter of the analog input.

The voltage divider equation:

RZ

V :V . R1+R2

out n

assumes that you know three values of
the above circuit: the input voltage (V,),
and both resistor values (R, and R,). If R1
is a constant value (the resistor) and R2
fluctuates (the photoresistor), the amount
of voltage measured on the Vout pin will
also fluctuate.

HOOKUP GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and

hookup table below to see how everything is connected.

roFLAT EDGE
. ==
= LA
(]
. E B
(] EE
= a 10 :: W I0REF
= RESET
(] w-| B E
= =) (g E
(] o
= m s EE
(] m s ER
- M| ||
(] m s
[] LIRE} . ;
(] LI =
- "n 3
(] LI =
= LIRS
(] 2%
= - -
u -
= " .
Ll [] == m 2 L]
| L] LI] m 2 LI}
(] [] m 0
+ - b il f 9 h i + -

ISR TN ¢ REDBOARD CONNECTION = BREADBOARD CONNECTION

(@5veomsy(+))(®GND o= GND(-))

sumper wires (#D13 0w J2)(@A0 = E26)((= E1 0= GND(-))

)\

= £25 0= 5V(+))((= E27 0= GND(-))

Lep | = AL(-) 0= A2(+

3300 RESISTOR
(ORANGE, ORANGE, = E20m G2
BROWN)

10KQ RESISTOR
(BROWN, BLACK, = B26o = C27
ORANGE)

PHOTORESISTOR = A260 = B25

27

CIRCUIT 1C

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch:
File > Examples > SIK-Guide-Code-master > CIRCUIT_1C-PHOTORESISTOR

Select UPLOAD to program the sketch on the RedBoard.

WHAT YOU
SHOULD SEE

The program stores the light level in

a variable. Using an if/else statement,
the variable value is compared to the
threshold. If the variable is above the
threshold (it’s bright), turn the LED off.
If the variable is below the threshold (it’s
dark), turn the LED on. Open the Serial
Monitor in Arduino. The value of the
photoresistor should be printed every so
often. When the photoresistor value drops
below the threshold, the LED should turn
on (you can cover the photoresistor with

your finger for testing).

NEW IDEAS

threshold

PROGRAM OVERVIEW

Store the light level in the variable photoresistor.
2 If the value of the photores-istor is above the thresho'ld (it’s bright), turn the LED off.

3 Otherwise, the value of the photoresistor is below the threshold (it’s dark), turn the LED on.

28 : CIRCUIT 1C

CODE TO NOTE

IF ELSE STATEMENTS:
The if else statement lets your code react to the world by

if(logic statement){ running one set of code when the logic statement in the

//run if true round brackets is true and another set of code when the
} logic statement is false. For example, this sketch uses an
else{ if statement to turn the LED on when it is dark, and else
//run if false statement to turn the LED off when it is light.

}

Programmers use logic statements to translate things

that happen in the real world into code. Logic statements

use logical operators like ‘equal to’ ==, ‘greater than’
LOGICAL OPERATORS: ; 35 9ess than’ <, to make comparisons. When the

(photoResistor < comparison is true (e.g., 4 < 5), then the logic statement

threshold) is true. When the comparison is false (e.g., 5 < 4) then the

logic statement is false. This example is asking whether
the variable photoresistor is less than the variable
threshold.

CODING CHALLENGE

RESPONSE PATTERN: Right now your if statement turns the LED on when it

gets dark, but you can also use the light sensor like a no-touch button. Try using

and to make the LED blink a pattern when the light level
drops, then calibrate the threshold variable in the code so that the blink pattern triggers

when you wave your hand over the sensor.

REPLACE 10KQ RESISTOR WITH AN LED: Alter the circuit by replacing the
10KQ resistor with an LED (the negative leg should connect to GND). Now what happens

when you place your finger over the photoresistor? This is a great way to see Ohm’s

law in action by visualizing the effect of the change in resistance on the current flowing
through the LED.

29 : CIRCUIT 1C

TROUBLESHOOTING

. o Try unplugging your USB cable and plugging it back in. In the
Nothing is printing in .
K A Arduino IDE, go to Tools > Port, and make sure that you select
the Serial Monitor .

the right port.

Start the Serial Monitor in Arduino. Look at the value that the
photoresistor is reading in a bright room (e.g., 915). Cover the
photoresistor, or turn the lights off. Then look at the new value
that the photoresistor is reading (e.g., 550). Set the threshold
in between these two numbers (e.g., 700) so that the reading

The light never turns

on or always stays on

is above the threshold when the lights are on and below the
threshold when the lights are off.

You've completed
Circuit 1C!

Continue to circuit 1D to learn about RGB LEDs, functions and pulse-width modulation.

BLINKING READING A READING A RGB NIGHT-LIGHT
AN LED POTENTIOMETER PHOTORESISTOR

® o—0 0

30 : CIRCUIT 1C

Circuit 1D: RGCB
Night-Light

In this circuit, youw’ll take the night-light
concept to the next level by adding an
RGB LED, which is three differently
colored Light-Emitting Diodes (LEDs)
built into one component. RGB stands
for Red, Green and Blue, and these three
colors can be combined to create any

color of the rainbow!

R -
RG D PHOTORESISTOR 3 33005 RESISTORS 10KQ ,.E RESISTOR
ol L™

12ZHUMPER/WIRES POTENTIOMETER

NEW COMPONENTS

RGB LED: An RGB LED is actually three
small LEDs — one red, one green and one
blue — inside a normal LED housing. This
RGB LED has all the internal LEDs share
the same ground wire, so there are four
legs in total. To turn on one color, ensure
ground is connected, then power one of the
legs just as you would a regular LED. Don’t
forget the current-limiting resistors. If you
turn on more than one color at a time, you
will see the colors start to blend together to

form a new color.

RED —
COMMON (GND) =

GREEN

BLUE —

NEW CONCEPTS

ANALOG OUTPUT (PULSE-WIDTH
MODULATION): The digitalWrite()
command can turn pins on (5V) or off (0V),
but what if you want to output 2.5V? The
analogWrite() command can output 2.5
volts by quickly switching a pin on and

NEW IDEAS

analogWrite()

off so that it is only on 50 percent of the
time (50% of 5V is 2.5V). By doing this, any
voltage between 0 and 5V can be produced.
This is what is known as Pulse-Width
Modulation (PWM). It can create many
different colors on the RGB LED.

31 : CIRCUIT 1D

HOOKUP

GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and
hookup table below to see how everything is connected.

— FLAT EDGE

Ay e n
+ - L B (] LI] i i
| == i e T w16 - |l
T T e |0 W
B ——
B I o T]))
M camfimn A s ma, |BE
LI | " H B NN
A IR W ||
= = o ®H B N " H B NN ‘.
e I w o |
= = nE E EE= " m EE R ‘.
[iz H B E N " H BN N2 “
am| cemEan o
" B EE " E EEE .
'-._*fl;‘
Kiﬁ‘lllnlxa N
~'-'—[=27 |BE
" B EE e ————
[nn D
am LI] e g
- " n CICICICRCTER
] (I] mEEE N2
i 1 HEl | REMINDER
" n TR
nn] G ®
LI | -
- K
nn .. " mmx [wm
L] " TEE R threshold
nn R
+_ b c d e f g h i +_

CONNECTION TYPE REDBOARD CONNECTION = BREADBOARD CONNECTION

JUMPER WIRES

RGB LED

330Q RESISTORS
(ORANGE, ORANGE,
BROWN)

10KQ RESISTOR
(BROWN, BLACK,
ORANGE)

PHOTORESISTOR

POTENTIOMETER

32 : CIRCUIT 1D

(®5vomsv+))(@GND o= GND(-))(®D9 = J5)

(®p100=J3)(@D110m 2)(@A00nE26)(@AL0mELG)

(=E150m5v(+)) (= E27:GND(-))(= E4:o= GND(-))(= E25 = 5V(+))

= E27 0= GND (-)

(‘= AS(RED) - = A4(GND) - = A3(GREEN) - = A2(BLUE))

(=E20m 62)(=E30m 63)(=E50= G5)

= B26 0o ® C27

= A26 0 = B25

(=B15 = B16 = B17)

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch:
File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_1D-RGB NIGHT LIGHT

Select UPLOAD to program the sketch on the RedBoard.

WHAT YOU
SHOULD SEE

This sketch is not dissimilar from
the last. It reads the value from

the photoresistor, compares it to

a threshold value, and turns the
RGB LED on or off accordingly.

This time, however, we’ve added a
potentiometer back into the circuit.
When you twist the trimpot, you
should see the color of the RGB LED
change based on the trimpot’s value.

PROGRAM OVERVIEW

Store the light level from pin A0 in the variable photoresistor.
Store the potentiometer value from pin A1 in the variable potentiometer.

If the light level variable is above the threshold, call the function that turns the RGB LED off.

If the light level variable is below the threshold, call one of the color functions to turn the RGB
LED on.

If potentiometer is between 0 and 150, turn the RGB LED on red.
If potentiometer is between 151 and 300, turn the RGB LED on orange.
If potentiometter is between 301 and 450, turn the RGB LED on yellow.

If potentiometer is between 451 and 600, turn the RGB LED on green.

2
3
4
)
6
7
8
9

If potentiometer is between 601 and 750, turn the RGB LED on cyan.

If potentiometer is between 751 and 900, turn the RGB LED on blue.

If potentiometer is greater than 900, turn the RGB LED on magenta.

33 : CIRCUIT 1D

CODE TO NOTE

ANALOG OUTPUT (PWM):

(RedPin, 100);

The
0 and 5V on a pin. The function breaks the range

() function outputs a voltage between

between 0 and 5V into 255 little steps. Note that we are
not turning the LED on to full brightness (255) in this
code so that the night-light is not too bright. Feel free to
change these values and see what happens.

NESTED IF STATEMENTS:

if(logic statement){
if(logic statement){

}
}

A nested if statement is one or more if statements
“nested” inside of another if statement. If the parent

if statement is true, then the code looks at each of the
nested if statements and executes any that are true. If
the parent if statement is false, then none of the nested

statements will execute.

MORE LOGICAL
OPERATORS:

(potentiometer > 0 &&

potentiometer <= 150)

These if statements are checking for two conditions

by using the AND && operator. In this line, the if
statement will only be true if the value of the variable
potentiometer is greater than 0 AND if the value is less
than or equal to 150. By using &&, the program allows the
LED to have many color states.

DEFINING A FUNCTION:

void function_name(){

}

This is a definition of a simple function. When
programmers want to use many lines of code over and
over again, they write a function. The code inside the
curly brackets “executes” whenever the function is
“called” in the main program. Each of the colors for the
RGB LED is defined in a function.

CALLING A FUNCTION:

function_name();

This line “calls” a function that you have created.
In a later circuit, you will learn how to make more
complicated functions that take data from the main

program (these pieces of data are called parameters).

34 : CIRCUIT 1D

CODING CHALLENGES

ADD MORE COLORS: You can create many more colors with the RGB LED. Use the
ENELTAIRERLI @Y function to blend different values of red, green and blue together to

make even more colors. You can divide the potentiometer value and make more nested

if statements so that you can have more colors as you twist the knob.

MULTI-COLOR BLINK: Try using delays and multiple color functions to have your

RGB LED change between multiple colors when it is dark.

CHANGE THE THRESHOLD: Try setting your threshold variable by reading the
value of a potentiometer. By turning the potentiometer, you can then change the

threshold level and adjust your night-light for different room:s.

FADING THE LED: Use EREICAISEION to get your LED to pulse gently or

smoothly transition between colors.

TROUBLESHOOTING

Open the Serial Monitor and make sure that your photoresistor is
returning values between 0 and 1023. Cover the photoresistor; the
The LED never values should change. If they do not change, check your circuit.

turns on or off Make sure that your threshold variable sits in between the value that

the photoresistor reads when it is bright and the value when it is
dark (e.g., bright = 850, dark = 600, threshold = 700).

My LED doesn’t Make sure that all three of the pins driving your RGB LED are set to
show the colors OUTPUT, using the pinMode () command in the setup section of the

that I expect code. Then make sure that each leg of the LED is wired properly.
Nothing is . L .
R Try unplugging your USB cable and plugging it back in. In the
printing in the . .
. . Arduino IDE, go to Tools > Port, and select the right port.
Serial Monitor

You've completed
Circuit 1D!

Continue to Project 2 to explore using buzzers to make sound.

BLINKING READING A READING A
AN LED POTENTIOMETER PHOTORESISTOR

& o—0 0

35 : CIRCUIT 1D

RGB NIGHT-LIGHT

&)
PROJECT 2

In Project 2, you will venture into the
world of buttons and buzzers while
building your own “Simon Says” game!
“Simon Says” is a game in which the LEDs
flash a pattern of red, green, yellow and
blue blinks, and the user must recreate the
pattern using color-coded buttons before

the timer runs out.

