LENESANS Application Note

Renesas RA Family
RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Introduction

This application note describes loT Cloud connectivity solutions in general and introduces you briefly
to the 10T Cloud solution provider, Microsoft Azure. It covers the RA FSP MQTT/TLS module along
with the Azure loT SDK for embedded C.

This application project is built with the integrated “Azure 10T SDK for Embedded C” package which
allows small embedded (10T) devices like Renesas RA family of MCUs RA6M3/RA6M4/RA6M5 to
communicatewith Azure IoT services.

The application example uses Azure 10T DPS (Device Provisioning Service) to provision, register
the loTdevice, and send and receive data to and from the development Kit.

This application note enables you to effectively use the RA FSP modules in your own design with the FSP
integrated Azure 10T SDK. Upon completion of this guide, you will be able to add the FSP modules to your
own design, configure it correctly with Azure 10T SDK for the target application, and write code using the
included application example code as a reference and efficient starting point. References to more detailed
API descriptions and sample code, that demonstrates advanced usage of FSP modules are available in the
RA FSP Software Package (FSP) User's Manual (see Next Steps section) and serve as valuable resources
in creating more complex designs. Explaining the underlying operation of Azure 10T SDK for Embedded C is
beyond the scope of this document. Users should refer to the documentation from Microsoft for education on
topics related to Azure 10T SDK section: https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devquide-
sdks

In this release, the CK-RA6MS5 kit is used for the application project.
Required Resources

To build and run the MQTT/TLS application example, you need:
Development Tools and Software

e e?studio version: v2022-10 or later

o RAFSP Software Package (FSP) v4.2.0

e SEGGER J-Link® RTT viewer version: 7.84 or later

e Azure loT explorer 0.14.13.0 or later (PC tool for validating the Cloud side) Download Link : Releases -
Azure/azure-iot-explorer (github.com)

e Azure CLI 2.44 or later (Azure command-line interface is a set of commands used to create and manage
Azure resources) Download Link: How to install the Azure CLI | Microsoft Learn

e Access to Azure Cloud Connectivity Portal (https://portal.azure.com/#home) to create I0T Devices (If you
are new to Azure loT)

Hardware

¢ Renesas CK-RA6M5 kit (CK-RABMS5 - Cloud Kit Based on RA6M5 MCU Group | Renesas)

e PC running windows® 10, Tera Term console or similar application, and an installed web browser
(Google Chrome, Internet Explorer, Microsoft Edge, Mozilla Firefox, or Safari).

e Micro USB cables

e Ethernet cable (CAT5/6)

e Router with ethernet port or ethernet switch to connecting to the router for Internet connectivity

Prerequisites and Intended Audience

This application note assumes that you have some experience with the Renesas e2 studio ISDE and RA
FSPSoftware Package (FSP). Before you perform the procedures in this application note, follow the
procedure in the FSP User Manual to build and run the Blinky project. Doing so enables you to become
familiar with the e? studio and the FSP, and also validates that the debug connection to your board functions

R11ANO750EU0101 Rev.1.01 Page 1 of 47
May.05.23 RENESAS

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks
https://github.com/Azure/azure-iot-explorer/releases
https://github.com/Azure/azure-iot-explorer/releases
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://portal.azure.com/#home
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ck-ra6m5-cloud-kit-based-ra6m5-mcu-group

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

properly. In addition, this application note assumes you have some knowledge of MQTT/TLS and its
communication protocols.

The intended audience are users who want to connect to Azure Cloud using the Azure lIoT SDK for
Embedded C on the Renesas RA/RA6 MCU Series.

Note: If you are a first-time user of €2 studio and FSP, we highly recommend you install €2 studio and FSPon
your system in order to run the Blinky Project and to get familiar with the e? studio and FSP
development environment before proceeding to the next sections.

Note: If you are new to Azure Internet of Things, we recommend you get started with Introduction the Azure
0T https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-introduction

Prerequisites

e Access to online documentation available for Azure in the Cloud Connectivity under References sections
Error! Reference source not found. and Error! Reference source not found.
e Access to latest documentation for identified Renesas FSP as referenced sections Error! Reference
source not found. and Error! Reference source not found.
¢ Prior knowledge of operating e? studio and built-in (or standalone) RA Configurator
e Access to associated hardware documentation such as User Manuals and Schematics

Using this Application Note

Section 1 of this document covers the General Overview of the Cloud Connectivity, Azure 10T Solution using
loT Central, and Azure DPS, MQTT and TLS Protocols and Device certificates and Keys used in the Cloud
Connectivity.

Section 2 covers the modules provided by RA FSP to establish connectivity to Cloud service providers and
the features supported by the module.

Section 3 covers the architecture of the reference application project, an overview of the software
components included, and step-by-step guidelines for recreation using the FSP configurator. It also covers
setting up the Azure 10T Hub, creating the self-signed certificates, storing the certificates in the flash using
the application CLI.

Sections 4 covers Importing, building and running the Application project.

Note: We recommend that you operate with your own Microsoft Azure Cloud credentials and use your
created Cloud configurations to run the application. The default sample configuration detailed in this
project is for reference only and may have access issues to Azure since the application is
communicating with a test account.

Note: For a quick validation using the provided application project, you can skip sections 1 to 2 and go to
section 3 and 4 for instructions on setting up the Azure I0T Hub, creating the self-signed certificates,
storing the certificates in the flash using the application CLI, and running the application project on the
CK-RAG6MS5 board.

Contents

1. Introduction tO CloUud CONNECLIVILY........ouuuuiie e e e e e et e e e e e e eeeaeaa e e e e eeeeeennees 4
1.1 Cloud CONNECHVILY OVEIVIEW....cciiieiiiiitieieeeeeeieiitee et e e e e s s sstetaeeeeeessssstaaeeeeeeasassntaeereaeessnnsssaeeeeeeessannsrnneees 4
1.2 MiCroSOoft AZUIe 10T SOIULIONueiiiiiiiiiie ittt sttt ettt e e bt e e e st e e e snbee e e e snbteeeennneeeens 5
2 R © Y= V1= SOOI 5
1.2.2 10T HUb DeViCe ProViSIONING SEIVICEcciiiiiiiiiiiiitaaa ettt e e e ettt e e e e e s et ee e e e e e e e s nnbbeeeeaaeeesnnreneeas 5
1.2.3 AUthentication METNOUSeiiiie et e e e e et e e e e e e e et bbb e e e e e e e e e sannraaeeas 6
1.3 MQTT ProtOCOI OVEIVIEWccceeviiiiiiiiiiiieeee ettt ettt 6
1.4 TLS ProtOCOI OVEIVIEWeiiiiiiiiieiiieii ettt sttt sttt e e sttt e sttt e sttt e e sabbe e e e sabte e e e anbbee e e snbeeeeeanbbeeesanseeeens 7
1.4.1 Device Certificates and KEBYS.......cooiiuiiiiiiie e is e e s s et e e e e s s s e e e e e e s e st reeaeessnsssaeeeeeeeessnnnenneees 8
R11ANO750EU0101 Rev.1.01 Page 2 of 47

May.05.23 RENESAS

https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-introduction

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

1.4.2 Device Security RECOMMENTALIONS........uuiiiiiiiiie ettt e e e sbae e e s snneees 8
2. RAFSP MQTT/TLS CloUd SOIULIONuuuiiiiiieeeeiiiec e e e et e e b e e e eaaans 9
2.1 MQTT Client MOAUIE INtrOTUCTIONuuuitiieitieiitererireterererererererererererere s rerererererarerersrssessrsrsssssssrersrsrsrsrsrrres 9
2% I A I =Y o | o J @0 13 T =T = L4 o 1 SO 9
2.1.2 SUPPOIEA FRALUIES....ceiii ittt ettt e ettt e e e e oo e bbb e et e e e e e e oo bbbttt et e e e e e annbeeeeeaaeeeaasnbbeseaaaeeeaannes 9
2.2 TLS Session MOAUIE INTFOAUCTION ...ttt e e e ettt e e e e e e e e sanbbeeeeaaeeeaannes 9
2.2.1 DeSIgN CONSIAEIALIONScoiiuiiiiiiiiee ettt ettt e e e e e e e bbb ettt e e e e e e e sbbbe e e e e e e e e saasbebeeeeaaesaaanbbsseaaaaesaannnes 9
WA W[o] o o 1= To l = o N U= USRS 10
2.3 Azure |0T Device SDK Module INtrOGUCLIONeiiiiiiiie ettt 10
P22 T R B =Y o | o J @) 1Y T =T = L4 1 1 PR 10
2.3.2 SUPPOIEU FRALUIES....ccii ittt ettt e e oo ettt e e e e e e o e aab b b e e e e e e e e e aannbbbeeeaaeeaeannbbsseeaaeeaaanne 10
3. MQTT/TLS Application EXAmMPIEccuuuuiiiiieeiiiie e e e e e et e e e e e e aanaees 11
0 A N o o[- o g T @ YT YT PR 11
3.2 Creating the Application Project using the FSP configurator..............oocuuiiiiiiiiiiiiiiie e 15
R B 1 051 = | I V4T £ O I PP UPTPUPPPPTN 22
K O == 1 (=T o T (o I = 11] o TP UPTPUPPPPT 22
3.5 CertifiCate Creation PrOCESS.c.uiii ittt ettt ettt e e et e e e sttt e e s sttt e e et b e e s abb e e e e abbeeesanbbeeeeanrees 25
3.6 VIEW DEVICE PIOPEITIES ..oieeiiiieiiieiiiie e e i ettt e e e e e s sttt e e e e s s st aae e e ee e e s s ass s teeeeeeeessasssbnaeeeeesssnsrneeeeeeesnnnnnes 29
I A S T= [0 1 I = 11 o PSP 29
3.8 Register @n 10T HUD DEVICE.eoiiiiiiie ettt e e ettt e e e e e e e sbbereeeaaeeaannes 32
3.9 Prepare the DBVICEueiiii ettt ettt e oottt e e e e e s e ab bttt e e e e e e e s nabbbeeeaa e e e e e nbbeeeaeaeeaaannes 34
3.10 Building and RUNNING the APPHCALIONiiiiii et e e e e e e e e e e anes 34
3.11 Download and RUN the PrOJECT........icci ittt e e e e s e s e e e e e e e et e e e e e e e e snnrereeeeeeesennnes 35
3.12 Storing Device Certificate, HOSt Name, DEVICE IDccocciiiiiiiiiiiee e ciiie e s e e et ren e e e e e enees 38
3.13 Send DevViCe t0 ClOUA MESSATEeeeeeiiiieeiiiiieeeeesiiiitieee e e e s s sstate e e e e e e s e sasteeeeeaeeesasssstereeeeeassnnstseeeeeeessnnnnes 42
3.14 Send CloUd-t0-DEVICE MESSAQE....cciieiiiitiiiteee ettt ettt e e e e e e et e e e e e e e e saabbbeeeaaaeeesnnbereeeaaeeaannnes 43
4. Importing, Building and Loading the ProjecCt...........ccoovvviiiiiiiii e 44
s N 1 o 4] o o 1 1T PSR 44
4.2 Building the Latest EXECULADIE BINAIYuuuiiiiiiiiiiiiiiee ettt e e e e e e ranbbeeeaaae s 44
4.3 Loading the Executable Binary into the Target MCU ... 44
4.3.1 Using a Debugging Interface With €2 STUIO...........eiiiiiiiiiiiiiee e e e s eraee e e 44
4.3.2 USING J-LINK TOOISuutiiiiieeiiiiiiii et sttt e e et e e e e e e e s et e e e e e e e s snabeeeeeeeeesasnnstnaeeeeeeeaasnnannneeeenen 44
4.3.3 Using Renesas Flash ProgramMmercc.uuiiiiiie i sse et e e st e e e e e s st ae e e e e e e s s nnnnaaneeeeeen 44
5. Next StePS aNd REFEIENCESuuuiiiiiiiiiiii e e e e e e e e e aee s 44
6. MOTT/TLS REIEIENCES. ..cciiiiii et e e ettt e e e e e e e e eaaet e e e e e e aeeeeneens 44
7. KnNown ISSUES and LIMITATIONSuuuuuuiiiiiiiiiiiiiiiiiii s a e e e e e e e e e e 45
REVISION HISTOMY ... ettt nnnnnnnnes 47
R11ANO750EU0101 Rev.1.01 Page 3 of 47

May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

1. Introduction to Cloud Connectivity

1.1 Cloud Connectivity Overview

Internet of Things (loT) is a sprawling set of technologies described as connecting everyday objects,
like sensors or smartphones, to the World Wide Web. 10T devices are intelligently linked together to
enable newforms of communication between things and people, and among things.

These devices, or things, connect to the network. Using sensors, they provide the information they
gather from the environment or allow other systems to reach out and act on the world through
actuators. In the process, 10T devices generate massive amounts of data, and Cloud computing
provides a pathway, enabling data to travel to its destination.

The 10T Cloud Connectivity Solution includes the following major components:

1. Devices or Sensors

2. Gateway

3. loT Cloud services

4. End user application/system

Devices

.

Sensors N

Gateway

Figure 1. 10T Cloud Connectivity Architecture
Devices or Sensors

A device includes hardware and software that interacts directly with the world. Devices connect to a
network to communicate with each other, or to centralized applications. Devices may connect to the
Internet either directly or indirectly.

