RE NESAS Application Note

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution -
Cellular

Introduction

This application note describes 10T Cloud connectivity solutions in general and introduces you briefly to the
0T Cloud solution provider, Microsoft Azure. It covers the RA FSP MQTT/TLS module along with the Azure
loT SDK for embedded C, using Cellular connectivity.

This application project is built with the integrated Embedded Wireless Framework (EWF) and “Azure loT
SDK for Embedded C” package which allows small embedded (loT) devices like Renesas RA family of
MCUs RA6M3/RA6M4/RAB6M5 to communicate with Azure l0T services.

The application example uses Azure 0T DPS (Device Provisioning Service) to provision, register the 0T
device, and send and receive data to and from the development Kit.

This application note enables you to effectively use the RA FSP modules in your own design with the FSP
integrated Azure 0T SDK. Upon completion of this guide, you will be able to add the FSP modules to your
own design, configure it correctly with Azure 10T SDK for the target application, and write code using the
included application example code as a reference and efficient starting point. References to more detailed
API descriptions and sample code, that demonstrates advanced usage of FSP modules are available in the
RA FSP Software Package (FSP) User’s Manual (see Next Steps and References section) and serve as
valuable resources in creating more complex designs. Explaining the underlying operation of Azure IoT SDK
for Embedded C is beyond the scope of this document. Users should refer to the documentation from
Microsoft for education on topics related to Azure 10T SDK section: https://docs.microsoft.com/en-
us/azureliot-hubl/iot-hub-devguide- sdks

In this release, the CK-RAG6MS5 kit is used for the application project.
Required Resources

To build and run the MQTT/TLS application example, you need:
Development Tools and Software

e e?studio version: v2023.4.0 or later

o RA Flexible Software Package (FSP) v4.4.0

e SEGGER J-Link® RTT viewer version: 7.84 or later

e Azure 0T explorer 0.14.13.0 or later (PC tool for validating the Cloud side). Download Link : Releases -
Azure/azure-iot-explorer (github.com)

e Azure CLI 2.44 or later (Azure command-line interface is a set of commands used to create and manage
Azure resources) Download Link: How to install the Azure CLI | Microsoft Learn

e Access to Azure Cloud Connectivity Portal (https://portal.azure.com/#home) to create I0T Devices (If you
are new to Azure loT)

Hardware

¢ Renesas CK-RA6MS5 kit (CK-RAGM5 - Cloud Kit Based on RA6M5 MCU Group | Renesas)

e PC running Windows® 10, Tera Term console or similar application, and an installed web browser
(Google Chrome, Internet Explorer, Microsoft Edge, Mozilla Firefox, or Safari).

e Micro USB cables

e Renesas LTE Cat-M1 Cellular IoT Module (Included in the CK-RA6M5 Kit) (RYZ014A - LTE Cat-M1
Cellular 0T Module | Renesas)

R11ANO754EU0101 Rev.1.01 Page 1 of 51
May.02.23 RENESAS

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-%20sdks
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-%20sdks
https://github.com/Azure/azure-iot-explorer/releases
https://github.com/Azure/azure-iot-explorer/releases
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli
https://portal.azure.com/#home
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/ra-cortex-m-mcus/ck-ra6m5-cloud-kit-based-ra6m5-mcu-group
https://www.renesas.com/us/en/products/wireless-connectivity/cellular-iot-modules/ryz014a-lte-cat-m1-cellular-iot-module
https://www.renesas.com/us/en/products/wireless-connectivity/cellular-iot-modules/ryz014a-lte-cat-m1-cellular-iot-module

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

Prerequisites and Intended Audience

This application note assumes that you have some experience with the Renesas e? studio ISDE and RA FSP
Software Package (FSP). Before you perform the procedures in this application note, follow the procedure in
the FSP User Manual to build and run the Blinky project. Doing so enables you to become familiar with the
e? studio and the FSP, and also validates that the debug connection to your board functions properly. In
addition, this application note assumes you have some knowledge of MQTT/TLS and its communication
protocols.

The intended audience is users who want to develop applications with MQTT/TLS modules using Cellular
modules on Renesas RA6 MCU Series.

Note: If you are a first-time user of e’ studio and FSP, we highly recommend you install €2 studio and FSP
on your system in order to run the Blinky Project and to get familiar with the e? studio and FSP
development environment before proceeding to the next sections.

Note: If you are new to Azure Internet of Things, we recommend you get started with Introduction the Azure
l0T https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-introduction

Prerequisites

e Access to online documentation available for Azure in the Cloud Connectivity under References sections
5and 6

e Access to latest documentation for identified Renesas FSP as referenced sections 5 and 6
e Prior knowledge of operating e? studio and built-in (or standalone) RA Configurator
e Access to associated hardware documentation such as User Manuals and Schematics

Using this Application Note

Section 1 of this document covers the General Overview of the Cloud Connectivity, Azure 10T Solution using
0T Central, and Azure DPS, MQTT and TLS Protocols and Device certificates and Keys used in the Cloud
Connectivity.

Section 2 covers the modules provided by RA FSP to establish connectivity to Cloud service providers and
the features supported by the module.

Section 3 covers the architecture of the reference application project, an overview of the software
components included, and step-by-step guidelines for recreation using the FSP configurator. It also covers
setting up the Azure loT Hub, creating the self-signed certificates, storing the certificates in the flash using
the application CLI.

Sections 4 covers Importing, building and running the Application project.

Note: We recommend that you operate with your own Microsoft Azure Cloud credentials and use your
created Cloud configurations to run the application. The default sample configuration detailed in this
project is for reference only and may have access issues to Azure since the application is
communicating with a test account.

Note: For a quick validation using the provided application project, you can skip sections 1 to 2 and go to
section 3 and 4 for instructions on setting up the Azure 10T Hub, creating the self-signed certificates,
storing the certificates in the flash using the application CLI, and running the application project on the
CK-RA6M5 board.

Contents

1. Introduction tO Cloud CONNECLIVILY.........uuuuiii e e e e e e e e e e e e e e 4
1.1 Cloud CONNECLVILY OVEIVIEWeiiiiiiiiieiiiiieeiiieie e sttt e s aitteee s sttt e e s anebe e e s ansbeee s anbeeeeenbbeeesasbeeeeennbeeeeeanseas 4
1.2 MiCroSOft AZUIE 10T SOIULIONueeiieiiiiiie ittt ettt ettt e sttt e e e e e e e bt e e s enb e e e e nbeeeeeaneeas 5
O B O 1V =T VOO PP PP PR 5
1.2.2 10T Hub and DevVvice ProViSIONING SEIVICEc.uuuiiiiiaaie ittt ettt e e e e e e e e eiab e e e e e e e e e e aanes 5
1.2.2.1 Azure IoT Hub and IoT Hub Device Provisioning Service (DPS)cccciiiiiiiiiiieiaeeeeiiiiiieee e 5
R11ANO754EU0101 Rev.1.01 Page 2 of 51

May.02.23 RENESAS

https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-introduction

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

1.2.3 AUhentiCation MENOGSiiiiiii ittt s e nn e nnne s 6
S T0t R G 01 SRRV TR 6
1.2.3.2 Per-Device Ky AUINENTICALIONcii ittt ettt s e s e e e e b e e e e e 6
T B Y/ (@ I I o o) Co oo] I @ AV =T V= PP PRRPT 7
1.4 TLS ProtOCOI OVEIVIEWeiiiiieitiie ittt ettt ettt et s e b et e bn e s re e e snn e e sar e e e nnneeanreeennnees 7
1.4.1 Device Certificates and KEBYS........coiiiiiiiiiiiiie e ittt s s e e e e s s s e e e e e e s e st aaeeeeeeesassnbaneeeeaeesaannnes 8
1.4.2 Device Security RECOMMENUALIONS.......uuuiiiieiiiiiiiiieiie e e e s it e e e e e s s s r e e e e et s s srteareeaeessassnrrneeeeaeesaannnes 8
2. RAFSP MQTT/TLS CloUd SOIULIONciiiiiie ettt e et e et e e e b e e e eaaans 9
2.1 MQTT Client MOdUIE INtrOTUCTIONuuuuriritiiitiiiiii s sananannnssnnnnnnnnnnnnnnsnnnnns 9
00 Nt R 1= 1] T [@0 1S3 o =T > o 1 9
2.1.2 SUPPOITEA FEAIUMNESceiiitiie ettt ettt ekt e e e e s bt e e e aa b et e e e ea b et e e e aabe e e e e anbbe e e e anbb e e e e anbneeeennnns 9
2.2 TLS Session Module INtrOQUCTIONoiiiiiiiiiiee ettt e e s e e e e e e st e e e e e e e s snnennaeeeeaeeeas 9
2.2.1 DeSIgN CONSIAETALIONSveiieiiitiiee ittt e sttt e e ettt e e e aa b et e e e aa b et e e e aabe e e e e aabe e e e e anbbeeeeanbneeeennnnas 9
2.2.2 SUPPOIEU FEATUINES ... uuuiuiiiiiiiiiiiiiiiiiii s 10
2.3 Azure IoT Device SDK Module INTrOGUCTIONovviiiiiiiee ettt e e e 10
22 Tt R 1= T T [WO 1S 0 1= >] o 1 10
2.3.2 SUPPOITEA FEAIUMNESeeiiiiiiie ittt ettt et e e e s bb e e e st bt e e e sa b bt e e e aabb e e e e sbbeeeeabbeeeeabneeeeaaes 10
3. MQTT/TLS Application EXAMPIEcoouiuiiii et e e e e et e e e 11
G 700 R A o] o[o¥= 11 T0] 0 @ AV =T V1= 11
3.2 Creating the Application Project using the FSP coONfigurator.............occceeiiiiiiiiiiieec e 16
R T 1 51 = | 14U | £ =T O I USSR 24
K O == | (= - o T o I o 11] o USSR 25
3.5 CertifiCate Creation PrOCESS........uviiiiiriiee ittt ettt e e st e e e st e e s s b e e e e s ne e e e s s nr e e e e anreeeeaanneeeenans 27
3.6 VIEW DEVICE PIrOPEITIES ...vuvueiuuiiuiiiiiiiiiiiiiiiti s 31
K A S 1= [B U « T TP ST T PP O UPPTPUPPTPUPPRPRO 32
3.8 RegiSter an 10T HUD DEVICE.......c.uiiiiiiiiiee ettt et e et e e e s bt e e e s bt e e e abbeeeeaae 35
3.9 PrePare the DEBVICEeeiiiiiiiie ittt ettt e sttt e e ot bt e e e ea b et e e e aabb e e e e e bbeeeeabbeeeeabbeeeeaae 36
3.10 Building and RUNNING the APPLICALIONiuiiiiiiiiiee ettt e e e e e beeeeeanes 37
3.11 Download and RUN the PrOJECT.........oii ettt e et e e e e e e s nnb e eeaaeeeas 37
3.12 ACHVALING thE SIM CAIQ ...ooiiiiieiee ettt et e e e s e sttt e e e e e e e aab bbb e e e e e e e e s aanbnbbeeeaaeaeas 41
3.13 Storing Device Certificate, HOSt Name, DEVICE IDcooiiiiiiiiiiiiee e 42
3.14 Send DeViCe t0 ClOUA MESSAUE .. .ceeiiuriieeiiiiiee e eitiiee ettt ettt et e e sttt e e e sba e e e e sabeeeessbbeeeesnbreeeeanbaeeeeanns a7
3.15 Send CloUd-T0-DEVICE MESSAUEcceiiuriieeiitiiee e itieee ettt e e e sttt e e ste e e e sttt e e e sbaeeeesbeeeeesnbbeeeeabeeeeeanbaeeeeanns a7
4. Importing, Building and Loading the Project............cooii i 48
o T 10T oo 4 1 o [PP 49
4.2 Building the Latest EXeCULabIe BINaAryc.ooiiiiiiiiiiiiii et 49
4.3 Loading the Executable Binary into the Target MCUcooooiiiiiiiiiiiie s e 49
4.3.1 Using a Debugging Interface With €2 STUAIO........c.uuiiiiiiiiie i snaee s 49
4.3.2 USING J-LINK TOOISttt ettt e e e e e o b ettt et e e e e e s nb bt e e e e e e e e s aanbbbbeeeaaeeeaannnenaeeas 49
R11ANO754EU0101 Rev.1.01 Page 3 of 51

