NXP Semiconductors Document identifier: SLN-LOCAL2-I0T-DG
User's Guide Rev. 0, 19 April 2021

SLN-LOCAL2-I0T Developer’'s Guide




NXP Semiconductors

Contents
Chapter 1 System Requirements and Prerequisites.........ccccccoiimmriiiiiiiniiiincceneens 9
Chapter 2 Usage ConditioNS...........ccciiiiiiiiiiiiiriiieeicses e s e e 10
Chapter 3 INtrodUCtioN..........uuuuiiiiiei e e 11
3.1 HAIAWAIE OVEIVIEW.......coiiiiiiiiiiieeeeee ettt e e 11
3.2 SOfWAIE OVEIVIEW. ... 12
3.3 DEVICE MEMOIY IMAP ... ciiieiiiiiiiiieiie e e ettt e e e e e e ettt et e e e e e e s s s bb e et e e e e e e e s ansbaeeeeeeaeeaannnnneeeeaeeeas 13
3.4 Flash memory fileSYSEM... ..o e 14
3.5 Audio application arChiteCtUre..............ueiiiiiii e 15
3.6 ASR @PPICALION. ... e e aeeas 15
A O Y= a0 (=T =TT~ TP 16
3.8 SeCuUrity @rChItECIUNE. .......eeiiiiiie e e e e e e eees 18
3.9 Automated manufacturing tO0IS...........cuiii i 18
Chapter 4 Getting started with MCUXpresso Tool Suite........cccccoivverinciiinniinnnnnnn. 19
4.1 MCUXPIESSO IDE..... ..ttt e ettt e e e e e e st e e e e e e e e e sannbeeeeeeeeeeeanns 19
4.2 Software Development Kit (SDK).........oeoiiiiiiiii e e e 19
O I B LoV g (o =T [ g T I L RPN 19
4.2.2 IMport SLN-LOCALZ-I0T SDK......coiiieiiiiieeiiiete et eiee sttt steesre e sreesessaesbeensesseesreenne e 20
4.2.3 Importing SLN-LOCALZ-I0T PrOJECES. ....coiuiiiieeiiiiiee ettt e e e e e 21
Chapter 5 Building and programming with MCUXpresso..........ccccceevviviieeeieeennnnns 24
5.1 Understanding the boot flOW.........coovvviiiiiiiiii 24
5.2 Building the bootstrap, bootloader, and local voice control demo.................cccooeeeeei. 24
5.3 Turning off image VerifiCation..............uu e 25
5.3.1 Turning off bootstrap image verification..............c.ooii i 25
5.3.2 Turning off bootloader image verification................oooi e 26
5.4 Programming the firmware and artifacts. ... 27
5.4.1 Bootstrap, bootloader, and local voice control application images............cccccoeiviiiniineennne 28
5.4.2 Audio Playback fil€S.........ooo i 29
5.4.3 Image verification certificate and KEYS..........cuuiiiiiiiii 33
5.4.4 Flash Image Configuration Area (FICA).......oo i 35
Chapter 6 Hardware platform............cueceeiiiiii e 39
Chapter 7 Far-field local voice control framework............ccccceeeviiiiiiiniiiieicccenn, 40
7.1 Automatic SPeech reCOgNItION............eiiiiiiii e 40
7.1.1 ASR appliCation SCENATOS. ....c.ciieiiiiie it st e et e e e e e e e nneeas 41
7.1.1.1 Scenario #1: Single-language two-stage voiCe CONtrOl..........cocciiiiiiiiiiiii i 41
7.1.1.2 Scenario #2: Multiple-language two-stage voiCe CONtrol...........ccceviiiiiiiiiiiini e 42
7.1.1.3 Scenario #3: Single-language N-stage voice CONtrol............ccoocueiiiiiiiiiiii e 44
0 P B B U LT 0 (=T 7= o T PSPPSR 45
7.1.2 Language-specific voice CONrol @NGINE.........coooiiiiiiiiiiiii e 46
7.1.2.1 SPECIICALION. ....ceiitiie ettt 46

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 2/87




NXP Semiconductors

Contents

T.1.2.2 ATCRITECIUIE. ...ttt ettt h e e e bt e s ate e e saneeeabneeeans 46

7.1.2.3 LaNGUAGE MOGEL.......eiiiiiiiiiiiie ittt a e st e bt e et e e st e e s sabeeeabeeenaa 47

7.1.2.4 INfErENCE ENGINE.......eoiiiiiiiiiiii ettt e a et e sbe e e ettt e sne e e e sabeeeabeeenans 48

7.1.3 ASR CONFIGUIALION. ...ttt e e et e e e e annbe e e e e e nneeas 49

A IR T I I T o U= To o O PSP R UPRPPUPRN: 49

7.1.3.2 Installation of languages and inference eNgiNes. ...........oocuvi i 49

7.1.4 ASR SESSION CONTIOL......ciiiiiiiiiiei ittt et e e s et e e e e e b e e e e e ennbreeeeeennees 50

7.1.4.1 FOIOW-UD MOGE. ...ttt ettt ettt ra e e et e s st e e sa bt e e ebe e e enee e e nnneeean 50

A I 1 1= T TN | S TSP P PSR OPPPOTI 51

7.1.4.3 PUSh-10-Talk (PTT) MOGE.......eiiiiiiiiiiieit ettt e e as 51

7.2 ACOUSEIC MOAIfICALION. ... e e e e e e 51
7.2.1 Changing microphone configuration...............ooouiiii i 51

7.2.2 Changing the POST GaIN........eiiiiiiii e e e e e e 52

7.2.3 Changing the pre-processed microphone gain............ccooiiiiiiiiiiii e 52
Chapter 8 Security architecture.............cccooiviiiiccci e 54
8.1 Application Chain Of trUST.........ooiiiii e 54
8.2 FICA and image VErifiCatioN..........oiuuiiiiiiiie e e e 54
8.3 Image Certificate Authority (CA) and application certificates............ueveveieeeiiiiiiiiiiiiieiiieeeieeee, 55
Chapter 9 Bootloader............ouueuiice et e 56
9.1 Application BIN file generation...............oooiioiiiiiiie e 56
9.2 USB Mass Storage Device (MSD) UPdate.........cooiuuiiiiieiiiiiieiiieieeee e 60
9.3 Over-the-Air (OTA) and Over-the-Wire (OTW) updates............cccceeiiiiiiiiiiiiiieiiiieeeee e 61
S I = 1] (=T PRSP PRPPP 61
9.4.1 JSON MIESSAGES. ... uetiiieiittiiee ettt te e e ettt e e e ettt e e e e s b et e e e e aabe e e e e antbeeeeeanbeeeeeaannbeeeeeeannbeeeeeanreeas 62

9.4.1.1 STAMT FEQUEST. ...ttt h ettt s e st e e b bt e e s 62

9.4.1.2 BIOCK FEQUESL. ...ttt ettt e a et e et e s bt e e aa b e e sbt e e s naneeeanbeeenan 63

S T IR IS (o] o B = To D11 S TP PP TSR PPR 63

9.4.1.4 ACtiVate IMAGgE FEQUESL. ..ottt ettt st e st e et e e aee e e sabeee s 63

9.4.1.5 Start Self-teSt rEQUEST.......cooiiiii e 63

9.4.1.6 ClEAN FEAUEST. ...ttt b ettt e bt e e bt e ettt sbe e e et e e e enre e e 64

9.4.1.7 RESPONSE TOMMAL.....co ittt e bt eb e e et e e nnn e e enns 64

9.5 Testing OTA/OTW UPAALES........uueiiiiiiieee ettt e e e e e e e e e e e nneeeees 64
ST B O B 17 (F | o TSRO PPPPRRT 64

SRS Ir A O B AT (1] o SRR PPPPRRP 64

9.6 RUNNING the teST SCIIPL......eeiiiiie e 65
Chapter 10 FileSystem......... . e e 68
10.1 Generating filesystem-compatible files...........cccuuiiiiiii i 68
10.2 Generating new audio playback fileS. ... 68
Chapter 11 Automated manufacturing tOOIS..........cccccoiieeriiirieeeeccci e 70
P I [ (o T [T 1o o SRR SOPTPPRRRRR 70
LI T 2o o T L o OSSR 70

11.1.2 Download the PACKAGE. .......cooiiiiiiiieie et e e e 70

(RS I S (o [U 1T 4 T=T L PP PR 70

11.1.4 Platform configuration.............oooiiiiii e 70

11.1.5 Boot programming modes and security features...........cccoviiiiiiiii e 71

11.2 NXP application image signing to0L.............uuiiiiiiii e 71
11.2.1 Generating SigniNg ENtitY..........ooiiiiiiii e e ee e 71

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 3/87




NXP Semiconductors

Contents

11.2.2 Installing the CA and application certificates. ... 74

11.3 Open Boot Programming t00L..........ouue it 74

11.4 Secure boot programming with High Assurance Boot (HAB)...........ccoooiiiiiiiiiiii e, 77

I I o VY = BT (F o T RO 77

11.4.2 Creating the IMaAgES. ... ....uiiiiiiiieie e et e e et e e s s e e e s ennaeeae s 79

11.4.3 Programming the IMagEsS. ........uueiiiiiiiiiiie ettt e e st e e s neneeee s 80

Chapter 12 ReferencCes..........uuuiueeeiiiiiiiii st 83
Chapter 13 ACTONYMS.......c.oiiiiiieiiieeirrre e e e e e e anan e e e s e e e e ees 84
Chapter 14 Revision NistOry............ccoiiiiiiiii e e 86

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 4/87




NXP Semiconductors

Figu

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10
Figure 11
Figure 12
Figure 13

Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.

res

LMX RT SOM (DASE DOGIA).......ueeeiiitiieeiiie ittt e ettt e s bt e e ea et esab et e e ehb e e e eabe e e sne e e e eab e e e nabeeenanes 12
RV o1 ToT= I g 111 o I o] o oo T= o | SR 12
High-level software arChitECIUre. ...........ooo it s 13
P8 To [ToTr=T o] o] Toz=1 (o] o N 1] o 1= L1 1= TSP 15
ST 1= 1] 0 g o 1A 0] =Y = Lo =TSRRI 16
User LED 0N the SLN-LOCALZ2-TOT Kif......ccueeitieiieeitieiieestie st siee et siee ettt et esaee bt e sseeesbeesmeeeseesnbeeseesaseesseesnseenees 17
Creating MCUXPresso IDE WOTKSPACE. .........ueeeiiiie e eiie e et e e eeee e st ee e st e e saeeeesnteeeanteeannseeesneeeeaseeeeanseeeanneeeeanseeennnes 19
MCUXpresso SDK build for SLN-LOCALZ-IOT ........coiiiiieiiteieeniie ettt sttt st e st seeeebeeseeeesteesnneesbeesnneesneean 20
MCUXpresso SDK import confirmation WINAOW...............ooiiuiiiiiiiiiiiie ettt e e e e ae e e e e e snaaeeaeeaan 20
. SLN-LOCAL2-I0T SDK installation in MCUXPresso IDE..............iiiieeeeee e 21
. MCUXpresso Quickstart Panel Import SDK EXAMPIE(S)........uuiiiiiiiiiiiiee e et e e et ee e e e e e e ee e e e annsseeeas 21
. MCUXPIreSSO SDK SEIECHON. ........uiiiiiiiieie et e et e e e e et e e e e e e eab e e e e e e e e baseeeeeeaaataeeaeeesnsbaeseesaansreeas 22
. MCUXpresso projeCt import SEIECHON. ..........oi it e e s e e naee 23

[ [OdU oL =TT Yo TN o)1= Tor = q o] o] =Y S 23
BOOt SECUIitY FIOWCRNAIT.........eiiieie ettt e e e s e e et e e e s e e e s be e e nenn e e e nanee 24
L@ 0o 5] =T 0 o1 =Y PSR 25
Console window showing successful COmMPIlAtioN...........oooi e e 25
Disabling image verification in DOOLSIraD. .........oiuiii e 26

Figure 19. Build option in QUICKSTArt PANEL..............eiiiiii ettt e e e ettt e e e e e et e e e e e s ntb e e e e e e anneeeeaens 26
Figure 20. Disabling image verification in DOOHOAAET.............ooiiiiie e 27
Figure 21. Build option in QUICKSTAr PANEL...........oooi oot e ettt e e e e e e e aaaaaaeeeeeeeeeaaa e nnnnnenrnes 27
Figure 22. Debug WindOW fOr @ppliCAIONS. ... ... . e ettt et e e e e ettt e e e e e abe e e e e e e e anneeeeaeeaansbeeeaeeannnneaaean 28
Figure 23. Probes diSCOVErE&A WINAOW............oiiiiiiiiiiii et e et e ettt e e e ettt e e e e e s aste e e e e e s ataeeeeesaasbeseeaeeassseeeeeesansbeeeeesansseneaaesn 29
Figure 24. Downloading application image to flash............ooiiiiiii e e e e eenneee s 29
Figure 25. Opening Flash GUI Tool for programming audio playback binaries. ..ot 30
Figure 26. Probes discovered window for programming audio playback binaries. ............ccovriiiiie i 30
Figure 27. Opening GUI Flash Tool for audio playback DINAries. ..........ccuuiiiiiiiiiiii e 31
Figure 28. Selecting audio playback DINAIY filES...........uuiiii it e e e e s e et e e e e e st e e e e e sesbaeeaeeenes 31
Figure 29. Updating the “OK” audio playback in English binary address...........ccuueeiiiiiiiiiiie e 32
Figure 30. Programming the audio playback DINAIIES. .........ccoouiiiiiii e 32
Figure 31. Audio “OK” in English binary programming COMPIELEA............oiiiiiiiiiieeeie e e e e e e e 32
Figure 32. Opening Flash GUI Tool for Application/CA CertifiCates..........cuii i 33
Figure 33. Probes discovered window for Signed Application/CA certificates...........ccviiiiiiiiiiii e 33
Figure 34. Opening Flash GUI Tool for Application/CA CertifiCates. ........ .o 34
Figure 35. Selecting the Application/CA Certificate DINAES. ..........ooiiiiiiii e 34
Figure 36. Updating the Application/CA certificate binaries address. .........coviiiiiiiiiiiiiee e 35
Figure 37. Programming the Application/CA certificate DINAries...........ccooiiiiiiiii e 35
Figure 38. Application/CA Certificate programming COMPIELE. ..........oiiiiiiiiiii e et e e e e eeeeeeaes 35
Figure 39. Opening Flash GUI TOOI fOr FICA. ... e ettt e e et e e e e e b e e nnr e e e e 36
Figure 40. Probes discovered window for FICA table programming...............coiiiiiiie oot e e e e e 36
(o [N B € | =T o N o T | PRSPPI 37
Figure 42. Selecting the FICA 1abI€ DINAIY...... ..ottt sttt ettt e e e e beeeean 37

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide 5/87



NXP Semiconductors

Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.

Figures
Updating the FICA 1Al @dArESS. ......couuiiiiiiei ittt b e e ettt rab e e e e b e e e eabe e e 38
Programming the FICA table DINAIY............oo ittt e et e s e e e et e e e nee e ennes 38
FICA table programming COMPIELE. ........coiiiiiiiii ittt e ee e e et e s nr e e re e e e nne e e nns 38
High-level overview of far-field local voice control frameWOTrK.............c..uviiiiiiiiiiiee e 40
Inference engine instances matrix for flexible ASR applications.......... ..o 41
Inference engine instances of single-language two-stage SCENAIIO. .........ccocuiiiiiiiiiiiie e 42
Multiple (up to four) languages of wake word and command inference engines............cccoeeuereriieeriieeeniee e 42
Wake word and command engine instances for single-language N-stage voice control............ccccooeiiiiiiinieec e, 44
Dialog-type voice control with Oven appli@nCe USE CASE..........coeviiiiieiiiicccittttee ettt e e e e e e e e e e e e e e e e e e e s e s s snnnenenannees 45
Demo selection by Shell COMMEANGAS..... ... ..ottt e e e et e e e e e st e e e e e e anne e e e e e e aneneeaaeaannes 45
DemMO SEIECHION COMMENG.......oiiiiiiiiei ettt e e e et e e e e et e e e e e e e e seteeeeeesastaeeeeeaassseeeaeeassseeeeeesnnssneeesaanses 45
[IE=TaTo [UE=To [IRST=1 [<Tor (o] o ot ] 1 410 0 =1 o Lo S PSPPSR 45
ASR SOftWAIE @rChitECIUIE. ... . ..ottt e e e e ettt e e e e sttt e e e e asbeeeeeesassteeeeeeansaeeaeesanseneaaean 46
F ] R etel a1 (o] K] o] o] o= SO PO UPUPPPNt 47
ASR 1anguage MOAEI SNIPPEL......ccoiiiiiiee ettt et e s e e e et e e s se e e e sab e e e e be e e e nne e e saneeeennreeean 47
ASR INfErENCE ENGINE SNUPPEL......eiii ittt e e e e e e e e s et e e e e e e e saateeeeeesaatseeeaeseasssseeaeeaansraeeeessnnsnneas 48
Configuration for the maximum number of languages SNIPPEL.........ccooi i 49
Function install_language() SNIPPEL..........oo ittt bbb e e 50
Function install_inference_enging() SNIPPEL.. ... uiiiiiieiee e e e ee e e ennes 50
ASR session control - FOllOW=UP MOGE............uiiiiiiiieii ettt e et e esee e e s e e e nbreeen 51
ASR SESSION CONIOI = fIMEOUL. ...ttt e st e et e e ettt e e st e e e nte e e sseeeeanbeeesneeeesnneeeanneeenan 51
ASR 5€S5SIoN CONLIOl = PTT MOGE. ...ttt et e e e e ettt e e e e e aee e e e e e e e neeeeea e e e nbeeeaaeaaanneeaeaeeaanssneaaaaan 51
pdm_pcm_definitions.h file and USE_SAI2_MIC defiNe.........coooiiiiiiiieeiiiiiee ettt et e et e e 51
Gain variable in aUdio_ProCeSS_tASK.C.....eiiiiiiiiiii et e e e e et e e e e e et e e e e e et b r e e e e e e e arr e e e e e e aaraees 52
PAM_to_pCm_task.C SEt GaiN fACION........ ..ottt e e e st e e e e e et e e e e e e enteeeaeeeenneeas 53
APPIICAtIoON ChaIN Of trUSE.......c. e e e e e e e e e st e e e e e e e eaar e e e e e e e e abaneeeesantaneeaeas 54
[2TeTo]1[0=To (=1 i {1V ERR 56
Editing MemOry CONfIQUIALION............oiiiiiiii et e e e e et e e e e e st e e e e e s e sbseeeaesansseeeeeesnsseeeaeaases 57
[ o] [=Tor i o] o] o 1=Ty 1= PSSR 58
Editing POS-DUIIA SEEPS. ... ittt b ettt 59
Post-build commands to generate BIN fil..........couiiiiiiiiiie e e 60
MSD UPAate MOAE LED....... .ottt a e e bt e e s et e s et e et e e et n e s 61
SLN-LOCAL2-I0T kit mounted @s USB MSD.........coiiiiiiiiiiieiiee ettt st e e eee e s bt e e e anae e e sneeesnneee s 61
L= 100 L= g o o 4 = SRR 61
ReQUESTE @NA FESPONSE TIOW.....ceiiiiiiiiiie ettt e e et e e s et e e e e e e e teee e e e s staeeeeeseassseeeaesassseeeeeesnnssaeeaeaannes 62
L0 g I oo == To [= T S 1 USSR 65
file_format.py script description, USAge, @Nd I0GS. ........ueiiiiiiiiiiee e 68
Signing artifact GENEIrAtiON USAQE. ... ...ciiiiiiiiiiiiie ittt s et e e e st e e et e e et et e e anteeesneeeeanseeeanteeesneeeennneean 72
Signing artifact GeNeration EXCEIPL.......cooiiii et 73
Signing artifacts binary files generation for HyperFlash...............oooiiiiiii i 74
Moving ca_crt.bin and app_crt.bin to Image_Binaries folder.............ooo i 74
Files and folder for Open Boot Programming t0O0]............oouiiiiiiiiiiiie e 75
Output of lvaldi Open Boot Programming..........ceeo e esee et e e st e s nee e e seeeeeanteeesaneeeesneeeeanseeesaneeeesnneeen 76
RUNNING SEIUP_N@D.DY ..ot e bbbt e e s bt e et bt e e aan e e e s be e e sanne e e s 78
Usage of enable_hab.py and itS OULPUL............ooiiiiiiiiiie e e e e e e e e e e st e e e e e s enranaaaean 78