Gateway

A gateway enables devices that are not directly connected to the Internet to reach Cloud services. The data
from each device is sent to the Cloud platform, where it is processed and combined with data from other
devices, and potentially with other business-transactional data. Most of the common communication
gateways support one or more communication technologies such as Wi-Fi, Ethernet, or Cellular to connect to
the 10T Cloud service provider.

loT Cloud

Many loT devices produce lots of data. You need an efficient, scalable, affordable way to manage
those devices, handle all that information, and make it work for you. When it comes to storing,
processing, and analyzing data, especially big data, it is hard to surpass the Cloud.

R11ANO750EU0101 Rev.1.01 Page 4 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

1.2 Microsoft Azure loT Solution

1.2.1 Overview

Microsoft's end-to-end 10T platform is a complete loT offering so that enterprises can build and realize value
from IoT solutions quickly and efficiently. Azure loT Central solutions are used with backend support from the
Azure loT Hub Device Provisioning Service.

Azure loT Pazure loT Central <L Azure loT Reference Ny Dynamics Connected
Solutions @ (5aa$) »[ﬂr:;::g]eclure & Accelerators V :gzl;is?emce
Azure loT Hub Azure Stream Analytics Azure Active Directory
Azure loT Hub Device Azure Cosmos DB Azure Monitor
Azire b | Provisioning Service Azure Al Azure DevOps
Services for loT L’i ure Digrial fwins Azure Cognitive Services Power Bl
Azure Time Series Insights Azure ML Azure Data Share
Azure Maps Azure Logic Apps Azure Spatial Anchors
Azure Sphere Windows loT Azure ML
loT & Edge @ Azure Certified for loT—Device Azure SQL
Device Support o Azure o ge Catalog Azure Functions
Data Box Edge Azure Stream Analytics Azure Cognitive Services
Azure Storace

Figure 2. Microsoft Azure loT Cloud Solution

1.2.2 10T Hub Device Provisioning Service
1.2.2.1 AzureloT Hub and IoT Hub Device Provisioning Service (DPS)
loT Hub provides built-in support for the MQTT v3.1.1 protocol. See the following webpage for

more understanding of the IoT Hub and Device Provisioning Services (DPS):
https://docs.microsoft.com/en-us/azure/iot-dps/

(1) Device Provisioning Service
High-level sequence of events to connect a Device to 0T Hub are as follows:

1. After the device is manufactured, the device enrollment information is added to the DPS. This is the only
manual step in the process.

2. At some point afterwards, which could be a day, or several months, the device goes online and connects
to DPS to find its 10T solution home.

3. DPS and the device go through an attestation handshake using the device enrollment information. DPS

proves the device’s identity.

DPS registers the device to 10T hub and populates the initial desired device state.

loT hub returns the connection info for the device.

DPS gives the device its IoT Hub connection information.

The device now establishes a connection with 10T Hub and retrieves its initial configuration from loT Hub

and makes any changes/updates, as needed.

8. The device starts sending telemetry to 10T Hub.

No gk

(2) Embedded C SDK

The Embedded C SDK, the newer addition to the Azure SDKs family, was designed to allow
embedded l0T devices to leverage Azure services, like device to Cloud telemetry, Cloud to device
messages, direct methods, device twin, device provisioning, and IoT Plug and play, all while
maintaining a minimal footprint.

It allows full control over memory allocation and the flexibility to bring your own MQTT client,
TLS, and Socket layers.

Written in C, this version of the SDK is optimized to be used on small and embedded devices with
limited capabilities and resources.

The Azure loT SDK is open source and is published on GitHub (https://github.com/Azure/azure-sdk-
for-c). This is also distributed with FSP version 4.2.0 and above.

R11ANO750EU0101 Rev.1.01 Page 5 of 47
May.05.23 RENESAS

https://docs.microsoft.com/en-us/azure/iot-dps/
https://github.com/Azure/azure-sdk-for-c
https://github.com/Azure/azure-sdk-for-c

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

1.2.3 Authentication Methods

Security is a critical concern when deploying and managing loT devices. loT Hub offers the security features
described in the following sections.

1.2.3.1 X.509

The communication path between devices and Azure IoT Hub, or between gateways and Azure loT Hub, is
secured using the industry-standard Transport Layer Security (TLS) with Azure 10T Hub, authenticated using
the X.509 standard.

To protect devices from unsolicited inbound connections, Azure 10T Hub does not open any connection to
the device. The device initiates all connections.

1.2.3.2 Per-Device Key Authentication

Figure 3 shows authentication in the loT Hub using security tokens.

Figure 3. Authentication using Security Tokens

1. The device prepares a shared access signature (SAS) token using the device endpoint, device id,and
primary key (generated as part of the device addition to the 10T Hub).
2. When connecting to the 10T Hub, the device presents the SAS token as the password in the MQTT
CONNECT message. The username content is the combination of device endpoint and device name
along with the additional Azure defined string.
The loT Hub verifies the SAS token and registers the device and connection is established.
4. 10T Hub provides Symmetric key for Data encryption.
Note: The connection is closed when the SAS token expires.

1

1.3 MQTT Protocol Overview

MQTT stands for Message Queuing Telemetry Transport. MQTT is a Client Server publish-
subscribe messaging transport protocol. It is an extremely light-weight, open, simple messaging
protocol, designed forconstrained devices, as well as low-bandwidth, high-latency, or unreliable
networks. These characteristics make it ideal for use in many situations, including constrained
environments, such as communication in Machine to Machine (M2M) and loT contexts, where a small
code footprint is required, and/or network bandwidth is at a premium.

An MQTT client can publish information to other clients through a broker. A client, if interested in a
topic, can subscribe to the topic through the broker. A broker is responsible for authentication and
authorization of clients, as well as delivering published messages to any of its clients who subscribe to
the topic. In this publisher/subscriber model, multiple clients may publish data with the same topic. A
client will receive the messages published if the client subscribes to the same topic.

R11ANO750EU0101 Rev.1.01 Page 6 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

PUBLISH to Thing

PUBLISH to Thing Thing 2
Thing 1

SUBSCRIBE to Thing
Thing N

SUBSCRIBE to Thing

Figure 4. MQTT Client Publish/Subscribe Model

In the Pub/Sub model used by MQTT, there is no direct connection between a publisher and the
subscriber.To handle the challenges of a Pub/Sub system, the MQTT generally uses quality of service
(QoS) levels.

There are three QoS levels in MQTT:

e At most once (0)

e Atleast once (1)

e Exactly once (2)

At most once (0)

A message will not be acknowledged by the receiver or stored and redelivered by the sender.
At least once (1)

It is guaranteed that a message will be delivered at least once to the receiver. But the message can
also bedelivered more than once. The sender will store the message until it gets an acknowledgment
in form of a PUBACK command message from the receiver.

Exactly once (2)

It guarantees that each message is received only once by the counterpart. It is the safest and the slowest
QoS level.

1.4 TLS Protocol Overview

Transport Layer Security (TLS) protocol and its predecessor, Secure Sockets Layer (SSL), are cryptographic
protocols that provide communications security over a computer network.

The TLS/ SSL protocol provides privacy and reliability between two communicating applications. It has the
following basic properties:

Encryption: The messages exchanged between communicating applications are encrypted to ensure that
the connection is private. A symmetric cryptography mechanism such as AES (Advanced Encryption
Standard) is used for data encryption.

Authentication: A mechanism to check the peer’s identity using certificates.

Integrity: A mechanism to detect message tampering and forgery ensures that connection is reliable. A
Message Authentication Code (MAC), such as Secure Hash Algorithm (SHA), ensures message integrity.

[y [

¥

TCP

Figure 5. SSL/TLS Hierarchy

R11ANO750EU0101 Rev.1.01 Page 7 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

1.4.1 Device Certificates and Keys

Device certificates, public and private keys, and the ways they can be generated, are discussed in this
section.

Security is a critical concern when deploying and managing loT devices. In general, each of the loT devices
needs an identity before they can communicate with the Cloud. Digital certificates are the most common
method for authenticating a remote host in TLS. Essentially, a digital certificate is a document with specific
formatting that provides identity information for a device.

TLS normally uses a format called X.509, a standard developed by the International Telecommunication
Union (ITU), though other formats for certificates may apply if TLS hosts can agree on a format to use.
X.509 defines a specific format for certificates and various encodings that can be used to produce a digital
document. Most X.509 certificates used with TLS are encoded using a variant of ASN.1, which is another
telecommunication standard. Within ASN.1 there are various digital encodings, but the most common
encoding for TLS certificates is the Distinguished Encoding Rules (DER) standard. DER is a simplified
subset of the ASN.1.

Though DER-formatted binary certificates are used in the actual TLS protocol, they may be generated and
stored in a number of different encodings, with file extensions such as .pem, .crt, and .pl12. The most
common of the alternative certificate encodings is Privacy-Enhanced Mail (PEM). The PEM format is a base-
64 encoded version of the DER encoding.

Depending on your application, you may generate your own certificates, be provided certificates by a
manufacturer or government organization, or purchase certificates from a commercial certificate authority.

Loading Certificates onto your Device

To use a digital certificate in your NetX™ Secure application, you must first convert your certificate into a
binary DER format, and optionally convert the associated private key into a binary format, typically, a
PKCS#1-formatted, DER-encoded RSA key. Once converted, it is up to you how to load the certificate and
the private key on to the device. Possible options include using a flash-based file system or generating a C
array from the data (using a tool such as xxd from Linux® with the -i option) and compiling the certificate
and key into your application as constant data.

Once your certificate is loaded on the device, you can use the TLS API to associate your certificate with a
TLS session.

1.4.2 Device Security Recommendations

The following security recommendations are not enforced by Cloud IoT Core but will help you secure your
devices and connections.

e The private key of the device should be kept secret.

e Use the latest version of TLS (v1.2 or above) when communicating with 10T Cloud and verify that the
server certificate is valid using trusted root certificate authorities.

e Each device should have a unique public/private key pair. If multiple devices share a single key and one
of those devices is compromised, an attacker could impersonate all the devices that have been
configured with that one key.

o Keep the public key secure when registering it with Cloud 10T Core. If an attacker can tamper with the
public key and trick the provisioner into swapping the public key and registering the wrong public key, the
attacker will subsequently be able to authenticate on behalf of the device.

e The key pair is used to authenticate the device to Cloud IoT Core and should not be used for other
purpose or protocols.

e Depending on the device’s ability to store keys securely, key pairs should be rotated periodically. When
practical, all keys should be discarded when the device is reset.

o If your device runs an operating system, make sure you have a way to securely update it. Android Things
provides a service for secure updates. For devices that don’t have an operating system, ensurethat you
can securely update the device’s software if security vulnerabilities are discovered after deployment.

R11ANO750EU0101 Rev.1.01 Page 8 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

2. RA FSP MQTT/TLS Cloud Solution

2.1 MQTT Client Module Introduction

The NetX Duo MQTT Client module provides high-level APIs for a Message Queuing Telemetry Transport
(MQTT) protocol-based client. The MQTT protocol works on top of TCP/IP and therefore the MQTT client is
implemented on top of NetX Duo IP and NetX Duo Packet pool. NetX Duo IP attaches itself to the
appropriate link layer frameworks, such as Ethernet, Wi-Fi, or Cellular.

The NetX Duo MQTT client module can be used in normal or in secure mode. In normal mode, the
communication between the MQTT client and broker is not secure. In secure mode, the communication
between the MQTT client and broker is secured using the TLS protocol.

2.1.1 Design Considerations

e By default, the MQTT client does not use TLS; communication is not secure between a MQTT client and
broker.

e The RA FSP Azure RTOS NetX Duo loT middleware module provides the NetX Duo TLS session block. It
adds Azure RTOS NetX Secure block. This block defines/controls the common properties of NetX secure.

2.1.2 Supported Features

NetX Duo MQTT Client supports the following features:

e Compliant with OASIS MQTT version 3.1.1 Oct 29, 2014. The specification can be found at
http://mqtt.org/.

e Provides an option to enable/disable TLS for secure communication using NetX Secure in FSP.

e Supports QoS and provides the ability to choose the levels that can be selected while publishing the
message.

¢ Internally buffers and maintains the queue of received messages.

e Provides a mechanism to register callback when a new message is received.

e Provides a mechanism to register callback when connection with the broker is terminated.

2.2 TLS Session Module Introduction

The NetX Duo TLS session module provides high-level APIs for the TLS protocol-based client. It
uses services provided by the RA FSP Crypto Engine (SCE) to carry out hardware-accelerated
encryption anddecryption.

The NetX Duo TLS Session module is based on Azure RTOS NetX Secure which implements the
SecureSocket Layer (SSL) and its replacement, TLS protocol, as described in RFC 2246 (version
1.0) and 5246(version 1.2). NetX Secure also includes routines for the basic X.509 (RFC 5280)
format. NetX Secure is intended for applications using ThreadX RTOS in the project.

