LENESANS

Application Note

Azure RTOS sample projects
using e? studio or IAR EW

RO1ANG455EJ0103

Rev.1.03
2023.7.28

Introduction

Azure RTOS sample projects for each component (ThreadX, FileX, GUIX, NetX Duo, and USBX) can be
created using Renesas e? studio or IAR Embedded Workbench (EW) with the on-board emulator. All
samples are designed to run on RX family.

This document guides how to create and use these sample projects.

Supported Sample Projects

ThreadX sample project
Contains ThreadX source code

Minimal sample project
Contains ThreadX source code
Simplest sample for ThreadX

FileX RAM Disk sample project
Contains FileX source code

NetX Duo Ping sample project
Contains NetX Duo ping sample project

NetX Duo Iperf sample project
Contains NetX Duo iPerf sample project

loT Embedded SDK sample project

Sample project to connect to Azure IoT Hub using Azure loT Middleware for Azure RTOS

loT Embedded SDK PnP sample project

Sample project to connect to Azure loT Hub using Azure loT Middleware for Azure RTOS via loT Plug

and Play

GUIX 8bpp sample project
Contains sample for GUIX 8BPP

GUIX 16bpp sample project
Contains sample for GUIX 16BPP

GUIX 16bpp draw 2d sample project
Contains sample for GUIX 16BPP with 2D Draw

USBX device CDC-ACM Class sample project
Contains USBX source code

USBX Host Mass Storage Class sample project
Contains USBX source code

ThreadX Low Power sample project
Contains ThreadX & low power utility source code

Azure Device Update (ADU) sample project
Sample project for OTA firmware update via Microsoft Azure

Secure bootloader sample project
Used together with ADU sample project to provide a secure boot

RO1AN6455EJ0102 Rev.1.03
July.28.23 RENESAS

Page 1 of 40

Azure RTOS sample projects using e2 studio or IAR EW

Supported Devices

- RX130
- RX140
- RX26T
- RX65N
- RX651

- RX660
- RX66T
- RX671

- RX72N
Table 1 Supported Kits

Device RMB5M RX651 RX130 RX140 RXZET RMEE0 RXBET RXT2N RX&T1

Board RSK Cloud Kit Mew CK New CK RSK RX65M Target Board RSK MCE RSK RSK Envision Kit RSK

‘Connectivity Ethernet Wi-Fi Ethernet CatMi - - - - - - Ethernet Wi-Fi

5}
5]
5]
51
51
5}
5]

ol o
oo
oo
oo
o o
ol o
oo

ol|lol| o
o|lo| o

ololaol o
ololaol o
oloalal o

T Embedided K zam o o o ° i
loT Embedded K sam .
EWF h
T Embadiad SDK Pr sam o o o o o
T Embedided SO K Prp sam .
sing EWF o

Supported sample projects are different by each device. For details, please refer to the following URL.

https://github.com/renesas/azure-rtos

Download Links for Development Environment
- €2 studio : 2023-07 or later

https://www.renesas.com/software-tool/e-studio

- Renesas C/C++ Compiler for RX Family CC-RX : V3.05.00 or later
https://www.renesas.com/software-tool/cc-compiler-package-rx-family

- GCC for Renesas RX : 8.3.0.202202 or later

https://gcc-renesas.com/rx-download-toolchains/

- AR Embedded Workbench for RX : 4.20.1 or later

https://www.iar.com/products/architectures/renesas/iar-embedded-workbench-for-renesas-rx/

RO1AN6455EJ0102 Rev.1.03 Page 2 of 40
July.28.23 RENESAS

https://github.com/renesas/azure-rtos
https://www.renesas.com/software-tool/e-studio
https://www.renesas.com/software-tool/cc-compiler-package-rx-family
https://gcc-renesas.com/rx-download-toolchains/
https://www.iar.com/products/architectures/renesas/iar-embedded-workbench-for-renesas-rx/

Azure RTOS sample projects using e2 studio or IAR EW

- RX Smart Configurator : V2.18.0 and later

https://www.renesas.com/software-tool/smart-configurator

« Azure loT Explorer

https://github.com/azure/azure-iot-explorer/releases

RO1AN6455EJ0102 Rev.1.03 Page 3 of 40
July.28.23 RENESAS

https://www.renesas.com/software-tool/smart-configurator
https://github.com/azure/azure-iot-explorer/releases

Azure RTOS sample projects using e2 studio or IAR EW

Contents

1. GetliNg StArted ... e e 5
1.1 Creating project using €2 StUAIOccccoiiiiiiiii i 5
1.2 Creating project USING TAR EW ettt et e et e e s et e e e s anteeeeeans 7
2. Sample ProjeCt DeSCIIPHONSo 8
D20 T N 011 Y= To) Q== 10 0] 0] (= o]) = o 8
2.2 MinIimMal SAMPIE PrOJECE ————— 10
2.3 FileX RAM Disk SamPIe PrOJECE.....ccccieii et e 12
2.4 NetX Duo Ping Sample PrOJECToiiiiiiiii ittt e e e e e e e e 14
2.5 NetX Duo Iperf SAmPIe PrOJECE o et e e e e e e e e e e e e e e e e e e e anneeeeeaaeeas 16
2.6 0T Embedded SDK Sample PrOJECT......coi it e e e e e e e e e e e eeeaae s 18
2.7 10T Embedded SDK PNP Sample PrOJECTueiiiiiiiiiiiiieiee ettt a e e e sanraae e e e e 24
2.8 GUIX 8bpp/16bpp/16bpp_draw2d Sample ProjECEeeeiieiiiiiiiiiiee e e 26
2.9 USBX device CDC-ACM Class Sample ProjECL.........c.uuviiiiiiiiiiiciieiee et e 28
210 USBX Host Mass Storage Class sample Projectcooiiiiiiiiiiiiiiiieee et 30
211 ThreadX Low Power Sample ProjECE it e e e e e e enneeeeeeae s 33
2.11.1 Overview of SAMPIE PrOJECE..... ... et e e e e e e e e e e e e e e e e nnaeneeaae s 33
D e I = =T o U 1 (=YY= g] o[] o)1= o 34
2.11.3 Configuration of ThreadX Low Power by Smart Configurator.............cccocoviiiiieiiiiicieee e, 36
2.12 Azure Device Update (ADU) SAMPIE PrOJECE......ciiiii et e e e e e 38
REVISION HISTOIY ...t e e e e e e e e e e e e e e e e e st aeaaeas 40
RO1AN6455EJ0102 Rev.1.03 Page 4 of 40

July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

1. Getting Started

To create new Azure RTOS project, the procedure is different between e? studio and IAR EW.

1.1 Creating project using e? studio
1. Launch e? studio, create new project: [File] > [New] > [Renesas C/C++ Project] and select Renesas RX

and create a new workspace.

@ ¢ studio Launcher X

Select a directory as workspace

e studio uses the workspace directory to store its preferences and development artifacts.

Workspace: |D:\demo | [Browse.

[Use this as the default and do not ask again

» Recent Workspaces

Figure 1.1 Workspace Creation Window

2. Select GCC for Renesas RX C/C++ Executable Project or Renesas CC-RX C/C++ Executable

Project.

Note : For those who use CC-RX Evaluation Edition. After the trial period, the CC-RX features become
limited to restrictions on the linkage size. RX Azure RTOS sample will exceed this restriction. Consider
updating CC-RX Professional edition or using GCC for Renesas RX C/C++ Executable.

C/C++

8 New C/C++ Project O

Templates for Renesas RX Project

X

GCC for Renesas RX C/C++ Executable Project

€S A C/C++ Executable Project for Renesas RX using the GCC for Renesas RX Toolchain.

GCC for Renesas RX C/C++ Library Project
€= A C/C++ Library Project for Renesas RX using the GCC for Renesas RX Toolchain.

Renesas CC-RX C/C++ Executable Project
65 A C/C++ Project for Renesas RX using the Renesas CCRX toolchain.

Renesas CC-RX C/C++ Library Project
€= A C/C++ Library Project for Renesas RX using the Renesas CCRX toolchain.

< Back Next > Finish Cancel

Input the project name.
4. Click [Next].

Figure 1.2 Toolchain Setting Window

RO1ANG455EJ0102 Rev.1.03
July.28.23

RENESAS

Page 5 of 40

Azure RTOS sample projects using e2 studio or IAR EW

New Renesas CC-RX Executable Project

New Renesas CC-RX Executable Project

project name:| demo |

Use default location
D:\demo\demo Browse...
Create Directory for Project
default
Working sets
[J Add project to working sets New...

Select.

)

<Back Fish Concel

© N o o

the target board.
9. Click [Next].

Figure 1.3 Project Creation Window

At RTOS, select “Azure RTOS”.
Click Manage RTOS Versions... to download software package.

At RTOS Version, select a version that downloaded at step 6.

