
 Application Note

R19AN0220EJ0100 Rev.1.00 Page 1 of 55
Apr.27.23

RYZ024A and RA MCU
LTE Communication Sample Application
Introduction
RYZ024A is a cellular module capable of LTE Cat M1/NB1/NB2 communication. RYZ024A connects to the
host MCU via UART communication, and its operation can be controlled by AT commands. This sample
application uses RA MCU as a host MCU and provides a program to control RYZ024A and perform MQTT
communication and implement power-saving features of the cellular network (eDRX, PSM). This sample
application uses the AT command management framework to implement a program that sends AT
commands from the host MCU to the RYZ024A. By using the AT command management framework, it is
possible to implement applications that use various communication protocols supported by the RYZ024A's
LTE Cat M1 communication function. This document describes the MQTT communication application and AT
command management framework implemented in this sample application.

SIM card activation is required when using the Truphone SIM card included in the RYZ024A PMOD board
(RTKYZ024A0B00000BE). Refer to "RA6M5 Group RYZ024A PMOD LTE Connectivity with RA6M5 MCU
Quick Start Guide" (R21QS0007) to activate the SIM card.

Target Device
RYZ024A

EK-RA6M5

Related Documents
• RYZ024 Module System Integration Guide (R19AN0101)
• RYZ024 Modules AT Command User's Manual(R11UZ0110)
• RA6M5 Group User's Manual: Hardware (R01UH0891)
• RA6M5 Group Evaluation Kit for RA6M5 Microcontroller Group EK-RA6M5 v1 User's Manual

(R20UT4829)
• Renesas Flexible Software Package (FSP) User's Manual (R11UM0155)
• RA6M5 Group RYZ024A PMOD LTE Connectivity with RA6M5 MCU Quick Start Guide (R21QS0007)
• EK-RA6M5 v1 – User's Manual (R20UT4829)

PmodTM is registered to Digilent Inc.

https://www.renesas.com/ryz024a
https://www.renesas.com/ek-ra6m5

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 2 of 55
Apr.27.23

Contents
3.2.1.1 R_LTE_Init .. 16
3.2.1.2 R_LTE_Execute .. 16
3.2.2.1 R_LTE_OM_Config ... 17
3.2.2.2 R_LTE_NWK_Connect ... 18
3.2.2.3 R_LTE_NWK_Disconnect ... 19
3.2.2.4 R_LTE_MQTT_Connect.. 19
3.2.2.5 R_LTE_MQTT_Subscribe ... 20
3.2.2.6 R_LTE_MQTT_Publish ... 20
3.2.2.7 R_LTE_MQTT_RcvMessage .. 21
3.2.2.8 R_LTE_MQTT_Disconnect ... 21
3.2.2.9 R_LTE_SEC_CertificateAdd ... 22
3.2.2.10 R_LTE_SEC_CertificateRemove .. 22
3.2.2.11 R_LTE_SEC_PrivateKeyAdd .. 23
3.2.2.12 R_LTE_SEC_PrivateKeyRemove ... 23
3.2.2.13 R_LTE_NWK_ConnectionConfig .. 24
3.2.2.14 R_LTE_eDRX_Config ... 24
3.2.2.15 R_LTE_PSM_Config ... 26

Revision History .. 55

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 3 of 55
Apr.27.23

1. Overview
1.1 Overview of Sample Framework
The RYZ024A is a cellular module with CATM1 technology support. The modem can be controlled by AT
commands via the UART.

Figure 1. RYZ024A
In this sample application, AT command framework software controls LTE Cat M1 communication of
RYZ024A using the RA MCU as the host MCU. The RA MCU sends AT command as string data to
RYZ024A via UART communication. The response string data for the AT command is also received by
UART communication. Through these exchanges, the RA MCU utilizes the LTE Cat M1 communication
function of the RYZ024A.

Figure 2. Communication of RYZ024A and Host MCU

RYZ024ARA MCU

AT Command

Response

UART
Communication

Note: Regarding the use of PMOD Expansion Board for RYZ024A (RTKYZ024A0B00000BE):

When RYZ024A shifts to Deep Sleep mode, the CTS pin becomes Hi-Z. However, in the PMOD
Expansion Board for RYZ024A (hereafter PMOD-RYZ024A), the CTS signal from the level
shifter to the host microcomputer remains at a low level due to the characteristics of the level
shifter used. (The RXD pin also remains low.) Therefore, be careful when waking up the
RYZ024A from Deep Sleep and transmitting from the microcomputer to the UART.

In this sample application, dedicated processing is added to operate with PMOD-RYZ024A. For details,
refer to section 4.4, PMOD-RYZ024A Specific Processing.

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 4 of 55
Apr.27.23

1.2 Software Configuration
This sample application provides two types of programs: baremetal program and FreeRTOS Kernel
(hereafter FreeRTOS) program.

Table 1. Application Note Contents

File Name Description
R01AN6579xxxxrrrr-RYZ024A-ra-lte-sample.pdf
xx: Language classification, Creation country
rrrr: Revision number

This document

sample_RYZ024A_ra6m5 Baremetal sample program
sample_RYZ024A_ra6m5_rtos FreeRTOS sample program

The file structure of the sample program provided in this application note is as follows.

Table 2. Sample Program File Structure

Folder structure Description
• sample_ryz024a_ra6m5
• sample_ryz024a_ra6m5_rtos

Sample project for baremetal
Sample project for FreeRTOS

 \ Project files for GCC
RA configurator files

 .settings\ e2 studio setting files
script\ Linker setting files
src\ hal_entry.c Main program of sample application

lte_task_entry.c Main program of LTE communication task
• FreeRTOS only

mqtt_app_task_entry.c Main program of MQTT communication
application task
• FreeRTOS only

r_lte_ryz.c
r_lte_ryz.h
r_lte_user_config.h

AT command management framework
program

SEGGER_RTT\ SEGGER J-Link RTT Viewer source codes

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 5 of 55
Apr.27.23

Software configuration of this sample framework is shown in the following figure.

Figure 3. Software Configuration
The sample application is a program that performs MQTT communication using the RYZ024A module’s
TCP/IP stack. The application is implemented on the host MCU side. This program consists of two features:
the MQTT communication application, which calls APIs for the MQTT communication; and the AT command
framework, which sends the AT command to the RYZ024A.

The MQTT application program connects to the MQTT server and sends data after a button on the EK-
RA6M5 board is pressed. MQTT communication application is implemented using APIs from AT Command
Management Framework. For a detailed description about the MQTT communication application, refer to
section 2, MQTT Communication Application.

The AT Command Management Framework is a framework for implementing the transmission of AT
commands to the RYZ024A and the processing of responses received from the RYZ024A. By calling the API
function implemented on the AT Command Management Framework, multiple AT command are sent to the
RYZ024A, and application is notified by a callback function. In this sample application, a framework-based
program is implemented using a framework so that the EK-RA6M5 can perform MQTT communication
through the RYZ024A. The AT Command Management Framework is intended to be used as a base for
application development when using functions of the RYZ024A other than MQTT communication. For a
detailed description about AT Command Management Framework, refer to section 3, AT Command
Management Framework.

Hardware (RA MCU)

FSP module

SCI UART module
(r_sci_uart)

AGT Timer module
(r_agt)

r_lte_ryz.c
r_lte_ryz.h

r_lte_user_config.h

hal_entry.c

Application

AT Command Management Framework

MQTT Communication Application

Hardware (RYZ024A)

Low Power Modes
module
(r_lpm)

External IRQ
module
(r_icu)

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 6 of 55
Apr.27.23

2. MQTT Communication Application
2.1 Application Environment
This section describes the environment to operate the MQTT communication application.
This application operates in the following hardware environment.

Table 3. Hardware Environment

Hardware Description
PMOD Expansion Board for RYZ024A

RYZ024A module
(RTKYZ024A0B00000BE)

EK-RA6M5 Host RA MCU
(RTKYZ014A0B00000BE)

Windows® PC RA MCU’s application development environment and debug
console for operation conformation

The developed application works with the following software environment.

Table 4. Software Environment

Software Version Description
e2 studio 2022-10 Renesas IDE

(https://www.renesas.com/e2studio)

FSP 4.2.0 Driver that can be used with RA MCU
(http://www.renesas.com/fsp)

SEGGER RTT Viewer 7.66 Debug write display viewer
(https://www.segger.com/products/debug-probes/j-link/tools/rtt-
viewer/)

https://www.renesas.com/e2studio
http://www.renesas.com/fsp
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 7 of 55
Apr.27.23

Table 5. EK-RA6M5 Peripheral Functions Used in this Sample Application

Function Name Description
Serial Communication
Interface

SCI0 (UART0) UART communication with RYZ024A
Baudrate : 115200 bps
Data length : 8 bits
Parity : none
Stop bit : 1 bit
Flow control : Hardware CTS/Software RTS

Low Power Asynchronous
General Purpose Timer

AGT0 Timeout for AT command communication

I/O Port P404 Reset pin control of RYZ024A
(Reset at low level)

 P412 RTS signal used for UART communication with
RYZ024A
(Connect to RTS0 of RYZ024A)

 P413 CTS signal used for UART communication with
RYZ024A
(Connect to CTS0 of RYZ024A)

 P400 Ring signal pin of RYZ024A
External Interrupt IRQ10 External interrupt of user button S1

IRQ9 External interrupt of user button S2
IRQ0 External interrupt of RYZ024A RING signal

For application operation, follow these steps:
1. Connect EK-RA6M5 and RYZ024A with PMOD connector. Please use PMOD2 (J25) connector for EK-

RA6M5.

Figure 4. Connect EK-RA6M5 and RYZ024A

Connects EK-RA6M5
with PMOD2 (J25)

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 8 of 55
Apr.27.23

2. Connect USB cables to EK-RA6M5 and RYZ024A. Also connect the antenna to RYZ024A.

Figure 5. Connect USB Cable and Antenna

3. Import sample project to e2 studio.

Figure 6. Add Sample Project

Connects USB cable for debug
connection to EK-RA6M5

Connects antenna to
RYZ024A

Select sample project from
[File] > [Import]

Connects USB cable for
power supply to RYZ024A

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 9 of 55
Apr.27.23

4. Generate the necessary files for sample project.

Figure 7. Generate the Necessary Files for Sample Project

5. Change Access Point Name, Authentication protocol, Username, Password, and the LTE bands by
modifying the string data to match those of the user application.
The changes are needed in the following files:

Baremetal program: hal_entry.c

FreeRTOS program: lte_task_entry.c

Access Point Name (APN), Authentication protocol, Username, Password
The character string data to be changed are basically dependent on the SIM used. Please contact the
SIM provider for APNs that can be used for user SIM. Username and password may be omitted. Please
refer to the manual document of each kit for information about the SIM included with the kit provided
from Renesas such as how to activate the SIM and available APNs.

LTE Bands
LTE bands differ depending on used region or operator. If you know the LTE bands to be used, specify
that bands. The following is an example of the LTE bands:

 “1,19”
• When user specifying DOCOMO bands.

 “2,4,12”
• When user specifying AT&T bands.

 “1,2,3,4,5,8,12,13,17,18,19,20,25,26,28,66”
• When user can't specify the bands, use the default as shown above. Bear in mind that the

connection may take longer.

