m UM2808
life.augmented

User manual

Getting started with the STSW-ETHDRV01V1 firmware for servo drive EtherCAT
solution

Introduction

The STSW-ETHDRVO01V1 firmware package for the STEVAL-ETH001V1 servo drive solution has been built around the
STM32F767Z1 microcontroller. It implements a position control algorithm using the X-CUBE-MCSDK motor control library
(V.5.4.4) to control a PMSM motor rotor position via EtherCAT communication remote control.

Servo drive actuation and digital input/output interface can be managed at the same time.

The connectivity features real-time communication with EtherCAT protocol stack (V. 5.0.8) for slave node and RS485
communication to interface the hardware with a PC or digital encoder supporting BiSS and EnDat protocols.

UM2808 - Rev 1 - April 2021 www.st.com

For further information contact your local STMicroelectronics sales office.

https://www.st.com/en/product/STSW-ETHDRV01V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/steval-eth001v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/stm32f767zi?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/x-cube-mcsdk?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/str485?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808

‘,_l UM2808

Overview

1 Overview

The STSW-ETHDRV01V1 firmware has been developed using IAR Workbench 8.50 and is compliant with the
STM32Cube framework. The key features are:

. Position control algorithm based on X-CUBE-MCSDK (V.5.4.4)

. Supported EtherCAT slave protocol (V.5.0.8)

. Firmware compliant with STM32Cube framework

. BSP support for digital actuation interface

. RS485 interface support

The communication topology is master-slave: the master (not part of this development) can be represented

by dedicated hardware or a dedicated software tool like TwinCAT, whereas the slave is implemented by the
STEVAL-ETHO001V1 evaluation board.

The firmware is able to manage all the blocks included in the hardware solution at the same time, with particular
focus on connectivity and motion control.

This firmware section allows a real-time handling of a PMSM motor, implementing a master-slave communication
based on the EtherCAT protocol; in particular, the STEVAL-ETH001V1, working as a slave node, receives a data
streaming composed of a set command and the rotor position by the master node built with the TwinCAT software
tool in this application use case.

Once the slave receives the data, a processing phase is activated on the microcontroller side to modulate the
motor drive signal, according to the data and command received.

Figure 1. Motor control process flow

e
Reference T e

Rotor Angle JULee
vaster [~ 4 Etnereat Motor Control
process
data commands Motor Actuation

execution and
status evaluation

UM2808 - Rev 1 page 2/23

https://www.st.com/en/product/STSW-ETHDRV01V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/stm32cube
https://www.st.com/en/product/x-cube-mcsdk?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/stm32cube
https://www.st.com/en/product/str485?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/steval-eth001v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/steval-eth001v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808

3

UM2808

Layers

Layers

2.1

UM2808 - Rev 1

The firmware structure consists of Application, Middleware and Drivers layers.

Each layer is split into different groups, containing the source files for EtherCAT APIs, motor control library and
user interface, detailed as follows:

. Application
- User: STM32 configuration, interrupt service routine and motor control APIs
— CifxApplication: APIs for application layer
— Protocol: low level APIs for protocol management
. Middleware
— CifxToolkit: protocol stack APIs

— X-CUBE-MCSDK: motor control library (for further details, refer to UM2392 and UM2374 freely
available on www.st.com)

. Drivers

— BSP: the board support package drivers are part of the STM32Cube MCU and MPU packages based
on the HAL drivers and provide a set of high-level APIs related to the hardware components and
features of the evaluation boards, Discovery kits and STM32 Nucleo boards (for further details about
BSP, refer to UM2298 on www.st.com)

— CMSIS: Cortex microcontroller software interface standard

— STM32F7xx_HAL_Library

Figure 2. STSW-ETHDRV01V1 architecture

Motor Control

Microcontroller configuration

Applications
PP Serial Communication EtherCAT top layer API

Middleware EtherCAT stack protocol
. STM32Cube Board Support Package
DIALCEIN Hardware Abstraction Layer (HAL) (BSP)

Hardware

Application

This layer consists of a set of routines to manage the EtherCAT protocol application and the user application
layers.

