

ClockMatrix™

Mapping Clock Device Pins to Clock Numbers in the 8A34001

Abstract

This document explains the mapping between the device pins used for input clocks (CLK and GPIO) and the internal names (CLK) used by the firmware to configure these input clocks in the ClockMatrix 8A34001.

Contents

1. Pin Mapping to Clock Names	2
2. Revision History	4

Figures

Figure 1. Input Signal Routing on ClockMatrix	3
---	---

Tables

Table 1. Clock Naming on 8A34001	2
Table 2. Register Names for Input Clock Routing Control	3

Related Documents

For more information, visit our website: [ClockMatrix™ Timing Solutions](#)

1. Pin Mapping to Clock Names

Besides the CLK and nCLK pins on the ClockMatrix 8A34001, the GPIO inputs on ClockMatrix can also be used as frequency-only input clocks. Multiplexors in the device direct the clock signals from the clock and GPIO pins to different functional blocks in the device. The clock name corresponding to each clock or GPIO pin change depending on the configuration. These names are used to determine the correct registers for input configuration.

Note: For more information, see the *8A34001 Datasheet* and the *8A3xxx Family Programming Guide* for the corresponding version of firmware that can be downloaded from [ClockMatrix Timing Solutions](#).

Each pair of clock input pins can be used as a single differential pair or two single-ended references. In addition, a GPIO can be used instead of the second single-ended reference clock. In the GUI, the clock are labeled with differential, single-ended, or GPIO names, but all share common resources in the frequency input blocks. A GPIO alternate clock can be used with either a single-ended or differential clock on the CLK/nCLK pins. The clock names are listed in Table 1.

For example, when CLK1/nCLK1 is used as two single-ended clocks they will be configured as CLK1 and CLK9 (for the clock on pin nCLK1). If nCLK1 is not used as a single-ended clock, then GPIO15 can be configured as CLK9.

Table 1. Clock Naming on 8A34001

Pin Name, Differential Clock Number [m]	Primary Single-ended Clock Number [m]	Secondary Single-ended Clock Number [m+8]	GPIO Pin for Alternate Clock Input [j]
CLK0	CLK0		
nCLK0		CLK8	GPIO0
CLK1	CLK1		
nCLK1		CLK9	GPIO15
CLK2	CLK2		
nCLK2		CLK10	GPIO14
CLK3	CLK3		
nCLK3		CLK11	GPIO13
CLK4	CLK4		
nCLK4		CLK12	GPIO12
CLK5	CLK5		
nCLK5		CLK13	GPIO11
CLK6	CLK6		
nCLK6		CLK14	GPIO10
CLK7	CLK7		
nCLK7		CLK15	GPIO3

Note: This clock mapping is for the 8A34001. Other ClockMatrix devices may have a slightly different mapping.

The clock routing within the device is shown in Figure 1. The details of the control of the multiplexors in the figure are shown in Table 2.

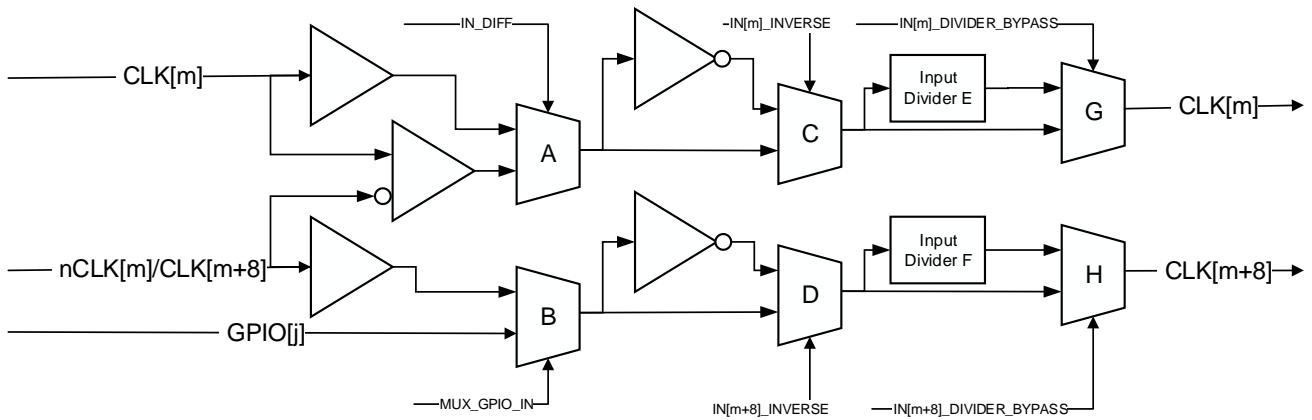


Figure 1. Input Signal Routing on ClockMatrix

Note: The figure shows differential, single-ended, and alternate frequency input via GPIO pin for CLK[m], nCLK[m]/CLK[m+8], and GPIO[j].

The multiplexors in the diagram are explained in the following table (using CLK0/CLK8/GPIO0 as an example).

Table 2. Register Names for Input Clock Routing Control

Mux	Function	Register in Programmer's Guide	Register in GUI	Function when 0	Function when 1
A	Primary single-ended or differential	INPUT_0.IN_MODE. IN_DIFF[5]	IN0_DIFF (or set indirectly via "Input protocol")	Use CLK as first single-ended input	Use CLK/nCLK as first differential input
B	Secondary single-ended clock source (from nCLK or GPIO)	INPUT_0.IN_MODE. MUX_GPIO_IN[6]	IN0_MUX_GPIO_IN	Use nCLK as second single-ended input	Use GPIO as second single-ended input
C	Diff/primary single-ended invert	INPUT_0.IN_MODE. IN_INVERSE[3]	IN0_INVERSE	Use Primary single-ended or differential normally	Use Primary single-ended or differential inverted
D	Secondary clock invert	INPUT_8.IN_MODE. IN_INVERSE[3]	IN8_INVERSE	Use Secondary single-ended or GPIO clock normally	Use Secondary single-ended or GPIO clock inverted
G	Primary clock divider bypass	INPUT_0.IN_DIV	IN0_DIV	When Divider E is set to 0 or 1, bypass divider	
H	Secondary clock divider bypass	INPUT_8.IN_DIV	IN8_DIV	When Divider F is set to 0 or 1, bypass divider	

Note: E and F are dividers controlled in this example by Programming Guide registers INPUT_0.IN_DIV for multiplexor G and INPUT_8.IN_DIV for multiplexor H.

Note: A “[n]” in a register name refers to a bit within the register. For example, INPUT_0.IN_MODE.IN_DIFF[5] refers to module INPUT_0, register IN_MODE, bit 5.

2. Revision History

Revision	Date	Description
1.0	Jun.1.20	Initial release.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.