In this application, operation is confirmed using the following APN and LTE bands.
 APN : iot.truphone.com
 Authentication protocol : 0
 Username : -
 Password : -
 LTE bands : 1,2,3,4,5,8,12,13,17,18,19,20,25,26,28,66

(1) Double-click configuration.xml
to open the FSP Configuration window

(2) Click Generate Project Content to
generate the files necessary for the project

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 10 of 55
Apr.27.23

Figure 8. Change APN, Authentication protocol, Username, Password and LTE bands
(hal_entry.c or lte_task_entry.c)

6. Disable low power operation of the host MCU. When using the SEGGER J-Link RTT Viewer that
monitors the operation of this sample program, comment out the API (R_LPM_LowPowerModeEnter)
that executes the low power consumption mode because it is not recommended to use the low power
consumption mode of the host MCU.
Comment out the line calling R_LPM_LowPowerModeEnter() in the function shown below.

Baremetal program: file name/function name: r_lte_ryz.c / void R_LTE_Execute(void)

FreeRTOS program: file name/function name: r_lte_ryz.c / void
vApplicationIdleHook(void)

 Change LTE Bands

Change APN, protocol, username,

and password

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 11 of 55
Apr.27.23

7. Build sample project. In this sample project, user can monitor the execution status flow using SEGGER
J-Link RTT Viewer. For this setting, please check address of “.bss._SEGGER_RTT” from .map file in
Debug folder which is generated after build.

Figure 9. Check .map file

8. Start the debugging first and then run the RTT viewer and connect to the EK-RA56M5. Enter address of
“_SEGGER_RTT” for connection.

Figure 10. Start RTT Viewer

(1) Select MCU of EK-RA6M5

(2) Input address of “.bss._SEGGER_RTT”

(1) Open .map file from
“Debug” folder

(2) Check address of
“.bss._SEGGER_RTT”

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 12 of 55
Apr.27.23

2.2 Application Operation
This sample program uses the public MQTT server "test.mosquitto.org" to send and receive messages.
Using the MQTT communication control commands of RYZ024A, the sample program connect to the MQTT
server, publish MQTT data, receive MQTT data, and display the results on the RTT Viewer. The flow of
program operation is explained below.

Figure 11. Sample Application System Configuration
In this sample program, after resetting RYZ024A module, connects to the cellular network via LTE and then
connects to an MQTT server. After the connection to the MQTT server is completed and subscribe requests
are made, the string “SW READY” is displayed in RTT Viewer. In this state, the user can operate the push
button switches on the board.

Figure 12. Connects MQTT Server
After “SW READY” is displayed, press the push button switch SW1 to send a message to the MQTT server
by publish request. Since the subscribe requests are made from the host to the MQTT server, when the
server sends message, it can be seen on the host as subscribed messages. The Application sends message
receive request using this subscribed message and displays the received messages in RTT viewer.
Transmitting string data changes depending on the number count of SW1 press.

Figure 13. Press SW1

Subscribe to
topic "renesas_test"

RYZ024ARA MCU

Publish data to
topic "renesas_test"

MQTT Server
"test.mosquitto.org"

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 13 of 55
Apr.27.23

Press push button switch SW2 to disconnect both from MQTT server and network.

Figure 14. Press SW2
If you are disconnected from the network or MQTT server due to the network conditions or the connection
signal strength, or so forth, this sample application will try to connect to the MQTT server again. Therefore,
after the connection to the network is reestablished, "SW READY" is displayed after reconnecting to the
MQTT server without pressing a button and makes a Subscribe request. After this, you can operate the
switch again.

3. AT Command Management Framework
3.1 Framework Overview
The RYZ024A is operated from the host MCU through the transmission of AT commands and reception of
responses using serial communication through the MCU UART. The AT Command Management Framework
is a framework for efficiently implementing the transmission and reception of AT commands and responses.
This sample program implements a framework-based program for MQTT communication using the AT
Command Management Framework.

The API implemented in the framework-based program of this sample program is classified into two types:
management API and AT command API. The management API is an API for initializing framework-based
programs and sending a series of AT commands in response to a response message. The AT Command
API is an API for sending AT commands. The execution result of the AT command sent by the AT Command
API is notified to the application as a callback function.

AT Command Management Framework is implemented using the SCI UART module, AGT timer module,
External IRQ module and Low Power Modes module from FSP module.

• The SCI UART module is used to send AT commands to the RYZ024A and receive responses from the
RYZ024A.

• The AGT timer module is used to measure timeout condition after AT command is executed.
• The External IRQ module is used for the RING signal interrupt that notifies that there is a Unsolicited

Result Code (URC) from the RYZ024A.
• The Low Power Modes module is used when the host MCU is in the IDLE state or when it is waiting for a

response after sending an AT command in the AT command API.

This chapter description is mainly based on the bare metal version of the AT command management
framework. For the framework included in the FreeRTOS sample program provided with this sample
program, see [3.6 FreeRTOS Framework].

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 14 of 55
Apr.27.23

Figure 15. Overview of Sample Framework
The AT command framework implements an AT command API that sends AT commands to use the LTE
communication function of the RYZ024A. The series of AT commands required to perform the desired action
by calling the AT Command API in the application are added to the transmit waiting list. AT commands
added to the transmit waiting list are sent to RYZ024A in order.

Figure 16. AT Command API Call
The result of executing the AT command on RYZ024A is sent as a response. This response data is received
by the UART module's callback function and analyzed by the R_LTE_Execute function. If the execution
result is correct, the R_LTE_Execute function sends the next AT command that is added to the transmit
waiting list. This procedure is repeated until all AT commands added to the transmit waiting list have been
sent.

Figure 17. Receive Response and AT Command Send

Application

FSP module

SCI UART module
(r_sci_uart)

AGT Timer module
(r_agt)

r_lte_ryz.c
r_lte_ryz.h

r_lte_user_config.h

hal_entry.c

AT Command Management Framework

MQTT Communication Application

Callback fucntionAPI Call

AT Command
send

Response
receive

Check
timeout

Low Power Modes
module
(r_lpm)

Enter low
power mode

External IRQ
module
(r_icu)

Interrupt

Transmit waiting list

AT Command 1
AT Command 2
AT Command 3

AT Command
Management
Framework

UART
ModuleApplication

AT Command
API

TXD
API Call

SCI_UART_Write

RYZ024A

AT Command

Transmit waiting list

AT Command 1
AT Command 2
AT Command 3

AT Command
Management
Framework

UART
ModuleApplication

R_LTE_Execute
SCI_UART_Write TXD

UART callback RXD

RYZ024A

AT Command

Response
(URC)

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 15 of 55
Apr.27.23

If all AT commands added to the send waiting list have been sent, the response from RYZ024A is an error,
or other data unrelated to the AT command is received, the R_LTE_Execute function notifies the application
as a callback function.

Figure 18. Notification in Callback Function
Executable API function provided from the framework-based program of this sample program is described in
[3.2 API function].
The result of the API execution is notified to application through callback function. Details about callback
function are described in [3.3 Callback Function].

If user want to use the sample framework with other RA MCUs, the user only needs to change the
“r_lte_user_config.h” file. Configurable values are described in [3.4 User Specific Configuration].

3.2 API functions
The API functions implemented in the framework-based program of this sample program are classified into
two types: Management API and AT command API. The management API is an API for initializing the
framework-based program and sending a series of AT commands in response to the response message.
The AT command API is an API to send AT commands. The management API is described in [3.2.1
Management API] and AT command API is described in [3.2.2 AT command API].

3.2.1 Management API
The management API is an API for initializing the framework-based program and sending a series of AT
commands in response to the response message. It must be implemented in the main routine of the
application. Even when adding functions based on the AT Command Management Framework, basically
there is no need to change the management API program (r_lte_ryz.c, r_lte_ryz.h, r_lte_user_config.c).

Figure 19. Management API

Transmit waiting list

AT Command
Management
Framework

UART
ModuleApplication

UART callback RXD

RYZ024A

Response
(URC)

lte_user_cb R_LTE_Execute

Data Receive
(URC)

FSP Module

AT Command
Management
Framework

Application

R_LTE_Init
API Call Reset

RYZ024A

Initialize
module

Send
AT command

Call
callback function

Application AT Command
Management
Framework

R_LTE_Execute
API Call

Main Routine

R_LTE_Init

R_LTE_Execute

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 16 of 55
Apr.27.23

3.2.1.1 R_LTE_Init
Function name R_LTE_Init

Functional overview Initialize framework-based program

Argument lte_cb_t * p_callback_fun
(IN)

Callback function to register

For information about type “lte_cb_t”, refer
[3.3 Callback Function]

Return value LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL
(0x0001)

Pointer of argument is NULL

Advanced description Initialize RYZ024A sample framework.

As part of initialization, following operation are performed:

• Initialization of FSP modules used in the framework.
• Execute hardware reset of RYZ024A.
• Registration of callback function to notify result of API to application.

After this function is executed, AT command to reset RYZ024A will be
sent.
The result of the AT command sent by this API is notified by the callback

function.
Following API_ID is used in callback function.

LTE_API_INIT (0xFF)

Please call this function before the main loop of your application.

3.2.1.2 R_LTE_Execute
Function name R_LTE_Execute

Functional overview Perform processing of the framework-based program.

Argument void None

Return value void None

Advanced description Execute various operations to be performed by the framework.

The following operation are performed:

• Send AT command specified by other API
• Parse string data received from RYZ024A
• Notifies the application of completion of API operation or receipt of

errors or others by calling callback function

Please call this function repeatedly in the main loop of your application.

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 17 of 55
Apr.27.23

3.2.2 AT command API
The AT command API is an API for sending AT commands. The AT commands are added to the transmit
waiting list by calling the AT command API from the application. AT commands added to the transmit waiting
lists are sent sequentially to RYZ024A in response. When all AT commands specified in the AT command
API have been sent, the AT command transmission result is notified to the application by callback function.

After calling the AT command API, the next AT command API cannot be called before the result is notified by
the callback function. Also, the AT command API cannot be called from an interrupt handler. Call the AT
command API only from main routine (including callback function of AT Command Management
Framework).

The framework-based program of this sample program implements the API necessary for MQTT
communication with the RYZ024A. If the user wants to implement a function that uses AT commands that
are not used in MQTT communication applications, it is assumed that users will add a new AT Command
API using this framework and develop an application.

Figure 20. AT Command API

3.2.2.1 R_LTE_OM_Config

Function Name R_LTE_OM_Config

Functional Overview Configure operator mode

Argument uint8_t * p_pdp_type (IN) Type of PDP context

Example: “IPV4V6”

uint8_t * p_pdp_apn (IN) Access Point Name of PDP context

Example: “iot.truphone.com”

uint8_t * p_pdp_protocol (IN) Authentication protocol of PDP context

Example: “0”

uint8_t * p_pdp_userid (IN) Username of PDP context

Example: “”

uint8_t * p_pdp_password (IN) Password of PDP context

Example: “”

uint8_t * p_bandlist (IN) List of authorized LTE bands

SCI UART
Module

AT Command
Management
Framework

Application AT Command
API Call Send

AT command

Receive
Response

Send
AT command

Receive
ResponseNotify Result

(Callback)

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 18 of 55
Apr.27.23

Example:
“1,2,3,4,5,8,12,13,17,18,19,20,25,26,28,6
6”

Return value LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL
(0x0001)

Pointer of argument is NULL

LTE_ERR_IN_PROCESS
(0x0002)

Other API is in process

LTE_ERR_DATASIZE_OVERFL
OW (0x0003)

The data size of the argument exceeds
the size that can be registered in transmit
waiting list

Advanced description Sends the following AT commands in order:
1. “AT+CFUN=0"
2. “AT+CGDCONT=1,[p_pdp_type],[p_pdp_apn]”
3. “AT+CGAUTH=1,[p_pdp_protocol],[p_pdp_userid],[p_pdp_password]”

or “AT+CGAUTH=1,0” (Note
4. “AT+SQNCTM=“standard”
5. “AT+SQNBANDSEL=0," standard ",[p_bandlist]”
6. “AT^RESET”
7. “AT+CMEE=1”

The result of the AT command sent by this API is notified by the callback
function.
Following API_ID is used in callback function:
LTE_API_OM_CONFIG (0x01)

Note: If "0" is specified for p_pdp_protocol, "AT+CGAUTH=1,0" is sent.

