
SLN-LOCAL2-IOT Developer’s Guide

NXP Semiconductors Document identifier: SLN-LOCAL2-IOT-DG
User's Guide Rev. 0, 19 April 2021

Contents
Chapter 1 System Requirements and Prerequisites..9

Chapter 2 Usage Conditions..10

Chapter 3 Introduction... 11
3.1 Hardware overview..11
3.2 Software overview... 12
3.3 Device memory map..13
3.4 Flash memory filesystem...14
3.5 Audio application architecture... 15
3.6 ASR application...15
3.7 User interfaces.. 16
3.8 Security architecture..18
3.9 Automated manufacturing tools...18

Chapter 4 Getting started with MCUXpresso Tool Suite......................................19
4.1 MCUXpresso IDE.. 19
4.2 Software Development Kit (SDK).. 19

4.2.1 Downloading SDK... 19
4.2.2 Import SLN-LOCAL2-IOT SDK... 20
4.2.3 Importing SLN-LOCAL2-IOT projects... 21

Chapter 5 Building and programming with MCUXpresso.................................... 24
5.1 Understanding the boot flow..24
5.2 Building the bootstrap, bootloader, and local voice control demo... 24
5.3 Turning off image verification.. 25

5.3.1 Turning off bootstrap image verification.. 25
5.3.2 Turning off bootloader image verification.. 26

5.4 Programming the firmware and artifacts..27
5.4.1 Bootstrap, bootloader, and local voice control application images... 28
5.4.2 Audio playback files.. 29
5.4.3 Image verification certificate and keys.. 33
5.4.4 Flash Image Configuration Area (FICA)..35

Chapter 6 Hardware platform...39

Chapter 7 Far-field local voice control framework..40
7.1 Automatic speech recognition... 40

7.1.1 ASR application scenarios.. 41
7.1.1.1 Scenario #1: Single-language two-stage voice control.. 41
7.1.1.2 Scenario #2: Multiple-language two-stage voice control..42
7.1.1.3 Scenario #3: Single-language N-stage voice control... 44
7.1.1.4 User interface...45

7.1.2 Language-specific voice control engine.. 46
7.1.2.1 Specification...46

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 2 / 87

7.1.2.2 Architecture..46
7.1.2.3 Language model.. 47
7.1.2.4 Inference engine.. 48

7.1.3 ASR configuration... 49
7.1.3.1 Languages... 49
7.1.3.2 Installation of languages and inference engines..49

7.1.4 ASR session control..50
7.1.4.1 Follow-up mode... 50
7.1.4.2 Timeout.. 51
7.1.4.3 Push-to-Talk (PTT) mode.. 51

7.2 Acoustic modification...51
7.2.1 Changing microphone configuration... 51
7.2.2 Changing the post gain... 52
7.2.3 Changing the pre-processed microphone gain... 52

Chapter 8 Security architecture... 54
8.1 Application chain of trust... 54
8.2 FICA and image verification.. 54
8.3 Image Certificate Authority (CA) and application certificates.. 55

Chapter 9 Bootloader...56
9.1 Application BIN file generation.. 56
9.2 USB Mass Storage Device (MSD) update...60
9.3 Over-the-Air (OTA) and Over-the-Wire (OTW) updates.. 61
9.4 Transfers... 61

9.4.1 JSON messages... 62
9.4.1.1 Start request.. 62
9.4.1.2 Block request... 63
9.4.1.3 Stop request...63
9.4.1.4 Activate image request.. 63
9.4.1.5 Start self-test request...63
9.4.1.6 Clean request...64
9.4.1.7 Response format..64

9.5 Testing OTA/OTW updates... 64
9.5.1 OTA setup... 64
9.5.2 OTW setup.. 64

9.6 Running the test script...65

Chapter 10 Filesystem... 68
10.1 Generating filesystem-compatible files..68
10.2 Generating new audio playback files...68

Chapter 11 Automated manufacturing tools.. 70
11.1 Introduction..70

11.1.1 About Ivaldi... 70
11.1.2 Download the package..70
11.1.3 Requirements..70
11.1.4 Platform configuration... 70
11.1.5 Boot programming modes and security features.. 71

11.2 NXP application image signing tool...71
11.2.1 Generating signing entity.. 71

NXP Semiconductors
Contents

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 3 / 87

11.2.2 Installing the CA and application certificates...74
11.3 Open Boot Programming tool..74
11.4 Secure boot programming with High Assurance Boot (HAB)..77

11.4.1 HAB setup... 77
11.4.2 Creating the images.. 79
11.4.3 Programming the images.. 80

Chapter 12 References..83

Chapter 13 Acronyms.. 84

Chapter 14 Revision history...86

NXP Semiconductors
Contents

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 4 / 87

Figures
Figure 1. i.MX RT SOM (base board).. 12
Figure 2. Voice shield (top board)..12
Figure 3. High-level software architecture... 13
Figure 4. Audio application pipeline...15
Figure 5. Shell prompt interface...16
Figure 6. User LED on the SLN-LOCAL2-IOT kit.. 17
Figure 7. Creating MCUXpresso IDE workspace...19
Figure 8. MCUXpresso SDK build for SLN-LOCAL2-IOT.. 20
Figure 9. MCUXpresso SDK import confirmation window... 20
Figure 10. SLN-LOCAL2-IOT SDK installation in MCUXpresso IDE... 21
Figure 11. MCUXpresso Quickstart Panel Import SDK Example(s).. 21
Figure 12. MCUXpresso SDK selection...22
Figure 13. MCUXpresso project import selection.. 23
Figure 14. MCUXpresso Project Explorer..23
Figure 15. Boot security flowchart..24
Figure 16. Quickstart panel..25
Figure 17. Console window showing successful compilation.. 25
Figure 18. Disabling image verification in bootstrap.. 26
Figure 19. Build option in quickstart panel... 26
Figure 20. Disabling image verification in bootloader.. 27
Figure 21. Build option in quickstart panel... 27
Figure 22. Debug window for applications... 28
Figure 23. Probes discovered window... 29
Figure 24. Downloading application image to flash... 29
Figure 25. Opening Flash GUI Tool for programming audio playback binaries... 30
Figure 26. Probes discovered window for programming audio playback binaries... 30
Figure 27. Opening GUI Flash Tool for audio playback binaries... 31
Figure 28. Selecting audio playback binary files..31
Figure 29. Updating the “OK” audio playback in English binary address...32
Figure 30. Programming the audio playback binaries..32
Figure 31. Audio “OK” in English binary programming completed...32
Figure 32. Opening Flash GUI Tool for Application/CA certificates... 33
Figure 33. Probes discovered window for Signed Application/CA certificates...33
Figure 34. Opening Flash GUI Tool for Application/CA certificates... 34
Figure 35. Selecting the Application/CA certificate binaries.. 34
Figure 36. Updating the Application/CA certificate binaries address... 35
Figure 37. Programming the Application/CA certificate binaries..35
Figure 38. Application/CA Certificate programming complete... 35
Figure 39. Opening Flash GUI Tool for FICA...36
Figure 40. Probes discovered window for FICA table programming..36
Figure 41. GUI Flash Tool..37
Figure 42. Selecting the FICA table binary.. 37

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 5 / 87

Figure 43. Updating the FICA table address..38
Figure 44. Programming the FICA table binary... 38
Figure 45. FICA table programming complete... 38
Figure 46. High-level overview of far-field local voice control framework.. 40
Figure 47. Inference engine instances matrix for flexible ASR applications.. 41
Figure 48. Inference engine instances of single-language two-stage scenario... 42
Figure 49. Multiple (up to four) languages of wake word and command inference engines..42
Figure 50. Wake word and command engine instances for single-language N-stage voice control..44
Figure 51. Dialog-type voice control with oven appliance use case.. 45
Figure 52. Demo selection by shell commands... 45
Figure 53. Demo selection command.. 45
Figure 54. Language selection command..45
Figure 55. ASR software architecture.. 46
Figure 56. ASR control snippet.. 47
Figure 57. ASR language model snippet... 47
Figure 58. ASR inference engine snippet.. 48
Figure 59. Configuration for the maximum number of languages snippet... 49
Figure 60. Function install_language() snippet.. 50
Figure 61. Function install_inference_engine() snippet..50
Figure 62. ASR session control - follow-up mode..51
Figure 63. ASR session control - timeout.. 51
Figure 64. ASR session control - PTT mode... 51
Figure 65. pdm_pcm_definitions.h file and USE_SAI2_MIC define... 51
Figure 66. Gain variable in audio_process_task.c... 52
Figure 67. pdm_to_pcm_task.c set gain factor...53
Figure 68. Application chain of trust...54
Figure 69. Bootloader flow...56
Figure 70. Editing memory configuration... 57
Figure 71. Project properties..58
Figure 72. Editing post-build steps...59
Figure 73. Post-build commands to generate BIN file... 60
Figure 74. MSD update mode LED..61
Figure 75. SLN-LOCAL2-IOT kit mounted as USB MSD...61
Figure 76. Transfer format... 61
Figure 77. Request and response flow.. 62
Figure 78. UART port header - J26..65
Figure 79. file_format.py script description, usage, and logs... 68
Figure 80. Signing artifact generation usage... 72
Figure 81. Signing artifact generation excerpt... 73
Figure 82. Signing artifacts binary files generation for HyperFlash... 74
Figure 83. Moving ca_crt.bin and app_crt.bin to Image_Binaries folder.. 74
Figure 84. Files and folder for Open Boot Programming tool.. 75
Figure 85. Output of Ivaldi Open Boot Programming...76
Figure 86. Running setup_hab.py..78
Figure 87. Usage of enable_hab.py and its output.. 78

NXP Semiconductors
Figures

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 6 / 87

Figure 88. Unsetting of the XIP boot header..79
Figure 89. Converting to s-record file...79
Figure 90. Changing from S19 to SREC..80
Figure 91. Image binaries before executing HAB.. 80
Figure 92. Usage of secure_app.py and its output with --signed-only option.. 81
Figure 93. Usage of prog_sec_app.py and its output with --signed-only option...82

NXP Semiconductors
Figures

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 7 / 87

Tables
Table 1. Tested computer configurations...9
Table 2. Software tools and versions...9
Table 3. Usage conditions... 10
Table 4. Device memory map.. 13
Table 5. Full list of files in HyperFlash filesystem.. 14
Table 6. Summary of LED color and behavior... 17
Table 7. Wake words and commands for multi-language demos.. 43
Table 8. Specification of an inference engine instance..46
Table 9. ASR language type..47
Table 10. Inference engine types...48
Table 11. u16PostProcessedGain description...52
Table 12. SLN_DSP_SetGainFactor function description..52
Table 13. Summary of boot mode and security features... 71
Table 14. Acronyms...84
Table 15. Revision history..86

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 8 / 87

Chapter 1
System Requirements and Prerequisites
The MCU Local Voice Control SDK requires an up-to-date computer which runs MCUXpresso IDE. It also requires a terminal
program to communicate with the device via USB.

The MCUXpresso IDE is available here:

https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-
integrated-development-environment-ide:MCUXpresso-IDE

Table 1. Tested computer configurations

Computer type OS version Serial terminal application

PC Windows 10 TeraTerm, PuTTY

Mac macOS Serial, CoolTerm, goSerial

PC Linux PuTTY

Below are listed development tools using MCU Local Voice Control SDK.

Table 2. Software tools and versions

Software tool Version Description

Segger JLink_v6.98 or later Tool to program the flash.

MCUXpresso IDE Version 11.3.0 Eclipse base IDE for
development environment

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 9 / 87

https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE

Chapter 2
Usage Conditions
The following information is provided per Article 10.8 of the Radio Equipment Directive 2014/53/EU:

• Frequency bands in which the equipment operates

• The maximum RF power transmitted

Table 3. Usage conditions

PN RF technology (a) Frequency range (b) Max transmitted power

SLN-LOCAL2-IOT WiFi 2412MHz – 2472MHz 17.9dBm

EUROPEAN DECLARATION OF CONFORMITY (Simplified DoC per Article 10.9 of the Radio Equipment Directive 2014/53/EU)

This apparatus, namely SLN-LOCAL2-IOT, conforms to the Radio Equipment Directive 2014/53/EU. The full EU Declaration of
Conformity for this apparatus can be found at this location: https://www.nxp.com/

The product is expected to be used laying flat on a table, microphone output pointing up.

