
  
 

QuickStart Manual  

PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE 
 

  

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 1 
© 2024 Renesas Electronics  

 
 

The PTX Tunneling library can be used to evaluate and optimize the performance (antenna matching, 
system/RF configuration, etc.) of any custom-made device using a PTX100x device via SPI serial interface.  

Embedding this library into the device firmware enables the translation of communication from UART to SPI, so 
that the full functionality of the PTX100x * Config Tool can be used in a custom environment. This document 
provides also instructions on how to create a sample application using an MAX32558-KIT development board. 
 

 

Contents 
1. Requirements ................................................................................................................................................. 2 

2. Sample Firmware ........................................................................................................................................... 2 
2.1 Creating the Project ............................................................................................................................... 2 
2.2 Importing the Library .............................................................................................................................. 6 

2.2.1. Including Tunneling Source Code ........................................................................................... 6 
2.2.2. Adding the Include Path .......................................................................................................... 7 
2.2.3. Adding the Library File ............................................................................................................ 8 

2.3 Implementing the HAL ........................................................................................................................... 8 
2.4 Calling the Library Functions ............................................................................................................... 15 
2.5 Building the Firmware .......................................................................................................................... 15 

3. Preparing the Hardware .............................................................................................................................. 16 
3.1 Running the Application ....................................................................................................................... 17 

4. Using the Tunneling Feature ...................................................................................................................... 18 

5. Revision History .......................................................................................................................................... 18 

 

https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/max32558-kit.html#eb-overview


PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 2  

 

1. Requirements 
The footprint of the library is ~13kB Flash and 10kB RAM. Moreover, a hardware abstraction layer must be 
implemented by the user for the particular uC/Board, which executes the low-level commands requested by the 
library. From the resource point of view, only the SysTick timer, UART, SPI, and the IRQ pin will be used. 

The library can be seamlessly integrated into a CMAKE project as well, but the MAX325xx is used in this 
document (for more information, see MAX325xx SDK 3.6.2 - Eclipse Maxim Integrated).  

2. Sample Firmware 
The sample application is used for creating and serving the tunnel between the host PC UART interface and the 
PTX100x chip connected by SPI. The library can be used either as a precompiled static library or as a source-
library – most steps are the same for both cases.  

2.1 Creating the Project 
After selecting the File menu > New > Project..., a wizard window will open to guide the user through the 
project creation process. Choosing the C Project from the list of templates and clicking the Next button will 
prepare the proper build environment. 
 

 

 

 

https://www.analog.com/en/design-center/evaluation-hardware-and-software/software/software-download.html?swpart=SFW0010820B


PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 3  

 

For convenience, the project will be called "Demo" and selecting the MAX32558 C Project tells the compiler 
which MCU will be the target platform. 

 
 

 



PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 4  

 

Next, the chip variant must be selected, which in this case is MAX32558 rev B1. This step will also configure the 
correct settings for the selected processor.  

Note: The project will also work on other microcontrollers if the pre-built library architecture is compatible. 

As a template content, Empty skeleton should be selected, which has no other content added to the project. 
 

 

 



PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 5  

 

In the next step, the IDE offers to set up the folder structure. Because the library will be imported, it makes sense 
to prepare the folder names as they are in the archive. 

 

 

 

After pressing the Next button a few times and accepting the default target and compiler selection, the initial 
project gets created 

 

 

 

 

 

 

 

 

 

 

 



PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 6  

 

2.2 Importing the Library 
There is no difference whether the source or the precompiled package is being used: the library archive must be 
imported to the project using File > Import... > Archive File.  

To keep the folder structure clean, the library will be imported to the PtxTunneling subfolder by appending it 
to the default location shown on following picture. 

 

2.2.1. Including Tunneling Source Code 
Should the library be used as source code, the subfolder PtxTunneling and PtxTunneling/src folders 
need to be included in the build. This can be done by opening the context menu with right mouse click on the 
folder name in the Project Explorer and selecting Resource Configurations > Exclude from Build.... In the 
dialog window, for each (default) target the check can be removed, thus selecting the folder content for build. 



PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 7  

 

2.2.2. Adding the Include Path 
In order that the compiler can find the header (.h) files containing the API functions, the library folder inc needs 
to be added to the list of user-defined include directories. This can be done by navigating to Project > 
Properties > C/C++ Build > Settings > Tool Settings > Cross ARM GNU C Compiler > Includes. Clicking on 
the Add... button on the right side of the small toolbar and using Workspace button in the popup window to 
locate the folder. 

 



PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 8  

 

2.2.3. Adding the Library File 
This step is required only if you are working with the precompiled binary package. Since there is no source code 
to be compiled, the linker must be able to find the functions in the library. In the same dialog window, changing to 
Cross ARM GNU C++ Linker > Libraries section, the PtxTunneling/lib folder can be added to the list of 
folders (lower pane) where the compiler is looking for external libraries. Additionally, the exact library needs also 
to be specified (upper pane) by its name PtxTunneling. From this the compiler will automatically find the 
static library file libPtxTunneling.a. 

 

2.3 Implementing the HAL 
If the library functions cannot access the underlying hardware or software resources, they require access to the 
Hardware Abstraction Layer (HAL), which then performs the requested action. Since this layer depends on the 
specific hardware configuration, it must be implemented for the exact setup.  

The PtxTunneling library includes the header file ptx_tunneling_hal.h, which contains all the functions that must 
be provided by the host platform. 

For the current case, there should be the file ptx_tunneling_hal.c created in the source code folder 
Core/Src with the following content.  



PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 9  

 

/** \file 
   --------------------------------------------------------------- 
   Copyright (C) 2022. Panthronics AG - All Rights Reserved. 
  
   This material may not be reproduced, displayed, modified or 
   distributed without the express prior written permission of the 
   Panthronics AG. 
  
   PLEASE CHECK FURTHER DISCLAIMER AT THE END OF FILE 
   --------------------------------------------------------------- 
  
    Project     : PTX100x 
    Module      : PLAT 
    File        : ptxTunneling_hal.c 
  
    Description : 
*/ 
  
#include <MAX325xx.h> 
#include <assert.h> 
#include <cmsis_gcc.h> 
#include <cmsis_nvic.h> 
#include <mml_gpio.h> 
#include <mml_spi.h> 
#include <mml_tmr.h> 
#include <mml_uart.h> 
#include <stdbool.h> 
#include <stdio.h> 
#include <string.h> 
  
#include "ptx_tunneling_hal.h" 
  
/* 
 * Pin assignment for MAX 32588 EV KIT 
 * 
 * SPI MISO 0   P0.16 
 * SPI MOSI 0   P0.17 
 * SPI SCK  0   P0.18 
 * SPI NSS  0_0 P0.19 
 * 
 * SEN          P0.10 
 * 
 * Ext. IRQ     P0.21 
 */ 
  
#define EX_SPI_BAUD_RATE 5000000 
#define PTX100_SPI_DEV MML_SPI_DEV0 
  
#define PTX100_UART_DEV MML_UART_DEV0 
#define PTX100_UART UART0 
#define PTX_IRQ GPIO(0, 21) 
#define PTX_CS GPIO(0, 19) 
  
#define TIMER_INVALID -1 
#define TMPBUFLEN 300 
  
#ifndef UNUSED 
#define UNUSED(var) (void)var 
#endif 
  
struct ptxHal 



PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 10  

 

{ 
}; 
  
static volatile uint32_t g_timeFromStart = 0; 
static uint8_t g_tmpBuf[TMPBUFLEN]; 
  
static void isrSysTick(); // System timer interrupt service routine 
static int init_spi_master(void); 
  
#define OFFSET_RSP_LENGTH_BYTE 0 
#define OFFSET_CMD_LENGTH_BYTE 1 
#define OFFSET_CMD_CODE_BYTE 0 
  