3.2.2.2 R_LTE_NWK_Connect

Function Name R_LTE_NWK_Connect

Functional Overview Connect to network

Argument uint8_t mode Select sending AT command

Return value LTE_SUCCESS (0x0000) API call success

LTE_ERR_IN_PROCESS
(0x0002)

Other API is in process

Advanced description Sends the following AT commands in order depending on value of “mode”
(only 0 can be used:
• Mode = 0
1. “AT+CEREG=5"
2. “AT+CFUN=1”

The result of the AT command sent by this API is notified by the callback
function.
Following API_ID is used in callback function.

LTE_API_NWK_CONNECT (0x02)

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 19 of 55
Apr.27.23

3.2.2.3 R_LTE_NWK_Disconnect
Function Name R_LTE_NWK_Disconnect

Functional Overview Disconnect from network

Argument uint8_t mode Select sending AT command

Return value LTE_SUCCESS (0x0000) LTE_SUCCESS (0x0000)

LTE_ERR_IN_PROCESS
(0x0002)

LTE_FAIL_IN_PROCESS (0x0002)

Advanced description Sends the following AT commands in order depending on value of “mode”
(only 0 can be used):

• Mode = 0
“AT+CFUN=0”
The result of the AT command sent by this API is notified by the callback
function.
Following API_ID is used in callback function.

LTE_API_NWK_DISCONNECT (0x03)

3.2.2.4 R_LTE_MQTT_Connect

Function Name R_LTE_MQTT_Connect

Functional Overview Configure MQTT communication setting and connect to MQTT server

Argument uint8_t * p_username (IN) Username used in MQTT
communication

Example: “renesas_device_001”

uint8_t * p_host (IN) Address of MQTT server to connect

Example: “test.mosquitto.org”

uint8_t * p_port (IN) Port of MQTT server to connect

Example: ”1883”

Return value LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL
(0x0001)

Pointer of argument is NULL

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x0003)

The data size of the argument
exceeds the size that can be
registered in transmit waiting list

Advanced description Sends the following AT commands in order:
1. “AT+SQNSMQTTCFG=0,[p_username]”
2. “AT+SQNSMQTTCONNECT=0,[p_host] ,[p_port]”
The result of the AT command sent by this API is notified by the callback
function.
Following API_ID is used in callback function:
LTE_API_MQTT_CONNECT (0x04)

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 20 of 55
Apr.27.23

3.2.2.5 R_LTE_MQTT_Subscribe
Function Name R_LTE_MQTT_Subscribe

Functional Overview Specify topic to subscribe in MQTT communication

Argument uint8_t * p_topic (IN) Topic to subscribe in MQTT
communication

Example: “renesas_test”

Return value LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL
(0x0001)

Pointer of argument is NULL

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x0003)

The data size of the argument exceeds
the size that can be registered in
transmit waiting list

Advanced description Sends the following AT command:
1. AT+SQNSMQTTSUBSCRIBE=0,[p_topic] ,1"
The result of the AT command sent by this API is notified by the callback
function.
Following API_ID is used in callback function:
LTE_API_MQTT_SUBSCRIBE (0x05)

3.2.2.6 R_LTE_MQTT_Publish
Function Name R_LTE_MQTT_Publish

Functional Overview Publish message to MQTT server

Argument uint8_t * p_topic (IN) Topic of publishing message

Example: “renesas_test”

uint16_t length (IN) Publishing message size

uint8_t * p_message (IN) Publishing message

Return value LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL
(0x0001)

Pointer of argument is NULL

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x0003)

The data size of the argument exceeds
the size that can be registered in
transmit waiting list

Advanced description Sends the following AT command:
1. “AT+SQNSMQTTPUBLISH=0,[p_topic],1,[length]"
The result of the AT command sent by this API is notified by the callback
function.
Following API_ID is used in callback function:
LTE_API_MQTT_PUBLISH (0x06)

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 21 of 55
Apr.27.23

3.2.2.7 R_LTE_MQTT_RcvMessage
Function Name R_LTE_MQTT_RcvMessage

Functional Overview Receive message from MQTT server

Argument uint8_t * p_topic (IN) Topic of receiving message

Example: “renesas_test”

uint8_t message_id (IN) Message ID of receiving message

uint16_t message_size (IN) Size of receiving message

Return value LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL
(0x0001)

Pointer of argument is NULL

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x0003)

The data size of the argument exceeds
the size that can be registered in
transmit waiting list

Advanced
Description

Sends the following AT commands in order depending on value of
“message_id”:
• message_id = 0
(1) AT+SQNSMQTTRCVMESSAGE=0,[p_topic]”

• message_id = [other than 0]
(2) AT+SQNSMQTTRCVMESSAGE=0,[p_topic],[message_id]”
The result of the AT command sent by this API is notified by the callback
function.
Received message will also be notified by callback function.

Following API_ID is used in callback function:
LTE_API_MQTT_RCVMESSAGE (0x07)

Note: If user tried to receive message that does not exists or same message
that have already received, an error will be notified in the callback
function.

3.2.2.8 R_LTE_MQTT_Disconnect
Function Name R_LTE_MQTT_Disconnect

Functional Overview Disconnect from MQTT server

Argument void None

Return Value LTE_SUCCESS (0x0000) API call success

LTE_ERR_IN_PROCESS
(0x0002)

Other API is in process

Advanced Description Sends the following AT command:
1. “AT+SQNSMQTTDISCONNECT=0"
The result of the AT command sent by this API is notified by the callback
function.
Following API_ID is used in callback function:
LTE_API_MQTT_DISCONNECT (0x08)

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 22 of 55
Apr.27.23

3.2.2.9 R_LTE_SEC_CertificateAdd
Function Name R_LTE_SEC_CertificateAdd

Functional Overview Add certification information

Argument uint8_t cet_id Adding certification ID

uint16_t cet_len Data length of adding certification

uint8_t * p_cet_data String data of certification

Return Value LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL
(0x0001)

Pointer of argument is NULL

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x0003)

The data size of the argument exceeds
the size that can be registered in transmit
waiting list

Advanced
Description

Sends the following AT command:
“AT+SQNSNVW="certificate",[cet_id],[cet_len]"
The result of the AT command sent by this API is notified by the callback
function.
Following API_ID is used in callback function:

LTE_API_SEC_CERTIFICATEADD (0x09)

3.2.2.10 R_LTE_SEC_CertificateRemove
Function Name R_LTE_SEC_CertificateRemove

Functional Overview Remove certification information

Argument uint8_t cet_id Removing certification ID

Return Value LTE_SUCCESS (0x0000) API call success

LTE_ERR_IN_PROCESS
(0x0002)

Other API is in process

Advanced Description Sends the following AT command:
“AT+SQNSNVW="certificate",[cet_id],0"
The result of the AT command sent by this API is notified by the callback
function.
Following API_ID is used in callback function:
LTE_API_SEC_CERTIFICATEREMOVE (0x0A)

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 23 of 55
Apr.27.23

3.2.2.11 R_LTE_SEC_PrivateKeyAdd
Function Name R_LTE_SEC_PrivateKeyAdd

Functional Overview Add private key information

Argument uint8_t prk_id Adding private key ID

uint16_t prk_len Data length of adding private key

uint8_t * p_prk_data String data of private key

Return Value LTE_SUCCESS (0x0000) API call success

LTE_ERR_POINTER_NULL
(0x0001)

Pointer of argument is NULL

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x0003)

The data size of the argument exceeds
the size that can be registered in transmit
waiting list

Advanced
Description

Sends the following AT command:
“AT+SQNSNVW="privatekey",[prk_id],[prk_len]"
The result of the AT command sent by this API is notified by the callback
function.
Following API_ID is used in callback function:

LTE_API_SEC_PRIVATEKEYADD (0x0B)

3.2.2.12 R_LTE_SEC_PrivateKeyRemove
Function Name R_LTE_SEC_PrivateKeyRemove

Functional Overview Remove private key information

Argument uint8_t prk_id Remove private key ID

Return Value LTE_SUCCESS (0x0000) API call success

LTE_ERR_IN_PROCESS
(0x0002)

Other API is in process

Advanced
Description

Sends the following AT command:
“AT+SQNSNVW="privatekey",[prk_id],0"
The result of the AT command sent by this API is notified by the callback
function.
Following API_ID is used in callback function:

LTE_API_SEC_PRIVATEKEYREMOVE (0x0C)

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 24 of 55
Apr.27.23

3.2.2.13 R_LTE_NWK_ConnectionConfig
Function Name R_LTE_NWK_ConnectionConfig

Functional Overview Configure connection and security

Argument uint8_t ca_cer_id CA certification ID

uint8_t client_cer_id Client certification ID

uint8_t prk_id Private key ID

Return Value LTE_SUCCESS (0x0000) API call success

LTE_ERR_IN_PROCESS
(0x0002)

Other API is in process

Advanced
Description

Sends the following AT commands in order:
1. “AT+SQNSCFG=1,1,1"
2. “AT+SQNSPCFG=1,2,,5,[ca_cer_id],[client_cer_id],[prk_id],"""
The result of the AT command sent by this API is notified by the callback
function.
Following API_ID is used in callback function:
LTE_API_NWK_CONNECTIONCONFIG (0x0D)

3.2.2.14 R_LTE_eDRX_Config

Function Name R_LTE_eDRX_Config

Functional Overview Set operation and parameters of eDRX

Argument uint8_t mode (IN) eDRX mode

uint8_t edrx_time_value (IN) eDRX cycle

uint8_t ptw_time_value (IN) PTW(paging time window) time

Return Value LTE_SUCCESS (0x0000) API call success

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x003)

The data size of the argument exceeds
the size that can be registered in transmit
waiting list

Advanced
Description

Generates and sends an AT command string from the specified arguments:
AT+SQNEDRX=2,4,"0001","0000"

The result of the AT command sent by this API is notified by the callback
function.
Following API_ID is used in callback function:
LTE_API_EDRX_CONFIG (0x0E)

(1) mode parameter

typedef enum
{
 LTE_EDRX_MODE_DISABLE = 0,
 LTE_EDRX_MODE_ENABLE,
 LTE_EDRX_MODE_ENABLE_WITH_URC,
 LTE_EDRX_MODE_RESET_PARAM,
} e_lte_edrx_mode_t;