In particular, as shown in the picture below, it embeds:

. the EtherCAT blocks with the cifXApplication routines for all settings to properly manage the
communication and data packets, and with the Protocol routines to configure the protocol

. the User routines for peripheral configuration, top level motor control library management, digital /0 and
RS485 management

page 3/23

https://www.st.com/en/product/x-cube-mcsdk?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com
https://www.st.com/stm32cube
https://www.st.com
https://www.st.com/en/product/str485?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808

UM2808

Application

211

2.1.1.1

211141

UM2808 - Rev 1

Figure 3. Application folder

RT Position Contral v
Files &4 = A
E @ Project - RT Position Control v

21 8 Application
=2 W cif<application
[App_DemaoApplication.c
&) App_DemoApplicationFunctions.c
App_EventHandler.c ~
App_PacketCommunication.c ~
App_SystemPackets.c
App_TerminalHandler.c +
= W EwARM
6] startup_stm32f76700s
M Frotocal
L g & User
dac_ui.c
hostabstractionLayer_SThi32.c v
main.c
mc_api.c
mc_config.c
mc_interface.c
mc_main.c
mc_math.c
mc_parameters.c
mc_tasks.c
maotar_control_protocol.c
motarcontrol.c
regular_carversion_manager.c
RS485.c
stmazfho_hal_msp.c
stm32fAo_it.c
stm32{Fomo_itc
ui_task.c
user_interface.c
=2 & Drivers
[= =] v

EtherCAT protocol

cifXApplication
The cifXApplication folder contains all the routines to manage cyclic and acyclic communication.

The acyclic communication manages the event and uses the mailbox channel; it is developed in the
"App_PacketCommunication.c", "App_EnventHandler.c", and "App_SystemPacket.c" source files.

The cyclic communication manages the process data between master and slave nodes. Moreover,
it enables the data channel read/out procedure. It is developed in the "App_DemoApplication.c" and
"App_DemoApplicationFunctions.c" source files.

App_DemoApplication.c

This source file contains the App_CifxApplicationDemo application routine called in the main.c after the
configuration phase. The routine calls all the subroutines operating at communication level to run the application.

This section must contain all the required user function calls.

page 4/23

‘,_l UM2808

Application

Figure 4. User function call example

/%% now the bus 1is running */
while (tAppData.fRunning && lRet == CIFX NO_ERROR)
{

/**% check and process incoming packets */
1Ret = Protocol_PacketHandler(stAppData);

/%% motor control routine */

main_mc_loop(); > +———— Motor control routine

/%% check and process input from terminal (UART console) */
/7 App TerminalHandler (stAppData) ;

/%% check for events (DIP switches, changed variable values, etc.) */
App EventHandler (stAppData);

HOSTAL Sleep(l);

The main_mc_loop() routine is defined in the "mc_main.c" source file of the application layer.

The data for inputs and outputs are continuously updated on the bus according to the time scheduler. These
buffers are organized according to the structure definition shown in the code below which includes all the motor
control commands that a master can exchange with the EtherCAT nodes as well as the feedback coming from the
nodes.

These structures are defined in the " App_demoApplication.h " file and can be modified manually according to the
master frame protocol, if it is different from the provided example.

typedef HIL PACKED PRE struct APP PROCESS DATA INPUT Ttag
{

uint8 t start;

uint8 t commandID;

float position;

float duration;

} _ HIL PACKED POST APP PROCESS DATA INPUT T;

typedef HIL PACKED PRE struct APP PROCESS DATA OUTPUT Ttag
{

uint8 t done;

uint8 t status;

uint8 t actuation_ CHlrun;

uint8 t actuation_ CHZ2run;

uint8 t actuation_CHlstatus;

uint8 t actuation_CH2status;

} _ HIL PACKED POST APP PROCESS DATA OUTPUT T;

Table 1. Input/output frame structure variables

start uint8_t This byte is set to 1 when a new command is sent by the master

commandID | In uint8_t The code of the command sent (see Section 5)

position In float The target motor position expressed in radians

duration In Float | The duration of the last motor movement command

done Out uint8_t This byte is set to 1 by the slave indicating that the command has been received

status Out uint8_t This byte contains the current state code indicated by the slave (see section 4 for details)

UM2808 - Rev 1 page 5/23

m UM2808

Application

CH1run uint8_t | This value represents the CH1 output state (ON/OFF)
CH2run Out uint8_t This value represents the CH2 output state (ON/OFF)
CH1status Out uint8_t This value represents the CH1 output status (GOOD/FAULT)
CH2status Out uint8_t | This value represents the CH2 output status (GOOD/FAULT)

2.1.1.2 Protocol

The protocol folder contains all the routines called by the user and by cifxApplication to configure the stack and
manage the package transmission and reception through data channels.