2.2.1 Design Considerations

e NetX Secure TLS performs only basic path validation on incoming server certificates.
Once the basic path validation is complete, TLS then invokes the certificate verification callback supplied
by the application.

o ltis the responsibility of the application to perform any additional validation of the certificate.
To help with the additional validation, NetX Secure provides X.509 routines for common validation
operations, including DNS validation and Certificate Revocation List checking.

o Software-based cryptography is processor-intensive.
NetX Secure software-based cryptographic routines have been optimized for performance but depending
on the capabilities of the target processor, performance may result in very long operations. When
hardware-based cryptography is available, it should be used for optimal performance of the NetX secure
TLS.

e Due to the nature of embedded devices, some applications may not have the resources to support the
maximum TLS record size of 16 KB.
NetX Secure can handle 16 KB records on devices with sufficient resources.

R11ANO750EU0101 Rev.1.01 Page 9 of 47
May.05.23 RENESAS

http://mqtt.org/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

2.2.2 Supported Features

e Support for RFC 2246 Transport Layer Security (TLS) Protocol Version 1.0

e Support for RFC 5246 TLS Protocol Version 1.2

e Support for RFC 5280 X.509 PKI Certificates (v3)

e Support for RFC 3268 Advanced Encryption Standard (AES) Cipher suites for TLS

o RFC 3447 Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version2.1
e RFC 2104 HMAC: Keyed-Hashing for Message Authentication

e RFC 6234 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)

e RFC 4279 Pre-Shared Key Cipher suites for TLS

2.3 Azure loT Device SDK Module Introduction

The Azure 10T device SDK is a set of libraries designed to simplify the process of developing |oT applications
for Azure Cloud to make sending and receiving messages easy from the Azure 10T Hub service. There are
different variations of the SDK, each targeting a specific platform, but in this application note we will describe
the Azure IoT device SDK for C.

The Azure 10T device SDK for C is written in ANSI C (C99) to maximize portability. This feature makes the
libraries well suited to operate on multiple platforms and devices, especially where minimizing disk and
memory footprint is a priority.

In this application note we will cover how to initialize the device library, send data to 1oT Hub, and receive
messages from it.

More details on the Azure |oT Device SDK can be found in the reference link The Azure 10T device SDK for
C | Microsoft Docs.

2.3.1 Design Considerations

The Azure loT Device SDK is integrated with FSP and is available for the customers to use. To add the SDK
to the application, users are required to use the Stacks tab and select Networking > Azure RTOS NetX
Duo 10T Middleware.

When the components are selected using the Stacks tab, and the project is created, the SDK and libraries
can be seen under the ra/microsoft/azure-rtos/netxduo/addons/azure_iot and
ra/microsoft/azure-rtos/netxduo/addons/cloud folders.

Note: In the following sections, step by step procedure of adding the Azure IoT middleware is explained in
detail.

2.3.2 Supported Features
Table 1. 10T SDK Supported features

Features Descriptions

Send device-to-cloud messages Send device-to-cloud messages to IoT Hub with the option to add
custom message properties.

Receive cloud-to-device messages Receive cloud-to-device messages and associated properties
from 10T Hub.

Device twins IoT Hub persists a device twin for each device that you connect to

loT Hub. The device can perform operations like get twin
document and subscribe to desired property updates.

Direct methods IoT Hub gives you the ability to invoke direct methods on devices
from the Cloud.
Device Provisioning Service (DPS) This SDK supports connecting your device to the Device

Provisioning Service, for example, through individual enroliment
using an X.509 leaf certificate.

Protocol The Azure SDK for Embedded C supports only MQTT.

Retry policies The Azure SDK for Embedded C provides guidelines for retries, but
actual retries should be handled by the application.

0T plug and play loT Plug and Play enables solution builders to integrate smart

devices with their solutions without any manual configuration.

R11ANO750EU0101 Rev.1.01 Page 10 of 47
May.05.23 RENESAS

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-device-sdk-c-intro
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-device-sdk-c-intro

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

3. MQTT/TLS Application Example

3.1 Application Overview

This application project demonstrates the Renesas RA 10T Cloud Connectivity solution using the FSP and
uses Microsoft® Azure as the cloud provider. Ethernet is used as the primary communication interface
between the MQTT device and the Azure loT Services.

The CK-RA6MS5 kit acts as an MQTT node, connects to the Azure 10T service using MQTT/TLS protocol over
the Ethernet interface. The application periodically reads the on-board sensor values and publishes this
information to the Azure IoT Hub. It also subscribes to a User LED state MQTT topic. You can turn the User
LEDs ON/OFF by publishing the LED state remotely. This application reads the updated LED state and turns
the User LEDs ON/OFF.

. — LR - 10T HUB

Ethernet switch/router

Figure 6. RA MQTT/TLS Application HW Connection Overview

% |T|' ﬁ_

On/Oft (Actuabion) Subacribe 10 LED ONSOFF >
I
Il‘il '1
@ - Telemetry Publishing— ——gm
E L B
-— - — e—
TTITT (Actuation)
Y | \ Azure loT Hub >
| iy -
- PUBLISH / SURSCROR o
. — —
~—
o Subscribe to the Senzor Data
iy,
\._____/

Publizh Senzor Data

SENSOR

Figure 7. MQTT Publish/Subscribe to/from Azure IoT Central

R11ANO750EU0101 Rev.1.01 Page 11 of 47
May.05.23 RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

The following files from this application project serve as a reference.

Table 2. Files Used in Application Project

No. | Filename Purpose

1. src/application_thread _entry.c Contains initialization code and has the main
thread used in Cloud Connectivity application.

2. src/common_init.h Contains macros, data structures, and
functions prototypes used to initialize common
peripherals across the project.

3. src/common_utils.c Contains macros, data structures, and
functions commonly used across the project.

4, src/common_utils.h Contains macros, data structures, and
functions prototypes commonly used across
the project.

5. src/Console_Thread_entry.c Contains the code for command line interface
and flash memory operations.

6. src/ICM_20948.c Contains the code for the 9-Axis MEMS
Motion Tracking™ Sensor

7. src/1CM_20948_h Contains the Data structure function
prototypes for the 9-Axis MEMS Motion
Tracking™ Sensor

8. src/ICP_10101.c Contains the code for Barometric Pressure
and Temperature Sensor

9. src/ ICP_10101.h Contains the Data structure and function
prototypes for Barometric Pressure and
Temperature Sensor

10. src/ICP_Thread_entry.c Reading Barometric Pressure and
Temperature data

11. src/HS3001_Thread_entry.c Contains Initializations for all sensors
including Humidity and Temperature Sensor
and Reading Temp-Humidity data

12. src/1CM_Thread_entry. Reading Accel Gyro Magnetometer Data

13. src/0B_1203 Thread_entry.c Contains the code for Heart Rate, Blood
Oxygen Concentration, Pulse Oximetry,
Proximity, Light and Color Sensor

14. src/Oximeter.c Contains data structures and functions used
for the oximeter sensor

15. src/Oximeter._h Contains the Data structure and function
prototypes for the oximeter sensor

16. src/oximstruct.h Contains the Data structure for the oximeter
sensor

17. src/r_typedefs.h Contains the common derived data types

18. src/RA_HS3001.c Contains the code for the Renesas Relative
Humidity and Temperature Sensor

19. src/RA_HS3001.h Contains function prototypes for Relative
Humidity and Temperature Sensor

20. src/RA_ZMOD4XXX_Common.c Contains the common code for Renesas
ZMOD sensors

21. src/RA_ZMOD4XXX_Common.h Contains the common data structure’s
function prototypes for the Renesas ZMOD
sensors

22. src/RA_ZMOD4XXX_1AQ1lstGen.c Contains the common code for the Renesas
ZMOD Internal Air Quality sensors

23. src/RA_ZMOD4XXX_0AQlstGen.c Contains the common code for the for the

Renesas ZMOD Outer Air Quality sensors

R11ANO750EU0101 Rev.1.01

May.05.23

Page 12 of 47

RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

No. | Filename Purpose

24, src/Rmcl2C.c Contains the 12C wrapper functions for the
third-party sensors not integrated with FSP

25. src/Rmcl2C.h Contains the 12C function prototypes for

wrapper functions for the third-party sensors
not integrated with FSP

26. src/user_choice.h Contains the Function prototypes for the
Sensor and its user configuration for the
different sensors and its data accessibility.

27. src/usr_config.h To customize the user configuration to run the
application.
28. src/usr_hal.c Contains data structures and functions used

for the Hardware Abstraction Layer (HAL)
initialization and associated utilities.

29. src/usr_hal _h Accompanying header for exposing
functionality provided by usr_hal .c.
30. src/usr_network.c Contains data structures and functions used

tooperate the NetX Duo TCP/IP and Ethernet
Module. This file is for Ethernet-specific
usage.

31. src/usr_network.h Accompanying header for exposing
functionality provided by usr_network.c.
This file is for Ethernet-specific use.

32. src/ZM0D4410_Thread_entry.c Contains the code for indoor air quality sensor
33. src/ PNP Telemetry for HS3001 Temperature
sample_pnp_environmental _sensor_compo | sensor data
nent.c
34. src/ sample_pnp_gas_component.c PNP Telemetry for ZMOD4410 IAQ Sensor
Data
35. src/ PNP Telemetry for ICP10101 Pressure

sample_pnp_barometric_pressure_sensor | Sensor data
_component.c

36. src/ PNP Telemetry for ICM20948 Inertial Sensor
sample_pnp_inertial_sensor_component. | data
c
37. src/ sample_pnp_gas_oaq-c PNP Telemetry for ZMOD4510 OAQ Sensor
Data
38. src/ PNP Telemetry for OB1203 Biometric Sensor
sample_pnp_biometric_sensor_component | Data
.C
39. src/ZM0D4510_Thread_entry.c Reading Outdoor Air Quality Data
40. src/console_menu/console.c Contains data structures and functions used
to print data on console using UART
41. src/console_menu/console._h Contains the Function prototypes used to print
data on console using UART
42. src/console_menu/menu_flash.c Contains data structures and functions used
to provide CLI flash memory related menu
43. src/console_menu/menu_flash.h Contains the Function prototypes and macros
used to provide CLI flash memory related
menu
44, src/console_menu/menu_Kkis.c Contains functions to get the FSP version, get
UUID and help option for main menu on CLI
45. src/console_menu/menu_Kkis.h Contains the Function prototypes and macros

used to get fsp version, get uuid and help
option for main menu on CLI

R11ANO750EU0101 Rev.1.01 Page 13 of 47
May.05.23 RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

No. | Filename Purpose

46. src/console_menu/menu_main.c Contains data structures and functions used
to provide CLI main menu options

47. src/console_menu/menu_main.h Contains the Function prototypes and macros
used to provide CLI main menu options

48. src/flash/ flash_hp.c Contains data structures and functions used
to perform flash memory related operations

49, src/flash/ flash_hp.h Contains the function prototypes and macros
used to perform flash memory related
operations

50. src/12C/i2c.c Contains data structures and functions used
for 12C communication

51. src/12C/i2c.h Contains the Function prototypes and macros
used for 12C communication

52. src/ob1203_bio/KALMAN/kalman.c Contains algorithm for Heart Rate, Blood

53. | src/ob1203_bio/KALMAN/kalman.h Oxygen Concentration, Pulse Oximetry,

54. | src/ob1203 bio/0B1203/0B1203.c Proximity, Light and Color Sensor sample

55. | src/ob1203_bio/0B1203/0B1203.h calculations

56. src/ob1203_bio/SAVGOL/SAVGOL.c

57. src/ob1203_bio/SAVGOL/SAVGOL . h

58. src/ob1203 _bio/SP02/SP02.c

50. src/ob1203_bio/SP02/SP02.h

60. src/nx_azure_iot _cert.c Azure loT Interface code. These have the

61. src/nx_azure_iot_cert.h reference to the working sample

62. | src/nx_azure_iot_ciphersuites.c implementation and other features such as

63. src/nx_azure_iot_ciphersuites.h Device Twin and Direct Method. Thes_e files

64. src/sample_azure_iot_embedded_sdk.c ;Z;I::Ztlijjr?d as reference for developing the

65. src/sample_config.h

66. src/sample_device_identity.c

67. src/usr_app-c Contains data structures and functions used
to operate the user application functions.

68. src/usr_app-h Accompanying header for exposing
functionalityprovided by usr_app.-c.

69. src/ base64 decode.c Contains function used for BASE64 to Hex
Conversion

70. src/ base64.h Contains function prototype used for BASE64
to Hex Conversion

71. src/c2d_thread_entry.c Contains data structures functions and main
thread used in Cloud to Device message
handling.

72. src/hal_entry.c Auto generated unused file for Non RTOS
thing.

73. commandRX_Thread_entry.c Cloud to Device Commands reception

R11ANO750EU0101 Rev.1.01

May.05.23

Page 14 of 47

RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

3.2 Creating the Application Project using the FSP configurator

Note:

Skip this section, if you are planning to import, build and run the project attached with this App note.

Complete steps to create the project from the start using the e? studio and FSP configurator. The following
table shows the step-by-step process in creating the project. It is assumed that the user is familiar with the
e? studio and FSP configurator. Launch the installed e? studio for the FSP.