At Target Board, select a board that you are working on. Configurations are automatically set based on

& O X

New Renesas CC-RX Executable Project —
Select toolchain, device & debug settings

Toolchain Settings

Language: ®c OC++
Toolchain: Renesas CC-RX v
Toolchain Version: | v3.05.00 w
Manage Toolchains...
RTOS: Azure RTOS -
RTOS Version: |6.21_rel-n-1.0.1 v
| Manage RTOS Versions..]
Device Seitings Configurations
ITavqef Board: |RSKRX65N-2ME| v || Create Hardware Debug Configuration
Download additional bards... E2 Lite (RX) -

Target Device: | RSFS6SNEDKFC
[Create Debug Configuration
Unlock Devices...
RX Simulater v
Endian: | Little ~

Project Type: | DR [Create Release Configuration

@ <Back e Cancel

Figure 1.4 RTOS and Target Board Setting Window

10. Click [Next].

e o x

New Renesas CC-RX Executable Project =

Select Coding As:

t settings

face that combines the functionailies of
nd generates different types of drivers

Figure 1.5 Coding Assistant Setting Window

RO1ANG455EJ0102 Rev.1.03
July.28.23

RENESAS

Page 6 of 40

Azure RTOS sample projects using e2 studio or IAR EW

11. Select an application.
12. Click [Finish].

[EG New Smart Configuration File

Smart Configuration Settings

Select RTOS Project Settings

Select application:

ThreadX sample project

oH
flag groups, and mutexes

FileX RAM Disk sample project

data, and reads the file data back into memory

NetX Duo Ping sample project

window. Note: default baudrate setting is 115200

Project includes ThreadX, BSP, and CMT. This sample is the standard 8-thread ThreadX
example, that illustrates the use of the main ThreadX services, indluding threads,
message queues, timers, semaphores, byte memory pools, block memory pools, event

Project includes ThreadX, FileX, BSP, CMT. This sample illustrates the use of the FileX
embedded FAT file system. The example creates a small RAM-disk with a sample file and

This sample project illustrates the setup and use of NetX Duo IPv4/IPv6 TCP/IP stack via
ping from another node on the local network. By default, this demonstration requests an
IP Address via DHCP, and displays the status and assigned IP Address via terminal /O

v

Cancel

Figure 1.6 Select Application Window

13. Azure RTOS sample project including each component is created.

@ demo - demo/demo.scfg - ¥ studio
Fle Edit Navigate Search Project Renesas Views Run Window Help
K] =] [=] % Debug

[+ & demo [HardwareDebug]

demo HardwareDebug launch

- Current Configuration

Selected board/device: RSFSGSNEDXFC (ROM size: 2MB, RAM size: 640KB, Pin count: 176)
Generated location (PROJECT_LOCY: [src\sme_gen Edit
Selected components:

Version

© Azure RTOS ThreadX 6111 rel

© AZureRTOS Object 10104

©Board Support Packages. (rbsp) 710 " bsp(used)

©CMT driver (r_cmt) 510 r_cmt x{used) v

<

Overview | Board| Clocks| System| Components| Pins|Interry

: File modified:src\smc_gen\r config\r bsp config.h

1103000604
1100006802: Code generation is successful:D:\demo\demo\src\sme gen

<

P— . =)
Overview information L]

5 ncludes ode Generate Report

& libs Allow general pin configuration and pin configuration for selected softwar El

e

- Interrupt

 demoscl

© |@IMcU/MPU Package =

Type

Q 2| BC/Cr+ |8 Smart Configurator
£ MMU Layout v

RENETS

Figure 1.7 Created Sample Project Window

14. Build project: Select the sample project in the e? studio workspace and right click and select build to build

the sample project.

15. Make sure that target board is set to Debug mode in Jumper Settings. For the detail, see each board

User manual.

16. Select Download and Debug to download and start execution of the project. By default, execution stops

at a breakpoint set at main.

Note: Other debugger settings may be required depending on the board type you specify.
In the case of Renesas Starter Kit+ for RX65N-2MB: click Debugger > Connection Settings >

Power Target From The Emulator, and set No.

17. Please review the sample descriptions later in this guide for additional setup and expected behavior.

1.2 Creating project using IAR EW

Please refer to following FAQ for the detailed instructions:
https://en-support.renesas.com/knowledgeBase/20533128

In AN ja, same update however changing URL
https://ja-support.renesas.com/knowledgeBase/20533124

RO1AN6455EJ0102 Rev.1.03

July.28.23 RENESAS

Page 7 of 40

https://en-support.renesas.com/knowledgeBase/20533128
https://ja-support.renesas.com/knowledgeBase/20533124

Azure RTOS sample projects using e2 studio or IAR EW

2. Sample Project Descriptions

Additional setup and expected behavior of each sample project are described in this section.

2.1 ThreadX sample project

This sample is the standard 8-thread ThreadX example, that illustrates the use of the main ThreadX
services, including threads, message queues, timers, semaphores, byte memory pools, block memory pools,
event flag groups, and mutexes.

Supported Kits :
o Target Board for RX130

Renesas Starter Kit for RX140
MCB-RX26T Type A/B

Renesas Starter Kit+ for RX65N-2MB
CK-RX65N cloud kit

Renesas RX65N Cloud Kit

Renesas Starter Kit for RX660
Renesas Starter Kit for RX66T
Renesas Starter Kit+ for RX671
RX72N Envision Kit

To run this sample, simply follow these steps (assuming the steps described in the previous section were
done):

1. Set a breakpoint at any line.

2. Select Go to start execution of the sample project.

L e NGk 2 R &

i Config S8 1 & Config 508_us resetprge [sample maeatus
Else 46 (qubse_ptr -3 tx_quese_id |+ TX_QUEVE_ID)

ifrded TX_TINR_PROCESS_IN_IS8
else

Regites f] Prodlems @ Smart Browner (@ Debugger Comacle 1] Drbug $hel [} Memory % b CH 40 -m-
1sg Femesss G08 Hardmare Oebugging]

atettcms © waswm @ tmuiter

Figure 2.1 e? studio Debugger Screen

RO1AN6455EJ0102 Rev.1.03 Page 8 of 40
July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

@ st - AR Ermbedded irkbench D - RA 141

LOB@ & X®D 2C

peTr——

Fle B8t View Projec Debug EVEUte Tools Window Help

- o x
$:2¢ 0> A R®s BTN el 02 -0 AT
- wtent B X Dinsiemtly -
L= - 6o Momoy
|| threed_o_couner 0x16106 ULONG e oy %
e 0x16108 ULONG
e Didils UoNs e g ot
hroad 3 i Ox16118 ULONG E
read_g o 0x1611C ULONG
thread§_couter 160 0x16120 ULONG EIEERCIE I 0L
read_§_courter 401 ox16124 ULONG
tread7_courter 400 ox16128 ULONG
L7 thresd_2_entxy
FFEDZCER 7E AG
vea) FFEZCBA 60 40
FFEDZCEC FB 6E 04 §1
o1
FFEO2CH 0D
FrEzcs2 62 11
) FFEOICI AB EC
FFEozcse §B 38 FF
FFERZC9B EF 02
FFERZCOD 62 14

FFEQZCOF A0 EC
FFEOICAL 72 61 CE 05
Eeion 2nows EFEO2CAS 05 CA 04 00
hiled) FFEO2CAS 61 01
' FFEQ2CAE 19
FFEO2CAC A9 61
FFED2CAE EC 02 v
BebugLop i
Log &
FriNow 27, 2020 10:26:30 Tergetrosat
FriNow 27, 2020 1027 48, Ereckaoirt hit Cade @ semple_theodec 805
FriNow27, 2020 10:27.53 Breakpointhit Cade @ sample_thresdcc 1765
A\ FriNow27. 2020102753 The stack pi Jser s 3FB0D)
|« =
i Debuglog
i 1n261 ois syem | a0 st 01 B

Figure 2.2 IAR EW Debugger Screen

After hitting Break, the debugger screen shot above shows various counters incremented by the ThreadX
sample as each of the main components of the ThreadX are exercised.

To learn more about Azure RTOS ThreadX, view https://docs.microsoft.com/azure/rtos/threadx/.

RO1ANG455EJ0102 Rev.1.03
July.28.23

RENESAS

Page 9 of 40

https://docs.microsoft.com/azure/rtos/threadx/

Azure RTOS sample projects using e2 studio or IAR EW

2.2 Minimal sample project

This is minimal sample with one thread. It illustrates the usage of main ThreadX service. The sample outputs
the message to serial terminal and blinks LED every second.