2.1.1.3 User
This folder contains a set of routines to provide the user with a first access level to interact with the firmware.
The user can:
. call functions for EtherCAT protocol configuration and network controller type detection
. properly configure the STM32 peripherals and GPIOs for the motor control section
. handle RS485 data transmission
At this level, it is possible also to modify the scheduler settings, implemented to properly manage the EtherCAT

data packet, by accessing the hostAbstractionLayer STM32.c and changing the STM32 timer prescaler and/or
the period parameters.

21.1.31 hostAbstractionLayer.c
To modify time scheduler and change communication speed, you have to modify the TimHandle.Init.Prescaler or
the TimHandle.Init.Period to meet the communication speed requirement.

For example, a new time scheduler is set to 5 ms. To get a prescaler value (uwPrescalerValue)) lower than
65535, the timer period value (which corresponds to the auto-reload register (ARR) value in the microcontroller
timer) has to be calculated as follows:

uwPrescalerValue = SystemCoreClock/Period /Timfreq — 1
considering that

Period = 100
Timfreq = 200Hz
uwPr escalerValue = 10800

and the system core clock is equal to 216 MHz.
The firmware time scheduler default value is 1 ms; the picture below shows the timer parameter settings.

UM2808 - Rev 1 page 6/23

https://www.st.com/en/product/str485?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808

,l Middleware
Figure 5. Time scheduler configuration
92 [] HOSTAL RESULT E HOSTAL Init (void) {
93
94
95 /*setup timer*/
96 /*##-1- Configqure the TIM peripheral ##########444488484888848884488442
97 | /*
116
117 /* Compute the prescaler value to have TIMx counter clock equal to ZkHz
118
119 uintlé_t Period=10;
120 uintlé_t Timfreg=2000;
121
122
123 /* Set TIMx instance */
124 TimHandle.Instance = nTIMx;
125
126 H /* Initialize TIMx peripheral as follows:
127 + Period = 10
128 + Prescaler = SystemCoreClock/Period/Timfreq - 1
129 + Timfreq =2000 Hz
130 + ClockDivision = 0
131 + Counter direction = Up
132 */
133
134 uwPrescalerValue = (uint3Z_t) ((SystemCoreClock/ Period/Timfreq) - 1)
135
136 TimHandle.Init.Period = Period;
137 TimHandle.Init.Prescaler = uwPrescalerValue;
138 TimHandle.Init.ClockDivision = 0;
139 TimHandle.Init.CounterMode = TIM COUNTERMOCDE_UE;
140 TimHandle.Init.RepetitionCounter = 0;
141
142 if (HAL TIM Base_Init (&TimHandle) != HAL OK)
1430 {
144 /* Initialization Error */
145 Error_Handler();
146)
2.2 Middleware
This layer contains the motor control library and the library to implement the real-time EtherCAT protocol.
221 EtherCAT protocol stack routines
The protocol stack routines are grouped in the cifXToolkit and organized in subfolders per functionality:
. OSAbstraction
. SerialDPM
. Source
. User
2.21.1 OSAbstraction
The operating system abstraction C module (OSAbstraction) can be used to exploit embedded RTOS services,
such as memory management or synchronization mechanisms. Moreover, it supports bare metal applications
without an OS as in the case of STSW-ETHDRV01V1 firmware. The cifXToolkit middleware component calls
the OSAbstraction functions also to manage the SPI initialization and communication between NETX device and
STM32.
2.2.1.2 Serial DPM

UM2808 - Rev 1

This layer consists of a set of routines, implemented to handle the communication with different companion IC
types belonging to the Hilscher NETX family (NETX10, NETX50, NETX500, NETX51).