Table 3. Step-by-step Details for Creating the Application Project

Steps Intermediate Steps
1 Project Creation: File - New — Renesas C/C++ Project —» Renesas RA
2 Project Template: Renesas RA C/C++ Project — Next
Templates for Renesas RA Project
3 e2 studio - Project Configuration: Project Name (Name for the project of your choice) —
Renesas RA C/C++ Project Next
Project Name and Location
4 Device and Tools Selection
Device Selection FSP Version: 4.2.0(or higher)
Board: CK-RA6M5
Device: R7TFA6M5BH3CFC
Language: C
5 Toolchains Toolchain: GNU ARM Embedded (Default)
Toolchain version: 10.3.1.20210824
Debugger: J-Link ARM
— Next
6 Project Type Selection Flat (Non-TrustZone) Project
— Next
7 Build Artifact and RTOS Selection Build Artifact Selection: Executable
RTOS Selection: Azure RTOS ThreadX (v6.1.12+fsp4.2.0)
— Next
3 Project Template Selection Azure RTOS ThreadX — Minimal — Finish
Clock HOCO 20MHz —PLL Src:HOCO — PLL Div/2 —PLL Mul
x20.0
10 Stacks tab (Part of the FSP Threads — New Thread
Configurator)
11 Configure Properties — Thread Symbol: application_thread
Name: Application Thread
Stack size (bytes):0x2400
Priority: 1
Auto start: Disabled
Time slicing interval (ticks): 25
Note: The stack size of the application thread needs to be a
minimum of 0x1000 bytes or greater. This is the requirement
for theNetX Duo Crypto use.
12 Adding the NetX DHCP, loT Middleware, SNTP Clients and Packet Pool to the Application Thread

Keep the default names g_dhcp_client0, g_dnsO0, g_sntp_client0. The default configuration provided
by FSP configurator is used, so there is no need to change any of the specific configuration in the

Property window.

Adding DHCP Client

New Stack Networking — Azure RTOS NetX Duo DHCP IPv4 Client
Adding Packet Pool for the Click on Add NetX Duo Packet Pool — Use—
DHCPClient g_packet_pool0 NetX Duo Packet Pool Instance

Adding NetX Duo Network Driver

Click on Add NetX Duo Network Driver — New — NetX
Duo Ethernet Driver

R11ANO750EU0101 Rev.1.01
May.05.23

Re Page 15 of 47
KENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

| g_ether_phy0 Ethernet -PHY-LSI Address —5
Modifying the BSP tab — Properties — RA Common for Main stack and Heap Settings)
Property settings for RA Common Main stack size(bytes): 0x1000
Heap size (bytes): 0x1000
Adding Azure RTOS NetX Duo loT Middleware
New Stack Networking — Azure RTOS NetX Duo loT Middleware
Adding NetX Duo IP instance for Click on Add NetX Duo IP Instance — Use — g_ip0 NetX
DNSClient Duo IP Instance
Adding Packet Pool for the DNS Client | Click on Add NetX Duo Packet Pool —-Use —
g_packet_pool0 NetX Duo Packet Pool Instance
13 Note: After the Azure IoT Middleware is added, the configurator reports following errors when you
hover over the red Blocks.
Error: NetX Duo Azure IoT Middleware Requires NetX Secure to be enabled.
Error: NetX Duo Azure IoT Middleware Requires IP Packet Filter to be enabled.
Error: NetX Duo Azure loT Middleware Requires MQTT Cloud to be enabled.
Error: A NetX Crypto Implementation must be added.
Note: To fix these errors, enable them as explained in the following steps
Enable the NetX Secure g_dns0 Azure RTOS NetX Duo DNS Client —Property —
Common — MQTT — Client — NX Secure: Enable
Enable MQTT Cloud g_dns0 Azure RTOS NetX Duo DNS Client —Property —
Common — MQTT — Client — Cloud Enable: Enable
Enable IP Packet Filter g_dns0 Azure RTOS NetX Duo DNS Client —Property —
Common — Common — IP Packet Filter: Enabled
Add NetX Crypto Implementation Click on Add NetX Crypto SW Only or HW/SW
Implementation —
New — Azure RTOS NetX Crypto HW Acceleration
Enable the Extended Notify Support g_dns0 Azure RTOS NetX Duo DNS Client —Property —
Common — Common —Extended Notify Support:
Enabled
14 NetX Secure Component is added from the HW Crypto perspective. 10T SDK also works with SW
crypto. But in this application the HW Crypto Accelerators are used.
Configure NetX Secure property values (Only values which changed from the default are shown here)
PSK Cipher Suite Enable
ECC Cipher Suite Enable
TLSv1.0 Enable
TLSv1.1 Legacy Mode Enable
TLSV1.1 Enable
TLSV1.3 Disable
Server Mode Disable
Configure Azure RTOS NetX Crypto HW Acceleration property values (Only values which changed
from the default are shown here)
Common—Hardware Use Hardware
Acceleration—Public Key
Cryptography (PKC)— RSA—RSA
Common—Hardware Enabled
Acceleration—Public Key
Cryptography (PKC)— RSA—RSA
3072 Verify/Encryption (HW)
Common—Hardware Acceleration Enabled
— Public Key Cryptography (PKC)
— RSA — RSA 4096
Verify/Encryption (HW)
R11ANO750EU0101 Rev.1.01 Page 16 of 47

May.05.23 RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Common—Hardware Acceleration
— Public Key Cryptography (PKC)
— RSA — RSA Scratch Buffer Size

Disabled (HW)

Common-> Standalone Usage

Use with TLS

Note: Increase the Stack size in
theBSP Tab to get rid of the error
in configurator for NetX Crypto HW
Acceleration

Refer to the Modifying the BSP tab — Properties — RA
Common for (Main stack and Heap Settings) section in step
11 of this table

Note: For crypto operation it is recommended to have a
stacksize of 4K or more.

Adding SNTP Client

New Stack

Networking — Azure RTOS NetX Duo SNTP Client

Adding NetX Duo IP instance for
SNTPClient

Click on Add NetX Duo IP Instance —Use — g_ip0 NetX
Duo IP Instance

Adding Packet Pool for the
SNTPClient

Click on Add NetX Duo Packet Pool —Use —

g_packet_pool0 Azure RTOS NetX Duo Packet Pool
Instance

15 Increase the Number of Packets in Pool
Click on g_packet_pool0 Azure Rtos NetX Duo Packet Pool
Instance
— Properties window — Number of Packets in Pool.
Change from 16 to 50 (To allow enough buffer for the
packets). This can be tuned based on the frequency and size
Note: After adding the SNTP the configurator reports the following errors when you hover over the red
Blocks.
Error: Maximum time adjustment (milliseconds) should be greater than unicast poll interval
(seconds).
Note: To fix these errors, enable them as explained in the following steps
Reduce the starting poll interval g_sntp_client0 Azure RTOS NetX Duo SNTP Client —
forunicast update request Property — Common — SNTP — Client —Starting poll
(seconds) interval for unicast update request (seconds): 36
16 Add Cloud to Device Processing Thread to the Application
Stacks tab (Part of the FSP Threads — New Thread
Configurator)
Configure Thread Properties
Symbol c2d_thread
Name Cloud2Device Thread
Stack size 2048 Bytes
Priority 1
Auto start Disabled
Time slicing interval (ticks) 25
17 Adding the HAL Modules as required for the Application Project: Here, Timer0, External IRQ,

, 30-second periodic timer, respectively.

HAL/Common Stacks — New Stack

Input — External IRQ Driver onr_icu

Property Settings for r_icu

Name: g_sensorlRQ

Channel: 14

Trigger: Falling

Digital Filtering: Disabled

Digital Filtering Sample Clock: PCLK/64

Pin Interrupt Priority: Priority 12

Callback: sensorOBIRQCallback

Pins—IRQ14: (Navigate to IRQ14): P403

HAL/Common Stacks — New Stack

Timers — Timer, General PWM on r_gpt

Property Settings for r_gpt — General

Name: g_timer2

Channel: 2

R11ANO750EU0101 Rev.1.01

May.05.23

Page 17 of 47

RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Mode: Periodic

Period: 1

Period Unit: Milliseconds

Callback: TimerCallback

Interrupts: —
P Overflow/Crest Interrupt Priority:6

HAL/Common Stacks — New Stack | Timers — Timer Driver on r_gpt

Property Settings for r_gpt — General | Name: gpt

Channel: 0

Mode: Periodic

Period: 1

Period Unit: Seconds

Interrupts: Callback: g_gpt_timer_cb

Overflow/Crest Interrupt Priority: Priority 10

18 Adding Azure RTOS Objects for the Application (Topic Queue needs to be created for the application —
Message Queue)

Stacks Tab — Objects New Object — Queue

Property Settings for the Queue Name: Topic Queue

Symbol: g_topic_queue

Message Size (Words): 16

Queue Size (Bytes): 64

Stacks Tab — Objects New Object — Mutex

Name: consolprint_mutex

Symbol: consolprint_mutex

Priority Inheritance: Disabled

19 Add HS3001 Sensor (Temperature and Humidity) Processing Thread to the Application

Stacks tab (Part of the FSP Threads — New Thread
Configurator)

Configure Thread Properties

Symbol HS3001_Thread

Name HS3001_Thread

Stack size 4096 Bytes

Priority 3

Auto start Disabled

Time slicing interval (ticks) 1
IAdding the HS300X Sensor Module to the HS3001_Thread
New Stack — Sensor — HS300X Temperature/Humidity Sensor
Config HS300X sensor— Name: g_hs300x_sensor0

0 Callback: hs300x_callback

Note: This module requires an 12C peripheral, Add 12C by clicking on “Add I12C Communication
Peripheral” — New — 12C Master (r_iic_master)

Module g_i2c_master0 I2C Master Rate: Fast Mode

21 Add ZMOD4410 Sensor (IAQ) Processing Thread to the Application

Stacks tab (Part of the FSP Threads — New Thread
Configurator)

Configure Thread Properties

Symbol ZMOD4410 _Thread
Name ZMOD4410 _Thread
Stack size 2048 Bytes
Priority 3
Auto start Disabled
Time slicing interval (ticks) 1
R11ANO750EU0101 Rev.1.01 Page 18 of 47

May.05.23 RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Adding ZMOD4XXX Gas Sensor Module to ZMOD4410_Thread

New Stack —

Sensor — ZMOD4XXX Gas Sensor

Config ZMOD4XXX Properties—

Add Requires ZMOD Libraries— New—ZMOD4410 IAQ 157

Gen

Add 12C Shared Bus—Use—g_comms_i2c_bus0 I12C
Shared Bus

Add IRQ Driver for Measurement —New— External IRQ

Module g_zmod4xxx_sensor0

Name: g zmod4xxx_sensorQ

22 Comms I2C callback: zmod4xxx_comms_i2c0 callback
IRQ Callbacks: zmod4xxx_irq0_callback
Module g_i2c_master0 12C Master Rate: Fast Mode
Config External IRQ— Name: g_external_irg0
Channel :4
Trigger: Falling
Pin Interrupt Priority:5
Pins—IRQO04: (Navigate to IRQ04): P402
23 Add ICP-10101 Sensor (Barometric Pressure &Temperature) Processing Thread to the Application
Stacks tab (Part of the FSP Threads — New Thread
Configurator)
Configure Thread Properties
Symbol ICP_Thread
Name ICP_Thread
Stack size 2048 Bytes
Priority 3
Auto start Disabled
Time slicing interval (ticks) 1
Adding 12C Communication Device (for ICP10101) into ICP_Thread
New Stack — Connectivity: 12C Communication Device
Config 12C Comm Device — Name: g comms_i2c_device4
o4 Slave Address:0x63
Callback: ICP_comms_i2c_callback
Add 12C Shared Bus— Add 12C Shared Bus—Use—g_comms_i2c_bus0 I12C
Shared Bus
Module g _i2¢c_master0 12C Master Rate: Fast Mode
o5 Add ICM-20948 (9 Axis MEMS) Processing Thread to the Application
Stacks tab (Part of the FSP Threads — New Thread
Configurator)
Configure Thread Properties
Symbol ICM_Thread
Name ICM_Thread
Stack size 2048 Bytes
Priority 3
Auto start Disabled
Time slicing interval (ticks) 1
Adding 12C Communication Device (for ICM-20948) into ICM_Thread
New Stack — Connectivity: 12C Communication Device
Config 12C Comm Device — Name: g_comms_i2c_deviceb5
o6 Slave Address: 0x68

Callback: ICM _comms_i2c callback

Add 12C Shared Bus—

Add 12C Shared Bus—Used—g_comms_i2c_bus0 I12C
Shared Bus

Module g_i2c_master0 12C Master

Rate: Fast Mode

Add ZMOD4510 Sensor (OAQ) Processing Thread to the Application

R11ANO750EU0101 Rev.1.01
May.05.23

Page 19 of 47

RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Stacks tab (Part of the FSP
Configurator)