Supported Kits:
Target Board for RX130

Renesas Starter Kit for RX140
MCB-RX26T Type A/B

Renesas Starter Kit+ for RX65N-2MB
CK-RX65N cloud kit

Renesas RX65N Cloud Kit

Renesas Starter Kit for RX660
Renesas Starter Kit for RX66T
Renesas Starter Kit+ for RX671
RX72N Envision Kit

To run this sample, simply follow these steps (assuming the steps described in the previous section were
done):

[For RX130 Target Board and MCB RX26T]
1. Select Go to start execution of the sample project

2. Open “Renesas Debug Virtual Console” .

88 demo - sample/src/demo_thready.c - € studio
File Edit Source Refactor Navigate Search vrqen Run Window Help
| B-Q -~ | ®3 > 0| G >|v B &
15 Debug X Code Generator 2 tnaramS 455 camnle cein [S! recet_program
[sample HardwareDebug [Renesas GDB Hardware Debud | Debug | & Foult Status
v 2 sample.elf [1] [cores: 0] Partner 05 > = Renesas Coverage
v o Thread #11 (single core) [cere: 0] (Suspended : Br Pin Configurator >|D Renesas Debug Virtual Console erne
= main() at demo_threads.c:63 Oxffe02bf2 Renesas QF »[@® Eventpoints
+d roceligdb ox-force2 (1.82) Smart Configurator >] 10Registers
3 Renesas GDB server (Host)
Solution Toolkit > @ mmu al sys
Tracing » (O Performance Analysis efine(
* Renesas Software Installer @ Profile
727 X%, Real-time Chart
S Trace t
75 () Visual Expression
77 +18 LiveTrace Console aoyte
7 Put system definition

Figure 2.3 Renesas Debug Virtual Console

3. As the project runs, it will output “Hello, RX AzureRTOS sample” to serial terminal per one second, and
it will blink an LED on the board per one second.

B demo - minimal_cknsn in.c - e studi - 0 x
e e Search Project RenesasViews Run Window Help

iR Q-

Q @ | Buc 45D
= O |[0-v X |% 8|5 P|GE >, =0

1 Renesas GDB server (Host)

[m—

' Console 1 Registers ¥ Problems | @ Smart Browser| GR Debugger Console G Renesas Debug Virual.. X | O Memoy] = 8

raEZ TR

ello, RX Az

— OO

Witable Smart Insert 6:24:107

Figure 2.4 Minimal sample output

RO1AN6455EJ0102 Rev.1.03 Page 10 of 40
July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

[For target boards except for RX130 Target Board and MCB RX26T]

1. Verify the serial port in your OS’s device manager. It should show up as a COM port

Figure 2.5 Device Manager

2. Open your favorite serial terminal program such as Putty and connect to the COM port discovered
above. Configure the following values for the serial port:

Baud rate: 115200
Data bits: 8

Parity: none

Stop bits: 1

Flow control: none

3. Select Go to start execution of the sample project

As the project runs, it will output “Hello, RX AzureRTOS sample” to serial terminal per one

second, and it will blink an LED on the board per one second.

Y COM4 - Tera Term VT

RT

File Edit Setup Control Window Help

[0]

Figure 2.6 Minimal sample output

Table 2 Assigned LED on the board

Board LED
CK-RX65N LED4
RX65N Cloud Kit LED1
RSK RX65N-2M LEDO
RSK RX671 LED2
RX72N Envision Kit LED2
RX130 Target Board LEDO
RSK RX140 LEDO
RX660-Starter-Kit LEDO
RX66T-Starter-Kit LEDO
MCB RX26T LED1
RO1AN6455EJ0102 Rev.1.03 Page 11 of 40
July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

2.3 FileX RAM Disk sample project

This sample illustrates the use of the FileX embedded FAT file system. The example creates a small RAM-
disk with a sample file and data, and reads the file data back into memory. The debugger can show the data
being read.

Supported Kits:
Target Board for RX130

Renesas Starter Kit for RX140
MCB-RX26T Type A/B

Renesas Starter Kit+ for RX65N-2MB
CK-RX65N cloud kit

Renesas RX65N Cloud Kit

Renesas Starter Kit for RX660
Renesas Starter Kit for RX66T
Renesas Starter Kit+ for RX671

® RX72N Envision Kit

To run this sample, simply follow these steps (assuming the workspace is already open):

1. Open sample_filex_ram_disk.c and set a breakpoint around Line 201 at
if (status = FX_SUCCESS)

2. Select Go to start execution of the sample project

3. Inthe Expression window for e? studio or Watch window for IAR EW, ensure you watch the
local_buffer variable as expression.

iems @ SmartBrouner G DebuggerComcle (1) Debug Shel () Memory
nesss GOB Hartmase Debugging]

Figure 2.7 e? studio Debugger Screen

RO1AN6455EJ0102 Rev.1.03 Page 12 of 40
July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

@ e rton - AR Erbedded Warkbenh D€ - REA1AT o0 x
Pttt View Poen Ombug EAE2U Teoh Window Hep
DOR@ 8 %B0.0C Q265D NEIRSE6.c0%0 3 il 000 tag s @l al
sampte_fhex.am sk % - Wt v 8 X Dusssembly vax
ihread_0_eniry(ULONG) # - Goo Moy
Disassembr |
[0 * (0x20) OxA0OTRC CHAR s
1) A (0x41) Ox8007ED cua L ks
) B (0x42) ORSDOTEE AR .
1 e (e o croe T e
] D (0xdd) GxaODTCH CHAR e
} £ (0xd5) GwdDOTCL AR i e
F(0xd6) oxanOTC2 CHAR
7) G (0x47) Oxa007C3 CHAR s
) H(0x48) Ox8007CA ey - X
1' (0x49) ox8007CS AR EXEISITE R ZE 2
i) 3 (0x4h) Ox8ODTCE CHAR x
1) K (0xdB) GxBOOTCT cHaR FFRANI00 T8 1K .00 43
2 L' (0xdC) omanorce CHAR
5 (o) seanrcs Gun FrEoans 05 00 05 00
14] ' (0x4E) 0xa007CA AR = 5
5] o (0xdF) oxs07CE CHAR
5] B (0x50) OdO0TCC AR
17) ¢ (0x51) Ox8007CD CHAR R RS
6] R (0x52) GxBOOTCE cHAaR E
19] S (0x53) Ox8DOTCF cHAR ESEMXGEIE 26
0] T (0x54) oxs007DR cHAR X
1] U' {0xSS) 0x8007D) CHAR RS AR
2] v (0xS6) ExBDOTDZ cHAR
5 e oo s el C
Srros clost st Buont Ehe docps 4] X' (0x56) U8007D4 R I
[5] v (0x59) oxa007DS can
e imen oo Gun FEOOC 6107
s 7] “n' (0x0A) Ox8007DT CHAR g
< il . s = 0' (0x00) GxBOOTDE cHAR - G
a1 Fn ety dwanarma Ausn v le »
Oebup g vax
FiiNov 27. 2020 101 28 L Clozre. s . fle_romeisiDe Sl som_diskout
Fii Now 27, 2020 1031 29, Target
FiiNow 27, 2020 103311 Broskpainthit Coa @ semgle_flex_rom_disk 1959
Ly Finov 27,2020 103511 poirer forstack User (cumensy AFO0010 P800}
Bss DebagLop
[n 168, Col 34 fpstem Cop o v B

Figure 2.8 IAR EW Debugger Screen

The debugger screen shot above shows the file data read back in the RAM disk
sample.

To learn more about Azure RTOS FileX, view
https://docs.microsoft.com/azure/rtos/filex/.

RO1AN6455EJ0102 Rev.1.03
July.28.23 RENESAS

Page 13 of 40

https://docs.microsoft.com/azure/rtos/filex/

Azure RTOS sample projects using e2 studio or IAR EW

2.4 NetX Duo Ping sample project

This sample project illustrates the setup and use of NetX Duo IPv4/IPv6 TCP/IP stack via ping from another
node on the local network. By default, this demonstration requests an IP Address via DHCP, and displays
the status and assigned IP Address via Terminal program.

Supported Kits:
Renesas Starter Kit+ for RX65N-2MB

CK-RX65N cloud kit (Ether)
Renesas RX65N Cloud Kit
Renesas Starter Kit+ for RX671
RX72N Envision Kit

To run this sample project, simply follow these steps (assuming the workspace is already open):

5. Verify the serial port in your OS’s device manager. It should show up as a COM port

Figure 2.9 Device Manager
6. Open your favorite serial terminal program such as Putty and connect to the COM port discovered
above. Configure the following values for the serial port:
Baud rate: 115200
Data bits: 8
Parity: none
Stop bits: 1
Flow control: none
7. Select Go to start execution of the sample project

8. As the project runs you should observe the IP address assigned via DHCP in the output window

Bl COM3 - Tera Term VT - o X

ed.
92.168.2.115
K]

Figure 2.10 IP Address Assigned via DHCP
9. The example above shows that the assigned IP address of the RX MCU is 192.168.2.115. When the
demonstration is running it can be pinged by any machine on the network. The following is an example
of a ping from a Windows machine on the same local network (using the DOS command window).

RO1AN6455EJ0102 Rev.1.03 Page 14 of 40
July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

To learn more about Azure RTOS NetX Duo, view https://docs.microsoft.com/azure/rtos/netx/.