The NETX90 communication hardware is the same as the NETX51, so it can use the same communication
functions. For this reason, there are no dedicated communication routines for NETX90.

page 7/23

https://www.st.com/en/product/STSW-ETHDRV01V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808

m UM2808

Drivers

2.2.1.3 Source
This layer contains all low-level functions used to manage the communication.

2.2.1.4 User
This section contains a set of APIs that can be used to get different information.

2.2.2 Motor control library

The motor control library is a set of source files to manage the field-oriented control of the permanent magnet
synchronous motor (PMSM).

All the required functions related to this type of control are implemented without requiring any modification. The
main functions are:

. motor phase current sensing

. rotor position sensing

. torque reference generation based on speed or position control loop
. current control loop based on PI regulators (torque control)

. PWM signal generation required by the inverter

2.3 Drivers

The Drivers layer includes the STM32Cube package libraries (CMSIS and STM32F7xxHAL_Diver) and the BSP
routines available in the Actuation.c to manage the digital I/O stage (IPS160H and current limiter).

Figure 6. Drivers folder

Sappication |
—E Ml Drivers

=2 W BSP

| = W STM32F7672Z1-Nucleo
| L@ [Actuation.c

= W CMSIS

L@ wl STM32F7x¢_HAL_Driver
B Middleware

2.3.1 Actuation.c

The Actuation.c file contains a set of routines to manage the output stage powered by IPS160H and the digital
input powered by CLT03-2Q3.

Ther routines available in the source are:
. void GPIO Actuation Init (void) to initialize all the GPIOs related to the ICs;

. void Read DIAG_IPS (void) to manage the diagnostic information received by the IPS160H and
CLT03-2Q3, reading the GPIO state (HIGH level-GOOD status, LOW level— FAULT);

. void CLTO03 2Q3 Read(void) to read the input voltage level related to the sensor feedback. For
example, considering a use case where a proximity sensor is connected, 0 V on the input and on the
MCU side means no object is present, whereas a 24 V on the input and on the MCU side indicates the
presence of an object;

. void IPS160H Actuate (void) to drive the IPS160H inputs according to the command received through
the RS485 communication;

. void Update Actuation ERT (void) is used to communicate the output state (ON/OFF) and the
output status (GOOD, FAULT) to the master EtherCAT through the RS485 communication.

UM2808 - Rev 1 page 8/23

https://www.st.com/stm32cube
https://www.st.com/en/product/ips160h?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/ips160h?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/clt03-2q3?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/ips160h?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/clt03-2q3?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/ips160h?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808

m UM2808

Implementing multi-axial position control

3 Implementing multi-axial position control

The STSW-ETHDRV01V1 firmware provides an application example implementing master/slave communication
based on the EtherCAT protocol. It allows the user to build communication with cyclic and acyclic process data
with low jitter and latency. Moreover, thanks to the daisy chain connection, it is possible to connect more than one
slave node to the same bus.

Figure 7. Bus data flow diagram
IN OUT IN OUT IN OuT

\ ‘- \

Master Slave 1 Slave 2 Slave 3

You can modify the code according to your needs, adding source files or changing the existing ones for variables,
structures, time scheduler configuration for protocol, etc.

The user editable sections are related to the following layers:

. Application
. Middleware
. Drivers

The source files for the board or IC management must be included in the BSP folder.

The Middleware layer must be used to insert all the user source files related to libraries and other protocol types
in the project.

3.1 Requirements

The STSW-ETHDRVO01V1 implements the position control of an industrial end node (EtherCAT slave) based on
the STEVAL-ETHO001V1.

The firmware solution aims at changing the motor rotor position according to the target angle and the master
logic. Even if a single position control can be executed on each node firmware, to achieve the synchronization of
a multi-axial control, a real-time network is necessary.

To use the STEVAL-ETHO01V1 board with the provided slave firmware, you need an EtherCAT master which
implements the custom frame explained in Section 5 . The master sends the rotor position and commands to the
slave via the custom frame. The firmware package is customized for a PMSM S160-2B305 series.