Threads — New Thread

Configure Thread Properties

Symbol ZMOD4510_Thread
27 Name ZMOD4510_Thread
Stack size 2048 Bytes
Priority 3
Auto start Disabled
Time slicing interval (ticks) 1
Adding ZMOD4XXX Gas Sensor Module to ZMOD4510_Thread
New Stack — Sensor —» ZMOD4XXX Gas Sensor
Config ZMOD4XXX Gas Sensor Add Required ZMOD Libraries— New—ZMOD4510 OAQ
Properties— 15T Gen
Add 12C Shared Bus—Use—g_comms_i2c_bus0 12C
Shared Bus
Add IRQ Driver for Measurement—New— External IRQ
Module g_zmod4xxx_sensorl Name: g zmod4xxx_sensorl
Comms I2C callback: zmod4xxx_comms_i2c1 callback
o8 IRQ Callbacks: zmod4xxx_irgl_callback
Module g_comms_i2c_device2 12C Name: g_comms_i2c_device2
Communication Device
(rm_comms_i2c)
Module g_i2c_master0 12C Master Rate: Fast Mode
(r_iic_master)
Config External IRQ— Name: g_external_irql
Channel :15
Trigger: Falling
Pin Interrupt Priority:12
Pins—IRQ15: (Navigate to IRQ15): P404
29 Add OB1203 (optical biosensor) Processing Thread to the Application
Stacks tab (Part of the FSP Threads — New Thread
Configurator)
Configure Thread Properties
Symbol OB_1203_Thread
Name OB_1203_Thread
Stack size 2048 Bytes
Priority 2
Auto start Disabled
Time slicing interval (ticks) 25
Adding 12C Communication Device (for OB-1203) into OB_1203 Thread
New Stack — Connectivity: 12C Communication Device
Config 12C Comm Device — Name: g comms_i2c_device3
30 Slave Address: 0x53
Callback: comms_i2c_callback
Add 12C Shared Bus— Add 12C Shared Bus—Use—g_comms_i2c_bus0 I12C
Shared Bus
Module g_i2c_master0 12C Master Rate: Fast Mode
31 Add Cloud to Device Processing Thread to the Application

Stacks tab (Part of the FSP
Configurator)

Threads — New Thread

Configure Thread Properties

Symbol Console_Thread

Name Console_Thread

Stack size 4096 Bytes
R11ANO750EU0101 Rev.1.01 Page 20 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Priority 4
Auto start Enabled
Time slicing interval (ticks) 50
Add Cloud to Device Command Reception Thread to the Application
Stacks tab (Part of the FSP Threads — New Thread
Configurator)
Configure Thread Properties
Symbol CommandRX_Thread
32 Name CommandRX_Thread
Stack size 2048 Bytes
Priority 4
Auto start Disabled
Time slicing interval (ticks) 40
Adding Uart to Console_Thread
New Stack — Connectivity: UART
Config Common — FIFO Support: Enable
DTC Support: Enable
Flow Control Support: Enable
Config General — Name: g_console_uart
33 Channel:5
Data Bits:8bits
Parity:None
Stop Bits:1bit
Config Baud— Baudrate: 115200
Config Interrupts — Callback: user_uart_callback
Config Pins — TXD: P501
RXD: P502
Adding Flash to Console Thread
New Stack — Storage: Flash (r_flash_hp)
Name: user_flash
34 Data Flash Background Operation: Disabled
Callback: flash_callback
Flash Ready Interrupt Priority: Priority 6
Flash Error Interrupt Priority: Priority 6

The above configuration is a prerequisite to generate the required stack and features for the Cloud
connectivity application provided with this application note. Once the Generate Project Content button is
clicked,e? studio generates the source code for the project. The generated source code contains the required
drivers, stacks, and middleware. The user application files must be added into the src folder.

For the validation of the created project, the same source files listed in the section 3, MQTT/TLS Application
Example, Table 2, may be added. This is the quickest way to create and build the application without writing
the code for the configuration created in the above section.

Note: After you follow instructions in section 3.2 to recreate the Application project using FSP configurator
and add the src code to the project, the project is ready for building.

Note: If you get an error while assigning PIN to External IRQ, go to Pin Configuration > Pin Number and
select the IRQ function for that pin number for example, for External IRQ channel number 4, you can
select Function IRQ14 for Pin Number 4.

Note: As part of the manual creation of this project, you might encounter known issues/pin errors with the
Pin configurator while selecting the peripherals. We recommended selecting the operation mode,
disable/enable and select the pins. You can also refer to the attached project as working reference.

R11ANO750EU0101 Rev.1.01 Page 21 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

3.3 Install Azure CLI

To prepare Azure Cloud resources and connect a device to Azure, you can use Azure CLI. Azure CLI can be
installed locally on your PC.

1. Azure CLI can be downloaded from the Microsoft site (https://docs.microsoft.com/en-us/cli/azure/install-
azure-cli)

2. The installer name will be similar to azure-cli-2.44 _.x.msi. or later. Click on the installer and the
install shield will guide you through the installation process. Install it to your desired directory. For
example, c:\AzureCLI

3. Install the current release of the Azure CLI. After the installation is complete, you will need to close and
reopen any active Windows Command Prompt or PowerShell windows to use the Azure CLI.

4. After the Azure CLlI installation is successful, open and launch the Windows PowerShell to use the Azure
CLI. A screenshot of the Windows PowerShell is shown below.

Select Administrator: Windows PowerShell - O *

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscoreb

Figure 8. Windows Power Shell

5. If you already have Azure CLI installed locally, go to the directory of the installed AzureCLI and run az - -
version to check the version. This application note requires Azure CLI 2.44.0 or later.

E¥ Administrator: Windows PowerShell - a »

PS C:\Users\ AzureCLI> az
azure-cli 2.45.9

core 22A5°
telemetry 1.0.

Extensions:
azure-devops 0.20.9
azure-iot 0.10.14

Dependencies:
msal 1.20.0
azure-mgmt-resource 21.1.0b1

Python location ‘C:\Program Files (x86)\Microsoft SDKs\Azure\CLI2\python.exe'
Extensions directory ‘C:\Users)\ \.azure\cliextensions"

Python (Windows) 3.10.8 (tags/v3.10.8:aaaf517, Oct 11 2022, 16:37:59) [MSC v.1933 32 bit
(Intel)]

Figure 9. Azure CLI Version

3.4 Create an loT Hub
You can use Azure CLI to create an loT hub that handles events and messaging for your device.

Note 1: Before you start creating the 10T Hub, you are required to have a login to your Azure Portal via web
browser. If not logged in, then you may notice an error that you are not logged in, while creating the
loT Hub:
https://portal.azure.com/

Note 2: If you do not have the Azure Account, you can create one which is valid for 12 months with limited
features from the following link:
https://azure.microsoft.com/en-us/free/

R11ANO750EU0101 Rev.1.01 Page 22 of 47
May.05.23 RENESAS

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://portal.azure.com/
https://azure.microsoft.com/en-us/free/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

To create an loT hub:

Note 3: Some of the user parameters while creating the IoT Hub needs to be unique. Users are required to
take care of this while creating the loT Hub credentials.

1. Inyour CLI console, run the az extension add command to add the Microsoft Azure 10T Extension for
Azure CLI to your CLI shell. The 10T Extension adds 10T Hub, IoT Edge, and IoT Device Provisioning
Service (DPS) specific commands to Azure CLI.

— az extension add --name azure-iot

Note 4: When you run the command for the first time you may not notice output on the console as shown
below. It just accepts the command.

E¥ select Administrator: Windows PowerShell = O et

PS C:\Users)\ \AzureCLI>
PS C:\Users\ \AzureCLI> az extension add azure-iot

Extension ‘azure-iot’ ©.10.14 is already installed.
PS C:\Users\ \AzureCLI>

Figure 10. Add Extension for Azure CLI

2. Runthe az login command to login to the Azure account. Running the az login command opens
the browser for login. You can enter the login credentials to login to the Azure account. You will notice a
similar message on the browser on successful login.

Note: You can find more info on the Azure CLI at Overview of the Azure CLI | Microsoft Docs

You have logged into Microsoft Azure!

You can close this window, or we will redirect you to the Azure CLI documentation in 1 minute.

Announcements

[Windows anly] Starting in May 2023, Azure CLI will authenticate using the Web Account Manager (WAM) broker by default.

To help us collect feedback on the new login experience, you may opt-in to use WAM by running the following commands:
az config set core.allow broker=true

az account clear
az login

Figure 11. Successful Login to the Azure Account

3. Runthe az group create command to create a resource group. The following command creates a
resource group named MyRAResourceGroup in the westus region.

4. Optionally, to set an alternate location, run az account list-locations to see available
locations. Then specify the alternate location in the following command in place of westus.
az group create --name MyRAResourceGroup --location westus

R11ANO750EU0101 Rev.1.01 Page 23 of 47
May.05.23 RENESAS

https://docs.microsoft.com/en-us/cli/azure/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

BN Administrator: Windows PowerShell - O X

PS C:\Users\ \AzureCLI> az group create MyRAResourceGroup westus
T

L
"id": "/subscriptions/c2abca52-fdcb-4329-b720-8d20dbcdfab3/resourceGroups/MyRAResourceGroup”,

": "Microsoft.Resources/resourceGroups”

1
J
PS C:\Users\ \AzureCLI> _

Figure 12. Create Resource Group

5. Runthe az iot hub create command to create an IoT hub. It might take a few minutes to create an

loT Hub.

Replace the YourlotHubName placeholder below with the hame you chose for your 10T hub. An 10T hub
name must be globally unique in Azure. This placeholder is used in the rest of this tutorial to represent
your unique loT hub name. Use any command given below.

— az 1ot hub create --resource-group MyRAResourceGroup --name

{YourloTHubName}
OR

— az 1ot hub create --resource-group MyRAResourceGroup --name
{YourloTHubName} --location {YourLocation}

Note: It may take few minutes to create the 10T Hub. In this case the IoT Hub name used is
RACLOUDHUB.

Note: Microsoft recommends creating a new loT Hub. The 10T Hub created previously (2-3 year old)
may not work as desired. So, we recommend to create a new loT Hub to run the application to
yield the proper results

E¥ Administrator: Windows PowerShell -] X

PS C:\Users\ > az iot hub create MyRAResourceGroup RACLOUDHUB
westus
| Running ..

Figure 13. 10T Hub Creation in Progress

After the loT Hub is created, view the JSON output in the console, and copy the hostName value to a safe place.
You use this value in a later step. The hostName value looks like the following example:

After the loT Hub is created, view the JSON output in the console, and copy the hostName value to a safe place.
You use this value in a later step. The hostName value looks like the following example:

R11ANO750EU0101 Rev.1.01 Page 24 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

6. After the loT Hub is created, view the JSON output in the console, and copy the hostNamevalue to a safe

place. You use this value in a later step. The hostname value looks like the following example:
— {Your 10T hub name}.azure-devices.net

celaroup RAC LOUDHLUY

otifications”: false,

thub-ns-racloudhub-153

B.azure-devices.net",

Figure 14. JSON Output after lIoT Hub Creation

3.5 Certificate Creation Process

You can use GIT Bash utility for this process. If not installed on your computer, you can download and install
it.(Git for Windows or Git for Windows (github.com)).

1.

2.
3.
4

Install Git for Windows.

Launch the Git Bash.

Create a directory of your choice (for example, mkdir Azure).

Go to the directory and create the configuration. This created directory is the place where your self-
signed certificate is created and stored.

Copy paste the configuration listed below to create X509 _config.cfg as show in the below figure.
cat > x509 config.cfg <<EOT

[reql]

req_extensions = client_auth

distinguished _name = reqg_distinguished name

[req_distinguished name]

R11ANO750EU0101 Rev.1.01 Page 25 of 47
May.05.23 RENESAS

https://gitforwindows.org/
https://github.com/git-for-windows

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

[client_auth]

basicConstraints = CA:FALSE

keyUsage = digitalSignature, keyEncipherment
extendedKeyUsage = clientAuthEOT

Note: All OpenSSL commands and self-signed certificate creation process is given at this link.
Steps are as follows:

1. Set x509 configuration file for common name in cert.

MINGW&eG4:/c/Users/ [Azure - O X

. mkdir Azure

$ c¢d Azure

§ cat > x509_config.cfg <<EOT

> [req]

> req_extensions = client_auth

> distinguished_name = req_distinguished_name

[req_distinguished_name]
:
L

client_auth]

> basicConstraints = CA:FALSE

» keyUsage = digitalSignature, keyEncipherment
> extendedKeyUsage = clientAuth

> EOT

S Is

|x509,c0nf€g.cfg

¢ |

Figure 15. Set X509 Configuration File

2. Create RSA self-signed certificate.

Generate private key and certificate (public key) using the command as shown in the snapshot
“‘openssl genrsa -out privkey.pem 2048"

MINGW&64:/c/Users; /Azure — O X

Azure

$ openssl genrsa -out privkey.pem 2048
Generating RSA private key, 2048 bit long modulus (2 primes)

Figure 16. Generate Private Key and Certificate (public key)

R11ANO750EU0101 Rev.1.01 Page 26 of 47
May.05.23 RENESAS

https://github.com/azure-rtos/netxduo/blob/master/addons/azure_iot/samples/README.md#steps-to-create-self-signed-certs-using-openssl

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

3. Embed Device ID in certificate
This command will not give you any response if successfully executed.
openssl req -new -days 365 -nodes -x509 -key privkey.pem -out cert.pem -
config x509 config.cfg -subj ''//CN=<Same as device I1d>"
Note: In this example the device ID name “CK_RA6M5_X509" is used. Note down this Device ID. This
will be used in the future steps. Use your own Device ID to make it unique across your system.