Figure 2.11 Ping Response

RO1ANG455EJ0102 Rev.1.03
July.28.23

RENESAS

Page 15 of 40

https://docs.microsoft.com/azure/rtos/netx/

Azure RTOS sample projects using e2 studio or IAR EW

2.5 NetX Duo Iperf sample project

This demonstration illustrates TCP and UDP network throughput, using NetX Duo IPv4/IPv6 TCP/IP stack,
and the industry-standard Iperf network throughput benchmark, with Jperf GUI. By default, this
demonstration requests an IP Address via DHCP, and displays the status and assigned IP Address via
Terminal program.

Supported Kits:
Renesas Starter Kit+ for RX65N-2MB

CK-RX65N cloud kit (Ether)
Renesas Starter Kit+ for RX671
° RX72N Envision Kit

To run the NetX Duo Iperf Sample project, simply follow these steps (assuming the workspace is already
open):

Note: This sample is Ethernet based and therefore assumes an Ethernet cable is connected to the Ethernet
connector on the board.

1. Verify the serial port in your OS’s device manager. It should show up as a COM port.

- o x

Figure 2.12 Device Manager
2. Open your favorite serial terminal program such as Putty and connect to the COM port discovered
above. Configure the following values for the serial port:
Baud rate: 115200
Data bits: 8
Parity: none
Stop bits: 1
Flow control: none
3. Select Go to start execution of the sample project.

4. As the project runs you should observe the IP address assigned via DHCP in the output window.

& COM10 - PuTTY u] X

Figure 2.13 IP address assigned via DHCP
5. Once running, simply browse to target IP address (in the screen shot above it is 10.172.14.40) to view
the NetX Duo Iperf server page, which provides options for running each Iperf test as well as displays
the results of each test. Here is as sample view after browsing 10.172.14.40:

RO1AN6455EJ0102 Rev.1.03 Page 16 of 40
July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

[} Netx IPerf Demonstration x B

&« O O Notsecure | 10.172.14.40 w @ O o]

@ Microsoft Azure

NetX IP Address:
10.172.14.40
fe80:0:0:0:0:0:0:3

Destination IP Address:
Destination Port: 5001

Test Time(Seconds):

Packet size:

Test Time(Seconds):

Destination IP Address: EEEE
Destination Port:
Test Time(Seconds):

Start TCP Receive Test

Test Time(Seconds):

Start UDP Receive Test Choose a test from the left.

Figure 2.14 NetX Duo Iperf Server Page

Note: Static IP address assignment is also possible by disabling NX_ENABLE_DHCP in the project settings
and modifying the default static IP address of 192.168.1.211 in the source file “sample_netx_duo_iperf.c” file.

To learn more about Azure RTOS NetX Duo, view https://docs.microsoft.com/azure/rtos/netx/.

RO1ANG455EJ0102 Rev.1.03
July.28.23 RENESAS

Page 17 of 40

https://docs.microsoft.com/azure/rtos/netx/

Azure RTOS sample projects using e2 studio or IAR EW

2.6 loT Embedded SDK sample project

This demonstration connects to Azure lIoT Hub using Azure lIoT middleware for Azure RTOS. This
demonstration also publishes the message to loT Hub every few seconds.

Supported Kits:
Renesas Starter Kit+ for RX65N-2MB

CK-RX65N cloud kit (Ether/ Cellular)
Renesas RX65N Cloud Kit
Renesas Starter Kit+ for RX671

® RX72N Envision Kit

It is also possible to view device properties, view device telemetry, update device twin, call a direct method
on device and send cloud-to-device message using Azure loT Explorer.

Following videos guide how to set up and run this Azure RTOS sample project in detail. This video uses CK-
RX65N to introduce, but the setup follow is common to every board.

Azure RTOS Tutorial (1/3) CK-RX65N
Azure RTOS Tutorial (2/3) CK-RX65N: Program Build
Azure RTOS Tutorial (3/3) CK-RX65N: Cloud Operation

Projects with cellular connectivity have “with EWF” at the end of the project name on Select Application
Window.

1. Prepare Azure resources such as creating an loT Hub and registering an loT device by referring
Microsoft document.
For details, please refer to the Application Note (RX65N Group: Visualization of Sensor Data using
RX65N Cloud Kit and Azure RTOS), specifically chapters 3.1.

2. Confirm that you have the copied the following values to use in the next step.

- hostname
- devicelD
- primaryKey
3. Open sample_config.h to set the Azure IoT device information constants to the values that you saved
in step 2.
Constant name Value
HOST_NAME {Your loT hub hostName value}
DEVICE_ID {Your devicelD value}

DEVICE_SYMMETRIC_KEY {Your primaryKey value}

4. [Wi-Fi] Open main.c to set the Wi-Fi network parameters when you use the boards of which
connectivity is Wi-Fi.

Constant name Value
WIFI_SSID {Your Wi-Fi SSID value}
WIFI_PASSWORD {Your Wi-Fi password}

5. [Cellular] Open scfg file in your project and choose components on the tab. Then click ewf in
components on the left side and set your SIM APN in “The SIM operator APN”.

RO1AN6455EJ0102 Rev.1.03 Page 18 of 40
July.28.23 RENESAS

https://www.renesas.com/video/azure-rtos-tutorial-13-ck-rx65n-setup?rxsw-j
https://www.renesas.com/video/azure-rtos-tutorial-23-ck-rx65n-program-build?rxsw-j
https://www.renesas.com/video/azure-rtos-tutorial-33-ck-rx65n-cloud-operation?rxsw-j
https://www.renesas.com/search?keywords=%20R01AN6011
https://www.renesas.com/search?keywords=%20R01AN6011

Azure RTOS sample projects using e2 studio or IAR EW

6. [Ethernet] You don’t need to set specific parameters when you use the boards of which connectivity is
ethernet.

7. Verify the serial port in your OS’s device manager. It should show up as a COM port.

= @ %

Figure 2.15 Device Manager

8. Open your favorite serial terminal program such as Putty and connect to the COM port discovered
above. Configure the following values for the serial port:
Baud rate: 115200
Data bits: 8
Parity: none
Stop bits: 1
Flow control: none

9. Build project
10. Select Download and Debug to download and start execution of the project

11. As the project runs, the demo prints out status information to the terminal output window. The demo also
publishes the telemetry message to loT Hub every few seconds. Check the terminal output to verify that
messages have been successfully sent to the Azure IoT hub.

Figure 2.16 Status Information and Telemetry Message

RO1AN6455EJ0102 Rev.1.03 Page 19 of 40
July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

You can use the Azure loT Explorer to view and manage the properties of your devices. In the following
steps, you'll add a connection to your loT hub in loT Explorer.

1. Download and install latest (above v0.14.5) Azure loT Explorer from: https://github.com/Azure/azure-iot-
explorer/releases

2. Copy the connection string: Microsoft Azure Portal > sign in > select your IoT Hub > [Share access
policies] > [iothubowner] > [Primary connection string].

iothubowner x
| Shared access policies =

Primary connection string

i1 azure-devices net SharedAccesskeyNamesio. . <3| [y

Manage shared access policies

Figure 2.17 Primary Connection String
In Azure loT Explorer, select loT hubs > Add connection.
4. Paste the connection string into the Connection string box.
Select Save.

Azure loT Explorer (preview) Notifications

Edit connection string

Figure 2.18 Azure loT Explorer
6. If the connection succeeds, the Azure loT Explorer switches to a Devices view and lists your device.
To view device properties using Azure loT Explorer:
1. Select the link for your device identity. loT Explorer displays details for the device.
2. Inspect the properties for your device in the Device identity panel.

RO1AN6455EJ0102 Rev.1.03 Page 20 of 40
July.28.23 RENESAS

https://github.com/Azure/azure-iot-explorer/releases
https://github.com/Azure/azure-iot-explorer/releases
https://azure.microsoft.com/en-us/features/azure-portal/

Azure RTOS sample projects using e2 studio or IAR EW

File Edit View Window Help

Azure loT Explorer (preview)

Home > > Devices > MyDevKit > Device identity
Sy Manage keys
[Device identity
Device identity
2 Device
Device ID
Telemet -
l MyDevKit I s
<
o Primary key
£ Module identity Secondary key
& 10T Plug and Play c... ‘ |
Primary connection string
[=] o

Figure 2.19 Azure loT Explorer

To view device telemetry using Azure loT Explorer:

1. InloT Explorer select Telemetry. Confirm that Use built-in event hub is set to Yes.

2. Select Start.

3. View the telemetry as the device sends messages to the cloud.

Telemetry

Telemetry

Consumer group

) Receiving events...