May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

4.3.3 Using Renesas Flash ProgrammMerocccuuiiiiiiee i e et e e e e e e st e e e e s s s snnnane e e e e e s e s nnnneneees 49
5. Next Steps and REEIENCESccoiiiiiiiiiii e e e e e e e e 49
6. MOTT/TLS REIEIENCESoutiiiii et e e e e e e et e s e e e e e e e eeeeaan e e eeaaes 49
7. Known ISSUES and LIMITALIONS.......ccoiiiiiiiiiiiiii e 49
7.1 SIM Card Activation PrODIEIMooiiiiiii ettt e et e e et e e e st e e e e abreeeeaae 50
S T YT =T o 1S (S IR= T o S o] oL APPSR 50
REVISION HISTOMY ... 51

1. Introduction to Cloud Connectivity

1.1 Cloud Connectivity Overview

Internet of Things (loT) is a sprawling set of technologies described as connecting everyday objects,
like sensors or smartphones, to the World Wide Web. 10T devices are intelligently linked together to
enable newforms of communication between things and people, and among things.

These devices, or things, connect to the network. Using sensors, they provide the information they
gather from the environment or allow other systems to reach out and act on the world through
actuators. In the process, 0T devices generate massive amounts of data, and Cloud computing
provides a pathway, enabling data to travel to its destination.

The IoT Cloud Connectivity Solution includes the following major components:

1. Devices or Sensors

2. Gateway

3. 1oT Cloud services

4. End user application/system

Devices
loT Cloud
Sensors I"'_;_
Gateway \
Figure 1. 10T Cloud Connectivity Architecture
R11ANO0754EU0101 Rev.1.01 Page 4 of 51

May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

Devices or Sensors

A device includes hardware and software that interacts directly with the world. Devices connect to a network
to communicate with each other, or to centralized applications. Devices may connect to the Internet either
directly or indirectly.

Gateway

A gateway enables devices that are not directly connected to the Internet to reach Cloud services. The data
from each device is sent to the Cloud Platform, where it is processed and combined with data from other
devices, and potentially with other business-transactional data. Most of the common communication
gateways support one or more communication technologies such as Wi-Fi, Ethernet, or Cellular to connect to
the 10T Cloud Service provider.

loT Cloud

Many IoT devices produce lots of data. You need an efficient, scalable, affordable way to manage those
devices, handle all that information, and make it work for you. When it comes to storing, processing, and
analyzing data, especially big data, it is hard to surpass the Cloud.

1.2 Microsoft Azure loT Solution

1.2.1 Overview

Microsoft’s end-to-end 10T platform is a complete loT offering so that enterprises can build and realize value
from loT solutions quickly and efficiently. Azure 10T Central solutions are used with backend support from the
Azure 10T Hub Device Provisioning Service.

Azure loT Pazure loT Central <L Azure loT Reference Ny Dynamics Connected
Solutions @ (5aa$) »[ﬂpr;::g]euure & Accelerators V :éﬂgsfer\flté
Azure loT Hub Azure Stream Analytics Azure Active Directory
Azure loT Hub Device Azure Cosmos DB Azure Monitor
Azire b | Provisioning Service Azure Al Azure DevOps
Services for loT L’i ure Digrial fwins Azure Cognitive Services Power Bl
Azure Time Series Insights Azure ML Azure Data Share
Azure Maps Azure Logic Apps Azure Spatial Anchors
Azure Sphere Windows loT Azure ML
loT & Edge @ Azure Certified for loT—Device Azure SQL
Device Support] Azure 1o] Eage Catalog Azure Functions
Data Box Edge Azure Stream Analytics Azure Cognitive Services
Azure Storace

Figure 2. Microsoft Azure loT Cloud Solution

1.2.2 10T Hub and Device Provisioning Service
1.2.2.1 AzureloT Hub and loT Hub Device Provisioning Service (DPS)
loT Hub provides built-in support for the MQTT v3.1.1 protocol. See the following webpage for more

understanding of the IoT Hub and Device Provisioning Services (DPS):
https://docs.microsoft.com/en-us/azure/iot-dps/

(1) Device Provisioning Service
High-level sequence of events to connect a Device to loT Hub:

1. After the device is manufactured, the device enrollment information is added to the DPS. This is the only
manual step in the process.

2. At some point afterwards, which could be a day, or it could be several months, the device goes online
and connects to DPS to find its loT solution home.

3. DPS and the device go through an attestation handshake using the device enroliment info. DPS proves
the device’s identity.

4. DPS registers the device to 10T hub and populates the initial desired device state.

loT Hub returns the connection info for the device.

6. DPS gives the device its l1oT Hub connection info.

o

R11ANO754EU0101 Rev.1.01 Page 5 of 51
May.02.23 RENESAS

https://docs.microsoft.com/en-us/azure/iot-dps/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

7. The device now establishes a connection with 10T Hub and retrieves its initial configuration from loT Hub
and makes any changes/updates, as needed.
8. The device starts sending telemetry to 10T Hub.

(2) Embedded C SDK

The Embedded C SDK, the newer addition to the Azure SDKs family, was designed to allow embedded loT
devices to leverage Azure services, like device to Cloud telemetry, Cloud to device messages, direct
methods, device twin, device provisioning, and 10T Plug and play, all while maintaining a minimal footprint.

It allows full control over memory allocation and the flexibility to bring your own MQTT client, TLS, and
Socket layers.

Written in C, this version of the SDK is optimized to be used on small and embedded devices with limited
capabilities and resources.

The Azure loT SDK is open source and published on GitHub (https://github.com/Azure/azure-sdk-for-c). This
is also distributed with FSP version 4.4.0 and above.

1.2.3 Authentication Methods

Security is a critical concern when deploying and managing IoT devices. 10T Hub offers the security features
described in the following sections.

1.2.3.1 X.509

The communication path between devices and Azure 10T Hub, or between gateways and Azure 10T Hub, is
secured using the industry-standard Transport Layer Security (TLS) with Azure 1oT Hub, authenticated using
the X.509 standard.

To protect devices from unsolicited inbound connections, Azure 10T Hub does not open any connection to
the device. The device initiates all connections.

1.2.3.2 Per-Device Key Authentication

Figure 3 shows authentication in the 10T Hub using security tokens.

Figure 3. Authentication using Security Tokens

1. The device prepares a shared access signature (SAS) token using the device endpoint, device id,and
primary key (generated as part of the device addition to the loT Hub).
2. When connecting to the 10T Hub, the device presents the SAS token as the password in the MQTT
CONNECT message. The username content is the combination of device endpoint and device name
along with the additional Azure defined string.
The loT Hub verifies the SAS token and registers the device and connection is established.
4. 10T Hub provides Symmetric key for Data encryption.
Note: The connection is closed when the SAS token expires.

w

R11ANO754EU0101 Rev.1.01 Page 6 of 51
May.02.23 RENESAS

https://github.com/Azure/azure-sdk-for-c

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

1.3 MQTT Protocol Overview

MQTT stands for Message Queuing Telemetry Transport. MQTT is a Client Server publish-subscribe
messaging transport protocol. It is an extremely light-weight, open, simple messaging protocol, designed for
constrained devices, as well as low-bandwidth, high-latency, or unreliable networks. These characteristics
make it ideal for use in many situations, including constrained environments, such as communication in
Machine to Machine (M2M) and 10T contexts, where a small code footprint is required, and/or network
bandwidth is at a premium.

An MQTT client can publish information to other clients through a broker. A client, if interested in a topic, can
subscribe to the topic through the broker. A broker is responsible for authentication and authorization of
clients, as well as delivering published messages to any of its clients who subscribe to the topic. In this
publisher/subscriber model, multiple clients may publish data with the same topic. A client will receive the
messages published if the client subscribes to the same topic.

PUBLISH to Thing

Thing 2

PUBLISH to Thing
Thing 1

MQTT

Broker

SUBSCRIBE to Thing

Thing N

SUBSCRIBE to Thing

Figure 4. MQTT Client Publish/Subscribe Model

In the Pub/Sub model used by MQTT, there is no direct connection between a publisher and the
subscriber.To handle the challenges of a Pub/Sub system, the MQTT generally uses quality of service
(QoS) levels.

There are three QoS levels in MQTT:

e At most once (0)

e Atleast once (1)

e Exactly once (2)

At most once (0)

A message will not be acknowledged by the receiver or stored and redelivered by the sender.
At least once (1)

It is guaranteed that a message will be delivered at least once to the receiver. But the message can also be
delivered more than once. The sender will store the message until it gets an acknowledgment in form of a
PUBACK command message from the receiver.

Exactly once (2)

It guarantees that each message is received only once by the counterpart. It is the safest and the slowest
QoS level.

1.4 TLS Protocol Overview

Transport Layer Security (TLS) protocol and its predecessor, Secure Sockets Layer (SSL), are cryptographic
protocols that provide communications security over a computer network.