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide 6/87



NXP Semiconductors

Figures
Figure 88. Unsetting of the XIP DOOt NEATET...........ooiiiii e et e et 79
Figure 89. Converting t0 S-TECOI fil©..........ieieiiii ettt e st e e et e e sae e e e et e e ente e e sneeeeanseeeeaneeeeennes 79
Figure 90. Changing from ST 10 SREC.......cco ittt ettt e st e et et e s st e e sne e e et e e e aareeesneeeeasreeens 80
Figure 91. Image binaries before eXeCULING HAB............ooi et e e e e et e e e e s et e e e e e e eaabeeeeeesntaeeaasaanes 80
Figure 92. Usage of secure_app.py and its output with --signed-only OptioN...............eoii e 81
Figure 93. Usage of prog_sec_app.py and its output with --signed-only Option.............ccueiiiiiiiiiiii e 82

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 7/87




NXP Semiconductors

Tables

Table 1. Tested COMPULET CONTIGUIALIONS. ..ottt ettt et e ab et e e ab e et e et e e eane e e nanes 9
Table 2. SOftware t00IS @NA VEISIONS. ........couii ittt e et s bttt e she e et e e ea et e et e e e ane e bt e e bt eene e e bt e saneeanee e 9
Table 3. USAGE CONAILIONS. ... .viiiieieiteie ettt ettt e e ettt e s bt e o bt e e aab et e e as et e e b et e e aaE et e e se e e e sane e e et e e e nnneeesaneeeenneenans 10
TabIE 4. DEVICE MEIMOIY IM@P ... .tttiieeiiiiiieeeeeeetteeeeeeeetaeeeeesaasaeeeeaeaaassteeeaassasssseeaeaaasssseeaeaassseeeeeesastsesaaesasssseaeeaasssseeeeeesanssneeassanses 13
Table 5. Full list of files in HyperFIash filleSyStem......... .. et e e et e e e e neaeeaeeean 14
Table 6. Summary of LED COlOr @nd DENAVIOT...........coiiuiiiiiii ettt e et e e e et e 17
Table 7. Wake words and commands for multi-language demOS.............ooi i e 43
Table 8. Specification of an inference eNgiNe INSLANCE. ..........cooiiii i 46
Table 9. ASR laNGQUAGE TYPE.......ueeiiiiieiiiiiee ettt e e e e et e e e e et e e e e seabeeeaeeeasssseeeeeesassseeaeeaansseeeaesaanssaeeaeeeansteeeeeeaasraneaeeaann 47
Table 10. INfErENCE ENGINE LYPES. ....ce ettt e e oottt e e e e e et e ee e e e e aateeeeaeaa s seeeaaeaanseeeeaaeaansaeeaaeaannseeaaeaannsnaaaeannn 48
Table 11. U16POStProcessedGain dESCIIPHION. .........uiiii ettt e e e e et e e e e e ss b aeeeeesataeeeeaeeansseeeeeesstaeeeessasneees 52
Table 12. SLN_DSP_SetGainFactor function deSCrPtiON...........cc.uuiiii it e et e e e 52
Table 13. Summary of boot mode and SECUTity FEALUIES...........cooiiiiiii e 71
LI o) ST el o] 1Y/ o T PP EPPUPTPRPP 84
Table 15. REVISION NISTOTY ..ottt e et st e e e b e e et et e s b et e e s et e e s et e ene e e e aabe e e eneeesnneeeanreeenas 86

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 8/87




NXP Semiconductors

Chapter 1
System Requirements and Prerequisites

The MCU Local Voice Control SDK requires an up-to-date computer which runs MCUXpresso IDE. It also requires a terminal
program to communicate with the device via USB.

The MCUXpresso IDE is available here:

https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-
integrated-development-environment-ide:MCUXpresso-IDE

Table 1. Tested computer configurations

Computer type OS version Serial terminal application
PC Windows 10 TeraTerm, PuTTY
Mac macOS Serial, CoolTerm, goSerial
PC Linux PuTTY

Below are listed development tools using MCU Local Voice Control SDK.

Table 2. Software tools and versions

Software tool Version Description
Segger JLink_v6.98 or later Tool to program the flash.
MCUXpresso IDE Version 11.3.0 Eclipse base IDE for
development environment

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 9/87



https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE

NXP Semiconductors

Chapter 2

Usage Conditions

The following information is provided per Article 10.8 of the Radio Equipment Directive 2014/53/EU:

» Frequency bands in which the equipment operates

* The maximum RF power transmitted

Table 3. Usage conditions

PN

RF technology

(a) Frequency range

(b) Max transmitted power

SLN-LOCAL2-I0T

WiFi

2412MHz - 2472MHz

17.9dBm

EUROPEAN DECLARATION OF CONFORMITY (Simplified DoC per Article 10.9 of the Radio Equipment Directive 2014/53/EU)

This apparatus, namely SLN-LOCAL2-I0OT, conforms to the Radio Equipment Directive 2014/53/EU. The full EU Declaration of
Conformity for this apparatus can be found at this location: https://www.nxp.com/

The product is expected to be used laying flat on a table, microphone output pointing up.

The data mode of the USB bus is not covered by the CE certification as this mode is used exceptionally to reprogram the device.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

10/87


https://www.nxp.com/

NXP Semiconductors

Chapter 3
Introduction

The NXP MCU Local Voice Control 2" generation development kit (part number: SLN-LOCAL2-IOT) is a comprehensive, secure,
and cost-optimized turnkey solution with a widely adopted development environment that enables customers to quickly get to
market with a production-ready end-to-end software application.

SLN-LOCAL2-I0T embeds all the components required to produce a secure and edge-computing voice control product without
a Wi-Fi or cloud connectivity. The architecture is built upon a single core:

* i.MX RT106S or RT105S for the main application, powered by an Arm® Cortex®-M7 core.
The SLN-LOCAL2-I0T hardware highlights are as follows:

» Up to 600 MHz (528 MHz by default) Cortex-M7 MCU core

* 1 MB on-chip RAM (512 KB TCM)

» 32 MB HyperFlash memory for Fast XiP (eXecute In Place)

* Three PDM MEMS microphones

» TFA9894 Class-D amplifier

» Wi-Fi/Bluetooth combo chip

* Integrated speaker

* GPIO expansion headers
The SLN-LOCALZ2-10T software highlights are as follows:

» Two-stage bootstrap and bootloader, allowing for flexibility in customer implementation

» Secure boot flow with High Assurance Booting (HAB)

» Over-the-Air (OTA) update via WiFi

» Over-the-Wire (OTW) update via UART

» Automated manufacturing/reprogramming tools

» Speech recognition engine by deep learning

» Audio Front End (AFE) for far-field Automatic Speech Recognition (ASR)

SLN-LOCALZ2-IOT is supported by a comprehensive and free-of-charge enablement suite from NXP and its partners, including
the following:

* MCUXpresso development tools

» Hardware design files

 Local voice application software source code
» Software audio tuning tools

» Documentation

* Training material

3.1 Hardware overview

The SLN-LOCAL2-IOT kit is designed to provide a reference for a real product design. The board is designed using a small form
factor and has many of the design considerations that hardware engineers evaluate. NXP also designed the hardware with some
of the key hallmarks of a traditional development kit. Figure 1 and Figure 2 show the board components.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 11/87




NXP Semiconductors

Introduction

Murata 1DX
WiFi and BT/BLE WiFi and BT/BLE Module

Antenna Connector

256Mbit
HyperFlash™
Memory
) i B3 | s
NXP |MXRT1065 — mmes e 2 Reset
Application MCU @m0 il Switch

UART1 Debug
Header (Not Populated)

i.MXRT JTAG/Debug

Header

Figure 1. i.MX RT SOM (base board)

USB Type-C
Connector

User SW1 User SW2
Switch Switch

SVDCIN

Connector (Not Populated)

Green Power

Ethernet
LED

Header (not Populated)
MikroBUS™

Header (not Populated)

Microphone M3 Boot Mode Select

Jumper
White WiFi
Ext. AUDIO LED
Header (not Populated) User RGB

LED

Microphone M2 Microphone M1

Speaker

Connector (not Populated)

Figure 2. Voice shield (top board)

3.2 Software overview
Figure 3 shows a high-level software architecture diagram. This shows everything that is included in the SDK for the SLN-
LOCAL2-I0T package, though not all of the features are implemented in demo applications.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
12/87

User's Guide



NXP Semiconductors

Introduction

Boot Loader

Control

Over the Air Update (OTA)

Local Voice
Application

Speaker Caontrol

Application

Device
Lifecycle

Multi-language support ~ Configurable Command Sets

Wi-Fi®/ BLE connectivity

Sound processing

Confirmation sounds

Codecs . i i i
Audio Framework mzd:; g'fgﬂzts” Streamer M[;en";cir
OPUS  MP3 Y o
-
G711 WMA Inference Engine Audio Front End
: : Echo Noise
GDchnat{onl Phoneme-based Phoneme-based Cancellation Suppression
alfl S Onie Commands Wake Word
DIE (S Recognition Recognition
2 Band Filtering Barge-in Beamforming
FreeRTOS
Driver Layer
XIP Wi-Fi BLE/BT DMA LED Button Amp Controller Speaker Loopback
— o = = o}
o = x = QO (7]
=) a o S %
@ @ 5 o 0} =

Figure 3. High-level software architecture

3.3 Device memory map

To understand the various pieces of the system, see the memory map (Table 4) that NXP developed for this application. There
are many components required in the system to successfully boot and execute an application.

Table 4. Device memory map

Name

Start address

End address

Description

Boot Config Region

0x6000_0000

0x6000_0OFFF

Used for XIP and setting up flash

VT 0x6000_1000 0x6000_1FFF Vector table
Bootstrap 0x6000_2000 0x6003_FFFF
Bootloader 0x6004_0000 0x601F_FFFF
Not Used 0x6020_0000 0x602F_FFFF Not used

Application Bank A

0x6030_0000

0x60CF_FFFF

Application Bank B

0x60D0_0000

0x616F_FFFF

Table continues on the next page...

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

13/87



NXP Semiconductors

Table 4. Device memory map (continued)

Introduction

Name Start address End address Description
Filesystem 0x6170_0000 O0x61F7_FFFF Stores device set'tlngs and certificates listed
in Table 5
Reserved 0x61F8_0000 0x61FB_FFFF Reserved

Flash Image Config Area

0x61FC_0000

0x61FF_FFFF

FICA table is used for secure boot

3.4 Flash memory filesystem

The filesystem manages various entries of device settings and certificates stored in the flash memory. The sector size of the
HyperFlash filesystem is 256 KB. Each file must be saved in one sector.

The contents are listed in Table 5. It shows all the files and their purposes in the SLN-LOCAL2-IOT kit. These files are programmed

by default when receiving the kit.

Table 5. Full list of files in HyperFlash filesystem

Name

Start address

End address

Description

Audio Playback EN 01

0x6178_0000

0x617B_FFFF

“OK” sound in English

Audio Playback EN 02

0x617C_0000

0x617F_FFFF

“Can | help you?” sound in English

Audio Playback ZH 01

0x6180_0000

0x6183_FFFF

“OK” sound in Chinese

Audio Playback ZH 02

0x6184_0000

0x6187_FFFF

“Can | help you?” sound in Chinese

Audio Playback DE 01

0x6188_0000

0x618B_FFFF

“OK” sound in German

Audio Playback DE 02

0x618C_0000

0x618F_FFFF

“Can | help you?” sound in German

Audio Playback FR 01

0x6190_0000

0x6193_FFFF

“OK” sound in French

Audio Playback FR 02

0x6194_0000

0x6197_FFFF

“Can | help you?” sound in French

Audio Playback EN 03

0x6198_0000

0x619B_FFFF

“Say the temperature to be set” sound in English

Audio Playback EN 04

0x619C_0000

0x619F_FFFF

“Say the time to be set” sound in English

Audio Playback EN 05

0x61A0_0000

0x61A3_FFFF

“Temperature has been set” sound in English

Audio Playback EN 06

0x61A4_0000

0x61A7_FFFF

“Timer has been set” sound in English

ASR Control Configuration

0x61A8_0000

0x61AB_FFFF

Saved parameters of ASR control
shell commands

WiFi Credential

0x61BC_0000

0x61BF_FFFF

WiFi SSID and password

Image CA Root Certificate

0x61CC_0000

0x61CF_FFFF

Can be used for connection to loT Cloud

Table continues on the next page...

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

14 /87



NXP Semiconductors

Introduction
Table 5. Full list of files in HyperFlash filesystem (continued)
Name Start address End address Description
Bank A Signing Certificate 0x61D0_0000 0x61D3_FFFF Used for validating the signature of Bank A
Bank B Signing Certificate 0x61D4_0000 ox61D7_FFFF | Usedforvalidating the signature of Bank B which
is written during first OTA
Bootloader Signing Certificate 0x61D8_0000 0x61DB_FFFF Use for validating the signature of bootloader

3.5 Audio application architecture

The audio capture application is implemented as a pipeline shown in Figure 4. The application can be configured to capture either
two or three microphones (two by default). Because the i.MX RT106S device has enough processing power, the core is used to
process the entire chain from the PDM decimation to the Automatic Speech Recognition (ASR) engine. Every 10 milliseconds,
the DMA moves raw PDM data from each microphone. This data is fed into the NXP Solutions PDM decimation software IP to
convert the audio into 16-bit, 16-kHz PCM data. When it comes out of the decimation block, it is fed to the Audio Front End (AFE)
to perform beamforming and acoustic echo cancellation. At this point, it is a single 16-bit, 16-kHz mono audio signal.

I« 10ms >
\S‘AI Interrupt(s)
SAl PDM Data
I ‘ ‘ ‘ PDM to PCM Audio Processing
Mic 1 @ | &
: | L LT[ o] | T — =1 Wake Word
MicZ | o \ ! i ‘ &3 ‘ 5“‘ Serialized microphone PCM data 16-bit 16kHz mono PCM clean audio Engine

output output

Figure 4. Audio application pipeline

Although the ASR works on multiples of 10 ms of audio data, a 30-ms data block is recommended for the input. Thus, the
audio_processing_task accumulates 30 ms worth of processed audio before sending it to the ASR for processing.

3.6 ASR application

The AFE output signal is transferred to the ASR, where the wake word engine waits for a wake word. If a wake word is detected,
the same language’s command engine is loaded to process the voice control commands. Developers can also implement multiple
groups of commands sequentially to create a dialog-style voice-control application.

NXP implemented the following three types of baseline demos:
» LED voice control demo
— English
— Two-stage (wake word and command) ASR
» loT/elevator/audio/washing machine voice control demo
— Selectable combinations of English, Chinese, German, and French
— Two-stage ASR

« Oven voice control demo

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 15/87




NXP Semiconductors

Introduction

— English
— Multiturn (4-way) dialog-style ASR

The ASR implemented with the selected languages can be easily replaced with other languages. NXP provides an application
note to customize the local voice demos. Contact NXP (local-commands@nxp.com) for more information about the process of the
phoneme-based speech recognition engine generation and custom wake words and commands.

3.7 User interfaces

The SLN-LOCAL2-10T kit's functional features can be configured using a serial terminal interface. Figure 5 shows the shell prompt
in the user’s serial terminal window. The connection is made via the USB CDC.

SHELL>> help

“help”: List all the registered commands

"exit": Exit program

Yprint": Print the WiFi Metwork Credentials currently stored in flash.

: Setup the WiFi Network Credentials
Usage:=
setup S$SID [PASSWORD]
Parameters:
S51ID: The wireless network name
PASSWORD: The password for the wireless network
For open networks it is not needed

: Erase the current WiFi Metwork credentials from flash.
: Resets the MCU.
"commands': List available voice commands for selected demo.

“changeto": Change the command set
Usage:=
changeto <param>
Parameters
Elevator control

io: Audio control
: Washing machine
LED control Cauto—enabling Englich>
dialog: Dialogic commands for oven {auto—enabling English>
“volune'": 8Set speaker volume (A — 18@B>. Save in flash memory.
Usage:=
volume N
Parameters
N hetween @ and 100

mute': Set microphones state (on ~ off>. Save in flacsh memory.
Usage:=
nute on {or off)
Parameters
on or off

"timeout": Set command waiting time <in ms>. Save in flash memory.
sage:
timeout N
Parameters
N milliseconds

“followup": Set follow—up mode <on ~ off>. Save in flash memory.
sage:
followup on Cor off)
Parameters
on or off

"multilinﬁual": Select language model(s>. Save in flash memory.
sage:
multilingual language_codel up to language_coded
Parameters
language_codes — en. zh, de, fr

Tptt': Seﬁ push—to—talk mode Con ~ off>. Save in flash memory.
sage:
ptt on Cor off)
Parameters
on or off

"cmdresult Print the command detection results in console.
u

sage:

cndresults on {or off>
Parameters

on or off

"updateotw™: o the board in the O0TW update mode.

Tupdateota': the board in the OTA update mode.

Figure 5. Shell prompt interface

The LED indicates various conditions of the SLN-LOCAL2-IOT kit. The LED is located on the kit, as shown in Figure 6. If the kit
boots without any problems, the LED lits with green color while booting and then it turns off. When the kit detects a wake word,
the LED lits with blue color while listening to a voice command. If a command is detected, the LED flickers with green color for

0.2 s. If no command is uttered or detected, the LED flickers with purple color for 0.2 s. Table 6 summarizes the LED colors and
status description.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 16 /87



mailto:local-commands@nxp.com

NXP Semiconductors

Introduction

Figure 6. User LED on the SLN-LOCAL2-IOT kit

User RGB
LED

Table 6. Summary of LED color and behavior

Function

LED State (D2)

Color

Description

Boot up

Solid Green 2 seconds

The device has powered on and is
going through initialization

Wake word detected

Solid Blue

The device detected the wake word
and listens to a command.

Command detected

Green blink 200ms

The device detected a command.

Timeout

Purple blink 200ms

If no command is detected within a
certain time, the device stops listening
to a command.

Microphone off

Solid Orange

Microphones are turned off.

Table continues on the next page...