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 25 of 55
Apr.27.23

(2) edrx_time_value parameter

(3) ptw_time_value parameter

typedef enum
{
 LTE_EDRX_TIME_VAL_5_SEC = 0,
 LTE_EDRX_TIME_VAL_10_SEC,
 LTE_EDRX_TIME_VAL_20_SEC,
 LTE_EDRX_TIME_VAL_40_SEC,
 LTE_EDRX_TIME_VAL_61_SEC,
 LTE_EDRX_TIME_VAL_81_SEC,
 LTE_EDRX_TIME_VAL_102_SEC,
 LTE_EDRX_TIME_VAL_122_SEC,
 LTE_EDRX_TIME_VAL_143_SEC,
 LTE_EDRX_TIME_VAL_163_SEC,
 LTE_EDRX_TIME_VAL_327_SEC,
 LTE_EDRX_TIME_VAL_655_SEC,
 LTE_EDRX_TIME_VAL_1301_SEC,
 LTE_EDRX_TIME_VAL_2621_SEC,
} e_lte_edrx_time_value_t;

typedef enum
{
 LTE_EDRX_PTW_TIME_VAL_1_SEC = 0,
 LTE_EDRX_PTW_TIME_VAL_2_SEC,
 LTE_EDRX_PTW_TIME_VAL_3_SEC,
 LTE_EDRX_PTW_TIME_VAL_5_SEC,
 LTE_EDRX_PTW_TIME_VAL_6_SEC,
 LTE_EDRX_PTW_TIME_VAL_7_SEC,
 LTE_EDRX_PTW_TIME_VAL_8_SEC,
 LTE_EDRX_PTW_TIME_VAL_10_SEC,
 LTE_EDRX_PTW_TIME_VAL_11_SEC,
 LTE_EDRX_PTW_TIME_VAL_12_SEC,
 LTE_EDRX_PTW_TIME_VAL_14_SEC,
 LTE_EDRX_PTW_TIME_VAL_15_SEC,
 LTE_EDRX_PTW_TIME_VAL_16_SEC,
 LTE_EDRX_PTW_TIME_VAL_17_SEC,
 LTE_EDRX_PTW_TIME_VAL_19_SEC,
 LTE_EDRX_PTW_TIME_VAL_20_SEC,
} e_lte_edrx_ptw_time_value_t;

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 26 of 55
Apr.27.23

3.2.2.15 R_LTE_PSM_Config
Function
Name

R_LTE_PSM_Config

Functional
Overview

Set operation and parameters of PSM

Argument uint8_t mode (IN) PSM mode

uint8_t tau_time_value (IN) TAU time

uint8_t tau_multiplier (IN) Multiplier for TAU time

uint8_t active_time_value (IN) Active time

uint8_t active_multiplier (IN) Multiplier for Active time

Return
value

LTE_SUCCESS (0x0000) API call success

LTE_ERR_IN_PROCESS (0x0002) Other API is in process

LTE_ERR_DATASIZE_OVERFLOW
(0x003)

The data size of the argument exceeds the
size that can be registered in transmit
waiting list

Advanced
description

Generates and sends an AT command string from the specified arguments:
AT+CPSMS=1,,,"10000010","00001111"

The result of the AT command sent by this API is notified by the callback function.
Following API_ID is used in callback function:
LTE_API_PSM_CONFIG (0x0F)

(1) mode parameter

(2) tau_time_value

typedef enum
{
 LTE_PSM_MODE_DISABLE = 0,
 LTE_PSM_MODE_ENABLE,
 LTE_PSM_MODE_RESET_PARAM,
} e_lte_psm_mode_t;

typedef enum
{
 LTE_PSM_TAU_TIME_VAL_10_MIN = 0,
 LTE_PSM_TAU_TIME_VAL_1_HOUR,
 LTE_PSM_TAU_TIME_VAL_10_HOUR,
 LTE_PSM_TAU_TIME_VAL_2_SEC,
 LTE_PSM_TAU_TIME_VAL_30_SEC,
 LTE_PSM_TAU_TIME_VAL_1_MIN,
 LTE_PSM_TAU_TIME_VAL_320_HOUR,
} e_lte_psm_tau_time_value_t;

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 27 of 55
Apr.27.23

(3) active_time_value

(4) tau_multiplier, active_multiplier

typedef enum
{

LTE_PSM_ACTIVE_TIME_VAL_2_SEC = 0,
LTE_PSM_ACTIVE_TIME_VAL_1_MIN,
LTE_PSM_ACTIVE_TIME_VAL_6_MIN,
LTE_PSM_ACTIVE_TIME_VAL_NONE = 7,

} e_lte_psm_active_time_value_t;

typedef enum
{
 LTE_PSM_MULTIPLIER_0 = 0,
 LTE_PSM_MULTIPLIER_1,
 LTE_PSM_MULTIPLIER_2,
 LTE_PSM_MULTIPLIER_3,
 LTE_PSM_MULTIPLIER_4,
 LTE_PSM_MULTIPLIER_5,
 LTE_PSM_MULTIPLIER_6,
 LTE_PSM_MULTIPLIER_7,
 LTE_PSM_MULTIPLIER_8,
 LTE_PSM_MULTIPLIER_9,
 LTE_PSM_MULTIPLIER_10,
 LTE_PSM_MULTIPLIER_11,
 LTE_PSM_MULTIPLIER_12,
 LTE_PSM_MULTIPLIER_13,
 LTE_PSM_MULTIPLIER_14,
 LTE_PSM_MULTIPLIER_15,
 LTE_PSM_MULTIPLIER_16,
 LTE_PSM_MULTIPLIER_17,
 LTE_PSM_MULTIPLIER_18,
 LTE_PSM_MULTIPLIER_19,
 LTE_PSM_MULTIPLIER_20,
 LTE_PSM_MULTIPLIER_21,
 LTE_PSM_MULTIPLIER_22,
 LTE_PSM_MULTIPLIER_23,
 LTE_PSM_MULTIPLIER_24,
 LTE_PSM_MULTIPLIER_25,
 LTE_PSM_MULTIPLIER_26,
 LTE_PSM_MULTIPLIER_27,
 LTE_PSM_MULTIPLIER_28,
 LTE_PSM_MULTIPLIER_29,
 LTE_PSM_MULTIPLIER_30,
 LTE_PSM_MULTIPLIER_31,
} e_lte_psm_tau_multiplier_t;

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 28 of 55
Apr.27.23

3.3 Callback Function
When an AT command is sent to the RYZ024A, string data is received as a response. Also, RYZ024A sends
an URC that is not a result of an AT command. The framework-based program of this sample program
receives string data from RYZ024And then parses the string data within the function R_LTE_Execute. If
information is needed to be notified to the user application, the function R_LTE_Execute calls a callback
function to notify the user application. This allows the application to check the execution result of the AT
Command API and to check the URC of the RYZ024A. This section describes the structure of the callback
function and the events and data that are signaled by the callback function.

Type name lte_cb_t

Argument uint16_t event_type (In) Notified event ID

Refer IDs in Table 6. .

uint16_t api_id (In) ID identifying API which framework-based program is
processing.

Refer IDs in Table 7. .

uint16_t data_len (in) Data size of “p_data”

void * p_data (out) Notified event data.

Value changes depending on notified event type

The event_type and api_id values use values defined in macro formats within framework-based programs.
The values for each are shown as follows.

Table 6. Event Type IDs and Value

Event Type Value Description
LTE_EVENT_API_COMPLETE 0x0000 An event that notifies application that the operation

specified in the API function has completed
successfully.

”p_data” is set according to the called API.

LTE_EVENT_ERROR 0x0001 An event that notifies application that an error has
occurred in the behavior specified in the API function.

Numeric data of error is set to “p_data”.

LTE_EVENT_RCVURC 0x0002 An event that notifies application that a URC has
been received.

String data of URC is set to “p_data”.

LTE_EVENT_TIMEOUT_ERROR 0x0003 An event that notifies application that timeout error
has occurred for sending AT command and receiving
a response.

Timeout occurs when 60s has passed after sending
an AT command.

LTE_EVENT_FATAL_ERROR 0x0004 An event that is notified when a fatal error occurs.
Call the callback function when URC "+SYSSTART"
is received at an unintended timing.

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 29 of 55
Apr.27.23

Table 7. API IDs and Value

Macro Value Corresponding API
LTE_API_NO_CURRENT_API 0x0000 None

LTE_API_OM_CONFIG 0x0001 R_LTE_OM_Config

LTE_API_NWK_CONNECT 0x0002 R_LTE_NWK_Connect

LTE_API_NWK_DISCONNECT 0x0003 R_LTE_NWK_Disconnect

LTE_API_MQTT_CONNECT 0x0004 R_LTE_MQTT_Connect

LTE_API_MQTT_DISCONNECT 0x0005 R_LTE_MQTT_Disconnect

LTE_API_MQTT_SUBSCRIBE 0x0006 R_LTE_MQTT_Subscribe

LTE_API_MQTT_PUBLISH 0x0007 R_LTE_MQTT_Publish

LTE_API_MQTT_RCVMESSAGE 0x0008 R_LTE_MQTT_RcvMessage

LTE_API_SEC_CERTIFICATEADD 0x0009 R_LTE_SEC_CertificateAdd

LTE_API_SEC_CERTIFICATEREMOVE 0x000A R_LTE_SEC_CertificateRemove

LTE_API_SEC_PRIVATEKEYADD 0x000B R_LTE_SEC_PrivateKeyAdd

LTE_API_SEC_PRIVATEKEYREMOVE 0x000C R_LTE_SEC_PrivateKeyRemove

LTE_API_NWK_CONNECTIONCONFIG 0x000D R_LTE_NWK_ConnectionConfig

LTE_API_EDRX_CONFIG 0x000E R_LTE_eDRX_Config

LTE_API_PSM_CONFIG 0x000F R_LTE_PSM_Config

LTE_API_INIT 0x00FF R_LTE_Init

The callback function is called from R_LTE_Execute function in certain situations. The following is a list of
when the callback function is called and the data to be set.

The source code containing the callback function is shown below.

Baremetal program: hal_entry.c

FreeRTOS program: mqtt_app_task_entry.c

• When all AT commands specified by the AT Command API are sent and responses are received without
error:
 Value “LTE_EVENT_API_COMPLETE” is set to “event_type”.
 In “p_data”, the data is set according to the AT command to be executed.

• When URC is received as a response to AT command, string data of received URC is registered.
The size of the string data to be notified is set to "data_len"

• When calling the AT command API that starts data receive operation such as
R_LTE_MQTT_RcvMessage, the received string data is registered. If the received data size
exceeds "LTE_DATA_STR_SIZE", the excess data is discarded and the data of the first half is
registered. The size of the string data to be notified is set to "data_len".

• Otherwise, no data is set in p_data.

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 30 of 55
Apr.27.23

Figure 21. LTE_EVENT_API_COMPLETE Event Notification

• When the response to the AT command sent to the RYZ024A has an error in the expected response:

 Value “LTE_EVENT_ERROR” is set to “event_type”.
 Value indicating an error is registered in “p_data”. To check this value, use function

“LTE_ERROR_DECODE” to check the value in 16-bit value.

