

Radial Crown SMD Aluminum Electrolytic Solution for DC-Link and EMC Applications for Automotive Power Systems

1. Introduction to Aluminum Electrolytic Capacitors	2
2. Aluminum Electrolytic Capacitors in Automotive Systems	2
2.1 DC-Link Capacitors	2
2.2 EMC Capacitors	3
3. Advancing from Through-Hole to SMD Designs	3
4. Reflow Recommendations	5
5. PCB Land Patterns and Footprints	6
6. Heatsinking Considerations	7

1. Introduction to Aluminum Electrolytic Capacitors

The development of the electrolytic capacitor (e-cap) has been one of the main factors in the successful miniaturization and increased performance of many modern-day electronics. The basic e-cap construction is shown in the figure below:

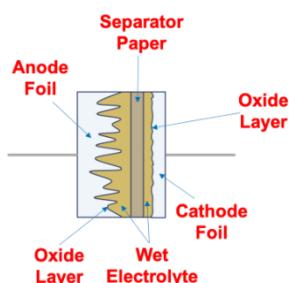
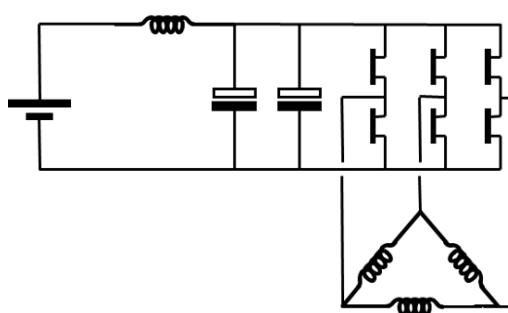


Figure 1 – Typical wet electrolytic capacitor (Courtesy of KEMET)

Since capacitance is a function of surface area, aluminum foils are first etched to create a rough contour with maximal contact area, resulting in high capacitance and optimal CV-value.


A second foil layer and a paper separator are added to fully complete the capacitor structure, producing an excellent terminal contact with this electrolyte. This aluminum-electrolyte-paper sandwich is then rolled or “wound” into a can and sealed with two terminals.

2. Aluminum Electrolytic Capacitors in Automotive Systems

2.1 DC-Link Capacitors

DC-link capacitors are used in order to provide a stable DC-voltage, limiting voltage fluctuations even under high ripple current loads and fluctuations created by the inverter. The DC-link capacitors are acting as a local energy source, connected to the DC- board-net close to the power electronics (\Rightarrow low impedance).



Key requirements, for automotive DC-link capacitors:

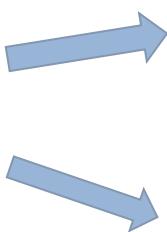
- Ripple current capability
- Low ESR
- High temperature capability
- Low thermal resistance (...especially when mounted heat-sunked to metallic chassis)
- Operational life
- Low impedance
- Low inductance
- High reliability

2.2 EMC Capacitors

An EMC- filter is often used to protect the board-net from voltage spikes created by the switching power electronics.

The requirements for an EMC filter capacitor in automotive inverters is similar to that of DC-link capacitors.

3. Advancing from Through-Hole to SMD Designs


Increasing levels of miniaturization have forced the development of SMD alternatives to what was once only served by through-hole options.

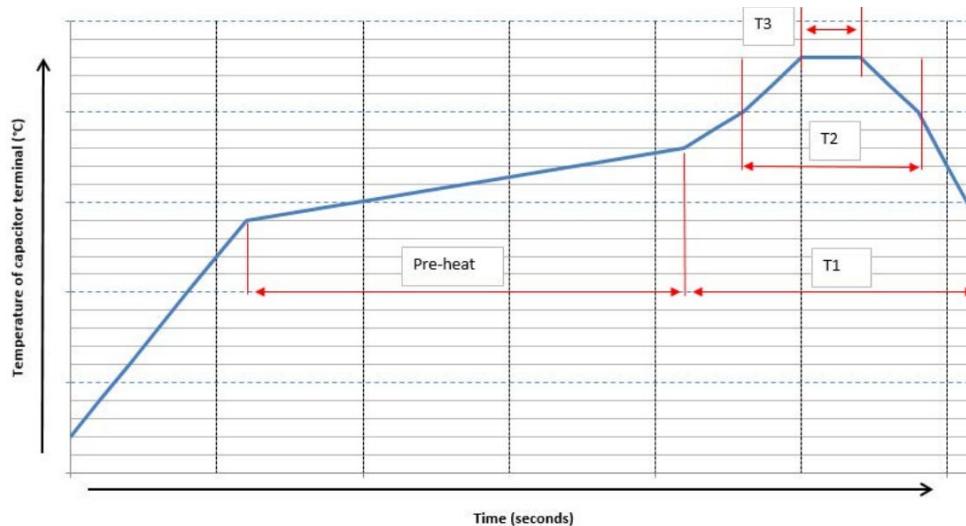
The PES and PEV series of SMD aluminum electrolytic capacitors is based on the successful PEH and PEG series of through-hole radial crown capacitors. This introduction brings the expectations of high CV and high ripple current performance to an SMD solution.