The data mode of the USB bus is not covered by the CE certification as this mode is used exceptionally to reprogram the device.

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 10 / 87

https://www.nxp.com/

Chapter 3
Introduction
The NXP MCU Local Voice Control 2nd generation development kit (part number: SLN-LOCAL2-IOT) is a comprehensive, secure,
and cost-optimized turnkey solution with a widely adopted development environment that enables customers to quickly get to
market with a production-ready end-to-end software application.

SLN-LOCAL2-IOT embeds all the components required to produce a secure and edge-computing voice control product without
a Wi-Fi or cloud connectivity. The architecture is built upon a single core:

• i.MX RT106S or RT105S for the main application, powered by an Arm® Cortex®-M7 core.

The SLN-LOCAL2-IOT hardware highlights are as follows:

• Up to 600 MHz (528 MHz by default) Cortex-M7 MCU core

• 1 MB on-chip RAM (512 KB TCM)

• 32 MB HyperFlash memory for Fast XiP (eXecute In Place)

• Three PDM MEMS microphones

• TFA9894 Class-D amplifier

• Wi-Fi/Bluetooth combo chip

• Integrated speaker

• GPIO expansion headers

The SLN-LOCAL2-IOT software highlights are as follows:

• Two-stage bootstrap and bootloader, allowing for flexibility in customer implementation

• Secure boot flow with High Assurance Booting (HAB)

• Over-the-Air (OTA) update via WiFi

• Over-the-Wire (OTW) update via UART

• Automated manufacturing/reprogramming tools

• Speech recognition engine by deep learning

• Audio Front End (AFE) for far-field Automatic Speech Recognition (ASR)

SLN-LOCAL2-IOT is supported by a comprehensive and free-of-charge enablement suite from NXP and its partners, including
the following:

• MCUXpresso development tools

• Hardware design files

• Local voice application software source code

• Software audio tuning tools

• Documentation

• Training material

3.1 Hardware overview
The SLN-LOCAL2-IOT kit is designed to provide a reference for a real product design. The board is designed using a small form
factor and has many of the design considerations that hardware engineers evaluate. NXP also designed the hardware with some
of the key hallmarks of a traditional development kit. Figure 1 and Figure 2 show the board components.

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 11 / 87

Figure 1. i.MX RT SOM (base board)

Figure 2. Voice shield (top board)

3.2 Software overview
Figure 3 shows a high-level software architecture diagram. This shows everything that is included in the SDK for the SLN-
LOCAL2-IOT package, though not all of the features are implemented in demo applications.

NXP Semiconductors
Introduction

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 12 / 87

Figure 3. High-level software architecture

3.3 Device memory map
To understand the various pieces of the system, see the memory map (Table 4) that NXP developed for this application. There
are many components required in the system to successfully boot and execute an application.

Table 4. Device memory map

Name Start address End address Description

Boot Config Region 0x6000_0000 0x6000_0FFF Used for XIP and setting up flash

IVT 0x6000_1000 0x6000_1FFF Vector table

Bootstrap 0x6000_2000 0x6003_FFFF

Bootloader 0x6004_0000 0x601F_FFFF

Not Used 0x6020_0000 0x602F_FFFF Not used

Application Bank A 0x6030_0000 0x60CF_FFFF

Application Bank B 0x60D0_0000 0x616F_FFFF

Table continues on the next page...

NXP Semiconductors
Introduction

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 13 / 87

Table 4. Device memory map (continued)

Name Start address End address Description

Filesystem 0x6170_0000 0x61F7_FFFF Stores device settings and certificates listed
in Table 5

Reserved 0x61F8_0000 0x61FB_FFFF Reserved

Flash Image Config Area 0x61FC_0000 0x61FF_FFFF FICA table is used for secure boot

3.4 Flash memory filesystem
The filesystem manages various entries of device settings and certificates stored in the flash memory. The sector size of the
HyperFlash filesystem is 256 KB. Each file must be saved in one sector.

The contents are listed in Table 5. It shows all the files and their purposes in the SLN-LOCAL2-IOT kit. These files are programmed
by default when receiving the kit.

Table 5. Full list of files in HyperFlash filesystem

Name Start address End address Description

Audio Playback EN 01 0x6178_0000 0x617B_FFFF “OK” sound in English

Audio Playback EN 02 0x617C_0000 0x617F_FFFF “Can I help you?” sound in English

Audio Playback ZH 01 0x6180_0000 0x6183_FFFF “OK” sound in Chinese

Audio Playback ZH 02 0x6184_0000 0x6187_FFFF “Can I help you?” sound in Chinese

Audio Playback DE 01 0x6188_0000 0x618B_FFFF “OK” sound in German

Audio Playback DE 02 0x618C_0000 0x618F_FFFF “Can I help you?” sound in German

Audio Playback FR 01 0x6190_0000 0x6193_FFFF “OK” sound in French

Audio Playback FR 02 0x6194_0000 0x6197_FFFF “Can I help you?” sound in French

Audio Playback EN 03 0x6198_0000 0x619B_FFFF “Say the temperature to be set” sound in English

Audio Playback EN 04 0x619C_0000 0x619F_FFFF “Say the time to be set” sound in English

Audio Playback EN 05 0x61A0_0000 0x61A3_FFFF “Temperature has been set” sound in English

Audio Playback EN 06 0x61A4_0000 0x61A7_FFFF “Timer has been set” sound in English

ASR Control Configuration 0x61A8_0000 0x61AB_FFFF Saved parameters of ASR control
shell commands

WiFi Credential 0x61BC_0000 0x61BF_FFFF WiFi SSID and password

Image CA Root Certificate 0x61CC_0000 0x61CF_FFFF Can be used for connection to IoT Cloud

Table continues on the next page...

NXP Semiconductors
Introduction

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 14 / 87

Table 5. Full list of files in HyperFlash filesystem (continued)

Name Start address End address Description

Bank A Signing Certificate 0x61D0_0000 0x61D3_FFFF Used for validating the signature of Bank A

Bank B Signing Certificate 0x61D4_0000 0x61D7_FFFF Used for validating the signature of Bank B which
is written during first OTA

Bootloader Signing Certificate 0x61D8_0000 0x61DB_FFFF Use for validating the signature of bootloader

3.5 Audio application architecture
The audio capture application is implemented as a pipeline shown in Figure 4. The application can be configured to capture either
two or three microphones (two by default). Because the i.MX RT106S device has enough processing power, the core is used to
process the entire chain from the PDM decimation to the Automatic Speech Recognition (ASR) engine. Every 10 milliseconds,
the DMA moves raw PDM data from each microphone. This data is fed into the NXP Solutions PDM decimation software IP to
convert the audio into 16-bit, 16-kHz PCM data. When it comes out of the decimation block, it is fed to the Audio Front End (AFE)
to perform beamforming and acoustic echo cancellation. At this point, it is a single 16-bit, 16-kHz mono audio signal.

Figure 4. Audio application pipeline

Although the ASR works on multiples of 10 ms of audio data, a 30-ms data block is recommended for the input. Thus, the
audio_processing_task accumulates 30 ms worth of processed audio before sending it to the ASR for processing.

3.6 ASR application
The AFE output signal is transferred to the ASR, where the wake word engine waits for a wake word. If a wake word is detected,
the same language’s command engine is loaded to process the voice control commands. Developers can also implement multiple
groups of commands sequentially to create a dialog-style voice-control application.

NXP implemented the following three types of baseline demos:

• LED voice control demo

— English

— Two-stage (wake word and command) ASR

• IoT/elevator/audio/washing machine voice control demo

— Selectable combinations of English, Chinese, German, and French

— Two-stage ASR

• Oven voice control demo

NXP Semiconductors
Introduction

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 15 / 87

— English

— Multiturn (4-way) dialog-style ASR

The ASR implemented with the selected languages can be easily replaced with other languages. NXP provides an application
note to customize the local voice demos. Contact NXP (local-commands@nxp.com) for more information about the process of the
phoneme-based speech recognition engine generation and custom wake words and commands.

3.7 User interfaces
The SLN-LOCAL2-IOT kit’s functional features can be configured using a serial terminal interface. Figure 5 shows the shell prompt
in the user’s serial terminal window. The connection is made via the USB CDC.

Figure 5. Shell prompt interface

The LED indicates various conditions of the SLN-LOCAL2-IOT kit. The LED is located on the kit, as shown in Figure 6. If the kit
boots without any problems, the LED lits with green color while booting and then it turns off. When the kit detects a wake word,
the LED lits with blue color while listening to a voice command. If a command is detected, the LED flickers with green color for
0.2 s. If no command is uttered or detected, the LED flickers with purple color for 0.2 s. Table 6 summarizes the LED colors and
status description.

NXP Semiconductors
Introduction

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 16 / 87

mailto:local-commands@nxp.com

Figure 6. User LED on the SLN-LOCAL2-IOT kit

Table 6. Summary of LED color and behavior

Function LED State (D2) Color Description

Boot up Solid Green 2 seconds The device has powered on and is
going through initialization

Wake word detected Solid Blue The device detected the wake word
and listens to a command.

Command detected Green blink 200ms The device detected a command.

Timeout Purple blink 200ms
If no command is detected within a

certain time, the device stops listening
to a command.

Microphone off Solid Orange Microphones are turned off.

Table continues on the next page...

NXP Semiconductors
Introduction

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 17 / 87

Table 6. Summary of LED color and behavior (continued)

Function LED State (D2) Color Description

Push-to-Talk (PTT) mode Solid Cyan

The device is on PTT mode. By
pressing SW1, wake word detection
phase is bypassed and the device

listens to a command.

Initialization Failed Solid Red The device failed to initialize AFE
or ASR.

Audio stream error Solid Purple Audio stream after AFE is not
transferred to ASR.

ASR memory error Solid Orange
During initialization or language or
demo change, an error occurred in

verifying memory pool size.

There are two on-board buttons that can be used for input interfaces. SW1 is used for the PTT mode. SW2 is used for the
MSD mode.

The following interfaces are available:

• Output interface

— Serial terminal via USB CDC by default

— UART

— LED indicator

— On-board speaker

• Input interface

— Serial terminal via USB CDC – shell commands

— Two on-board buttons

3.8 Security architecture
The SLN-LOCAL2-IOT kit is built and designed in a way that enables the best security practices, while maintaining the
development kit feel. The main security mechanisms implemented are the image verification stages that are required for every
image programmed into the device. By default, the image verification is enabled in the SLN-LOCAL2-IOT kit. For more details
about the security architecture, see Security architecture.

3.9 Automated manufacturing tools
NXP provides a package of scripts that can be used for manufacturing programming and reprogramming of devices on the
production line without the J-Link. This collection of scripts is called Ivaldi. The Ivaldi package allows developers to program all the
required firmware binaries into a flash device using a single command. To learn more about the automated manufacturing tools,
see Chapter 11.

NXP Semiconductors
Introduction

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 18 / 87

Chapter 4
Getting started with MCUXpresso Tool Suite

4.1 MCUXpresso IDE
The MCUXpresso IDE has an easy-to-use Eclipse-based development environment for NXP MCUs based on the Arm® Cortex®-M
cores. It offers advanced editing, compiling, and debugging features with the addition of MCU-specific debugging views, code
trace and profiling, multicore debugging, and integrated configuration tools. Its debug connections support all NXP evaluation
boards with industry-leading open-source and commercial debug probes from Arm, P&E Micro®, and SEGGER®.

To download NXP MCUXpresso IDE, visit www.nxp.com/MCUXpresso (free of charge).

Launch the MCUXpresso IDE and define the workspace location to copy and store your projects and click Launch. Figure 7 shows
an example of workspace configuration.

Figure 7. Creating MCUXpresso IDE workspace

4.2 Software Development Kit (SDK)
The MCUXpresso SDK is a comprehensive software enablement package designed to simplify and accelerate application
development with NXP’s MCUs based on the Arm® Cortex®-M cores. The MCUXpresso SDK includes production-grade software
with an integrated RTOS (optional), integrated stacks and middleware, reference software, and more. It is available in the custom
downloads based on your selection of MCU, evaluation board, and optional software components.

4.2.1 Downloading SDK
The SLN-LOCAL2-IOT SDK is distributed through the MCUXpresso SDK Builder, which is a web tool providing access to SDKs
for NXP board platforms. This section describes where to locate, generate, and download the SDK before installing it.