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

17/87



NXP Semiconductors

Introduction

Table 6. Summary of LED color and behavior (continued)

Function LED State (D2) Color Description
The device is on PTT mode. By
. pressing SW1, wake word detection
Push-to-Talk (PTT) mode Solid Cyan @ phase is bypassed and the device
listens to a command.
Initialization Failed Solid Red The device failed to initialize AFE
or ASR.
"~
. . r! ' I Audio stream after AFE is not
Audio stream error Solid Purple M\ transferred to ASR.
r= During initialization or language or
ASR memory error Solid Orange ‘l demo change, an error occurred in
verifying memory pool size.

There are two on-board buttons that can be used for input interfaces. SW1 is used for the PTT mode. SW2 is used for the
MSD mode.

The following interfaces are available:

» Output interface
— Serial terminal via USB CDC by default
— UART
— LED indicator
— On-board speaker

* Input interface
— Serial terminal via USB CDC - shell commands

— Two on-board buttons

3.8 Security architecture

The SLN-LOCAL2-I0T kit is built and designed in a way that enables the best security practices, while maintaining the
development kit feel. The main security mechanisms implemented are the image verification stages that are required for every
image programmed into the device. By default, the image verification is enabled in the SLN-LOCAL2-I0T kit. For more details
about the security architecture, see Security architecture.

3.9 Automated manufacturing tools

NXP provides a package of scripts that can be used for manufacturing programming and reprogramming of devices on the
production line without the J-Link. This collection of scripts is called Ivaldi. The Ivaldi package allows developers to program all the
required firmware binaries into a flash device using a single command. To learn more about the automated manufacturing tools,
see Chapter 11.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 18/87




NXP Semiconductors

Chapter 4
Getting started with MCUXpresso Tool Suite

4.1 MCUXpresso IDE

The MCUXpresso IDE has an easy-to-use Eclipse-based development environment for NXP MCUs based on the Arm°® Cortex"-M
cores. It offers advanced editing, compiling, and debugging features with the addition of MCU-specific debugging views, code
trace and profiling, multicore debugging, and integrated configuration tools. Its debug connections support all NXP evaluation
boards with industry-leading open-source and commercial debug probes from Arm, P&E Micro®, and SEGGER".

To download NXP MCUXpresso IDE, visit www.nxp.com/MCUXpresso (free of charge).

Launch the MCUXpresso IDE and define the workspace location to copy and store your projects and click Launch. Figure 7 shows
an example of workspace configuration.

E MCUXpresso IDE Launcher >

Select a directory as workspace

MCUXpresso IDE uses the workspace directory to store its preferences and development artifacts,

Warkspace: | CAMCUXpresso\Workspace V| I Browse...

[]Use this as the default and do not ask again

b Recent Workspaces

Launch Cancel

Figure 7. Creating MCUXpresso IDE workspace

4.2 Software Development Kit (SDK)

The MCUXpresso SDK is a comprehensive software enablement package designed to simplify and accelerate application
development with NXP’s MCUs based on the Arm® Cortex"-M cores. The MCUXpresso SDK includes production-grade software
with an integrated RTOS (optional), integrated stacks and middleware, reference software, and more. It is available in the custom
downloads based on your selection of MCU, evaluation board, and optional software components.

4.2.1 Downloading SDK

The SLN-LOCAL2-IOT SDK is distributed through the MCUXpresso SDK Builder, which is a web tool providing access to SDKs
for NXP board platforms. This section describes where to locate, generate, and download the SDK before installing it.

Navigate to the MCUXpresso SDK Builder which should open the SLN-LOCALZ2-IOT kit which allows you to build the SDK.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 19/87



http://www.nxp.com/MCUXpresso
https://mcuxpresso.nxp.com/
https://mcuxpresso.nxp.com/en/builder?hw=SLN-LOCAL2-IOT

NXP Semiconductors

Getting started with MCUXpresso Tool Suite

Generate a downloadable SDK archive for use with desktop MCUXpresso Tools
Developer Environment Settings
Selections here willimpact files and exampies projects included in the SDK and Generated Projects

Host 05 E ‘;) Toolchain / IDE

Filter by Name, Category, or Description
Name Category
SDMMC Stack Middleware
Solutions loT Common Platform Middleware
cJSON Middleware
CMSIS DSP Library CMSIS DSP Lib
FatF$ Middleware
LittleFS Middleware
[ Middleware
FreeRTOS (2 selected)
AWS loT Core Middleware
Cypress WICED WiFi Stack Middleware

Description

Stack supporting SD, MMC, SDIO

Common |oT code base for NXP's Solution Reference Platforms
Ultralightweight JSON parser in ANSI C

CMSIS DSP Software Library

FAT File System stack

LittleFS filesystem stack

Lightweight IP open-source TCP/IP stack

Amazon Web Service (AWS) loT Core SDK

Cypress WICED framework

Figure 8. MCUXpresso SDK build for SLN-LOCAL2-10T

SLN-LOCAL2-10T

Additional information about SLN-LOCAL2-10T

SLN-LOCAL2-10T
MIMXRT106S
e [ Max Freq Cortex-M7F / 600MHz
Memory Size 0 KB Flash
1024 KB RAM

Documentation

& AP| Reference Manual
[ Getting Started Guide
B Release Notes

B Change Log

NOTE

You may be asked to log into the NXP webpage to access the MCUXpresso SDK builder.

In Figure 8, there are three red boxes. Select the toolchain support, the host OS you are developing on, and the embedded
real-time operating system. Click the “Select All” button to include all the relevant software packages and then click the “Download

SDK” button.

4.2.2 Import SLN-LOCAL2-I0T SDK

Before building the SLN-LOCAL2-IOT SDK example projects, the target SDK must be imported into the MCUXpresso IDE by
dragging and dropping the target SDK archive into the “Installed SDKs” window in the MCUXpresso IDE. Figure 9 shows the
pop-up window which asks for confirmation (Click "OK").

When the package is imported, it will be displayed in the list of installed SDKs. Figure 10 shows the installed SDKs in the

MCUXpresso IDE.

[ MCUXpresso IDE SDK import

folder?

Are you sure you want to import the following 5DK in the common 'mcuxpresso’

O x

CASLM-LOCAL2-10T.zip

[1Do not ask for confirmation on SDK Drag and Drop install

Cancel

Figure 9. MCUXpresso SDK import confirmation window

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

20/87



NXP Semiconductors

Getting started with MCUXpresso Tool Suite

[ Installed SDKs 53 [ Properties [#] Problems [ Console Jf® Terminal [i Image Info Bl Debugger Conscle [ @ {'{4}| BE=8 M

@ Installed SDKs

To install an SDK, simply drag and drop an SDK (zip file/folder) into the 'Installed SDKs' view. [Workspace] sNeoarsce;
Installed SDKs “._Available Boards | Available Devices

Name SDK Version Manifest Version Location
| HHiSDK 2% SLM-LOCAL2-10T i 2.80 3.6.0 JE < Workspace>\SLM-LOCAL2-10T zip

This is sdk 2.x Package

Manifest Versien: 3.6.0

SDK Version: 2.8.0

Schema Version: 3.6.0
TP AT

Figure 10. SLN-LOCAL2-IOT SDK installation in MCUXpresso IDE

4.2.3 Importing SLN-LOCAL2-IOT projects

The SLN-LOCALZ2-I0T SDK allows you to import existing application examples as a development starting point. Some
applications are intended to handle most of the voice aspects of the functionality, allowing developers to focus on the
product innovation.

The following steps show how to import SLN-LOCAL2-IOT projects into MCUXpresso IDE.

From the Quickstart Panel, select Import SDK examples(s), as shown in Figure 11.

+* Create or import a project

MNew project...
. Import SDK example(s)... I
® Import project(s) from file system...

+ Build your project

&, Build
Jv’ Clean

Figure 11. MCUXpresso Quickstart Panel Import SDK Example(s)

A list of all the installed board SDKs that have examples to import from appears. Select the “sin_local2_iot” image and then click
the "Next" button, as shown in Figure 12.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 21/87




NXP Semiconductors

Getting started with MCUXpresso Tool Suite

3 sDK Import Wizard

(@ Imperting project(s) for device: MIMXRTI06SxxxA using board: SLN-LOCAL2-10T

MO

. Board and/or Device selection page

= SDK MCUs @ Available boards
MCUs from installed SDKs. Please click

Please select an available board for your project.
above or visit meuwcpresso.mep.com to

Bt 2

o eitional SOK [ Supported boards for device: MIMXRTIDES oA
obtain additional SDKs.

P MIMXRT106Sxxxx A
~ MIMXRT1060
IIMXRTI D6 xxxx A

sin_local2_iot

Selected Device: MIMXRT106Sxx0xA using board: SLN-LOCAL2-10T
Target Core: em?
Description: IMXRT1060

SDKs for selected MCU

Name SDK Version Manifest Ve... Location

5 SDK_2x_SLN-LOCAL2-I0T 2.80 360 JE <Workspace>\SLN-LOCAL2-10T.zi

@

<gock i Corcel

Figure 12. MCUXpresso SDK selection

The import wizard then displays all the applications that are available to import. Ensure that the SDK Debug Console is not moved

from its default position. Figure 13 shows the import of all the projects to be used in this section.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide

22/87



NXP Semiconductors

Getting started with MCUXpresso Tool Suite

. SDK Import Wizard

[m] X
o
(1, The source from the SDK will be copied into the workspace. If you want to use linked files, please unzip the 'SDK_2.x_SLN-
LOCAL2-10T' SDK. The advanced options page is disabled when either more than one project has been selected or the
. Import projects
Project name prefix: | sin_local?_iot * | Project name suffix:
Use default location
Location: | Ch\Users\nxf08836\Documents\MCUXpressolDE_11.3.0_5222\sIn-local2-all\sIn_local2_iot Browse...
Project Type Project Options
C Project C++ Project C Static Library C++ Static Library SDK Debug Console O Semihost O UART @ Example default
Copy sources
Import other files
Examples

u| M %| BB

| type to filter

Name Description

Version
v [] £ demo_apps
[ = hello_world
[ = hello_werld_virtual_com
[] = iled_blinky
w [4] £ sin_boot_apps
+ bootloader
5 bootstrap
~ (W] £ sln_voice_examples
5 local_demo
[0 = usb_aec_alignment_tool
v [ £ wifi_examples

The Hello World demo application provides a sanity check for the new SDK build environments an...
The Helle World demo application provides a sanity check for the new SDK build envirenments an...
The LED Blinky demo application provides a sanity check for the new SDK build environments and ...

Project responsible for secure jump into main application and for firmware updates,
Project which validates the integrity of the applications and starts the bootloader

Local voice demo with automatic speech recognition
The USE AEC alignment tool provides a way of capturing all audic streams to help evaluate the AF...

[0 = wiced_ble_4343W Demonstrates Cypress WiFi and BLE connected over USDHC/SDIO
[0 = wiced _iperf 4343W Demonstrates Cypress WiFi connected over USDHC/SDIO
[ = wiced_mfg_test_4343W Manufacturing Test Application

® < Back Mext » Cancel

Figure 13. MCUXpresso project import selection

When the projects are successfully imported, they are listed in the project explorer, ready to be built and run. This document

describes the local_demo, bootloader, and bootstrap for building and debugging. Figure 14 shows the Project Explorer window
after the projects from the SLN-LOCAL2-I0T SDK are imported.

. sin-local2-all - MCUXpresso IDE

File Edit Mavigate Search Project ConfigTools Bun  Analysis  FreeRl

Jul B~/ -BIODIBin|nD @ N

FURE R -R-RA= RN

{5 Project Explorer 32 5, Peripherals+ if Registers 3§ Faults = 08
S V| 8% B 3

=% sln_local?_iot_bootloader
=% sin_local?_iot_bootstrap
== sin_local?_iot_local_demo <Debugs

Figure 14. MCUXpresso Project Explorer

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide 23/87



NXP Semiconductors

Chapter 5
Building and programming with MCUXpresso

5.1 Understanding the boot flow

Figure 15 shows the series of checks that occur during the boot. There are configuration options in various applications (ROM
bootloader, bootstrap, bootloader) that determine which sequence is followed. If at any point a signature check fails and the High
Assurance Booting (HAB) or image verification is enabled, the boot process stops.

Run Bootstrap Run Bootloader

Yes

o8
4

Verify Verify
Bootstrap Bootloader
Signature Signature

Verify App
Signature

Yes

heck App
Signature? No

Yes

Check BL
Signature?

¢

MCU ROM
Bootloader

Run Bootstrap Run Bootloader

Ig ‘ E

Figure 15. Boot security flowchart

By default, the SLN-LOCAL2-10T kit has the image verification enabled and the HAB disabled in the bootstrap and bootloader.

The bootstrap project is the first application that boots. The architecture is described below. Bootstrap is a minimal FreeRTOS

application that is responsible for image verification. If the i.MX RT HAB is enabled on the chip, bootstrap is the signed trusted

firmware. This firmware is designed to avoid any updates, because the corruption of this image results in unbootable image and
bricked device.

The bootloader project is a second-stage bootloader that manages jumping into the local_demo application. This application can
be used for any additional bootloader functionality needed for the product. This bootloader is also responsible for the Mass Storage
Device (MSD) dragging and dropping and updating the application image Over-the-Air (OTA) as well as Over-the-Wire (OTW).
The bootloader also validates OTA / OTW images via signature verification.

The local_demo is the main application that runs the far-field local voice control.

5.2 Building the bootstrap, bootloader, and local voice control demo

From the "Quickstart Panel", select “Build” to start the compilation and linking of the application for sin_local2_iot_bootstrap,
sIn_local2_iot_bootloader, and sIn_local2_iot_local_demo. Figure 16 shows that the sIn_local2_iot_local_demo project is selected
and will start to compile after clicking the “Build” button.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 24/ 87




NXP Semiconductors

Building and programming with MCUXpresso

\) Quickstart Panel Slobal Vanables anables Breakpoints Dutline [
MCUXpresso IDE - Quickstart Panel
L_1oE | Project: slnalexaiot_bootloader [Debug]

* Create or import a project

. Mew project...
) i
y Import SDK example(s)...
% Import project(s) from file system...

* Build your project

@

& Clean

Figure 16. Quickstart panel

Wait for the console to finish the build. This may take a few minutes. Figure 17 shows the result of a successful compilation of the
sin_local2_iot_local_demo project.

(&) Installed SDKs [ Properties [2) Problems | & Conscle 37 | & Terminal | Image Info 3 Debugger Console 4 Search O G8 BT EfRE-N-= B

COT Build Console [sln_local2_ict_local_demo]
~

Building target: sln_local2 ot local demo.axf

Invoking: MCU Linker

arm-none-eabi-gec -nostdlib -L"C:\Users\nxf@9836\Documents\MCUXpressoIDE_11.1.1 3241\sln-local2-iot-rc2\sln_local2 iot local demo\libs” -Xlinker --gc-section:

Memory region Used Size Region Size %age Used

BOARD_FLASH: 1918296 B 10 MB 18.29%
SRAM_DTC: 462448 B 480 KB 94.069%
SRAM_ITC: 2616 B 32 KB 7.98%

SRAM_OC_NON_CACHEABLE: 1860 B 256 KB 0.69%

SRAM_OC_CACHEABLE: 250 KB 256 KB 97.66%
Finished building target: sln_local2 iot local demo.axf

make --no-print-directory post-build

Performing post-build steps

arm-none-eabi-size “sln_local2 iot local demo.axf"; # arm-none-eabi-objcopy -v -0 binary "sln_local2 iot local demo.axf” "sln_local2 iot local demo.bin” 5 # i
text  data bss dec hex Filename

1725864 192432 527736 2446832 2552d@ sln_local2_iot_local_demo.axf

16:15:51 Build Finished. @ errors, 26 warnings. (took 1m:7s.468ms)

| v

Figure 17. Console window showing successful compilation

5.3 Turning off image verification

The SLN-LOCAL2-10T kit has the image verification turned on by default. This has the security feature of only booting images that
are signed with the Certificate Authority that is associated with the application certificate and the Certificate Authority certificate
programed in the flash. This disables programming an image into the flash and booting successfully.

For development purposes, consider turning this feature off to avoid signing images or when using NXP’s security material, to
avoid signing images. To do this, image verification must be turned off for both the bootstrap and the bootloader components.

When moving to production, it is suggested to turn the image verification on. To turn the image verification on, there is a single
macro change required. The verification is application-specific, so if the entire security chain must be enabled, the setting must
be updated in both the bootstrap and the bootloader applications.

5.3.1 Turning off bootstrap image verification

To turn off the image verification within the bootstrap, code modifications are required. Within the MCUXpresso IDE bootstrap
project, right-click the root project and navigate to:

* Properties > C/C++ Build > Settings ->Preprocessor

Inside the Preprocessor section, change the MACRO “DISABLE_IMAGE_VERIFICATION” to “1” and click Apply and Close, as
shown in Figure 18.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 25/87




NXP Semiconductors

Building and programming with MCUXpresso

+.:'Z.'E'.E_'-:Z'_'-"_ZZF;_Z'._.'ZZZ_'-"F.' O =
| type filter text Settings - v v
Resource
Builders
v CfC++ Build Configuration: |Debug [ Active ] ~ | Manage Configurations...
Build Variables ¥
Environment
Logging 9 Tool Settings & Build steps Build Artifact Binary Parsers @@ Error Parsers
MCU settings
Settings ~ B MCU C Compiler [[1Do not search system directories (-nostdinc)
Tool Chain Editer (2 Dialect [C1Preprocess only (-E)
C/C++ General (% Preprocessor Defined symbols (-D) € w &8 g
MCUXpresso Config Tools 2 Includes R !
Project-hlst | 3 Oedirmizati |scamE ADVAMCED ENABLE=0 ~
Proied B9 Edit Dialog ¥ fsH=1
RL?;[  ENABLE=1
ok Defined symbols (-D) EDCD-ENAB'—H
Validal [ DISABLE_IMAGE_VERIFICATION={]
ADDRES5=FICA_IMG_BOOTLOADER_ADDR
R_TABLE=1
DFAULT_DISABLE=1 |
Cancel | TRANSFER_NON_BLOCKING=1 L,
TOS_HEAP_SIZE=65536 ]
@ Miscellanecus ‘g;%m‘:c%FCRIEAE?RTOS L
W
(# Shared Library Settings = =
(# Architecture Undefined symbols (-U) &

@ Managed Linker Script
A Mulicars |

Figure 18. Disabling image verification in bootstrap

After that change, select the Build option from the quickstart panel (as shown in Figure 19) to start the compilation and linking of
the bootstrap.

* Build your project
@ %, Build
& Clean

Figure 19. Build option in quickstart panel

5.3.2 Turning off bootloader image verification

To turn off the image verification within the bootloader, code modifications are required. Within the MCUXpresso bootloader
project, right-click the root project and navigate to:

* Properties > C/C++ Build > Settings > Preprocessor

Inside the Preprocessor section, change the MACRO “DISABLE_IMAGE_VERIFICATION” to “1” and click “OK”, as shown in
Figure 20.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 26 /87




NXP Semiconductors

Building and programming with MCUXpresso

B &
type filter text Settings b4 v v
Resource
Builders
w C/C++ Build Configuration: | Debug [ Active ] ~| | Manage Configurations... ¢

Build Variables
Environment

Legging B Tool Settings & Build steps Build Artifact Binary Parsers €3 Error Parsers

MCU settings

Settings w 3 MCU C Compiler []Do not search system directeries (-nostdinc)

Tool Chain Editor (22 Dialect [JPreprocess only (-E)
C/C++ General Jix] Preprocessor X 5 e
MCUXpresso Config Tools g Includes Defined symbols (-D) €5 8 il G
Project Natures (# Optimization CPU_MIMXRT1065DVLEA ~
Project References (# Debugging ggg—gglé\&éig?qﬁég&:ﬁf-cm7
Run/Debug Settings . 12 Miarninas = =
Task Tags [ Edit Dialog X
Validation

Defined symbols (-D)
| DISABLE_IMAGE_VERIFICATION=]]

nca | —
v

(& Architecture | Undefined symbols (-U) a
(# Managed Linker Script
| @ Multicore
8l w 83 MCU Debugger
(2 Debug
(2 Miscellaneous

Figure 20. Disabling image verification in bootloader

After that change, select the Build option from the quickstart panel (as shown in Figure 21) to start the compilation and linking of
the bootloader.