#define COMMS_MAX_MESSAGE_LENGTH 280 
#define COMMS_HEADER_SIZE 2 
  
#define CMD_CODE_TUNNELING_MSG 0x55 
  
static uint8_t uartRxBuf[2048]; // temporary uart buffer for received data 
static volatile uint16_t readPos = 0; 
static volatile uint16_t writePos = 0; 
static uint8_t rx[COMMS_MAX_MESSAGE_LENGTH]; // for prefiltering received commands 
static uint16_t rxi = 0; 
  
void uartCallback() 
{ 
    mml_uart_interrupt_clear(PTX100_UART_DEV, UINT32_MAX); 
    // read received data from buffer 
    while (PTX100_UART->STAT & UARTn_STAT_RXELT_Msk) 
    { 
        volatile uint8_t tmp; 
        tmp = PTX100_UART->DATA; 
  
        if (rxi == 0 && tmp != CMD_CODE_TUNNELING_MSG) 
        { // if there are some invalid data received while waiting for sync byte, just 
discard them 
            continue; 
        } 
        rx[rxi++] = tmp; 
    } 
  
    if (rxi >= COMMS_HEADER_SIZE) 
    { 
        uint16_t packLen = COMMS_HEADER_SIZE + 
                           (rx[OFFSET_CMD_LENGTH_BYTE] == 0 ? 256 : 
rx[OFFSET_CMD_LENGTH_BYTE]); 
        if (rxi >= packLen) 
        { 
            // whole packet has been received 
            memcpy(uartRxBuf + writePos, rx, rxi); 
            writePos += rxi; 
            rxi = 0; 
        } 
    } 
} 
  
bool ptxTunneling_GPIO_IsIrqPinAsserted(ptxHal_t *context) 
{ 
    UNUSED(context); 
    unsigned int data; 
    mml_gpio_read_bit_pattern(GPIO_DEV(PTX_IRQ), GPIO_NUM(PTX_IRQ), 1, &data); 



PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 11  

 

    return data > 0; 
} 
  
int ptxTunneling_UART_rxLength(ptxHal_t *context) 
{ 
    UNUSED(context); 
    __disable_irq(); 
    const count = writePos - readPos; 
    __enable_irq(); 
    return count; 
} 
  
int ptxTunneling_UART_read(ptxHal_t *context, uint8_t *buf, unsigned int len) 
{ 
    UNUSED(context); 
    assert(len < sizeof(uartRxBuf)); 
    __disable_irq(); 
    int readCount = writePos - readPos; 
    if (readCount > len) 
        readCount = len; 
  
    memcpy(buf, uartRxBuf + readPos, readCount); 
  
    readPos += readCount; 
    if (readPos == writePos) 
    { 
        readPos = 0; 
        writePos = 0; 
    } 
    __enable_irq(); 
    return readCount; 
} 
  
int ptxTunneling_UART_write(ptxHal_t *context, const uint8_t *buf, unsigned int len) 
{ 
    UNUSED(context); 
    int res = 0; 
    while (len--) 
    { 
        res = mml_uart_write_char(PTX100_UART_DEV, *buf++); 
        assert(!res); 
    } 
  
    return res; 
} 
  
void ptxTunneling_Timer_stopwatchStart(ptxHal_t *context, ptxTimeDiff_t *startVal) 
{ 
    UNUSED(context); 
    *startVal = g_timeFromStart * 1000; 
} 
  
void ptxTunneling_Timer_stopwatchStop(ptxHal_t *context, ptxTimeDiff_t *startStopVal) 
{ 
    UNUSED(context); 
    *startStopVal = g_timeFromStart * 1000 - *startStopVal; 
} 
  
void ptxTunneling_Timer_ThreadSleep(ptxHal_t *context, uint32_t msSleep) 
{ 
    UNUSED(context); 



PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 12  

 

    const uint32_t t0 = g_timeFromStart; 
    while (g_timeFromStart - t0 < msSleep) 
    { 
    } 
} 
  
int ptxTunneling_SPI_trx(ptxHal_t *context, uint8_t *const txBuf[], const size_t 
txLen[], 
    size_t numBuffers, uint8_t *rxBuf, size_t *rxLen) 
{ 
    UNUSED(context); 
    size_t index; 
    int st = COMMON_ERR_UNKNOWN; 
  