The TLS/ SSL protocol provides privacy and reliability between two communicating applications. It has the
following basic properties:

R11ANO754EU0101 Rev.1.01 Page 7 of 51
May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

Encryption: The messages exchanged between communicating applications are encrypted to ensure that
the connection is private. A symmetric cryptography mechanism such as AES (Advanced Encryption
Standard) is used for data encryption.

Authentication: A mechanism to check the peer’s identity using certificates.

Integrity: A mechanism to detect message tampering and forgery ensures that connection is reliable. A
Message Authentication Code (MAC), such as Secure Hash Algorithm (SHA), ensures message integrity.

Figure 5. SSL/TLS Hierarchy

1.4.1 Device Certificates and Keys

Device certificates, public and private keys, and the ways they can be generated, are discussed in this
section.

Security is a critical concern when deploying and managing loT devices. In general, each of the loT devices
needs an identity before they can communicate with the Cloud. Digital certificates are the most common
method for authenticating a remote host in TLS. Essentially, a digital certificate is a document with specific
formatting that provides identity information for a device.

TLS normally uses a format called X.509, a standard developed by the International Telecommunication
Union (ITU), though other formats for certificates may apply if TLS hosts can agree on a format to use.
X.509 defines a specific format for certificates and various encodings that can be used to produce a digital
document. Most X.509 certificates used with TLS are encoded using a variant of ASN.1, which is another
telecommunication standard. Within ASN.1 there are various digital encodings, but the most common
encoding for TLS certificates is the Distinguished Encoding Rules (DER) standard. DER is a simplified
subset of the ASN.1.

Though DER-formatted binary certificates are used in the actual TLS protocol, they may be generated and
stored in a number of different encodings, with file extensions such as .pem, .crt, and .p12. The most
common of the alternative certificate encodings is Privacy-Enhanced Mail (PEM). The PEM format is a base-
64 encoded version of the DER encoding.

Depending on your application, you may generate your own certificates, be provided certificates by a
manufacturer or government organization, or purchase certificates from a commercial certificate authority.

Loading Certificates onto your Device

To use a digital certificate in your NetX™ Secure application, you must first convert your certificate into a
binary DER format, and optionally convert the associated private key into a binary format, typically, a
PKCS#1-formatted, DER-encoded RSA key. Once converted, it is up to you how to load the certificate and
the private key on to the device. Possible options include using a flash-based file system or generating a C
array from the data (using a tool such as xxd from Linux® with the -i option) and compiling the certificate and
key into your application as constant data.

Once your certificate is loaded on the device, you can use the TLS API to associate your certificate with a
TLS session.

1.4.2 Device Security Recommendations

The following security recommendations are not enforced by Cloud IoT Core but will help you secure your
devices and connections.

e The private key of the device should be kept secret.
e Use the latest version of TLS (v1.2 or above) when communicating with 10T Cloud and verify that the
server certificate is valid using trusted root certificate authorities.

R11ANO754EU0101 Rev.1.01 Page 8 of 51
May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

e Each device should have a unique public/private key pair. If multiple devices share a single key and one
of those devices is compromised, an attacker could impersonate all the devices that have been
configured with that one key.

e Keep the public key secure when registering it with Cloud 10T Core. If an attacker can tamper with the
public key and trick the provisioner into swapping the public key and registering the wrong public key, the
attacker will subsequently be able to authenticate on behalf of the device.

e The key pair is used to authenticate the device to Cloud IoT Core and should not be used for other
purpose or protocols.

e Depending on the device’s ability to store keys securely, key pairs should be rotated periodically. When
practical, all keys should be discarded when the device is reset.

o If your device runs an operating system, make sure you have a way to securely update it. Android Things
provides a service for secure updates. For devices that don’t have an operating system, ensurethat you
can securely update the device’s software if security vulnerabilities are discovered after deployment.

2. RA FSP MQTT/TLS Cloud Solution

2.1 MQTT Client Module Introduction

The NetX Duo MQTT Client module provides high-level APIs for a Message Queuing Telemetry Transport
(MQTT) protocol-based client. The MQTT protocol works on top of TCP/IP and therefore the MQTT client is
implemented on top of NetX Duo IP and NetX Duo Packet pool. NetX Duo IP attaches itself to the
appropriate link layer frameworks, such as Ethernet, Wi-Fi, or Cellular.

The NetX Duo MQTT client module can be used in hormal or in secure mode. In normal mode, the
communication between the MQTT client and broker is not secure. In secure mode, the communication
between the MQTT client and broker is secured using the TLS protocol.

2.1.1 Design Considerations

e By default, the MQTT client does not use TLS; communication is not secure between a MQTT client and
broker.

e The RA FSP Azure RTOS NetX Duo IoT middleware module provides the NetX Duo TLS session block. It
adds Azure RTOS NetX Secure block. This block defines/controls the common properties of
NetX Secure.

2.1.2 Supported Features
NetX Duo MQTT Client supports the following features:

o Compliant with OASIS MQTT version 3.1.1 Oct 29, 2014. The specification can be found at
http://mqtt.org/.

e Provides an option to enable/disable TLS for secure communication using NetX Secure in FSP.

e Supports QoS and provides the ability to choose the levels that can be selected while publishing the
message.

¢ Internally buffers and maintains the queue of received messages.

¢ Provides a mechanism to register callback when a new message is received.

e Provides a mechanism to register callback when connection with the broker is terminated.

2.2 TLS Session Module Introduction

The NetX Duo TLS session module provides high-level APIs for the TLS protocol-based client. It uses
services provided by the RA FSP Crypto Engine (SCE) to carry out hardware-accelerated encryption and
decryption.

The NetX Duo TLS Session module is based on Azure RTOS NetX Secure which implements the Secure
Socket Layer (SSL) and its replacement, TLS protocol, as described in RFC 2246 (version 1.0) and 5246
(version 1.2). NetX Secure also includes routines for the basic X.509 (RFC 5280) format. NetX Secure is
intended for applications using ThreadX RTOS in the project.

2.2.1 Design Considerations
e NetX Secure TLS performs only basic path validation on incoming server certificates.

Once the basic path validation is complete, TLS then invokes the certificate verification callback supplied
by the application.

R11ANO754EU0101 Rev.1.01 Page 9 of 51
May.02.23 RENESAS

http://mqtt.org/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

e Itis the responsibility of the application to perform any additional validation of the certificate.
To help with the additional validation, NetX Secure provides X.509 routines for common validation
operations, including DNS validation and Certificate Revocation List checking.

e Software-based cryptography is processor-intensive.
NetX Secure software-based cryptographic routines have been optimized for performance but depending
on the capabilities of the target processor, performance may result in very long operations. When
hardware-based cryptography is available, it should be used for optimal performance of the NetX Secure
TLS.

¢ Due to the nature of embedded devices, some applications may not have the resources to support the
maximum TLS record size of 16 KB.
NetX Secure can handle 16 KB records on devices with sufficient resources.

2.2.2 Supported Features

e Support for RFC 2246 Transport Layer Security (TLS) Protocol Version 1.0

e Support for RFC 5246 TLS Protocol Version 1.2

e Support for RFC 5280 X.509 PKI Certificates (v3)

e Support for RFC 3268 Advanced Encryption Standard (AES) Cipher suites for TLS

o RFC 3447 Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version2.1
e RFC 2104 HMAC: Keyed-Hashing for Message Authentication

e RFC 6234 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)

e RFC 4279 Pre-Shared Key Cipher suites for TLS

2.3 Azure loT Device SDK Module Introduction

The Azure I0T device SDK is a set of libraries designed to simplify the process of developing IoT applications
for Azure Cloud to make sending and receiving messages easy from the Azure 10T Hub service. There are
different variations of the SDK, each targeting a specific platform, but in this application note we will describe
the Azure 10T device SDK for C.

The Azure 10T device SDK for C is written in ANSI C (C99) to maximize portability. This feature makes the
libraries well suited to operate on multiple platforms and devices, especially where minimizing disk and
memory footprint is a priority.

In this application note we will cover how to initialize the device library, send data to loT Hub, and receive
messages from it.

More details on the Azure |oT Device SDK can be found at the reference link The Azure loT device SDK for
C | Microsoft Docs.

2.3.1 Design Considerations

The Azure 0T Device SDK is integrated with FSP and is available for the customers to use. To add the SDK
to the application, users are required to use the Stacks tab and select Networking > Azure RTOS NetX
Duo 10T Middleware.

When the components are selected using the Stacks tab, and the project is created, the SDK and libraries
can be seen under the ra/microsoft/azure-rtos/netxduo/addons/azure_ iot and
ra/microsoft/azure-rtos/netxduo/addons/cloud folders.

Note: In the following sections, step by step procedure of adding the Azure IoT middleware is explained in
detail.

2.3.2 Supported Features
Table 1. 10T SDK Supported features

Features Descriptions
Send device-to-cloud messages Send device-to-cloud messages to 0T Hub with the option to add
custom message properties.
Receive cloud-to-device messages Receive cloud-to-device messages and associated properties from
0T Hub.
R11ANO754EU0101 Rev.1.01 Page 10 of 51

May.02.23 RENESAS

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-device-sdk-c-intro
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-device-sdk-c-intro

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

Features Descriptions

Device twins IoT Hub persists a device twin for each device that you connect to
IoT Hub. The device can perform operations like get twin
document and subscribe to desired property updates.

Direct methods IoT Hub gives you the ability to invoke direct methods on devices
from the Cloud.
Device Provisioning Service (DPS) This SDK supports connecting your device to the Device

Provisioning Service, for example, through individual enroliment
using an X.509 leaf certificate.

Protocol The Azure SDK for Embedded C supports only MQTT.

Retry policies The Azure SDK for Embedded C provides guidelines for retries, but
actual retries should be handled by the application.

0T plug and play IoT Plug and Play enables solution builders to integrate smart

devices with their solutions without any manual configuration.

3. MQTT/TLS Application Example

3.1 Application Overview

This application project demonstrates the Renesas RA I0T Cloud Connectivity solution using the FSP and
uses Microsoft® Azure as the Cloud provider. Cellular is used as the primary communication interface
between the MQTT device and the Azure 10T Services.

The CK-RABMS5 kit acts as an MQTT node, connects to the Azure 10T service using MQTT/TLS protocol over
the Cellular interface. The application periodically reads the on-board sensor values and publishes this
information to the Azure I0T Hub. It also subscribes to a User LED state MQTT topic. You can turn the User
LEDs ON/OFF by publishing the LED state remotely. This application reads the updated LED state and turns

the User LEDs ON/OFF.