~ Build your project
%, Build
gf’ Clean

Figure 21. Build option in quickstart panel

5.4 Programming the firmware and artifacts

This section shows how to update the firmware. There are multiple ways to update the firmware, which also depends on whether
the default NXP credentials are used. If the default NXP credentials are used, there are limitations on what can be updated without
code changes.

By default, the image verification is on, which means that if the bootloader or local_demo are programmed without a valid signature
in the Flash Image Configuration Area (FICA), the image verification fails and the code execution halts.

If the image verification is not disabled (it is enabled by default), then the only application that can be updated is the local_demo
via the Mass Storage Device (MSD) update. To update the firmware without debugging, follow the steps in USB Mass Storage
Device (MSD) update.

There are other ways to program firmware into the device with a section dedicated to the manufacturing package called “Ivaldi”,
which is described in Automated manufacturing tools. These tools are available to manufacturers and developers for automated
programing and taking a product from the assembly to the distribution autonomously.

The following section assumes that the image verification is disabled and all supporting artifacts are available to the developer
and that the J-Link debug probe and MCUXpresso IDE are used.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 2787




NXP Semiconductors

Building and programming with MCUXpresso

5.4.1 Bootstrap, bootloader, and local voice control application images

With the bootstrap, bootloader, and local_demo all compiled, it is time to program them into the flash. This section assumes that
you have either turned off the image verification or that the signing artifacts are already generated and ready to program, as
described in NXP application image signing tool.

Perform the following steps for bootstrap, bootloader, and local_demo.

Select the debug option from those shown in Figure 22 and ensure that the debug probe is attached. This starts the process of
loading the binary into the flash.

) Quickstart Panel 53 ariables Breakpoints = 3

. MCUXpresso IDE - Quickstart Panel

Project: sIn_alexa_iot_ais_ffs_demo [Debug]
= Create or import a project

o .New project...
-’—
. Import 50K example(s)...
® Import project(s) from file system...

= Build your project
@, Build
@” Clean
= Debug your project i E ~FA -

¥ Debug

Figure 22. Debug window for applications

Select the J-Link probe that is connected to the board and click "OK", as shown in Figure 23.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 28 /87




NXP Semiconductors

Building and programming with MCUXpresso

. Probes discovered O X

Connect to target: MIMXRT1065:c00cA
1 probe found. Select the probe to use:

Available attached probes

MName Serial number...  Type Manufactur... |IDE Debug Mo...
N J-Link ULTRA+ 504500560 USE  SEGGER All-Stop

Supported Probes (tick/untick to enable/disable)
MCU¥presso IDE LinkServer (inc. CMSI5-DAP) probes
P&E Micro probes

SEGGER J-Link probes

Probe search options

Search again

Remember my selection (for this Launch configuration)

@

Figure 23. Probes discovered window

This launches the flashing tool and proceeds to load the image into the flash, as shown in Figure 24. When it is complete, you can
proceed to the debug section.

ﬂ SEGGER J-Link V6.98b - Flash download (2043 KB)

—L e

L2-Veri 0% 0.000s

Programming range 0x&0478000 - 0x6047BFFF (16 KB) 34,436z

Figure 24. Downloading application image to flash

5.4.2 Audio playback files

The steps required to program the audio files to play from the SLN-LOCAL2-10T kit are described here. Itis assumed that the audio
files are available to the developers using the pre-built RAW form of files inside the “Image_Binaries/local_audio_files” folder in
the lvaldi package, or they are generated, as described in Generating new audio playback files.

Ensure that the SLN-LOCAL2-10T kit is USB-powered with the JTAG connected to the back of the board. Within the MCUXpresso
IDE, ensure that you have selected a project to launch the debug configuration in and select the GUI Flash Tool icon, as shown
in Figure 25.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 29/87




NXP Semiconductors

Building and programming with MCUXpresso

FreeFTOS Window Help

Pl MRS ERR]ES

&P X W A

Figure 25. Opening Flash GUI Tool for programming audio playback binaries

The Probes discovered window (shown in Figure 26) appears if the project has never been used to program the SLN-LOCAL2-10T

kit before.

[ Probes discovered O

>
Connect to target: MIMXRT1065:000A
1 probe found. Select the probe to use:
Available attached probes
Mame Serial number...  Type Manufactur... |DE Debug Mo...
B JLink UCTRAS 504500569 USE " 'SEGGER All-Stop

Supported Probes (tick/untick to enable/disable)
MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes
P&E Micro probes

SEGGER J-Link probes

Probe search options

Search again

Remember my selection (for this Launch configuration)

@

Figure 26. Probes discovered window for programming audio playback binaries

After clicking “OK”, the Flash GUI Tool shown in Figure 27 pops up.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

30/87



NXP Semiconductors

Building and programming with MCUXpresso

B GUI Flash Tool

GUI Flash Tool for:
% SEGGER J-Link probes
i

Target: MIMXRT 10600004

Options

Probe specific aptions

Target Operations
Select the target flash operation to perform

Program executable into flash sinalexaiot_imported_ais_demo.axf

Interface | SWD ~ | Speed | auto ~

Program Erase}

Options
Select the options to apply

File te program

Inalexaiot_imported_ais_demo\Debug':

EUCET A e ley s WETER LR |~ | Workspace.., || File System...

Format to use for programming ® hex (O bin
Base Address 0x61700000

Reset target on execution Halt target on execution

General Options

Flash programming tool options

Additional options ‘

[[IRepeat on completion [] Preview command Clear console

Figure 27. Opening GUI Flash Tool for audio playback binaries

The GUI Flash Tool automatically fills in the fields associated with the project that must be changed. Select the “Filesystem” button,
which opens the window shown in Figure 28. Within that window, navigate to the audio playback binary files that were downloaded
from the Ivaldi package or generated, as shown in Generating new audio playback files.

» |mage_Binaries

MName Date modified

local_audio_files 1/7/2021 1:47 PM

| app_crt 11:47 PM
| ca_crt 021 1:47 PM
| fica_table 21 319 PM

| sln_local2_iot_bootloader 2021 5:17 PM

21 517 PM
| sIn_local2_iot_local_demo 2/17/2021 5:17 PM

| sln_local2_iot_bootstrap

Figure 28. Selecting audio playback binary files

v 2 Search Image_Binaries

Type Size

File folder

EIM File 2KB

EIM File 2KB

EIM File 1KB

EIM File TT8 KB

EIM File 162 KB

EIM File 1,881 KB

Within the “Base Address” textbox, enter the address where the audio file is located and click the "Run" button. In Figure 29, for
demonstration purposes, we program the “OK” audio playback in English at the 0x6178_0000 address.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

31/87



NXP Semiconductors

Building and programming with MCUXpresso

B GUI Flash Toeal

GUI Flash Tool for:
SEGGER J-Link probes
Program executable into flash ok.bin

Target: MIMXRT10650ex A

Options
Probe specific options

Interface | SWD

~ | Speed | auto

Target Operations
Select the target flash operation to perform

Program ~._Era se}

Options
Select the options to apply

File te program

‘ C\Users\nxf09836\Documents\miss\sin_imx_rt_prog_and_test\Image_Bin: - | Workspace.

. || File System...

Format to use for programming  hex (@) bin

Base Address [ ox61720000)

Reset target on execution Halt target on execution

General Options

Flash programming teol optiens

Additional options |

O Repeat on completion [ Preview command Clear console

Figure 29. Updating the “OK” audio playback in English binary address

This programs the audio binary file into the designated flash section, as shown in Figure 30. After the flashing process is done,

the “Operation Completed” window (shown in Figure 31) appears.

H SEGGER J-Link V6.98b - Flash download (256 KB)

corcere | - -

———
L2-Veri

0% 0.000s
vierifying range 0x61780000 - 0x6 179FFFF (128 KB) 2.677s
Figure 30. Programming the audio playback binaries
. Program executable into flash ok.bin X

P -

Operation completed!
W' Seeflash programming toel conscle for more details.

Figure 31. Audio “OK” in English binary programming completed

See Table 5 for the list of all audio file addresses saved in the HyperFlash memory.

User's Guide

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021




NXP Semiconductors

Building and programming with MCUXpresso

5.4.3 Image verification certificate and keys

The following section describes the steps required to program the image Certificate Authority and Application public certificate
to validate images. This section assumes that the artifacts are available to the developer using the pre-built binaries inside the
“Default Binaries” folder in the release package or that they are generated and converted to files.

Ensure that the SLN-LOCAL2-I0T kit is USB-powered with the JTAG connected to the back of the kit. In the MCUXpresso IDE,
ensure you have selected a project to launch the debug configuration in and select the GUI Flash Tool icon, as shown in Figure 32.

FreeRTOS Window Help

P ®BM 2SR @SR RRRO LS LT RN

Figure 32. Opening Flash GUI Tool for Application/CA certificates

The Probes discovered window (Figure 33) is shown if the project has never been used to program the SLN-LOCAL2-10T
kit before.

3 Probes discovered O X
Connect to target: MIMXRT1065:000A

1 probe found. Select the probe to use:
Available attached probes

MName Serial number..  Type Manufactur... |DE Debug Mo...
BN J-Link UCTRA+ 504500569 USE  SEGGER Ali-Stop :

Supported Probes (tick/untick to enable/disable)
MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes
P&E Micro probes

SEGGER. J-Link probes

Probe search options

Search again

Remember my selection (for this Launch configuration)

Figure 33. Probes discovered window for Signed Application/CA certificates

After clicking “OK”, the GUI Flash Tool pops up, as shown in Figure 34.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 33/87




NXP Semiconductors

Building and programming with MCUXpresso

B 6UI Flash Tool

GUI Flash Tool for:
B, SEGGER J-Link probes

Target: MIMXRT 106Acc0ch

Options
Probe specific options

Target Operations
Select the target flash operation to perform

Program *_Erase
Options
Select the aptians to apply

File to program

Program executable into flash sInalexaiot_imported_ais_demo.axf

Interface | SWD | Speed

auto

Inalexaiot_imported_ais_demo’\Debug

NI GETTET ATl TR I | Workspace.. | File System...

Format to use for programming @) hex () bin
Base Address 0x61700000

Reset target on execution Halt target on execution

General Options
Flash programming tool options

Additional options ‘

[IRepeat on completion []Preview command [ Clear console

Run... Cancel

Figure 34. Opening Flash GUI Tool for Application/CA certificates

The GUI Flash Tool automatically fills in the fields associated with the project that must be changed. Select the “File
System...” button, which opens the window, as shown in Figure 34. Within that window, navigate to the application certificate
(app_crt.bin) and the CA (ca_crt.bin) that were recovered from the device or generated following the instructions in Automated

manufacturing tools.

: » Image_Binaries »

Name Date modified
local_audio_files 1/7/2021 1:47 PM
app_crt f7/2021 1:47 PM

ca_crt / 021 1:47 PM
fica_table 21 %19 PM
sln_local2_iot_bootloader
sIn_local2_iot_bootstrap

sln_lecal2_iot_local_demo

Figure 35. Selecting the Application/CA certificate binaries

Type

File folder
BIM File
BIM File
BIM File
BIM File
BIM File
BIM File

Search Image_Binaries

Size

2KB
2KB
1KB
778 KB
162 KB
1,881 KB

Within the “Base Address” textbox, enter “0x61D00000” and “0x61D80000” (must be done for both) for the certificate (app_crt.bin)
or “0x61CC0000” for the certificate authority public certificate (ca_crt.bin) and click the "Run" button. In Figure 36, for
demonstration purposes, the same app_crt.bin certificate is used for both banks. For security reasons, using different certificates

for each bank is recommended.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

34/87



NXP Semiconductors

Building and programming with MCUXpresso

3 GUI Flash Tool m] X
GUI Flash Tool for:
SEGGER J-Link probes
Program executable into flash app_crt.bin
Target: MIMXRT1065xxxA
Options
Probe specific options
Interface | SWD ~ | Speed | auto ~
Target Operations
Select the target flash operation to perform
Program Erasa
Options
Select the options to apply
File to program ‘ C:\Users\nxf09836\Documentsimisssin_imx_rt_prog_and_test\lmage_Bini - | Workspace... | File System...
Format to use for programming  hex @) bin
Base Address [ ox61D00000
[ Reset target on execution [ Halt target on execution
General Options
Flash programming tool options
Additicnal options ‘
O Repeat on completion [ Preview command Clear console
Figure 36. Updating the Application/CA certificate binaries address

This starts programming the certificate, which is in a file system format, into the designated flash section, as shown in Figure 37.
Atfter the flashing process is done, the “Operation Completed” window appears (Figure 38).

ﬂ SEGGER. J-Link V6.98b - Flash download (236 KE)

L2-Veri 0%

concre T - =

0.000s

Verifying range 0x6 1000000 - Oxe 1D 1FFFF (128 KB)

3,340

Figure 37. Programming the Application/CA certificate binaries

. Program executable inte flash app_crt.bin

3 c

Operation completed!

WLV Seeflash programming tool conscle for more details.

Figure 38. Application/CA Certificate programming complete

5.4.4 Flash Image Configuration Area (FICA)

The following section describes the steps required to program the Flash Image Configuration Area (FICA). The FICA is described
in more detail in FICA and image verification. Regardless of whether the verification is turned on or off, the FICA must be
programmed into the area, because it holds the boot information about which image should be booted.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

35/87



NXP Semiconductors

Building and programming with MCUXpresso

Ensure that the SLN-LOCAL2-10T kit is USB-powered with the JTAG connected to the back of the board. In the MCUXpresso
IDE, ensure that you have selected a project to launch the debug configuration in and click the GUI Flash Tool icon, as shown in

Figure 39.

FreeRTOS

Window Help

B F R 0w R

e~ A%iW B

Figure 39. Opening Flash GUI Tool for FICA

kit before.

The "Probes discovered" window (Figure 40) is shown if the project has never been used to program the SLN-LOCAL2-I0T

. Probes discovered

Connect to target: MIMXRT1065:000A
1 probe found. Select the probe to use:

Available attached probes

MName Serial number...  Type Manufactur...

IDE Debug Mo...

B J-Cink ULTRA 504500569 USE  SEGGER

All-Stop

Supported Probes (tick/untick to enable/disable)
MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes
P&E Micro probes

SEGGER J-Link probes

Probe search options

Search again

Remember my selection (for this Launch configuration)

@

Cancel

Figure 40. Probes discovered window for FICA table programming

After selecting “OK”, the Flash GUI Tool pops up (Figure 41).

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

36/87



NXP Semiconductors

Building and programming with MCUXpresso

B8 GUI Flash Tool u] X

GUI Flash Tool for:
%, SEGGER J-Link probes
Program executable into flash sInalexaiot_imported_ais demo.axf

Target: MIMXRT 10640004

Options
Probe specific options

Interface | SWD | Speed | aute v

Target Operations
Select the target flash operation to perform

Program . _Erase|

Options
Select the options to apply

File to program Inalexaiot imported ais_demo\Debug\sinalexaiot_imported_ais_dermo.ad IR NI N1 E-¥ 1) WS

Format to use for programming @ hex (O bin
Base Address (0x61700000

Reset target on execution Halt target on execution

General Options

Flash programming ool aptions

Additionel options [

[J Repeat on completion [ Preview command [ Clear console

Run... Cancel

Figure 41. GUI Flash Tool

The Flash GUI Tool automatically fills in the fields associated with the project to be changed. Click the “Filesystem” button, which
opens the window (Figure 42). Within that window, navigate to the directory that contains the generated FICA after running the
Ivaldi package in Introduction, NXP application image signing tool, and Open Boot Programming tool. Select the “fica_table.bin”
file to download.

» Image_Binaries ) £ Search Image_Binaries
~
MNarme Date modified Type Size
local_audio_files 1/7/2021 1:47 PM File folder

app_crt TPM BIM File 2KB
ca_crt 7PM BIN File 2KB
fica_table BIN File 1KB
sln_local2_iot_bootloader BIN File TIZKB
sin_lecal2_iot_bootstrap 21 17 PM BIN File 162 KB
sln_lecal?_iot_local_demo 271772021 5:17 PM BIN File 1,881 KB

Figure 42. Selecting the FICA table binary

Within the “Base Address” textbox, enter “0x61FC0000” and hit the "Run.." button, as shown in Figure 43.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 37/87




NXP Semiconductors

Building and programming with MCUXpresso

B GUI Flash Toal

% GUI Flash Tool for:
B, SEGGER J-Link probes
Program executable into flash fica_table.bin

Target: MIMXRT1065xxex A

Options
Probe specific options

Interface | SWD

~| Speed | auto

Target Operations
Select the target flash operation to perform

Program ._Erase|

Options
Select the options to apply

File to program | C:\Users\nxf09836\Decurmentsimissisin_imx_rt_prog_and_test\Image_Bin: ~ | Workspace... || File System...

Format to use for programming = hex @ bin

Base Address [ oxe1FCoo0g]
[ Reset target on execution  [“]Halt target on execution

General Options
Flash programming tool options

Additional options |

[ Repeat on completion [] Preview command Clear console

Run... Cancel

Figure 43. Updating the FICA table address

NOTE
If the verification is not turned off, the self-built images do not work with the NXP demo system.

This starts to program the FICA, which is in a file system format into the designated flash section, as shown in Figure 44. After the
flashing process completes, the “Operation Completed” window appears (Figure 45).

. P Erase I 0ok 3
Program I 0%
i Veriy | 00%
Comparing range Ox61FCO000 - 0461FFFFFF [256 KB) 0.000s
Figure 44. Programming the FICA table binary
@ rrogram O P
ﬂ Programming flash...
. Program executable into flash fica_table.bin X
e Operation completed!
W' Seeflash pregramming tool console for more details.
[ I EE—————— T
Figure 45. FICA table programming complete

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide

38/87



NXP Semiconductors

Chapter 6
Hardware platform

The hardware platform of the SLN-LOCAL2-IOT development kit is described on the web page: www.nxp.com/mcu-local2.
¢ SLN-LOCAL2-I0T Schematics

* SLN-LOCAL2-I0T BOM
* SLN-LOCAL2-10T Design Files

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide 39/87


http://www.nxp.com/mcu-local2

NXP Semiconductors

Chapter 7
Far-field local voice control framework

Wil w | o | m [ as

Figure 46. High-level overview of far-field local voice control framework

This section describes the software framework that supports the far-field local voice control. As shown in Figure 46, two (optionally
three) microphones collect the acoustic signal, followed by the DSP, AFE, and ASR blocks.

The SLN-LOCAL2-I0T kit is acoustically qualified for far-field voice applications with three PDM microphones and has been
internally tested with two-microphone configurations with a range of mainstream products also using the two-microphone
configuration. When making modifications, ensure to re-test the application against standard acoustic test guidelines. The
SLN-LOCAL2-IOT kit is based on the acoustic architecture of the SLN-ALEXA-IOT kit. It was tested based on the Amazon Voice
Service self-test guidelines, which are available at https://developer.amazon.com.