Navigate to the MCUXpresso SDK Builder which should open the SLN-LOCAL2-IOT kit which allows you to build the SDK.

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 19 / 87

http://www.nxp.com/MCUXpresso
https://mcuxpresso.nxp.com/
https://mcuxpresso.nxp.com/en/builder?hw=SLN-LOCAL2-IOT

Figure 8. MCUXpresso SDK build for SLN-LOCAL2-IOT

You may be asked to log into the NXP webpage to access the MCUXpresso SDK builder.

 NOTE

In Figure 8, there are three red boxes. Select the toolchain support, the host OS you are developing on, and the embedded
real-time operating system. Click the “Select All” button to include all the relevant software packages and then click the “Download
SDK” button.

4.2.2 Import SLN-LOCAL2-IOT SDK
Before building the SLN-LOCAL2-IOT SDK example projects, the target SDK must be imported into the MCUXpresso IDE by
dragging and dropping the target SDK archive into the “Installed SDKs” window in the MCUXpresso IDE. Figure 9 shows the
pop-up window which asks for confirmation (Click "OK").

When the package is imported, it will be displayed in the list of installed SDKs. Figure 10 shows the installed SDKs in the
MCUXpresso IDE.

Figure 9. MCUXpresso SDK import confirmation window

NXP Semiconductors
Getting started with MCUXpresso Tool Suite

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 20 / 87

Figure 10. SLN-LOCAL2-IOT SDK installation in MCUXpresso IDE

4.2.3 Importing SLN-LOCAL2-IOT projects
The SLN-LOCAL2-IOT SDK allows you to import existing application examples as a development starting point. Some
applications are intended to handle most of the voice aspects of the functionality, allowing developers to focus on the
product innovation.

The following steps show how to import SLN-LOCAL2-IOT projects into MCUXpresso IDE.

From the Quickstart Panel, select Import SDK examples(s), as shown in Figure 11.

Figure 11. MCUXpresso Quickstart Panel Import SDK Example(s)

A list of all the installed board SDKs that have examples to import from appears. Select the “sln_local2_iot” image and then click
the "Next" button, as shown in Figure 12.

NXP Semiconductors
Getting started with MCUXpresso Tool Suite

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 21 / 87

Figure 12. MCUXpresso SDK selection

The import wizard then displays all the applications that are available to import. Ensure that the SDK Debug Console is not moved
from its default position. Figure 13 shows the import of all the projects to be used in this section.

NXP Semiconductors
Getting started with MCUXpresso Tool Suite

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 22 / 87

Figure 13. MCUXpresso project import selection

When the projects are successfully imported, they are listed in the project explorer, ready to be built and run. This document
describes the local_demo, bootloader, and bootstrap for building and debugging. Figure 14 shows the Project Explorer window
after the projects from the SLN-LOCAL2-IOT SDK are imported.

Figure 14. MCUXpresso Project Explorer

NXP Semiconductors
Getting started with MCUXpresso Tool Suite

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 23 / 87

Chapter 5
Building and programming with MCUXpresso

5.1 Understanding the boot flow
Figure 15 shows the series of checks that occur during the boot. There are configuration options in various applications (ROM
bootloader, bootstrap, bootloader) that determine which sequence is followed. If at any point a signature check fails and the High
Assurance Booting (HAB) or image verification is enabled, the boot process stops.

Figure 15. Boot security flowchart

By default, the SLN-LOCAL2-IOT kit has the image verification enabled and the HAB disabled in the bootstrap and bootloader.

The bootstrap project is the first application that boots. The architecture is described below. Bootstrap is a minimal FreeRTOS
application that is responsible for image verification. If the i.MX RT HAB is enabled on the chip, bootstrap is the signed trusted
firmware. This firmware is designed to avoid any updates, because the corruption of this image results in unbootable image and
bricked device.

The bootloader project is a second-stage bootloader that manages jumping into the local_demo application. This application can
be used for any additional bootloader functionality needed for the product. This bootloader is also responsible for the Mass Storage
Device (MSD) dragging and dropping and updating the application image Over-the-Air (OTA) as well as Over-the-Wire (OTW).
The bootloader also validates OTA / OTW images via signature verification.

The local_demo is the main application that runs the far-field local voice control.

5.2 Building the bootstrap, bootloader, and local voice control demo
From the "Quickstart Panel", select “Build” to start the compilation and linking of the application for sln_local2_iot_bootstrap,
sln_local2_iot_bootloader, and sln_local2_iot_local_demo. Figure 16 shows that the sln_local2_iot_local_demo project is selected
and will start to compile after clicking the “Build” button.

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 24 / 87

Figure 16. Quickstart panel

Wait for the console to finish the build. This may take a few minutes. Figure 17 shows the result of a successful compilation of the
sln_local2_iot_local_demo project.

Figure 17. Console window showing successful compilation

5.3 Turning off image verification
The SLN-LOCAL2-IOT kit has the image verification turned on by default. This has the security feature of only booting images that
are signed with the Certificate Authority that is associated with the application certificate and the Certificate Authority certificate
programed in the flash. This disables programming an image into the flash and booting successfully.

For development purposes, consider turning this feature off to avoid signing images or when using NXP’s security material, to
avoid signing images. To do this, image verification must be turned off for both the bootstrap and the bootloader components.

When moving to production, it is suggested to turn the image verification on. To turn the image verification on, there is a single
macro change required. The verification is application-specific, so if the entire security chain must be enabled, the setting must
be updated in both the bootstrap and the bootloader applications.

5.3.1 Turning off bootstrap image verification
To turn off the image verification within the bootstrap, code modifications are required. Within the MCUXpresso IDE bootstrap
project, right-click the root project and navigate to:

• Properties > C/C++ Build > Settings ->Preprocessor

Inside the Preprocessor section, change the MACRO “DISABLE_IMAGE_VERIFICATION” to “1” and click Apply and Close, as
shown in Figure 18.

NXP Semiconductors
Building and programming with MCUXpresso

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 25 / 87

Figure 18. Disabling image verification in bootstrap

After that change, select the Build option from the quickstart panel (as shown in Figure 19) to start the compilation and linking of
the bootstrap.

Figure 19. Build option in quickstart panel

5.3.2 Turning off bootloader image verification
To turn off the image verification within the bootloader, code modifications are required. Within the MCUXpresso bootloader
project, right-click the root project and navigate to:

• Properties > C/C++ Build > Settings > Preprocessor

Inside the Preprocessor section, change the MACRO “DISABLE_IMAGE_VERIFICATION” to “1” and click “OK”, as shown in
Figure 20.

NXP Semiconductors
Building and programming with MCUXpresso

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 26 / 87

Figure 20. Disabling image verification in bootloader

After that change, select the Build option from the quickstart panel (as shown in Figure 21) to start the compilation and linking of
the bootloader.

Figure 21. Build option in quickstart panel

5.4 Programming the firmware and artifacts
This section shows how to update the firmware. There are multiple ways to update the firmware, which also depends on whether
the default NXP credentials are used. If the default NXP credentials are used, there are limitations on what can be updated without
code changes.

By default, the image verification is on, which means that if the bootloader or local_demo are programmed without a valid signature
in the Flash Image Configuration Area (FICA), the image verification fails and the code execution halts.

If the image verification is not disabled (it is enabled by default), then the only application that can be updated is the local_demo
via the Mass Storage Device (MSD) update. To update the firmware without debugging, follow the steps in USB Mass Storage
Device (MSD) update.

There are other ways to program firmware into the device with a section dedicated to the manufacturing package called “Ivaldi”,
which is described in Automated manufacturing tools. These tools are available to manufacturers and developers for automated
programing and taking a product from the assembly to the distribution autonomously.

The following section assumes that the image verification is disabled and all supporting artifacts are available to the developer
and that the J-Link debug probe and MCUXpresso IDE are used.

NXP Semiconductors
Building and programming with MCUXpresso

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 27 / 87

5.4.1 Bootstrap, bootloader, and local voice control application images
With the bootstrap, bootloader, and local_demo all compiled, it is time to program them into the flash. This section assumes that
you have either turned off the image verification or that the signing artifacts are already generated and ready to program, as
described in NXP application image signing tool.

Perform the following steps for bootstrap, bootloader, and local_demo.

Select the debug option from those shown in Figure 22 and ensure that the debug probe is attached. This starts the process of
loading the binary into the flash.

Figure 22. Debug window for applications

Select the J-Link probe that is connected to the board and click "OK", as shown in Figure 23.

NXP Semiconductors
Building and programming with MCUXpresso

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 28 / 87

Figure 23. Probes discovered window

This launches the flashing tool and proceeds to load the image into the flash, as shown in Figure 24. When it is complete, you can
proceed to the debug section.

Figure 24. Downloading application image to flash

5.4.2 Audio playback files
The steps required to program the audio files to play from the SLN-LOCAL2-IOT kit are described here. It is assumed that the audio
files are available to the developers using the pre-built RAW form of files inside the “Image_Binaries/local_audio_files” folder in
the Ivaldi package, or they are generated, as described in Generating new audio playback files.

Ensure that the SLN-LOCAL2-IOT kit is USB-powered with the JTAG connected to the back of the board. Within the MCUXpresso
IDE, ensure that you have selected a project to launch the debug configuration in and select the GUI Flash Tool icon, as shown
in Figure 25.

NXP Semiconductors
Building and programming with MCUXpresso

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 29 / 87

Figure 25. Opening Flash GUI Tool for programming audio playback binaries

The Probes discovered window (shown in Figure 26) appears if the project has never been used to program the SLN-LOCAL2-IOT
kit before.

Figure 26. Probes discovered window for programming audio playback binaries

After clicking “OK”, the Flash GUI Tool shown in Figure 27 pops up.

NXP Semiconductors
Building and programming with MCUXpresso

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 30 / 87

Figure 27. Opening GUI Flash Tool for audio playback binaries

The GUI Flash Tool automatically fills in the fields associated with the project that must be changed. Select the “Filesystem” button,
which opens the window shown in Figure 28. Within that window, navigate to the audio playback binary files that were downloaded
from the Ivaldi package or generated, as shown in Generating new audio playback files.

Figure 28. Selecting audio playback binary files

Within the “Base Address” textbox, enter the address where the audio file is located and click the "Run" button. In Figure 29, for
demonstration purposes, we program the “OK” audio playback in English at the 0x6178_0000 address.

NXP Semiconductors
Building and programming with MCUXpresso

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 31 / 87

Figure 29. Updating the “OK” audio playback in English binary address

This programs the audio binary file into the designated flash section, as shown in Figure 30. After the flashing process is done,
the “Operation Completed” window (shown in Figure 31) appears.

Figure 30. Programming the audio playback binaries

Figure 31. Audio “OK” in English binary programming completed

See Table 5 for the list of all audio file addresses saved in the HyperFlash memory.

NXP Semiconductors
Building and programming with MCUXpresso

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 32 / 87

5.4.3 Image verification certificate and keys
The following section describes the steps required to program the image Certificate Authority and Application public certificate
to validate images. This section assumes that the artifacts are available to the developer using the pre-built binaries inside the
“Default Binaries” folder in the release package or that they are generated and converted to files.

Ensure that the SLN-LOCAL2-IOT kit is USB-powered with the JTAG connected to the back of the kit. In the MCUXpresso IDE,
ensure you have selected a project to launch the debug configuration in and select the GUI Flash Tool icon, as shown in Figure 32.

Figure 32. Opening Flash GUI Tool for Application/CA certificates

The Probes discovered window (Figure 33) is shown if the project has never been used to program the SLN-LOCAL2-IOT
kit before.

Figure 33. Probes discovered window for Signed Application/CA certificates

After clicking “OK”, the GUI Flash Tool pops up, as shown in Figure 34.

NXP Semiconductors
Building and programming with MCUXpresso

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 33 / 87

Figure 34. Opening Flash GUI Tool for Application/CA certificates

The GUI Flash Tool automatically fills in the fields associated with the project that must be changed. Select the “File
System...” button, which opens the window, as shown in Figure 34. Within that window, navigate to the application certificate
(app_crt.bin) and the CA (ca_crt.bin) that were recovered from the device or generated following the instructions in Automated
manufacturing tools.