MINGW&64:/c/Users; fAzure -) X

$lopenss| req ew ays 365 cey privkey.pem -out cert.pem -config x509_config.cfg -subj "//CN=CK_RA6M5_x509"
I

Figure 17. Embed Device ID in Certificate

4. Run command to convert format of key from pem to der
openssl rsa -outform der -in privkey.pem -out privkey.der

Here you get response “writing RSA key”

MINGW®64:/c/Users/ [Azure — O X

$/openss1 rsa -outform der
writing RKSA Key

Figure 18. Convert Format from key to der

5. Run command to convert format of cert from pem to der
openssl x509 -outform der -in cert.pem -out cert.der

This command will not give you any response if successfully executed.

MINGW&64:/c/Users/ JAzure - O X

~/Azure

¢ openss| x509 -outform der -1in cert.pem -out cert.der

Azure

Figure 19. Convert Format of cert from pem to der

6. Convert der to hex array and set them in sample_device_identity.c file in the project.

For easier access, the command text is given as follows. User can copy paste text in the command line to
create sample_device_identity.c.

echo "#include \"nx_api.h\"

/**

device cert (openssl x509 -in cert.pem -fingerprint -noout | sed "s/://g" °) :
“cat cert.pem”

device private key :

“cat privkey.pem”

*/

' > sample_device_identity.c

R11ANO750EU0101 Rev.1.01 Page 27 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

MINGW®64:/c/Users/ [Azure -] X
$1s

cert.der cert.pem privkey.der privkey.pem x509_config.cfg

§ echo "#include \"nx_api.h\'

device cert (‘openssl x509 -in cert.pem -fingerprint -noout | sec
> cat cert.pem

> device priv

> sample_device_identity.c
v/AZure
) 1s

cert.der cert.pem privkey.der privkey.pem 'sample_device_identity.c 'x509_config.cfg

~/Azure

Figure 20. Convert der to Hex Array and Set them in sample_device_identity.c

7. Run*“ls” command to check whether sample_device_identity.c is created.

8. Run the following commands to produce sample_device_cert_ptr and
sample_device_private_ key ptr array containing device certificate and private key equivalent hex
values along with length.

xxd -1 cert.der | sed -E "s/(unsigned char) (Q\w+)/\1
sample_device_cert_ptr/g; s/(unsigned int) (Q\w+)_ len/\1
sample_device_cert_len/g" >> sample_device_identity.c

xxd -1 privkey.der | sed -E "s/(unsigned char) (Q\w+)/\1

sample_device private key ptr/g; s/(unsigned int) (\w+) len/\1
sample_device _private key len/g" >> sample_device_identity.c

These commands will not give you any response if successfully executed.

MINGW®64:/c/Users) [Azure — O b 4

% xxd -1 cert.der sed -E "s/(unsigned char) (1 sample_device_cert_ptr/g; s/(unsigned int) (\w+)_len,
sample_device_cert_len/g" >> sample_device_identi

~/AZure
§ xxd -1 privkey.der sed -E "s/(unsigned char) (\w+)/\1 sample_device_private_key ptr/g; s/(unsigned int) (\w

+)_len/\1 sample_device_private_key_len/g" >> sample_device_identity.c

~/AZure

Figure 21. Producing arrays containing hex values

Check the content of sample_device_identity.c with cat command. In this file you will get Device
certificate along with SHA1 fingerprint, Device Private Key, sample_device _cert_ptr and
sample_device_private_key_ ptr array along with their length. You will also notice the Fingerprint; you
need to use this fingerprint as “thumbprint” in device creation process using the 10T Explorer in later sections.
Please note down this Fingerprint.

R11ANO750EU0101 Rev.1.01 Page 28 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

MINGWE4:/c/Users/ [Azure - O X

Figure 22. Check the Content of sample_device_identity.c

3.6 View Device Properties

You can use the Azure I0T Explorer (https://docs.microsoft.com/en-us/azure/iot-pnp/howto-use-iot-explorer)
to view and manage the properties of your devices. In the following steps, you will add a connection to your
loT Hub in IoT Explorer. With the connection, you can view properties for devices associated with the loT
Hub.

Download and install latest (above v0.15.6.0) Azure 10T Explorer from:
https://github.com/Azure/azure-iot-explorer/releases

Note: Click and install the downloaded msi file Azure.loT.Explorer.Preview.0.15.6.msi or newer
version of the downloaded file. The install shield guides you through the installation process.

3.7 SetloT Hub
To add a connection to your 1oT Hub:

1. Inyour Azure CLI console, runthe az 1ot hub connection-string show command to get the
connection string for your 0T Hub.
— az 1ot hub connection-string show -n {YourloTHubName}
Note: See section 3.4, Create an loT Hub for the IoT Hub Name.

E¥ Administrator: Windows PowerShell — O X
PS C:\Users)\ \AzureCLI> az iot hub connection-string show RACLOUDHUB

I
L
"connectionString™: "HostName=RACLOUDHUB.azure-devices.net;SharedAccessKeyName=iothubowner;SharedAccessKey
=US+pEL1INI/sv@17QqRi/1NUg8pq/8T7/K9Le77xzXCY="
1

}
PS C:\Users® \AzureCLI> _

Figure 23. Connection String

2. Copy the connection string.
3. Open the Azure loT Explorer and select l1oT hubs > Add connection.
4. Paste the connection string into the Connection string box.

R11ANO750EU0101 Rev.1.01 Page 29 of 47
May.05.23 RENESAS

https://docs.microsoft.com/en-us/azure/iot-pnp/howto-use-iot-explorer
https://github.com/Azure/azure-iot-explorer/releases
https://github.com/Azure/azure-iot-explorer/releases

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

5. Select Save.

&7 Azure loT Explorer (preview)
File Edit View Window Help
Azure loT Explorer
(preview)

Home > loT hubs

- u] b
- - X
Add connection string
3
Connection string *
HostName=RACLOUDHUB.azure-
) Switch devices.net:SharedAccessKevName=iothubowner;SharedAccessKey=US+pELINI/sv017

QqRi/INUGBpq/BT7/KILeT 7xzXCY=

No connections to display

You will need to add an loT hub
storage and can be edited or ref

Where do | get an loT hub connection string?
Help:

Where do | get an loT hub conn Host name

Please do not save your hub connection string to any unsafe locations

‘ RACLOUDHUB.azure-devices.net

Shared access policy name

‘ iothubowner

Shared access policy key

Figure 24. Adding Connection String

Note: In some cases, Azure |0T Explorer may report an error that the default port that loT Explorer is trying
to use is being used by another application. In order to overcome this error, you can add a different
port number for the Azure 10T Explorer shown as follows.

On your PC, edit the system environmental variables as shown in the following screenshots.

Senings

[= Edit the sysiem environment variabies |

B3 Eelit envirsnment variabiles far your

Bccount

= 8

System Properties

Computar Mame Hird\\'arEy:MmFmM:wn Ramots

You mudl be logged an a3 an ASMiniayalon o make moilof these changes

Parformance
Visual effecis, processor scheduling, mamory usage, and veiual mamory

Liser Profles
Dieskiop settings related to your sign-m

Sgmngs

Stariup and Recowery

Systerm statup, sy siem failure, and debugging information

Sapengs

I Envircpmant Wasiables...

QK Cancel APE

Figure 25. Editing System Environment Variable

R11ANO750EU0101 Rev.1.01

May.05.23

RENESAS

Page 30 of 47

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

. A
| Environment Variables x
User variables for

1 '
Variable Value

| EMWI_DIR C:\Program Files (x86)\Embedded Wizard 9.30\

OneDrive CAUsers\AdministratonOneDrive

] Path C\Program Files (x86)\GNU Teols ARM Embedded\B 2019-q3-upd...

1 TEMP CAUsers! VAppData\LocahTemp
T™P C\Users) \AppData\Local\Temp

New System Variable x

Vanable name:

| AZURE_IOT_EXPLORER_PORT |

) Variable yalue:

| 9999

Browse Directory...

ComSpec

CV_Instance001
DEFLOGDIR

DriverData
NUMBER_OF_PROCESSORS
OPENSSL_CONF

Browse File_.

: e
CAWINDOWS\system 32\omd.exe

C\Program Files\Commvaulit\ContentStore\Base
CAProgramData\McAfee\Endpoint Secunty\Logs
CAWindows\System32\Drivers\DriverData

8

C\OpenSSL-Winb4d\bin\openssl.cig

[
=]

Edit... Delete

Cancel

Figure 26. Adding System Environment Variable for Alternate Port - Azure loT Explorer

Environment Variables =
Uszer variables for
| Variable Value
EMWI_DIR CAProgram Files (xB6\Embedded Wizard 9.300
OneDrive CAUzars\administratorOnaDrive
‘ Path ChProgram Files (xBE\GNU Teols ARM Embedded\8 2019-q3-upd...
TEMP CAUsers) NAppData\Local\Termnp
T™ap CAUVzers' VAppData\LocanTemp
New... Edit... Delete
System variables
Varable Value e
ComSpec CAWINDOWS\systemn 32\ emd exe
CV_Instance001 CAProgram Flles\Commyvaulit\ContentStore\Base
DEFLOGDIR CAProgramData\McATea\Endpoint Security\Logs
DriverData CAWIndows\System 3 2\Drivers\DriverData
NUMBER_OF_PROCESSORS 8
OPENSSL_CONF CACpenSSL-Winbd\bin\openssli.cig ¥
OK Cancel

Figure 27. Added Alternate Port for Azure loT Explorer

R11ANO750EU0101 Rev.1.01
May.05.23

Re Page 31 of 47
KENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

If the connection succeeds, the Azure 10T Explorer switches to a Devices view and lists your device.

47 Azure loT Explorer (preview)
File Edit View Window Help
Azure loT Explorer
(preview)

Home > RACLOUDHUB

New () Refresh

> Devices

Query by device ID...

L= ‘ (% Add query parameter

Device ID Status

Connection st... Authenticatio...

Last status up...

loT Plug and ...

[m] x

Settings

Edge device

Figure 28. Listed Devices

3.8 Register an loT Hub Device

In this section, you create a new device instance and register it with the 10T Hub you created. You will use
the connection information for the newly registered device to securely connect your physical device in a later

section.

To register a device:

1. You can create a device with help of Azure I0T Explorer shown as follows.

Click on New.

& Azure loT Explorer (preview)

File Edit View Window Help

Azure loT Explorer

(preview)

New | (D Refresh

Home > RACLOUDHUB > Devices

‘ Query by device ID...

P = ‘ 7 Add query parameter

Device ID Status

Connection st... Authenticatio...

Last status up...

loT Plug and ...

Settings

Edge de

Figure 29. New Device Creation Process with Azure loT Explorer

R11ANO750EU0101 Rev.1.01
May.05.23

RENESAS

Page 32 of 47

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

2. In this stage, you have to enter the Device ID, Authentication type, Primary thumbprint, Secondary
thumbprint then click on Create. Use fingerprint generated in Figure 22 in the section 3.5, Certificate
Creation Process, for the primary and secondary thumbprints. Follow steps 1-5 numbered in the Figure

30, to create the device.

+7 Azure loT Explorer (preview)
File Edit View Window Help

Azure loT Explorer
(preview)

5

K Cancel

Device ID *

Home > RACLOUDHUB > Devices > Create a new identity

Settings

CK_RAEMS5_X509 1

Authentication typez"

() symmetric key |(®)
Primary thumbprint *

SFFACT2161BEAEACIATFCBAA4ATO0T6CEO3B44F5| ~

Secondary thumbprint* ©

9FFAC12161BEAEACOATFCBAA4ATO0T6CEO3BA4FS||

B
&

Q Enable

Connect this device to loT hub ©

Figure 30. Naming, Authentication type and Thumbprints

3. You can see your created device in Devices section of Azure loT Explorer.

+ Azure loT Explorer (preview)
File Edit View Window Help

Azure loT Explorer

(preview)

New () Refresh

Home > RACLOUDHUB > Devices

Settings

Query by device ID...

L0 = ‘ (? Add query parameteD

Device ID Status

Connection st... Authenticatio... Last status up... loT Plugand .. Edge device

K RAGMS5 X509
CK_RABMS X503 Enabled

Disconnected SelfSigned

Figure 31. Newly Created Device
R11ANO750EU0101 Rev.1.01 Page 33 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

3.9 Prepare the Device

To connect the device to Azure, modify a configuration file for Azure IoT settings (of your Device 1D
and Hostname), build and flash the image to the device.

Add configuration

1. Import the application project into an empty e2 studio. Open sample_config.-h and make the
changes to the configuration as shown in the snapshot with your host name, device ID and
USE_DEVICE_CERTIFICATE.