Figure 22. LTE_EVENT_ERROR Event Notification

void lte_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{
 if(LTE_EVENT_API_COMPLETE == event_type)
 {
 switch (api_id)
 {
 case LTE_API_OM_CONFIG:
 {
 /* Connect to network after configuration of operation mode complete
*/
 SEGGER_RTT_printf(0, "OM COMFIG COMP\n");
 R_LTE_NWK_Connect(1);
 } break;

/* Omission */

 case LTE_API_MQTT_RCVMESSAGE:
 {
 /* Display received message */
 SEGGER_RTT_printf(0, "MQTT RCVMESSAGE COMP: %s\n",p_data);
 for(uint8_t i = 0; i < data_len; i++)
 {
 SEGGER_RTT_printf(0, "%c", p_data[i]);
 }
 } break;

void lte_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{

/* Omission */

 if(LTE_EVENT_ERROR == event_type)
 {
 /* Display API ID and Error code when error response received */
 uint16_t err_code;
 LTE_ERROR_DECODE(&err_code, p_data);
 SEGGER_RTT_printf(0, "Error Response\n");
 SEGGER_RTT_printf(0, "API ID: %d, Error Code: %d\n", api_id, err_code);
 }

/* Omission */

LTE_EVENT_API_COMPLETE event notification

Define which AT command API
result with api_id

Received data is registered in p_data

LTE_EVENT_ERROR event notification

Analyze error code with
LTE_ERROR_DECODE

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 31 of 55
Apr.27.23

• When the AT command sent to the RYZ024A times out:

 Value “LTE_EVENT_TIMEOUT_ERROR” is set to “event_type”.
 No data is set to “p_data”.
 When a timeout occurs, it is often assumed that the behavior of the RYZ024A is abnormal. Therefore,

it is recommended to perform initialization.

Figure 23. LTE_EVENT_TIMEOUT_ERROR Event Notification

• When URC "+SYSSTART" is received from RYZ024A at an unintended timing:

 Value “LTE_EVENT_FATAL_ERROR” is set to “event_type”.
 No data is set to “p_data”.
 When this event occurs, it is often assumed that the RYZ024A has restarted its operation. Therefore, it

is recommended to perform initialization.
Notes: In the normal operation of the RYZ024A, URC "+SYSSTART" will only be received if the modem
reboots. This case is implemented for fail-safe purposes in case of occurrence.

void lte_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{
/* Omission */
 if(LTE_EVENT_TIMEOUT_ERROR == event_type)
 {
 /* Set flag to initialize in main loop */
 gs_reinitialize_flag = 1;
 }
}
/* Omission */

void hal_entry(void)
{
/* Omission */
 if(1 == gs_reinitialize_flag)
 {
 /* Initialize when timeout occur */
 R_LTE_Init(lte_user_cb);
 gs_reinitialize_flag = 0;
 }

LTE_EVENT_TIMEOUT_ERROR event notification

Initialization of framework base program

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 32 of 55
Apr.27.23

Figure 24. LTE_EVENT_FATAL_ERROR Event Notification

• When URC is sent from RYZ024A:

 Value “LTE_EVENT_RCVURC” is set to “event_type”.
 Received URC string data is registered to “p_data”. Execute user process according to the URC.

Please execute the process according to the URC. If the data size of the received URC exceeds
"LTE_DATA_STR_SIZE", the excess data is discarded and the data of the first half is registered. The
size of the string data to be notified is set to "data_len"

void lte_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{
/* Omission */
 if(LTE_EVENT_FATAL_ERROR == event_type)
 {
 /* Set flag to initialize in main loop */
 gs_reinitialize_flag = 1;
 }
}
/* Omission */

void hal_entry(void)
{
/* Omission */
 if(1 == gs_reinitialize_flag)
 {
 /* Initialize to restart user application */
 R_LTE_Init(lte_user_cb);
 gs_reinitialize_flag = 0;
 }

LTE_EVENT_FATAL_ERROR event notification

Initialization of framework base program

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 33 of 55
Apr.27.23

Figure 25. LTE_EVENT_RCVURC Event Notification

void lte_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{

/* Omission */

 if(LTE_EVENT_RCVURC == event_type)
 {
 /* Receive message from MQTT server when RYZ024A received subscribe
notification */
 const uint8_t str_onmessage[] = "+SQNSMQTTONMESSAGE";

 /* Display received URC */
 SEGGER_RTT_printf(0, "URC: %s",p_data);

 if(0 == memcmp(p_data, str_onmessage, (sizeof(str_onmessage) - 1)))
 {
 uint8_t rcv_id = 0;
 char * ptr;
 uint8_t msg_count = 0;

 /* Display subscribed notification */
 SEGGER_RTT_printf(0, "MQTT MESSAGE NOTIFY\n");

 /* Get message ID from received URC string data */
 ptr = strtok((char *)p_data,",");
 while(ptr != NULL)
 {
 ptr = strtok(NULL,",");
 if(ptr != NULL)
 {
 msg_count++;
 if(2 == msg_count)
 {
 mqtt_rcvdata_len = (uint8_t)atoi(ptr);
 }
 if(4 == msg_count)
 {
 rcv_id = (uint8_t)atoi(ptr);
 }
 }
 }
 /* request message receive */
 R_LTE_MQTT_RcvMessage(str_MQTT_topic, rcv_id);
 }
 }
/* Omission */

LTE_EVENT_RCVURC event notification

Check received URC
Execute process if received data is
“+SQNSMQTTONMESSAGE”

Analyze parameter of URC

Call AT command API with
analyzed parameter

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 34 of 55
Apr.27.23

3.4 User Specific Configuration
When users are developing applications based on this sample application they need to change some
settings depending on the RA MCU used. In the AT Command Management Framework, a program for
setting these user-specific setting values is defined in "r_lte_user_config.h". Users can modify this file to use
the AT Command Management Framework in the configuration that suits their environment. This section
describes the values that can be set.

Table 8 shows the setting items for the RA MCU pins connected to each pin of the RYZ024A. Please confirm
when changing the board to be used as the host MCU.

Table 8. Pin Function Setting for RYZ024A

Name Default value Description
RYZ024A_RESET_PIN BSP_IO_PORT_04_PIN_04 Pin corresponding to the reset pin of the

RYZ024A.

RYZ024A_RESET_ENABLE BSP_IO_LEVEL_HIGH Signal settings to enable the reset pin of the
RYZ024A.

RYZ024A_RESET_DISABLE BSP_IO_LEVEL_LOW Signal settings to disable the reset pin of
the RYZ024A.

RYZ_LTE_RTS0_PIN BSP_IO_PORT_04_PIN_12 Pin corresponding to the RTS0 pin of the
RYZ024A.

RYZ_LTE_CTS0_PIN BSP_IO_PORT_04_PIN_13 Pin corresponding to the CTS0 pin of the
RYZ024A.

RYZ_LTE_RING0_PIN BSP_IO_PORT_04_PIN_00 Pin corresponding to the RING0 pin of the
RYZ024A.

Table 9 shows the setting items for using the FSP module within the AT command management framework.
Please check if you want to edit the RA Configurator, change the RA MCU and so forth.

Table 9. FSP Module Setting for RYZ024A

Name Default value Description
RYZ024A_UART_CTRL g_uart0.p_ctrl SCI UART Module Control Structure.

Used for UART communication between
host MCU and RYZ024A.

Channel : 0

RYZ024A_UART_CFG g_uart0.p_cfg SCI UART Module Configuration Structure.

RYZ024A_TIMER_CTRL g_timer0.p_ctrl AGT timer Module Control Structure.

Used for AT command timeout.

Channel : 0

RYZ024A_TIMER_CFG g_timer0.p_cfg AGT timer Module Configuration Structure.

RYZ_LTE_RING_CTRL g_external_irq0.p_ctrl External IRQ Module Control Structure.

Used for RING signal interrupt from
RYZ024A.

Channel : 0
Pin : P400

RYZ_LTE_RING_CFG g_external_irq0.p_cfg External IRQ Module Configuration
Structure.

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 35 of 55
Apr.27.23

Table 10 shows the size setting items for various data used within the AT command management
framework. Please change it according to the data size of the AT command and string used in the application
and the stack size of the MCU to be used.

Table 10. Size Setting of AT Command Transmission Waiting List

Name Default value Description
LTE_ATC_STR_SIZE 100 Maximum length of the AT command string.

LTE_DATA_STR_SIZE 100 The maximum length of data to receive
from the RYZ024A.

If the data to be received exceeds this size,
the excess data is discarded.

LTE_ATC_LIST_SIZE 8 The number of AT commands that can be
added to the send waiting list.

Define "maximum number of AT commands
to be registered + 1".

3.5 FSP module Used in Framework
The AT Command Management Framework uses FSP modules to implement its functionality. The FSP
module is configured not only in code but also in the RA configurator. This section describes how to use and
configure the FSP module used in the AT Command Management Framework.

3.5.1 SCI UART Module
The AT Command Management Framework uses the SCI UART module to implement UART communication
between the RYZ024A and the host MCU.

When sending AT commands from the host MCU to the RYZ024A, the write function (R_SCI_UART_Write)
of the SCI UART module is used. After calling the AT Command API from your application, a series of AT
commands are registered in the Transmit waiting list in the framework. Transmission of AT commands from
the waiting list are sequentially processed from the beginning of the list using the write function.

When sending a response from the RYZ024A to the host MCU, the data is received using the callback
function of the SCI UART module. This callback function receives a character data one by one and stores it
in a ring buffer in the framework. Character data stored in the ring buffer is processed one character at a time
R_LTE_Execute each function call.

Figure 26. Using SCI UART Module

UART callback

Transmit waiting list

List 1
List 2
List 3

SCI_UART_Write

AT Command
Management
Framework

RYZ024A

Ring BufferR_LTE_Execute

AT command API

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 36 of 55
Apr.27.23

3.5.2 AGT Timer module
The AT Command Management Framework uses the AGT Timer module to implement the timeout function.
After sending an AT command, a timeout occurs when 60 seconds elapse before receiving a response.

Table 11. AT Command Timeout Setting (r_lte_ryz.c)

Name Default value Description
AT_COMMAND_TIMETOUT 30 Timeout count of AT command.

unit: 2 sec

for example, 2 sec * 30 = 60 sec

Framework starts the timer at the timing of sending the AT command. This timer stops when the response
specified in the comp_msg is received or when an error response is received. If a response is not received
for a certain period after sending an AT command, the timer callback function is called in the framework to
signal a timeout has occured. After the callback function is called, framework calls the user's callback
function in the R_LTE_Execute function to notify the application that a timeout has occurred.

 The timer count time is set in the RA configurator. To change the timeout period, use the RA Configurator to
change the timer count time and [Table 11. AT Command Timeout Setting (r_lte_ryz.c)].

Figure 27. AGT Timer Module Setting

Timer count setting

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 37 of 55
Apr.27.23

3.5.3 External IRQ Module
Use the External IRQ module to generate an interrupt with a RING signal from the RYZ024A to notify that
there is a URC.

3.5.4 Low Power Mode Module
Use the Low Power Mode module to control low power operation of the host MCU. For the low power
consumption operation of the host MCU, refer to section, [3.7.2 Low Power Operation Control of Host MCU].

3.6 FreeRTOS Framework
This sample application provides a program using FreeRTOS. In the FreeRTOS sample program user can
easily implement an application by dividing programs that need to be called repeatedly in the main loop,
such as R_LTE_Execute function, into tasks. User can also stop programs that do not need to work with
FreeRTOS. In order to realize these FreeRTOS operations, some changes are implemented to the
framework in the FreeRTOS sample program. This section describes the operation of the AT command
management framework included in the FreeRTOS sample program.

The software configuration of the FreeRTOS sample program is shown as follows.

Figure 28. FreeRTOS Software Configuration
The application of this sample program consists of two tasks: LTE task and MQTT application task. LTE
tasks are R_LTE_Execute tasks for repeatedly calling functions. The callback function to be called in the
R_LTE_Execute function will also be handled in this task. The MQTT application task implements MQTT
communication corresponding to the input of the switch implemented in the sample program. The status of
MQTT communication is notified by inter-task communication from LTE tasks as events received in callback
functions.