. 1
CELLULAR LTE TOWER L

Azure loT Hub

AZURE CLOUD

Figure 6. RA MQTT/TLS Application HW Connection Overview

R11ANO754EU0101 Rev.1.01 Page 11 of 51
May.02.23 RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

%H‘ﬁm
b

OO (Actuation) Subncribe 1o LED ONJOFF
|
-1
11111
e+ TRIEMEQLrY PUDESNING e e
55 L
- —_—
LAS LAl
" Azure loT Hub
I G— —
PUBLISH / SUBSCRIBE
o L
Subscribe to the Sensor Data
S
N
—
Publish Sensor Data
SENSOR

Figure 7. MQTT Publish/Subscribe to/from Azure loT Central

The following files from this application project serve as a reference.

Table 2. Files Used in Application Project

No. | Filename Purpose

1. src/application thread entry.c Contains initialization code and has the main thread
used in Cloud Connectivity application.

2. src/common_init.h Contains macros, data structures, and functions
prototypes used to initialize common peripherals
across the project.

3. src/common _utils.c Contains data structures, and functions commonly
used across the project.

4. src/common utils.h Contains macros, data structures, and functions
prototypes commonly used across the project.

5. src/Console Thread entry.c Contains the code for command line interface and
flash memory operations.

6. src/ICM 20948.c Contains the code for the 9-Axis MEMS Motion
Tracking™ Sensor

7. src/ICM 20948.h Contains the Data structure function prototypes for
the 9-Axis MEMS Motion Tracking™ Sensor

8. src/ICP_10101.c Contains the code for Barometric Pressure and
Temperature Sensor

9. src/ ICP_10101.h Contains the Data structure and function prototypes
for Barometric Pressure and Temperature Sensor

10. src/ICP_Thread entry.c Reading Barometric Pressure and Temperature
data

11. src/HS3001 Thread entry.c Contains Initializations for all sensors including
Humidity and Temperature Sensor and Reading
Temp-Humidity data

12. src/ICM Thread entry. Reading Accel Gyro Magnetometer Data

R11ANO754EU0101 Rev.1.01
May.02.23

Page 12 of 51

RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

No. | Filename Purpose

13. src/OB_1203 Thread entry.c Contains the code for Heart Rate, Blood Oxygen
Concentration, Pulse Oximetry, Proximity, Light and
Color Sensor

14, src/Oximeter.c Contains data structures and functions used for the
oximeter sensor

15. src/Oximeter.h Contains the Data structure and function prototypes
for the oximeter sensor

16. src/oximstruct.h Contains the Data structure for the oximeter sensor

17. src/r typedefs.h Contains the common derived data types

18. src/RA_HS3001.c Contains the code for the Renesas Relative
Humidity and Temperature Sensor

19. src/RA_HS3001.h Contains function prototypes for Relative Humidity
and Temperature Sensor

20. src/RA_ZMOD4XXX Common.c Contains the common code for Renesas ZMOD
sensors

21. src/RA_ZMOD4XXX Common.h Contains the common data structure’s function
prototypes for the Renesas ZMOD sensors

22. | src/RA_ZMOD4XXX IAQlstGen.c Contains the common code for the Renesas ZMOD
Internal Air Quality sensors

23. | src/RA_ZMOD4XXX OAQlstGen.c Contains the common code for the for the Renesas
ZMOD Outer Air Quality sensors

24. src/RmcI2C.c Contains the 12C wrapper functions for the third-
party sensors not integrated with FSP

25. src/RmcI2C.h Contains the 12C function prototypes for wrapper
functions for the third-party sensors not integrated
with FSP

26. src/user choice.h Contains the Function prototypes for the Sensor and
its user configuration for the different sensors and its
data accessibility.

27. src/usr_config.h To customize the user configuration to run the
application.

28. src/usr_hal.c Contains data structures and functions used for the
Hardware Abstraction Layer (HAL) initialization and
associated utilities.

29. src/usr_hal.h Accompanying header for exposing functionality
provided by usr_hal.c.

30. | Src/cellular setup.c Contains data structures and functions used to
operate the Cellular Module. This file is for Cellular
Modem specific usage

31. | src/usr network.c Contains data structures and functions used to
operate the NetX Duo TCP/IP and Cellular Module.
This file is for Network-specific usage.

32. src/usr_network.h Accompanying header for exposing functionality
provided by usr_network.c. This file is for Network-
specific use.

33. src/ZMOD4410 Thread entry.c Contains the code for indoor air quality sensor

34. src/ PNP Telemetry for HS3001 Temperature sensor

sample pnp environmental sensor | data

component.c
35. src/ sample pnp gas component.c PNP Telemetry for ZMOD4410 IAQ Sensor Data
36. src/ PNP Telemetry for ICP10101 Pressure Sensor data

sample pnp barometric pressure s
ensor component.c

R11ANO754EU0101 Rev.1.01

May.02.23

Page 13 of 51

RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

No. | Filename Purpose
37. src/ PNP Telemetry for ICM20948 Inertial Sensor data
sample pnp inertial sensor compo
nent.c
38. src/ sample pnp gas oag.c PNP Telemetry for ZMOD4510 OAQ Sensor Data
39. src/ PNP Telemetry for OB1203 Biometric Sensor Data
sample pnp biometric sensor comp
onent.c
40. src/ZMOD4510 Thread entry.c Reading Outdoor Air Quality Data
41. src/console menu/console.c Contains data structures and functions used to print
data on console using UART
42. src/console menu/console.h Contains the Function prototypes used to print data
on console using UART
43. | src/console menu/menu flash.c Contains data structures and functions used to
provide CLI flash memory related menu
44, src/console menu/menu flash.h Contains the Function prototypes and macros used
to provide CLI flash memory related menu
45, src/console menu/menu kis.c Contains functions to get the FSP version, get UUID
and help option for main menu on CLI
46. src/console menu/menu_kis.h Contains the Function prototypes and macros used
to get fsp version, get uuid and help option for main
menu on CLI
47. | src/console menu/menu main.c Contains data structures and functions used to
provide CLI main menu options
48. src/console menu/menu main.h Contains the Function prototypes and macros used
to provide CLI main menu options
49. src/console menu/menu catm.c Contains functions to get to IMEI, ICCID and help
option for main menu on CLI
50. src/console menu/menu_catm.h Contains functions prototypes to get IMEI, ICCID
and help option for main menu on CLI
51. | src/flash/ flash hp.c Contains data structures and functions used to
perform flash memory related operations
52. src/flash/ flash hp.h Contains the function prototypes and macros used
to perform flash memory related operations
53. src/I2C/i2c.c Contains data structures and functions used for [2C
communication
54. src/I2C/i2c.h Contains the Function prototypes and macros used
for 12C communication
55. src/obl1203 bio/KALMAN/kalman.c Contains algorithm for Heart Rate, Blood Oxygen
56. src/obl203 bio/KALMAN/kalman.h Concentration, Pulse Oximetry, Proximity, Light and
57. | src/ob1203 bio/OB1203/0B1203.c Color Sensor sample calculations
58. src/obl203 bio/0OB1203/0B1203.h
59. src/obl203 bio/SAVGOL/SAVGOL.c
60. src/obl203 bio/SAVGOL/SAVGOL.h
61. src/obl203 bio/SPO2/SPO2.c
62. src/obl203 bio/SP0O2/SP0O2.h
63. | src/nx _azure iot cert.c Azure |oT Interface code. These have the reference
64. src/nx azure iot cert.h to the working sample implementation and other
65. src/nx azure iot ciphersuites.c features such as Device Twin and Direct Method.
66. src/nxiazureiioticiphersuites h These fi!es can be used as reference for developing
67. src/sa;ple_a;ure:iot_embedded_sd the application
k.c
68. src/sample config.h
69. src/sample device identity.c

R11ANO754EU0101 Rev.1.01

May.02.23

Page 14 of 51

RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

No. | Filename Purpose

70. src/usr_app.c Contains data structures and functions used to
operate the user application functions.

71. src/usr_app.h Accompanying header for exposing functionality
provided by usr_ app.c.

72. src/ base64 decode.c Contains function used for BASE64 to Hex
Conversion

73. src/ base64.h Contains function prototype used for BASE64 to
Hex Conversion

74. src/c2d_thread entry.c Contains data structures functions and main thread
used in Cloud to Device message handling.

75. src/hal entry.c Auto generated unused file for Non RTOS thing.

76. | commandRX Thread entry.c Cloud to Device Commands reception

77. uart CATM.c Contains code for the CATM info get for activation

78. uart CATM.h Contains code for the CATM info get for activation

TCOPAIP Metwark Inmializat

Leracrs | Acturton

Cellular Initialization

T
10T Prersiioring Chert in

Appheation MO Canrecs

[MACU Tarrp, Usar Bumen)

ATURE IOT
Application Thrasd AT Brodonr
CONMICT
CORMALK
Sl ik 1o Tops
FURACK
FLELISH Pariodic snd Az Topic 5o the s P e aaiage hayne, Parisdic)

Broier

PUBACK

Publeh Faoarvad from MQTT Broker
[Sebucribad Topecs]

PUBALRE

URSLESCREE

O Errer Exit o Lhnt Barmination

UNEILBA S

DESCOMNECT

Figure 8. Application Example Implementation Details

R11ANO754EU0101 Rev.1.01

May.02.23

Page 15 of 51

RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

3.2 Creating the Application Project using the FSP configurator
Note: Skip this section, if you are planning to import, build and run the project attached with this application

note.

Complete steps to create the project from the start using the e? studio and FSP configurator. The following
table shows the step-by-step process in creating the project. It is assumed that the user is familiar with the
e? studio and FSP configurator. Launch the installed e2 studio for the FSP.