NXP has pre-tuned and qualified the DSP and AFE libraries with the SLN-LOCAL2-IOT hardware platform. By default,
modifications on the DSP and AFE are not needed. However, to create customized hardware or proof-of-concepts, see Acoustic
modification and ensure that the modification is suitable for your product.

The ASR block in Figure 46 contains the speech recognition engine and the application software. NXP has implemented the
following three types of baseline demos:

» LED voice control demo
— English
— Two-stage (wake word and command) ASR
» Smart Home (loT) or elevator or audio device or washing machine voice control demo
— Selectable combinations of English, Chinese, German, and French
— Two-stage ASR
» Oven voice control demo
— English
— Multiturn (4-way) dialog-style ASR

The ASR implemented with the selected languages can be easily replaced with other languages. NXP provides an application
note for customization of the local voice demos. Contact NXP (local-commands@nxp.com) for information about the process of
phoneme-based speech recognition engine generation and custom wake words and commands.

Automatic speech recognition describes the baseline ASR demos that you can reuse for your product.

7.1 Automatic speech recognition

The flagship feature of SLN-LOCAL2-IOT is the bundled voice control engine, also called ASR. NXP offers a lightweight engine
designed specifically for MCUs. It supports various use cases with flexible inference engine instances.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 40/ 87



https://developer.amazon.com
mailto:local-commands@nxp.com

NXP Semiconductors

7.1.1 ASR application scenarios

Far-field local voice control framework

Figure 47 shows the ASR with multiple languages, where each language consists of a wake word inference engine and N
instances of command inference engines. Developers can implement various application scenarios that are described in the

following subsections.

The SLN-LOCAL2-IOT with i.MX RT106S supports up to four languages of the ASR in runtime. With i.MX RT1058S, it reduces to
two languages because of the reduced RAM size.

_———— e —— = —

.~ Wake Word b
Inference Engine
Instance

[ Wake Word(s) ]
[ Language 1 ]

Base Model

U O U

e e e e e =

Base Model

N

[ Language 4 ]

Inference Engine
Instance

Commands Group 1 ]

[ Language 1 ]

Base Model

_________________

Base Model

[ Language 4 ]

Figure 47. Inference engine instances matrix for flexible ASR applications

Base Model

i [ Language 1 ]

Base Model

[ Language 4 ]

The simplest ASR application is a single-language two-stage ASR with only one wake word engine and one command engine.
The ASR for multiple (up to four) languages can be created with the inference engine instances of columnsin Figure 47. The ASR
for the multiturn (e.g. dialog) application can be created with the inference engine instances of a rowin Figure 47.

7.1.1.1 Scenario #1: Single-language two-stage voice control

Figure 48 shows the simplest ASR scenario with one wake word inference engine followed by a command engine instance in a
selected language. By default, NXP has implemented the LED voice control demo in Englishlanguage.

* Wake word
— Hey, NXP

+ Commands
— L, E, D, red
— L,E, D, green
— L, E, D, blue
— Cycle fast

— Cycle slow

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

41/87



NXP Semiconductors

Far-field local voice control framework

. Wake Word \ . Command N
Inference Engine Inference Engine
Instance Instance

i [ Wake Word(s) ] E

[ Language 1 ]

_________________

[ Commands Group n ]

[ Language 1 ]

|
1
|
1
|
1
|
1
|
1
|
1

Base Model

Base Model

N

Figure 48. Inference engine instances of single-language two-stage scenario

The SLN-LOCAL2-10T kit plays the “can I help you?” and “OK” audio responses respectively when the wake word and commands
are detected. The audio playback files are saved in the filesystem. You can replace them with your own files. For details on the
filesystem, see Filesystem. For the full list of audio file addresses, see Table 5.

7.1.1.2 Scenario #2: Multiple-language two-stage voice control

.~ Wake Word *\ 4 Command N
Inference Engine Inference Engine
Instance Instance

i [ ‘Wake Word(s) ] . [
| Language 1 E Language 1
\ Base Model ) Base Model

_________________

Commands Group n ]

E Language 4
| Base Model

Language 4
Base Model

_________________

Figure 49. Multiple (up to four) languages of wake word and command inference engines

The SLN-LOCAL2-10T kit with the i.MX RT106S MCU supports up to four languages of the wake word and command engine
instances, as shown in Figure 49. This scenario is a two-stage voice control application. The four language instances for both the
wake word and the command are saved in the flash memory. Users can select any combination of the four language instances.
The selected languages’ wake word engines are loaded into their dedicated RAM memory pool and start receiving the voice data
stream. When one of the wake words is detected, the same language’s command engine instance is loaded into its memory pool
to start listening to the user’s voice command. For example, suppose that two languages (English and Mandarin) are enabled.
The SLN-LOCAL2-I0T kit loads the wake word engines (that is English and Mandarin) into their RAM memory pools and starts
listening to the user’s voice. If the user utters the English wake word “Hey, NXP”, the SLN-LOCAL2-10T kit detects the wake word,
loads the command engine for English into the RAM memory pool and starts listening to voice commands.

NOTE
For multiple wake engines listening to the voice stream simultaneously, the False Acceptance Rate (FAR) can
increase. The wake word inference engines must be fine-tuned to mitigate the FAR.

Itis also possible to load one wake word inference engine, followed by command engines of multiple languages. In this case, the
FAR can be low. Developers must avoid similar pronounciation among different languages’ voice commands.

By default, NXP has implemented voice control demos for the Smart Home, Elevator, Audio Device Control, and Washing Machine
applications in English, Chinese, German, and French. All the available wake words and commands are listed in Table 7.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 42 /87




NXP Semiconductors

Table 7. Wake words and commands for multi-language demos

Far-field local voice control framework

Wake Audio Device Washing
Language Smart Home commands | Elevator commands .
word Control commands Machine commands
First Floor Turn On
Temperature Up Second Floor Turn Off
Temperature Down Third Floor Play
Wash Delicate
Window Up Fourth Floor Pause
Wash Normal
i Window Down Fifth Floor Start
English Hey, Wash Heavy Duty
(EN) NXP Turn On Main Lobby Stop
Wash Whites
Turn Off Going Up Next Track
Cancel
Brighter Going Down Previous Track
Darker Open Door Volume Up
Close Door Volume Down
—# 17F
aBEAS —#% e
BERE = BB )
o BEUE
IFEs o % e ]
EEFE
Chinese 1;]-(11}, *tﬁ?ﬁ E& }F&ﬁ N
58 H%
(2H) | msE FFAT PN it )
L =)
KT L7 T8 .
N i BUH
TR T E—dh
B-= FF RETE
e FEF/
Erste Etage anschalten
Temperatur erhdhen Zweite Etage ausschalten
Temperatur verringern Dritte Etage abspielen
Feinwasche
Fenster hoch Vierte Etage Pause
Normalwésche
German Hallo Fenster runter Funfte Etage Anfang
’ stark verschmutze Wésche
(DE) NXP anschalten Hauptlobby halt
Weillwasche
Ausschalten Hochfahren nachstes Lied
abbrechen
heller Runterfahren vorheriges Lied
dunkler Offne die Tir Lautstérke erhéhen
Schliel3e die Tur Lautstérke verringern
French Salut, Augmenter Température Premier Etage Allumer Lavage Délicat
(FR) NXP Diminuer Température Deuxieme Etage Eteindre Lavage Normal

Table continues on the next page...

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

43 /87



NXP Semiconductors

Far-field local voice control framework

Table 7. Wake words and commands for multi-language demos (continued)

Wake Audio Device Washing
Language Smart Home commands | Elevator commands .
word Control commands Machine commands
Troisieme Etage Lecture
Monter Fenétre Quatriéme Etage Pause
Baisser Fenétre Cinquiéme Etage Démarrage
Lavage en Profondeur
Allumer Entrée Principale Arrét
Lavage Blanc
Eteindre Monter Piste Suivante
Annuler
Augmenter Luminosité Descendre Piste Précédente
Diminuer Luminosité Ouvrir Porte Augmenter Volume
Fermer Porte Baisser Volume

Wake word engines of up to four languages can run simultaneously. Users must select a demo command group to run after a
wake word is detected, because the scenario is a two-stage (wake word followed by commands) voice control. If a wake word is
detected, the same language’s demo command group is loaded to listen to voice commands.

If the SLN-LOCAL2-IOT kit is triggered by a wake word, it turns the LED blue playing the audio in the detected languages:
» Can | help you? (English)
o RATLEBIRI? (Chinese)
» Kann ich Ihnen helfen? (German)
» Puis-je vous aider? (French)

Once a command is detected, it turns the LED green playing the audio "OK!" in the accent of same language for the wake
word triggered.

The audio playback files are saved in the filesystem. You can replace them with your own files. For details on the filesystem, see
Filesystem. For the full list of audio file addresses, see Table 5.

7.1.1.3 Scenario #3: Single-language N-stage voice control

.~ Wake Word *\ . Command ™
Inference Engine Inference Engine
Instance Instance

[ Wake Word(s) ] E Commands Group 1 ]

[ Language 1 ] [ Language 1 ]

Base Model Base Model

Base Model

o E [ Language 1 ]

Figure 50. Wake word and command engine instances for single-language N-stage voice control

You can also create a multiturn application with the engines in the row instances in Figure 47. As shown in Figure 50, a language
wake word engine is followed by a series up to N of command engines. NXP has implemented a dialog-type voice control demo.
Figure 51 shows an example of the oven appliance use case.

The audio playback files are saved in the filesystem. You can replace them with your own files. For details on the filesystem, see
Filesystem. For the full list of audio file addresses, see Table 5.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 44 /87




NXP Semiconductors

Far-field local voice control framework

Wake Word | Command Group 1 Audio Playback Command Group 2 Audio Playback
“Set preheat” ‘ .

“Hey NXP” Set bake” - say the”tEmperature m) Temperature EE) “Temperature has been set”
“Set broil” to be set

Command Group 3
“Set timer” =) “Say the time to be set” HE)  Time m)  “Timer has been set”

Figure 51. Dialog-type voice control with oven appliance use case

7.1.1.4 User interface

The three demo scenarios explained above are selected by the shell commands in the serial terminal window. Figure 52 shows
the “changeto” and “multilingual” shell commands to select a demo and multiple languages. For more details about the usage,
type “help” into the shell prompt in the serial terminal, as shown in Figure 53 and Figure 54 for the “changeto” and “multilingual”
commands, respectively.

Scenario #1 (Default) Scenario #2 Scenario #3

LED Smart A“d.m ‘Washing Dialog
Elevator Device .
Control Home Machine (Oven)
Control

SHELL>> changeto

English (EN) English (EN) English (EN)

Chinese (ZH)

SHELL>> multilingual German (DE)

French (FR)

Figure 52. Demo selection by shell commands

""changeto': Change the command set
Usage =
changeto <{param>
Parameters

elevator: Elevator control

iot: ToT

audio: Audio control

wash: Washing machine

led: LED control {auto—enabling Englizh)>

dialog: Dialogic commands for oven (auto—enabling English)

Figure 53. Demo selection command

"multilingual™: Select language model{s). Save in flash memory.
Usage:

multilingual language_codel up to language_coded
Parameters
language_codes — en, zh, de, fr

Figure 54. Language selection command

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 45/ 87




NXP Semiconductors

Far-field local voice control framework

7.1.2 Language-specific voice control engine

7.1.2.1 Specification

The speech recognition engine is based on the state-of-the-art deep neural network technique. Note that the engine is not
intended for natural language understanding, but for the keyword spotting which is useful for various MCU-based applications.
The computing resource consumption is based on fixed-point operations and almost constant. The specification of an inference
engine instance is described in Table 8. Because the Chinese language requires tone recognition, its voice engine requires more
resources than the other languages. The CPU consumption can increase with the number of commands. The rule-of-thumb is 0.08
MIPS per a 4-syllable command.

Table 8. Specification of an inference engine instance

Chinese (with tone recognition) Other languages
Code size 150 KB 30 KB
Data size 170 KB + 32 x M Bytes 155 KB + 32 x M Bytes
RAM 85 KB + 128 x M Bytes 45 KB + 128 x M Bytes
CPU 68 MIPS” 45 MIPS”

M: The number of wake words or commands.

" Optimized for the SIMD instructions. The values of 68 and 45 represent typical voice control applications.

7.1.2.2 Architecture

{ ASR Control )

[ Language Model ]
linked list _/‘ ( Language 4 ) Wake Word
~N Inference Engine
/ ( Language 3 . )
/ 5 ) linked 11st4 eommand
J (( Language . / ( WW Language 4 Inference Engine
Language 1 ( WW Language 3 \—/
[ Command Group N ] ‘,-/ ( WW Language 2
: W, Wake Word for Command for
[ Command Group 1 ] ) Language 1 Triggered Language
[ Wake Word(s) ] p [ Wake Word(s) ] [ Command Group »n ]
\[ Base Model L [ Base Model ] [ Base Model ]
m=1,..,N)
Flash Memory SRAM
[ language 1 model.bin [ Mem Pool for WW 1 ] [ Mem Pool for CMD ]

[ Mem Pool for WW 3 ]
[ Mem Pool for WW 4 ]

[ language 3 model.bin

)

[ language 2 model.bin ] [ Mem Pool for WW 2 ]
)
)

[ language 4 model.bin

Figure 55. ASR software architecture

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 46/ 87




NXP Semiconductors

Far-field local voice control framework

Figure 55 shows the software architecture of NXP’s ASR for SLN-LOCAL2-I0T. The ASR control structure points to a command
inference engine instance, the linked lists of language models, and the wake word engines. There are memory pools assigned
for the command as well as the wake word inference engine instances in the SRAM. The language_x_model.bin files are located
in the flash memory, where each BIN file is basically a pack of a language’s base model and A+7 groups of wake word(s)

and commands.

The ASR control snippet is shown in Figure 56. It describes the three major structure members.

typedef struct asr control

{

struct asr language model *langModel; // linked list

struct asr_inference_engine #*infEngineWl; // linked list

struct asr_inference engine #*infEngineCMD; // not linked list

asr_result t result; // results of the command processing} asr_control t;
¥s

Figure 56. ASR control snippet

7.1.2.3 Language model

struct asr_language model
{ asr_language t iWhoAmI;
uint8 t nGroups;
unsigned char *addrBin;
unsigned char *addrGroup[MAX GROUPS];
unsigned char *addrGroupMapID[MAX GROUPS - 1];
struct asr language model *next

b
Figure 57. ASR language model snippet

The language model structure in Figure 57 consists of the following members:

» iWhoAml: the ASR model is language-specific. Each ASR voice engine must define a language. You can extend Table 9
with other languages.

* nGroups: the number of groups in a language model binary. By default, it contains a language-specific base model
(counted as a group) and a wake word group. You can define N command groups.

+ addrBin: the address of a language model binary. This address points to a base model.

» addrGroup[MAX_GROUPS]: the addresses of wake word and N command groups. MAX_GROUPS should be greater
than or equal to A+7.

* addrGroupMapID[MAX_GROUPS - 1]: addresses of MapIDs. A MaplID is an ID that can be assigned to a set of
commands.

» next: the pointer to the next language model in a linked list.

Table 9. ASR language type

Language type asr_language_t code Encoding
Unknown UNDEFINED_LANGUAGE 0x0000
English (EN) ASR_ENGLISH 0x0001
Chinese (ZH) ASR_CHINESE 0x0002

Table continues on the next page...

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 47/ 87




NXP Semiconductors

Far-field local voice control framework

Table 9. ASR language type (continued)

Language type asr_language_t code Encoding
German (DE) ASR_GERMAN 0x0004
French (FR) ASR_FRENCH 0x0008

7.1.2.4 Inference engine

struct asr_inference_engine

{
asr_inference t iwhoAmI_inf;
asr_language t iWhoAmI_lang;
void *handler;
uint8 t nGroups;
unsigned char *addrGroup[2];
unsigned char *addrGroupMapID;
char **idToKeyword;
unsigned char *memPool;
uint32 t memPoolSize;
struct asr_inference engine *next;

}s

Figure 58. ASR inference engine snippet

The inference engine structure in Figure 58 consists of the following members:

* iWhoAmlL_inf: inference engine type. It indicates either the wake word or the command inference engine. Developers can
redefine or add from the list in Table 10.

* iWhoAml_lang: language type information for an inference engine. The type definition is described in Table 9.
» handler: handler for an inference engine.

* nGroups: the number of groups for an inference engine. The default value is 2, as each OOB demo consists of base
model (counted as a group) plus wake word group or command group n.

» addrGroup[2]: base + keyword group (either ww or cmd).
» addrGroupMaplID: the address that contains the MapIDs.

+ idToKeyword: the string list that indicates which command/wake word is detected. The string is printed out in a terminal
window.

* memPool: memory pool address in SRAM for an inference engine.
* memPoolSize: size of an inference engine in a memory pool.

» next: pointer to the next inference engine in a linked list. If it is not in a linked list, the value should be NULL.

Table 10. Inference engine types

Inference engine type asr_inference_t code Encoding
Unknown UNDEFINED_INFERENCE 0x0000
Wake Word ASR_WW 0x0001
Commands for Smart Home (loT) |ASR_CMD_IOT 0x0002

Table continues on the next page...

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 48/ 87




NXP Semiconductors

Far-field local voice control framework

Table 10. Inference engine types (continued)

Inference engine type asr_inference_t code Encoding
Commands for Elevator ASR_CMD_ELEVATOR 0x0004
Commands for Audio ASR_CMD_AUDIO 0x0008

Device Control

Commands for Washing Machine | ASR_CMD_WASH 0x0010
Commands for LED Control ASR_CMD_LED 0x0020
Commands for Dialog Stage 1 ASR_CMD_DIALOGIC_1 0x0040
Commands for Dialog Stage ASR_CMD_DIALOGIC_2_TEMPERATURE 0x0080
2 Temperature

Commands for Dialog Stage ASR_CMD_DIALOGIC_2_TIMER 0x0100
2 Timer

7.1.3 ASR configuration

7.1.3.1 Languages

The SLN-LOCAL2-I0T with i.MX RT106S can support up to four languages in runtime. If customized hardware or proof-of-
concepts are created, ensure the maximum number of languages to be enabled.

#define MULTILIMNGUAL (1)
#define IMXRT1055 (®) // Not supported yet
#define MAX_INSTALLED LANGUAGES (4)

#if MULTILINGUAL

#if defined(SLN_LOCAL2_RD)

#define MAX CONCURREMT LANGUAGES 3
#elif defined(SLN_LOCAL2_TIOT)
#define MAX CONCURREMT LANGUAGES 4
#endif // defined(SLMN_LOCAL2 RD)
#else

#define MAX_ CONCURREMT LANGUAGES (1)
#endif // MULTILINGUAL

Figure 59. Configuration for the maximum number of languages snippet

« Ifi.MX RT105S is considered, it can support up to two languages. Set IMXRT105S to 1.

« If only one language is sufficient, we always recommend to set MULTILINGUAL to 0. This allows the ASR application to
save significant memory and CPU resources.

» Because MAX_CONCURRENT_LANGUAGES affects the resources, three microphones can be used when one or two
languages are enabled. Only two microphones are enabled for three or four languages.