Figure 35. Selecting the Application/CA certificate binaries

Within the “Base Address” textbox, enter “0x61D00000” and “0x61D80000” (must be done for both) for the certificate (app_crt.bin)
or “0x61CC0000” for the certificate authority public certificate (ca_crt.bin) and click the "Run" button. In Figure 36, for
demonstration purposes, the same app_crt.bin certificate is used for both banks. For security reasons, using different certificates
for each bank is recommended.

NXP Semiconductors
Building and programming with MCUXpresso

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 34 / 87

Figure 36. Updating the Application/CA certificate binaries address

This starts programming the certificate, which is in a file system format, into the designated flash section, as shown in Figure 37.
After the flashing process is done, the “Operation Completed” window appears (Figure 38).

Figure 37. Programming the Application/CA certificate binaries

Figure 38. Application/CA Certificate programming complete

5.4.4 Flash Image Configuration Area (FICA)
The following section describes the steps required to program the Flash Image Configuration Area (FICA). The FICA is described
in more detail in FICA and image verification. Regardless of whether the verification is turned on or off, the FICA must be
programmed into the area, because it holds the boot information about which image should be booted.

NXP Semiconductors
Building and programming with MCUXpresso

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 35 / 87

Ensure that the SLN-LOCAL2-IOT kit is USB-powered with the JTAG connected to the back of the board. In the MCUXpresso
IDE, ensure that you have selected a project to launch the debug configuration in and click the GUI Flash Tool icon, as shown in
Figure 39.

Figure 39. Opening Flash GUI Tool for FICA

The "Probes discovered" window (Figure 40) is shown if the project has never been used to program the SLN-LOCAL2-IOT
kit before.

Figure 40. Probes discovered window for FICA table programming

After selecting “OK”, the Flash GUI Tool pops up (Figure 41).

NXP Semiconductors
Building and programming with MCUXpresso

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 36 / 87

Figure 41. GUI Flash Tool

The Flash GUI Tool automatically fills in the fields associated with the project to be changed. Click the “Filesystem” button, which
opens the window (Figure 42). Within that window, navigate to the directory that contains the generated FICA after running the
Ivaldi package in Introduction, NXP application image signing tool, and Open Boot Programming tool. Select the “fica_table.bin”
file to download.

Figure 42. Selecting the FICA table binary

Within the “Base Address” textbox, enter “0x61FC0000” and hit the "Run.." button, as shown in Figure 43.

NXP Semiconductors
Building and programming with MCUXpresso

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 37 / 87

Figure 43. Updating the FICA table address

If the verification is not turned off, the self-built images do not work with the NXP demo system.

 NOTE

This starts to program the FICA, which is in a file system format into the designated flash section, as shown in Figure 44. After the
flashing process completes, the “Operation Completed” window appears (Figure 45).

Figure 44. Programming the FICA table binary

Figure 45. FICA table programming complete

NXP Semiconductors
Building and programming with MCUXpresso

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 38 / 87

Chapter 6
Hardware platform
The hardware platform of the SLN-LOCAL2-IOT development kit is described on the web page: www.nxp.com/mcu-local2.

• SLN-LOCAL2-IOT Schematics

• SLN-LOCAL2-IOT BOM

• SLN-LOCAL2-IOT Design Files

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 39 / 87

http://www.nxp.com/mcu-local2

Chapter 7
Far-field local voice control framework

Figure 46. High-level overview of far-field local voice control framework

This section describes the software framework that supports the far-field local voice control. As shown in Figure 46, two (optionally
three) microphones collect the acoustic signal, followed by the DSP, AFE, and ASR blocks.

The SLN-LOCAL2-IOT kit is acoustically qualified for far-field voice applications with three PDM microphones and has been
internally tested with two-microphone configurations with a range of mainstream products also using the two-microphone
configuration. When making modifications, ensure to re-test the application against standard acoustic test guidelines. The
SLN-LOCAL2-IOT kit is based on the acoustic architecture of the SLN-ALEXA-IOT kit. It was tested based on the Amazon Voice
Service self-test guidelines, which are available at https://developer.amazon.com.

NXP has pre-tuned and qualified the DSP and AFE libraries with the SLN-LOCAL2-IOT hardware platform. By default,
modifications on the DSP and AFE are not needed. However, to create customized hardware or proof-of-concepts, see Acoustic
modification and ensure that the modification is suitable for your product.

The ASR block in Figure 46 contains the speech recognition engine and the application software. NXP has implemented the
following three types of baseline demos:

• LED voice control demo

— English

— Two-stage (wake word and command) ASR

• Smart Home (IoT) or elevator or audio device or washing machine voice control demo

— Selectable combinations of English, Chinese, German, and French

— Two-stage ASR

• Oven voice control demo

— English

— Multiturn (4-way) dialog-style ASR

The ASR implemented with the selected languages can be easily replaced with other languages. NXP provides an application
note for customization of the local voice demos. Contact NXP (local-commands@nxp.com) for information about the process of
phoneme-based speech recognition engine generation and custom wake words and commands.

Automatic speech recognition describes the baseline ASR demos that you can reuse for your product.

7.1 Automatic speech recognition
The flagship feature of SLN-LOCAL2-IOT is the bundled voice control engine, also called ASR. NXP offers a lightweight engine
designed specifically for MCUs. It supports various use cases with flexible inference engine instances.

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 40 / 87

https://developer.amazon.com
mailto:local-commands@nxp.com

7.1.1 ASR application scenarios
Figure 47 shows the ASR with multiple languages, where each language consists of a wake word inference engine and N
instances of command inference engines. Developers can implement various application scenarios that are described in the
following subsections.

The SLN-LOCAL2-IOT with i.MX RT106S supports up to four languages of the ASR in runtime. With i.MX RT105S, it reduces to
two languages because of the reduced RAM size.

Figure 47. Inference engine instances matrix for flexible ASR applications

The simplest ASR application is a single-language two-stage ASR with only one wake word engine and one command engine.
The ASR for multiple (up to four) languages can be created with the inference engine instances of columns in Figure 47. The ASR
for the multiturn (e.g. dialog) application can be created with the inference engine instances of a row in Figure 47.

7.1.1.1 Scenario #1: Single-language two-stage voice control

Figure 48 shows the simplest ASR scenario with one wake word inference engine followed by a command engine instance in a
selected language. By default, NXP has implemented the LED voice control demo in English language.

• Wake word

— Hey, NXP

• Commands

— L, E, D, red

— L, E, D, green

— L, E, D, blue

— Cycle fast

— Cycle slow

NXP Semiconductors
Far-field local voice control framework

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 41 / 87

Figure 48. Inference engine instances of single-language two-stage scenario

The SLN-LOCAL2-IOT kit plays the “can I help you?” and “OK” audio responses respectively when the wake word and commands
are detected. The audio playback files are saved in the filesystem. You can replace them with your own files. For details on the
filesystem, see Filesystem. For the full list of audio file addresses, see Table 5.

7.1.1.2 Scenario #2: Multiple-language two-stage voice control

Figure 49. Multiple (up to four) languages of wake word and command inference engines

The SLN-LOCAL2-IOT kit with the i.MX RT106S MCU supports up to four languages of the wake word and command engine
instances, as shown in Figure 49. This scenario is a two-stage voice control application. The four language instances for both the
wake word and the command are saved in the flash memory. Users can select any combination of the four language instances.
The selected languages’ wake word engines are loaded into their dedicated RAM memory pool and start receiving the voice data
stream. When one of the wake words is detected, the same language’s command engine instance is loaded into its memory pool
to start listening to the user’s voice command. For example, suppose that two languages (English and Mandarin) are enabled.
The SLN-LOCAL2-IOT kit loads the wake word engines (that is English and Mandarin) into their RAM memory pools and starts
listening to the user’s voice. If the user utters the English wake word “Hey, NXP”, the SLN-LOCAL2-IOT kit detects the wake word,
loads the command engine for English into the RAM memory pool and starts listening to voice commands.

For multiple wake engines listening to the voice stream simultaneously, the False Acceptance Rate (FAR) can
increase. The wake word inference engines must be fine-tuned to mitigate the FAR.

 NOTE

It is also possible to load one wake word inference engine, followed by command engines of multiple languages. In this case, the
FAR can be low. Developers must avoid similar pronounciation among different languages’ voice commands.

By default, NXP has implemented voice control demos for the Smart Home, Elevator, Audio Device Control, and Washing Machine
applications in English, Chinese, German, and French. All the available wake words and commands are listed in Table 7.

NXP Semiconductors
Far-field local voice control framework

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 42 / 87

Table 7. Wake words and commands for multi-language demos

Language Wake
word Smart Home commands Elevator commands Audio Device

Control commands
Washing

Machine commands

English
(EN)

Hey,
NXP

Temperature Up

Temperature Down

Window Up

Window Down

Turn On

Turn Off

Brighter

Darker

First Floor

Second Floor

Third Floor

Fourth Floor

Fifth Floor

Main Lobby

Going Up

Going Down

Open Door

Close Door

Turn On

Turn Off

Play

Pause

Start

Stop

Next Track

Previous Track

Volume Up

Volume Down

Wash Delicate

Wash Normal

Wash Heavy Duty

Wash Whites

Cancel

Chinese
(ZH)

你好,

恩智浦

温度升高

温度降低

打开窗帘

关上窗帘

开灯

关灯

亮一点

暗一点

一楼

二楼

三楼

四楼

五楼

大堂

上行

下行

开门

关门

打开

关掉

播放

暂停

开始

停止

下一首

上一曲

提高音量

音量减小

精致洗

正常清洗

强力洗

洗白

取消

German
(DE)

Hallo,
NXP

Temperatur erhöhen

Temperatur verringern

Fenster hoch

Fenster runter

anschalten

Ausschalten

heller

dunkler

Erste Etage

Zweite Etage

Dritte Etage

Vierte Etage

Fünfte Etage

Hauptlobby

Hochfahren

Runterfahren

Öffne die Tür

Schließe die Tür

anschalten

ausschalten

abspielen

Pause

Anfang

halt

nächstes Lied

vorheriges Lied

Lautstärke erhöhen

Lautstärke verringern

Feinwäsche

Normalwäsche

stark verschmutze Wäsche

Weißwäsche

abbrechen

French
(FR)

Salut,
NXP

Augmenter Température

Diminuer Température

Premier Etage

Deuxième Etage

Allumer

Eteindre

Lavage Délicat

Lavage Normal

Table continues on the next page...

NXP Semiconductors
Far-field local voice control framework

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 43 / 87

Table 7. Wake words and commands for multi-language demos (continued)

Language Wake
word Smart Home commands Elevator commands Audio Device

Control commands
Washing

Machine commands

Monter Fenêtre

Baisser Fenêtre

Allumer

Eteindre

Augmenter Luminosité

Diminuer Luminosité

Troisième Etage

Quatrième Etage

Cinquième Etage

Entrée Principale

Monter

Descendre

Ouvrir Porte

Fermer Porte

Lecture

Pause

Démarrage

Arrêt

Piste Suivante

Piste Précédente

Augmenter Volume

Baisser Volume

Lavage en Profondeur

Lavage Blanc

Annuler

Wake word engines of up to four languages can run simultaneously. Users must select a demo command group to run after a
wake word is detected, because the scenario is a two-stage (wake word followed by commands) voice control. If a wake word is
detected, the same language’s demo command group is loaded to listen to voice commands.

If the SLN-LOCAL2-IOT kit is triggered by a wake word, it turns the LED blue playing the audio in the detected languages:

• Can I help you? (English)

• 我可以帮你吗? (Chinese)

• Kann ich Ihnen helfen? (German)

• Puis-je vous aider? (French)

Once a command is detected, it turns the LED green playing the audio "OK!" in the accent of same language for the wake
word triggered.

The audio playback files are saved in the filesystem. You can replace them with your own files. For details on the filesystem, see
Filesystem. For the full list of audio file addresses, see Table 5.

7.1.1.3 Scenario #3: Single-language N-stage voice control

Figure 50. Wake word and command engine instances for single-language N-stage voice control

You can also create a multiturn application with the engines in the row instances in Figure 47. As shown in Figure 50, a language
wake word engine is followed by a series up to N of command engines. NXP has implemented a dialog-type voice control demo.
Figure 51 shows an example of the oven appliance use case.

The audio playback files are saved in the filesystem. You can replace them with your own files. For details on the filesystem, see
Filesystem. For the full list of audio file addresses, see Table 5.