36 : CIRCUIT 2A

BUZZER DIGITAL TRUMPET ‘SIMON SAYS’ GAME

NEW COMPONENTS INTRODUCED
IN THIS PROJECT

- BUZZER
- BUTTONS

NEW CONCEPTS INTRODUCED
IN THIS PROJECT

- ARRAYS

BINARY

DIGITAL INPUTS

PULL-UP RESISTORS

FOR LOOPS

MEASURING ELAPSED TIME

YOU WILL LEARN

- HOW TO MAKE TONES
WITH A BUZZER
HOW TO READ A BUTTON USING
DIGITAL INPUTS

+ HOW TO PROGRAM A GAME

. . In this circuit, youw’ll use the RedBoard and
C IrCul t ZA B uzzer a small buzzer to make music, and youw’ll
learn how to program your own songs

using arrays.

1 YOU

POTENTIOMETER PIEZO BUZZER 4 JUMPER WIRES

5y lI

NEED

NEW COMPONENTS frequency on the specified pin. The

frequency and duration can both be passed

BUZZER: The buzzer uses a small to the tone () function when calling it.

magnetic coil to vibrate a metal disc inside To turn the tone off, you need to call

a plastic housing. By pulsing electricity noTone() or pass a duration of time for it
to play and then stop. Unlike PWM, tone()

can be used on any digital pin.

through the coil at different rates, different
frequencies (pitches) of sound can be
produced. Attaching a potentiometer to
the output allows you to limit ARRAYS are used like variables, but they
the amount of current moving ~ can store multiple values. The simplest

through the buzzer and lower array is just a list. Imagine that you want
its volume. to store the frequency for each note of

the C major scale. We could make seven

variables and assign a frequency to

NEW CONCEPTS

RESET BUTTON: The RedBoard has a
built-in reset button. This button will reset

each one, or we could use an array and
store all seven in the same list. To refer

to a specific value in the array, an index

the board and start the code over from the number is used. Arrays are indexed from

beginning, running setup () then Loop (). 0. For example, to call the first element in

the array, use array_name[0] ; to call the

-I second element, use array_name[1] ; and
= SO on.

>
- (9]
< wlZz
O g N USING USING AN
g g o ZI| variaBLES ARRAY
: |z
w
A 220 A_FREQUENCY FREQUENCY[O]
B 247 B_FREQUENCY FREQUENCY[1]
C 261 C_FREQUENCY FREQUENCY[2]
TONE FUNCTION: To control the D 294 D_FREQUENCY FREQUENCYI[3]
buzzer, you will use the tone () function. £ 330 E_FREQUENCY FREQUENCVI4]
. F 349 F_FREQUENCY FREQUENCY([5]
This function is similar to PWM in that
G 392 G_FREQUENCY FREQUENCY[6]

it generates a wave that is of a certain

37 : CIRCUIT 2A

HOOKUP GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and
hookup table below to see how everything is connected.

B i
: i @
L |mw) 1 so=
7 = SDA=
E VOLUME KNOB: Notice E
% that only two of the N 2
1 potentiometer’s legs are . ?‘
] usedin these circuits. The .
1 potentiometer is acting as =
] avariable resistor, limiting ~ |*
] the amount of current =
1 flowing to the speaker and =
] thus affecting the volume as |}
1 you turn the knob. =
. .
45

LIS ICIR AT ¢ REDBOARD CONNECTION = BREADBOARD CONNECTION

sumper wires (9 GND = GND(-))(#D10w = F1)(= E20m GND(-))(= E10nF3)

Buzzer | ® H1(+) o = H3(-)
POTENTIOMETER =Bl+= B2-= B3

38 : CIRCUIT 2A

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch:
File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_2A-BUZZER

Select UPLOAD to program the sketch on the RedBoard.

WHAT YOU
SHOULD SEE

When the program begins, a song will
play from the buzzer once. To replay
the song, press the reset button on the
RedBoard. Use the potentiometer to

adjust the volume.

PROGRAM OVERVIEW

Play the first note for x number of beats using the play() function.

A: (Inside the play() function): Take the note passed to the play function and compare it to
each letter in the notes array. When you find a note that matches, remember the index
position of that note (e.g., sixth entry in the notes array).

B: Get a frequency from the frequency array that has the same index as the note that matched
(e.g., the sixth frequency).

C: Play that frequency for the number of beats passed to the play () function.

Play the second note using the play() function

2

...and so on.

39 : CIRCUIT 2A

CODE TO NOTE

The char, or character, variable stores character
values. In this sketch, the play() function gets
passed two variables: a character variable that
CHARACTER VARIABLES: represents the musical note we want to play and

an integer variable that represents how long to
void play(char note, int play that note. A second array takes the character
beats) variable and associates a frequency value to it.
This makes programming a song easier as you can
just reference the character and not the

exact frequency.

The tone() function will pulse power to a pin at
TONE FUNCTION:

a specific frequency. The duration controls how

tone(pin, frequency, long the sound will play. tone () can be used on

duration); any digital pin.

To declare an array, you must give it a name,

DECLARING AN ARRAY: then either tell Arduino how many positions the

array will have or assign a list of values to the

array_name[array_size]; array. An array must contain all the same type of

variables and be declared as such.

To call one of the values in an array, simply type
CALLING AN ARRAY: the name of the array and the index of the value.
array_name[index_#1; Don’t forget the index starts at 0, not 1, so to call
the first element, use array_name[0] ;.

CODING CHALLENGES

CHANGE THE TEMPO OF THE SONG: Experiment with the oLl 441K
variable to change the tempo of the song.

MAKE YOUR OWN SONG: Try changing the notes to make a different song. Spaces

“0” can be used for rests in the song.

40 : CIRCUIT 2A

TROUBLESHOOTING

The song is too . .
i Turn the potentiometer to adjust the volume.
quiet or too loud

Try pressing the reset button on the RedBoard. If that
No sound is playing doesn’t work, check your wiring of the buzzer. It’s easy to
misalign a pin with a jumper wire or reverse the buzzer.

You've completed
Circuit 2A!

Continue to circuit 2B to explore digital inputs and buttons.

BUZZER DIGITAL “SIMON SAYS” GAME
TRUMPET

41 : CIRCUIT 2A

Circuit 2B: Digital
Trumpet

YOU
NEED

POTENTIOMETER

1y

NEW COMPONENTS

BUTTONS: Also known as momentary
switches, buttons only remain in their ON
state as long as they’re being actuated,

or pressed. Most often

g g momentary switches are
' best used for intermittent

These switches have a nice, tactile, “clicky”

user-input cases: reset
button and keypad buttons.

feedback when you press them.

Note that the different colors are just
aesthetic. All of the buttons included

behave the same, no matter their color.

NEW CONCEPTS

BINARY NUMBER SYSTEM: Number
systems are the methods we use to
represent numbers. We’re most used to
operating within the comfy confines of

a base-10 number system, but there are
many others. The base-2 system, otherwise
known as binary, is common when

dealing with computers and electronics.
Computers, at their lowest level, really only
have two ways to represent the state of
anything: 1 or 0, which can also be thought

42 : CIRCUIT 2B

PIEZO BUZZER

Learn about digital inputs and buttons
as you build your own digital trumpet!
Buttons are all around us, from the keys
on your keyboard to the buttons on your

remote control.

(o

10 JUMPER 'WIRES

3 PUSH BUITONS

of as ON or OFF, TRUE or FALSE, HIGH or
LOW. Almost all electronics rely on a base-2
number system to store and manipulate
numbers. The heavy reliance electronics
places on binary numbers means it’s
important to know how the base-2 number
system works.

DIGITAL INPUT: In circuit 14, you
worked with digital outputs. Each of the
14 digital pins can also be digital inputs.
Digital inputs only care if something is in
one of two states, 0 or 1. Digital inputs are
great for determining if a button has been

pressed or if a switch has been flipped.

PULL-UP RESISTORS: A pull-up
resistor is a small circuit that holds the
voltage HIGH (5V) on a pin until a button is
pressed, pulling the voltage LOW (0V). The
most common place you will see a pull-up
resistor is when working with buttons. A
pull-up resistor keeps the button in one
state until it is pressed. The RedBoard has
built-in pull-up resistors, but they can also
be added to a circuit externally. This circuit
uses the internal pull-up resistors, covered

in more detail in the Code to Note section.

HOOKUP GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and
hookup table below to see how everything is connected.

b o< d e 9 n
LT " -
L
!,..-L.. - CE _nnn
(L] —— - .
i mmn @
B = cm E EEN mEEEEEs == 1 scL™
e m mEm = mEoE
] [s m mEm = EEE: |
L I w s | |~
"l cm e mEm w o | | =R
IR w ||
"]l camman "ol
e e m e m = EE o -
:: vEEmEE " EEoE :: g
am| cmEmEE] (e s
o R)5 G
aom||7E IIII7|..
rEoEom
am|lommm -
am|lommm n
am|l2mmm . n
am||zmmm —
am| = mm |..
nmomm
nw| e ww . n
an| smmm "
| vmmm LI |
LU R —
LI 2m mm LI
som m W e
+-|re e ——

(®GND<=GND(-))(#D10w=F1)(®D4wn 18)(®D30m 24)

sumper wires (@D2= J30)(= E2:0m GND(-) (= J16 0= GND(-))('= J220= GND(-))

(omrawn)(aem)

BUZZER = H1(+) 0 m H3(-)

PUSH BUTTONS = D16/18 .o = G16/18 = D22/240 = G22/24 = D28/30 1 = G28/30
(= D16/ /18) / /24 (= D28/ /30)

POTENTIOMETER =Bl-= B2-= B3

43 : CIRCUIT 2B

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch:
File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_2B-DIGITAL TRUMPET

Select UPLOAD to program the sketch on the RedBoard.

WHAT YOU
SHOULD SEE

Different tones will play when
you press different keys.
Turning the potentiometer will

adjust the volume.

PROGRAM OVERVIEW

Check to see if the first button is pressed.
A: If it is, play the frequency for c.

B: If it isn’t, skip to the next else if statement.

Check to see if the second button is pressed.
A: If it is, play the frequency for e.

B: If it isn’t, skip to the next else if statement.

Check to see if the third button is pressed.
A: If it is, play the frequency for g.

B: If it isn’t, skip to the else statement.

If none of the if statements are true, turn the buzzer off.

: CIRCUIT 2B

CODE TO NOTE

To declare a standard input, use the line

pinMode(pin, INPUT)j.If youwould like to use
INTERNAL PULL-UP

one of the RedBoard’s built-in pull-up 20k resistors,

RESISTOR:

it would look like this:
pinMode(pin, INPUT_ pinMode (pin, INPUT_PULLUP);.The advantage
PULLUP) 3

of external pull-ups is being able to choose a more
exact value for the resistor.

Check to see if an input pin is reading HIGH
(5V) or LOW (0V). Returns TRUE (1) or FALSE (0)
depending on the reading.

DIGITAL INPUT:

digitalRead(pin);

This is another logical operator. The “is equal to”
symbol == can be confusing. Two equals signs are the
IS EQUAL TO:)
same as asking, “Are these two values equal to one
if(digitalRead(pin) == another?” Contrarily, one equals sign means assigning
Low) a particular value to a variable. Don’t forget to add the

second equals sign if you are comparing two values.

CODING CHALLENGES

CHANGE THE KEY OF EACH BUTTON: Use the frequency table in the comment
section at the end of the code to change the notes that each button plays.

PLAY MORE THAN THREE NOTES WITH IF STATEMENTS: By using
combinations of buttons, you can play up to seven notes of the scale. You can do this in

a few ways. To get more practice with if statements, try adding seven if statements and

using the Boolean AND operator to represent all of the combinations of keys.

PLAY MORE THAN THREE NOTES WITH BINARY MATH: You can use a clever
math equation to play more than three notes with your three keys. By multiplying each
key by a different number, then adding up all of these numbers, you can make a math
equation that produces a different number for each combination of keys.

45 : CIRCUIT 2B

TROUBLESHOOTING

The buzzer is too loud
or too quiet

Turn the potentiometer to adjust the volume.

The RedBoard thinks
one key is always
pressed

Check your wiring. You may have GND and 5V backward if one
or more buttons behave as though they’re pressed all the time.

The buttons are

not working

First, make sure that the wiring is correct. It is easy to misalign
a wire with a button leg. Second, make sure that you have
declared your buttons as inputs and have enabled the internal
pull-up resistors with INPUT_PULLUP.

You've completed

Circuit 2B!

Continue to circuit 2C and learn how to build your own game using buttons and LEDs.

BUZZER

DIGITAL
TRUMPET “SIMON SAYS” GAME

46 : CIRCUIT 2B

B >(©)

The “Simon Says” game uses LEDs to flash a

Circuit 2C: "Simon
Says’ Game

pattern, which the player must remember
and repeat using four buttons. This simple
electronic game has been a classic since the

late 1970s. Now you can build your own!