5“.:?[AzureCIoudRAGMSXSO‘B_FSPd-ZO] FSP Configuratio {E}[AzureCIoudCKRAGM5X509_F5P420] FSP Configura @startup.c €] main.c B *sample_config.h > = 8
22 = /* This sample uses Symmetric key (SAS) to connect to IoT Hub by default, ~
23 simply defining USE_DEVICE_CERTIFICATE and setting your device certificate in sample_device_identity.c
24 to connect to IoT Hub with x589 certificate. Set up X.589 security in your Azure IoT Hub,

25 refer to https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-security-x589-get-started */

_26 Ifdefine USE_DEVICE_CERTIFICATE 1

27 B
M=l 28 “s: Configure core settings of application for your IoTHub.

29 ®/

38 #define SAMPLE_PNP_MODEL_ID "dtmi:renesas:ra:ckraém5:AZCKRAGMSETH;2"

31 = /* Defined, DPS is enabled. */

32 [/ /#define EMABLE_DPS_SAMPLE

33 /* Defined, telemetry is disabled. */

34 #define DISABLE_TELEMETRY_SAMPLE

35 /* Defined, C2D is disabled. */

36 #define DISABLE_C2D_SAMPLE

37 /* Defined, Direct method is disabled. */

38 #define DISABLE_DIRECT_METHOD_SAMPLE

39 /* Defined, Device twin is disabled. */

49 #define DISABLE_DEVICE_TWIN_SAMPLE

a1

a2 -~ #ifndef ENABLE_DPS_SAMPLE

44 /* Reguired when DPS is not used. */ =

1 = /* These values can be picked from device connection string which is of format : HostMame=<hostl>;Deviceld:
HOST_NAME can be set to <hostl>, DEVICE_ID can be set to <devicel>, DEVICE_SYMMETRIC_KEY can be se

= #ifndef HOST NAME

4é Ptdef:i.ne HOST_NAME "RACLOUDHUB . azure-devices.net"]

;z #endif /* HOST_NAME */

EJZ- - #ifndef DEVICE ID

53 |#define DEVICE_ID "CK_RABMS_X589" |

;;_ #endif /* DEVICE_ID */ o
Figure 32. Configuration Changes to sample_config.h

Constant name Value

HOST_NAME {Your 10T hub hostName value}

DEVICE_ID {Your devicelD value}

USE_DEVICE_CERTIFICATE 1

3.10 Building and Running the Application
The project is now ready to compile. Press the Build (hammer icon) to start building the project.

&/~

Figure 33. Starting to Build the Project

The toolchain will report compilation and build status to the console pane in the lower-right corner of

e? studio. When the build has completed, confirm that there are zero errors and few warnings. Warnings, if
any, may result from highly restrictive compilation warnings settings being applied by e? studio to third party
code.

R11ANO750EU0101 Rev.1.01 Page 34 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

11 Problems ESReGUE - [Properties @ Smart Browser 5 Smart Manual x| &
ZDT Build Console [AzureCloudCKRABM5X509_FSP420]

Building file: ../ra/fsp/src/bsp/mcu/all/bsp_rom_registers.c

Building file: ../ra/fsp/src/bsp/mcu/all/bsp_security.c

Building file: ../ra/fsp/src/bsp/cmsis/Device/RENESAS/Source/startup.c

Building file: ../ra/fsp/src/bsp/cmsis/Device/RENESAS/Source/system.c

Building file: ../ra/board/raém5_ck/board_init.c

Building file: ../ra/board/raém5_ck/board_leds.c

Building target: AzureCloudCKRAGMSX589_FSP420.elf

arm-none-eabi-objcopy -0 srec "AzureCloudCKRABMSXS589 FSP428.elf" "AzureCloudCKRAGMSX589 FSPA28.srec”

arm-none-eabi-size --format=berkeley "AzureCloudCKRAGMS5X589_FSP420.elf"
text data bss dec hex filename

396932 2012 528868 919812 28964 AzureCloudCKRAGMSX589_FSP420.elf

22:32:18 Build Finished. @ errors, 85 warnings. (took 4m:3s.663ms)

Figure 34. Compilation and Build Status Report

3.11 Download and Run the Project

1. Connect the micro-USB cable to the DEBUGL1 port (J14) of the CK-RA6M5 Cloud kit and other end to
the host computer.

2. Connect the second USB cable to J20 connector of the CK-RA6M5 board and other end to the second
USB port of the PC (this will be the console port for the application). Users are required to use the
Command Line Interface (CLI) to configure and run the application.

3. Make sure the Ethernet cable is connected to the RJ-45 connector (J18) of the board and other end to
the router/switch as applicable for the internet access.

4. In e? studio, open the Debug Configurations dialog and launch the
AzureCloudCKRABM5X509 FSP420 Debug_Flat debug configuration.

T
Create, manage, and run configurations .
HeEX BV - Name: | AzureCloudCKRAGMSX509_FSP420 Debug_Flat |
H ‘ _ ¥ Debugger | B Startup| B~ Source| =] Common
[T] C/C++ Application —
[€] C/C++ Remote Application e
' EASE Seript | AzureCloudckrABMSX509_FsPa20 | Browse..
[£] GDB Hardware Debugging C/C++ Application:
[£] GDB OpenOCD Debugging | Debug/AzureCloudCKRABMSX509_FsP420.eif |
[E¥| GDB Simulator Debugging (RH850) L |
1 Java Applet Wariables... Search Project... Browse...
[Java Application Build (if required) before launching
g I:::reij:p.qppllcahon Build Configuration: | Use Active ~
v [£] Renesas GDB Hardware Debugging O Enable auto build O Disable auto build
[AzureCloudCKRAGMS5X509_F5P420 Debug,F\atI @® Use workspace settings Configure Workspace Settings...
[&*] Renesas Simulator Debugging (RX, RL78)
Filter matched 13 of 15 items Reyert Apply
Figure 35. Start Debug
R11ANO750EU0101 Rev.1.01 Page 35 of 47

May.05.23 RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

h Window Help
[wif & @8 -QR - @S- ia |0 MR 0] Rl ~-G-ilk-i
|Resume (F8) I
be [AzureCloudCKRA6MSX509_FSP420] FSP Configuration [g] startup.c ¥ = b
64 80B85579cC SystemInit(); "
65
66 /* Call user application. */
67 ©0B8557a2 main();
68
69 s while (1)
70 {
71 /* Infinite Loop. */
72 088557a6 1
73 }
76 ® * Default exception handler.[]
78 “void Default_Handler (void)
79 {
88 @ /*¥* A error has occurred. The user will need to investigate the cause. Common p
84 88855798 BSP_CFG_HANDLE_UNRECOVERABLE_ERROR(®);
aC 1

Figure 36. Resume the Debug

5. To view output, you have use serial terminal like tera term. To know your COM port, on the host PC,
open the Windows Device Manager. Expand Ports (COM & LPT), locate USB Serial Device (COMxXx)

and note down the COM port number for reference in the next step.

Note: USB Serial Device drivers are required to communicate between the CK-RA6M5 board and the

terminal application on the host PC.

File Action View Help
&% m Bm

v & REAPCOYMTEQ
¥ Audio inputs and cutputs
;i‘ Battenies
B Buetoath
% Cameras
= Computer
e Disk drives
B Duplay adaplers
= Cirrsare
ww Human Interface Devices
== Keyboards
o Mice and other painting dewices
m Monitors
@ Network adapters
« == Poris (COM & LPT)
== USE Senal Dewice (COKS)
o Print quewes
== Prooessors
B Security devices
I: Software components

Figure 37. USB Serial Device in Windows Device Manager

R11ANO750EU0101 Rev.1.01

May.05.23 RENESAS

Page 36 of 47

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

6. Open Tera Term, select New connection, and select Serial, and for the port, enter COMxx: USB Serial
Device (COMxx) and click OK.

OTCPHP pi@192.168.137.67
History
Telnet
S8H S3SH2

Other

AUTO

Figure 38. Selecting the Serial Port on Tera Term

File Edit Setup Cantrol Window Help

Tera Term: Serial port setup and connection

Port: COMS v
° | New setting

Speed: I]]EZUU ~

Data: 8 bit v

Cancel
Parity: none v

Stop bits: 1 bit - Help

Flow control: none v

Transmit delay

EI mseclichar EI mseciline

Device Friendly Name: USB Serial Device (COMS)

Device Instance ID: USBWID_045B&PID_811110000000000001
Device Manufacturer: Microsoft

Provider Name: Microsoft

Driver Date: 6-21-2006

Driver Version: 10.0.18362.1

Figure 39. Select 115200 on the Speed Pulldown

7. Using the setup menu pull-down, select Serial port... and ensure that the speed is set to 115200, shown
as follows.

8. Complete the connection. The Configuration CLI menu will be displayed on the console shown as
follows.

Note: Please reset the board by pressing the S1 user switch if the menu is not displayed.

» Select from the options in the menu helow:

ENU

1. Get FSP wversion
2. Data flash

3. Get UUID

4. Start Application
L. Help

Figure 40. Main Menu

R11ANO750EU0101 Rev.1.01 Page 37 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

9. Here, you can select options from the menu by pressing key 1 to 5. Press spacebar to go to previous
menu FSP version and UUID details as follows.

T COMS - Tera Term VT —
File Edit Setup Control Window Help

1. GET FSP UERSION
4.2.8

i Pressz space bar to return to MENU

Figure 41. FSP Version Information

T COMS - Tera Term VT — d
File Edit Setup Control Window Help
3. GET UUID

RA MCU 128-hit Unigue ID Chex> : 2d8. -2-57363632-¢

i Press space har to return to MENU

Figure 42. Getting Board UUID Information

3.12 Storing Device Certificate, Host Name, Device ID
Please reset the board by pressing the S1 user switch if the menu is not displayed.

> Select from the options in the menu bhelow:

Get FSP version
Data flash

Get UUID

Start Application
Help

Figure 43. Main Menu

1. Press 2 on the Main Menu to display Data Flash related commands as shown in the following
screenshots. This sub menu has commands to store, read, and validate the data.

T COM3 - Tera Term VT — O X

File Edit Setup Control Window Help

> Select from the options in the menu helow:
2. DATA FLASH

Info

Write Certificate

Write Private Key

Write MQTT Broker end point

Write IOT Thing name

Read Flash

Check credentials stored in flash memory
h> Help

> Press space bar to return to MENU

Figure 44. Data Flash Menu

R11ANO750EU0101 Rev.1.01 Page 38 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

2. Press b for Write Certificate.

T COM3 - Tera Term VT — 1 X

File Edit Setup Control Window Help

DATA FLASH WRITE CERTIFICATE

Select the file to write data in data flash

Figure 45. Select File to Write Data in Data Flash

3. Goto TeraTerm > File > Send file

Y1 COMS5 - Tera Term VT — O >
Edit Setup Control Window Help
Mew connection... Alt+N
Duplicate session Alt+D in data Flash
Cygwin connection Alt+G

Transfer >
55H SCP..

Change directory...
Replay Log...
¥ Record
Y Replay
Print... Alt+P
Disconnect Alt+l

Exit Alt+Q
Exit All

Figure 46. Send File Option in File Menu

4. Browse to the folder where X509 certificates are generated as part of section 3.5, Certificate Creation
Process. Select cert.pem. Press Open.

T Tera Term: Send file =
Look in: II Azure I v @& @E-
Name - Date modified Type Size
a cert.der 2/24/2023 418 PM Security Certificate 1KB
| certpem | 2/24/2023 4:05 PM PEM File 1KB
B pri Type: PEM File 2/24/2023 4:12 PM Security Certificate 2 KB
P Siver 1018 bytes 2/24/2023 3:36 PM PEM File 2KB
™ san Date modified: 2/24,/20 2/24/2023 440 PM C File 15 KB
x509_config.cfg 2/24/2023 2:54 PM CFG File 1KB
File name: [|cer1_pem I | I Open I
Files oftype: All*") ~ Cancel
Help
Option
DBinary
Figure 47. Browse, Select and Open the File to be Written
R11ANO750EU0101 Rev.1.01 Page 39 of 47

May.05.23 RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

5. Status of Device Certificate Downloading is as follows.

T COMS - Tera Term VT

File Edit Setup Control Window Help

DATA FLASH WRITE CERTIFICATE

Select the file to

write data in data flash

Writing flash data is successful

> Press space bar to return to MENU

Figure 48. Status of File Writing Process

6. To store the device private key, go back to data flash menu by pressing the space bar key. Press c in
Data Flash menu, go to Tera Term->File->Send file, select file privkey.pem from the folder where you
have generated certificates.

7. To store MQTT Broker End point , that is, Host Name, first copy Host Name without double quotes then
press d in Data Flash menu, go to Tera Term > Edit > Paste <CR>; you will get the copied Host Name
in the clipboard. Please verify and confirm it and press OK.

T COMS5 - Tera Term VT

DATA

Paste<CR>]

Clear screen
Clear buffer

Cancel selection

Select screen
Select all

File Setup Control Window Help

pss enter to save credentials in flash
Alt+V
Alt+R

B | Tera Term: Clipboard confirmation

RACLOUDHUB.azure-devices.net |

|I 0K |I

Cancel

Figure 49.

Input MQTT Broker End point aka Host Name

8. To store loT Thing Name, that is, DEVICE ID, first copy the DEVICE ID created without double quotes,
press e in Data Flash menu and follow the procedure in step 5.

W COMS - Tera Term VT

DATA ~ORY
Copy table

Paste
I Paste<CR>]

Clear screen
Clear buffer

Cancel selection

Select screen
Select all

File Setup Control Window Help

pss enter to save credentials in flash

Alt+R

B | Tera Term: Clipboard confirmation

CK_RA6M5_X509)

I oK ||

Cancel

Fi

gure 50. Input Device ID aka loT Thing name

R11ANO750EU0101 Rev.1.01
May.05.23

RENESAS

Page 40 of 47

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

9. To verify the data stored in Data Flash, press f in Data Flash menu, scroll down to see data.

I COMS - Tera Term VT - O bt
File Edit Setup Control Window Help

DATA FLASH READ

NZURE certificate read successful
v1+2tHhB36UADLEhiBCuw jREqaHUZBxU6 jpA £ XNH

NZURE private key read is successzful
END RSA PRIVATE KEY y+zPR2X j8t tx0XBysMXRn] =kjCEo2mnI PuC

AZURE MQTT end point read successful
RACLOUDHUB. azure—devices.net

I0OT thing name read successful
CK_RAGMS_X5689

i Press space bar to return to MENU

Figure 51. Scroll Down and Verify the Data Stored in Data Flash

10. To check the credentials stored in Data Flash ,press g.
11. Press spacebar to go to previous menu or main menu.
12. Press 4 to start the application from the main menu.
13. Serial terminal output on successful start of application.