Table 3. Step-by-step Details for Creating the Application Project

Steps Intermediate Steps
1 Project Creation: File - New — Renesas C/C++ Project — Renesas RA
2 Project Template: Renesas RA C/C++ Project — Next
Templates for Renesas RA Project
3 e? studio - Project Configuration: Project Name (Name for the project of your choice) —
Renesas RA C/C++ Project Next
Project Name and Location
4 Device and Tools Selection
Device Selection FSP Version: 4.4.0 (or higher)
Board: CK-RA6M5
Device: R7TFA6M5BH3CFC
Language: C
5 Toolchains Toolchain: GNU ARM Embedded (Default)
Toolchain version: 10.3.1.20210824
Debugger: J-Link ARM
— Next
6 Project Type Selection Flat (Non-TrustZone) Project
— Next
7 Build Artifact and RTOS Selection Build Artifact Selection: Executable
RTOS Selection: Azure RTOS ThreadX (v6.2.1+fsp4.4.0)
— Next
8 Project Template Selection Azure RTOS ThreadX — Minimal — Finish
9 Clock HOCO 20MHz —PLL Src:HOCO — PLL Div/2 —PLL Mul
x20.0
10 Stacks tab (Part of the FSP Threads — New Thread
Configurator)
11 Configure Properties — Thread Symbol: application_thread
Name: Application Thread
Stack size (bytes):0x4000
Priority: 3
Auto start: Disabled
Time slicing interval (ticks): 50
Note: The stack size of the application thread needs to be a
minimum of 0x1000 bytes or greater. This is the
requirement for the NetX Duo Crypto use.
12 Adding the NetX IoT Middleware, SNTP Clients and Packet Pool to the Application Thread Keep the

default names g_dnsO0, g_sntp_client0. The default configuration provided by the FSP configurator is
used, so there is no need to change any of the specific configuration in the

Property window.

Adding DHCP Client

New Stack

Networking — Azure RTOS NetX Duo IoT Middleware

Adding Packet Pool for the NetX
Duo DNS Client

Click on Add NetX Duo Packet Pool — Use—
g_packet_pool0 Azure RTOS NetX Duo Packet Pool
Instance

R11ANO754EU0101 Rev.1.01
May.02.23

Page 16 of 51

RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

Steps

Intermediate Steps

Adding NetX Duo Network Driver Click on Add NetX Duo Network Driver — New —

Azure EWF NetX Duo Middleware

Configuring Azure EWF interface on r_uart

Common— Parameter checking —Enabled

Debug — Disabled

Verbose Logging — Disabled

EWF_LOG(...)~> Keep it Blank

Configuring g_uart0 UART (r_sci_uart)

Common FIFO Support : Enabled

DTC Support: Disable

Flow Control Support : Enabled

Module g_uart0 UART (r_sci_uart) Baud — Baud Rate — 921600

Flow Control— CTS/RTS Selection —Hardware CTS and
Software RTS

Software RTS Port — 04

Software RTS Pin — 12

Config Pins TXDO : P411

RXDO0 : P410

CTSO: None

CTSRTSO0: P413

Modifying the BSP tab — Properties — RA Common for Main stack and Heap Settings)

Property settings for RA Common Main stack size(bytes): 0x4000

Heap size (bytes): 0x4000

Subclock Populated: Not Populated

13 Note: After the Azure loT Middleware is added, the configurator reports following errors when youhover
over the red Blocks.
Error: Hardware TCP/IP support must be enabled in NetX Duo.
Error: Interface Capability must be enabled in NetX Duo.
Error: NetX Duo Azure IoT Middleware Requires NetX Secure to be enabled.
Error: NetX Duo Azure loT Middleware Requires IP Packet Filter to be enabled.
Error: NetX Duo Azure loT Middleware Requires MQTT Cloud to be enabled.
Error: A NetX Crypto Implementation must be added.
Note: To fix these errors, enable them as explained in the following steps
Enabled Hardware TCP/IP support Azure RTOS NetX Duo Common — Common — Common
—TCP/IP Offload: Enable
Enable Interface capability g_packet_pool0 Azure RTOS NetX Duo Packet Pool
Instance—~ Common — Common— Interface Capability:
Enable
Enable the NetX Secure g_dns0 Azure RTOS NetX Duo DNS Client —»Property —
Common — MQTT — Client — NX Secure: Enable
Enable MQTT Cloud g_dnsO Azure RTOS NetX Duo DNS Client —Property —
Common — MQTT — Client — Cloud Enable: Enable
Enable IP Packet Filter g_dns0 Azure RTOS NetX Duo DNS Client —Property —
Common — Common — IP Packet Filter: Enabled
Add NetX Crypto Implementation Click on Add NetX Crypto SW Only or HW/SW
Implementation —
New — Azure RTOS NetX Crypto HW Acceleration
Enable the Extended Notify Support g_dns0 Azure RTOS NetX Duo DNS Client —Property —
Common — Common —Extended Notify Support:
Enabled
14 NetX Secure Component is added from the HW Crypto perspective. IoT SDK also works with SW
crypto. But in this application the HW Crypto Accelerators are used.
Configure Azure RTOS NetX Secure property values (Only values which changed from the default are
shown here)
R11ANO0754EU0101 Rev.1.01 Page 17 of 51

May.02.23

RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

Steps Intermediate Steps
PSK Cipher Suite Enable
ECC Cipher Suite Enable
TLSv1.0 Enable
TLSv1.1 Legacy Mode Enable
TLSV1.1 Enable
TLSV1.3 Disable
Server Mode Disable

Configure Azure RTOS NetX Crypto HW Acceleration property values (Only values which changed

from the default are shown here)

Common—Hardware
Acceleration—Public Key
Cryptography (PKC)— RSA—-RSA

Use Hardware

Common—Hardware Enabled
Acceleration—Public Key

Cryptography (PKC)— RSA—RSA

3072 Verify/Encryption (HW)
Common—Hardware Acceleration Enabled

— Public Key Cryptography (PKC)
— RSA — RSA 4096
Verify/Encryption (HW)

Common—Hardware Acceleration
— Public Key Cryptography (PKC)
— RSA — RSA Scratch Buffer Size

Disabled (HW)

Common-> Standalone Usage

Use with TLS

Note: Increase the Stack size in the
BSP tab to get rid of the error in
configurator for NetX Crypto HW
Acceleration

Refer to the Modifying the BSP tab — Properties — RA
Common for (Main stack and Heap Settings) section in step
11 of this table

Note: For crypto operation it is recommended to have a
stacksize of 4K or more.

Adding SNTP Client

New Stack

Networking — Azure RTOS NetX Duo SNTP Client

Adding NetX Duo IP instance for
SNTPClient

Click on Add NetX Duo IP Instance —Use — g_ip0 NetX
Duo IP Instance

Adding Packet Pool for the
SNTPClient

Click on Add NetX Duo Packet Pool —Use —

g_packet_pool0 Azure RTOS NetX Duo Packet Pool
Instance

15 Increase the Number of Packets in Pool
Click on g_packet_pool0 Azure RTOS NetX Duo Packet
Pool Instance
— Properties window — Number of Packets in Pool.
Change from 16 to 50 (To allow enough buffer for the
packets). This can be tuned based on the frequency and size
Note: After adding the SNTP the configurator reports the following errors when you hover over the red
Blocks.
Error: Maximum time adjustment (milliseconds) should be greater than unicast poll interval
(seconds).
Note: To fix these errors, enable them as explained in the following steps
Reduce the starting poll interval g_sntp_client0 Azure RTOS NetX Duo SNTP Client —
forunicast update request Property — Common — SNTP — Client —Starting poll
(seconds) interval for unicast update request (seconds): 36
16 Add Cloud to Device Processing Thread to the Application

Stacks tab (Part of the FSP
Configurator)

Threads — New Thread

R11ANO754EU0101 Rev.1.01

May.02.23

Page 18 of 51

RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

Steps | Intermediate Steps
Configure Thread Properties

Symbol c2d_thread

Name Cloud2Device Thread
Stack size 2048 Bytes

Priority 4

Auto start Disabled

Time slicing interval (ticks) 25

17

Adding the HAL Modules as required for
30-second periodic timer, respectively.

the Application Project: Here, TimerO, External IRQ,

HAL/Common — New Stack

Input — External IRQ Driver on r_icu

Property Settings for r_icu

Name: g_sensorlRQ

Channel: 14

Trigger: Falling

Digital Filtering: Disabled

Digital Filtering Sample Clock: PCLK/64

Pin Interrupt Priority: Priority 12

Callback: sensorOBIRQCallback

Pins—IRQ14: (Navigate to IRQ14): P403

HAL/Common Stacks — New Stack

Timers — Timer, General PWM on r_gpt

Property Settings for r_gpt — General

Interrupts:

Name: g_timer2

Channel: 2

Mode: Periodic

Period: 1

Period Unit: Milliseconds

Callback: TimerCallback

Overflow/Crest Interrupt Priority:6

HAL/Common Stacks — New Stack

Timers — Timer, General PWM on r_gpt

Property Settings for r_gpt — General

Name: gpt

Channel: 0

Mode: Periodic

Period: 1

Period Unit: Seconds

Interrupts:

Callback: g_gpt_timer_chb

Overflow/Crest Interrupt Priority: Priority 10

18

Adding Azure RTOS Objects for the Application (Topic Queue needs to be created for the application —

Message Queue)

Stacks Tab — Objects

New Object — Queue

Property Settings for the Queue

Name: Topic Queue

Symbol: g_topic_queue

Message Size (Words): 16

Queue Size (Bytes): 64

Stacks Tab — Objects

New Object — Mutex

Name: consolprint_mutex

Symbol: consolprint_mutex

Priority Inheritance: Disabled

19

Add HS3001 Sensor (Temperature and Humidity) Processing Thread to the Application

Stacks tab (Part of the FSP
Configurator)

Threads — New Thread

Configure Thread Properties

Symbol

HS3001_Thread

Name

HS3001_Thread

R11ANO754EU0101 Rev.1.01

May.02.23

Page 19 of 51

RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

Steps Intermediate Steps
Stack size 0x1000 Bytes
Priority 4

Auto start Disabled

Time slicing interval (ticks) 1

)Adding the HS300X Sensor Module to the HS3001_Thread

New Stack —

Sensor — HS300X Temperature/Humidity Sensor

Config HS300X sensor—

Name: g_hs300x_sensor0

Callback: hs300x_callback

20 Note: This module requires an 12C peripheral, Add 12C by clicking on “Add 12C Communication
Peripheral” — New — 12C Master (r_iic_master)
Module g_i2c_master0 I2C Master Rate: Fast Mode
21 Add ZMOD4410 Sensor (IAQ) Processing Thread to the Application
Stacks tab (Part of the FSP Threads — New Thread
Configurator)
Configure Thread Properties
Symbol ZMOD4410_Thread
Name ZMOD4410_Thread
Stack size 2048 Bytes
Priority 4
Auto start Disabled
Time slicing interval (ticks) 1
Adding ZMOD4XXX Gas Sensor Module to ZMOD4410_Thread
New Stack — Sensor —» ZMOD4XXX Gas Sensor
Config ZMOD4XXX Properties— Add Requires ZMOD Libraries— New—ZMOD4410 IAQ 157
Gen
Add 12C Shared Bus—Use—g_comms_i2c_bus0 12C
Shared Bus
Add IRQ Driver for Measurement —New— External IRQ
22 Module g_zmod4xxx_sensor0 Name: g zmod4xxx_sensor0
Comms I12C callback: zmod4xxx_comms_i2cQ callback
IRQ Callbacks: zmod4xxx_irq0_callback
Module g_i2c_master0 12C Master Rate: Fast Mode
Config External IRQ— Name: g_external_irg0
Channel :4
Trigger: Falling
Pin Interrupt Priority:5
Pins—IRQO04: (Navigate to IRQ04): P402
23 Add ICP-10101 Sensor (Barometric Pressure &Temperature) Processing Thread to the Application
Stacks tab (Part of the FSP Threads — New Thread
Configurator)
Configure Thread Properties
Symbol ICP_Thread
Name ICP_Thread
Stack size 2048 Bytes
Priority 4
Auto start Disabled
Time slicing interval (ticks) 1
Adding 12C Communication Device (for ICP10101) into ICP_Thread
24 New Stack — Connectivity: I2C Communication Device