L\‘.. L]

4 LEDS POTENTIOMETER PIEZO BUZZER 16 JUMPER WIRES

YOU
NEED

4 PUSH BUTTONS

fay II

NEW CONCEPTS

FOR LOOPS: A for loop repeats a
section of code a set number of times. The
loop works by using a counter (usually
programmers use the letter “i” for this
variable) that increases each loop until it
reaches a stop value. Here’s an example of
a simple for loop:

for (int i = 03 1 < 55 di++){

Serial.print(i);

}

The for loop takes three parameters in

the brackets, separated by semicolons. The
first parameter is the start value. In this
case, integer 1 starts at 0. The second value
is the stop condition. In this case, we stop
the loop when 1 is no longer less than 5 (i
<51isno longer true). The final parameter
is an increment value. i++ isshorthand
for increase i by 1 each time, but you could
also increase i by different amounts. This
loop would repeat five times. Each time

it would run the code in between the

4 SSOQERESISTORS
/

brackets, which prints the value of 1 to the

Serial Monitor.

MEASURING DURATIONS OF TIME
WITH MILLIS(): The RedBoard has a
built-in clock that keeps accurate time.
You can use the mi11lis() command to
see how many milliseconds have passed
since the RedBoard was last powered. By
storing the time when an event happens
and then subtracting the current time, you
can measure the number of milliseconds
(and thus seconds) that have passed. This
sketch uses this function to set a time limit

for repeating the pattern.

CUSTOM FUNCTIONS: This sketch

uses several user-defined functions. These
functions perform operations that are
needed many times in the program (for
example, reading which button is currently
pressed or turning all of the LEDs off).
Functions are essential to make more

complex programs readable and compact.

47 : CIRCUIT 2C

HOOKUP GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and
hookup table below to see how everything is connected.

Bl |
om

0 |

nom

2|

e]

1% |

5.

6 W

7.

RN |
10|
20 m
2.

2|

|
% m

E |

% m
e |

=B s - FLAT EDGE

2.

o m
a c d 9

+ mamaw

(®GnD o= GND(-)) (®D10w=F1)(®D9wmy7)(®D8r0mI12)

=

#D70% 13)(®D6mJ18)(@D50= 19)(@Dawm 24)

sumper wires (D3 = J25)(@ D2:0= J30)(= E2:0m GND(-)) (= E100m F3)

(=416 = GND(-)) ("= J2210w GND(-))('= J28 0 = GND(-))

= J10 o = GND(-)

BUZZER = H1(+) 0 = H3(-)

LEDS

=

= H7+ 0= H8-) (= H13+ 0 = H14-) (= H19+ = H20-) (= H25+ 0 = H26-)

POTENTIOMETER =Bl-= B2+= B3

=

= D10/12c0 = G10/12)(l D16/18 0 = G16/18)

PUSH BUTTONS

(= D22/240 = G22/24) (= D28/30 ~ = G28/30)

)

= Jgo= GND(-)) (= J140= GND(-))('= J20 = GND(-))

330Q RESISTOR

48 : CIRCUIT 2C

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch:
File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_2C-SIMON SAYS

Select UPLOAD to program the sketch on the RedBoard.

WHAT YOU
SHOULD SEE

The circuit will flash all of the LEDs
and play a melody. After a few seconds,
it will flash the first light in the pattern.
If you repeat the pattern correctly by
pressing the corresponding colored
button, then the game will move to

the next round and add another color
to the pattern sequence. If you make

a mistake, the “Game Over” melody
will play. If you get to round 10, the
“You Win” melody will play. Press any

button to start a new game.

PROGRAM OVERVIEW

Check if a new game is starting. If it is, play the start sequence. Reset the counter that keeps track of
rounds, and randomly generate a sequence of numbers from 0 to 3 that controls which LEDs the user will

have to remember.

The game works in rounds that progress from 0 to 10. Each round the game will flash LEDs in a pattern,
and then the player has to recreate the pattern by pressing the button(s) that match the LED(s). In the first
round, one LED will flash, and the player will have to press one button. In the eighth round, eight LEDs will

flash, and the player will have to press eight buttons.

Aloop is used to flash LEDs from the sequence until you have flashed the number of LEDs that matches the

round number (1 for round 1, 2 for round 2, etc.).

49 : CIRCUIT 2C

Start a timer, and wait for the player to press a button.

The player has 1.5 seconds to press the correct button.

A: If the time limit runs out before a button is pressed, the player loses.

B: If the player presses the wrong button, the player loses.

C: If the player presses the right button, move on to the next number in the sequence.

D: Repeat this process until the player has lost or correctly repeated the sequence for this round.

If the player repeats the entire sequence for that round, increase the round number by one (this will add

one extra item to the end of the pattern). Then go back to step 3.

Keep incrementing the round until the player loses or finishes 10 rounds. If the player finishes 10 rounds,

play the winning sequence.

CODE TO NOTE

ELAPSED TIME:

The
that have passed since the RedBoard was last turned on.

() function returns the number of milliseconds

(OF
The name for these variables comes from Boolean logic.
The boolean variable type only has two values: 1 or 0
BOOLEAN (also known as HIGH or LOW, ON or OFF, TRUE or FALSE).
VARIABLES:

boolean variable_

name;

Using Boolean variables helps save memory on your
microcontroller if you only need to know if something is true
or false. Space in your microcontroller’s memory is reserved
when a variable is declared. How much memory is reserved

depends on the type of variable.

STORING PIN

Sometimes you will want to cycle through all of the LEDs or

NUMBERS buttons connected to a project. You can do this by storing a
IN ARRAYS: sequence of pin numbers in an array. The advantage of having
int led[] = pins in an array instead of a sequence of variables is that you
{3,5,7,9}; can use a loop to easily cycle through each pin.
FUNCTIONS TO NOTE
This turns one of the four LEDs on and plays the tone associated
flashLED (#LED

to flash);

with it.
0 =Red, 1 = Yellow, 2 = Green, 3 = Blue.

50 :

CIRCUIT 2C

FUNCTIONS TO NOTE

allLEDoff();

Turns all four LEDs off.

buttonCheck()

Uses digitalRead() to check which button is pressed. Returns 0, 1, 2

or 3 if one of the buttons is pressed. Returns 4 if no button is pressed.

startSequence();

Flashes the LEDs and plays tones in a sequence. Resets the round
counter and generates a new random sequence for the user to

remember.

winSequence();

Plays a sequence of tones, turns all of the LEDs on, and then waits for
the player to press a button. If a button is pressed, restarts the game.

loseSequence() 3

Plays a sequence of tones, turns all of the LEDs on, and then waits for
the player to press a button. If a button is pressed, restarts the game.

CODING CHALLENGES

CHANGE THE DIFFICULTY OF THE GAME: Change the difficulty of the game by
changing how fast the player has to press each button or by increasing or decreasing

the number of rounds needed to win. Note that if you increase the number of rounds to

be larger than 16, you will need to change the size of the array (it is set at the top of the

(ol CRIERINERTER O ERINCRIGER int buttonSequence[16]; pB

CHANGE THE SOUND EFFECTS: Try changing the sequence of notes that plays

when you start, win or lose the game.

2-PLAYER MODE: Try changing the code so that two players can play head-to-head.

TROUBLESHOOTING

One of the LEDs isn’t
lighting up

Make sure your LED is oriented in the right direction. If the LED
still doesn’t work, try wiggling the resistor and the wires that
connect to the LED.

The buzzer is too loud
or too quiet

Turn the potentiometer to adjust the volume.

One of the buttons isn’t
working

Carefully check your wiring for each button. One leg of the
button should connect to a pin on the RedBoard; the other leg
should connect to the ground rail on the breadboard. Make sure

they are declared correctly.

None of the buttons or

LEDs are working

Make sure you don’t have 5V and GND mixed up. Double check
that you have a GND connection from the RedBoard to the GND
rail on the breadboard.

Still not working?

Jumper wires unfortunately can go “bad” from getting bent

too much. The copper wire inside can break, leaving an open
connection in your circuit. If you are certain that your circuit is
wired correctly and that your code is error-free and uploaded,
but you are still encountering issues, try replacing one or more

of the jumper wires for the component that is not working.

You've completed

Project 2!

Continue to Project 3 to explore using servos and sensors.

BUZZER

DIGITAL
TRUMPET “SIMON SAYS” GAME

52 : CIRCUIT 2C

SERVO MOTORS

&)
PROJECT 3

Tired of your cat walking all over the

kitchen counter? How about the dog
getting into the garbage? Need a way to
stop your younger sibling from sneaking
into your bedroom? Learn how to protect
against all of these annoyances as you
build a multipurpose motion alarm. The
alarm detects distance and motion using
anultrasonic distance sensor, and

creates motion using a servo motor.

DISTANCE SENSOR

NEW COMPONENTS INTRODUCED
IN THIS PROJECT

SERVO MOTOR
ULTRASONIC DISTANCE SENSOR

NEW CONCEPTS INTRODUCED
IN THIS PROJECT

PWM DUTY CYCLE
ARDUINO LIBRARIES
OBJECTS AND METHODS
DIGITAL SENSORS
DATASHEETS

SERVO MECHANISMS

YOU WILL LEARN

HOW TO CONTROL A SERVO MOTOR
HOW TO USE AN ULTRASONIC
DISTANCE SENSOR

HOW TO MOVE OBJECTS USING
SERVO MECHANISMS

53 : CIRCUIT 3A

Circuit 3A: Servo
Motors

YOU

POTENTIOMETER

SSERVO 2

NEED

Ty

NEW COMPONENTS

SERVO MOTORS: Regular DC motors
have two wires. When you hook the wires
up to power, the motor spins around and
around. Servo motors, on the other hand,
have three wires: one
for power, one for

P

=

ground and one for
signal. When you send
the right signal through

the signal wire, the

servo will move to a

specific angle and stay
there. Common servos rotate over a range
of about 0° to 180°. The signal that is sent is
a PWM signal, the same used to control the
RGB LED in Project 1.

Included with

your servo motor

you will find a

variety of motor

mounts that

connect to the
shaft of your servo. You may choose to
attach any mount you wish for this circuit.
It will serve as a visual aid, making it easier
to see the servo spin. The mounts will also
be used at the end of this project.

54 : CIRCUIT 3A

In this circuit, you will learn how to wire
a servo and control it with code. Servo
motors can be told to move to a specific
position and stay there. Low-cost servo
motors were originally used to steer RC
airplanes and cars, but they have become
popular for any project where precise
movement is needed.

LI
8 JUMPER WIRES SCISSORS

(NOT INCLUDED)

NEW CONCEPTS

DUTY CYCLE: Pulse-Width Modulation
(PWM) is a great way to generate servo
control signals. The length of time a PWM
signal is on is
referred to as
the duty cycle.
Duty cycle is
measured in
percentage.
Thus a duty cycle of 50 percent means the
signal is on 50 percent of the time. The
variation in the duty cycle is what tells the

servo which position to go to in its rotation.

ARDUINO LIBRARIES: Writing code
that sends precise PWM signals to the
servo would be time consuming and
would require a lot more knowledge about
the servo. Luckily, the Arduino IDE has
hundreds of built-in and user-submitted
containers of code called libraries. One of
the built-in libraries, the Servo Library,
allows us to control a servo with just a few
lines of code!

To use one of the built-in Arduino libraries,
all you have to do is “include” a link to its
header file. A header file is a smaller code
file that contains definitions for all the
functions used in that library. By adding

a link to the header file in your code, you
are enabling your code to use all of those
library functions. To use the Servo Library,
you would add the following line to the top
of your sketch.

#include <Servo.h>

OBJECTS AND METHODS: To use the
Servo Library, you will have to start by

SERVO BASICS: Servo motor
connectors are polarized, but there
is no place to attach them directly.
Instead, connect three jumper
wires to the female 3-pin header

on the servo. This will make it so

you can connect the servo to the

breadboard. The servo wires are
color coded to make hookup simple.

S —

o

creating a servo object, like this:

Servo myServo;

Objects look a lot like variables, but they
can do much more. Objects can store
values, and they can have their own
functions, which are called methods.

The most used method that a servo object

hasis .write():

myServo.write(90);

The write method takes one parameter, a
number from 0 to 180, and moves the servo
arm to the specified position (in this case,
degree 90).

Why would we want to go to the trouble of
making an object and a method instead of
just sending a servo control signal directly
over a pin? First, the servo object does the
work of translating our desired position
into a signal the servo can read. Second,
using objects makes it easy for us to add
and control more than one servo.

CONTROL
+5V
GND

55 : CIRCUIT 3A

HOOKUP GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and
hookup table below to see how everything is connected.

b < d f 9 n i
[}
L
LI} (] (]
--.;****
= sEEEEN LI]
| cm E mmm = mEm
L] " mEn
cm E mmE = mEm
om m mE N = mEn
om o EoEom = Em B I0REF
e EmEm = mEm MORESET
ER W LI]
e E EEm = mEm
L}
aw | vmEE LI]
aw| cmmEEn = mEm
| cREEEE LI]
am| 7HE . = mEm
rE o EEE " EEoE
mn| ommmm = EEE
am| " mmn mEEEE
am|lz2mmmmm = EEEn
an| 2zmnmmmn " EEE2
mn| zmmmmnm = EEoE
N "o oE
mE| s mEnm LW S
mE| xmmmEnm = EEoEoE
CRUN RE W " EEoE
mn| e mEn = EEoE
LI 2@ @ E NN "N NN N2
4 - |emEmEE = EEEoE
boc o4 e f g n i

(LTSI RAZITN ¢ REDBOARD CONNECTION = BREADBOARD CONNECTION

(®nowsE2)(®5vonsy+))(@GND o= GND(-))
(=E10msv(+))(=E30mGND(-))

JUMPER WIRES

POTENTIOMETER = Bl= B2+ = B3

servo Leaps (WHITE WIRE © ¢ D9)('RED WIRE © = 5V(+))(BLACKWIRE © = GND(-))

56 : CIRCUIT 3A

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch:
File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_3A-SERVO

Select UPLOAD to program the sketch on the RedBoard.