3:55:58 PM, 07/30/2020:

Figure 2.20

Telemetry Message

To update device twin using Azure loT Explorer:

1. InloT Explorer select Device twin.

2. Modify the desired section of the Device twin, you can add a custom twin:

"weather": {

"temperature": "25"

3. Select Save.

RO1ANG455EJ0102 Rev.1.03
July.28.23

RENESAS

Page 21 of 40

Azure RTOS sample projects using e2 studio or IAR EW

Home >

File Edit View Window Help

Azure loT Explorer (preview) Notifications

> Devices > MyDevKit > Device twin

B Device identity
1 Device twin

3 Telemetry

> Direct method
= Cloud-to-device m
& Module identity

&% IoT Plug and Play c

O Refresh B save

Device twin ©

humbprint”: null,
yThumbprint™: null

temperat

22~ Smetadata”: {
“Slastlpdated": "2020-07-30T07:04:59. 86854147

1A
25 "$version”: 2

27~ reported”: {
28~ “Smetadata”: {

Figure 2.21 Device Twin

4. View the notification for the device twin update status.

5. In the terminal output window, you can view the desired device twin properties are received.

Telenetry message
Telenetry message
Telenetry nessage
Telenetry nessage
Telenetry message
Telenetry mnessage
Telenetry nessage

send: {"Message ID":68}
send: {"Message ID":69}
send: {"Message ID":70}
send: {"Message ID":71}
send: {"Message ID":72}
send: {"Message ID":73}
send: {"Message ID":74}
end. L), ID".253

elenstry
ﬁecewe desired property call: {"veather":{"temperature"”:"25"}, "Sversion":2} |

Pertemety re— ROy
Telemetry message send: {"Message ID":77}
Telemnetry message send: {"Message ID":78}
Telemnetry message send: {"Message ID":79}
Telenetry message send: {"Hessage ID":80}
Telemetry message send: {“"Message ID":81}
Telenetry message send: {"Message ID":82}
Telenstry message send: {"Message ID":83}
Telenstry message send: {"Message ID":84}
Tal . A £ Tn*.ocy

Figure 2.22 Received Desired Device Twin Properties

To call a direct method on device using Azure loT Explorer:

You can also use Azure loT Explorer to call a direct method that you have implemented on your device.
Direct methods have a name, and can optionally have a JSON payload, configurable connection, and
method timeout. To call a direct method in Azure IoT Explorer:
1. InloT Explorer select Direct method.

2. Send a direct method to mimic the device reboot with payload. The device will receive and output the

payload as dummy data.

- Method name: reboot
- Payload: {"timeout"; 500}

B Device identity
B Device twin
3 Telemetry

3 Direct method

£ Module identity

& 10T Plug and Play ¢

> Invoke method

Direct method ©

Method name *

Connection timeout in seconds

-0 10

Figure 2.23 Direct Method

RO1ANG455EJ0102 Rev.1.03
July.28.23

RENESAS

Page 22 of 40

Azure RTOS sample projects using e2 studio or IAR EW

3. Select Invoke method.

4. In the terminal output window, you can view the method is invoked on the loT Device.

Telenetry nessage send
Telenetry nessage send
Telenetry nessage send
Telemnetry nessage send
Telenetry nessage send
Telemetry nessage send
Telemnetry nessage send
Telenetry nessage send
Telenetry nessage send
Telemnetry nessage send
Telemetry nessage send
Telemnetry nmessage send
Telemnetry message send
Telenetry nessage send
Telemetry nessage send
Telemnetry message send
Telemnetry message send

i i e, i i, i i i o i, o e

"Message ID":227}
"Message ID":228}
"Message ID":229}
"Message ID":230}
"Message ID":231}
"Message ID":232}
“Message ID":233}
"Message ID":234}
"Message ID":235}
"Message ID":236}
"Message ID":237}
“Message ID":238}
“Message ID":239}.
"Message ID":240}
"Message ID":241}
"Message ID":242}
"Message ID":243}

IREEE]VE nethod call: reboot, with payload:{"timeout”:500} I

To send cloud-to-device message using Azure loT Explorer:

Figure 2.24 Invoked Method

1. InloT Explorer select Cloud-to-device message.

2. Enter the message in the Message body:

{ "Hello": "Azure RTOS" }

3. Check Add timestamp to message body.

age

Cloud-to-device message C

Message body

0 pocule ity Add timestamp to message body

Properties

Figure 2.25 Cloud-to-device message

Select Send message to device.

5. In the terminal output window, you can view the message is received by the loT Device.

Terminal /O

x

Output
Telemetry message send

Telemetry message send
Telenetry nessage send
Telemetry message send
Telenetry nessage send
Telemetry message send
Telemetry nessage send
Telenetry nessage send
Telemetry message send
Telenetry nessage send
Telemetry message send
Telemetry message send

EIERELTy Nessage Sem

Telenetry nessage send:

i i i i i i o i o i

leceive message: /-/30-2020,

"Message ID":331}
"Message ID":332}
“Message ID":333}
“Message ID":334}
"Message ID":335}
"Message ID":336}
“Message ID":337}
“Message ID":338}
"Message ID":339}
"Message ID":340}
"Message ID":341}
“Message ID":342}
“"Message ID":343}

2 g

000
(443 — 1 "Hello™: “Azure RTOS"

Essage .

Telemetry message send: {"Message ID":345}
Telemetry message send: {"Hessage ID":346}
Telemetry message send: {"Message ID":347}

Log file: Off

Figure 2.26 Received Message

RO1AN6455EJ0102 Rev.1.03

July.28.23

RENESAS

Page 23 of 40

Azure RTOS sample projects using e2 studio or IAR EW

2.7 loT Embedded SDK PnP sample project

This demonstration connects to Azure lIoT Hub using Azure loT middleware for Azure RTOS. This
demonstration also publishes the message to loT Hub every few seconds.

It is also possible to view device properties, view device telemetry, update device twin and call a direct
method on device using Azure loT Explorer.

Supported Kits:

Renesas Starter Kit+ for RX65N-2MB
CK-RX65N cloud kit (Ether/ Cellular)
Renesas RX65N Cloud Kit
Renesas Starter Kit+ for RX671
RX72N Envision Kit

To run this project, simply follow 2.5 loT Embedded SDK sample project.

Moreover, this sample can interact with loT Plug and Play components using Azure loT Explorer.

To interact with loT Plug and Play components using Azure loT Explorer:

You can use Azure loT Explorer to interact with 0T Plug and Play components.

Azure loT explorer needs a local copy of the model file that matches the Model ID your device sends. The
model file lets Azure IoT explorer display the telemetry, properties, and commands that your device

implements.

To use the Azure loT explorer to verify the loT Plug and Play device application is working:

1. InloT Explorer, select the loT Plug and Play Settings.
2. Select Add and select Public Repository.

3. Select Save.

2= loT hubs
&7 1oT Plug and Play Settings

[l Notification Center

{ Add ? Help

Medel repository locations specify where the application locks to find leT Plug and Play model
definitions. Locations are saved to application storage and can be edited or removed at any time.

Help:
What is loT Plug and Play
Model Repository Locations:

We'll look for your model definition in the following order. Please drag and drop to change it.
Click "Add' to enable more ways to can resclve your model definitions.

Before enabling us to retrieve model definition from a local folder, please read Microsoft Privacy
Statement

Repository endpoint | https devicemedels.azure.cor

Figure 2.27 loT Plug and Play Setting

RO1AN6455EJ0102 Rev.1.03

July.28.23

RENESAS

Page 24 of 40

Azure RTOS sample projects using e2 studio or IAR EW

4.

On the loT hubs page, click on the name of the hub you want to work with. You see a list of devices
registered to the 10T hub.

Click on the Device ID of the device you created previously.
The menu on the left shows the different types of information available for the device.
Select loT Plug and Play components to view the model information for your device.

= () Refresh
Device identity

loT Plug and P|ay components /o7 Plug and Play documentation
[Device twin

il

Telemetry Step 1. Your device has been discovered as a loT Plug and Play device

»< Direct method Model ID

dtmi:com:example:Thermostat:4]

K

Cloud-to-device message

Step 2. We've resolved your loT Plug and Play model

!

Module identities

You model definition has been resolved from: Public Repository ¢3¢ Configure
loT Plug and Play components

Step 3. Continue your loT Plug and Play journey by drilling down to each component

If you have defined ‘Property’, ‘Command" or 'Telemetry' in model dtmi:com:example:Thermostat;4, you would be able to
see ‘Default component’ in the table below. If you have defined *Component’, you would be able to see a list of
components down below.

8 Components Madel content

10.

1.
12.

13.
14.
15.
16.

Figure 2.28 Model Information

You can view the different components of the device. The default component and any additional ones.
Select a component to work with.

Select the Telemetry page and then select Start to view the telemetry data the device is sending for this
component.

Select the Properties (read-only) page to view the read-only properties reported for this component.

Select the Properties (writable) page to view the writable properties you can update for this
component.

Select a property by its name, enter a new value for it, and select Update desired value.
To see the new value show up select the Refresh button.
Select the Commands page to view all the commands for this component.

Select the command you want to test set the parameter if any. Select Send command to call the
command on the device. You can see your device respond to the command in the command prompt
window where the sample code is running.