NXP Semiconductors
Far-field local voice control framework

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 44 / 87

Figure 51. Dialog-type voice control with oven appliance use case

7.1.1.4 User interface

The three demo scenarios explained above are selected by the shell commands in the serial terminal window. Figure 52 shows
the “changeto” and “multilingual” shell commands to select a demo and multiple languages. For more details about the usage,
type “help” into the shell prompt in the serial terminal, as shown in Figure 53 and Figure 54 for the “changeto” and “multilingual”
commands, respectively.

Figure 52. Demo selection by shell commands

Figure 53. Demo selection command

Figure 54. Language selection command

NXP Semiconductors
Far-field local voice control framework

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 45 / 87

7.1.2 Language-specific voice control engine

7.1.2.1 Specification

The speech recognition engine is based on the state-of-the-art deep neural network technique. Note that the engine is not
intended for natural language understanding, but for the keyword spotting which is useful for various MCU-based applications.
The computing resource consumption is based on fixed-point operations and almost constant. The specification of an inference
engine instance is described in Table 8. Because the Chinese language requires tone recognition, its voice engine requires more
resources than the other languages. The CPU consumption can increase with the number of commands. The rule-of-thumb is 0.08
MIPS per a 4-syllable command.

Table 8. Specification of an inference engine instance

Chinese (with tone recognition) Other languages

Code size 150 KB 30 KB

Data size 170 KB + 32 x M Bytes 155 KB + 32 x M Bytes

RAM 85 KB + 128 x M Bytes 45 KB + 128 x M Bytes

CPU 68 MIPS* 45 MIPS*

M: The number of wake words or commands.
*: Optimized for the SIMD instructions. The values of 68 and 45 represent typical voice control applications.

7.1.2.2 Architecture

Figure 55. ASR software architecture

NXP Semiconductors
Far-field local voice control framework

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 46 / 87

Figure 55 shows the software architecture of NXP’s ASR for SLN-LOCAL2-IOT. The ASR control structure points to a command
inference engine instance, the linked lists of language models, and the wake word engines. There are memory pools assigned
for the command as well as the wake word inference engine instances in the SRAM. The language_x_model.bin files are located
in the flash memory, where each BIN file is basically a pack of a language’s base model and N+1 groups of wake word(s)
and commands.

The ASR control snippet is shown in Figure 56. It describes the three major structure members.

Figure 56. ASR control snippet

7.1.2.3 Language model

Figure 57. ASR language model snippet

The language model structure in Figure 57 consists of the following members:

• iWhoAmI: the ASR model is language-specific. Each ASR voice engine must define a language. You can extend Table 9
with other languages.

• nGroups: the number of groups in a language model binary. By default, it contains a language-specific base model
(counted as a group) and a wake word group. You can define N command groups.

• addrBin: the address of a language model binary. This address points to a base model.

• addrGroup[MAX_GROUPS]: the addresses of wake word and N command groups. MAX_GROUPS should be greater
than or equal to N+1.

• addrGroupMapID[MAX_GROUPS - 1]: addresses of MapIDs. A MapID is an ID that can be assigned to a set of
commands.

• next: the pointer to the next language model in a linked list.

Table 9. ASR language type

Language type asr_language_t code Encoding

Unknown UNDEFINED_LANGUAGE 0x0000

English (EN) ASR_ENGLISH 0x0001

Chinese (ZH) ASR_CHINESE 0x0002

Table continues on the next page...

NXP Semiconductors
Far-field local voice control framework

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 47 / 87

Table 9. ASR language type (continued)

Language type asr_language_t code Encoding

German (DE) ASR_GERMAN 0x0004

French (FR) ASR_FRENCH 0x0008

7.1.2.4 Inference engine

Figure 58. ASR inference engine snippet

The inference engine structure in Figure 58 consists of the following members:

• iWhoAmI_inf: inference engine type. It indicates either the wake word or the command inference engine. Developers can
redefine or add from the list in Table 10.

• iWhoAmI_lang: language type information for an inference engine. The type definition is described in Table 9.

• handler: handler for an inference engine.

• nGroups: the number of groups for an inference engine. The default value is 2, as each OOB demo consists of base
model (counted as a group) plus wake word group or command group n.

• addrGroup[2]: base + keyword group (either ww or cmd).

• addrGroupMapID: the address that contains the MapIDs.

• idToKeyword: the string list that indicates which command/wake word is detected. The string is printed out in a terminal
window.

• memPool: memory pool address in SRAM for an inference engine.

• memPoolSize: size of an inference engine in a memory pool.

• next: pointer to the next inference engine in a linked list. If it is not in a linked list, the value should be NULL.

Table 10. Inference engine types

Inference engine type asr_inference_t code Encoding

Unknown UNDEFINED_INFERENCE 0x0000

Wake Word ASR_WW 0x0001

Commands for Smart Home (IoT) ASR_CMD_IOT 0x0002

Table continues on the next page...

NXP Semiconductors
Far-field local voice control framework

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 48 / 87

Table 10. Inference engine types (continued)

Inference engine type asr_inference_t code Encoding

Commands for Elevator ASR_CMD_ELEVATOR 0x0004

Commands for Audio
Device Control

ASR_CMD_AUDIO 0x0008

Commands for Washing Machine ASR_CMD_WASH 0x0010

Commands for LED Control ASR_CMD_LED 0x0020

Commands for Dialog Stage 1 ASR_CMD_DIALOGIC_1 0x0040

Commands for Dialog Stage
2 Temperature

ASR_CMD_DIALOGIC_2_TEMPERATURE 0x0080

Commands for Dialog Stage
2 Timer

ASR_CMD_DIALOGIC_2_TIMER 0x0100

7.1.3 ASR configuration

7.1.3.1 Languages

The SLN-LOCAL2-IOT with i.MX RT106S can support up to four languages in runtime. If customized hardware or proof-of-
concepts are created, ensure the maximum number of languages to be enabled.

Figure 59. Configuration for the maximum number of languages snippet

• If i.MX RT105S is considered, it can support up to two languages. Set IMXRT105S to 1.

• If only one language is sufficient, we always recommend to set MULTILINGUAL to 0. This allows the ASR application to
save significant memory and CPU resources.

• Because MAX_CONCURRENT_LANGUAGES affects the resources, three microphones can be used when one or two
languages are enabled. Only two microphones are enabled for three or four languages.

7.1.3.2 Installation of languages and inference engines

Developers must ensure that the language models and inference engines are properly installed when initializing the ASR. Figure
60 shows the language model installation function.

NXP Semiconductors
Far-field local voice control framework

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 49 / 87

The install_language() function registers a language model in the ASR control structure. It unpacks the model binary from the flash
memory and assigns addresses and parameters into the linked list of language models.

The reference example is implemented in sln_local_voice.c.

Figure 60. Function install_language() snippet

• pAsrCtrl: ASR control structure, also shown in Figure 56.

• pLangModel: language model, also shown in Figure 57.

• lang: languages to be enabled. The types and encodings are listed in Table 9.

• pAddrBin: address of the language model binary to be installed.

• nGroups: total number of groups (base + wake word + N command groups) where N depends on applications.

The install_inference_engine() function registers an inference engine (either for a wake word or command group n) in the ASR
control structure. It assigns a language’s base model and a wake word (or command) group from the language model to an
inference engine.

Figure 61. Function install_inference_engine() snippet

• pAsrCtrl: ASR control structure, also shown in Figure 56.

• pInfEngine: inference engine, either for a wake word or a command group, also shown in Figure 58.

• lang: languages to be enabled. The types and encodings are in Table 9.

• infType: either a wake word or a command group, also shown in Table 10.

• idToString: the string list that indicates which command/wake word is detected. The string is printed out in a terminal
window.

• addrMemPool: memory pool address in SRAM for an inference engine.

• sizeMemPool: size of an inference engine in a memory pool.

After the installation, the inference engines initialize their handlers. The handler within each instance should not be NULL, if the
installation and initialization are successful.

7.1.4 ASR session control

7.1.4.1 Follow-up mode

The SLN-LOCAL2-IOT ASR session supports the follow-up mode where you can continue saying voice commands after the wake
word is triggered once. For example, with the elevator voice control application, multiple passengers who go to different floors can
say a voice command one by one after the first passenger triggers the device with a wake word. The mode is configured by the
shell command in a serial terminal. You can see the command usage by typing “help”, as shown in Figure 62.

NXP Semiconductors
Far-field local voice control framework

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 50 / 87

Figure 62. ASR session control - follow-up mode

7.1.4.2 Timeout

After the device is triggered by a wake word, it waits for the user’s voice command for a certain amount of time. Users can configure
the response waiting time using a shell command in a serial terminal. Figure 63 shows the command usage.

Figure 63. ASR session control - timeout

7.1.4.3 Push-to-Talk (PTT) mode

In some applications, you may want to bypass the wake word detection stage. The SLN-LOCAL2-IOT kit offers the PTT feature.
If it is enabled, you can directly say voice commands after pressing the SW1 button on the device. Figure 64 shows the
command usage.

Figure 64. ASR session control - PTT mode

7.2 Acoustic modification

7.2.1 Changing microphone configuration
Open the local _demo variant of the project in the developer’s environment. To change the number of microphones supported,
open the config_files folder and the pdm_pcm_definintions.h file, as shown in Figure 65.

Figure 65. pdm_pcm_definitions.h file and USE_SAI2_MIC define

The pdm_pcm_definitions.h header file contains the whole configuration for the SAI data line to use. To switch between three or
two microphones, set the USE_SAI2_MIC to “0U” (two microphones) or “1U” (three microphones). This propagates throughout
the firmware and configures the audio front end.

To switch between two or three microphones, set the USE_SAI2_MIC as follows:

NXP Semiconductors
Far-field local voice control framework

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 51 / 87

• “#define USE_SAI2_MIC (1)” – three microphones used.

• “#define USE_SAI2_MIC (0)” – two microphones used.

7.2.2 Changing the post gain
The post gain can affect how the board performs in low noise using a low-volume voice (far-field). In the default configuration, this
setting is set to the maximum value. In real life, this can cause the device to wake up more often than other devices, which can
generate problems if the devices in the consumer's home are less capable.

Table 11. u16PostProcessedGain description

Parameter postProcessedGain

Description
Acoustic signal digital gain in a linear scale up to x64. The signal level after applying this gain is
still under the Dynamic Range Control (DRC) constraint, so it is not used as a traditional DRC
make-up gain.

Data type Data range Unit Default

uint16_t [0x0000,0x4000] N/A 0x0600

Inside the local_demo or usb_aec_alignment_tool project, navigate to audio_processing_task.c, as shown in Figure 66.

Figure 66. Gain variable in audio_process_task.c

Inside the audio_processing_task.c file, locate the code snippet from Figure 66 and adjust the post processing dynamic gain
variable “afeConfig.postProcessedGain” corresponding to the signal level needed.

7.2.3 Changing the pre-processed microphone gain
The i.MX RT106S MCU does not have a PDM hardware block, which means that it is required to convert the PDM data to PCM
within software. This allows the gain to be adjusted to fit the needs of the developer. The gain may be required to change because
some product designs may have a higher/lower Echo Return Loss (ERL) which can affect the barge-in performance. See Audio
Performance Requirements for Audio Front End of i.MX RT106A/L for more information. The microphone gain is also modified
before the DC offset is applied, allowing for higher shift precision. To change the gain, open the file located in the local_demo or
usb_aec_alignment_tool folders in the audio subfolder called pdm_to_pcm_task.c.

Table 12. SLN_DSP_SetGainFactor function description

Function SLN_DSP_SetGainFactor

Description Modifies the PCM gain before the DC Offset is applied. This increases the gain factor but it can
also cause clipping.

Table continues on the next page...

NXP Semiconductors
Far-field local voice control framework

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 52 / 87

https://www.nxp.com/webapp/Download?colCode=AN_RT1060&appType=license
https://www.nxp.com/webapp/Download?colCode=AN_RT1060&appType=license

Table 12. SLN_DSP_SetGainFactor function description (continued)

Parameter Data range Type Description

memPool N/A uint8_t ** Pointer to the memory pool that the
sln_intelligence_toolbox needs.

gainFactor 0x0000-0xffff int16_t The shift gain factor before the DC Offset is applied.
A gain of zero means that there is no gain.