The management API of the AT command management framework and its accompanying callback functions
are assumed to be called only in LTE tasks, so exclusive processing is not implemented. On the other hand,
the AT command API implements exclusive processing using semaphores so that it can be used from
multiple tasks. Therefore, please use the AT command API from any task according to user application.

Application (FreeRTOS)

FSP module

SCI UART module
(r_sci_uart)

AGT Timer module
(r_agt)

r_lte_ryz.c
r_lte_ryz.h

r_lte_user_config.h

mqtt_app_task_entry.c

AT Command Management Framework

MQTT communication
Application Task

Callback
fucntion

AT Command
send

Response
receive

Check
timeout

lte_task_entry.c

LTETask
Event

Notification

API Call API Call

lte_task_entry.c

IDLETask

Low Power Modes
module
(r_lpm)

API Call

External IRQ
module
(r_icu)

Interrupt

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 38 of 55
Apr.27.23

3.6.1 LTE Task
After calling the R_LTE_Init function, which initializes the framework, the LTE task repeatedly calls the
R_LTE_Execute function to operate the framework.

If the initialization flag is changed, call the R_LTE_Init function to restart the sample application.

Figure 29. Workflow of LTE Task

The R_LTE_Execute function processes all data received from RYZ024A. Call the callback function or send
the AT command according to the data. It continues to operate until data cannot be retrieved from the ring
buffer that temporarily holds data and suspends the task when the data runs out.
Call the Resume function from the UART interrupt handler activated by receiving data from the RYZ024A to
set the LTE task to Running state.

Start

Execute R_LTE_Init

Execute
R_LTE_Execute

Is initialize
needed ?

Yes

Execute R_LTE_Init

No

LTE Task Sequence Flow

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 39 of 55
Apr.27.23

Figure 30. Workflow of R_LTE_Execute Function

3.6.2 MQTT Communication Application Task
After starting operation, the MQTT communication application task will be in Suspended state using
EventGroupWaitBits and will wait until RYZ024A MQTT communication is completed. After connecting to the
MQTT server with the LTE task and completing the Subscribe request, EventGroupSetBits resumes
operation. After initializing the switch, it becomes Suspend state and waits for switch input.

Call the Resume function in the switch interrupt handler that is called when the switch is pressed and set the
MQTT communication application task to the Running state. Depending on the type of switch pressed,
MQTT publish or Disconnect is executed, and EventGroupWaitBits is used to wait until switch processing is
completed. When the switching process is completed, the LTE task callback function is called, and the
operation is restarted by EventGroupSetBits.

R_LTE_Execute Sequence Flow

Start
R_LTE_Execute

End

Yes

NoIs next AT command in
transmit waiting list ?

vTaskSuspend

Call Callback function

Send AT command

Yes

NoAny data in
ring buffer ?

Start

End

xTaskResumeFromISR

Set data in ring buffer

UART Interrupt Handler
Sequence Flow

: FreeRTOS API

Text is not SVG - cannot display

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 40 of 55
Apr.27.23

Figure 31. Workflow of MQTT Communication Application Task

MQTT Application Task Sequence Flow

Start

Start

End

xTaskResumeFromISR

Set switch flag

User Switch Interrupt Handler
Sequence Flow

(S1 or S2)

: FreeRTOS API

xEventGroupSetbits

LTE Task Sequence Flow

MQTT subscribe comleted
in lte_user_cb()

xEventGroupWaitbit

Enable switch interrupt

vTaskSuspend

S2

S1

Check switch flag

Execute
R_LTE_MQTTPublish

Execute
R_LTE_MQTTDisconnect

xEventGroupWaitbit

End

xEventGroupSetbits

MQTT publish completed
or

Disconnect completed
in lte_user_cb()

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 41 of 55
Apr.27.23

3.6.3 IDLE Task
The IDLE task is called when the LTE task, MQTT communication application task and interrupt processing
are not running and puts the RA6M5 into low power consumption mode.

Refer to [3.7.2 Low Power Operation Control of Host MCU] for the processing to shift RA6M5 to low power
consumption mode.

3.6.4 Task Setting Value
The settings for each task are shown below.

Table 12. LTE task Setting Value

Name Value
Symbol lte_task

Stack Size 1024

Priority 4 (Max priorities = 5)

Thread context NULL

Memory Allocation Static

Allocate Secure Context Enable

Table 13. MQTT Communication Application Task Setting Value

Name Value
Symbol mqtt_app_task

Stack Size 1024

Priority 1 (Max priorities = 5)

Thread context NULL

Memory Allocation Static

Allocate Secure Context Enable

Table 14. DLE Task Setting Value

Name Value
Symbol vApplicationIdleHook

Priority 0

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 42 of 55
Apr.27.23

3.7 Low Power Operation
This sample application supports operation using the low power consumption function of the RYZ024A and
host MCU (RA6M5).

3.7.1 Low Power Operation Control of RYZ024A
When the RYZ024A enables eDRX or PSM, you can operate the RYZ024A with low power consumption by
controlling the RTS signal.

RTS=L: Disable low power consumption operation

RTS=H: Enable low power consumption operation

See also "RYZ024 Power Consumption Measurements on RYZ024-Based Modules" (R19AN0167) for low
power operation of RYZ024A.

When sending an AT command from the host MCU, the RTS signal is controlled within the AT command
management framework to wake up the RYZ024A in low power consumption mode. Specifically, RTS is set
to Low in the AT command API and set to High after processing is completed. Also, when a RING interrupt
occurs, RTS is set to Low so that the RYZ024A can transmit URC, and after the necessary processing is
completed, it is set to High.

(1) When the AT command API is called

Figure 32. RTS Signal Control Sequence (when the AT command API is called)

(2) When a RING interrupt occurs

Figure 33. RTS Signal Control Sequence (when a RING interrupt occurs)

lte_user_cb() AT command API SCI_UART_Write()

AT command API call
Send AT command

Receive AT
command response

All AT command
processing of the AT

command API is
completed

RTS=L

RTS=H

R_LTE_Execute()
(This function is called

repeatedly from the loop
processing in hal_entry().)

lte_user_cb() AT command API SCI_UART_Write()
R_LTE_Execute()
(This function is called

repeatedly from the loop
processing in hal_entry().)

Executes processing
corresponding to URC

or data.
(Here, call the AT
command API)

Send AT command

Receive URC or data

All AT command
processing of the AT

command API is
completed.

RTS=L

RTS=H

ryz_lte_ring_signal_callback()

Notif ication of URC or
data from RYZ024A

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 43 of 55
Apr.27.23

Operation settings for eDRX and PSM are performed using the R_LTE_EDRX_Config function and
R_LTE_PSM_Config function. In this sample application, it is executed within the callback function. Its
source code is shown in Figure 34. .

Baremetal application program : hal_entry.c

FreeRTOS application program : lte_task_entry.c

eDRX and PSM operations are disabled by default. To enable it, refer to [3.2.2.14 R_LTE_eDRX_Config]
and [3.2.2.15 R_LTE_PSM_Config] and change the first argument of each API.

Figure 34. eDRX and PSM Setting

void lte_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{
/* Omission */
 case LTE_API_OM_CONFIG:
 {
 /* Connect to network after configuration of operation mode complete */
 SEGGER_RTT_printf(0, "OM COMFIG COMP\n");
 R_LTE_EDRX_Config(LTE_EDRX_MODE_DISABLE, LTE_EDRX_TIME_VAL_81_SEC,

LTE_EDRX_PTW_TIME_VAL_10_SEC);
 } break;

 case LTE_API_EDRX_CONFIG:
 {
 /* Configure PSM after configuration of eDRX complete */
 SEGGER_RTT_printf(0, "eDRX COMFIG COMP\n");
 R_LTE_PSM_Config(LTE_PSM_MODE_DISABLE, LTE_PSM_TAU_TIME_VAL_30_SEC,

LTE_PSM_MULTIPLIER_6, LTE_PSM_ACTIVE_TIME_VAL_2_SEC, LTE_PSM_MULTIPLIER_8);
 } break;

/* Omission */

eDRX setting

PSM setting

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 44 of 55
Apr.27.23

3.7.2 Low Power Operation Control of Host MCU
The host MCU enters software standby mode when the host MCU is in the IDLE state, and low power
consumption operation in sleep mode when it is waiting for a response after sending an AT command in the
AT command API. The files and functions performing low power operation are listed below.

Baremetal application program : r_lte_ryz.c, R_LTE_Execute()

FreeRTOS application program : r_lte_ryz.c, vApplicationIdleHook()

Figure 35. Host MCU Low Power Consumption Operation Flow Chart

1. If character strings or data are stored in the UART receive buffer, analysis processing is performed using
the R_LTE_Execute() function without transitioning to low power consumption mode.

2. When the AT command API is executed, when the response of the transmitted AT command is received,
it shifts to sleep mode so that it can return to normal mode with a UART reception interrupt.

3. While the RING signal is asserted, shift to sleep mode so that the URC from the RYZ024A can be
received.

4. From software standby, the S1 or S2 button is pressed, or an external pin interrupt is generated by
asserting the RING signal to return to normal mode.

5. Returns to normal mode when a UART reception interrupt is generated by receiving a response to the
transmitted AT command.

Start low power mode

Yes

No
Is the UART receive buffer empty?

Normal mode

Yes

No

No

(1)

(3)

(4) (5)

Is the AT command API running?

Sleep modeSoftware standby mode

RING signal asserted?

Yes

(2)

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 45 of 55
Apr.27.23

4. Application development using AT Command Management Framework
The AT Command Management Framework is intended to be used as a base for user application
development. By using the AT Command Management Framework, communication between the RYZ024A
and the host MCU can be efficiently implemented. In this section, we will describe how to develop user
applications using this sample application as an example.

4.1 Overview of application development
The AT Command Management Framework is a specification that allows you to efficiently implement
additional APIs within the framework. The API implemented in the framework is called in the application
program to realize the operation desired by the user. In this sample application, operation is realized with the
following file.

• Framework base program:
 r_lte_ryz.c
 r_lte_ryz.h
 r_lte_user_config.h

• Baremetal application program:
 hal_entry.c

• FreeRTOS Application program:
 lte_task_entry.c
 mqtt_app_task_entry.c

The APIs implemented in framework-based programs are classified into two types: management API and AT
command API.

Management API
The Management API is the API for managing interactions with the RYZ024A. It must be implemented in the
proper place in the application program. In addition, users do not need to change it during application
development.

The following two APIs are implemented in the management API:

• R_LTE_Init
This is a function for initializing framework-based programs. This function performs initialization of the
FSP module and hardware reset of the RYZ024A. The RYZ024A sends a URC of "+SYSSTART" when
initialization completes, and it is possible to accept AT commands. After "+SYSSTART", this function
sends the AT command "AT+CMEE=1" to receive a detailed error response. After all, AT commands
have finished executing, the callback function specified in the argument API_ID = "LTE_API_INIT" event
is notified. This function should be executed first in all API implemented in the framework.

• R_LTE_Execute
This is a function that holds and parses the data received from RYZ024A, calls the callback function
according to the data, and sends AT commands. Since this function processes each character stored in
the ring buffer each time it is called, it is necessary to call it repeatedly in the main loop.