WHAT YOU
SHOULD SEE

Turning the potentiometer will
cause the servo arm to turn. The
servo will mimic the movement
of the potentiometer, twisting in
the same clockwise or counter-
clockwise direction. If you've
attached a servo mount to the arm
as shown, this movement will be

easier to see.

PROGRAM OVERVIEW

I Read the value of the potentiometer.
A Convert the potentiometer value (0-1023) to an angle (20-160).

K Tell the servo to go to this angle.

CODE TO NOTE

The #include command adds a library to your
INCLUDING LIBRARIES: Arduino program. After you include a library,
#include <Servo.h> you can use the commands in the library in your

program. This line adds the built-in Servo Library.

The Servo command creates a new servo object
CREATING SERVO OBJECTS: and assigns a name to it, myServo in this case. If

Servo myServo; you make more than one servo object, you will

need to give them different names.

57 : CIRCUIT 3A

CODE TO NOTE

The .attach(); method tells the servo
object to which pin the signal wire is
SERVO ATTACH: attached. It will send position signals
myServo.attach(9); to this pin. In this sketch, pin 9 is used.
Remember to only use digital pins that are
capable of PWM.

As shown in previous circuits, the analog
pin values on your microcontroller vary
from 0 to 1023. But what if we want those
values to control a servo motor that only
RANGE MAPPING: accepts a value from 0 to 180? The map ()
map (potPosition,0,1023,20,160); function takes a range of values and
outputs a different range that can contain
more or fewer values than the original. In
this case, we are taking the range 0-1023

and mapping it to the range 20-160.

The .write(); method moves the servo
SERVO WRITE:
to a specified angle. In this example, the

myServo.urite(90); servo is being told to go to angle 90.

CODING CHALLENGES

REVERSE THE SERVO DIRECTION: Try making the servo move in the opposite
direction of the potentiometer.

CHANGE THE RANGE: Try altering the map function so that moving the potentiometer

a lot only moves the servo a little or vice versa.

SWAP IN A DIFFERENT SENSOR: Try swapping a light sensor in for the
potentiometer. Then you can make a dial that reads how much light is present!

TROUBLESHOOTING

Check the wiring on your servo. Make sure the red wire on the
The servo doesn’t . L

servo cord is connected to 5V, the black wire is connected to
move

GND and the white signal wire is connected to digital pin 9.

Although these servos are supposed to move from 0 to 180

A degrees, sometimes sending them to the extremes of their
The servo is

L. range causes them to twitch (the servo is trying to move
twitching

farther than it can). Make sure you aren’t telling the servo to

move outside of the 20-160 degree range.

You've completed
Circuit 3Al

Continue to circuit 3B to learn about using distance sensors.

SERVO MOTORS DISTANCE SENSOR MOTION ALARM

59 : CIRCUIT 3A

Circuit 3B:
Distance
Sensor

YOU
NEED

RGB LED 3 SSOQgRESISTORS

NEW COMPONENTS

ULTRASONIC DISTANCE SENSOR:
Distance sensors work by sending pulses of
light or sound out from a transmitter, then
timing how long it takes for the signals to
bounce off an object and return to a receiver
(just like sonar). Some sensors use infrared
light, some use lasers, and some, like the
HC-SR04 included in your Kit, use ultrasonic

sound (sound so high-pitched that you can’t
hear it).

NEW CONCEPTS

DATASHEETS: When working with
electronics, datasheets are your best
friend. Datasheets contain all the relevant
information needed for a part. In this
circuit, we are calculating distance based
on the time it takes sound waves to be
transmitted, bounce off an object and then
be received. But, how can we tell distance
from that information? The answer lies in

60 : CIRCUIT 3B

Distance sensors are amazing tools with

all kinds of uses. They can sense the
presence of an object, they can be used

in experiments to calculate speed and
acceleration, and they can be used in
robotics to avoid obstacles. This circuit will
walk you through the basics of using an
ultrasonic distance sensor, which measures

distance using sound waves!

f

10 JUMPER WIRES

the datasheet for the distance sensor. In
it, you can find the equation the program
needs to interpret the distance. View the
datasheet at http://sfe.io/HCSR04.

ELSE IF STATEMENTS: In the night-
light circuit, you used an if/else statement
to run one set of code when a logic
statement was true, and another when

it was false. What if you wanted to have
more than two options? Else if statements
let you run as many logical tests as you
want in one statement. For example, in the
code for this circuit, there is an if statement
that flows like this:

1. If the distance is less than 10, make
the RGB LED red.

2. Else if the distance is more than
10 but less than 20, make the RGB LED

yellow.
3. Else make the RGB LED green.

To have four or five colors for different
distances, add more else if statements.

Else if statements are different from
nested if statements in that only one of

the statements above can be true, whereas
multiple nested if statements could be true.

HOOKUP GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and
hookup table below to see how everything is connected.

POWER (5V)

TRIGGER PULSE INPUT:
ECHO PULSE OUTPUT:
GROUND (0V)

rann
N -

-
o N N .‘
" moms ::
m E Eo
o m om0 _‘
o E E2 .
w e
= = e momom - om o =
"nm L
am sH B N H E WS -
BB EEEE e
e | e
o (] w e
" m AEN BN BN B | L I
ST [
e L]
T -
("L"E--- '
aaa
= ana s .
T w -
"= EE " EEE L
| B B B} " nER -
" EE - En -
| B B B} " B NN +_
FLAT SIDE

TR ATI N 49 REDBOARD CONNECTION = BREADBOARD CONNECTION

(@®5vossv)(@GND o= GND(-))(@®D3w=J25)(@D50m 423)

sumper wires (@ D60w J22)(#D110mE4)(@D1200mE5)(mE30m 5V (+))

(=E6 = GND(-))('= E240= GND(-))

roe teo (= A25(RED) ‘= A24(GND) - = A23(GREEN) - = A22(BLUE))

3300 RESISTORS
(ORANGE, ORANGE, (l E220m GZZ)(= E230m G23)(l E250 = GZS)

BROWN)

DISTANCE SENSOR (- A3(VCC) + = A4(TRIG) - = A5(ECHO) = AG(GND))

61 : CIRCUIT 3B

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch:
File > Examples > SIK-Guide-Code-master > CIRCUIT_3B-DISTANCE SENSOR

Select UPLOAD to program the sketch on the RedBoard.

WHAT YOU
SHOULD SEE

Move your hand or a large, flat
object closer and farther away
from the distance sensor. As the
object approaches, the light will
change from green to yellow to
red. Open the Arduino Serial
Monitor to see the distance

being read from the sensor.

PROGRAM OVERVIEW

Check what distance the sensor is reading.

1: If the distance is less than 10 inches, make the RGB LED red.
2: If the distance is between 10 and 20 inches, make the RGB LED yellow.

3: If the distance value is not equal to the fist two conditions, make the RGB LED green.

TROUBLESHOOTING WARNING:

62 : CIRCUIT 3B

CODE TO NOTE

The float variable, short for floating-point
number, is similar to an integer except it can
represent numbers that contain a decimal point.

FLOAT VARIABLES:]
Floats are good for representing values that need

float echoTime; to be more precise than an integer. Floats allow us
to measure precise distances such as 9.33 inches

instead of just 9 inches.

ELSE IF STATEMENT:

if(logic statement){
//run if first dis true
} Else if statements let you combine more than

else if(second logic one logic statement. Arduino will test each logic

statement) { statement in order; if one is true it will run the code
i/ru" if second ds true in that section and then skip all of the other sections
of code in the remaining statements.
else{
//run if neither 1is true
}
This function tells the distance sensor to send out
an ultrasonic wave form, measures the time it takes
USER-DEFINED FUNCTION: to bounce back to the sensor, and then calculates
getDistance(); the distance based on the speed of sound. This

calculation is based off information found in the

distance sensor’s datasheet.

CODING CHALLENGES

CHANGE THE LIMITS OF THE DISTANCE SENSOR: Try editing the values in the
logic statements so that the RGB LED changes color at different distances.

CHANGE THE UNITS OF THE DISTANCE SENSOR: Try editing the code so that the

distance sensor outputs a different unit of length, such as centimeters or feet.

ADD A FOURTH COLOR: Try adding another else if statement so that there are four
different colors instead of three.

TROUBLESHOOTING

The RGB LED colors aren’t
working or a color is missing

Check the connection for the wire and resistor
connected to each leg of the LED. Ensure the RGB LED is
inserted in the correct orientation.

The distance sensor doesn’t

seem to work

Open up the Serial Monitor on your computer. You
should see a stream of distances being printed in the
monitor. If they are all reading 0 or jumping around,
then check the wiring on your sensor.

The distance sensor still

doesn’t work

Ultrasonic noise pollution will interfere with your
distance sensor readings. If you aim two distance
sensors at each other, they will confuse each other.
Some air-conditioning systems may also emit noises
in the ultrasonic range. Try pointing your sensor
away from the other distance sensors or changing to a
different location.

You've completed

Circuit 3B!

Continue to circuit 3C to explore building mechanisms that interact with your circuits.

SERVO MOTORS

64

DISTANCE SENSOR MOTION ALARM

CIRCUIT 3B

s >(©)

Circuit 3C:
Motion Alarm

3 330Q EE RESISTORS

Iy

PIEZO BUZZER

Time to take your distance sensor project
to the next level. Let’s imagine you want to
stop your cat from prowling around your
countertop. This circuit uses light, sound
and motion to scare away your cat when it
is detected by the distance sensor. Using a
servo motor, you can add a moving pop-up

to animate your alarm.

15 JUMPER WIRES

TAPE PAPER CLIP NEEDLE-NOSE PLIERS MARKERS/PEN PAPER SCISSORS

- (NOT INCLUDED) —4m— — — @404 ————————

NEW CONCEPTS

MECHANISMS: This circuit gets really
fun when you start to use your servo to
animate the world around you. To do

this, you’ll need to connect your servo to
some physical mechanisms. Tape and hot
glue are easy ways to connect things to
your servo. You can also loop a paper clip
through the small holes in the servo arm to

serve as a linkage.

Linkage rods are found on many RC
airplanes, which use servo motors to
control the ailerons, elevators and
rudder.

ASSEMBLY

If you have opted for the extra materials,
use the following instructions to create the

moving pop-up for your motion alarm.

1. Attach the servo mount of your choice.
The motor mounts also come with screws
to secure the mount to the motor. Once
you are finished with this circuit, you may
choose to add a screw to make for a more
robust mechanism. It is recommended you
upload your code and test the mechanism
before screwing it down.

2. Use needle-nose pliers to bend the
paper clip straight. Bend about 1 inch

of the paper clip 90 degrees. Then bend
the other end so it’s about 1/8 inch long.
Repeat this bend once more, making

a hook shape. You should now have a
linkage rod that looks something like this:

65 : CIRCUIT 3C

3. Attach the hook end of the
linkage rod to the end hole on your
servo mount. The motor should be
reattached to the baseplate with
Dual Lock.

4. Cut out the pop-up image of
your choice. We chose this public
domain menacing cat image
(http://sfe.io/cat). The image you
choose should be about 2.5 inches
x 2.5 inches and can be drawn or

printed. Leave a rectangular strip of paper under the image that is about 2 inches long.

"o . 5. Fold along the bottom of the image. Tape the bottom of the
pop-up to the underside of the breadboard baseplate on the
s \ same side to which the servo is connected.

6. Tape the free end of the rod to the back
\ ! of your pop-up image, near the center.

’ 7. Once you have the rest of the circuit built and the code

uploaded, you can fine-tune your moving pop-up and make

any necessary adjustments. Remember to wait until these

adjustments have been made before you screw the servo

—_—— - m - -

mount onto the motor.

[|

66 : CIRCUIT 3C

HOOKUP GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and
hookup table below to see how everything is connected.

JUMPER WIRES

RGB LED

330Q RESISTORS
(ORANGE, ORANGE,
BROWN)

DISTANCE SENSOR

PIEZO BUZZER

SERVO LEADS

(#5vomsv)(®GNDo=GND(-))(@D300=J25)(@D50m 23)

(#p6v=y22)(@D110mE4)(@D1200mE5)(@D100m 14)

(=E30w5v(+)) (=E6wm GND(-)) (= E24:0= GND(-))('= J16 < = GND(-))

(= A25(RED) - = A24(GND) = A23(GREEN) = A22(BLUE))

(=E2200m F22)(wE2300m F23)(= E2500m F25)

(= A3(VCC)- = A4(TRIG)- = AS(ECHO) = A6(GND))

= F14 (+) = F16(-)

(WHITE WIRE - D9) (RED WIRE = 5v(+)) (BLACK WIRE © = GND(-))

67

CIRCUIT 3C

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch:
File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_3C-MOTION ALARM

Select Upload to program the sketch on the RedBoard.