Ilnterfa(e Properties (read-only] Froperties (writable) ~ Commands Telemetry I

o
o
@
"
a
I
3

() Refresh ® Back
You model definition has been resolved from: Public Repository £5: Configure

[Telemetry Interface Id

N ‘ dtmi:com:example:Thermostat:4 ‘ o
»>¢ Direct method

Name

=1 Cloud-to-device message
Thermostat [T

& Module identities Description

‘ Reports current temperature and provides desired temperature control. ‘ I

&7 10T Plug and Play s

perature control.”,

- "contents”: [

Figure 2.29 loT Plug and Play Components

RO1AN6455EJ0102 Rev.1.03 Page 25 of 40
July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

2.8 GUIX 8bpp/16bpp/16bpp_draw2d sample project

This demonstration illustrates Washing Machine application using advanced GUIX features such as:

- Widget creation

- Creating multiple screens inside the main screen

- Attaching and detaching the child screen when you switch screens
- Double-buffer toggle control for screen transition without tearing

- Radial slider, vertical and horizontal slider creation

- Running animation

It also illustrates 2 kinds color depth and use of 2D drawing engine (DRW2D) on RX family.

- sample_guix_8bpp:
sample for display of size 480 * 272 with 8 bits color look-up table (CLUTS).

- sample_guix_16bpp:
sample for display of size 480 * 272 with 16 bits RGB 565.

- sample_guix_16bpp_draw2d:
sample for display of size 480 * 272 with 16 bits RGB 565 with 2D drawing engine.

Supported Kits:
[} Renesas Starter Kit+ for RX65N-2MB
° RX72N Envision Kit

To run each GUIX Sample project, simply follow these steps (assuming the steps described in the previous
section were done):

1. Select Go to start execution of the demonstration. As the project runs you should observe Washing
Machine GUI on board TFT panel. The four different screens are demonstrated as:

=& Microsoft Azure

Figure 2.31 Garments selection screen

RO1AN6455EJ0102 Rev.1.03 Page 26 of 40
July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

B Microsoft Azure

Extra Higl

=) 80 %

Water Level

s 70°
Temperature

©
Pawer OFf

Figure 2.33 Temperature selection screen

The application demonstrates the simulation of the Washing Machine controller from the GUI perspective.

This project initializes the GUIX system, configures the GUIX drivers, initializes Canvas, creates screens
using widget creation APIs, starts the GUIX and handles the Touch Events from the Touch driver. All these
are done from the Application Thread.

To learn more about Azure RTOS GUIX, view https://docs.microsoft.com/azure/rtos/quix/.

RO1AN6455EJ0102 Rev.1.03 Page 27 of 40
July.28.23 RENESAS

https://docs.microsoft.com/azure/rtos/guix/

Azure RTOS sample projects using e2 studio or IAR EW

2.9 USBX device CDC-ACM Class sample project

This demonstration illustrates the setup and use of USBX device CDC-ACM Class to communicate with the
host as a serial device. This project initializes the USBX system and device stack, set the parameters for
callback when insertion/extraction of a CDC device, read from the CDC class and write to the CDC instance
using device CDC-ACM APlIs.

Supported Kits:
° Renesas Starter Kit+ for RX65N-2MB
® CK-RX65N cloud kit
° Renesas RX65N Cloud Kit
Before build the sample and run, you need to connect the USBO Function on Renesas Starter Kit+ for

RX65N-2MB to your computer using the USB-MiniB cable: (assuming Renesas Starter Kit+ for RX65N-2MB
is specified as Target Board)

Figure 2.34 USBO Function on Renesas Starter Kit+ for RX65N-2MB

To run the device CDC-ACM Sample project, simply follow these steps (assuming the steps described in
the previous section were done):

1. Select Go to start execution of the demonstration.

2. Verify the serial port in your OS’s device manager. It should show up as a COM port for the CDC-ACM
device.

@ IntelR) Active Management Technology - SOL (COM3)
1]

W USE Senial Device (COME)

Figure 2.35 Device Manager

3. Open your favorite serial terminal program such as Putty and connect to the COM port discovered
above. In this sample project, it is not necessary to set any other settings on the terminal program.

4. As the project runs, you should be able to observe “abcdef” returned from the CDC-ACM device when
you input enter key to the CDC-ACM device via the terminal.

RO1AN6455EJ0102 Rev.1.03 Page 28 of 40
July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

Figure 2.36 Serial Terminal Window

To learn more about Azure RTOS USBX, view https://docs.microsoft.com/azure/rtos/usbx/.

RO1AN6455EJ0102 Rev.1.03 Page 29 of 40
July.28.23 RENESAS

https://docs.microsoft.com/azure/rtos/usbx/

Azure RTOS sample projects using e2 studio or IAR EW

2.10 USBX Host Mass Storage Class sample project

This demonstration illustrates the setup and communication with MSC device (USB flash drive) using USBX
HMSC. The sample program initializes the FileX, USBX system and USB driver stack. When a MSC device
is inserted, it reads and writes a file to MSC device using device FileX APIs.

Supported Kits:
° Renesas Starter Kit+ for RX65N-2MB
o CK-RX65N cloud kit
o Renesas RX65N Cloud Kit

1. Change the jumper pins (J7 and J16) on Renesas Start Kit+(RSK) for RX65N-2MB to set to USB Host
mode. (assuming Renesas Starter Kit+ for RX65N-2MB is specified as Target Board)

Note: Jumper pin numbers are different for each RSK.

2. Build USBX HMSC sample project and run.

3. Connect MSC device to USB Standard A connector (red frame) on RSK.

Figure 2.37 USB Standard A Connector on Renesas Starter Kit+ for RX65N-2MB

When the USBX HMSC driver recognizes that MSC device is connected, the sample application program
creates a "counter.ixt” file to MSC device using FileX API.

4. Disconnect MSC device from RSK and connect MSC drive to PC.

5. Confirm that “counter.txt” file is generated at the root folder in the MSC device.

RO1AN6455EJ0102 Rev.1.03 Page 30 of 40
July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

a | d = Manage D
Home Share Wiew Drive Tools
J dy Cut x T_]Naw ite
w-| Copy path T__'| Easy acc
Pin to Quick Copy Paste Move Copy Delete Rename Mew
access [#] Paste shorteut to to o folder
Clipboard Organize Mew
T - » (02) USB Drive v | O Sear
& My PC: ~ -
) 3D Objects
[Desktop counter.txt

£ Documents

* Downloads

Figure 2.38 Root Folder in MSC Device

0x00FF from the address 0x00000000 as following.

Open “counter.txt” file using the binary editor on PC. It contains count up humbers from 0x0000 to

ADDRESS

04 05
02 00
04 00
12 00
14 00
22 00
24 00
32 00
3400
42 00
4400
b2 00
b4 00
82 00
B4 00
7200
7400
82 00
84 00
92 00
94 00
A2 00

Wn AN

06
03
0B
13
1B
23
2B
33
3B
43
4B
53
OB
83
6B
73
7B
83
8B
93
9B
A3

W

03
04
oc
14
C
24
2C
34
3¢
44
4C
b4
o
64
8C
74
I
84
8C
94
aC
A4

i

03
0
a0
a0
a0
a0
a0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

nn

04 0B 0OC 0D OE OF
05 00 06 00 07 00
00 00 OE 00 OF 00
1500 16 00 17 00
10 00 1E 00 1F 00
25 00 26 00 27 00
20 00 2E 00 2F 00
35 00 36 00 37 00
30 00 3E 00 3F 00
45 00 45 00 47 00
40 00 4E 00 4F 00
b5 00 56 00 57 00
50 00 5E 00 5F 00
85 00 86 00 67 00
80 00 BE 00 BF 00
75 00 76 00 77 00
7000 7E 00 7F 00
85 00 36 00 87 00
80 00 3E 00 8F 00
95 00 96 00 97 00
90 00 9E 00 9F 00
£ 00 A5 00 A7 00

MR AT AR AT AN

0123456789ABC0ER

Figure 2.39 Content of “counter.txt”

Disconnect MSC device from PC and connect the MSC device to RSK. This sample program reads

“counter.txt” in MSC device and adds the count up data from the address (0x00000200) in this file.

Disconnect MSC device from RSK and connect the MSC drive to PC.

Open “counter.txt” file using the binary editor on PC. It contains count up humbers from 0x0000 to
0x00FF from the address 0x00000200 as following.

ADDRESS

00
00

04 05
02 01
04 01
12 01
14 01
22 01
24 01
32 01
34 01
42 01
44 01
52 01
o4 01
62 01
64 01
72 01
74 01
82 01
84 01
92 01
94 01
42 01

[EEE!