UM2808 - Rev 1 page 9/23

https://www.st.com/en/product/STSW-ETHDRV01V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/STSW-ETHDRV01V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/steval-eth001v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/steval-eth001v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808

UM2808

Tool chain

3

4 Tool chain

The STSW-ETHDRV01V1 firmware package uses the application example provided by Hilscher with the addition
of a library for motor control management.

It has been implemented using the IAR Workbench v8.5.5 and compiled without optimization.
The output converted format is ".hex" and the compiled files are located in the binary folder.

UM2808 - Rev 1 page 10/23

https://www.st.com/en/product/STSW-ETHDRV01V1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808

‘,_l UM2808

How to build an EtherCAT master

5 How to build an EtherCAT master

The EtherCAT master can be built through dedicated software or hardware.

This application example is based on an EtherCAT master built through dedicated software (TWINCAT). To run
the application, a set of instructions has been implemented using structured text language to manage all the
commands and data needed to properly drive the motor.

The code is able to manage only one node and then only one motor; the driving flow expects a definition on the
rotor position master side and the desired time of usage to make the motor reach the required position.

After this definition, the values are stored in the data frame and the cycling is sent to the slave node; in the
meantime, the master manages the communication with the slave node, sending also a set of commands to
manage alignment, get status, set the position and properly complete the driving sequence.

Table 2. List of commands

Output Data buffer Data format Data type

Alignment 0x01
Get Status 0x02
Command ID USINT (one byte) Set Position 0x03
Stop Motor 0x05
Reset MCU 0x06
Ready 0x01
Aligned 0x06
Motor Status USINT (one byte) Positioned 0x07
Fault 0x08
Wrong command OxFF

Rotor position and duration time data format is USINT (four bytes).

Rotor position and duration time values (expressed in radians and seconds, respectively) must be properly
converted into a sequence of 4 bytes according to the procedure described hereafter.

All the real number needs to be rounded to the nearest floating point value (for example, the value
1.888888888888888888888888888888 is rounded to 1.888888835906982421875).

The floating point value must be converted into the equivalent hexadecimal representation according to IEEE 754,
so, 1.888888835906982421875 is represented as 0x3ff1c71c (it is possible to find some online free converter on
the web).

The 32-bit hexadecimal value has to be split into four 8-bit values and set in the corresponding four-byte of rotor
position or duration time arrays with little-endian memory representation as shown in the figure below.

Figure 8. IEEE 754 binary floating point representation example

[0] | ox1c

1] | Oxc7
0x3ff1c71c |:> [

[2] | Oxf1

[3] | ox3f

These arrays are sent to the EtherCAT node.
In the firmware example, the rotor angle rotation is equal to 6.28 rad and the duration time is 2 seconds.

UM2808 - Rev 1 page 11/23

‘,_l UM2808

How to run the master EtherCAT

Table 3. STSW-ETHDRV01V1 firmware example - rotor angle rotation hexadecimal and decimal values

HEX Decimal representation

0x40 64
0xC8 200
0xF5 245
0xC3 195

Table 4. STSW-ETHDRV01V1 firmware example - duration time hexadecimal and decimal values

HEX Decimal representation

0x40 64
0x00 0
0x00 0
0x00 0

Figure 9. STSW-ETHDRV01V1 firmware example rotor angle and duration

Position_Int3:
Position Int2:
Position_Intl:
Position_Int0:

Duration_Int3:
Duration_Int2:
Duration_Intl:
Duration_Int0:

5.1 How to run the master EtherCAT

Step 1. Select the solution in the Utilities folder.
Figure 10. Utilities folder project selection

Position_Proj
,j Position_Proj.project.~u
ﬂ Position_Proj.sln

UM2808 - Rev 1 page 12/23

m UM2808

How to run the master EtherCAT

Step 2. Select [Devices] in the left window, open [Adapter] and click [Search].