    /* At this point the SPI transfer operation is triggered */ 
    mml_gpio_write_bit_pattern(GPIO_DEV(PTX_CS), GPIO_NUM(PTX_CS), 1, 0); 
  
    // Tx operation is required always: to send and to receive anything on SPI. So, tx 
buffers have 
    // to be provided always. 
    if ((NULL != txBuf) && (NULL != txLen)) 
    { 
        /* Tx part of the overall transaction. */ 
        index = 0; 
        while (index < numBuffers) 
        { 
            assert((txBuf[index] != NULL) && (txLen[index] > 0)); 
            const size_t len = txLen[index]; 
            assert(len <= TMPBUFLEN); 
            // the transmit function also overwrites the input buffer, therefore it is 
copied 
            // beforehand 
            memcpy(g_tmpBuf, txBuf[index], len); 
            st = mml_spi_transmit(PTX100_SPI_DEV, g_tmpBuf, len); 
            assert(!st); 
            if (rxBuf) 
                memcpy(rxBuf, g_tmpBuf, len); 
            index++; 
        } 
    } 
    else if ((NULL != rxBuf) && (NULL != rxLen) && (*rxLen > 0)) 
    /* Let's see if there is something to read. */ 
    { 
        // the transmit function transmits buffer and replaces the content with received 
bytes 
        memset(rxBuf, 0, *rxLen); 
        st = mml_spi_transmit(PTX100_SPI_DEV, rxBuf, *rxLen); 
        assert(!st); 
    } 
  
    // de-assert cs 
    mml_gpio_write_bit_pattern(GPIO_DEV(PTX_CS), GPIO_NUM(PTX_CS), 1, 1); 
  
    return st; 
} 
  
void ptxTunneling_NVIC_disableInterrupts() 
{ 
    __disable_irq(); 
} 
  



PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 13  

 

void ptxTunneling_NVIC_enableInterrupts() 
{ 
    __enable_irq(); 
} 
  
void initPeripherals() 
{ 
    int st; 
    mml_gpio_pre_init(); 
    mml_tmr_pre_init(); 
  
    // System tick to 1ms resolution 
    __NVIC_SetVector(SysTick_IRQn, (uint32_t)&isrSysTick); 
    SysTick_Config(60000); 
  
    init_spi_master(); 
  
    // configure PTX_IRQ pin 
    mml_gpio_config_t gpioConfIrq = {.gpio_direction = MML_GPIO_DIR_IN, 
        .gpio_function = MML_GPIO_NORMAL_FUNCTION, 
        .gpio_intr_mode = MML_GPIO_INT_MODE_LEVEL_TRIGGERED, 
        .gpio_intr_polarity = MML_GPIO_INT_POL_HIGH, 
        .gpio_pad_config = MML_GPIO_PAD_PULLDOWN}; 
  
    mml_gpio_init(GPIO_DEV(PTX_IRQ), GPIO_NUM(PTX_IRQ), 1, gpioConfIrq); 
  
    // Configure PTX_CS pin 
    mml_gpio_config_t gpioConfCs = {.gpio_direction = MML_GPIO_DIR_OUT, 
        .gpio_function = MML_GPIO_NORMAL_FUNCTION, 
        .gpio_pad_config = MML_GPIO_PAD_NORMAL}; 
  
    mml_gpio_init(GPIO_DEV(PTX_CS), GPIO_NUM(PTX_CS), 1, gpioConfCs); 
    mml_gpio_write_bit_pattern(GPIO_DEV(PTX_CS), GPIO_NUM(PTX_CS), 1, 1); 
  
    rxi = 0; 
    mml_uart_config_t uartConfig = {.baudrate = 115200, 
        .data_bits = UARTn_CTRL_SIZE_bits8, 
        .flwctrl = UARTn_CTRL_RTSCTSF_disable, 
        .parity = MML_UART_PARITY_NONE, 
        .stop_bits = UARTn_CTRL_STOP_stop1, 
        .handler = &uartCallback, 
        .rts_ctl = UARTn_PIN_RTS_hi, 
        .parity_mode = MML_UART_PARITY_MODE_ONES}; 
  
    mml_uart_pre_init(); 
    st = mml_uart_init(PTX100_UART_DEV, uartConfig); 
    assert(!st); 
    mml_uart_interrupt_set(PTX100_UART_DEV, UARTn_INT_EN_FFRXIE_Msk); 
    ptxTunneling_NVIC_enableInterrupts(NULL); 
} 
  