Locate the code snippet shown in Figure 67 and change the numerical value according to your needs, related to the table.

Figure 67. pdm_to_pcm_task.c set gain factor

NXP Semiconductors
Far-field local voice control framework

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 53 / 87

Chapter 8
Security architecture

8.1 Application chain of trust
The basis of the security architecture implemented in the SLN-LOCAL2-IOT are the signed application images. The signing
requires the use of a Certificate Authority (CA). NXP has its own CA to sign applications in the factory, but the CA is not shared
with customers.

The CA is used to create signing entities for the bootloader and application, as shown in Figure 68. The certificate from the CA
is stored in the SLN-LOCAL2-IOT’s filesystem and used to verify the signatures of the signing entity certificates. In addition, the
locally stored certificates from the signing entities are used to verify the signature of firmware images coming in the Over-the-Air
(OTA) or Over-the-Wire (OTW) bootloader interfaces.

Figure 68. Application chain of trust

When creating new firmware images for a secure boot implementation, the Automated Manufacturing Tool (Ivaldi) can be used
alongside your unique CA.

8.2 FICA and image verification
The FICA table is a section inside the filesystem that describes the images that will be booted. It contains information about
the image and signatures of the applications used to ensure that only verified firmware is executed. This ensures that malicious
images cannot be executed without being signed by the certificate authority and certificate that is programmed into the filesystem.
Before any image is jumped to, it is first verified using the signature from its associated FICA entry.

For example, the standard boot flow (Figure 15) is as follows:

• The bootstrap uses the bootloader FICA entry to validate the bootloader.

• The bootloader uses the AppA FICA entry to validate the AppA image.

• The bootloader uses the AppB FICA entry to validate the AppB image.

For final production, the solution provides programming scripts to enable the i.MX RT High Assurance Boot (HAB) to verify and
protect the bootstrap component. Enable the HAB for your end product. The downside of having this security protection enabled
is that programming new images can be a little more complex, because it requires signature generation. Because this flow may
be time consuming and not required for basic development tasks, NXP introduced some bypasses to make the job easier.

These bypasses should not be deployed in production.

 NOTE

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 54 / 87

8.3 Image Certificate Authority (CA) and application certificates
The SLN-LOCAL2-IOT kit comes pre-programmed with signed images, as explained in FICA and image verification. The
bootloader and demo applications are signed using NXP's test CA and they can be used to ensure that all images that are to be
booted are authentic.

The application signing certificates are located at the following addresses in the filesystem:

• Address 0x61D00000 for Application Bank A

• Address 0x61D80000 for the bootloader

The certificate for the CA (used to verify the application signing certificates) is located at address 0x61CC0000 in the filesystem.

NXP Semiconductors
Security architecture

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 55 / 87

Chapter 9
Bootloader
The SLN-LOCAL2-IOT SDK enables three forms of firmware update capability:

1. USB Mass Storage Device (MSD) interface

2. Over-The-Air (OTA) via Wifi

3. Over-The-Wire (OTW) via UART

The boot flow is described in detail in Understanding the boot flow. When the boot flow reaches the bootloader, it must decide
whether to jump to the main application (i.e. local_demo) or to the firmware update mode. Figure 69 shows the four options
available to the bootloader. The bootloader reroutes the boot flow to the main application, MSD, OTW, or OTA update. This section
explains how to generate a BIN file to be updated. Then it describes MSD, OTW, and OTA.

Figure 69. Bootloader flow

The firmware update in the bootloader is only for the main application, not for the bootstrap and bootloader. If
the bootstrap or bootloader must be updated, use the J-Link probe or the Ivaldi tool described in Automated
manufacturing tools.

 NOTE

9.1 Application BIN file generation
There are two application banks in the flash memory, see Table 4, on the SLN-LOCAL2-IOT kit.

• Address for Application Bank A: 0x60300000

• Address for Application Bank B: 0x60D00000

Developers must configure the bank address properly when the main application is compiled. This ensures that the device is safe
to jump into a new application image in one memory location without compromising the other one. If the application runs in Bank
A, the new application image must be linked to Bank B.

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 56 / 87

To change the address from Bank A to Bank B, in the MCUXpresso IDE project explorer, right-click sln_local2_iot_local_demo (or
the developer’s application project name) > Project Settings > Memory, as shown in Figure 70.

Select Edit Memory, which opens the Memory Configuration Editor.

Change the address of the Flash type to 0x6030 0000 for Application Bank A and 0x60D0 0000 for Application Bank B.

Figure 70. Editing memory configuration

Before building the application, make sure that the MCUXpresso project generates a BIN file as an outcome of the build process.
Right-click the project name and open Properties, as shown in Figure 71.

NXP Semiconductors
Bootloader

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 57 / 87

Figure 71. Project properties

Expand C/C++ Build in the menu and click Settings. Select the Build steps tab, where the Post-build steps can be edited. Click
Edit and it shows the commands for the post-build steps. Figure 72 shows how to open the "Post-build steps" window.

NXP Semiconductors
Bootloader

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 58 / 87

Figure 72. Editing post-build steps

The “#” command character disables all the following commands. To generate a BIN file in the post-build process, remove the “#”
character on the second line and click OK. The resulting commands after removing “#” are shown in Figure 73:

NXP Semiconductors
Bootloader

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 59 / 87

Figure 73. Post-build commands to generate BIN file

If the build process is done successfully, a BIN file is generated and placed in the Debug folder of the MCUXpresso project.

9.2 USB Mass Storage Device (MSD) update
The bootloader application supports firmware update over the USB MSD. This allows the user to re-flash the main application
binary (not the bootstrap nor bootloader) without a J-Link probe. The bootstrap or bootloader must be updated using a
J-Link probe.

By default, the MSD feature bypasses the signature verification to allow for easier development flow, because signing of images
can be a process not suitable for quick debugging and validation.

Bypassing the image verification is a security threat and it is the responsibility of the product designer to prevent
the violation in production.

 NOTE

To put the device into the MSD mode, hold down switch 2 (SW2) and power cycle the board until the pink LED (D2) is lit. The pink
LED turns on and off in 3-second intervals.

NXP Semiconductors
Bootloader

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 60 / 87

Figure 74. MSD update mode LED

Navigate to the PC’s file explorer and ensure that the SLN-LOCAL2-IOT kit is mounted as a USB MSD. A mounted kit is displayed
in the file explorer, as shown in Figure 75.

Figure 75. SLN-LOCAL2-IOT kit mounted as USB MSD

Drag and drop the generated BIN file for banks A or B into the MSD drive. This starts the download process and writes the BIN
file to the flash. After the image is programmed into the flash, it starts to execute.

9.3 Over-the-Air (OTA) and Over-the-Wire (OTW) updates
The bootloader supports several mechanisms to update the board’s firmware. The OTA/OTW updates are part of them. The OTA
and OTW updates are driven using a simple JSON interface, making it easy to implement the host-side code. The mechanism for
both OTA and OTW is the same. The only difference between the two is that the OTA update is performed over the air via Wi-Fi
and the OTW update is performed over UART. The OTA update interface is performed by hosting a TCP server on the kit which
receives the update-related JSON packets. The OTW update currently supports UART, but it can be extended to support any
serial interfaces, including SPI, TCP sockets, or even I2C. The OTA/OTW update method is described in more depth in this section.

9.4 Transfers
An OTA/OTW update is made up of individual JSON transfers. Each transfer contains two parts: a 4-byte size field and a JSON
message. This makes the OTA/OTW data interface compatible across a wide range of interfaces.

Figure 76. Transfer format

There are two types of messages passed: requests and responses. Figure 77 shows the request and response flow.

NXP Semiconductors
Bootloader

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 61 / 87

Figure 77. Request and response flow

9.4.1 JSON messages
Requests must be made in the following order to successfully perform a firmware update:

1. Start

2. Block

3. Stop

4. Activate image

5. Start self-check

6. Clean

Each transfer is followed by a transfer response.

9.4.1.1 Start request

The following is the first request that must be sent to start a firmware update:

{
 "messageType":1,
 "fwupdate_message": {
 "messageType":0,
 "fwupdate_common_message": {
 "messageType":0,
 "job_id": <Job ID string>,
 "app_bank_type": <Flash Bank: ‘1’ for A ‘2’ for B>,
 "signature": <RSA Signature of image to be loaded>,
 "image_size": <Image Length>,
 }
 }
}

NXP Semiconductors
Bootloader

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 62 / 87

9.4.1.2 Block request

Block requests are sent for each “chunk” of data to be programmed. The block sizes can be of any size, though it is best when
they are as large as possible. The example script in the SDK sends 4096 bytes per block request.

{
 "messageType":1,
 "fwupdate_message": {
 "messageType":1,
 "fwupdate_server_message": {
 "messageType":0,
 "block": <Base64 encoded block of data>,
 "encoded_size": <Size of encoded block>,
 "block_size": <Size of block in bytes>,
 "offset": <Offset from base of flash>,
 }
 }
}

9.4.1.3 Stop request

{
 "messageType":1,
 "fwupdate_message": {
 "messageType":1,
 "fwupdate_server_message": {
 "messageType":1
 }
 }
}

9.4.1.4 Activate image request

{
 "messageType":1,
 "fwupdate_message": {
 "messageType":1,
 "fwupdate_server_message": {
 "messageType":3
 }
 }
}

9.4.1.5 Start self-test request

{
 "messageType":1,
 "fwupdate_message": {
 "messageType":1,
 "fwupdate_server_message": {
 "messageType":2
 }
 }
}

NXP Semiconductors
Bootloader

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 63 / 87

9.4.1.6 Clean request

{
 "messageType":1,
 "fwupdate_message": {
 "messageType":0,
 "fwupdate_common_message": {
 "messageType":2
 }
 }
}

9.4.1.7 Response format

{
 "error": <Operation return code>,
}

9.5 Testing OTA/OTW updates
To demonstrate the OTA and OTW updates, use the Python test script in sln_local2_iot_bootloader/unit_tests/fwupdate_client.py.
From a high-level perspective, this script “JSONifyes” a specified binary and flashes it either via the OTA or OTW mechanism,
depending on the update method specified as an argument to the script. This method allows you to flash the main app binary
without a J-Link. NXP provides OTA/OTW update tools which are currently intended as a unit test. These tools are not intended
to be used for production environment in the current release.

While the use of OTA and OTW is nearly identical, the setup is slightly different between the two, because the OTA update requires
a network connection and the OTW update requires a serial connection.

9.5.1 OTA setup
This section describes the steps necessary to perform an OTA update. To perform an OTA update using the test script, the
SLN-LOCAL2-IOT kit must be connected to a Wi-Fi network and the proper bit in the FICA table must be set to indicate to the
bootloader that an OTA update is being expected. The update bit is set by the test script. A TCP server is running in the main
application and waits for a JSON sent by the script to set the FICA bit.

The SLN-LOCAL2-IOT kit and the client running the Python script must be on the same network for the OTA to work.

Connecting to a Wi-Fi network:

• Connect the board to the computer via the USB Type C port.

• Open your favorite serial monitor and connect to the board COM using the 115200 baud rate.

• In the serial monitor, type the following command: “setup SSID PASSWORD”.

• The board will reset and then it will try to connect to the Wi-Fi network.

• If the connection is successful, the IP adress of the board is displayed in the serial monitor. Write it down.

9.5.2 OTW setup
To perform an OTW update using the test script, the SLN-LOCAL2-IOT must be connected via UART and the proper bit in the FICA
table must be set to indicate to the bootloader that an OTW update is being expected. The update bit is set by the “updateotw”
command in the shell.

Note that the USB CDC is already connected to the kit and supplying power as well as the serial communication. To run the OTW
via UART, it requires an additional UART module connected to header J26 on the kit. Make sure that TX, RX, Vcc, and GND are
connected properly. The schematic of header J26 is shown in Figure 78.

NXP Semiconductors
Bootloader

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 64 / 87

Figure 78. UART port header - J26

9.6 Running the test script
The test script is written in Python. It is recommended to set a virtual environment:

• python3 -m venv env

• source env/bin/activate (for Linux OS) or .\env\Scripts\activate (for PowerShell)

To run the test script, install the following modules:

• python3 -m pip install pyserial

• python3 -m pip install libscrc

This script is tested on Python 3.8.5 running in Windows OS and Linux OS. To start the update, open the fwupdate_client.py script
in the sln_local2_iot_bootloader/unit_tests folder in a terminal. Running the script without any arguments shows the arguments
that the script takes.