Figure 11. Device search

Solution Explorer
© O fh &~ ‘ ©- & ‘ ~ E| General Adapter EtherCAT Oniine CoE - Online
Search Solution Explorer (Ctrl+;) - (© Network Adt
work Adapter
B3 PicTask! - @05 (NDIS) OFal (O DPRAM
=f= Routes
22 Type System Desaription: |Local Area Connection (TwinCAT-Itel PCI Ethemet A]
[recom objects Device Name: [\DEVICEV{095BA27D-F18A4BA-AGCO- FEDADTFESSE] |
MAC Address [645106a1d525 | | Compatible Devices... |
el Untitled1 Project
b Of} Untitled] Instance IP Adaress 00000000
SAFETY [C] Premiscuous Modis (use with Wireshark orly)
[)
g anavrrics [Vitual Device Names
Fl o
4 % Devices O Adapter Reference
" fdapter -
2T image
2% Image-Info Freerun Cycle fms): ~ [4 =
b 2 SyncUnits
b Inputs
b W Outputs
4 : EFD?E(:LTXDO . Number Box Name Address | Type InSize | OutSize E-Bus (m.
P ox -
4 L TPDO 1ADD e Box 1 (NETX 90-RE/ECS) 1001 NETX 80-REECS 60 100
%1 COMMUNCATION FLAG DONE
#1 MOTOR STATUS
%1 OUT1 STATE (ON=5 OFF=4)
%1 OUT2 STATE (ON=5 OFF=4)
%1 OUT1 STATUS (FAULT=2 6OOD=3)
%1 OUT2 STATUS (FAULT=2 GOOD=3)
4 T RPDO 1600
% START MOTOR
% COMMAND ID
e POSITION ANGLE BYTED
- POSITION ANGLE BYTE1
% POSITION ANGLE BYTE2
- POSITION ANGLE BYTE3
% TIME DURATON BYTED
- TIME DURATON BYTE1
- TIME DURATON BYTE2
% TIME DURATON BYTE3
b [l WcState
b @ InfoData
4 & Mappings Error List
;%) Untitled1 Instance - Device 2 (EtherCAT) 1
iy Untitled Instance - Device 2 (EtherCAT) Entire Solution S \ @ 0Messages | Clear | Build + IntelliSense S
Solution Explorer [Tlid Eror List [

Step 3. Select the device name in the [Device Found] window.

Figure 12. Device found

Haslp

Step 4. Reload the device using the toolbar button (e)-

Step 5. Activate the free running mode clicking on the related button

UM2808 - Rev 1 page 13/23

m UM2808

How to run the master EtherCAT

Step 6. Click on the green button (-ﬂ) and then on the green arrow in the toolbar.

Figure 13. Toolbar green arrow

= ED -[]c
Ay md=E=EmmO|a

If the procedure has been performed properly, in the TWINCAT, the toolbar appears as shown below.

Figure 14. Toolbar appearance when procedure running is successful

- 8| sGR -
Cllarengl=2aewd|s

The on-board green LED close to RJ45 connector turns red and the motor turns the rotor to reach the
right position.

Observing the TXPDO buffer in TWINCAT, it is also possible to see the feedback related to the digital
I/O circuit.

Figure 15. Digital I/O circuit feedback

Selution Explorer > o x
co@a- o-a|m-
Search Selution Explorer (Ctrl+;) P~
[E1 PlcTaskl -
== Routes
2% Type System
[E] T<COM Objects

b Gl Untitled Project
b O} Untitled! Instance

& ANALYTICS
4« Fuo
4 *L Devices

4 3 Device 2 (EtherCAT)

jg Image

jg Image-Info
2 SyncUnits
Inputs
Il Outputs
& InfoData
@ Box 1 (NETX 90-RE/ECS)
4 TxPDO 1A00
COMMUMNCATION FLAG DONE
MOTOR STATUS
QUTT STATE (ON=5 OFF=4)
QUT2 STATE (ON=5 OFF=4)
QUTT STATUS (FAULT=2 GOOD=3
OUTZ STATUS (FAULT=2 GOOD=3|
4 [RxPDO 1600
B START MOTOR
B COMMAND 1D
B POSITIOMN ANGLE BYTEQ
B POSITION ANGLE BYTE1
B+ POSITION ANGLE BYTE2
B+ POSITION ANGLE BYTES
B TIME DURATON BYTED
& TIME DURATON BYTET
B TIME DURATON BYTE2
B+ TIME DURATON BYTE3
b [WcState
b @ InfoData
Fl 23 Mappings
m ' Untitled] Instance - Device 2 (EtherCAT) 1

N

" EEELL]

-

Selution Explorer

UM2808 - Rev 1 page 14/23

Note:

Digital actuation circuit management

Digital actuation circuit management

Digital actuation circuits have been managed at firmware level by implementing a set of routines useful to read
the input voltage forced by a proximity sensor (0 to 24 V) or other references and to handle the digital output
device to drive loads.