Config 12C Comm Device —

Name: g comms_i2c_device4

Slave Address:0x63

R11ANO754EU0101 Rev.1.01

May.02.23

Page 20 of 51

RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

Steps

Intermediate Steps

Callback: ICP_comms_i2c_callback

Add 12C Shared Bus—

Add 12C Shared Bus—Use—g_comms_i2c_bus0 I12C
Shared Bus

Module g i2¢c_master0 12C Master

Rate: Fast Mode

25 Add ICM-20948 (9 Axis MEMS) Processing Thread to the Application
Stacks tab (Part of the FSP Threads — New Thread
Configurator)
Configure Thread Properties
Symbol ICM_Thread
Name ICM_Thread
Stack size 2048 Bytes
Priority 4
Auto start Disabled
Time slicing interval (ticks) 1
Adding 12C Communication Device (for ICM-20948) into ICM_Thread
New Stack — Connectivity: 12C Communication Device
Config 12C Comm Device — Name: g comms_i2c_deviceb
26 Slave Address: 0x68
Callback: ICM _comms_i2c_callback
Add 12C Shared Bus— Add 12C Shared Bus—Use—g_comms_i2c_bus0 I12C
Shared Bus
Module g_i2c_master0 12C Master Rate: Fast Mode
27 Add ZMOD4510 Sensor (OAQ) Processing Thread to the Application
Stacks tab (Part of the FSP Threads — New Thread
Configurator)
Configure Thread Properties
Symbol ZMOD4510_Thread
Name ZMOD4510_Thread
Stack size 2048 Bytes
Priority 4
Auto start Disabled
Time slicing interval (ticks) 1
Adding ZMOD4XXX Gas Sensor Module to ZMOD4510_Thread
New Stack — Sensor —» ZMOD4XXX Gas Sensor
Config ZMOD4XXX Gas Sensor \Add Required ZMOD Libraries— New—ZMOD4510 OAQ
Properties— 1ST Gen
Add 12C Shared Bus—Use—g_comms_i2c_bus0 I12C
Shared Bus
Add IRQ Driver for Measurement—New— External IRQ
Module g_zmod4xxx_sensorl Name: g_zmod4xxx_sensorl
08 Comms 12C callback: zmod4xxx_comms_i2c1_callback

IRQ Callbacks: zmod4xxx_irql_callback

Module g_comms_i2c_device2 12C
Communication Device
(rm_comms_i2c)

Name: g_comms_i2c_device2

Module g_i2c_master0 12C Master
(r_iic_master)

Rate: Fast Mode

Config External IRQ—

Name: g_external_irgql

Channel :15

Trigger: Falling

R11ANO754EU0101 Rev.1.01

May.02.23

Page 21 of 51

RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

Steps Intermediate Steps
Pin Interrupt Priority:12
Pins—IRQ15: (Navigate to IRQ15): P404
29 Add OB1203 (optical biosensor) Processing Thread to the Application
Stacks tab (Part of the FSP Threads — New Thread
Configurator)
Configure Thread Properties
Symbol OB_1203 Thread
Name OB_1203 Thread
Stack size 2048 Bytes
Priority 2
Auto start Disabled
Time slicing interval (ticks) 25
Adding 12C Communication Device (for OB-1203) into OB_1203_Thread
New Stack — Connectivity: 12C Communication Device
Config 12C Comm Device — Name: g comms_i2c device3
30 Slave Address: 0x53
Callback: comms_i2c_callback
Add I12C Shared Bus— Add I12C Shared Bus—Use—g_comms_i2c_bus0 I12C
Shared Bus
Module g_i2c_master0 I12C Master Rate: Fast Mode
31 Add CLI Processing Thread to the Application
Stacks tab (Part of the FSP Threads — New Thread
Configurator)
Configure Thread Properties
Symbol Console_Thread
Name Console_Thread
Stack size 4096 Bytes
Priority 4
Auto start Enabled
Time slicing interval (ticks) 10
Adding Uart to Console_Thread
New Stack — Connectivity: UART
Config Common — FIFO Support: Enable
DTC Support: Disable
Flow Control Support: Enable
Config General — Name: g_console_uart
Channel:5
Data Bits:8bits
32 Parity:None
Stop Bits:1bit
Config Baud— Baudrate: 115200
Config Interrupts — Callback: g_console_uart_callback
Config Pins — TXD: P501
RXD: P502
IAdding Flash to Console_Thread
New Stack — Storage: Flash (r_flash_hp)

R11ANO754EU0101 Rev.1.01
May.02.23

Re Page 22 of 51
RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

Steps Intermediate Steps

Name: user_flash

Data Flash Background Operation: Disabled

Callback: flash_callback

Flash Ready Interrupt Priority: Priority 6

Flash Error Interrupt Priority: Priority 6

Adding back door entry to the CATM1 module via the Uart to Console Thread

New Stack — Connectivity: UART

Config Common — FIFO Support: Enable

DTC Support: Disable

Flow Control Support: Enable

Config General — Name: g_catml_uart

Channel: Os

Data Bits:8bits

Parity: None

Stop Bits: 1bit

Config Baud— Baudrate: 921600

Config Interrupts — Callback: catm1_uart_callback

Config Pins — TXDO : P411

RXDO : P410

CTSO : None

CTSRTSO: P413

Add Cloud to Device Command Reception Thread to the Application

Stacks tab (Part of the FSP Threads — New Thread
Configurator)

Configure Thread Properties

33 Symbol CommandRX_Thread
Name CommandRX_Thread
Stack size 2048 Bytes
Priority 4
Auto start Disabled
Time slicing interval (ticks) 40

The above configuration is a prerequisite to generate the required stack and features for the Cloud
connectivity application provided with this app note. Once the Generate Project Content button is clicked,
e? studio generates the source code for the project. The generated source code contains the required
drivers, stacks, and middleware. The user application files must be added into the src folder.

For the validation of the created project, the same source files listed in the section 3, MQTT/TLS Application
Example, Table 2, may be added. This is the quickest way to create and build the application without writing
the code for the configuration created in the above section.

Note: After you follow instructions in section 3.2 to recreate the Application project using FSP configurator
and add the src code to the project, the project is ready for building.

Note: If you get error while assigning PIN to External IRQ, go to Pin Configuration > Pin Number and
select the IRQ function for that pin number, for example, for External IRQ channel number 4, you can
select Function IRQ14 for pin number 4.

R11ANO754EU0101 Rev.1.01 Page 23 of 51
May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

Note: As part of the manual creation of this project, you might encounter known issues/pin errors with the
Pin configurator while selecting the peripherals. We recommended selecting the operation mode,
disable/enable and select the pins. You can also refer to the attached project as working reference.

3.3 Install Azure CLI

To prepare Azure Cloud resources and connect a device to Azure, you can use Azure CLI. Azure CLI can be
installed locally on your PC.

1. Azure CLI can be downloaded from the Microsoft site (https://docs.microsoft.com/en-us/cli/azure/install-
azure-cli)

2. The installer name will be similar to azure-cli-2.44.x.msi. or later. Click on the installer and install
shield will guide you through the installation process. Install it to your desired directory, for example
c:\AzureCLI

3. Install the current release of the Azure CLI. After the installation is complete, you will need to close and
reopen any active Windows Command Prompt or PowerShell windows to use the Azure CLI.

4. After the Azure CLlI installation is successful, open and launch the Windows PowerShell to use the Azure
CLI. A screenshot of the launch of Windows PowerShell is shown below.

Select Administrator: Windows PowerShell - O >

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserwved.

Try the new cross-platform PowerShell https://aka.ms/pscoreb

Figure 9. Windows Power Shell

5. If you already have Azure CLI installed locally, go to the directory of the installed AzureCLI and run az -
-version to check the version. This application note requires Azure CLI 2.44.0 or later.

E¥ Administrator: Windows PowerShell - a X

PS C:\Users\ AzureCLI> az
azure-cli 2.45.0

core 2.45.
telemetry 1.0.

Extensions:
azure-devops 0.20.0
azure-iot 0.10.14

Dependencies:
msal 1.20.90
azure-mgmt-resource 21.1.0b1

Python location 'C:\Program Files (x86)\Microsoft SDKs\Azure\CLI2\python.exe"'
Extensions directory ‘C:\Users) \.azure\cliextensions'

Python (Windows) 3.18.8 (tags/v3.10.8:aaaf517, Oct 11 2022, 16:37:59) [MSC v.1933 32 bit
(Intel)]

Figure 10. Azure CLI Version

R11ANO754EU0101 Rev.1.01 Page 24 of 51
May.02.23 RENESAS

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

3.4 Createan loT Hub
You can use Azure CLI to create an lIoT Hub that handles events and messaging for your device.

Note 1: Before you start creating the 10T Hub you are required to have a login to your Azure Portal via web
browser. If not logged in, then you may notice an error that you are not logged in, while creating
the 0T Hub:
https://portal.azure.com/

Note 2: If you do not have the Azure account, you can create one which is valid for 12 months with limited
features from the following link:
https://azure.microsoft.com/en-us/free/

To create an loT Hub:

Note 3: Some of the user parameters while creating the IoT Hub needs to be unique. Users are required to

take care of this while creating the loT Hub credentials.

1. Inyour CLI console, run the az extension add command to add the Microsoft Azure loT Extension for
Azure CLI to your CLI shell. The 10T Extension adds loT Hub, 10T Edge, and IoT Device Provisioning
Service (DPS) specific commands to Azure CLI.

— az extension add --name azure-iot

Note 4: When you run the command for the first time you may not notice output on the console as shown
below. It just accepts the command.