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 46 of 55
Apr.27.23

Figure 36. Implement Management API (hal_entry.c)

AT command API
A set of AT commands necessary for the operation you want to perform is added to the Transmit waiting list
by calling the AT Command API. The registered AT commands are sent sequentially in response to the
response from the RYZ024A. The execution result of a series of AT commands is notified to the application
by a callback function. Users develop applications by calling the AT Command API in the order they want
and implementing processing corresponding to callback functions. In addition, users can add a new AT
command API by themselves and use AT commands not used in this sample application.

Figure 37. Implement AT Command API (hal_entry.c)

void hal_entry(void)
{
 SEGGER_RTT_printf(0, "PROGRAM START\n");

 /* SW interrupt driver open */
 R_ICU_ExternalIrqOpen(g_external_irq10.p_ctrl, g_external_irq10.p_cfg);
 R_ICU_ExternalIrqOpen(g_external_irq9.p_ctrl, g_external_irq9.p_cfg);

 /* Initialize framework-based program and register callback function */
 R_LTE_Init(lte_user_cb);

 while(1)
 {
 /* Execute variable process in framework-based program */
 R_LTE_Execute();

/* Omission */
 }
}

void lte_user_cb(uint16_t event_type, uint16_t api_id, uint16_t data_len, uint8_t *
p_data)
{
 if(LTE_EVENT_API_COMPLETE == event_type)
 {
 switch (api_id)
 {
 case LTE_API_INIT:
 {
 /* Configure operation mode after initiation complete */
 SEGGER_RTT_printf(0, "INIT COMP\n");
 R_LTE_OM_Config(str_PDP_type, str_PDP_APN, str_LTE_bandlist);
 } break;

 case LTE_API_OM_CONFIG:
 {
 /* Connect to network after configuration of operation mode
complete */
 SEGGER_RTT_printf(0, "OM COMFIG COMP\n");
 R_LTE_NWK_Connect(1);
 } break;

/* Omission */

Call R_LTE_Init before calling any
other APIs in framework

Call R_LTE_Execute repeatedly in
the main loop.

1. Call AT command API

2. Receive result with
callback function

3. Call next AT command API

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 47 of 55
Apr.27.23

4.2 Adding an AT command API
This framework assumes that the AT Command API is added according to the user's application. This
section explains how the AT Command API implemented in this sample application and explains how to
implement the new AT Command API.

To add the AT Command API, follow these steps:

1. Adding API IDs and Function Prototype Declarations

Add the API ID so that the added AT command API can be identified in the callback function. User also
adds prototype declarations to the header file (r_lte_ryz.h) so that the AT Command API can be
executed from the application program.

Figure 38. API IDs of this Sample Application (r_lte_ryz.h)

2. Implementing the AT Command API

Implement the actual state of the AT Command API in the source file (r_lte_ryz.c). The AT command API
of this sample application is implemented with the following configuration.

Checking Arguments and Checking the Running AT Command API
If the argument has a pointer, make sure you do not specify NULL. Also check "gs_process_api" to make
sure that no other AT command API is running. If it is running, the AT command API cannot operate
properly if you change the AT command transmit waiting list, so the error "LTE_ERR_IN_PROCESS" will
be returned without executing any process. After that, to indicate that this AT command API is executing,
register the API_ID in "gs_process_api".

typedef enum
{
 LTE_API_NO_CURRENT_API = 0,
 LTE_API_OM_CONFIG,
 LTE_API_NWK_CONNECT,
 LTE_API_NWK_DISCONNECT,
 LTE_API_MQTT_CONNECT,
 LTE_API_MQTT_DISCONNECT,
 LTE_API_MQTT_SUBSCRIBE,
 LTE_API_MQTT_PUBLISH,
 LTE_API_MQTT_RCVMESSAGE,
 LTE_API_SEC_CERTIFICATEADD,
 LTE_API_SEC_CERTIFICATEREMOVE,
 LTE_API_SEC_PRIVATEKEYADD,
 LTE_API_SEC_PRIVATEKEYREMOVE,
 LTE_API_NWK_CONNECTIONCONFIG,
 LTE_API_EDRX_CONFIG,
 LTE_API_PSM_CONFIG,
 LTE_API_INIT = 0xff,
} e_lte_api_id_t;

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 48 of 55
Apr.27.23

Figure 39. Checking the Arguments and Running AT Command API of R_LTE_OM_Config
(r_lte_ryz.c)

Registering AT Commands in the Transmission Waiting List
Register the AT command as string data in the transmit waiting list "gs_atc_list". The following must be
registered in the transmission waiting list "gs_atc_list" for one AT command.

 atcommand:
This is the string data of the AT command you want to execute. The length of the string should be
registered in "atcommand_size". The maximum length of a string data that can be registered is 256
characters. If you want to use a larger AT command string data, change the "LTE_ATC_STR_SIZE" in
the user configuration file (r_lte_user_config.h).

 data:
This is a pointer to register the address of the data string to be processed by the AT command. It is
necessary for AT commands that send data. The data string registered here will be sent
corresponding to the response of "> ". The length of the string must be registered in "data_size". It is
assumed that the actual character string to be registered in this pointer is implemented in the
application.

 comp_msg:
This is a response message that can be considered as the completion of the AT command you want
to execute. Specify "OK" or URC. The length of the string should be registered in "comp_msg_size".
The following AT command is sent immediately after receiving the string specified in the comp_msg. If
"OK" and URC are sent consecutively, register the response to be sent last. In addition, the last
comp_msg of a series of AT commands to be added to the send waiting list changes the data notified
in the callback function. For details, see [3.3 Callback Function].

 data_exist_flag:
This flag indicates that the AT command to be sent is set. R_LTE_Execute function checks this value
to confirm that the AT command is registered. If you want to register the AT command, set it to "1".

The transmit waiting list "gs_atc_list" holds string data by fixed-length arrays. Therefore, if the string data to
be registered exceeds the maximum length that can be registered in the transmit waiting list, an error due to
a buffer overflow may occur. If the user expects the data size of string data that is being registered can
exceed the maximum length, add processing to check the data size.

e_lte_err_t R_LTE_OM_Config(uint8_t* p_pdp_type, uint8_t* p_pdp_apn, uint8_t*
p_bandlist)
{
 /* Check Argument and current state */
 if((NULL == p_pdp_type) || (NULL == p_pdp_apn) || (NULL == p_bandlist))
 {
 return LTE_ERR_POINTER_NULL;
 }

 if(LTE_API_NO_CURRENT_API != gs_process_api)
 {
 return LTE_ERR_IN_PROCESS;
 }

 /* Clear ATC list and set processing API ID */
 ryz_lte_clear_atc_list();
 gs_process_api = LTE_API_OM_CONFIG;

/* Omission */

Check argument

Check running
AT command API

Register running
AT command API

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 49 of 55
Apr.27.23

Figure 40. Register AT Command of R_LTE_MQTT_Publish (r_lte_ryz.c)

Sending the first AT command
Send the AT command from the beginning of the registered transmit waiting list. Subsequent transmission
of AT commands is done in R_LTE_Execute function corresponding to the response.

Figure 41. Sending the First AT Command of R_LTE_OM_Config (r_lte_ryz.c)

e_lte_err_t R_LTE_MQTT_Publish(uint8_t* p_topic, uint16_t length, uint8_t* p_message)
{
/* Omission */

 /* Set AT command to ATC list */
 gs_atc_list[0].atcommand_size = (uint16_t)snprintf((char*)gs_atc_list[0].atcommand,
LTE_ATC_STR_SIZE, "AT+SQNSMQTTPUBLISH=%s,\"%s\",%s,%d\r", "0",p_topic,"0",length);
 gs_atc_list[0].comp_msg_size = (uint16_t)snprintf((char*)gs_atc_list[0].comp_msg,
LTE_ATC_STR_SIZE, "%s", "OK");
 gs_atc_list[0].data_exist_flag = 1;

 gs_atc_list[0].data = p_message;
 gs_atc_list[0].data_size = length;

 if(gs_atc_list[0].atcommand_size > LTE_ATC_STR_SIZE)
 {
 ryz_lte_clear_atc_list();
 return LTE_ERR_DATASIZE_OVERFLOW;
 }

e_lte_err_t R_LTE_OM_Config(uint8_t* p_pdp_type, uint8_t* p_pdp_apn, uint8_t*
p_bandlist)
{

/* Omission */

 /* Send first AT command from ATC list */
 ryz_lte_transmit_atc_list(LTE_TRANSMIT_ATCOMMAND);

 return LTE_SUCCESS;

Add following to first of Transmit waiting list:
atcommand =
“AT+SQNSMQTTPUBLISH=0,"[p_topic]“,0,[length]
comp_msg = “OK”
data_exist_flag = 1

Set the address of the data you want to send in
data

Send first AT command registered in
transmit waiting list

Check the Data Size to register the
argument in the transmit waiting list

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 50 of 55
Apr.27.23

4.2.1 AT command API with Data receive operation
To implement the AT command API that arbitrarily receives data after sending an AT command like the
R_LTE_MQTT_RcvMessage function implemented in this sample application, it is necessary to rewrite the
global variables in the framework.

When receiving data, it is necessary to change the global variables "gs_ryz_lte_receive_size" and
"gs_ryz_lte_receive_flag". Set the size of the data you want to receive to "gs_ryz_lte_receive_size" and the
macro "LTE_RCV_DATA_FLAG_ON" for "gs_ryz_lte_receive_flag".

Figure 42. Global Value Setting of R_LTE_MQTT_RcvMessage (r_lte_ryz.c)

The data received with this AT command send notifies the application by callback function. The callback
function is called when the "OK" response sent from RYZ024A is received after the data.

Note: "\r" or "\n" in the received data is converted to "\r\n" in RYZ024A and then transmitted to host MCU.

As a result, some of the content and size of the received data may change.

4.3 Guideline of error handling
In a communication control system, it is necessary to develop an application assuming that various errors
occur in the control of the communication controller and network operation. The following is a guideline for
application development using this AT Command Management Framework for detection and processing. In
practice, the processing will vary depending on the requirements for the application product, so please
handle it as reference information.

See also the "Connection Manager" description in the "RYZ024 Module System Integration Guide"
(R19AN0101).

Table 15. UART Communication and RYZ024A Behavior Error

Defect status Framework behavior Application response
RYZ024A is restarted
unintentionally

Receives URC "+SYSSTART".
Since an unintended
"+SYSSTART" is received, call
callback function to notify
application.

The callback function is called in
event
"LTE_EVENT_FATAL_ERROR".
It is recommended to initialize
using R_LTE_Init function for this
event.

UART communication from the
RYZ024A to the host MCU
results in bit errors or character
reception errors

If the character string does not
match the string specified in the
comp_msg, or if the string does
not end with "\n", a timeout
occurs and calls callback function
to notify application.

The callback function is called in
event
"LTE_EVENT_TIMEOUT_ERRO
R". It is recommended to initialize
using R_LTE_Init function for this
event.

If the received string matches the
URC specified in the comp_msg

The callback function is called in
event "LTE_EVENT_RCVURC ".
check the data registered in

e_lte_err_t R_LTE_MQTT_RcvMessage(uint8_t* p_topic, uint8_t message_id, uint16_t
message_size)
{

/* Omission */

 /* Set receive flag and size for data receive operation */
 gs_ryz_lte_receive_size = message_size;
 gs_ryz_lte_receive_flag = LTE_RCV_DATA_FLAG_ON;

/* Ommission */

Set receive size and flag

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 51 of 55
Apr.27.23

Defect status Framework behavior Application response
in front, the application is notified
by the callback function.

p_data because received string
data is registered.