WHAT YOU
SHOULD SEE

The RGB LED will behave as in
your last circuit. It will be green
when objects are far, yellow
when they are midrange and
red when they are close. When
an object is close, the buzzer
will also beep, and the servo
will rotate back and forth. If you
decided to attach a pop-up, it
will move back and forth.

PROGRAM OVERVIEW

Check what distance the sensor is reading.

1: If the distance is less than 10 inches, make the RGB LED red. Then make the servo rotate back and
forth and make the buzzer beep.
2: If the distance is between 10 and 20 inches, make the RGB LED yellow.

3: If the distance value is not equal to the fist two conditions, make the RGB LED green.

CODE TO NOTE

Constants are variables that have been marked as “read-only”

CONSTANTS: and cannot have their value changed as the program progresses.

const int trigPin Constants are great for declaring pin number variables that will
= 11;

not change throughout the program.

CIRCUIT 3C

CODE TO NOTE

In circuit 2A, you made songs using a buzzer and the tone ()

function, but you gave the function three parameters: a pin
NO TONE

number, a frequency and a duration. You can leave out the third
FUNCTION:

parameter, and the tone will play until you change it or turn it
noTone(pin_number) ; off. noTone () turns off a pin that has been activated with the

tone () command.

CODING CHALLENGES

CHANGE THE SERVO BEHAVIOR: Try changing the way your servo behaves
when the distance sensor is triggered.

CHANGE THE ALARM SETTINGS: Try altering the code so the alarm goes off
from much farther or closer distances.

ADD A SECOND MECHANISM: Time to use your imagination! Try your hand
at making different objects move with your servo motor. Don’t have a cat? Make an

interactive pop-up story, room alarm, treat dispenser or automatic fish feeder.

TROUBLESHOOTING

The RGB LED colors aren’t Check the connection for the wire and resistor connected to
working or a color is each leg of the LED. Ensure the RGB LED is inserted in the
missing correct orientation.

Open up the Serial Monitor on your computer. You should
The distance sensor see a stream of distances being printed in the monitor. If
doesn’t seem to work they are all reading 0 or jumping around, check the wiring

on your sensor.

Ultrasonic noise pollution will interfere with your

distance sensor readings. If you aim two distance

. i sensors at each other, they will confuse each other.

The distance sensor still . L .

Some air-conditioning systems may also emit noises

doesn’t work . . L
in the ultrasonic range. Try pointing your sensor
away from the other distance sensors or moving to a

different location.

69 : CIRCUIT 3C

TROUBLESHOOTING

Make sure all of your servo wires are connected. Be
sure that the black wire is connected to the negative

The servo doesn’t work rail and the red wire is connected to the positive rail.
Make sure you are using a digital pin that is capable
of PWM.

The two lines of code that pass angles to the servo
The pop-up is moving too much motor are myservo.write(45); and myservo.
or not enough write(135) ;. Try changing these angle values to

fine-tune your mechanism.

You've completed
Circuit 3C!

Continue to Project 4 to learn how to use an LCD in your circuits.

DISTANCE
SERVO MOTORS SENSOR MOTION ALARM

70 : CIRCUIT 3C

&)
PROJECT 4

Printing data to the Arduino Serial

Monitor is a great way to see data from the
RedBoard. But, what if you want to make
your project mobile and see sensor values
away from your computer? This project
will show you how to do exactly that. You’ll
learn about Liquid Crystal Displays
(LCDs) and how to print things like sensor
data and strings of words to the display.

NEW COMPONENTS INTRODUCED
IN THIS PROJECT

LIQUID CRYSTAL DISPLAY (LCD)
TMP36 DIGITAL TEMPERATURE
SENSOR

4XAA BATTERY HOLDER

NEW CONCEPTS INTRODUCED
IN THIS PROJECT

CONTRAST

PIXELS
ALGORITHMS
BUTTON DEBOUNCE
STRINGS

POINTERS

YOU WILL LEARN

HOW TO PRINT SIMPLE MESSAGES
TO AN LCD

HOW TO USE A TEMPERATURE
SENSOR

HOW TO PRINT SENSOR DATA TO
AN LCD

HOW TO MAKE AN INTERACTIVE
GAME THAT INCORPORATES THE
LCD

71 : CIRCUIT 4A

Circuit 4A: LCD
‘Hello, World!”

YOU

LCD DISPLAY POTENTIOMETER

15y

NEW COMPONENTS

CHARACTER LIQUID CRYSTAL
DISPLAY (LCD): Designed to show a
grid of letters, numbers and other special
characters, LCDs are great for printing
data and showing values. When current

is applied to this special kind of crystal,

it turns opaque. This is used in a lot of
calculators, watches and simple displays.
Adding an LCD to your project will make it

super portable and allow you to integrate

up to 32 characters (16x2) of information.

NEW CONCEPTS

CONTRAST: Pin 3 on the LCD controls
the contrast and brightness of the LCD.
Using a simple voltage divider with

72 : CIRCUIT 4A

Printing “Hello, world!” is usually the first
thing that programming tutorials will have
you do in a new language. This guide starts
by blinking an LED, but now we’re going
to print out real text using a Liquid Crystal
Display (LCD).

16 JUMPER WIRES

a potentiometer, the contrast can be
adjusted. As you rotate the knob on the
potentiometer, you should notice that the
screen will get brighter or darker and that
the characters become more visible or

less visible. The contrast of LCDs is highly
dependent on factors such as temperature
and the voltage used to power them. Thus,
external contrast knobs are needed for
displays that cannot automatically account

for temperature and voltage changes.

PIXELS: If you look closely at the
characters on the LCD, you will notice
that they are actually made up of lots of
little squares. These little squares are
called pixels. The size of displays is often
represented in pixels. Pixels make up
character space, which is the number of
pixels in which a character can exist.

Here is a capital letter B as
created in pixels. The
character space in this
example is 6 pixels x 8 pixels.

HOOKUP GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and
hookup table below to see how everything is connected.

5 g o 7
+ - vlb L] [} | —
. i m . . @
. im . e |mm g nunn
- om . n. |mm o -
. cmmm . = nmn @
L] o m .. |®=m 1 soue
[] mEE 7 SDA=
| 1 - =
= — " EmEEE |'-
= ;-._4—0.‘
L] - " m mEE -
L " H BN N2 ‘-
- T o -
L " EEE N .: § §
 — H ||| E
— Syl | g
T g
] — - b
- S
= = z
- snumua||BRE N
- w w6 e
- w s |
" n LI) u m o2

cEE EEEENENESEEENB®E®

cmmEEN

(#5vonsv)(@GNDo=GND(-))(#D8wmE28)(#D9w s E27)

(@p10=E26)(@®D110=E25)(@D12:0= E20)(@ D130 = E18)

JUMPER WIRES

(=E300= GND(-))(= E200= 5V(+)) ("= E190% GND ())} = E16 0= 5V(+))

(=E1505 GND(-)) (=E9wmE17) (= E8«= GND(-))('= E1000 = 5V(+))

LCD DISPLAY (l A15-A30 (pin 1 0nA15))

POTENTIOMETER = A8+= A9+ = Al10

73 : CIRCUIT 4A

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch:
File > Examples > SIK-Guide-Code-master > CIRCUIT_4A-LCD HELLO WORLD

Select UPLOAD to program the sketch on the RedBoard.

WHAT YOU
SHOULD SEE

The LCD screen will show
“Hello, world!” and on the row
below a counter will count

every second that passes.

Adjusting the potentiometer
will change the contrast on the

LCD screen.

PROGRAM OVERVIEW

Import the LCD library.

Make an LCD object called “lcd” that will be controlled using pins 8, 9, 10, 11, 12 and 13.

“Begin” the LCD. This sets the dimensions of the LCD that you are working with (16 x 2). It needs to be

called before any other commands from the LCD library are used.

Clear the display.

Set the cursor to the top left corner led.setCursor(0,0) ; then print “Hello, world!"

Move the cursor to the first space of the lower line lcd.setCursor(0,1) ; then print the number of

seconds that have passed since the RedBoard was last reset.

74 : CIRCUIT 4A

CODE TO NOTE

LCD LIBRARY:

#include <LiquidCrystal.h>

Includes the LiquidCrystal library in your

program.

LCD LIBRARY INSTANCE:

LiquidCrystal LCD_name(RS_pin,
enable_pin, d4, d5, d6, d7);

As with servos, you need to create an LCD
object and give it a name (you can make
more than one). The numbers in the brackets
are pins on the RedBoard that connect to
specific pins on the LCD.

LCD BEGIN:

led.begin(16, 2);

This line initializes the LCD object and tells
the program the LCD’s dimensions. In this

case it is 2 rows of 16 characters each.

LCD CLEAR:

led.clear();

This method clears all the pixels on the
display.

LCD CURSOR:

led.setCursor(0,0);

Moves the cursor to a point on the 16x2 grid
of characters. Text that you write to the LCD
will start from the cursor. This line is starting
back at position (0,0).

LCD PRINT:

led.print(“Hello, world!”);

Prints a string of characters to the LCD

starting at the cursor position.

CODING CHALLENGES

CHANGE THE MESSAGE: Try changing the code to display another message.

SHOW HOURS, MINUTES AND SECONDS: Try adding some code so that the
display shows the hours, minutes and seconds that have passed since the RedBoard

was last reset.

COUNT BUTTON PRESSES: By adding a button to the circuit, you can count the

number of times the button was pressed or have the button change what displays.

TROUBLESHOOTING

The screen is blank or

Adjust the contrast by twisting the potentiometer. Try both
directions until you see characters display. Do not twist

flickering the potentiometer past its stopping points. Also, check the
potentiometer, and make sure it's wired correctly.
A Double check the circuit’s wiring. There are a lot of wires in
Not working at all

this circuit, and it’s easy to mix up one or two.

Rectangles in first row

If you see 16 rectangles (like “ W ”) on the first row, it may be
due to the jumper wires being loose on the breadboard. This is
normal and can happen with other LCDs wired in parallel with
a microcontroller. Make sure that the wires are fully inserted
into the breadboard, then try pressing the reset button and
adjusting the contrast using the potentiometer.

Still not working?

Jumper wires unfortunately can go “bad” from getting bent
too much. The copper wire inside can break, leaving an open
connection in your circuit. If you’re certain that your circuit is
wired correctly and that your code is error-free and uploaded
but you are still encountering issues, try replacing one or more

of the jumper wires for the component that is not working.

You've completed

Circuit 4Al

Continue to circuit 4B to learn about using temperature sensors.

LCD “HELLO, WORLD”

TEMPERATURE SENSOR “DIY WHO AM I” GAME

76 : CIRCUIT 4A

Circuit 4B:
Temperature
Sensor

LCD DISPLAY POTENTIOMETER

NEW COMPONENTS

TMP36 TEMPERATURE SENSOR:
This temperature sensor has three legs.
One connects to 5V, one to ground, and the
voltage output from the third leg varies
proportionally to changes in temperature.
By doing some simple math with this
voltage, we can measure temperature in

degrees Celsius or Fahrenheit.

NEW CONCEPTS

ALGORITHMS: An algorithm is a process
used in order to achieve a desired result.

Often, the information needed to create

an algorithm lives in the part’s datasheet.
This sketch uses a few formulas to turn

a voltage value into a temperature

value, making them all part of the larger
temperature-retrieving algorithm. The first
formula takes the voltage read on analog
pin 0 and multiplies it to get a voltage value
from OV-5V:

TEMPERATURE SENSOR

Want to create a DIY environmental
monitor or weather station? You can use
a small, low-cost sensor like the TMP36
to make devices that track and respond
to temperature. In this activity you will
also use the LCD screen to display sensor
readings, a common use for LCDs in

electronics projects.

Qn, L]

YOU

19 JUMPER WIRES

voltage = analogRead(A0) * 0.004882813;

The number we are multiplying by comes
from dividing 5V by the number of samples
the analog pin can read (1024), so we get:
5/1024 = 0.004882813.

The second formula takes that 0-5V value
and calculates degrees Celsius:

degreesC = (voltage - 0.5) * 100.0;

The reason 0.5V is subtracted from the
calculated voltage is because there is a 0.5V
offset, mentioned on page 8 of the TMP36
datasheet found here: http://sfe.io/TMP36.
It’s then multiplied by 100 to get a value

that matches temperature.

The last formula takes the Celsius
temperature and converts it to a
Fahrenheit temperature using the standard
conversion formula:

degreesF = degreesC * (9.0/5.0) + 32.0;
Together, these three formulas make up the

algorithm that converts voltage to degrees
Fahrenheit.