The interaction of digital input and digital output parts is allowed through a set of string messages exchanged
between a PC and the STEVAL-ETH001V1 through the RS485 interface.

To use it, it is necessary to run a hyper terminal on a PC, configure it properly and run the communication as
described hereafter.

How to set up the hyper terminal

Connect the STEVAL-ETHO001V1 evaluation board to the PC using U18 stripline connector.

Enable the communication by selecting the COM port linked to the RS485 dongle connected to the
board.

Configure the communication parameters through the void RS485 Init (void) routine available in
the RS485.c file.

If the communication is successfully established, the below string message appears on the screen:

Successful communication - string message

Input channels value IN1 LOW IN2 LOW

Output channels state and diagnostic

OUT1 STATE OFF

OUT2 STATE OFF

OUTI1 STATUS GOOD

OUT2 STATUS GOOD

Insert output channel value using the sequence (OUT1 value,OUT2 value) :

Default configuration is:

Baud rate: 921600
Data: 8 bit

Parity: None

Stop bits: 1 bit
Flow control: none

When using Tera Term, set:

Local echo
Receive : CR
Transmit: CR

How to manage the communication
After powering the STEVAL-ETHO001V1 evaluation board:

Connect a proximity sensor or provide a 24 V to J14 screw connector through a switch.

https://www.st.com/en/product/steval-eth001v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/steval-eth001v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/steval-eth001v1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808

How to manage the communication

Connect a load to J2 screw connector (refer to UM2807, Section 3.3).

If the connection is related to digital input channel one and digital output channel on, the
microcontroller sends the following string message:

Digital input channel one and digital output channel on connection - microcontroller
string message

Input channels valuq IN1 HIGH [IN2 LOW

Output channels state and diagnostic
OUTI1 STATE OFF

OUT2 STATE OFF

OUT1 STATUS GOOD

OUT2 STATUS GOOD

Insert output channel value using the sequence (OUT1 value, OUT?2 value):

How to manage the communication

Use the string format suggested, type 1 to turn the output ON or 0 to turn or keep the output OFF. For a
correct parsing, use a comma between the two digits and click ENTER.

If for example, you type (1, 0)

Output channel value sequence

Input channels value IN1 HIGH IN2 LOW

Output channels state and diagnostic

OUTI1 STATE OFF

OUT2 STATE OFF

OUT1 STATUS GOOD

OUT2 STATUS GOOD

Insert output channel value using the sequence (OUT1 value, OUT2 value):

the MCU sends the below message

MCU message

Input channels value IN1 HIGH IN2 LOW

Ouiput channe te and diagnostic

OUT2 STATE OFF

OUT1 STATUS GOOD

OUT2 STATUS GOOD

Insert output channel value using the sequence (OUT1 value, QUT2 value):

If in this condition the output is going in overload and the IPS160H DIAG pin switches down, the fault
condition is detected by the MCU and shown as follows:

Fault condition

Input chanmels value IN1 HIGH IN2 LOW

Output channels state and diagnostic
OUT1 STATE ON
QUT2 STATE O

OUT1 STATUS FAULT

OUT2 STATUS GOOD
Insert output channel value using the sequence (OUT1 value, OUT2 value) :

https://www.st.com/en/product/ips160h?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808

m _ UM2808

String messages

6.3 String messages

Table 5. List of communication string messages

Input channels Lo 0 Vis applied to the CLT03-2Q3 devices String message sent by the microcontroller to

value HIGH | 24V is applied to the CLT03-2Q3 devices the user

OUTx STATE OFF Output in OFF condition String message sent by the microcontroller to
ON Output in ON condition the user

OUTx STATUS FAULT Overload or overtemperature condition detected String message sent by the microcontroller to
GOOD | Normal operation the user
1 Output channel turns ON

OUTXx value String message sent by the user to the MCU
0 Output channel turns OFF

UM2808 - Rev 1 page 18/23

https://www.st.com/en/product/clt03-2q3?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808
https://www.st.com/en/product/clt03-2q3?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2808

m UM2808

Revision history
Table 6. Document revision history

I R

26-Apr-2021 1 Initial release.