~/sln_local2_iot_bootloader/unit_tests $: python3 fwupdate_client.py
Usage:
 fwupdate.py device method bank appFile appSignFile

 device: The target device, the sln_local_iot or sln_vizn_iot or sln_viznas_iot board <local/
vizn/viznas>
 method: Firmware update method <OTA/OTW>
 bank: The flash bank <A/B>
 appFile: File to update
 appSignFile: File signature or None if not used

The script requires you to specify the following:

1. Device: local (equivalently applied to local2)

2. Method: OTA/OTW

3. Bank: A/B (see Application BIN file generation)

4. Appfile: binary for the sln_local2_local_demo project (see Building and programming with MCUXpresso)

NXP Semiconductors
Bootloader

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 65 / 87

5. appsignFile: none/sln_local2_local_demo.sha256.txt (see NXP application image signing tool)

When all args are specified, the script outputs the following:

~/ sln_local2_iot_bootloader/unit_tests $: python3 fwupdate_client.py local OTA B PATH-TO-BIN/
bundle.sln_local2_iot_local_demo_bankB.bin sln_local2_local_demo.sha256.txt

Device IP:192.168.0.166
unit_test_fwupdate_send_ota_command
{"messageType": 2}
0
unit_test_fwupdate_start_req
Sending Start Request

You must input the board IP address that was displayed in the serial monitor after the connection. The script connects to the board
and sends a request to the TCP server so that it will set the FICA bit and reset the board into the OTA update mode.

When the board is in the OTA update mode, the transfer starts:

0
unit_test_fwupdate_block_transfer
0
Firmware Update Progress (0.09%): 4096/4394792
0
Firmware Update Progress (0.19%): 8192/4394792
0
Firmware Update Progress (0.28%): 12288/4394792
0
Firmware Update Progress (0.37%): 16384/4394792
0
…
Firmware Update Progress (99.91%): 4390912/4394792
0
Firmware Update Progress (100.0%): 4394792/4394792
unit_test_fwupdate_complete_req
{"messageType": 1, "fwupdate_message": {"messageType": 1, "fwupdate_server_message": {"messageType":
1}}}
0
unit_test_fwupdate_activate_img
{"messageType": 1, "fwupdate_message": {"messageType": 1, "fwupdate_server_message": {"messageType":
3}}}
0
unit_test_fwupdate_self_test_start
{"messageType": 1, "fwupdate_message": {"messageType": 1, "fwupdate_server_message": {"messageType":
2}}}
0

Upon completion, the SLN-LOCAL2-IOT kit restarts itself automatically and switches over to the new application bank, running
the new application that was just flashed.

The OTA update sets the FICA bit and triggers the board by running the fwupdate_client.py script, whereas the OTW update must
set the FICA bit using the updateotw shell command. For the OTW, make sure that the COM_PORT matches the target com
port address.

NXP Semiconductors
Bootloader

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 66 / 87

NXP Semiconductors
Bootloader

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 67 / 87

Chapter 10
Filesystem
The SLN-LOCAL2-IOT implements a custom filesystem to manage files with HyperFlash on the kit. The reasons why a custom
filesystem is chosen are as follows:

1. The device executes code from the flash (XiP), which means that it must read the flash from RAM functions.

2. HyperFlash has a 256-KB sector size, which does not allow for file granularity.

3. The update-in-place features are added to allow the update of big sectors without a time-consuming erase.

10.1 Generating filesystem-compatible files
Within the Ivaldi package, there is a script that converts any file into a filesystem supported file. Any file that gets programmed
to the filesystem must first pass through this script. This is required of all certificates and keys as well as any other files that the
reader needs.

Within the “Scripts/sln_iot_utils” folder of the release package, there is a Python script called file_format.py which is responsible
for creating a binary file formatted for the firmware’s filesystem. This script accepts the following parameters:

• “-if” parameter - passes the input file to be converted for the embedded filesystem

• “-of” parameter - passes the output file name

• “-ft” parameter - passes the flash type of the board; the acceptable values are as follows:

— “-ft H” for HyperFlash (used for SLN-LOCAL2-IOT)

— “-ft Q” for QSPI Flash (used for future platforms based on QSPI)

For SLN-LOCAL2-IOT, the file_format.py script should be called with “-ft H” parameter, because the platform has HyperFlash. For
example, you can run the command below. This will generate the binary file to be flashed into the device.

An example of running the file_format.py to convert the “../ota_signing/ca/certs/<cert_name>.ca.crt.pem” file to the
“<cert_name>.ca.crt.pem.bin” file suitable for the HyperFlash filesystem is in Figure 79.

Figure 79. file_format.py script description, usage, and logs

10.2 Generating new audio playback files
The custom filesystem for HyperFlash limits its size to 256 KB per file, which includes the file header as well as the sound data.
Therefore, make sure that the audio file is smaller than 256 KB.

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 68 / 87

Before generating the binary files, simply create a 16-bit, 48-kHz audio file. The current configuration of the amplifier only supports
48-kHz playback.

NXP Semiconductors
Filesystem

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 69 / 87

Chapter 11
Automated manufacturing tools
NXP provides a package of scripts that can be used for manufacturing programming and reprogramming of devices on the
production line without the J-Link. This collection of scripts is called Ivaldi. The Ivaldi package allows developers to program all
the required firmware binaries into a flash device using a single command.

11.1 Introduction

11.1.1 About Ivaldi
Ivaldi is a package of scripts responsible for manufacturing and reprogramming devices without J-Link. The Ivaldi package uses
the serial downloader mode of the i.MX RT106S’s boot ROM to communicate with an application called Flashloader that is
programmed in the i.MX RT106S MCU. This then communicates with a program called blhost, which controls various parts of the
chip and flash.

Ivaldi was created to focus on the build infrastructure of a customer’s development and manufacturing cycle. Its primary
focuses are:

• Factory programming and setting up a new device/product with certificate/key pairs

• Enabling High Assurance Boot (HAB)

• Signing images for OTA, OTW, and HAB

• Writing and accessing One Time Programmable (OTP) fuses

11.1.2 Download the package
The Ivaldi package can be downloaded from www.nxp.com/mcu-local2.

Extract the ZIP file and open the README.md file located in the root folder of the package to set up the environment.

11.1.3 Requirements
The following requirements must be met to run Ivaldi. It is tested with Windows, Mac, and Linux operating systems.

• OpenSSL

• Python 3.6.x with virtualenv

• Linux/Ubuntu for Windows

11.1.4 Platform configuration
The Ivaldi package uses the Scripts/sln_local2_iot_config/board_config.py configuration file, which includes the following:

• Names of the binaries to be flashed (from the Image_Binaries folder):

— BOOTSTRAP_NAME

— BOOTLOADER_NAME

— MAIN_APP_NAME

— Names of audio playback binaries

• Flash configurations:

— FLASH_TYPE

— FLASH_START_ADDR

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 70 / 87

http://www.nxp.com/mcu-local2

— FLASH_SIZE

• Flash map:

— Binaries’ images addresses

— Certificates’ addresses

If specific image binaries (such as the main application or audio playback) must be updated in the Ivaldi package’s Image_Binaries
folder, make sure that the Scripts/sln_local2_iot_config/board_config.py configuration file has correct file names and addresses.

Any changes in Scripts/sln_local2_iot_config/board_config.py (except for binaries' names) also require updating
the embedded code and configurations.

 NOTE

11.1.5 Boot programming modes and security features
The Ivaldi package supports multiple boot settings with various security features. In the open boot programming, the HAB is
disabled. In the secure boot programming, the HAB is enabled. There are various security feature options with (or without) signing
certificates. Table 13 summarizes the security features for the open and secure boot modes. By default, the SLN-LOCAL2-IOT
kit is enabled with image verification in the open boot mode.

Table 13. Summary of boot mode and security features

Boot mode/
security features HAB Signing certificates

(image verification)

Open boot
No No Recommended only for development

No Yes Default

Secure boot Yes Yes Most secure

11.2 NXP application image signing tool
The signing tool is a Python application that is responsible for using a signed Certificate Signing Request (CSR) to sign the binaries
and append the certificate to the binary ready to be deployed to OTA/OTW services.

The following instructions assume that the README file in the Ivaldi root directory is followed to set up the Python virtual
environment. If this is not done, the scripts fail.

To start, navigate to the “Scripts/ota_signing” directory inside Ivaldi.

11.2.1 Generating signing entity
The Ivaldi tools provided by NXP include the CA, but the end users must create their own CA and signing artifacts. For information
about the chain of trust used by NXP from the factory, see Application chain of trust.

Ivaldi includes a script to generate all of the artifacts needed to properly sign application binaries and generate a FICA table. Before
running the script, the Ivaldi environment must be set up completely as described in the README.md file in the top-level directory.

In the Python virtual environment, navigate to Scripts/ota_signing. Run the generate_signing_artifacts.py script. When running
without any arguments, the usage is displayed.

NXP Semiconductors
Automated manufacturing tools

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 71 / 87

Figure 80. Signing artifact generation usage

Type in the ca_name (e.g., my_prod) and the rest of the information for the CA. The CA name is the name given to the CA chain
that will be used to sign the images. Developers can always re-generate a more secure CA when preparing for production. When
prompted for passwords for the PEM files, use the same password for all of them for this exercise. Figure 81 shows an excerpt
from the terminal output of the generation script.

NXP Semiconductors
Automated manufacturing tools

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 72 / 87

Figure 81. Signing artifact generation excerpt

When generate_signing_artifacts.py succeeds, the ca folder is generated. This folder contains the certificates and private keys
with the user-defined <ca_name>.

• ./ca/certs/

— <ca_name>.app.a.crt.pem

— <ca_name>.app.b.crt.pem

NXP Semiconductors
Automated manufacturing tools

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 73 / 87

— <ca_name>.root.ca.crt.pem

• ./ca/private/

— <ca_name>.app.a.key.pem

— <ca_name>.app.b.key.pem

— <ca_name>.root.ca.key.pem

11.2.2 Installing the CA and application certificates
For the device to verify the image signature, the device must have the root CA and application certificates. Before
programming it into the device, it must be converted into a binary format for the filesystem to use it. To do this, run the
“generate_image_crt_files.py” script. Pass in the name of the generated CA in the command line.

Execute the command with the "-ft H" attribute for the HyperFlash and "-ft Q" for the QSPI, as shown in Figure 82.

Figure 82. Signing artifacts binary files generation for HyperFlash

The output of this script are two binary files – ca_crt.bin and app_crt.bin. Move these files to the Image_Binaries folder of the Ivaldi
package, as shown in Figure 83. They will be programmed into the SLN-LOCAL2-IOT kit by a boot programming tool.

Figure 83. Moving ca_crt.bin and app_crt.bin to Image_Binaries folder

11.3 Open Boot Programming tool
The Open Boot Programming tool is responsible for connecting to the device and programming it with the correct images and
certificates. This method is a quick and easy way to take a device/product from the assembly line and prepare it for shipping. It is a
good practice to run the Open Boot Programming script before enabling the HAB to ensure all images and artifacts are in working
order. Before running the script, complete the following items:

• The files and folders shown in Figure 84 should be in the “Image_Binaries” folder in the Ivaldi root.

NXP Semiconductors
Automated manufacturing tools

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 74 / 87

Figure 84. Files and folder for Open Boot Programming tool

• The file names should be properly configured, as in the “Scripts/sln_local2_iot_config/board_config.py” script.

• The “Scripts/sln_local2_iot_open_boot/open_prog_full.py” script should have the correct ca_name (e.g., my_prod), as
below. The default name is “prod”.

End user will need to update the device signing entity used below (by default prod.app.a used).

 NOTE

• The SLN-LOCAL2-IOT kit must be put into the serial download mode. Make sure that jumper J27, which is located on the
top of the kit, is in position “0”.

To program the firmware and artifacts, execute the “open_prog_full.py” script which performs the following actions, as shown in
Figure 85:

• Communicating with the BootROM and loading/executing the Flashloader

• Erasing the flash

• Programming the images (bootstrap, bootloader, local_demo, audio playback files, and FICA table) with certificates

• Jumping into the bootstrap and executing

After the script is executed, do not forget to exit the serial download mode, even though the board will boot into the application
after the programming.