77 : CIRCUIT 4B

HOOKUP GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and
hookup table below to see how everything is connected.

GND HEADS UP! Double check the polarity
of the TMP36 temperature sensor before
SIGNAL]
powering the RedBoard. It can become
v+ very hot if it is inserted backward!

Sirar

s =
-y

(®5vossv)(@GND o= GND(-))(@D8«=E28)(®D9wm E27)
(#p10w=E26)(®D110mE25)(@D1200w E20)(@ D1300m E18)

sumper wires (@ A0« E2)(= E30:0= GND(-))(= E290= 5v(+)) ("= E19:0 = GND(-))

(=E160msv(+))(=E1502 GND(-))(= E9 = E17)(= E8«o = GND(-))

(=E100m5v(+))(= E10m GND(-))(= E300m 5V(+))

LCD SCREEN (l A15-A30(Pi'170”/"75))

TMP36 SENSOR (= A1 (GND) + = A2 (SIG) - = A3(5V))

POTENTIOMETER = A8+= A9 = Al0

78 : CIRCUIT 4B

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch:
File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_4B-TEMPERATURE SENSOR

Select UPLOAD to program the sketch on the RedBoard.

WHAT YOU
SHOULD SEE

The LCD will show the temperature
in Celsius and Fahrenheit. The
temperature readings will update
every second. An easy way to see the
temperature change is to press your

finger to the sensor.

PROGRAM OVERVIEW

Get the analog value from the TMP36 and convert it back to a voltage between 0 and 5V.

Calculate the degrees Celsius from this voltage.

Calculate the degrees Fahrenheit from this voltage.

Clear the LCD.

Print the degrees C with a label on the first row.

Print the degrees F with a label on the second row.

Wait for a second before taking the next reading.

79 : CIRCUIT 4B

CODE TO NOTE

Many of the sensors that you will use with your microcontroller
work by changing a voltage in some predictable way in response to
a property of the world (like temperature, light or magnetic fields).

Often, you will need to build an algorithm that converts these
VOLTAGE

CONVERSION
ALGORITHMS

voltages to the desired value and units. The temperature sensor is
a great example of this code. We use three equations to convert a
voltage value into degrees in C and F.

voltage = analogRead(A®) * 0.004882813;

degreesC (voltage - 0.5) *x 100.0;
degreesF degreesC * (9.0/5.0) + 32.0;

CODING CHALLENGES

DISPLAY THE TEMPERATURE IN DEGREES KELVIN: Try adding an equation so
that the temperature is displayed in degrees Kelvin. (You will have to look up the formula

for converting from degrees Celsius or Fahrenheit to Kelvin.)

DISPLAY A BAR GRAPH: By changing the code you can display the temperature as a

bar graph instead of a number.

DISPLAY VALUES FROM ANOTHER SENSOR: You can swap out the TMP36 for a
potentiometer, photoresistor or other sensor and display the new set of values.

ADD AN RGB LED: Add an RGB LED that changes color based on the temperature.

TROUBLESHOOTING

Make sure that you wired the temperature sensor correctly.
Sensor is The temperature sensor can get warm to the touch if it is wired
heating up incorrectly. Disconnect power from your microcontroller, rewire

the circuit, and connect it back to your computer.

Temperature Try pinching the sensor with your fingers to heat it up or pressing
value is a bag of ice against it to cool it down. Also, make sure that the
unchanging wires are connected properly to the temperature sensor.
Values not

L. If you see text but no temperature values, there could be an error
printing to . .

in your code. If you see no text at all, adjust the LCD contrast.

screen

You've completed
Circuit 4B!

Continue to circuit 4C to learn how to make a “DIY Who Am I?” game.

LCD “HELLO, WORLD"” TEMPERATURE SENSOR “DIY WHO AM 1?” GAME

%o

81 : CIRCUIT 4B

Circuit 4C: "DIY
Who Am 7?7
GCame

YOU
NEED

LCD DISPLAY POTENTIOMETER

15y

AA BATTERY HOLDER DUAL LOCK TAPE

NEW COMPONENTS

4XAA BATTERY HOLDER: Included in
your kit is a 4-cell AA battery holder. The
5-inch cable is
terminated with
a standard barrel
jack connector.
The connector
mates with the
barrel jack on
the RedBoard, allowing you to easily make
your project battery powered.

NEW CONCEPTS

BUTTON DEBOUNCE: When working
with momentary buttons, it is usually
necessary to add button debouncing to
your code. This is because the code that
is meant to execute when the button

is pressed may execute faster than

you can press and release the button
(microcontrollers are fast!). The simplest
way to debounce a button is to add a
small delay to the end of your code. This
sketch adds a 500 millisecond delay at
the end of Loop () to account for this.

82 : CIRCUIT 4C

pUSH BUTTON

“DIY Who Am I?” is based on the popular
Hedbanz game or HeadsUp! app. It’s a fun
party game in which a player holds an
LCD screen to his/her forehead, and other
players give hints to help the player with

the LCD guess the word on the screen.

1y

PIEZO BUZZER
(4

20 JUMPER WIRES

4

4 AA BATTERIES SCISSORS

———— (NOT INCLUDED) —— i

This simple addition will prevent a word
from getting skipped when you press the
button for the game.

For a more complex example of button
debouncing, in the Arduino IDE open File >

Examples > 02.Digital > Debounce.

STRINGS: Strings are used to print words
and even sentences to an LCD or the Serial
Monitor. Strings are actually just an array
of characters with a null character at the
end to let the program know where the end

of the string is.

ARRAY OF STRINGS: In circuit

2A you used an array of characters to
represent musical notes. In this program,
youwll want to make an array of strings.
Strings use multiple characters to make
words, so youw’ll need to use a little trick
to put them in an array. The trick is to use
a pointer. When you declare your array,
yowll use an asterisk (*) after the char
data type, as follows:

const char* arrayOfStrings =
{“Feynman” “Sagan”, “Tyson”,
“Nye”} ;

POINTERS: As an advanced
programming topic, pointers can be
difficult to understand at first. For now,
think of pointers as a variable that

“points” to the value contained in a certain
address in memory. In this sketch, the
char* variable points to array0fStrings
address and returns the character values to
create a list of strings.

BATTERY HOLDER
ASSEMBLY

Batteries are polarized. They have a
positive end and a negative end. The
battery holder has images indicating which
end goes in which orientation for each cell.

To attach the battery holder to the
breadboard baseplate, first cut two strips of
Dual Lock that are roughly 1 inch x 1 inch
each, or 2.5cm x 2.5cm.

Remove the adhesive backing, and attach
one piece to the back of the battery holder.

Adhere the second piece to the bottom of
the breadboard baseplate (directly in the
middle is recommended, as this will come
into play in Project 5).

Last, press the battery holder to the
baseplate so that the two pieces of Dual
Lock snap together. Insert the batteries into
the holder. Remember that batteries are
polarized. Remove the pack before building
the circuit, so it doesn’t slide around.

STOP!

83 : CIRCUIT 4C

HOOKUP GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and
hookup table below to see how everything is connected.

(@5vousv)(©GND o= GND(-))(#D8w=E28)(#D9wmE27)

(D10 =26)(®D11owE25)(@D1200w E20)(4 D130 E18)

JUMPER WIRES (QDGIO L JG)(®D2om Jl)(= E300m GND(-))(= E290m 5V(+))

((=E190m GND(-))(= E16 = 5V(+))(= E15:0= GND(-))(= E9 o= E17)

(=E8wwGND(-))(= E10 0= 5v(+))(= J8«om GND(-)) (" = J3 o= GND(-))

LCD SCREEN (= A15-A30 (Iﬂin1unA15))

PUSH BUTTON = D1/D3 0 = G1/G3

POTENTIOMETER (- A8wom A9 m AIO)

BUZZER = G6(+) 0 = G8(-)

84 : CIRCUIT 4C

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch:
File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_4C-DIY WHO AM |

Select UPLOAD to program the sketch on the RedBoard.

WHAT YOU
SHOULD SEE

The game begins with the category

of words, then runs through a short
countdown. When the first round starts,
the word to be guessed is displayed at
top left, and a countdown starts in the
bottom right. Each time the button is
pressed (before the timer expires) a new
word is displayed. If you win or lose, a
short song will play.

PROGRAM OVERVIEW

I Generate a random order for the words to be displayed.

A Show the starting countdown on the LCD.

Start a loop that will run 25 times (there are 25 words total). For each round:
A: Print the round number and the word to be guessed.

B: Display a countdown timer in the lower right-hand corner
of the screen that counts down the time limit for each round.

C: If the time limit runs out, play the losing song, print

“Game Over” and show the player’s final score.

D: If the player presses the button before the
time limit is up, advance to the next word.

/8 1f the player gets through all 25 words, play the winning song and print “YOU WIN!”

85 : CIRCUIT 4C

CODE TO NOTE

ARRAY OF STRINGS:
Makes an array of strings. The strings are stored

* array_name [array_ as constants, so they can’t be changed once the
length] =
gthl program starts.

{“stringl”, “string2”...};

ROUNDING FUNCTION: This math function rounds a number up or down to
(value_to_round); the nearest whole number.
RANDOM FUNCTION: This function takes a set of numbers and generates
(min, max); a pseudo-random number from that set.

This 500 millisecond delay at the end of the loop
adds button debounce so that erroneous button

BUTTON DEBOUNCE:

(500) 3 presses are not detected by the RedBoard.
FUNCTIONS TO NOTE
Makes an array that is a random ordering of the
generateRandomOrder () ; numbers from 1-25. This is used to display words

for the game in a random order.

howStarts 0 Shows the category of words on the LCD, then
showStartSequence(); .
’ displays a countdown before the game starts.

Plays a sound and shows the text “Game Over”
gameOver () ; . .
along with the player’s final score.

X 0 Shows the text “YOU WIN!” and
winner();
’ plays a winning sound.

86 : CIRCUIT 4C

CODING CHALLENGES

CHANGE THE TIME LIMIT: Changing the time limit variable will change the

difficulty of the game.

CHANGE THE WORDS IN THE WORD LIST: Try changing the categories and

words. The number of words in your words array must match the value of the variable

arraySize §

CHANGE THE WINNING AND LOSING SONGS: By changing the tones in the
and functions you can change which song plays at the

end of the game.

TROUBLESHOOTING

The screen is blank or
flickering

Adjust the contrast by twisting the potentiometer. If it’s
incorrectly adjusted, you won’t be able to read the text.
Also, check the potentiometer to make sure it’s connected
correctly.

No sound is coming from

the buzzer

Check the wiring to the buzzer and the polarity. Make sure
you are using the correct pin as defined in your code. You

may add a potentiometer volume knob if you desire.

The button doesn't work
or words are getting
skipped before they are
guessed

If the button isn’t working, check your wiring. If words

are being skipped when the button is pressed, increase the
debounce delay found at the end of the loop. It should be
500 milliseconds by default. Increasing this number by tiny

increments will help with this problem.

You've completed

Circuit 4ClI

Continue to Project 5 to learn how to build your first robot!

LCD “HELLO, WORLD”

TEMPERATURE SENSOR “DIY WHO AM I1?"GAME

87 : CIRCUIT 4C

REMOTE-CONTROLLED ROBOT

PROJECT 5

Ah, robots. One of the most iconic and
exciting electronics applications. In

this project, you will learn all about DC
motors and motor drivers by building
your own robot! Yowll first learn motor
control basics. Then youw’ll control a
tethered robot by sending it commands
over serial. Last, you will unleash your
robot by removing the tether and making it
autonomous! By adding a distance sensor,
the robot can learn how to avoid obstacles.

88 : CIRCUIT 5A

NEW COMPONENTS INTRODUCED
IN THIS PROJECT

«- TB6612FNG MOTOR DRIVER
+ SWITCH

DC GEARMOTOR

WHEEL

NEW CONCEPTS INTRODUCED

IN THIS PROJECT

- INPUT VOLTAGE

« INTEGRATED CIRCUITS

+ H-BRIDGE MOTOR DRIVER
- ASCIl CHARACTERS

+ CONVERTING STRINGS

+- AUTONOMOUS VEHICLES

YOU WILL LEARN

HOW TO CONTROL A MOTOR
USING A MOTOR DRIVER

+ HOW TO SEND SERIAL COMMANDS
TO CREATE A REMOTE-CONTROLLED
ROBOT
HOW TO BUILD A ROBOT THAT
USES SENSORS TO REACT TO ITS
ENVIRONMENT

Circuit BA:
Motor Basics

SWITCH

In this circuit, you will learn the basic
concepts behind motor control. Motors
require a lot of current, so you can’t

drive them directly from a digital pin on
the RedBoard. Instead, you’ll use what

is known as a motor controller or motor
driver board to power and spin the motor
accordingly.

‘

16 HOOKUP WIRES

NEW COMPONENTS

SWITCHES are components that control
the open-ness or closed-ness of an electric
circuit. Just like the momentary

buttons used in earlier circuits,

this type of switch can only

exist in one of two states: open
or closed. However, a switch is different in
that it will stay in the position it was last in

until it is switched again.