UART communication from the
host MCU to the RYZ024A
results in bit errors or character
reception errors

If there is no response to the sent
string, a timeout occurs and calls
callback function to notify
application.

The callback function is called in
event
"LTE_EVENT_TIMEOUT_ERRO
R". It is recommended to initialize
using R_LTE_Init function for this
event.

If some of the AT commands sent
are incorrect, an error response
is received. After receiving the
error response, notify the
application with a callback
function.

The callback function is called in
event "LTE_EVENT_ERROR".
Since the error code
"LTE_CME_ERR_OPERATION_
NOT_SUPPORTED" (0x04) is
notified in the p_data, the
corresponding processing needs
to be added.

The MCU transmission and the
transmission timing of the
RYZ024A overlap, and the
RYZ024A does not perform the
expected operation

A timeout occurs when the
operation stops. Framework calls
callback function to notify
application.

The callback function is called in
event
"LTE_EVENT_TIMEOUT_ERRO
R". It is recommended to initialize
using R_LTE_Init function for this
event.

CTS from RYZ024A does not
enable for a long time

The response cannot be received
from the RYZ024A for a long
time, and a timeout occurs.
Framework calls callback function
to notify application.

The callback function is called in
event
"LTE_EVENT_TIMEOUT_ERRO
R". It is recommended to initialize
using R_LTE_Init function for this
event.

Table 16. Network Communication Error

Defect status Framework behavior Application response
The network is disconnected due
to deterioration of radio wave
conditions, signal strength, etc.

Receive a "+CEREG" URC.

The application is notified by a
callback function.

The callback function is called in
event "LTE_EVENT_RCVURC".
Check the parameters of the
URC and execute the
corresponding processing. Check
the AT command manual for
URC parameters.

RYZ024A tried to connect to the
network but could not connect
due to an error such as incorrect
Access Point Name.

Receive a "+CEREG" URC.

The application is notified by a
callback function.

The callback function is called in
event "LTE_EVENT_RCVURC".
Check the parameters of the
URC and execute the
corresponding processing. Check
the AT command manual for
URC parameters.

Otherwise, the connection is
severed for some reason.

Receive a "+SQNSH" URC.

The application is notified by a
callback function.

The callback function is called in
event "LTE_EVENT_RCVURC".
Check the parameters of the
URC and execute the
corresponding processing. Check
the AT command manual for
URC parameters.

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 52 of 55
Apr.27.23

The communication status is notified by URC "+CEREG" etc. An example of URC of communication status
notified from RYZ024A is explained below.
See also the description of "Connection Manager" in the "RYZ024 Module System Integration Guide"
(R19AN0101).

• Received URC “+CEREG: 80” or “+CEREG: 4”:
 A URC that is notified when you are temporarily disconnected from the network. Since RYZ024A is

trying to connect to the network again, if the radio wave condition improves, RYZ024A can reconnect
to the network without executing the AT command API. At this time, MQTT communication is
maintained in the RYZ024A, so MQTT communication can be resumed without executing
R_LTE_MQTT_Connect function when reconnecting to the network.

• Received URC “+CEREG: 0”:
 A URC to be notified when disconnected from the network. If the radio wave conditions improve, the

connection will be automatically reconnected. In the upper layer, for example, when the TCP socket is
disconnected, a URC such as +SQNSH is notified, so processing such as TCP connection is required
as necessary.

• Received URC “+SQNSMQTTONCONNECT: 0,-7”:
 This is a URC that is notified when MQTT communication is also disconnected after a certain period

after being disconnected from the network. Reconnecting to the network does not preserve MQTT
communication, so you must execute the R_LTE_MQTT_Connect function again.

4.4 PMOD-RYZ024A Specific Processing
When the RYZ024A enters the deep sleep state, the UART CTS signal becomes Hi-Z. In a normal circuit, by
pulling up the CTS signal and making it high level, when the RYZ024A is in the deep sleep state, it can be
controlled by HW flow control so that AT commands cannot be sent from the host computer.

However, in the PMOD-RYZ024A, due to the characteristics of the level shifter used, the CTS signal from the
level shifter to the host microcomputer remains low even when the RYZ024A enters deep sleep, making HW
flow control impossible.

Therefore, in this sample application, when the host MCU sends an AT command while the RYZ024A is in
deep sleep, first send "AT+CFUN?" command to confirm that RYZ024A has woken up. When the response
of "AT+CFUN?" command is not returned, it retries several times. Send the desired AT command (for
example, AT+SQNSMQTTPUBLISH) after receiving "OK". [Figure 43. Registration of "AT+CFUN?"
Command (r_lte_ryz.c)] shows how to add the "AT+CFUN?" command to the transmission waiting list.

[Figure 43. Registration of "AT+CFUN?" Command (r_lte_ryz.c)] shows how to add the "AT+CFUN?"
command to the transmission waiting list.

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 53 of 55
Apr.27.23

Figure 43. Registration of "AT+CFUN?" Command (r_lte_ryz.c)

By using an appropriate level shifter, even if the RYZ024A enters a deep sleep state, this processing is not
necessary for boards that can perform HW flow control with the CTS signal.
Definitions for enabling or disabling PMOD-RYZ024A specific processing are shown in [Table 17. Definition
of PMOD-RYZ024A Specific Processing (r_lte_ryz.c)].

Table 17. Definition of PMOD-RYZ024A Specific Processing (r_lte_ryz.c)

Name Default value Description
PMOD_RYZ024A 1 1: Enable PMOD-RYZ024A specific processing to

send AT+CFUN? command.

0: Disable PMOD-RYZ024A specific processing.

Definitions for setting the operation of the "AT+CFUN?" command are shown in [Table 18. Operation setting
of AT+CFUN? Command (r_lte_ryz.c)].

Table 18. Operation setting of AT+CFUN? Command (r_lte_ryz.c)

Name Default value Description
AT_POLLING_TIMETOUT 2 Timeout count for "AT+CFUN?" command.

Unit: 2 sec

for example, 2 sec * 2 = 4 sec

AT_POLLING_RETRY_COUNT 2 Number of retries for "AT+CFUN?" command.

e_lte_err_t R_LTE_MQTT_Publish(uint8_t* p_topic, uint16_t length, uint8_t* p_message)
{
/* Omission */

 /* Set AT command to ATC list */
 gs_atc_list[0].atcommand_size = (uint16_t)snprintf((char*)gs_atc_list[0].atcommand,
LTE_ATC_STR_SIZE, "AT+CFUN?\r");
 gs_atc_list[0].comp_msg_size = (uint16_t)snprintf((char *)gs_atc_list[0].comp_msg,
LTE_ATC_STR_SIZE, "OK");
 gs_atc_list[0].data_exist_flag = 1;
 gs_atc_list[0].at_polling_flag = 1;

 gs_atc_list[1].atcommand_size = (uint16_t)snprintf((char*)gs_atc_list[1].atcommand,
LTE_ATC_STR_SIZE, "AT+SQNSMQTTPUBLISH=%s,\"%s\",%s,%d\r", "0",p_topic,"0",length);
 gs_atc_list[1].comp_msg_size = (uint16_t)snprintf((char*)gs_atc_list[1].comp_msg,
LTE_ATC_STR_SIZE, "%s", "OK");
 gs_atc_list[1].data_exist_flag = 1;
 gs_atc_list[1].data = p_message;
 gs_atc_list[1].data_size = length;

 if(gs_atc_list[1].atcommand_size > LTE_ATC_STR_SIZE)
 {
 ryz_lte_clear_atc_list();
 return LTE_ERR_DATASIZE_OVERFLOW;
 }

/* Omission */

Add following to first of Transmit waiting list.

atcommand = “AT+CFUN?”
comp_msg = “OK”
data_exist_flag = 1
at_polling_flag=1

Add “AT+SQNSMQTTPUBLISH” to
2nd of Transmit waiting list.

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 54 of 55
Apr.27.23

4.5 Initializing PMOD-RYZ024A
If you have been using the PMOD-RYZ024A before running the sample application in this application note,
your settings may be saved in the RYZ024A's non-volatile memory. It can be initialized by executing the
following AT command.

Figure 44. Initializing PMOD-RYZ024A

AT+CGDCONT=1,"IP","soracom.io"
OK
AT+CGDCONT?
+CGDCONT: 1,"IP","soracom.io",,,,0,0,0,0,0,0,0,,0

OK
AT+SQNSFACTORYRESET
ERROR
AT^RESET
OK

+SHUTDOWN

+SYSSTART

OK
AT+CGDCONT?
+CGDCONT: 1,"IPV4V6","",,,,0,0,0,0,0,0,1,,0

OK

Set later to ensure that it has been initialized.

The response may not be ERROR.

Make sure the settings are initialized and show the default values.

RYZ024A and RA MCU LTE Communication Sample Application

R19AN0220EJ0100 Rev.1.00 Page 55 of 55
Apr.27.23

Revision History

Rev. Date
Description
Page Summary

1.00 Apr.27.23 - Initial release

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Overview of Sample Framework
	1.2 Software Configuration

	2. MQTT Communication Application
	2.1 Application Environment
	2.2 Application Operation

	3. AT Command Management Framework
	3.1 Framework Overview
	3.2 API functions
	3.2.1 Management API
	3.2.1.1 R_LTE_Init
	3.2.1.2 R_LTE_Execute

	3.2.2 AT command API
	3.2.2.1 R_LTE_OM_Config
	3.2.2.2 R_LTE_NWK_Connect
	3.2.2.3 R_LTE_NWK_Disconnect
	3.2.2.4 R_LTE_MQTT_Connect
	3.2.2.5 R_LTE_MQTT_Subscribe
	3.2.2.6 R_LTE_MQTT_Publish
	3.2.2.7 R_LTE_MQTT_RcvMessage
	3.2.2.8 R_LTE_MQTT_Disconnect
	3.2.2.9 R_LTE_SEC_CertificateAdd
	3.2.2.10 R_LTE_SEC_CertificateRemove
	3.2.2.11 R_LTE_SEC_PrivateKeyAdd
	3.2.2.12 R_LTE_SEC_PrivateKeyRemove
	3.2.2.13 R_LTE_NWK_ConnectionConfig
	3.2.2.14 R_LTE_eDRX_Config
	(1) mode parameter
	(2) edrx_time_value parameter
	(3) ptw_time_value parameter

	3.2.2.15 R_LTE_PSM_Config
	(1) mode parameter
	(2) tau_time_value
	(3) active_time_value
	(4) tau_multiplier, active_multiplier

	3.3 Callback Function
	3.4 User Specific Configuration
	3.5 FSP module Used in Framework
	3.5.1 SCI UART Module
	3.5.2 AGT Timer module
	3.5.3 External IRQ Module
	3.5.4 Low Power Mode Module

	3.6 FreeRTOS Framework
	3.6.1 LTE Task
	3.6.2 MQTT Communication Application Task
	3.6.3 IDLE Task
	3.6.4 Task Setting Value

	3.7 Low Power Operation
	3.7.1 Low Power Operation Control of RYZ024A
	(1)
	(1) When the AT command API is called
	(2) When a RING interrupt occurs

	3.7.2 Low Power Operation Control of Host MCU

	4. Application development using AT Command Management Framework
	4.1 Overview of application development
	4.2 Adding an AT command API
	4.2.1 AT command API with Data receive operation

	4.3 Guideline of error handling
	4.4 PMOD-RYZ024A Specific Processing
	4.5 Initializing PMOD-RYZ024A

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