06 07
03 01
0B 01
13 01
18 01
23 01
2B 01
33 01
3B 01
43 01
4B 01
53 01
5B 01
63 01
6B 01
73 01
7B 01
83 01
8B 01
93 01
9B 01
43 01

inoAl

08 09
04 01
0c 01
14 01
1C 01
24 01
2C 01
34 01
3C 01
44 01
4C 01
54 01
5C 01
64 01
8C 01
74 01
iC 01
84 01
8C 01
94 01
9Cc 01
a4 01

[Ialst!

04 0B 0C 0D OE
05 01 08 01
o0 01 0E 01
15 01 16 01
1001 1E 01
25 01 26 01
20001 2E 01
35 01 36 01
30001 3E 01
45 01 46 01
4001 4E 01
55 01 56 01
50 01 BE 01
65 01 66 01
60 01 BE 01
7501 76 01
70001 7E 01
85 01 86 01
80 01 8E 01
95 01 95 01
90 01 8E 01
46 01

aroAl

0F
01

0123456 789ABC0EF

Figure 2.40 Content of

“counter.txt”

RO1ANG455EJ0102 Rev.1.03
July.28.23

RENESAS

Page 31 of 40

Azure RTOS sample projects using e2 studio or IAR EW

10. By repeating steps 8 and 9 above, the sample program keeps updating count data to “counter.txt” file in
the MSC device.

To learn more about Azure RTOS USBX, view https://docs.microsoft.com/azure/rtos/usbx/.

RO1AN6455EJ0102 Rev.1.03 Page 32 of 40
July.28.23 RENESAS

https://docs.microsoft.com/azure/rtos/usbx/

Azure RTOS sample projects using e2 studio or IAR EW

2.11 ThreadX Low Power sample project
This sample project illustrates how to use ThreadX's Low Power feature. You can confirm the transition to

and resume from the following low power modes supported by the device using the Low Power Consumption

Device Driver Module (r_Ipc_rx).

Kits Target Board for RX130 Renesas Starter Kit+ for RX65N-

Renesas Starter Kit for RX140 2vB
CK-RX65N cloud kit

Renesas RX65N Cloud Kit
Renesas Starter Kit for RX660
Renesas Starter Kit+ for RX671
RX72N Envision Kit

Device RX130, RX140 RX65N, RX651, RX660, RX72N,
RX671
Supported low power mode Sleep Mode Sleep Mode
Deep Sleep Mode Software Standby Mode
Software Standby Mode Deep Software Standby Mode

2.11.1 Overview of sample project
1. The sample project creates one thread thread_0. The thread_0 turns on the LED when it starts.

2. After executing for about 3 seconds, suspend the own thread by tx_thread_suspend.

3. Since there is no other thread to run, Demo_LowPower_Enter configured in ThreadX “Enter low power
function” configuration is called from tx_low_power_enter of ThreadX.

4. Demo_LowPower_Enter turns off the LED and transitions to the low power consumption mode.

The low power consumption mode is resumed by the interruption of pressing the user switch. The
interrupt handler Demo_callback is called and tx_thread_resume resumes thread_0. At this point,
thread_0 does not run.

If it has transitioned to the deep software standby mode, it will be resumed by the user switch press
interrupt or RTC alarm interrupt and reboots from the reset vector.

6. Next, the Demo_LowPower_EXxit configured in the ThreadX “Exit low power function” configuration is
called from tx_low_power_exit of ThreadX. Demo_LowPower_Exit turns on the LED and returns to
ThreadX.

7. The resumed thread_0 runs.

Repeat the transition to the same low power consumption mode in steps 2 to 7 three times in total and
execute all low power consumption modes in the following order.

For RX130 and RX140:
Sleep Mode (3 times) => Deep Sleep Mode (3 times) => Software Standby Mode (3 times)
For RX65N, RX651, RX660, RX72N, RX671:

Sleep Mode (3 times) => Software Standby Mode (3 times) => Deep Software Standby Mode (1
time)

RO1AN6455EJ0102 Rev.1.03 Page 33 of 40

July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

The figure shows the execution flow from suspending the thread 0 with tx_thread_suspend to resuming.

Demo_LowPower_Enter() —_ —— thread_0

**************** Demo_LowPower_Exit()

_ S N J
tx_low_power_enter() l
tx_low_power_exit()

Low Power Cor ion Driver(r_Ipc_rx) R_LPC_LowPowerModeActivate()

Low Power
Consumption Mode

I Interrupt & tx_thread_resume

Figure 2.41 Execution Flow after tx_thread_suspend (&thread_0)

2.11.2 Execute sample project
To run the sample project, simply follow these steps for each board:

Target Board for RX130 and Renesas Starter Kit for RX140:

1. Select Launch to download the program.

2. Select Resume to start execution of the project. The program stops at the breakpoint of main function.
3. Select Resume to restart.

4. The program turns LEDO on and runs for 3 seconds.

5

The program turns LEDO off and transitions to sleep mode. e? studio status bar will change from
Running to Sleeping as below:

Sleeping

6. The program is resumed by pressing the user switch (SW1). This cycle is repeated 3 times.

Similarly, transitions to deep sleep mode and resume by pressing the user switch is repeated 3 times. e2
studio status bar will change from Running to Sleeping as below:

Sleeping

8. Similarly, transitions to software standby mode and resume by pressing the user switch is repeated 3
times. e? studio status bar will change from Running to Standby as below:

Standby

©

Repeat from sleep mode to software standby mode.

(*) e2 studio status bar when sleep mode and deep sleep are the same. So please check
MSTPCRC.DSLPE register value before executing wait instruction.

- sleep mode: MSTPCRC.DSLPE =0
- deep sleep: MSTPCRC.DSLPE =1

RX65N Cloud Kit:
1. Select Launch to download the program.

2. Select Resume to start execution of the project. The program stops at the breakpoint of main
function.

3. Select Resume to restart.

RO1AN6455EJ0102 Rev.1.03 Page 34 of 40
July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

4. The program turns LED1 on and runs for 3 seconds.

5. The program turns LED1 off and transitions to sleep mode. e? studio status bar will change from
Running to Sleeping as below:

Sleeping

The program is resumed by pressing the user switch. This cycle is repeated 3 times.

Similarly, transitions to software standby mode and resume by pressing the user switch is repeat 3
times. e? studio status bar will change from Running to Standby as below:

8. The program transitions to deep software standby. e? studio status bar will change from Running to
Standby as below:

9. The program reboots by pressing the user switch.

(*) e2 studio status bar when deep software standby and software standby are the same. So please
check SBYCR.SSBY and DPSBYCR.DPSBY register value before executing wait instruction.

- software standby: SBYCR.SSBY=1, DPSBYCR.DPSBY=0
- deep software standby: SBYCR.SSBY=1, DPSBYCR.DPSBY=1

Renesas Starter Kit+ for RX65N-2MB, Renesas Starter Kit for RX660, Renesas Starter Kit for RX671,
RX72N Envision Kit and CK-RX65N:

1. Select Launch to download the program.

2. Select Resume to start execution of the project. The program stops at the breakpoint of main
function.

Select Resume to restart.
The program turns LED (usually LEDO) on and runs for 3 seconds.

The program turns LED off and transitions to sleep mode. e? studio status bar will change from
Running to Sleeping as below:

Sleeping

The program is resumed by pressing the user switch (usually SW1). This cycle is repeated 3 times.

Similarly, transitions to software standby mode and resume by pressing the user switch is repeat 3
times. e? studio status bar will change from Running to Standby as below:

8. The program transitions to deep software standby. e? studio status bar will change from Running to
Standby as below: O

9. The program reboots by RTC alarm interrupt after about 30 seconds.

(*) e2 studio status bar when deep software standby and software standby are the same. So please check
SBYCR.SSBY and DPSBYCR.DPSBY register value before executing wait instruction.

RO1AN6455EJ0102 Rev.1.03 Page 35 of 40
July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

- software standby: SBYCR.SSBY=1, DPSBYCR.DPSBY=0
- deep software standby: SBYCR.SSBY=1, DPSBYCR.DPSBY=1

2.11.3 Configuration of ThreadX Low Power by Smart Configurator

® You can develop own system low power operation for your product referring to this sample project and
using Smart Configurator's component configuration feature as below. Each configurable item
description is displayed in Macro definition view by clicking the configuration item.

#
Enable low power mode /| Enable
Enter low power function Demo_LowPower_Enter()
Exit low power function Demo_LowPower_Exit()
Enable tickless operation in low power mode Disable
Enable threadx timer setup Y| Enable
Low power timer setup function Demo_LowPower_Timer_Setup
Enable threadx user timer adjust 7| Enable
Low power user timer adjust function Demo_LowPower_User_Timer_Adju
Enable threadx wait Disable
v

Macro definition: TX_LOW _POWER

TX_LOW_POWER macro can be used together with TX_ENABLE_WAIT macro

Case 1: TX_LOW_POWER == 1 and TX_ENABLE_WAIT == 0: execute user-defined low power consumption function (call tx_low_power_enter/exit)
Case 2: TX_LOW_POWER == 0 and TX_ENABLE_WAIT == 1: execute only WAIT instruction in ThreadX (tx_low_power_enter/exit are not called)
Case 3: TX_LOW_POWER == 0 and TX_ENABLE_WAIT == 0: no support for low power consumption

Case 4: TX_LOW_POWER == 1 and TX_ENABLE_WAIT == 1: execute tx_low_power_enter, WAIT instruction, and tx_low_power_exit

Figure 2.42 Configuration of ThreadX Low Power

® |f the Low Power Consumption Device Driver Module (r_Ipc_rx) is used, the module executes “WAIT”
instruction inside the r_Ipc_rx module. Therefore, please note that “Enable threadx wait” must be
disabled.