THE MOTORS in your Inventor’s Kit
have two main parts: a small DC motor
that spins quickly and a plastic gearbox
that gears down the output from the hobby
motor so that it is slower but stronger,

allowing it to move your robot. The motors

have a clever design allowing you to attach
things that you want to spin fast (like a
small fan or flag) to the hobby motor, and
things that you want to be strong (like a
wheel) to the plastic axle sticking out the

side of the motor. The included wheels just
so happen to fit on the plastic axles.

TB6612FNG MOTOR DRIVER: If you
switch the direction of current through
a motor by swapping the positive and
negative leads, the motor will spin in
the opposite direction. Motor controllers

contain a set of

A sl ﬁ PurAQYT® .

&Tovcc]| Neagcy switches (called
JaCEUME LTINS CN an H-bridge)
e 2SN that lets you

3z LI

BILQYI®
(AL p12e¥T®
[A 2 C10 MOTOR [NEA o C)
33: DRIVER GND

TB6612FNG Motor Driver takes commands

for each motor over three wires (two wires

easily control the
direction of one or

more motors. The

control direction, and one controls speed),
and then uses these signals to control the
current through two wires attached to your
motor.

NEW CONCEPTS

VOLTAGE IN (VIN): This circuit utilizes
the VIN pin found with the other RedBoard
power pins. The VIN pin outputs a voltage
that varies based on whatever voltage the
RedBoard is powered with. If the RedBoard
is powered through the USB port, then the

89 : CIRCUIT 5A

voltage on VIN will be about 4.6-5V.
However, if you power the RedBoard
through the barrel jack (highlighted
in the picture), the VIN pin will reflect

that voltage. For example, if you were

to power the barrel jack with 9V, the
voltage out on VIN would also be 9V.
Notice that the voltage range listed on the
RedBoard near the barrel jack is 7-15V.
This means that the recommended input
voltage should always be at or above

7V or should be at or below 15V. Never

exceed this range.

a mVN

INTEGRATED CIRCUITS (ICS) AND
BREAKOUT BOARDS: An Integrated
Circuit (IC) is a collection of electronic
components — resistors, transistors,
capacitors, etc. — all stuffed into a tiny
chip and connected together to achieve
a common goal. They come in all sorts of
flavors, shapes and sizes. The chip that
powers the RedBoard, the ATmega328, is
an IC. The chip on the motor driver, the
TB6612FNG, is another IC.

Integrated circuits are often too
small to work with by hand. To make
working with ICs easier and to make
them breadboard-compatible, they
are often added to a breakout board,
which is a printed circuit board that
connects all the IC’s tiny legs to larger
ones that fit in a breadboard. The
motor driver board in your kit is an
example of a breakout board.

The guts of an integrated circuit,
visible after removing the top.

90 : CIRCUIT 5A

Once you’re finished with
this project, removing

the motor driver from
the breadboard can

be difficult due to its
numerous legs. To make
this easier, use the
included screwdriver as a
lever to gently pry it out.
Be careful not to bend the
legs as you remove it.

The motors are polarized.
However, motors are unique

in that they will still work
when the two connections are
reversed. They will just spin

in the opposite direction when
hooked up backward. To keep
things simple, always think of
the red wire as positive (+) and

the black wire as negative (-).

MEET YOUR MOTOR CONTROLLER.

The TB6612FNG Motor Driver may look complicated,
but it’s easy to use. Three pins on the right (PWMA,
A12 and A11) control the two pins on the left (A01
and A02). The same is true for channel

B. Motors require more current,

which is why the VIN voltage is

needed.

Most ICs have polarity and usually

have a polarity marking in one

of the corners. The motor driver is

no exception. Be sure to insert the
motor driver as indicated in the circuit
diagrams. The motor driver pins are

explained in the table on the next page.

s CUN
(A g Cee
(A g SN
(A g ST
(A g CT=

(A g CLI=
(A g CLEA
(A g Clen)

FUNCTION

POWER/INPUT/
OUTPUT

NA g 0
A12e¥T®
CPCD AIL

ST
BY

BILGYI®

BI2QY1®

MoToR V"eeXT®
DRIVER GN])

o¥ls

This is where you provide power

VM Motor Voltage Power
for the motors (2.2V to 13.5V)
This is the voltage to power
\e Logic Voltage Power the chip and talk to the
microcontroller (2.7V to 5.5V)
Common Ground for both motor
GND Ground Power voltage and logic voltage (all
GND pins are connected)
Allows the H-bridges to work
when high (has a pull-down
STBY Standby Input .) .
resistor, so it must actively be
pulled high)
Input 1 for One of the two inputs that
AIN1/BIN1 Input . o
channels A/B determine the direction
Input 2 for One of the two inputs that
AIN2/BIN2 Input . .
channels A/B determine the direction
PWMA/ PWM input for — PWM input that
npu
PWMB channels A/B 1 controls the speed
Output 1 for One of the two outputs
A01/B01 Output
channels A/B to connect the motor
Output 2 for One of the two outputs to
A02/B02 Output
channels A/B connect the motor

92 : CIRCUIT 5A

HOOKUP GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and
hookup table below to see how everything is connected.

H @um
LI)
= . = .
== ==
oW @ B BN " BN NN - 33\/_
(] = B3
o EE Em " EEE s
L] == 5V
nEEEEm " aEEEn
LI "m
ZEH ®H B BN " BN NN
e EE e m " EEoE
LI)
“E E E NN " EEE N
= .]
sE E E Em " EEE s
LI) "m
cH ®H B BN " E B E N6
LI) "nm
Ve EEEm LI
== ==
@M ® B BN " E B RN
am| ommEEn CIC I T RPN
am| >ummmm "EEEEn g
am| 28 mmam " s EE g
am| 2 mmEn R R R Rz |(gm
"TIEL " s E e (am
xmmmmm TR
" m| s mmn EEEEs |(mm
AL] - Oe—
1 I
- . 27 ® B H N LI
'
]
'
L]
+ o mEEm LICIC UL T
b 4 e f o on ;

4 REDBOARD CONNECTION = BREADBOARD CONNECTION

CONNECTION TYPE

(#5vensv)(@GNDosGND(-))(@VINos AL)(@D8wnJ5)

(e#p9wnys)(@®p10wmy7)(@D110mJ1)(@D1200m 2)

JUMPER WIRES (0 D13 = J3)(0 D7 © = 127)(l 5V (+) o= 5V (+))

(. GND (-) o GND(-))(- A2wom 5v(+))(-A3m. GND(-))

(- Jaon 5v(+))(- 1260m GND(-))

motor (= A4(RED+))(= AS(BLACK-))

MOTOR DRIVER (- C1-C8 to m G1-G8 (VM on C1, PWMA onG7))

SWITCH (- F25 = F26+m |:27)

93 : CIRCUIT 5A

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch:
File > Examples > SIK-Guide-Code-master > CIRCUIT_5A-MOTOR BASICS

Select UPLOAD to program the sketch on the RedBoard.

WHAT YOU
SHOULD SEE

Flip the switch. The motor will spin
at the speed set by the motor speed
variable (default is 0). Open the Serial
Monitor, type any number from 30

to 255 or -30 to -255, and then press
Enter. Changes in speed will be hard

to notice. Send 0 to stop the motor.

PROGRAM OVERVIEW

Check to see if a command has been sent through the Serial Monitor. If a command has been sent, then set

the motor speed to the number that was sent over the Serial Monitor.

Check to see if the switch is ON or OFF.

2 A: If the switch is ON, drive the motor at the motor speed.

B: If the switch is OFF, stop the motor.

CODE TO NOTE

.parseInt() receives integer numbers from the Serial
PARSING INTEGERS:

Monitor. It returns the value of the number that it receives,

serial.parselnt(); so you can use it like a variable.

This command checks how many bytes of data are being
SERIAL AVAILABLE: sentto the RedBoard. If it is greater than 0, then a message
Serial.available(); has been sent. It can be used in an if statement to run code
only when a command has been received.

94 : CIRCUIT 5A

CODING CHALLENGES

MAKE THE SWITCH CHANGE DIRECTIONS: Change the code so
that the position of the switch changes the direction of the motor instead

of turning it on and off.

REPLACE THE SWITCH WITH A BUTTON: Try wiring a button into the circuit

instead of the sliding switch. Now the motor only turns on when you push the button.

REPLACE THE SWITCH WITH A SENSOR: Try changing the code so that the
motor is activated by another sensor, like the photoresistor.

TROUBLESHOOTING
Check the wiring to the motor driver. There are a lot of connections,
Motor not and it’s easy to mix one of them up with another. Double check
spinning the polarity of the motor driver. All the text should face the same

direction as everything else.

Switch not Make sure that you are hooked up to the middle pin and one side pin

working on the switch, and not both side pins.

Jumper wires unfortunately can go “bad” from getting bent too

much. The copper wire inside can break, leaving an open connection
Still not in your circuit. If you are certain that your circuit is wired correctly
working? and that your code is error-free and uploaded but you are still

encountering issues, try replacing one or more of the jumper wires

for the component that is not working.

You've completed
Circuit SA!

Continue to circuit 5B to construct a remote-controlled robot.

MOTOR BASICS REMOTE-CONTROLLED ROBOT AUTONOMOUS ROBOT

95 : CIRCUIT 5A

Circuit 5B:
Remote-

Controlled
Robot

YOU
NEED

2 GEARIMOTORS

MOTOR D?W R

2 WHEELS DUAL LOCK TAPE

NEW CONCEPTS

ASCIlI CHARACTERS: ASCIIis

a standard for character encoding,
formalized in the 1960s, that assigns
numbers to characters. When typing on

a computer keyboard, each character

you type has a number associated with

it. This is what allows computers to know
whether you are typing a lowercase “a,”
an uppercase “A” or a random character
such as ampersand (&). In this experiment,
you will be sending characters to the Serial
Monitor to move your remote-controlled
robot. When you send a character, the
microcontroller is interpreting that as a
specific number. ASCII tables available
online (http://sfe.io/ASCII) make it easier
to know which character is represented by
which number.

CONVERTING STRINGS TO
INTEGERS: String variables hold words
like “dog” or “Robert Smith” that are made
up of multiple characters. Arduino has a
set of special built-in methods for string
variables that you can call by putting a

96 : CIRCUIT 5B

In this circuit, youw'll control two motors
and build your own remote-controlled
roving robot! You will also learn how to
read information from a serial command
so that you can use the Serial Monitor to
tell the robot in what direction to move

and how far to move.

LI

SWITCH 16 JUMPER WIRES

BINDER CLIP SCISSORS

(NOT INCLUDED)

period after the variable name, as follows:

string_variable_name.toInt();

The . toInt() method converts the string
to a number, and there are a dozen other
methods that can do things like tell you
the length of a word or change all of the
characters in a string to uppercase or

lowercase.

ASSEMBLY

Before you build this circuit, you'll
need to make a few modifications to the
breadboard baseplate to make it more
robot-like!

1. Cut and attach
two short pieces
of Dual Lock

tape to the very
corners of the
baseplate on the
side located under
the breadboard.

2. CUT TWO MORE STRIPS that
are 1.25 inches (3.175cm) long and 3
inch (1.9cm) wide. Remove the adhesive
backing, and attach the strips to the two
motors. Be sure that your motors are
mirror images of each other when you
attach the Dual Lock.

3. PRESS THE MOTORS TO THE
BASEPLATE, connecting the two Dual
Lock surfaces. Try to get the motors as
straight as possible so your robot will
drive straight.

4. THE BOTTOM OF YOUR ‘
BASEPLATE should look like the
image. Remember that the two motors

should be mirror images of
each other.

L

5. ATTACH THE WHEELS by sliding
them onto the plastic shafts on the
gearmotor. The shaft is flat on one side, as
is the wheel coupler. Align the two, and
then press to fit the wheel onto the shaft.

6. LAST, CLIP THE BINDER CLIP
onto the back end of the robot. This
will act as a caster as the robot drives

around. Once you’re finished, it’s time

to build the circuit. ‘

97 : CIRCUIT 5B

HOOKUP GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and
hookup table below to see how everything is connected.

(@svossv)(@GNDo=GND(-))(@VINc= AL)(@D8wnJ5)
(#p9wnys)(@p100my7)(@D1100mJ1)(@D1200m2)

JUMPER WIRES

(#p13cmy3)(@D70m 127)(w5V (+) w5V (+))(= GND(-) o= GND(-))

(=A20m5v(+))(=A30mGND(-))((=Jawms5v(+))(=1260= GND ())

motor 1 micum) (= A4(RED +)) (= AS(BLACK-))

motor 2 wer) (® AT(RED+)) (= AG(BLACK-))

MOTOR DRIVER (l C1-C8 v = G1-G8 (VMDHCLPWMAOHGI))

swirew (= F25- = F26- = F27)

98 : CIRCUIT 5B

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch:
File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_5B-REMOTE CONTROL ROBOT

Select UPLOAD to program the sketch on the RedBoard.