NXP Semiconductors
Automated manufacturing tools

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 75 / 87

Figure 85. Output of Ivaldi Open Boot Programming

NXP Semiconductors
Automated manufacturing tools

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 76 / 87

11.4 Secure boot programming with High Assurance Boot (HAB)
The i.MX RT106S MCU has some fundamental security enablement to protect itself against unsigned images and ensure the
integrity of high-value software running on the device. The HAB forces the Read Only Memory (ROM) to only boot into a signed
image. This ensures image integrity and prevents from physical and remote attacks since the device is powered on. The HAB is
described in detail in the i.MX RT1060 Processor Reference Manual (document IMXRT1060RM). See the white paper related to
the security aspect of i.MX RT processor.

The implementation steps to enable the HAB of the i.MX RT processor for the SLN-LOCAL2-IOT kit is assured by the Python
scripts. With the Ivaldi package, the bootstrap is signed to work with the HAB.

For additional information about the Ivaldi tool’s HAB enablement, build the documents in the Ivaldi/doc folder according to the
README.md file.

11.4.1 HAB setup
This section assumes that NXP application image signing tool is completed as needed to generate the CA and application
certificate that will be loaded into the flash. It will also be used to generate the FICA table used to validate the application signature.

The first step is to create a signed Flashloader which will be used to set everything up and communicate with the blhost tool. The
blhost tool in its simplest form is used to read and write registers, but it communicates with the Flashloader. The Flashloader is
a RAM-based application that supports the blhost communication. In normal circumstances, the Flashloader can be executed
without being signed. When the HAB is enabled, the Flashloader must be signed by the generated keys.

The secure boot Python scripts are separated into two folders:

• OEM – The scripts should only be executed by the Product Owner and the output must be stored in a secure environment.
This is because it contains important key information, which if lost, could brick the SLN-LOCAL2-IOT kits or result in a loss
of image integrity. The example scripts demonstrate how to configure the Public Key Infrastructure (PKI) and generate a
secure binary.

• MANF – The scripts are executed on the manufacturing line. They are used to execute the signed Flashloader and
communicate with the chip to encrypt the binaries. The scripts contain the generation and programming of FICA. The
scripts also serve as examples for the production line programming. Note that the script to enable the HAB should only be
performed once per device with a known PKI (i.e., certificates and keys).

This process has several failure points, if you have insufficient knowledge of the device. Some of these features
are one-way and they permanently impact the behavior of the i.MX RT106S MCU.

 NOTE

The “./oem/setup_hab.py” script creates the PKI infrastructure, secure-boot (SB) file, and a signed Flashloader.

• The generated PKI files are located in the crts and keys folders.

• The following secure-boot (SB) file is located in the Image_Binaries folder:

— enable_hab.sb

• The following signed Flashloader files are located in the Image_Binaries folder:

— ivt_flashloader_signed.bin

— ivt_flashloader_signed_nopadding.bin

Figure 86 shows the output of the setup_hab.py script.

NXP Semiconductors
Automated manufacturing tools

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 77 / 87

https://www.nxp.com/doc/IMXRT1060RM

Figure 86. Running setup_hab.py

Do not run the setup_hab.py file more than once without backing up the generated keys and certificates. This
results in inability to use the Flashloader and program new images via the serial download mode for the existing
HAB-enabled devices.

 NOTE

To enable the HAB with the generated secure boot image file (enable_hab.sb), set the i.MX RT106S to the serial download mode
by moving jumper J27, which is located on the top of the SLN-LOCAL2-IOT kit, into the “0” position. Then, execute the “Script/
sln_local2_iot_secure_boot/manf/enable_hab.py” script. Figure 87 shows the usage and output of the “enable_hab.py” script.

Figure 87. Usage of enable_hab.py and its output

NXP Semiconductors
Automated manufacturing tools

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 78 / 87

If you lose the signed Flashloader and certificate/keys, the board will no longer be functional, because this ensures
that only signed images can boot.

 NOTE

11.4.2 Creating the images
How to generate the images is described before creating the artifacts and loading them into the encrypted devices. Because the
Instruction Vector Table (IVT) is created by the Ivaldi scripts, configure the bootstrap project before creating the image. To do this,
right-click on the bootstrap project and navigate to Properties > C/C++ Build > Settings > Preprocessors. As shown in Figure 88,
set XIP_BOOT_HEADER_ENABLE and XIP_BOOT_HEADER_DCD_ENABLE to zero.

Figure 88. Unsetting of the XIP boot header

After these definitions are updated, build the bootstrap project to generate an image. Because the Ivaldi script only accepts
the SREC file format, use the MCUXpresso Binary Utilities to convert the AXF file to the s-record file in the bootstrap project.
Right-click the AXF file and navigate to Binary Utilities > Create S-Record.

Figure 89. Converting to s-record file

NXP Semiconductors
Automated manufacturing tools

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 79 / 87

Figure 90. Changing from S19 to SREC

Because this creates an S19 file, rename the file to SREC, as shown in Figure 90.

Continue to build the bootloader and local_demo projects in the usual way. When these applications are built, it is required to
generate the BIN files. Build these by navigating to the Debug folder in both the bootloader and local_demo application projects.
Right-click the AXF file and navigate to Binary Utilities > Create Binary.

When the collateral is created, copy the BIN and SREC files into the Image_Binaries folder.

Figure 91 shows all the required files before executing the HAB.

Figure 91. Image binaries before executing HAB

11.4.3 Programming the images
Create a secure image and program the created image into the SLN-LOCAL2-IOT kit.

Execute the Scripts/sln_local2_iot_secure_boot/oem/secure_app.py script with the --signed-only option. It generates the
boot_sign_image.sb file with the images created in Creating the images and saves the generated SB file into the Image_Binaries
folder. Figure 92 shows the usage and output of the secure_app.py –signed-only script.

NXP Semiconductors
Automated manufacturing tools

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 80 / 87

Figure 92. Usage of secure_app.py and its output with --signed-only option

Program the created boot_sign_image.sb file into the SLN-LOCAL2-IOT kit in the HAB enabled by executing the prog_sec_app.py
script with the --signed-only option. The script performs the following actions and its output is shown in Figure 93:

• It runs the signed flashloader for the configuration.

• It erases the current flash.

• It programs the signed bootstrap, the signed bootloader and local_demo, the application image-signing certificate, the CA
image certificate, and the device key and certificate.

• It jumps into the bootstrap and executes.

• It waits until the flow gets to local_demo.

The spcripts use the file names specified in the Scripts/ sln_local2_iot_config/board_config.py folder. For different
file names, update the board_config.py file.

 NOTE

The lock_device.py file should be used only in production, because it disables debugger access.

 NOTE

NXP Semiconductors
Automated manufacturing tools

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 81 / 87

Figure 93. Usage of prog_sec_app.py and its output with --signed-only option

NXP Semiconductors
Automated manufacturing tools

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 82 / 87

Chapter 12
References
The following references supplement this document:

• MCU Local Voice Control SLN-LOCAL2-IOT-UG Solution User’s Guide (document SLN-LOCAL-IOT-UG)

• Hardware files (gerbers, schematics, BOM)

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 83 / 87

https://www.nxp.com/doc/SLN-LOCAL-IOT-UG

Chapter 13
Acronyms
Table 14. Acronyms

Acronym Meaning (Definition)

AFE Audio Front End

ASR Automatic Speech Recognition

CA Certificate Authority

FICA Flash Image Configuration Area Memory space of the external flash that
contains information about the binary images
of the application and bootloader stages.

GUI Graphic User Interface

HAB High-Assurance Bootloader

IOT Internet Of Thing

IVT Instruction Vector Table

JTAG Joint Test Action Group

MANF Manufacturer

MCU Microcontroller Unit

MEMS Micro-Electro-Mechanical System

MSD Mass Storage Device

OEM Original Equipment Manufacturer

OTA Over The Air

OTW Over The Wire

OTP One Time Programmable

PCM Pulse-code modulation

PDM Pulse-density modulation

PKI Public Key Infrastructure

ROM Read Only Memory

RTOS Real-Time Operating System

Table continues on the next page...

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 84 / 87

Table 14. Acronyms (continued)

Acronym Meaning (Definition)

SDK Software Development Kit

UART Universal Asynchronous Receiver-Transmitter

NXP Semiconductors
Acronyms

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 85 / 87

Chapter 14
Revision history
Table 15. Revision history

Revision Date Substantive changes

0 19 April 2021 Initial release

NXP Semiconductors

SLN-LOCAL2-IOT Developer’s Guide, Rev. 0, 19 April 2021
User's Guide 86 / 87

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 19 April 2021
Document identifier: SLN-LOCAL2-IOT-DG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	Figures
	Tables
	1 System Requirements and Prerequisites
	2 Usage Conditions
	3 Introduction
	3.1 Hardware overview
	3.2 Software overview
	3.3 Device memory map
	3.4 Flash memory filesystem
	3.5 Audio application architecture
	3.6 ASR application
	3.7 User interfaces
	3.8 Security architecture
	3.9 Automated manufacturing tools

	4 Getting started with MCUXpresso Tool Suite
	4.1 MCUXpresso IDE
	4.2 Software Development Kit (SDK)
	4.2.1 Downloading SDK
	4.2.2 Import SLN-LOCAL2-IOT SDK
	4.2.3 Importing SLN-LOCAL2-IOT projects

	5 Building and programming with MCUXpresso
	5.1 Understanding the boot flow
	5.2 Building the bootstrap, bootloader, and local voice control demo
	5.3 Turning off image verification
	5.3.1 Turning off bootstrap image verification
	5.3.2 Turning off bootloader image verification

	5.4 Programming the firmware and artifacts
	5.4.1 Bootstrap, bootloader, and local voice control application images
	5.4.2 Audio playback files
	5.4.3 Image verification certificate and keys
	5.4.4 Flash Image Configuration Area (FICA)

	6 Hardware platform
	7 Far-field local voice control framework
	7.1 Automatic speech recognition
	7.1.1 ASR application scenarios
	7.1.1.1 Scenario #1: Single-language two-stage voice control
	7.1.1.2 Scenario #2: Multiple-language two-stage voice control
	7.1.1.3 Scenario #3: Single-language N-stage voice control
	7.1.1.4 User interface

	7.1.2 Language-specific voice control engine
	7.1.2.1 Specification
	7.1.2.2 Architecture
	7.1.2.3 Language model
	7.1.2.4 Inference engine

	7.1.3 ASR configuration
	7.1.3.1 Languages
	7.1.3.2 Installation of languages and inference engines

	7.1.4 ASR session control
	7.1.4.1 Follow-up mode
	7.1.4.2 Timeout
	7.1.4.3 Push-to-Talk (PTT) mode

	7.2 Acoustic modification
	7.2.1 Changing microphone configuration
	7.2.2 Changing the post gain
	7.2.3 Changing the pre-processed microphone gain

	8 Security architecture
	8.1 Application chain of trust
	8.2 FICA and image verification
	8.3 Image Certificate Authority (CA) and application certificates

	9 Bootloader
	9.1 Application BIN file generation
	9.2 USB Mass Storage Device (MSD) update
	9.3 Over-the-Air (OTA) and Over-the-Wire (OTW) updates
	9.4 Transfers
	9.4.1 JSON messages
	9.4.1.1 Start request
	9.4.1.2 Block request
	9.4.1.3 Stop request
	9.4.1.4 Activate image request
	9.4.1.5 Start self-test request
	9.4.1.6 Clean request
	9.4.1.7 Response format

	9.5 Testing OTA/OTW updates
	9.5.1 OTA setup
	9.5.2 OTW setup

	9.6 Running the test script

	10 Filesystem
	10.1 Generating filesystem-compatible files
	10.2 Generating new audio playback files

	11 Automated manufacturing tools
	11.1 Introduction
	11.1.1 About Ivaldi
	11.1.2 Download the package
	11.1.3 Requirements
	11.1.4 Platform configuration
	11.1.5 Boot programming modes and security features

	11.2 NXP application image signing tool
	11.2.1 Generating signing entity
	11.2.2 Installing the CA and application certificates

	11.3 Open Boot Programming tool
	11.4 Secure boot programming with High Assurance Boot (HAB)
	11.4.1 HAB setup
	11.4.2 Creating the images
	11.4.3 Programming the images

	12 References
	13 Acronyms
	14 Revision history