// Initialize SPI 
static int init_spi_master(void) 
{ 
    int result = NO_ERROR; 
    mml_spi_params_t spiparams; 
  
    spiparams.baudrate = EX_SPI_BAUD_RATE; 
    spiparams.ssel = 0; 
    spiparams.word_size = SPIn_MOD_NUMBITS_bits8; 
    spiparams.mode = SPIn_CNTL_MMEN_master; 



PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 14  

 

    spiparams.wor = SPIn_CNTL_WOR_disable; 
    spiparams.clk_pol = SPIn_CNTL_CLKPOL_idleLo; 
    spiparams.phase = SPIn_CNTL_PHASE_activeEdge; 
    spiparams.brg_irq = SPIn_CNTL_BIRQ_disable; 
    spiparams.ssv = SPIn_MOD_SSV_hi; 
    spiparams.ssio = SPIn_MOD_SSIO_output; 
    spiparams.tlj = SPIn_MOD_TX_LJ_disable; 
    spiparams.dma_rx.active = SPIn_DMA_REG_DMA_EN_disable; 
    spiparams.dma_tx.active = SPIn_DMA_REG_DMA_EN_disable; 
  
    result = mml_spi_reset_interface(); 
    if (result) 
        return result; 
  
    result = mml_spi_init(PTX100_SPI_DEV, &spiparams); 
    if (result) 
        return result; 
  
    M_MML_SPI_ENABLE(PTX100_SPI_DEV); 
    return result; 
} 
  
// count milliseconds with SysTick 
static void isrSysTick() 
{ 
    g_timeFromStart++; 
} 
  
/* 
Copyright (C) 2022. Panthronics AG - All Rights Reserved. 
-DISCLAIMER- 
This Software may not be edited, altered, modified, adapted or otherwise 
changed and may solely and exclusively be used in conjunction with a Panthronics AG 
component, 
which is integrated into your product. Other than for the foregoing purpose, you may not 
use, 
reproduce, copy, prepare derivative works of, modify, distribute, perform, display or 
sell this 
Software and/or its documentation for any purpose. 
YOU FURTHER ACKNOWLEDGE AND AGREE THAT THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS 
IS" 
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, 
ANY 
WARRANTY OF MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR 
PURPOSE. 
IN NO EVENT SHALL PANTHRONICS AG OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER CONTRACT, 
NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR OTHER LEGAL EQUITABLE 
THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES INCLUDING BUT NOT LIMITED TO ANY 
INCIDENTAL, 
SPECIAL, INDIRECT, PUNITIVE OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF 
PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY THIRD PARTIES 
(INCLUDING 
BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS. 
  
  
Panthronics AG’s GENERAL TERMS AND CONDITIONS FOR SALE OF PRODUCTS AND SERVICES (B2B) 
published on 
Panthronics’ website, as amended from time to time, shall apply. 
  
Austrian law shall apply without reference to its international conflict of law 
provisions. 



PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 15  

 

Should you have any questions regarding your right to use this Software, contact 
Panthronics AG 
(www.panthronics.com) 
*/ 

 

 

 

This implementation is specific to the MAX32558-KIT board. It is not guaranteed to work on any other hardware. 