WHAT YOU
SHOULD SEE

Start by flipping the switch to

the ON position. Open the Serial
Monitor. It should prompt you to
enter a command. When you type
a direction into the Serial Monitor

the robot will move or turn.

PROGRAM OVERVIEW

Il Prompt the user to enter a command and list the shortcuts for the directions.

pA Wait for a serial command.

Read the serial command and set that as the direction:

A: If the direction is “f”, drive both motors forward for the distance.
B: If the direction is “b”, drive both motors backward for the distance.
C: If the direction is “r”, drive the right motor backward and the left motor forward.

D: If the direction is “1”, drive the left motor backward and the right motor forward.

99 : CIRCUIT 5B

CODE TO NOTE

PARSING STRINGS: Reads a serial message until the first space and saves it

Serial.readStringUntil(¢ ¢); asastring.

If a number is stored in a string variable, this will
STRING TO INT:] .])
convert it to an integer, which can be used in math

string_name.toInt(); equations

FUNCTIONS TO NOTE

rightMotor (motor_distance); Drive the right motor long enough to travel the specified
distance.

i Drive the left motor long enough to travel the specified
leftMotor (motor_distance); .
distance.

CODING CHALLENGES

READ MORE COMMANDS: Add code to the sketch that takes not only direction but
also distance. The two should be separated by a character the code can parse out and

know where the next value begins.

ADD MORE COMMANDS: This sketch only uses four of the many ASCII characters. Use

different keys to move the robot in different ways or have commands turn on LEDs.

TROUBLESHOOTING

Check the wiring to the motor driver. There are a lot of connections,
Motor not and it’s easy to mix one of them up with another. If only one motor is
spinning working, check the wires coming from the nonworking motor. Make

sure they have not come loose from the motor.

Switch not Make sure that you are hooked up to the middle pin and one side pin on

working the switch.

100 : CIRCUIT 5B

TROUBLESHOOTING

Jumper wires unfortunately can go “bad” from getting bent too much. The

Still not copper wire inside can break, leaving an open connection in your circuit.
ill no
3 If you are certain that your circuit is wired correctly and that your code is
working? . L .
error-free and uploaded but you are still encountering issues, try replacing

one or more of the jumper wires for the component that is not working.

You've completed
Circuit 5B!

Continue to circuit 5C to learn how to use sensors to program
your robot to navigate on its own.

MOTOR BASICS REMOTE-CONTROLLED ROBOT AUTONOMOUS ROBOT

: CIRCUIT 5B

Circuit 5C:
Autonomous
Robot

~ 7
Mde DRIVER SWITCH

YOU
NEED

DISTANEE NSOR DUAL LOCK TAPE
o

o

NEW CONCEPTS

AUTONOMOUS VEHICLES: The robot
that you will build uses a simple sensor

to avoid obstacles. This kind of system

is used in Mars rovers, autonomous cars
and the bots built for all kinds of robotics
competitions. Understanding this example
code will set you on the path to building
bigger and better autonomous vehicles!

Keep in mind that the ultrasonic distance
sensor needs a clear path to avoid

unwanted interruptions in your robot’s

movements. Keep the distance sensor clear

of any wires from your circuit.

ASSEMBLY

BATTERY HOLDER ATTACHMENT:

If you did not attach the battery pack in
Project 4, cut two pieces of Dual Lock,
about 1 inch x 1 inch (2.5cm x 2.5c¢m) each.
Remove the adhesive backing, and attach
one piece to the back of the battery holder.

Adhere the second piece to the bottom of
the baseplate, directly in the middle.

Press the battery holder to the baseplate

102 : CIRCUIT 5C

BINDER CLIP

Free the robots! In this circuit, you’ll
unplug your robot and program it to
navigate the world on its own. When the
robot senses an object using the distance
sensor, it will back up and change course.

(]

20 JUMPER WIRES

2 WHEELS SCISSORS

(NOT INCLUDED)

so that the two pieces of Dual Lock snap

together. Insert the batteries into the
holder if you have not done so already.
Remember that batteries are polarized and
can only go in one way.

Clip the binder clip back on, and you are
ready to roll!

HOOKUP GUIDE

READY TO START HOOKING EVERYTHING UP? Check out the circuit diagram and
hookup table below to see how everything is connected.

|||,

[2:C) A 5 C)

o (|]| e
[0 CELRE et o O]
(32 CT0 E¥3aC
oo R oC)

(225 354:C]

(A g CEO [s C)

@500 DRIVER a0t
=

WiKC

IWOS 18VLsS
pIa

il

—h

(@svousv)(@GNDo=GND(-))(@VIN©o=AL)(@D8wm U5)

(e#p9wn s)(@®D10w= 47)(@D1100m 1)(@D1200w J2) (@ D60 = E18)

sumper wires (@ D5 0= E19)(@D13 0= J3) (D70 =127) (= 5V(+)0m5V(+))

(- GND (-) 0 GND(-))(- A20m 5v(+))(- A3om GND(-))(- Jgom 5v(+))

(#1262 GND(-)) (= E170m 5V(+) (= E200= GND(-))

MOTOR 1 (RIGHT)

MOTOR 2 (LEFT)

MOTOR DRIVER

SWITCH

DISTANCE SENSOR

(= A4(RED +)) ("= AS(BLACK-))

(= A7(RED+))((= A6(BLACK-))

(m C1-C8 0 m G1-G8 (VM on C1, PWMA on G1))

(=F25 =F26-=F27)

(= A17(vCC) - = A18(TRIG) - = A19(ECHO) - = A20(GND))

103 :

CIRCUIT 5C

Open the Arduino IDE

Connect the RedBoard to a USB port on your computer.

Open the Sketch:
File > Examples > SIK-Guide-Code-master > SIK_CIRCUIT_5C-AUTONOMOUS ROBOT

Select UPLOAD to program the sketch on the RedBoard.

WHAT YOU
SHOULD SEE

When the switch is turned off,
the robot will sit still. When
the switch is turned on, the
robot will drive forward until
it senses an object. When it
senses an object in its path, it
will reverse and then turn to

avoid the obstacle.

PROGRAM OVERVIEW

If the switch is turned on,

Then start sensing the distance.

A: If no obstacle is detected, then drive forward.
B: If an obstacle is detected, stop, back up, and turn right.

C: If no obstacle is detected, start driving forward again.

TROUBLESHOOTING WARNING

104 : CIRCUIT 5C

CODING CHALLENGES

CHANGE THE DISTANCE AT WHICH YOUR ROBOT REACTS: Try
changing the distance at which your robot stops and turns away from an obstacle.

CHANGE THE BEHAVIOR OF THE ROBOT WHEN IT SENSES AN
OBSTACLE: Try changing the code so that your robot does something different

when it senses an obstacle.

TROUBLESHOOTING

. Check the wiring of your motors and the way that they are
The robot drives

mounted to the baseplate. If one of your motors is flipped
backward and/or turns

around, reposition it, or switch its black and red wires on the

in the wrong direction . . .

breadboard (this will reverse the direction that it turns).

You can try gently bending the pins of the distance sensor so
The robot runs into that it points straight ahead. The robot will get stuck if one
obstacles wheel hits an object that it is driving past (the distance sensor

won’t see the obstacle unless it’s in front of the robot).

Try installing fresh batteries. These slow or sporadic behaviors
are symptoms that your robot may be running out of power.
Please note that the 4 AA batteries output about 6 or 7V,

or not at all, though the L .
which is just below the recommended input voltage for the

The robot drives slow

RedBoard is powered . .
RedBoard. You can also use 9V batteries with a proper adapter,

though their battery life won’t last as long.

Jumper wires unfortunately can go “bad” from getting bent
too much. The copper wire inside can break, leaving an
open connection in your circuit. If you are certain that your
Still not working? circuit is wired correctly and that your code is error-free and
uploaded but you are still encountering issues, try replacing
one or more of the jumper wires for the component that is

not working.

105 : CIRCUIT 5C

You've Completed
All the Circuits in the
SparkFun Inventor's Kit!

EXPLORE MORE WITH THE DIGITAL GUIDE

You can find a digital version of this guide online. In it are links that provide more

in-depth explanations of components and concepts.

www.sparkfun.com/SIKguide

RESOURCES AND GOING FURTHER

The No. 1 question asked when one finishes the SIK is, “What’s next?!” Now that you have
a taste of what you can build, the sky’s the limit! For additional circuits, projects and
expansion ideas for your Inventor’s Kit, please visit our SIK resource webpage.

www.sparkfun.com/SIKnext

VISIT US ONLINE

Our website has hundreds of tutorials to teach you more about embedded electronics and
programming. Search for new projects to inspire your creativity, learn about new concepts
and components, and discover the vast catalog of SparkFun product-specific guides to take

your skills to the next level.

www.learn.sparkfun.com

106 : GOING FURTHER

NOTES

PROJECT

DATE

gEhoedceqe rews oo
K2lojcis e DIGITAL (PWM-~) x X
5 POWER ANALOG IN
= =)
§2%z52: 2s=zvzz2

GOING FURTHER

107 :

Know Your Resistors

COMMON RESISTOR VALUES: Resistors are electronic components that have a
specific, never-changing electrical resistance. The resistor’s resistance limits the flow
of electrons through a circuit. Included in your kit are both 330Q resistors and 10kQ

resistors, two very common values that can be used in numerous circuits.

YOUR KIT INCLUDES:

e = —_— o
10KQ RESISTOR 3300 RESISTOR

IDENTIFYING OTHER RESISTORS

MOST RESISTORS, not just the ones included with your SparkFun Inventor’s Kit, use
the same system of colored bands to identify how much resistance they can provide to a
circuit. FOR MOST BASIC RESISTORS, SIMPLY ADD TOGETHER VALUES OF
THE FIRST THREE COLOR BANDS TO GET THE TOTAL RESISTANCE VALUE.

287MQ *5% 100PPM

SILVER , 0.01

SILVER | *10%

GOLD ok GOLD TS %

1

10 BROWN

RED

GREEN

BROWN | 100PPM

RED RED 1100 RED . 50PPM

ORANGE ;| 1K

YELLOW | 10K

GREEN 1 100K

ORANGE | 3

YELLOW | 4

GREEN .5

ORANGE ! 15PPM

YELLOW ; 25PPM

TOLERANCE

MULTIPLIER

TEMPERATURE
COEFFICIENT

BLUE L6 BLUE LM BLUE

PLACE VALUE

VIOLET ! VIOLET ! 10M VIOLET

GRAY . GRAY . 100M GRAY

108 : GOING FURTHER

Want to take your kit to the next level?

The SparkFun Qwiic Connect System uses cables to easily connect boards,
sensors and much more to your Inventor’s Kit — no soldering required! Check
out some of our favorite Qwiic boards below, and learn how to easily expand
your kit and build customized circuits at sparkfun.com/qwiic.

PROXIMITY SENSOR

ADD OBJECT DETECTION TO YOUR PROJECT

The SparkFun Proximity Sensor Breakout is a simple IR presence
and ambient light sensor utilizing the VCNL4040.

TRIPLE AXIS ACCELEROMETER
DETECT MOTION AND ORIENTATION

This breakout board enables the tiny MMA8452Q accelerometer
to communicate over I12C in your project.

GPS CHIP, SAM-M8Q
EQUIP YOUR PROJECT WITH GPS TECHNOLOGY

The SparkFun SAM-M8Q GPS Breakout is a high quality GPS board

(antenna included), with equally impressive configuration options.

Even More Online

SIK RESOURCES: sparkfun.com/SIK
DIGITAL GUIDE: sparkfun.com/SIKguide
EDUCATION RESOURCES: sparkfun.com/SIKedu
TUTORIALS AND VIDEOS: learn.sparkfun.com
CUSTOMER SUPPORT: sparkfun.com/support
CALL US! 303-284-0979

sparkfun.

TART SOMETHING

CONTAINING MORE THAN A DOZEN COMPONENTS AND
SENSORS, THE SPARKFUN INVENTOR’S KIT TEACHES YOU
HOW TO ASSEMBLE AND USE FIVE INTERCONNECTED
PROJECTS TO UNLEASH YOUR INNER INNOVATOR WITH
ARDUINO! NO PREVIOUS PROGRAMMING, SOLDERING OR
ELECTRONICS EXPERIENCE IS NEEDED.

THE SIK TEACHES BASIC PROGRAMMING, FOR WHICH YOU WILL
NEED A COMPUTER WITH AN INTERNET CONNECTION.

EXPERIENCING A PROBLEM NOT COVERED
BY THE TROUBLESHOOTING GUIDE?

We are constantly working to improve your SparkFun Inventor’s Kit experience.

Visit our SIK errata page at sparkfun.com/SIKerrata to find a solution.

Copyright © 2019 by SparkFun Electronics, Inc. All rights reserved. The SparkFun

Inventor’s Kit for the SparkFun RedBoard features, specifications, system requirements
and availability are subject to change without notice. All other trademarks contained

herein are the property of their respective owners.

The SIK Guide for the SparkFun Inventor's Kit for the SparkFun RedBoard is licensed
under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, P.O. Box 1866, Mountain View, CA 94042, USA.