E¥ Select Administrator: Windows PowerShell - O X

PS C:\Users)\ \AzureCLI>
PS C:\Users\ \AzureCLI> az extension add azure-iot

Extension ‘azure-iot' 0.10.14 is already installed.
PS C:\Users\ \AzureCLI> _

Figure 11. Add Extension for Azure CLI

2. Runthe az login command to login to the Azure account. Running the az login command opens
the browser for login. You can enter the login credentials to login to the Azure account. You will notice a
similar message on the browser on successful login.

Note: You can find more info on the Azure CLI at Overview of the Azure CLI | Microsoft Docs

You have logged into Microsoft Azure!

You can close this window, or we will redirect you to the Azure CLI documentation in 1 minute.

Announcements

[Windows only] Starting in May 2023, Azure CLI will authenticate using the Web Account Manager (WAM) broker by default.

To help us collect feedback on the new login experience, you may opt-in to use WAM by running the following commands:
az config set core.allow broker=true

az account clear
az login

Figure 12. Successful Login to the Azure Account

3. Runtheaz group create command to create a resource group. The following command creates a
resource group named MyRAResourceGroup in the westus region.

4. Note: Optionally, to set an alternate 1ocation, run az account list-locations to see available
locations. Then specify the alternate location in the following command in place of westus.
— az group create —--name MyRAResourceGroup --location westus

R11ANO754EU0101 Rev.1.01 Page 25 of 51
May.02.23 RENESAS

https://portal.azure.com/
https://azure.microsoft.com/en-us/free/
https://docs.microsoft.com/en-us/cli/azure/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

E¥ Administrator: Windows PowerShell b a X

PS C:\Users)\ \AzureCLI> az group create MyRAResourceGroup westus
{
"id": "/subscriptions/c2abca52-fdcb-4329-b720-8d20dbcdfab3/resourceGroups/MyRAResourceGroup™,
"location™: "westus”,
"managedBy": null,
"name”: "MyRAResourceGroup”,
"properties™: {

"provisioningState™: "Succeeded”

": "Microsoft.Resources/resourceGroups™
I

}
PS C:\Users\ \AzureCLI>

Figure 13. Create Resource Group

5. Runthe az iot hub create command to create an loT Hub. It might take a few minutes to create an
0T Hub.
Replace the YourIotHubName placeholder below with the name you chose for your loT Hub. An IoT Hub
name must be globally unique in Azure. This placeholder is used in the rest of this tutorial to represent
your unique loT Hub name. Use any command given below.

— az iot hub create --resource-group MyRAResourceGroup --name
{YourIoTHubName}

OR
— az iot hub create --resource-group MyRAResourceGroup --name
{YourIoTHubName} --location {YourLocation}

Note: It may take few minutes to create the 10T Hub. In this case the loT Hub name used is
RACLOUDHUB.

Note: Microsoft recommends to create new IoT Hub. If the IoT Hub created previously (2-3 year old)
it may not work as desired. So, we recommend to create new loT Hub to run the application to
yield the proper results

E¥ Administrator: Windows PowerShell - O X

ocs.microsoft.com/en-US/cli/azure/iot/hub#az_iot_hub_create

PS C:\Users\ > az iot hub create MyRAResourceGroup RACLOUDHUB
westus
| Running ..

Figure 14. 1oT Hub Creation in Progress

R11ANO754EU0101 Rev.1.01 Page 26 of 51
May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

6. After the 10T Hub is created, view the JSON output in the console, and copy the hostName value to a
safe place. You use this value in a later step. The hostName value looks like the following example:
— {Your IoT hub name}.azure-devices.net

PS C:\Users\ > az iot hub create MyRAResourceGroup RACLOUVHUB
westus
{
"etag”: "AAAADHyUlkI=",
"id": "/subscriptions/c2abca52-fdcb-4329-b720-8d2@dbcdfab3/resourceGroups/MyRAResourceGroup/providers/Micr
osoft.Devices/IotHubs/RACLOUDHUB"™,
"identity": {
“principalld™: null,
"tenantId™: null,
“type”: "None”,
“"userAssignedIdentities”: null

“properties”: {
"allowedFqdnList™: [],
"authorizationPolicies”: null,
"cloudToDevice": {
“"defaultTtlAsIso8601": “1:00:00",
“feedback”: {
"lockDurationAsIsoB8601": "@:00:05",
“maxDeliveryCount™: 10,
"ttlAsIso8601": "1:00:00"
}J
"maxDeliveryCount™: 10
1y
“comments™: null,
"deviceStreams”: null,
“"disableDeviceSas": null,
"disablelocalAuth”: null,
"disableModuleSas”: null,
“enableDataResidency”: null,
"enableFileUploadNotifications"”:
“"encryption”: null,
"eventHubEndpoints™: {
“events”: {
"endpoint™: "sb://iothub-ns-racloudhub-15367392-546ab7522b.servicebus.windows.net/",
“partitionCount™: 4,
“partitionlds™: [
"on

’
2
’

“pn
7'
uyn

]'
“path™: "racloudhub”,
"retentionTimeInDays": 1
}
1
Js
"features™: "GhWV2".
“"hostName™: "RACLOUDHUB.azure-devices.net",
“ipFilterRules”: [],
“locations™: [

Figure 15. JSON Output After IoT Hub Creation

3.5 Certificate Creation Process

You can use GIT Bash utility for this process. If not installed on your computer, you can download and install
it (Git for Windows or Git for Windows (github.com)).

1. Install Git for windows.

2. Launch the Git Bash

3. Create a directory of your choice (for example, mkdir Azure).

4. Go to the directory and create the configuration. This created directory is the place where your self-
signed certificate is created and stored.

R11ANO754EU0101 Rev.1.01 Page 27 of 51
May.02.23 RENESAS

https://gitforwindows.org/
https://github.com/git-for-windows

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

5. Copy paste the configuration listed below to create x509 config.cfg as show in the following figure.
cat > x509 config.cfg <<EOT

[req]
req extensions = client auth
distinguished name = reqg _distinguished name

[reqg_distinguished name]

[client auth]
basicConstraints = CA:FALSE
keyUsage = digitalSignature, keyEncipherment

extendedKeyUsage = clientAuthEOT

Note: All OpenSSL commands and self-signed certificate creation process is given at this link.
Steps are as follows:

1. Set x509 configuration file for common name in cert.

MINGW®&4:/c/Users/ /Azure - O X

mkdir Azure

, cd Azure

cat > x509_config.cfg <<EOT

> [req]

> reg_extensions = client_auth

> distinguished_name = req_distinguished_name
[req_distinguished_name]
[client_auth]

> basicConstraints = CA:FALSE

» keyUsage = digitalSignature, keyEncipherment
» extendedKeyUsage = clientAuth

> EOT

$ 1Is

|x509_config.cfg

Figure 16. Set X509 Configuration File

R11ANO754EU0101 Rev.1.01 Page 28 of 51
May.02.23 RENESAS

https://github.com/azure-rtos/netxduo/blob/master/addons/azure_iot/samples/README.md#steps-to-create-self-signed-certs-using-openssl

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

2. Create RSA self-signed certificate.
Generate private key and certificate (public key) using the command as shown in the snapshot
“‘openssl genrsa -out privkey.pem 2048”7

MINGW®64:/c/Users; JAzure - O X

$ openssl genrsa -out privkey.pem 2048
Generating RSA private key, 2048 bit long modulus (2 primes)

e is 65537 (0x010001)

Figure 17. Generate Private Key and Certificate (public key)

3. Embed Device ID in certificate
This command will not give you any response if successfully executed.
openssl reqg -new -days 365 -nodes -x509 -key privkey.pem -out cert.pem -
config x509 config.cfg -subj "//CN=<Same as device Id>"
Note: In this example the device ID name “CK_RA6M5_X509” is used. Note down this Device ID. This
will be used in the future steps. Use your own Device ID to make it unique across your system.

MINGWE4:/c/Users; fAzure — (] X

$lopenss| req ew ays 365 <ey privkey.pem -out cert.pem -config x509_config.cfqg -subj "//CN=CK_RA6M5_X509"

Figure 18. Embed Device ID in Certificate

4. Run command to convert format of key from pem to der
openssl rsa -outform der -in privkey.pem -out privkey.der

Here you get response “writing RSA key”

MINGW®64:/c/Users/ /Azure — O X

v/AZure
$ openss1 rsa -outform der -in privkey.pem -out privkey.der
writing RSA Key

v/Azure

Figure 19. Convert Format from key to der

5. Run command to Convert format of cert from pem to der
openssl x509 -outform der -in cert.pem -out cert.der
This command will not give you any response if successfully executed.

MINGW64:/c/Users/ /Azure — O X

~/Azure

$ openss] x509 -outform der -in cert.pem -out cert.der

v/Azure

S |

Figure 20. Convert Format of cert from pem to der

R11ANO754EU0101 Rev.1.01 Page 29 of 51
May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

6. Convert der to hex array and set them in sample device identity.c file in the project.

For easier access the command text is given as follows. User can copy paste text in the command line to
create sample device identity.c.

echo "#include \"nx_ api.h\"
/**
device cert (‘openssl x509 -in cert.pem -fingerprint -noout | sed 's/://g')

‘cat cert.pem’

device private key
‘cat privkey.pem’
*/

" > sample device identity.c

MINGWe64:/c/Users/ JAzure - O X

t.der cert.pem privkey.der privkey.pem x509_config.cfg

~/Azure
ho "#include \"nx_api.h\"
device cert (“openssl x509 -in cert.pem -fingerprint -noout
cat cert.pem’

vice private key :
cat privkey.pem
"o

> sample_device_identity.c

~/AzZzure
b1

ert.der cert.pem privkey.der privkey.pem |sample_device_identity.c |x509_config.cfg

~/Azure

Figure 21. Convert der to Hex Array and Set them in sample_device_identity.c

7. Run “lIs” command to check whether sample device identity.c is created.

8. Run the following commands to produce sample device cert ptr and
sample device private key ptr array containing device certificate and private key equivalent hex
values along with length.

“xxd -i cert.der | sed -E "s/(unsigned char) (\w+)/\1
sample device cert ptr/g; s/ (unsigned int) (\w+) len/\1
sample device cert len/g" >> sample device identity.c”

“xxd -i privkey.der | sed -E "s/(unsigned char) (\w+)/\1
sample device private key ptr/g; s/ (unsigned int) (\w+) len/\1
sample device private key len/g" >> sample device identity.c”

R11ANO754EU0101 Rev.1.01 Page 30 of 51
May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

These commands will not give you any response if successfully executed.