W COMS - Tera Term VT - O *

File Edit Setup Control Window Help

I0T thing name saved in data flash is verified and successful

Starting AZURE Ethernet cloud Application....

b hbhhbhhbhh bbb bbb b bbb bbb b bbb bbb b bbb b T I i bl sl aia kil Ta s tata kadadadatsdadatatatataadat s
Reneszas FSP Application Project for Azure IoT C-SDK *
fAipplication Project Uersion 1.8 *
Flex Software Pack Version 4.2.8 *

Refer to Application Mote for more details on Application Project and
DK

FEF User’s Manual for more information about Azure IoT C-8
CaZaZaZalatotadotatabisdotadotoiototototsdatatotsdotalatotototototsdotatatidatakatototaotototstotatotstatattototatototstotatotatatakatototototoistotatstotatatated

This Application project demonstrates the I0T functionalities of Azure I0T SDK Client
uzing Azure RIOS and Metd Duo with Ethernet Interface Module running on Reneszas RA MCU’'s
CaTataZalalotasdadaiatadadiadatoialiatotitadalatatstotalatotatatotoiodataiatadaiadatototatotoiatoiatatadatiatatoiotatotoiaototatatadatatiatototiatatsiatoiaiotatakatkated

HAL Initiali=zation

Waiting for IP address.
IP Configuration

IP Address : 18.8.0.241
Netmask : 255.255.255.4
DHCP Server 18.8.8.1

DNE Server addr L O

GNIP Time Sync...

SNIP Time Sync...

SNIP Time Sync successfully.

iIoIHuh Host Mame: RACLOUDHUB.azure-devices.net; Device ID: CK_RAGMS_X5689.
Connected to IoTHub.

HE3801 =ensor setup Success

ZMOD4418 sensor setup success

ICP18A181 sensor setup success

ICH2ZA948 =zensor setup success

Figure 52. Device Connected to Azure IoT Hub

R11ANO750EU0101 Rev.1.01 Page 41 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

14. Sensor data output on serial terminal.

W COMS - Tera Term VT -

File Edit Setup Control Window Help

ICH2A248 sensor setup success

0OB1283 Sensor External Irg Open success

0B1263 sensopr setup success

R_ICU_ExternallrgEnahle success @
ZMOD451A senzor setup success

=% Periodic MS5G Sending TIMER Start B =
HS 3881

TEMP = 829.270
HUMIDITY = @25.389

ZMOD4418
ECO2

/B8 . 900
. 888
. 888

ICP1A181
TEMF = @A3@8.832
ChPressure = 181721.265

ICM208248

accelerometery = BA7.029
accelerometer¥Y = B04.980
accelerometerZ = 8192.598
gyroscopes apa_a17
gyroscoped —AAA. A8
gyroscopes apa. 825

magd —#18.A889

mags -@11.212

mags a37.823

Figure 53. Sensor Data on Serial Terminal

3.13 Send Device to Cloud Message

With Azure IoT Explorer, you can view the flow of telemetry from your device to the Cloud. To view telemetry

in Azure loT Explorer:

1. InloT Explorer, select your created 1oT Hub, and click on view devices in this hub, click on the created

device (Device ID). Finally select the Telemetry(Home > TECLOUDHUB > Devices >
CK_RABM5_X509 >Telemetry). Confirm that use built-in event hub is set to Yes.

2. Select Start.
3. View the telemetry as the device sends messages to the Cloud.

Azure loT Explorer (preview)

Home > TECLOUDHUB > Devices > CK_RAEMS5_X509 > Telemetry
B stop Shew system properties [i] Clear events Simulate a device

Telemetry

Consumer group

= Telemetry

Specify enqueue time

Wed Dec 14 2022 15:40:23 GMT+0530 (Indla Standard Time):

Figure 54. Device Telemetry Details

R11ANO750EU0101 Rev.1.01
May.05.23 RENESAS

Page 42 of 47

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

3.14 Send Cloud-to-Device Message
To send a Cloud-to-device message in Azure loT Explorer:

1. InloT Explorer, select Cloud-to-device message.

2. Enter the message in the Message body = "LED", Key = LED, Value = Given in Table
3. Check Add timestamp to message body.

4. Select Send message to device.

LED On Board Value

LED2 (Tri Color LED) TC_GREEN_ON, TC_RED ON, TC BLUE_ON
TC_GREEN_OFF, TC_RED_OFF, TC_BLUE_OFF

LED4 BLUE BLUE_ON, BLUE_OFF

Azure loT Explorer (preview)

> TECLOUDHUB > | > CK_RAEMS5_X509 > Cloud-to-device message Trying o send message
2/14/2023, 11:41:17 AM - LED
to device 'CK_RABMS_X509"
message to device 6

11:41:17 AM
Cloud-to-device message

Message body
Telemetry
LED

Cloud-to-device message

O Madule identities Add timestamp to message body 5

lay components Properties

Add custom property © Add system property

Key Value

[« 13 T

Figure 55. Device Telemetry Details

5. Inthe terminal window, you can see that the message is received by the 10T Device.

W COM3 - Tera Term V1 (. >

Eile Edit Setup Control Window Help

acce lerometery —HHG _B1@
acce lerometerZ 8213 .229

GUrosSCcCopeX
gyroscopeX
gyroscopeX

Receive me e from Cloud: LED = TC_GREEN_ON
]

- =
Townic Received from Cloud TC GREEN O

3CGREEN LED ON

ZHoD4518
| oAQ = BB6.888

oB1283

spo2_val = AAA_AAA
heart_rate_Ual = 9808 .8088
breathing rate = 0006.000

Figure 56. Serial Terminal Output

R11ANO750EU0101 Rev.1.01 Page 43 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

4. Importing, Building and Loading the Project

For a quick validation of this application project, import and build the project. The following steps show
how to import, build, and download the project.

Note: To run the application project successfully and to communicate to the Cloud, follow the instructions for
setting up the Cloud interface as described in section 3.3, which details making changes to the
credentials and creating your own cloud devices, running and validating the application.

4.1 Importing

The application project bundled as part of this app note can be imported into e2 studio using instructions
provided in the RA FSP User’s Manual. See Section Starting Development > e2 studio ISDE User Guide >
Importing an Existing Project into e2 studio ISDE.

4.2 Building the Latest Executable Binary

Upon successfully importing and/or modifying the project into e? studio IDE, follow instructions provided in
the RA FSP User’s Manual to build an executable binary/hex/mot/el T file. See Section Starting
Development > e2 studio ISDE User Guide > Tutorial: Your First RA MCU Project > Build the Blinky Project.

4.3 Loading the Executable Binary into the Target MCU
The executable file may be programmed into the target MCU through any one of three means.

4.3.1 Using a Debugging Interface with e? studio

Instructions to program the executable binary are found in the latest RA FSP User Manual
(www.renesas.com/RA/ESP). See sectionStarting Development > e2 studio ISDE User Guide > Tutorial:
Your First RA MCU Project > Debug theBlinky Project.

This is the preferred method for programming as it allows for additional debugging functionality
available through the on-chip debugger.

4.3.2 Using J-Link Tools

SEGGER J-Link Tools such as J-Flash, J-Flash Lite, and J-Link Commander can be used to program
the executable binary into the target MCU. Refer to User Manuals UM08001, and UM08003 on
www.segger.com.

4.3.3 Using Renesas Flash Programmer

The Renesas Flash Programmer (https://www.renesas.com/us/en/software-tool/renesas-flash-
programmer-programming-gui) provides usable and functional support for programming the on-chip
flash memory of Renesas microcontrollers in each phase of development and mass production. The
software supports all RA MCUs and the software user’s manual is available on renesas.com.

5. Next Steps and References

— Refer to the following GitHub repository for various FSP modules example projects and application
projects (https://github.com/renesas/ra-fsp-examples/)

— Refer to Establishing and Protecting Device Identity using SCE7 and Security MPU (R11AN0449) on
renesas.com

— Refer to Securing Data at Rest Utilizing the RA Security MPU (R11AN0416) on renesas.com

— Refer to Azure GitHub link for more details on Azure SDK for Embedded C
(https://github.com/Azure/azure-sdk-for-c)

6. MQTT/TLS References

— FSP v4.2.0 User's Manual (www.renesas.com/RA/ESP).
— Azure loT documentation (https://docs.microsoft.com/en-us/azure/iot-hub/)

R11ANO750EU0101 Rev.1.01 Page 44 of 47
May.05.23 RENESAS

http://www.renesas.com/RA/FSP
http://www.segger.com/
https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui
https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui
http://www.renesas.com/
https://github.com/renesas/ra-fsp-examples/
https://renesasgroup.sharepoint.com/sites/REA-IOTBD-AppNotes/ApplicationNotes/CK-RA6M5%20-%20Azure%20Cloud%20Connectivity%20-%20Ethernet_FSP%204.2.0/renesas.com
http://www.renesas.com/
https://github.com/Azure/azure-sdk-for-c
http://www.renesas.com/RA/FSP
https://docs.microsoft.com/en-us/azure/iot-hub/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

7. Known Issues and Limitations

1. Occasional outages in Cloud connectivity may be noticed during the demonstration due to changes in
the Cloud server. Contact the Renesas support team for questions.

2. Currently, there is no support for direct device-to-device communications with Azure loT Hub.

3. Device will reconnect after 65 minutes due to SAS token refresh. Currently it is under SDK control. Users
need to know this when developing the application.

R11ANO750EU0101 Rev.1.01 Page 45 of 47
May.05.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Website and Support

Visit the following vanity URLSs to learn about key elements of the RA family, download components and
related documentation, and get support.

CK-RAG6MS5 Kit Information renesas.com/ra/ck-rabm5
RA Cloud Solutions renesas.com/cloudsolutions
RA Product Information renesas.com/ra
RA Product Support Forum renesas.com/ra/forum
RA Flexible Software Package renesas.com/FSP
Renesas Support renesas.com/support
R11ANO750EU0101 Rev.1.01 Page 46 of 47

May.05.23 RENESAS

http://www.renesas.com/ra/ck-ra6m5
http://www.renesas.com/cloudsolutions
http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Ethernet

Revision History

Description
Rev. Date Page Summary
1.00 Mar.22.23 — Initial release
1.01 May.05.23 — Corrected the document number in the document footer

R11ANO750EU0101 Rev.1.01

May.05.23

Re Page 47 of 47
KENESAS

Notice

1.

10.

11.

12.

13.
14.

(Notel)

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.
“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date

Koto-ku, Tokyo 135-0061, Japan
WWW.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

version of a document, or your nearest sales office, please visit:
Www.renesas.com/contact/.

© 2023 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	Introduction to Cloud Connectivity
	1.1 Cloud Connectivity Overview
	1.2 Microsoft Azure IoT Solution
	1.2.1 Overview
	1.2.2 IoT Hub Device Provisioning Service
	1.2.2.1 Azure IoT Hub and IoT Hub Device Provisioning Service (DPS)
	(1) Device Provisioning Service
	(2) Embedded C SDK

	1.2.3 Authentication Methods
	1.2.3.1 X.509
	1.2.3.2 Per-Device Key Authentication

	1.3 MQTT Protocol Overview
	1.4 TLS Protocol Overview
	1.4.1 Device Certificates and Keys
	1.4.2 Device Security Recommendations

	2. RA FSP MQTT/TLS Cloud Solution
	2.1 MQTT Client Module Introduction
	2.1.1 Design Considerations
	2.1.2 Supported Features

	2.2 TLS Session Module Introduction
	2.2.1 Design Considerations
	2.2.2 Supported Features

	2.3 Azure IoT Device SDK Module Introduction
	2.3.1 Design Considerations
	2.3.2 Supported Features

	MQTT/TLS Application Example
	3.1 Application Overview
	Creating the Application Project using the FSP configurator
	Install Azure CLI
	3.4 Create an IoT Hub
	3.5 Certificate Creation Process
	3.6 View Device Properties
	3.7 Set IoT Hub
	3.8 Register an IoT Hub Device
	3.9 Prepare the Device
	3.10 Building and Running the Application
	3.11 Download and Run the Project
	3.12 Storing Device Certificate, Host Name, Device ID
	3.13 Send Device to Cloud Message
	3.14 Send Cloud-to-Device Message

	4. Importing, Building and Loading the Project
	4.1 Importing
	4.2 Building the Latest Executable Binary
	4.3 Loading the Executable Binary into the Target MCU
	4.3.1 Using a Debugging Interface with e2 studio
	4.3.2 Using J-Link Tools
	4.3.3 Using Renesas Flash Programmer

	5. Next Steps and References
	6. MQTT/TLS References
	7. Known Issues and Limitations
	Revision History