® |f you define your own function for “Enter low power function”, “Exit low power function”, “Low power
timer setup function” and “Low power user timer adjust function”, please modify the prototype definition
for each function in libs/threadx/tx_user.h manually as well.

RO1AN6455EJ0102 Rev.1.03 Page 36 of 40
July.28.23 RENESAS

Azure RTOS sample projects using e2 studio or IAR EW

/* Define Low Power usage *
#define TX_LOW_POWER 1

/* Define the Enter low power mode macro*

~#if TX_LOW_POWER

void Demo LowPower Enter(void);
#define TX_LOW_POWER_USER_ENTER Demo_LowPower_Enter()

#endif

/* Define the Exist low power mode macro*/

“#if TX_LOW_POWER

void Demo_LowPower Exit(void);

#define TX_LOW_POWER_USER_EXIT Demo_LowPower_Exit()
#endif

/* Define Low Power tickess usage */
#define USE_TX_LOW_POWER_TICKLESS)

~#if USE_TX_LOW_POWER_TICKLESS

#define TX_LOW_POWER_TICKLESS
#endif

/* Define the TX_LOW_POWER_TIMER_SETUP macro*/

“#if TX_LOW_POWER && !USE_TX_LOW_POWER_TICKLESS

#tdefine USE_TX_LOW_POWER_TIMER_SETUP 1

#endif

#if USE_TX_LOW_POWER_TIMER_SETUP

void Demo LowPower Timer Setup(unsigned long tx_low power next expiration); /* can not use ULONG */
#define TX_LOW_POWER_TIMER_SETUP Demo_LowPower_Timer_Setup

#endif

/* Define the TX_LOW_POWER_USER_TIMER_ADJIUST macro*/
#if TX_LOW_POWER && !USE_TX_LOW_POWER_TICKLESS
#define USE_TX_LOW_POWER_USER_TIMER_ADIUST 1
#endif

~#if USE_TX_LOW_POWER_USER_TIMER_ADIUST

Ansigned long Demo LowPower User Timer Adiust(void); /* can not use ULONG */
#define TX_LOW_POWER_USER_TIMER_ADJUST Demo_LowPower_User_Timer_Adjust()
#endif

/* Define the TX_ENABLE_WAIT usage*/
#define TX_ENABLE_WAIT -]

Figure 2.43 libs/threadx/tx_user.h

® The “tx_low_power_next_expiration” parameter is passed to the “TX_LOW_POWER_TIMER_SETUP”
function. Since the tx_low_power_next_expiration is the next timer deadline (i.e., the number of ticks
before the next wakeup), a low power mode timer must be set so that the low power mode is resumed
before this tick number elapses.
When the tx_low_power_next_expiration is Oxffffffff, there is no next timer expiration date (there is no
thread waiting for a timeout), so the user may resume from the low power mode at any time.
When the tx_low_power_next_expiration is very small value, the transition to the low power
consumption mode may be omitted by judging from the transition process time and the resume process
time because it depends on the processing time of the user-defined function.

® For the latest information of Low Power APls, please refer to https://github.com/azure-
rtos/threadx/blob/master/utility/low power/low power.md .

RO1AN6455EJ0102 Rev.1.03 Page 37 of 40

July.28.23

RENESAS

https://github.com/azure-rtos/threadx/blob/master/utility/low_power/low_power.md
https://github.com/azure-rtos/threadx/blob/master/utility/low_power/low_power.md

Azure RTOS sample projects using e2 studio or IAR EW

2.12 Azure Device Update (ADU) sample project

This sample project illustrates over-the-air (OTA) firmware update via Microsoft Azure. Azure ADU is a cloud
service provided by Microsoft that enables deployment of OTA updating of loT devices.

When implementing ADU, secure boot loader sample project must be used together with this project. The
secure bootloader function is to verify that firmware to be run is reliable, make sure it has not been tempered,
and update it.

Supported Kits:

Renesas Starter Kit+ for RX65N-2MB
CK-RX65N cloud kit (Ether/ Cellular)
Renesas RX65N Cloud Kit

Renesas Starter Kit+ for RX671
RX72N Envision Kit

To run this sample, simply follow these steps: Please note that this project is not supported by IAR EW.

1. Add new project: [File] > [New] > [Renesas C/C++ Project] and select Renesas RX. Then select Azure
Device Update (ADU) sample project on Select Application Window and create a project.

Azure Device Update (ADU) sample project

® "} This demonstration illustrates OTA firmware update. Note: this project requires
bootloader project.

2. Add new project: [File] > [New] > [Renesas C/C++ Project] and select Renesas RX. Then select
Secure bootloader sample project on Select Application Window and create the project specifying
the same device and same compiler as specified in step1.

oIr Secure bootloader sample project

This sample is used together with ADU sample project to provide a secure boot

After creating two projects, to setup and build the projects, please refer to Application Note (Creating a
Microsoft ADU Environment) from "3.3 File Output Settings".

Please note that there are some differences in the project structure between the imported projects based on
the Application Note and the created projects by e? studio.

- Though ThreadX, FileX, NetX Duo will be built as library file using imported project, they will be
embedded in Azure Device Update (ADU) sample project in created project.

- “(Board Name)_adu_sample_secure_boot.esi” written in “3.9 Section Settings” does not exist in
created project. And the Application Note for imported project assumes that RX65N is used, so the
address information may differ on other MCUs. Please refer to the hardware manual of the MCUs used
and replace it with the desired value.

- There are some differences in source codes. So please ignore “3.10 Modifying the Source Code”.

& boot_loader

& filex

& netxduo

== sample_azure_iot_embedded_sdk pnp [HardwareDebug]
& threadx

Figure 2.44 imported projects based on Application Note

RO1AN6455EJ0102 Rev.1.03 Page 38 of 40
July.28.23 RENESAS

https://www.renesas.com/search?keywords=R01AN6357
https://www.renesas.com/search?keywords=R01AN6357

Azure RTOS sample projects using e2 studio or IAR EW

= boot_loader
v [sample_azure_iot_embedded sdk pnp [HardwareDebug]
W Includes
v & libs
= filex
= netxduo
= netxduo_addons
= threadx
(= src

Figure 2.45 created projects by e? studio

Where project name is as below
- Azure Device Update (ADU) sample project: sample_azure_iot_embedded_sdk_pnp
- Secure bootloader sample project: boot_loader

To learn more about Azure ADU, view https://learn.microsoft.com/azure/iot-hub-device-update/.

RO1AN6455EJ0102 Rev.1.03 Page 39 of 40
July.28.23 RENESAS

https://learn.microsoft.com/azure/iot-hub-device-update/

Azure RTOS sample projects using e2 studio or IAR EW

Revision History

Description
Rev. Date Page Summary
1.00 Jul. 20, 2022 — First edition issued
1.01 Oct. 20, 2022 1, 22 Changed project name from “PnP Temperature Control
sample project” to “loT Embedded SDK with loT Plug and
Play sample project”
2 Added Azure |loT Explorer
1.02 Jan. 20, 2023 6 Improved creation procedure for IAR EW project
24, 25 Added USBX Host Mass Storage Class sample project
31 Added Azure Device Update sample project and secure
bootloader sample project
1.03 July. 28, 2023 - Add minimal sample explain
Remove loT Embedded SDK with 10T Plug and Play sample
project

RO1AN6455EJ0102 Rev.1.03

July.28.23

Page 40 of 40

RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vin (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between ViL (Max.) and Vi (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2023 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Getting Started
	1.1 Creating project using e2 studio
	1.2 Creating project using IAR EW

	2. Sample Project Descriptions
	2.1 ThreadX sample project
	2.2 Minimal sample project
	2.3 FileX RAM Disk sample project
	2.4 NetX Duo Ping sample project
	2.5 NetX Duo Iperf sample project
	2.6 IoT Embedded SDK sample project
	2.7 IoT Embedded SDK PnP sample project
	2.8 GUIX 8bpp/16bpp/16bpp_draw2d sample project
	2.9 USBX device CDC-ACM Class sample project
	2.10 USBX Host Mass Storage Class sample project
	2.11 ThreadX Low Power sample project
	2.11.1 Overview of sample project
	2.11.2 Execute sample project
	2.11.3 Configuration of ThreadX Low Power by Smart Configurator

	2.12 Azure Device Update (ADU) sample project

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