7.1.3.2 Installation of languages and inference engines

Developers must ensure that the language models and inference engines are properly installed when initializing the ASR. Figure
60 shows the language model installation function.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 49 /87




NXP Semiconductors

Far-field local voice control framework

The install_language() function registers a language model in the ASR control structure. It unpacks the model binary from the flash
memory and assigns addresses and parameters into the linked list of language models.

The reference example is implemented in sin_local_voice.c.

Int32 t install_language(asr control t *pAsrctrl,
struct asr_language model *pLangModel,
asr_language t lang,
unsigned char *pAddrBin,
uint8 t nGroups)

Figure 60. Function install_language() snippet

» pAsrCirl: ASR control structure, also shown in Figure 56.

» pLangModel: language model, also shown in Figure 57.

* lang: languages to be enabled. The types and encodings are listed in Table 9.

* pAddrBin: address of the language model binary to be installed.

» nGroups: total number of groups (base + wake word + N command groups) where N depends on applications.

The install_inference_engine() function registers an inference engine (either for a wake word or command group 1) in the ASR
control structure. It assigns a language’s base model and a wake word (or command) group from the language model to an
inference engine.

uint32 t install_inference_engine(asr control t *pasrctrl,
struct asr_inference engine *pInfEngine,
asr_language t lang,
asr_inference t infType,
char **idToString,
unsigned char *addrMemPool,
uint32 t sizeMemPool)

Figure 61. Function install_inference_engine() snippet

» pAsrCirl: ASR control structure, also shown in Figure 56.

« pInfEngine: inference engine, either for a wake word or a command group, also shown in Figure 58.
* lang: languages to be enabled. The types and encodings are in Table 9.

« infType: either a wake word or a command group, also shown in Table 10.

* idToString: the string list that indicates which command/wake word is detected. The string is printed out in a terminal
window.

» addrMemPool: memory pool address in SRAM for an inference engine.
» sizeMemPool: size of an inference engine in a memory pool.

After the installation, the inference engines initialize their handlers. The handler within each instance should not be NULL, if the
installation and initialization are successful.

7.1.4 ASR session control

7.1.4.1 Follow-up mode

The SLN-LOCAL2-I0T ASR session supports the follow-up mode where you can continue saying voice commands after the wake
word is triggered once. For example, with the elevator voice control application, multiple passengers who go to different floors can
say a voice command one by one after the first passenger triggers the device with a wake word. The mode is configured by the
shell command in a serial terminal. You can see the command usage by typing “help”, as shown in Figure 62.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 50/87




NXP Semiconductors

Far-field local voice control framework

"followup': Set follow—up mode Con ~ off>. Bave in flash memory.
Usage:

followup on <or off>
Parameters
on or off

Figure 62. ASR session control - follow-up mode

7.1.4.2 Timeout

After the device is triggered by a wake word, it waits for the user’s voice command for a certain amount of time. Users can configure
the response waiting time using a shell command in a serial terminal. Figure 63 shows the command usage.

"timeout": Set command waiting time <in ms)>. Save in flash memory.
Usage:

timeout N
Parameters
N milliseconds

Figure 63. ASR session control - timeout

7.1.4.3 Push-to-Talk (PTT) mode

In some applications, you may want to bypass the wake word detection stage. The SLN-LOCAL2-IOT kit offers the PTT feature.
If it is enabled, you can directly say voice commands after pressing the SW1 button on the device. Figure 64 shows the
command usage.

ptt': Set push—to—talk mode <on ~ off>. Save in flash memory.
Usage =

ptt on <or off>
Parameters
on or off

Figure 64. ASR session control - PTT mode

7.2 Acoustic modification

7.2.1 Changing microphone configuration

Open the local _demo variant of the project in the developer’s environment. To change the number of microphones supported,
open the config_files folder and the pdm_pcm_definintions.h file, as shown in Figure 65.

(% board

2 cjson

(2 codec

(£ component
~ (2 config_files

#define USE_SAI1 RX_DATA®_MIC

(
#define USE_SAT1 RX_DATAL MIC (
(
(

#define USE_SAI1 RX_DATA2 MIC
#define USE_SAT1 RX_DATA3 MIC

.4 (data) &
.5 (data) &

onnected on the extens
onnected on the extens

[B FreeRTOSConfig.h
|n| wipopts.h

[B mbedtls_config.h

[H pdm_pem_definitions.h

#define USE_SAT1_CH_MASK

(USE_SAT1 RX_DATA3 MIC << 3U))

\
((USE_SAT1_RX_DATAB_MIC << 8U) | (USE_SAT1_RX_DATAL_MIC << 1U) | (USE_SAI1_RX_DATA2 MIC << 20) | \

= d #if (MAX_CONCURRENT LANGUAGES - 2 > @) || \
E:‘”‘E defined(SLN_LOCAL2 RD) // use onl ics wi or optimum
rivers 7/ pe
2 freertos i 35 ndefine
2 libs #else
2 linkscripts 37 id&;l?e USE_SAI2 MIC (1U)
; endi
€5 local voice 39 #define USE_SAI2 CH MASK (USE_SAIZ MIC << U
B - -
wip 48

Figure 65. pdm_pcm_definitions.h file and USE_SAI2_MIC define

The pdm_pcm_definitions.h header file contains the whole configuration for the SAl data line to use. To switch between three or
two microphones, set the USE_SAI2_MIC to “OU” (two microphones) or “1U” (three microphones). This propagates throughout
the firmware and configures the audio front end.

To switch between two or three microphones, set the USE_SAI2_MIC as follows:

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 51/87




NXP Semiconductors

Far-field local voice control framework

+ “#define USE_SAI2_MIC (1)” — three microphones used.
 “#define USE_SAI2_MIC (0)” — two microphones used.

7.2.2 Changing the post gain

The post gain can affect how the board performs in low noise using a low-volume voice (far-field). In the default configuration, this
setting is set to the maximum value. In real life, this can cause the device to wake up more often than other devices, which can
generate problems if the devices in the consumer's home are less capable.

Table 11. u16PostProcessedGain description

Parameter postProcessedGain
Acoustic signal digital gain in a linear scale up to x64. The signal level after applying this gain is
Description still under the Dynamic Range Control (DRC) constraint, so it is not used as a traditional DRC
make-up gain.
Data type Data range Unit Default
uint16_t [0x0000,0x4000] N/A 0x0600

Inside the local_demo or usb_aec_alignment_tool project, navigate to audio_processing_task.c, as shown in Figure 66.

v 52 audio

w (= audio_processing
[¢] audio_processing_task.c
audio_processing_task.h

s_pushCtr = xSemaphoreCreateCounting(2, 8);

#if !defined(SLN_AFE_LTB)
uint32_t reqSize = SLN_Voice_Req_Mem_Size();

(= tones
= voice
A€l pdm_to_pem_task.c
pdm_to_pem_task.h
| sln_amplifier.c
sln_amplifier.h
[ sin_pdm_mic.c
sln_pdm_mic.h

52 board

& cjson

2 codec

assert(sizeof(g_externallyAllocatedMem) >= reqSize);
#endif

/* Make sure we memsef the buffer to zero */
audic_processing reset mic_capture buffers();

#if defined(SLN_AFE_LIB
GfeConfig.postProcessedGain
afeConfig.numberofMics PDM_MIC_COUNT;
afeConfig.afeMemBlock g_externallyAllocatedMem;
afeConfig.afeMemBlockSize = sizeof(g_externallyAllocatedMem);

Figure 66. Gain variable in audio_process_task.c

Inside the audio_processing_task.c file, locate the code snippet from Figure 66 and adjust the post processing dynamic gain
variable “afeConfig.postProcessedGain” corresponding to the signal level needed.

7.2.3 Changing the pre-processed microphone gain

The i.MX RT106S MCU does not have a PDM hardware block, which means that it is required to convert the PDM data to PCM
within software. This allows the gain to be adjusted to fit the needs of the developer. The gain may be required to change because
some product designs may have a higher/lower Echo Return Loss (ERL) which can affect the barge-in performance. See Audio
Performance Requirements for Audio Front End of i.MX RT106A/L for more information. The microphone gain is also modified
before the DC offset is applied, allowing for higher shift precision. To change the gain, open the file located in the local_demo or
usb_aec_alignment_tool folders in the audio subfolder called pdm_to_pcm_task.c.

Table 12. SLN_DSP_SetGainFactor function description

Function SLN_DSP_SetGainFactor
i Modifies the PCM gain before the DC Offset is applied. This increases the gain factor but it can
Description .
also cause clipping.
Table continues on the next page...
SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide

52/87


https://www.nxp.com/webapp/Download?colCode=AN_RT1060&appType=license
https://www.nxp.com/webapp/Download?colCode=AN_RT1060&appType=license

NXP Semiconductors

Far-field local voice control framework

Table 12. SLN_DSP_SetGainFactor function description (continued)

Parameter Data range Type Description

memPool N/A uintg_t ** P0|n'ter ' to the memory pool that the
sIn_intelligence_toolbox needs.

gainFactor 0x0000-0xffff int16.t The §h|ft gain factor before the DF) Offset. is applied.
A gain of zero means that there is no gain.

Locate the code snippet shown in Figure 67 and change the numerical value according to your needs, related to the table.

= voice

L] pdm_to_pcm_task.c
@ pdm_to_pcm_task.h
sin_amplifier.c

[A sln_amplifierh

T2l mcdin mis -

if (kDspSuccess == dspStatus)

CHACIIEIESL N DSP SetGainFactor(memPool, 3) 9

Figure 67. pdm_to_pcm_task.c set gain factor

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide 53/87



NXP Semiconductors

Chapter 8
Security architecture

8.1 Application chain of trust

The basis of the security architecture implemented in the SLN-LOCAL2-I0T are the signed application images. The signing
requires the use of a Certificate Authority (CA). NXP has its own CA to sign applications in the factory, but the CA is not shared
with customers.

The CA is used to create signing entities for the bootloader and application, as shown in Figure 68. The certificate from the CA
is stored in the SLN-LOCAL2-10T's filesystem and used to verify the signatures of the signing entity certificates. In addition, the
locally stored certificates from the signing entities are used to verify the signature of firmware images coming in the Over-the-Air
(OTA) or Over-the-Wire (OTW) bootloader interfaces.

NXP Production
CA

Bootloader Flash Bank A Flash Bank B
Signing Entity Signing Entity Signing Entity

Figure 68. Application chain of trust

When creating new firmware images for a secure boot implementation, the Automated Manufacturing Tool (Ivaldi) can be used
alongside your unique CA.

8.2 FICA and image verification

The FICA table is a section inside the filesystem that describes the images that will be booted. It contains information about
the image and signatures of the applications used to ensure that only verified firmware is executed. This ensures that malicious
images cannot be executed without being signed by the certificate authority and certificate that is programmed into the filesystem.
Before any image is jumped to, it is first verified using the signature from its associated FICA entry.

For example, the standard boot flow (Figure 15) is as follows:
» The bootstrap uses the bootloader FICA entry to validate the bootloader.
» The bootloader uses the AppA FICA entry to validate the AppA image.
» The bootloader uses the AppB FICA entry to validate the AppB image.

For final production, the solution provides programming scripts to enable the i.MX RT High Assurance Boot (HAB) to verify and
protect the bootstrap component. Enable the HAB for your end product. The downside of having this security protection enabled
is that programming new images can be a little more complex, because it requires signature generation. Because this flow may
be time consuming and not required for basic development tasks, NXP introduced some bypasses to make the job easier.

NOTE
These bypasses should not be deployed in production.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 54 /87




NXP Semiconductors

Security architecture

8.3 Image Certificate Authority (CA) and application certificates

The SLN-LOCAL2-I0T kit comes pre-programmed with signed images, as explained in FICA and image verification. The
bootloader and demo applications are signed using NXP's test CA and they can be used to ensure that all images that are to be
booted are authentic.

The application signing certificates are located at the following addresses in the filesystem:
» Address 0x61D00000 for Application Bank A
» Address 0x61D80000 for the bootloader
The certificate for the CA (used to verify the application signing certificates) is located at address 0x61CCO000Q in the filesystem.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 55/87




NXP Semiconductors

Chapter 9
Bootloader

The SLN-LOCALZ2-I0T SDK enables three forms of firmware update capability:
1. USB Mass Storage Device (MSD) interface
2. Over-The-Air (OTA) via Wifi
3. Over-The-Wire (OTW) via UART

The boot flow is described in detail in Understanding the boot flow. When the boot flow reaches the bootloader, it must decide
whether to jump to the main application (i.e. local_demo) or to the firmware update mode. Figure 69 shows the four options
available to the bootloader. The bootloader reroutes the boot flow to the main application, MSD, OTW, or OTA update. This section
explains how to generate a BIN file to be updated. Then it describes MSD, OTW, and OTA.

MCU ROM
Bootloader

Bootstrap

Yes Yes
Update?
Jump to Main
MSD Update et OTW Update OTA Update
)
N e
Bootloader
Figure 69. Bootloader flow
NOTE

The firmware update in the bootloader is only for the main application, not for the bootstrap and bootloader. If
the bootstrap or bootloader must be updated, use the J-Link probe or the Ivaldi tool described in Automated
manufacturing tools.

9.1 Application BIN file generation

There are two application banks in the flash memory, see Table 4, on the SLN-LOCAL2-IOT kit.
» Address for Application Bank A: 0x60300000
» Address for Application Bank B: 0x60D00000

Developers must configure the bank address properly when the main application is compiled. This ensures that the device is safe
to jump into a new application image in one memory location without compromising the other one. If the application runs in Bank
A, the new application image must be linked to Bank B.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 56 /87




NXP Semiconductors

Bootloader

To change the address from Bank A to Bank B, in the MCUXpresso IDE project explorer, right-click sln_local2_iot_local_demo (or
the developer’s application project name) > Project Settings > Memory, as shown in Figure 70.

Select Edit Memory, which opens the Memory Configuration Editor.
Change the address of the Flash type to 0x6030 0000 for Application Bank A and 0x60D0 0000 for Application Bank B.

v (25 sin_local2_iot_local_demo . MCUXpresso IDE = E— —
v @ Project Settings
» B Associated SDK Memory configuration editor
» B Libraries (and semihosting) Edit configuration for MIMXRT1065x0cA
> €& MCU
» ile} Memory - :
> [ Options Memeory configuration
*5? Binaries Default LinkServer Flash Driver Bro\
it Includes
> B CMISI$ Type Name Alias Location Size Driver
“'il ;z:;: Flash BOARD_FL.. Flash CNEERTERT  0xa00000  MIMXRTIO..
o - RAM SRAM_DTC  RAM 0x20000000  0x78000
I:ﬂ cjo e RAM SRAM_ITC RAMZ 0x0 0x8000
, 8D compaiii RAM SRAM_OC.. RAM3 0x20200000  0x40000
, @ config_files RAM SRAM_OC.. RAM4 0x20240000  0x40000
(2 device
» (B drivers .
= —— Add Flash AddRAM | Split| Join | Delete  Import.. | Merge.. Export..  Gener
y (3 libs
. (2 linkscripts Canc
(A laral unire
Figure 70. Editing memory configuration

Before building the application, make sure that the MCUXpresso project generates a BIN file as an outcome of the build process.
Right-click the project name and open Properties, as shown in Figure 71.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide 57 /87



NXP Semiconductors

Bootloader

=5 sin_local2_iot_local_demo §Debug™
> roject Settings
> ;j;." Binaries
> @ Includes
» (B CMSIS
> (2 audio
» (3 board
» B cjson
» 2 codec B
5 (2 component
» (£ config_files ®
» (3 device
> (2 drivers
» (B freertos
2 libs
» (2 linkscripts
(2 local_voice
& wip -l
» 2 mbedtls
(2 sdmmc
v 2 source

» [ audio_samples.h

> [ dhep_server.c

» [n] dhcp_server.h

» |n) fica_definition.h

» [€) main.c
network_connection.c
network_connection.h
os_hooks.c
semihost_hardfault.c
sin_app_fwupdate.c
sin_app_fwupdate.h
sin_cfg_file.h

W

W

W

W

IBPEFRRRE R
% Q

<

() Quickstart Panel % (%)= \Variables ©
MCUXpresso IDE - Qui: %

_oe | Project: sin_local?_iot_local_derr
+ Create or import a project 7
— . New project... -

_f . Import SDK example(s)...
& Import project(s) from file s

MNew

Go Into

Open in New Window
Show In

Show in Local Terminal

Copy
Paste
Delete
Source
Move...

Rename...

Import...
Export...

Build Project
Clean Project
Refresh

Close Project

Close Unrelated Project

Build Configurations
Build Targets

Index

Profiling Tools
Run As
Debug As
Profile As

Restore from Local History...

Launch Configurations
Utilities

SDK Management

Tools

Validate

MCUXpresso Config Tools
Run C/C++ Code Analysis

Team

* Build your project Compare With
& Build Configure
& Clean Source
I Properties

Alt+Shift+W >

>

Ctrl+C
Ctri+V
Delete

>

F2

F5

Alt+Enter

o o L R i R A R

Figure 71. Project properties

Expand C/C++ Build in the menu and click Settings. Select the Build steps tab, where the Post-build steps can be edited. Click
Edit and it shows the commands for the post-build steps. Figure 72 shows how to open the "Post-build steps" window.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

58/87



NXP Semiconductors

Bootloader

type filter text

» Resource
Builders
@
Build Variables
Environment
Logging
L] gt n@)
ain Editor
> C/C++ General
MCUXpresso Config Tools
Project Natures
Project References
Run/Debug Settings
Task Tags
» Validation

Settings =g X

Configuration: |Debug [ Active ] ~ | Manage Configurations...

i Tool Settings] . Build steps | Build Artifact o} Binary Parsers @ Error Parsers

Pre-build steps
Command:

Edit...

Description:

Post-build steps
Command:

"${BuildArtifactFileBaseName}.bin" ; checksum -p ${TargetChip} -d "${BuildArtifactFileBaseName}.bin"

®[=]

Notes:

. Post-build steps

- Commands are executed by a Linux compatible shell
(not the Windows command processor).
- A comment character (%) disables ALL FOLLOWING COMMANDS.
- Enter one command per line.
- After editing, commands are concatenated with a ;' separator.

arm-none-eabi-size "${BuildArtifactFileName}"
# arm-none-eabi-objcopy -v -0 binary "${BuildArtifactFileName}" "${BuildArtifactFileBaseName}.bin"
checksum -p ${TargetChip

} -d "${BuildArtifactFileBaseName}.bin"

Figure 72. Editing post-build steps

The “#” command character disables all the following commands. To generate a BIN file in the post-build process, remove the “#”
character on the second line and click OK. The resulting commands after removing “#” are shown in Figure 73:

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

59/87



NXP Semiconductors

Bootloader

. Post-build steps >

Motes:
- Commands are executed by a Linux compatible shell
(not the Windows command processor),
- & comment character (#) disables ALL FOLLOWING COMMAMNDS.
- Enter one command per line.
- After editing, commands are concatenated with a ;' separator.

arm-none-eabi-size "${Build&rtifactFileName}"

arm-none-eabi-objcopy -v -0 binary "#BuildArtifactFileName}" "HBuildArtifactFileBaseNamel.bin"
# checksum -p $TargetChip} -d "${BuildArtifactFileBaseMame}.bin"

Figure 73. Post-build commands to generate BIN file

If the build process is done successfully, a BIN file is generated and placed in the Debug folder of the MCUXpresso project.