PES 227/ 228- series

PEH 227/ 228- series

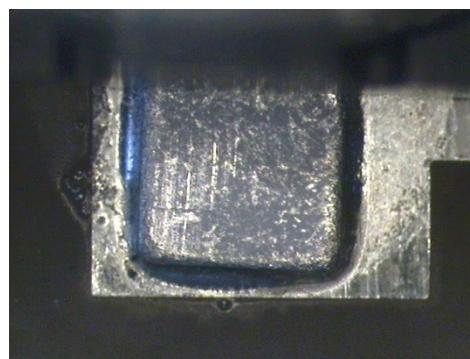
PEV 227/ 228- series

4. Reflow Recommendations


The following considerations should be remembered when implementing a reflow process:

1. Vapor heat transfer systems are not recommended
2. Thermal systems such as infrared radiation and hot blast should be used
3. Avoid repeated reflowing

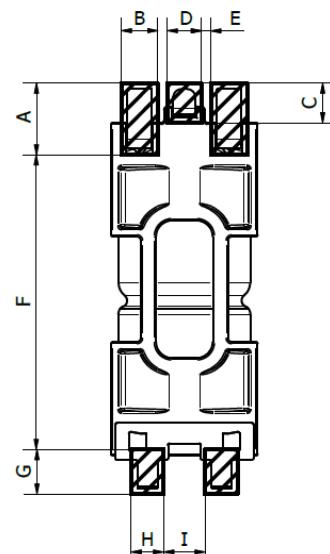
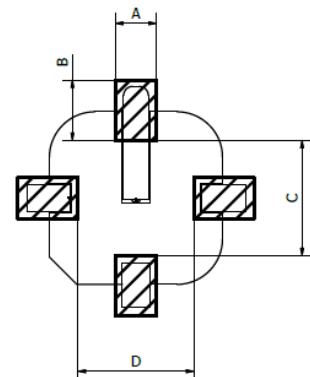
Recommended reflow profile:


Time Period	Preheating	T1	T2	T3
Temperature (°C)	150 – 180	≥ 200	≤ 230	≤ 240
Time (seconds)		60 – 180	≤ 40	≤ 20

Reflow can be performed per the above parameters up to 2x

Solder Paste Alloy:

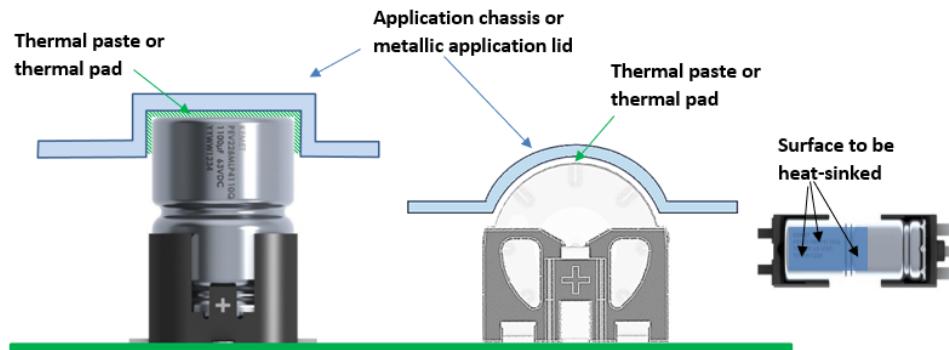
Solder passed allow should be selected to be suitable for the above recommended reflow profile. Sn/Ag or Sn/Ag/Cu allows with recommended peak solder temperatures in the range of 235C to 240C should be used.

Example of successful reflow

5. PCB Land Patterns and Footprints

PEV22x Series Footprint:


Size Code	A	B	C	D
KL, KP	4,5	6,65	12,7	12,7
LL, LP	4,5	6,65	14,7	14,7

Size Code	A	B	C	D	E	F	G	H	I
KP	8,85	4,5	4,9	4,2	1,15	36,3	5,5	4,0	5,1
LP	8,85	4,5	4,9	4,2	2,15	36,3	5,5	4,0	7,1

6. Heatsinking Considerations

The ripple current capability of the capacitor is further increased if the capacitor body is mounted to a chassis or metallic body with low thermal resistance. The information in the datasheet shows both natural convection and heat-sinking conditions.