2.4 Calling the Library Functions 
After the initialization by ptxTunneling_init(), the main loop will provide the tunneling functionality by 
calling the library's superloop function, the ptxTunneling_poll(). This function performs the data 
processing and translation, and also the SPI communication. The main() function can be found in src/main.c 
file. Please update this file with the following code: 

#include <stdio.h> 
#include <stdlib.h> 
#include "ptx_tunneling.h" 
  
extern void initPeripherals(); 
  
int main(int argc, char *argv[]) 
{ 
    initPeripherals(); 
    ptxTunneling_init(); 
  
    while (1) 
    { 
        ptxTunneling_poll(NULL); 
    } 
  
    return 0; 
} 

2.5 Building the Firmware 
After the source files have been created, the project can be built with the Project > Build Project. When the 
build process has finished successfully, a table similar to the following will show with the footprint sizes. 

arm-none-eabi-size --format=berkeley "demo.elf" 
   text    data     bss     dec     hex filename 
  14357     168   16656   31181    79cd demo.elf 



PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 16  

 

3. Preparing the Hardware 
Configure the PTX evaluation board’s serial interface to SPI by setting both interface configuration switches 
(SIF1 and SIF2) to 0 and remove the jumper labeled pmod 3v3 (located next to PMOD connector) to prevent 
supply conflicts between the two boards, since each will be powered separately. 

Connect the PTX evaluation board to the MAX32558-KIT board with jumper cables. Using the vertical pin header 
on the PTX evaluation board is convenient because it shows the pin names on the silkscreen, therefore they are 
easy to identify. On the Maxim board, the pin header JH4 with the GPIO PORT 0 label will be used with the 
following interconnection. 

Signal Name on PTX Evaluation Board Maxim Board JH4 Pin Name 

MISO 16 

MOSI 17 

SCK 18 

SSN 19 

IRQ 21 

GND GND 
 

 

 

In addition, the CTS pin of the JH3 connector must be pulled to GND. 

The boards can now be powered up. Please note, that for optimal RF performance, the USB 3.0 port should be 
used to enable the PTX board to draw a current up to 900mA. 

 



PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 17  

 

3.1 Running the Application 
The last task is to flash and start the firmware on the Maxim evaluation board. This can be performed directly in 
the development environment of the Maxim SDK.  

There is a J-Link debug probe in the MAX32558 evaluation kit for which a debug configuration is already 
generated automatically during project setup. It is possible that the internal variable jlink_path is set 
incorrectly during installation; therefore, debugging will not work out of the box. If this occurs, you must change 
the debug configuration in the Run > Debug Configurations... menu. Selecting the Demo SLA and the 
Debugger tab, the GDB server Executable in the J-Link GDB Server Setup area can be set manually as 
shown below. 

 
 

Finally, after clicking on the Debug button, the firmware will be uploaded to the Maxim board and the debug 
session will be started. After pressing F8 to let the demo application run, the firmware will be ready for accepting 
communication frames from the PC. 



PTX Tunneling Library v1.3.1 for Eclipse Maxim IDE QuickStart Manual 

 

R35US0011EE0100   Rev.1.00 
Jan 16, 2024 

 Page 18  

 

4. Using the Tunneling Feature 
To use of the tunneling functionality, the PTX100x * Config Tool must be started and configured to use the USB 
serial communication port (identified in Device manager previously) by selecting the correct entry in the 
dropdown list in toolbar.  

 

 

 

The configuration is now ready. Any test started will communicate with the PTX100x via the tunneling firmware. 

5. Revision History 
 

Revision Date Description 

1.00 Jan 16, 2024 Initial release.  

 



Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most 
up-to-date version of a document, or your nearest sales 
office, please visit www.renesas.com/contact-us/. 

Trademarks
Renesas and the Renesas logo are trademarks of Renesas 
Electronics Corporation. All trademarks and registered 
trademarks are the property  of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL 
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING 
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND 
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, 
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) 
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) 
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These 
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an 
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is 
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims 
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, 
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and 
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise 
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	1. Requirements
	2. Sample Firmware
	2.1 Creating the Project
	2.2 Importing the Library
	2.2.1. Including Tunneling Source Code
	2.2.2. Adding the Include Path
	2.2.3. Adding the Library File

	2.3 Implementing the HAL
	2.4 Calling the Library Functions
	2.5 Building the Firmware

	3. Preparing the Hardware
	3.1 Running the Application

	4. Using the Tunneling Feature
	5. Revision History