9.2 USB Mass Storage Device (MSD) update

The bootloader application supports firmware update over the USB MSD. This allows the user to re-flash the main application
binary (not the bootstrap nor bootloader) without a J-Link probe. The bootstrap or bootloader must be updated using a
J-Link probe.

By default, the MSD feature bypasses the signature verification to allow for easier development flow, because signing of images
can be a process not suitable for quick debugging and validation.

NOTE
Bypassing the image verification is a security threat and it is the responsibility of the product designer to prevent
the violation in production.

To put the device into the MSD mode, hold down switch 2 (SW2) and power cycle the board until the pink LED (D2) is lit. The pink
LED turns on and off in 3-second intervals.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 60 /87




NXP Semiconductors

Bootloader

Figure 74. MSD update mode LED

Navigate to the PC’s file explorer and ensure that the SLN-LOCAL2-IOT kit is mounted as a USB MSD. A mounted kit is displayed
in the file explorer, as shown in Figure 75.

<=2 USB Drive (D:) -

“1

gy’ 9.96 MB free of 9.97 MB -

Figure 75. SLN-LOCAL2-IOT kit mounted as USB MSD

Drag and drop the generated BIN file for banks A or B into the MSD drive. This starts the download process and writes the BIN
file to the flash. After the image is programmed into the flash, it starts to execute.

9.3 Over-the-Air (OTA) and Over-the-Wire (OTW) updates

The bootloader supports several mechanisms to update the board’s firmware. The OTA/OTW updates are part of them. The OTA
and OTW updates are driven using a simple JSON interface, making it easy to implement the host-side code. The mechanism for
both OTA and OTW is the same. The only difference between the two is that the OTA update is performed over the air via Wi-Fi
and the OTW update is performed over UART. The OTA update interface is performed by hosting a TCP server on the kit which
receives the update-related JSON packets. The OTW update currently supports UART, but it can be extended to support any

serial interfaces, including SPI, TCP sockets, or even |12C. The OTA/OTW update method is described in more depth in this section.

9.4 Transfers

An OTA/OTW update is made up of individual JSON transfers. Each transfer contains two parts: a 4-byte size field and a JSON
message. This makes the OTA/OTW data interface compatible across a wide range of interfaces.

Size I -
> - RX

=2 jsoNdata | -
Size byl

Figure 76. Transfer format

There are two types of messages passed: requests and responses. Figure 77 shows the request and response flow.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 61/87




NXP Semiconductors

Bootloader

Embedded Board
etc

Li

_—

Packetl

SLN-LOCAL-IOT
SLN-VIZN-1OT

¥

Receive Request

Send Request Packet2

1 1. Get Size

Receive Response

= Packetl
[1Getsze 4 .

| 2. Get JSON data

v

Frocess Request I

Send Response

2. Get JSON data [ Packet2

{ Process Response

Figure 77. Request and response flow

9.4.1 JSON messages

Requests must be made in the following order to successfully perform a firmware update:

1. Start
2. Block
3. Stop
4. Activate image
5. Start self-check
6. Clean

Each transfer is followed by a transfer response.

9.4.1.1 Start request

The following is the first request that must be sent to start a firmware update:

"messageType":1,

"fwupdate message": {
"messageType":0,
"fwupdate common message": {

"messageType":0,
"job_id": <Job ID string>,

"app bank type": <Flash Bank: ‘1’ for A ‘2’

for B>,

"signature": <RSA Signature of image to be loaded>,

"image size": <Image Length>,

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

62/87



NXP Semiconductors

9.4.1.2 Block request

Bootloader

Block requests are sent for each “chunk” of data to be programmed. The block sizes can be of any size, though it is best when

they are as large as possible. The example script in the SDK sends 4096 bytes per block request.

"messageType":1,
"fwupdate message": {
"messageType":1,
"fwupdate server message": {
"messageType":0,
"block": <Base64 encoded block of data>,
"encoded size": <Size of encoded block>,
"block size": <Size of block in bytes>,
"offset": <Offset from base of flash>,

9.4.1.3 Stop request

"messageType":1,

"fwupdate message": {
"messageType":1,
"fwupdate server message": {

"messageType":1

9.4.1.4 Activate image request

"messageType":1,

"fwupdate message": {
"messageType":1,
"fwupdate server message": {

"messageType":3

9.4.1.5 Start self-test request

"messageType":1,

"fwupdate message": {
"messageType":1,
"fwupdate server message": {

"messageType":2

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

63/87



NXP Semiconductors

Bootloader

9.4.1.6 Clean request

{

"messageType":1,

"fwupdate message": {
"messageType":0,
"fwupdate common message": {

"messageType":2

}

9.4.1.7 Response format

{

"error": <Operation return code>,

}

9.5 Testing OTA/OTW updates

To demonstrate the OTA and OTW updates, use the Python test script in sin_local2_iot_bootloader/unit_tests/fwupdate_client.py.
From a high-level perspective, this script “JSONifyes” a specified binary and flashes it either via the OTA or OTW mechanism,
depending on the update method specified as an argument to the script. This method allows you to flash the main app binary
without a J-Link. NXP provides OTA/OTW update tools which are currently intended as a unit test. These tools are not intended
to be used for production environment in the current release.

While the use of OTA and OTW is nearly identical, the setup is slightly different between the two, because the OTA update requires
a network connection and the OTW update requires a serial connection.

9.5.1 OTA setup

This section describes the steps necessary to perform an OTA update. To perform an OTA update using the test script, the
SLN-LOCAL2-IOT kit must be connected to a Wi-Fi network and the proper bit in the FICA table must be set to indicate to the
bootloader that an OTA update is being expected. The update bit is set by the test script. A TCP server is running in the main
application and waits for a JSON sent by the script to set the FICA bit.

The SLN-LOCAL2-I0T kit and the client running the Python script must be on the same network for the OTA to work.
Connecting to a Wi-Fi network:

» Connect the board to the computer via the USB Type C port.

» Open your favorite serial monitor and connect to the board COM using the 115200 baud rate.

* In the serial monitor, type the following command: “setup SS/ID PASSWORD'.

» The board will reset and then it will try to connect to the Wi-Fi network.

« If the connection is successful, the IP adress of the board is displayed in the serial monitor. Write it down.

9.5.2 OTW setup

To perform an OTW update using the test script, the SLN-LOCAL2-10T must be connected via UART and the proper bitin the FICA
table must be set to indicate to the bootloader that an OTW update is being expected. The update bit is set by the “updafeotw”
command in the shell.

Note that the USB CDC is already connected to the kit and supplying power as well as the serial communication. To run the OTW
via UART, it requires an additional UART module connected to header J26 on the kit. Make sure that TX, RX, Vcc, and GND are
connected properly. The schematic of header J26 is shown in Figure 78.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 64 /87




NXP Semiconductors

Bootloader

VBUS 5V

I
o

np ). 1uF
J26 LUV

nikroBUS Al 1 S o]2
— , 310013
CPSPII_T 51 - -6 MIRTOE PWR
¥ F F -Il' ) ) H MIKIor | L
[ 9 -~ 110 AHATE_RAX
| -1 12 ARTE_T
13| - - |4
SoM_VCC_3v3 15| -~ |16

| 20021121-00016C4LF

1

1uF
10V

Figure 78. UART port header - J26

9.6 Running the test script
The test script is written in Python. It is recommended to set a virtual environment:
* python3 -m venv env
« source env/bin/activate (for Linux OS) or .\env\Scripts\activate (for PowerShell)
To run the test script, install the following modules:
» python3 -m pip install pyserial
* python3 -m pip install libscrc

This script is tested on Python 3.8.5 running in Windows OS and Linux OS. To start the update, open the fwupdate_client.py script
in the sIn_local2_iot_bootloader/unit_tests folder in a terminal. Running the script without any arguments shows the arguments
that the script takes.

~/sln_local2_ iot bootloader/unit_ tests $: python3 fwupdate client.py
Usage:

fwupdate.py device method bank appFile appSignFile

device: The target device, the sln local iot or sln vizn iot or sln viznas iot board <local/
vizn/viznas>

method: Firmware update method <OTA/OTW>
bank: The flash bank <A/B>
appFile: File to update
appSignFile: File signature or None if not used
The script requires you to specify the following:
1. Device: local (equivalently applied to local2)
2. Method: OTA/OTW
3. Bank: A/B (see Application BIN file generation)
4

. Appfile: binary for the sIn_local2_local_demo project (see Building and programming with MCUXpresso)

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 65/87




NXP Semiconductors

Bootloader

5. appsignFile: none/sin_local2_local_demo.sha256.txt (see NXP application image signing tool)

When all args are specified, the script outputs the following:

~/ sln_local2 iot bootloader/unit_tests $: python3 fwupdate client.py local OTA B PATH-TO-BIN/
bundle.sln local2 iot local demo bankB.bin sln local2 local demo.sha256.txt

Device IP:192.168.0.166

unit test fwupdate send ota command
{"messageType": 2}

0

unit test fwupdate start req
Sending Start Request

You must input the board IP address that was displayed in the serial monitor after the connection. The script connects to the board
and sends a request to the TCP server so that it will set the FICA bit and reset the board into the OTA update mode.

When the board is in the OTA update mode, the transfer starts:

0

unit test fwupdate block transfer

0

Firmware Update Progress (0.09%): 4096/4394792
0

Firmware Update Progress (0.19%): 8192/4394792
0

Firmware Update Progress (0.28%): 12288/4394792
0

Firmware Update Progress (0.37%): 16384/4394792
0

Firmware Update Progress (99.91%): 4390912/4394792

0

Firmware Update Progress (100.0%): 4394792/4394792

unit test fwupdate complete req

{"messageType": 1, "fwupdate message": {"messageType": 1, "fwupdate server message": {"messageType":
1}}}

0

unit test fwupdate activate img

{"messageType": 1, "fwupdate message": {"messageType": 1, "fwupdate server message": {"messageType":
311}

0

unit test fwupdate self test start

{"messageType": 1, "fwupdate message": {"messageType": 1, "fwupdate server message": {"messageType":
2} 1}

0

Upon completion, the SLN-LOCAL2-I0T kit restarts itself automatically and switches over to the new application bank, running
the new application that was just flashed.

The OTA update sets the FICA bit and triggers the board by running the fwupdate_client.py script, whereas the OTW update must
set the FICA bit using the updateotw shell command. For the OTW, make sure that the COM_PORT matches the target com
port address.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 66 /87




NXP Semiconductors

Bootloader

print("Inve

sys.exit(1l)
PORT=8889
elif FWUPDATE _METHOD == "OTW":

COM_PORT="/dev/ttyUSBe’

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 67 /87




NXP Semiconductors

Chapter 10
Filesystem

The SLN-LOCALZ2-10T implements a custom filesystem to manage files with HyperFlash on the kit. The reasons why a custom
filesystem is chosen are as follows:

1. The device executes code from the flash (XiP), which means that it must read the flash from RAM functions.
2. HyperFlash has a 256-KB sector size, which does not allow for file granularity.

3. The update-in-place features are added to allow the update of big sectors without a time-consuming erase.

10.1 Generating filesystem-compatible files

Within the Ivaldi package, there is a script that converts any file into a filesystem supported file. Any file that gets programmed
to the filesystem must first pass through this script. This is required of all certificates and keys as well as any other files that the
reader needs.

Within the “Scripts/sin_iot_utils” folder of the release package, there is a Python script called file_format.py which is responsible
for creating a binary file formatted for the firmware’s filesystem. This script accepts the following parameters:

» “-if" parameter - passes the input file to be converted for the embedded filesystem

» “-of’ parameter - passes the output file name

» “ft” parameter - passes the flash type of the board; the acceptable values are as follows:
— “ft H” for HyperFlash (used for SLN-LOCAL2-10T)
— “ft Q” for QSPI Flash (used for future platforms based on QSPI)

For SLN-LOCAL2-I0T, the file_format.py script should be called with “-ft H” parameter, because the platform has HyperFlash. For
example, you can run the command below. This will generate the binary file to be flashed into the device.

An example of running the file_format.py to convert the “../ota_signing/ca/certs/<cert_name>.ca.crt.pem” file to the
“<cert_name>.ca.crt.pem.bin” file suitable for the HyperFlash filesystem is in Figure 79.

y input file name
UT_FILE

ecif tput file name
H_TYPE
= type. Add [-ft H] for HyperFlash

fcerts/my_prod.root.ca.crt.pem -of my_prod.root.ca.cr

Figure 79. file_format.py script description, usage, and logs

10.2 Generating new audio playback files

The custom filesystem for HyperFlash limits its size to 256 KB per file, which includes the file header as well as the sound data.
Therefore, make sure that the audio file is smaller than 256 KB.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 68 /87




NXP Semiconductors

Filesystem

Before generating the binary files, simply create a 16-bit, 48-kHz audio file. The current configuration of the amplifier only supports
48-kHz playback.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 69 /87




NXP Semiconductors

Chapter 11
Automated manufacturing tools

NXP provides a package of scripts that can be used for manufacturing programming and reprogramming of devices on the
production line without the J-Link. This collection of scripts is called Ivaldi. The lvaldi package allows developers to program all
the required firmware binaries into a flash device using a single command.

11.1 Introduction

11.1.1 About lvaldi

Ivaldi is a package of scripts responsible for manufacturing and reprogramming devices without J-Link. The lvaldi package uses
the serial downloader mode of the i.MX RT106S’s boot ROM to communicate with an application called Flashloaderthat is
programmed in the i.MX RT106S MCU. This then communicates with a program called b/host, which controls various parts of the
chip and flash.

Ivaldi was created to focus on the build infrastructure of a customer’s development and manufacturing cycle. Its primary
focuses are:

 Factory programming and setting up a new device/product with certificate/key pairs
» Enabling High Assurance Boot (HAB)
« Signing images for OTA, OTW, and HAB

» Writing and accessing One Time Programmable (OTP) fuses

11.1.2 Download the package
The lvaldi package can be downloaded from www.nxp.com/mcu-local2.

Extract the ZIP file and open the README.md file located in the root folder of the package to set up the environment.

11.1.3 Requirements

The following requirements must be met to run lvaldi. It is tested with Windows, Mac, and Linux operating systems.
* OpenSSL
» Python 3.6.x with virtualenv

¢ Linux/Ubuntu for Windows

11.1.4 Platform configuration
The Ivaldi package uses the Scripts/sin_local2_iot_config/board_config.py configuration file, which includes the following:
» Names of the binaries to be flashed (from the Image_Binaries folder):
— BOOTSTRAP_NAME
— BOOTLOADER_NAME
— MAIN_APP_NAME
— Names of audio playback binaries
* Flash configurations:
— FLASH_TYPE
— FLASH_START_ADDR

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 70/ 87



http://www.nxp.com/mcu-local2

NXP Semiconductors

Automated manufacturing tools

— FLASH_SIZE

* Flash map:
— Binaries’ images addresses
— Certificates’ addresses

If specificimage binaries (such as the main application or audio playback) must be updated in the lvaldi package’s Image_Binaries
folder, make sure that the Scripts/sin_local2_iot_config/board_config.py configuration file has correct file names and addresses.

NOTE
Any changes in Scripts/sin_local2_iot_config/board_config.py (except for binaries' names) also require updating
the embedded code and configurations.

11.1.5 Boot programming modes and security features

The Ivaldi package supports multiple boot settings with various security features. In the open boot programming, the HAB is
disabled. In the secure boot programming, the HAB is enabled. There are various security feature options with (or without) signing
certificates. Table 13 summarizes the security features for the open and secure boot modes. By default, the SLN-LOCAL2-I0T
kit is enabled with image verification in the open boot mode.

Table 13. Summary of boot mode and security features

Boot mode/ Signing certificates
. HAB . o
security features (image verification)
No No Recommended only for development
Open boot
No Yes Default
Secure boot Yes Yes Most secure

11.2 NXP application image signing tool

The signing tool is a Python application that is responsible for using a signed Certificate Signing Request (CSR) to sign the binaries
and append the certificate to the binary ready to be deployed to OTA/OTW services.

The following instructions assume that the README file in the Ivaldi root directory is followed to set up the Python virtual
environment. If this is not done, the scripts fail.

To start, navigate to the “Scripts/ota_signing” directory inside Ivaldi.

11.2.1 Generating signing entity

The lvaldi tools provided by NXP include the CA, but the end users must create their own CA and signing artifacts. For information
about the chain of trust used by NXP from the factory, see Application chain of trust.

Ivaldiincludes a script to generate all of the artifacts needed to properly sign application binaries and generate a FICA table. Before
running the script, the lvaldi environment must be set up completely as described in the README.md file in the top-level directory.

In the Python virtual environment, navigate to Scripts/ota_signing. Run the generate_signing_artifacts.py script. When running
without any arguments, the usage is displayed.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 71/87




NXP Semiconductors

Automated manufacturing tools

ca_name country c

ca_name: Name of ge signature chain of

country
country_name: CA Country Name

e: CA Country S

Figure 80. Signing artifact generation usage

country_name

Lrust

Type in the ca_name (e.g., my_prod) and the rest of the information for the CA. The CA name is the name given to the CA chain
that will be used to sign the images. Developers can always re-generate a more secure CA when preparing for production. When
prompted for passwords for the PEM files, use the same password for all of them for this exercise. Figure 81 shows an excerpt

from the terminal output of the generation script.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

72/87



NXP Semiconductors

Automated manufacturing tools

‘serial’, ‘Inumber’, 'index.t

prepared the directories

local path...

- Enter pass ph
ted Root
sions...
Permissions
prod.root.ca.key.pem:
te permissions...
tificate permissions

local2 iot,

te permissions...
ate permissions
Creating Pri Soc
ss phrase f F ¢ nro .b.ke

Enter pass ph /_prod.app.b.key.pem:
ated private key

r Permissions. .

r Permissions

r_prod.app.b.ke

Documents/Ivaldi_sln_local2_io

.pem:

ssions.

ate permissions

Figure 81. Signing artifact generation excerpt

When generate_signing_artifacts.py succeeds, the ca folder is generated. This folder contains the certificates and private keys

with the user-defined <ca_name>.
» .[calcerts/
— <ca_name>.app.a.crt.pem

— <ca_name>.app.b.crt.pem

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

73/87




NXP Semiconductors

Automated manufacturing tools

— <ca_name>.root.ca.crt.pem
 ./calprivate/

— <ca_name>.app.a.key.pem

— <ca_name>.app.b.key.pem

— <ca_name>.root.ca.key.pem

11.2.2 Installing the CA and application certificates

For the device to verify the image signature, the device must have the root CA and application certificates. Before
programming it into the device, it must be converted into a binary format for the filesystem to use it. To do this, run the
“generate_image_crt_files.py” script. Pass in the name of the generated CA in the command line.

Execute the command with the "-ft H" attribute for the HyperFlash and "-ft Q" for the QSPI, as shown in Figure 82.

h] -cn CA_NAME -ft FLASH_TYPE

[-ft H] for HyperFlash

Figure 82. Signing artifacts binary files generation for HyperFlash

The output of this script are two binary files — ca_crt.bin and app_crt.bin. Move these files to the Image_Binaries folder of the Ivaldi
package, as shown in Figure 83. They will be programmed into the SLN-LOCAL2-IOT kit by a boot programming tool.