UM2808 - Rev 1 page 19/23

m UM2808

Contents

Contents
1 0 7= T 2
2 I =] 3
2.1 ApPliCatioN 3
2141 EtherCAT protocCol.o 4
2.2 Middleware. 7
221 EtherCAT protocol stack routines 7
2.2.2 Motor control library 8
2.3 DrIVEIS . . 8
2.31 ACtUatioN.C . . oo 8
3 Implementing multi-axial positioncontrol i i 9
3.1 Requirements 9
4 Toolchain it 10
5 How to build an EtherCAT master...........c.c.oiiiiiiiiiiiiii i iiiiiiaananannns 1
5.1 How to run the master EtherCAT e 12
6 Digital actuation circuit management i il i 15
6.1 How to set up the hyperterminal. 15
6.2 How to manage the communication 15
6.3 StriNG MESSAGESottt 18
ReVISIiON NiStOry i it i i s i s i 19
L0 o T 1 =T 3 20
Listof tableso i i 21
= o e U] =Y 22

UM2808 - Rev 1 page 20/23

m UM2808

List of tables
List of tables
Table 1. Input/output frame structure variables. 5
Table 2. Listof commands. 11
Table 3. STSW-ETHDRVO01V1 firmware example - rotor angle rotation hexadecimal and decimal values. 12
Table 4. STSW-ETHDRVO01V1 firmware example - duration time hexadecimal and decimal values. 12
Table 5. List of communication string messages. 18
Table 6. Document revision history 19

UM2808 - Rev 1 page 21/23

m UM2808

List of figures

List of figures

Figure 1. Motor control process flow 2
Figure 2. STSW-ETHDRVO1V1 architecture e e e 3
Figure 3. Application folder 4
Figure 4. User function call example 5
Figure 5. Time scheduler configuration 7
Figure 6. Drivers folder 8
Figure 7. Bus data flow diagram 9
Figure 8. IEEE 754 binary floating point representation example. 11
Figure 9. STSW-ETHDRVO01V1 firmware example rotor angle and duration 12
Figure 10. Utilities folder project selection 12
Figure 11, Device searCh 13
Figure 12. Device fouNd o 13
Figure 13. Toolbar green arrow 14
Figure 14. Toolbar appearance when procedure running is successful 14
Figure 15. Digital I/O circuit feedback 14
Figure 16. Successful communication - string message. 15
Figure 17. Digital input channel one and digital output channel on connection - microcontroller string message 16
Figure 18. Output channel value SeqUENCE i e e e e e 17
Figure 19. MCUMESSAQE ot ittt it e e e e e e e e e e e e 17
Figure 20. Fault condition 17

UM2808 - Rev 1 page 22/23

m UM2808

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics — All rights reserved

UM2808 - Rev 1 page 23/23

http://www.st.com/trademarks

	Introduction
	1 Overview
	2 Layers
	2.1 Application
	2.1.1 EtherCAT protocol
	2.1.1.1 cifXApplication
	2.1.1.2 Protocol
	2.1.1.3 User

	2.2 Middleware
	2.2.1 EtherCAT protocol stack routines
	2.2.1.1 OSAbstraction
	2.2.1.2 Serial DPM
	2.2.1.3 Source
	2.2.1.4 User

	2.2.2 Motor control library

	2.3 Drivers
	2.3.1 Actuation.c

	3 Implementing multi-axial position control
	3.1 Requirements

	4 Tool chain
	5 How to build an EtherCAT master
	5.1 How to run the master EtherCAT

	6 Digital actuation circuit management
	6.1 How to set up the hyper terminal
	6.2 How to manage the communication
	6.3 String messages

	Revision history
	Contents
	List of tables
	List of figures