Figure 83. Moving ca_crt.bin and app_crt.bin to Image_Binaries folder

11.3 Open Boot Programming tool

The Open Boot Programming tool is responsible for connecting to the device and programming it with the correct images and
certificates. This method is a quick and easy way to take a device/product from the assembly line and prepare it for shipping. Itis a
good practice to run the Open Boot Programming script before enabling the HAB to ensure all images and artifacts are in working

order. Before running the script, complete the following items:

» The files and folders shown in Figure 84 should be in the “Image_Binaries” folder in the Ivaldi root.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide 74 /87



NXP Semiconductors

Automated manufacturing tools

Documents » Ivaldi_sin_local2_iot » Image_Binaries »

~
Mame
local_audio_files
app_crt
ca crt
sln_local2_iot_bootloader
sin_local2_iot_bootstrap

cln_local2_iot_local_demo

Figure 84. Files and folder for Open Boot Programming tool

Date modified

203/
2013/

213/

2/11/2
2"1 1 .-"r. :

2111/,

2021 7:49 AM
2021 7:11 AM
2021 7:11 AM
021 7:38 AM
38 AM

2021 1:
2021 1:38 AM

v W) Se
Type Size
File folder
BIM File IEE
BIM File 3EKE
BIM File TIBEB
BIM File 162 KB
BIM File 1,874 KB

» The file names should be properly configured, as in the “Scripts/sin_local2_iot_config/board_config.py” script.

» The “Scripts/sin_local2_iot_open_boot/open_prog_full.py” script should have the correct ca_name (e.g., my_prod), as

below. The default name is “prod”.

NOTE

End user will need to update the device signing entity used below (by default prod.app.a used).

bl', board_config.BOOTLOADER_NAME,

cmd = ['python', 'sign_package "-p", board_config.PLATFORM_PREFIX,

"-m', board_config.MAIN_APP_NAME, '-

'-bc", board_config.ROOT_FOLDER]

* The SLN-LOCALZ2-IOT kit must be put into the serial download mode. Make sure that jumper J27, which is located on the

top of the kit, is in position “0”.

To program the firmware and artifacts, execute the “open_prog_full.py” script which performs the following actions, as shown in

Figure 85:

» Communicating with the BootROM and loading/executing the Flashloader

 Erasing the flash

» Programming the images (bootstrap, bootloader, local_demo, audio playback files, and FICA table) with certificates

» Jumping into the bootstrap and executing

After the script is executed, do not forget to exit the serial download mode, even though the board will boot into the application

after the programming.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

75/87



NXP Semiconductors

Automated manufacturing tools

Figure 85. Output of Ivaldi Open Boot Programming

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 76/ 87




NXP Semiconductors

Automated manufacturing tools

11.4 Secure boot programming with High Assurance Boot (HAB)

The i.MX RT106S MCU has some fundamental security enablement to protect itself against unsigned images and ensure the
integrity of high-value software running on the device. The HAB forces the Read Only Memory (ROM) to only boot into a signed
image. This ensures image integrity and prevents from physical and remote attacks since the device is powered on. The HAB is
described in detail in the .MX RT1060 Processor Reference Manual (document IMXRT1060RM). See the white paper related to
the security aspect of i.MX RT processor.

The implementation steps to enable the HAB of the i.MX RT processor for the SLN-LOCAL2-IOT kit is assured by the Python
scripts. With the Ivaldi package, the bootstrap is signed to work with the HAB.

For additional information about the Ivaldi tool’'s HAB enablement, build the documents in the Ivaldi/doc folder according to the
README.md file.

11.4.1 HAB setup

This section assumes that NXP application image signing tool is completed as needed to generate the CA and application
certificate that will be loaded into the flash. It will also be used to generate the FICA table used to validate the application signature.

The first step is to create a signed Flashloader which will be used to set everything up and communicate with the blhost tool. The
blhost tool in its simplest form is used to read and write registers, but it communicates with the Flashloader. The Flashloader is
a RAM-based application that supports the blhost communication. In normal circumstances, the Flashloader can be executed
without being signed. When the HAB is enabled, the Flashloader must be signed by the generated keys.

The secure boot Python scripts are separated into two folders:

* OEM - The scripts should only be executed by the Product Owner and the output must be stored in a secure environment.
This is because it contains important key information, which if lost, could brick the SLN-LOCAL2-I0T kits or result in a loss
of image integrity. The example scripts demonstrate how to configure the Public Key Infrastructure (PKI) and generate a
secure binary.

* MANF - The scripts are executed on the manufacturing line. They are used to execute the signed Flashloader and
communicate with the chip to encrypt the binaries. The scripts contain the generation and programming of FICA. The
scripts also serve as examples for the production line programming. Note that the script to enable the HAB should only be
performed once per device with a known PKI (i.e., certificates and keys).

NOTE
This process has several failure points, if you have insufficient knowledge of the device. Some of these features
are one-way and they permanently impact the behavior of the i.MX RT106S MCU.

The “.Joem/setup_hab.py” script creates the PKI infrastructure, secure-boot (SB) file, and a signed Flashloader.
» The generated PKI files are located in the crts and keys folders.
» The following secure-boot (SB) file is located in the Image_Binaries folder:
— enable_hab.sb
» The following signed Flashloader files are located in the Image_Binaries folder:
— ivt_flashloader_signed.bin
— ivt_flashloader_signed_nopadding.bin
Figure 86 shows the output of the setup_hab.py script.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 77187



https://www.nxp.com/doc/IMXRT1060RM

NXP Semiconductors

Automated manufacturing tools

$ python3 setup_hab.py

Figure 86. Running setup_hab.py

NOTE

Do not run the setup_hab.py file more than once without backing up the generated keys and certificates. This
results in inability to use the Flashloader and program new images via the serial download mode for the existing

HAB-enabled devices.

To enable the HAB with the generated secure boot image file (enable_hab.sb), set the i.MX RT106S to the serial download mode
by moving jumper J27, which is located on the top of the SLN-LOCAL2-IOT kit, into the “0” position. Then, execute the “Script/
sIn_local2_iot_secure_boot/manf/enable_hab.py” script. Figure 87 shows the usage and output of the “enable_hab.py” script.

$ python3 enable_hab.py -h
usage: enable_hab.py [-h] [-cf CONFIG_FOLDER]

optional arguments:
-h, --help show this help me
-cf CONFIG_FOLDER, --config-folder CONF
Specify the folde

ssage and exit
IG_FOLDER
-

(env)
$ python3 enable_hab.py
Importing board_config.py from ../../sln_local2_iot_config/ folder
Establishing connection...
SUCCESS: Communication established with device.
Loading flashloader...
SUCCESS: Flashloader loaded suc sfully.
Jumping to flashloader entry po s
SUCCESS: Device jumped to execu flashloader.
Waiting for device to be rea
get-property
SUCCESS: Device is ready for blhost!
Reading device unique ID...
get-property
SUCCESS: Device rial number is Rin4ZdJBCy8=
Writing memory config option block...
fill-memory
SUCCESS: Config option block loaded into RAM.
Configuring FlexSPI...
configure-memory
SUCCESS: FlexSPI configured.
Erasing flash...
flash-erase-region
SUCCESS: Flash erased.
Loading secure boot file...
receive-sb-file
SUCCESS: Loaded secure boot file.
Resetting device...
reset
SUCCESS: Device Permanently Locked with HAB!

Figure 87. Usage of enable_hab.py and its output

that contains board_config.py file

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

78/87




NXP Semiconductors

NOTE

Automated manufacturing tools

If you lose the signed Flashloader and certificate/keys, the board will no longer be functional, because this ensures
that only signed images can boot.

11.4.2 Creating the images

How to generate the images is described before creating the artifacts and loading them into the encrypted devices. Because the
Instruction Vector Table (IVT) is created by the Ivaldi scripts, configure the bootstrap project before creating the image. To do this,
right-click on the bootstrap project and navigate to Properties > C/C++ Build > Settings > Preprocessors. As shown in Figure 88,
set XIP_BOOT_HEADER_ENABLE and XIP_BOOT_HEADER_DCD_ENABLE to zero.

| type filter text

Resource
Builders
w C/C++ Build
Build Variables
Environment
Legging
MCU settings
Settings
Tool Chain Editor
C/C++ General
MCUXpresse Config Tools
Project Matures
Project References
Refactoring History
Run/Debug Settings
Task Tags
Validation

’ Properties for sin_local2_iot_bootstrap

Configuration:

Settings

Debug [ Active |

& Tool Settings & Build steps

i

Build Artifact Binary Parsers €3 Error Parsers

w3 MCU C Compiler

(22 Dialect

(B Preprocessor
2 Includes

(# Optimization
(2 Debugging
(# Warnings

(2 Miscellaneous
(2 Architecture

w83 MCU Assembler

(# General
(B Architecture & Headers

~ 8 MCU Linker

(2 General
(22 Libraries
(2 Miscellaneous

Figure 88. Unsetting of the XIP boot header

[ Do not search system directories (-nostding)

[ Preprocess only (-E)
Defined symbels (-D)

O

& -

Manage Configuratic

& &

PRINTF_FLOAT_ENABLE=0
SCANF_FLOAT_ENABLE=0
PRINTF_ADVANCED_ENABLE=0
SCANF_ADVANCED_ENABLE=0
XIP_EXTERNAL FLASH=1
XIP_BOOT_HEADER_ENABLE=0
XIP_BOOT HEADER_DCD_ENABLE=0
APP_MAJ_VER=0x02
APP_MIN_VER=0x00
APP_BLD_VER=0x0000
DISABLE_IMAGE_VERIFICATION=0

RELOCATE_VECTOR_TABLE=1
_ SEMIHOST_HARDFAULT_DISABLE=1

MEDI I FARCAIE TDAKMCCED KIAKE DI ARG -1

UNSECURE_JUMP_ADDRESS=FICA_IMG_BOOTLOADER_ADDR

After these definitions are updated, build the bootstrap project to generate an image. Because the Ivaldi script only accepts
the SREC file format, use the MCUXpresso Binary Utilities to convert the AXF file to the s-record file in the bootstrap project.
Right-click the AXF file and navigate to Binary Ultilities > Create S-Record.

2 startup

2 utilities

(2 xip

w = Debug

= board
= component
= device
= drivers
= freertos
= mbedtls
[=- source
= startup
= utilities
= xip

| @ makefile
| & objects.mk

[T -

Figure 89. Converting to s-record file

3@& sin_local2_iot_bootstrap.axf - [arm/Te

Profile As >

Profiling Tools ¥

Utilities >

Binary Utilities > Create hex

Tools ] Create binary
Validate Create 5-Record
%}‘ Run C/C++ Code Analysis Disassemble

Team > ELF Information

Compare With > Size

Replace With > Strip debug symbols

Propertics Alt+Enter Process symdefs file

&4 sIn_local?_iot_bootstrap_Debug_library.Id

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

79/87



NXP Semiconductors

Automated manufacturing tools

Ly

= source

== startup

= utilities

= xip

%‘5« sin_local_iot_bootstrap.axf -
| @ makefile

| @ objects.mk

] sin_lecal2_iot_bootstrap_Debuy

o

=
e =

[zl [

| @ sources.mk
= doc . . v

@ Rename Resource

Mew name: | 5Ir1_|u:ncaIE_iot_bontstrap.srec|

Update references
Open preferences...

sln_lecal2_iot_bootstrap_Deby
sin_lecal2_iot_bootstrap_Debuy
sln_local2_iot_bootstrap.map

sln_local?_iot_bootstrap.s19 Preview =

Cancel

Figure 90. Changing from S19 to SREC

Because this creates an S19 file, rename the file to SREC, as shown in Figure 90.

Continue to build the bootloader and local_demo projects in the usual way. When these applications are buiilt, it is required to
generate the BIN files. Build these by navigating to the Debug folder in both the bootloader and local_demo application projects.
Right-click the AXF file and navigate to Binary Utilities > Create Binary.

When the collateral is created, copy the BIN and SREC files into the Image_Binaries folder.

Figure 91 shows all the required files before executing the HAB.

Documents » Ivaldi_sin_local2_iot_hab > Image Binaries

Name Date modified Trpe Size

0:13 PM BIN File 3KB
M EIN File 3kB
P SB File
M EIN File
P BIN File
M EIN File
P SREC File
2111:01 AM EIN File 1,897 KB

app_crt
ca_crt

[ enable_hab.sb
ivt_flashloader_signed
ivt_flashloader_signed_nopzdding

sin_local2_iot_bootloader

[] sIn_local2_jot_boststrap.srec

sin_local2_iot_local demo

Figure 91. Image binaries before executing HAB

11.4.3 Programming the images
Create a secure image and program the created image into the SLN-LOCAL2-IOT kit.

Execute the Scripts/sin_local2_iot_secure_boot/oem/secure_app.py script with the --signed-only option. It generates the
boot_sign_image.sb file with the images created in Creating the images and saves the generated SB file into the Image_Binaries

folder. Figure 92 shows the usage and output of the secure_app.py —signed-only script.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

80/87



NXP Semiconductors

Automated manufacturing tools

cure_app.py -h

[--bin INFIG_FOLDER]

[uvoice_hab] [bootloader] [uvoice app]

uments:

DT app
format h

_Binmaries/b

Figure 92. Usage of secure_app.py and its output with --signed-only option

Program the created boot_sign_image.sb file into the SLN-LOCAL2-IOT kit in the HAB enabled by executing the prog_sec_app.py
script with the --signed-only option. The script performs the following actions and its output is shown in Figure 93:

« It runs the signed flashloader for the configuration.
* It erases the current flash.

« It programs the signed bootstrap, the signed bootloader and local_demo, the application image-signing certificate, the CA
image certificate, and the device key and certificate.

* |t jumps into the bootstrap and executes.
« It waits until the flow gets to local_demo.
NOTE

The spcripts use the file names specified in the Scripts/ sin_local2_iot_config/board_config.py folder. For different
file names, update the board_config.py file.

NOTE
The lock_device.py file should be used only in production, because it disables debugger access.

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 81/87




NXP Semiconductors

Automated manufacturing tools

Figure 93. Usage of prog_sec_app.py and its output with --signed-only option

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 82/87




NXP Semiconductors

Chapter 12
References

The following references supplement this document:

* MCU Local Voice Control SLN-LOCAL2-I0T-UG Solution User's Guide (document SLN-LOCAL-IOT-UG)

» Hardware files (gerbers, schematics, BOM)

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide 83/87


https://www.nxp.com/doc/SLN-LOCAL-IOT-UG

NXP Semiconductors

Chapter 13
Acronyms

Table 14. Acronyms

Acronym Meaning (Definition)

AFE Audio Front End

ASR Automatic Speech Recognition

CA Certificate Authority

FICA Flash Image Configuration Area Memory space of the external flash that

contains information about the binary images
of the application and bootloader stages.

GUI Graphic User Interface

HAB High-Assurance Bootloader

10T Internet Of Thing

IVT Instruction Vector Table

JTAG Joint Test Action Group

MANF Manufacturer

MCU Microcontroller Unit

MEMS Micro-Electro-Mechanical System

MSD Mass Storage Device

OEM Original Equipment Manufacturer

OTA Over The Air

OoTW Over The Wire

OTP One Time Programmable

PCM Pulse-code modulation

PDM Pulse-density modulation

PKI Public Key Infrastructure

ROM Read Only Memory

RTOS Real-Time Operating System

Table continues on the next page...
SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide 84 /87



NXP Semiconductors

Table 14. Acronyms (continued)

Acronyms

Acronym Meaning (Definition)
SDK Software Development Kit
UART Universal Asynchronous Receiver-Transmitter
SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021
User's Guide 85/87



NXP Semiconductors

Chapter 14
Revision history

Table 15. Revision history

Revision Date

Substantive changes

0 19 April 2021

Initial release

SLN-LOCAL2-I0T Developer’'s Guide, Rev. 0, 19 April 2021

User's Guide

86/87




How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, Dynam|Q, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, pVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 19 April 2021
Document identifier: SLN-LOCAL2-10T-DG


http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	Figures
	Tables
	1 System Requirements and Prerequisites
	2 Usage Conditions
	3 Introduction
	3.1 Hardware overview
	3.2 Software overview
	3.3 Device memory map
	3.4 Flash memory filesystem
	3.5 Audio application architecture
	3.6 ASR application
	3.7 User interfaces
	3.8 Security architecture
	3.9 Automated manufacturing tools

	4 Getting started with MCUXpresso Tool Suite
	4.1 MCUXpresso IDE
	4.2 Software Development Kit (SDK)
	4.2.1 Downloading SDK
	4.2.2 Import SLN-LOCAL2-IOT SDK
	4.2.3 Importing SLN-LOCAL2-IOT projects


	5 Building and programming with MCUXpresso
	5.1 Understanding the boot flow
	5.2 Building the bootstrap, bootloader, and local voice control demo
	5.3 Turning off image verification
	5.3.1 Turning off bootstrap image verification
	5.3.2 Turning off bootloader image verification

	5.4 Programming the firmware and artifacts
	5.4.1 Bootstrap, bootloader, and local voice control application images
	5.4.2 Audio playback files
	5.4.3 Image verification certificate and keys
	5.4.4 Flash Image Configuration Area (FICA)


	6 Hardware platform
	7 Far-field local voice control framework
	7.1 Automatic speech recognition
	7.1.1 ASR application scenarios
	7.1.1.1 Scenario #1: Single-language two-stage voice control
	7.1.1.2 Scenario #2: Multiple-language two-stage voice control
	7.1.1.3 Scenario #3: Single-language N-stage voice control
	7.1.1.4 User interface

	7.1.2 Language-specific voice control engine
	7.1.2.1 Specification
	7.1.2.2 Architecture
	7.1.2.3 Language model
	7.1.2.4 Inference engine

	7.1.3 ASR configuration
	7.1.3.1 Languages
	7.1.3.2 Installation of languages and inference engines

	7.1.4 ASR session control
	7.1.4.1 Follow-up mode
	7.1.4.2 Timeout
	7.1.4.3 Push-to-Talk (PTT) mode


	7.2 Acoustic modification
	7.2.1 Changing microphone configuration
	7.2.2 Changing the post gain
	7.2.3 Changing the pre-processed microphone gain


	8 Security architecture
	8.1 Application chain of trust
	8.2 FICA and image verification
	8.3 Image Certificate Authority (CA) and application certificates

	9 Bootloader
	9.1 Application BIN file generation
	9.2 USB Mass Storage Device (MSD) update
	9.3 Over-the-Air (OTA) and Over-the-Wire (OTW) updates
	9.4 Transfers
	9.4.1 JSON messages
	9.4.1.1 Start request
	9.4.1.2 Block request
	9.4.1.3 Stop request
	9.4.1.4 Activate image request
	9.4.1.5 Start self-test request
	9.4.1.6 Clean request
	9.4.1.7 Response format


	9.5 Testing OTA/OTW updates
	9.5.1 OTA setup
	9.5.2 OTW setup

	9.6 Running the test script

	10 Filesystem
	10.1 Generating filesystem-compatible files
	10.2 Generating new audio playback files

	11 Automated manufacturing tools
	11.1 Introduction
	11.1.1 About Ivaldi
	11.1.2 Download the package
	11.1.3 Requirements
	11.1.4 Platform configuration
	11.1.5 Boot programming modes and security features

	11.2 NXP application image signing tool
	11.2.1 Generating signing entity
	11.2.2 Installing the CA and application certificates

	11.3 Open Boot Programming tool
	11.4 Secure boot programming with High Assurance Boot (HAB)
	11.4.1 HAB setup
	11.4.2 Creating the images
	11.4.3 Programming the images


	12 References
	13 Acronyms
	14 Revision history