MINGW®64:/c/Users) /Azure - (] X

~/Azure
% xxd -1 cert.der sed -E "s/(unsigned char) (\w+)/\1 sample_device_cert_ptr/g; s/(unsigned int) (\w+)_len/\1
sample_device_cert_len/g" >> sample_device_identity.c

Azure
'

$ xxd -i privkey.der | sed -E "s/(unsigned char) (\w+)/\1 sample_device_private_key_ptr/g; s/(unsigned int) (\w
+)_len/\1 sample_device_private_key_len/g" >> sample_device_identity.c

Azure

Figure 22. Producing arrays containing hex values

Check the content of sample device identity.c with cat command. In this file you will get Device
certificate along with SHAL1 fingerprint, Device Private Key, sample device cert ptr and

sample device private key ptr array along with their length. You will also notice the Fingerprint; you
need to use this fingerprint as “thumbprint” in device creation process using the 10T Explorer in later sections.
Please note down this Fingerprint.

MINGWé4:/c/Users/ [Azure - 0O X

Figure 23. Check the Content of sample_device_identity.c

3.6 View Device Properties

You can use the Azure 10T Explorer (https://docs.microsoft.com/en-us/azure/iot-pnp/howto-use-iot-explorer)
to view and manage the properties of your devices. In the following steps, you will add a connection to your
IoT Hub in loT Explorer. With the connection, you can view properties for devices associated with the 0T
Hub.

Download and install latest (above v0.15.6.0) Azure I0T Explorer from: https://github.com/Azure/azure-iot-
explorer/releases

Note: Click and install the downloaded msi file Azure.IoT.Explorer.Preview.0.15.6.msi Or newer
version of the downloaded file. The install shield guides you through the installation process.

R11ANO754EU0101 Rev.1.01 Page 31 of 51
May.02.23 RENESAS

https://docs.microsoft.com/en-us/azure/iot-pnp/howto-use-iot-explorer
https://github.com/Azure/azure-iot-explorer/releases
https://github.com/Azure/azure-iot-explorer/releases

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

3.7 SetloT Hub
To add a connection to your loT Hub:

1. Inyour Azure CLI console, runthe az iot hub connection-string show command to getthe
connection string for your 10T Hub.
— az 1ot hub connection-string show -n {YourIoTHubName}

Note: See section Error! Reference source not found., Create an loT Hub for the l1oT Hub Name.

E¥ Administrator: Windows PowerShell - O X

PS C:\Users)\ \AzureCLI> az iot hub connection-string show RACLOUDHUB
13

1
"connectionString"”: "HostName=RACLOUDHUB.azure-devices.net;SharedAccessKeyName=iothubowner;SharedAccessKey

=US+pELINI/sv@17QqRi/1NUq8pq/8T7/K9Le77xzXCY="
1

}
PS C:\Users" \AzureCLI> _

Figure 24. Connection String

Copy the connection string.

Open the Azure 10T Explorer and select IoT hubs > Add connection.
Paste the connection string into the Connection string box.

Select Save.

aprwn

&7 Azure loT Explorer (preview) - [m] X

File Edit View Window Help

Azure loT Explorer
review . . X
(P g Add connection string

> loT hubs Connection string *
2
1 {HostName:RACLOUDHUB.azure—
Add connection Switch devices.net;SharedAccessKeyName=iothubowner;SharedAccessKey=US+pELINI/sv017
QqRi/INUG8pq/8T7/KILeT7xzXCY =

No connections to display

Where do | get an loT hub connection string?
Please do not save your hub connection string to any unsafe locations

conn Host name

| RACLOUDHUB.azure-devices.net | Iy}

Shared access policy name

| iothubowner | M

Shared access policy key

Figure 25. Adding Connection String

Note: In some cases, Azure 10T Explorer may report an error that the default port that loT Explorer is trying
to use is being used by another application. In order to overcome this error, you can add a different
port number for the Azure 10T Explorer shown as follows.

R11ANO754EU0101 Rev.1.01 Page 32 of 51
May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

On your PC, edit the system environmental variables as shown in the following screenshots.

e

I'J Eclit thee system envirenment variables I

B et enwvirsnment varialiles fos your
A COuint

.

System Properties =

Computer Mame Harm\'aSylhm Protecton Femole

You musl be logged on 88 an Adminialatorn 16 make moil of hese changes
Parormance
Vidunl afecls, Procesaor SChedulng, Mamony Ulage, Snd Vsl mamory

Linar PioSles
Deskiop setings related 1o your sign-n

Samnge

Starup and Recovery

System atamup. aydtem failure, and debugging infarmation

Samngs

I Enviropment Varnables... I

[+, Cancal Apply

Figure 26. Editing System Environment Variable

| Environment Variables X
User variables for
. v Variable Value
EMWI_DIR C\Program Filez (x86)\Embedded Wizard 9.30\
OneDnve CAUsers\Administrator\OneDrive
] Path C:\Program Files (xB86)\GNU Teols ARM Embedded\8 2019-g3-upd...
TEMP CAUsers! VppData\Local\Temp
T™P C:\Users\ VAppData\Local\Temp
New System Variable x
Variable name: } AZURE_IOT_EXPLORER_PORT ‘
2 l
y Variable yalue: l 9999{ l
Browse Directory... Browse File... 3 Cancel
i ComSpec CAWINDOWS\system32\emd.exe
CV_Instance001 C:\Program Files\Commvault\ContentStore\Basze
DEFLOGDIR CAProgramData\McAfee\Endpoint Secunty\Logs
DriverData C\Windows\System32\Drivers\DriverData
| NUMBER_OF_PROCESSORS &
% OPENSSL_CONF C\OpenSSL-Winb4\bin\openssl.cfg

: =

Figure 27. Adding System Environment Variable for Alternate Port - Azure 0T Explorer

R11ANO754EU0101 Rev.1.01 Page 33 of 51
May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

Environment Variables >

User varables for

Variable Value

EMWI_DIR CA\Program Files (xXB6)\Embedded Wizard 9.300\

OneDrive CAUsars\Administraton\OneDrive

Path CA\Program Files (xB6)\GNU Teols ARM Embedded\8 2019-q3-upd...
TEMP C\Users' VAppData\Local\Termp

T™P C\Uszers\ VappData\LocafhTemp

Neow... Eant.. Delete
System vanables
Variable Value A
D90
ComSpec CAWINDOWS\system 32\emd exe
CV_InstanceD0Y CAProgram Flles\Commvault\ContentStore\Base
DEFLOGDIR CAProgramData\McATea\Endpoint Security\Logs
DriverData CAWiIndows\System32\Drivers\DriverData
NUMBER_OF_PROCESSORS a8

OPENSSL_CONF CA\OpenSSL-Winbd\bin\openssl.cig

OK Cancel

Figure 28. Added Alternate Port for Azure loT Explorer

If the connection succeeds, the Azure loT Explorer switches to a Devices view and lists your device.

47 Azure loT Explorer (preview) - [m| x

File Edit View Window Help

Azure loT Explorer

. Settings
(preview) eting

Home > RACLOUDHUB > Devices

New () Refresh

Query by device ID... L2 = ‘ (? Add query parameteD

Device ID Status Connection st... Authenticatio... Laststatusup... loTPlugand... Edge device

Figure 29. Listed Devices

R11ANO754EU0101 Rev.1.01 Page 34 of 51
May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

3.8 Register an loT Hub Device

In this section, you create a new device instance and register it with the 10T Hub you created. You will use
the connection information for the newly registered device to securely connect your physical device in a later

section.

To register a device:

1. You can Create Device with help of Azure 10T Explorer shown as follows:
Click on New.

+7 Azure loT Explorer (preview)
File Edit View Window Help
Azure loT Explorer
(preview)

Home > RACLOUDHUB > Devices

New | () Refresh

Query by device ID... L = ‘ (V Add query parameteD

Device ID Status Connection st... Authenticatio... Last status up... loT Plugand... Edgede

Settings

Figure 30. New Device Creation Process with Azure IoT Explorer

2. Inthis stage, you have to give Device ID, Authentication type, Primary thumbprint, Secondary thumbprint
then click on Create. Use fingerprint generated in Figure 23 in section 3.5, Certificate Creation Process
for the primary and secondary thumbprints. Follow steps 1-5 in Figure 31, to create the device.

4 Azure loT Explorer (preview)
File Edit View Window Help
Azure loT Explorer
(preview)

Home > RACLOUDHUB > Devices > Create a new identity
5

X Cancel

Device ID *

m}

Settings

I CK_RABMS5_X509 Il

Authentication typez"

() symmetric key |(®) 509 self-signed (_) X.509 CA signed

Primary thumbprint *

I 9FFAC12161BEAEACS‘A?FCBAAZMTOOW6CEOSB44F5| 3

Secondary thumbprint *

l 9FFAC12161 BEAEACQA?’FCBfiué\élﬁ\TOOWGCEtEEsélé‘lF5|I"l

Connect this device to loT hub C

o Enable

[a] D

x

Figure 31. Naming, Authentication type and Thumbprints

R11ANO754EU0101 Rev.1.01
May.02.23 RENESAS

Page 35 of 51

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

3. You can see your created device in Devices section of Azure loT Explorer

47 Azure loT Explorer (preview) - [} e
File Edit View Window Help
Azure loT Explorer)
q Settings
(preview)
Home > RACLOUDHUB > Devices
New () Refresh
Query by device ID... 0 = ‘ % Add query parameter)
Device ID Status Connection st... Authenticatio... Last status up... loTPlugand.. Edge device
CK_RABMS X502 Enabled Disconnected SelfSigned -

Figure 32. Newly Created Device

3.9 Prepare the Device

To connect the device to Azure, modify a configuration file for Azure IoT settings (of your Device ID and
Hostname), build and flash the imageto the device.

Add configuration

1. Import the application project into an empty e? studio. Open sample config.h and make the changes
to the configuration as shown in the snapshot with your host name, device ID and
USE_DEVICE_CERTIFICATE.

& [AzureCloudRA6MS5X509_FSP420] FSP Configuratio & [AzureCloudCKRABMSX509_FSP420] FSP Configura €l startup.c [€] main.c B *sample_config.h % = B8
22 = /* This sample uses Symmetric key (SAS) to connect to IoT Hub by default, ~
23 simply defining USE_DEVICE_CERTIFICATE and setting your device certificate in sample_device_identity.c
24 to connect to IoT Hub with %509 certificate. Set up X.509 security in your Azure IoT Hub,
25 refer to https://docs.microsoft.com/en-us/azure/ioct-hub/iot-hub-security-x589-get-started */
26 I#define USE_DEVICE_CERTIFICATE 1
27 T =]
=l 28 “s: Configure core settings of application for your IoTHub.
29 */
38 #define SAMPLE_PNP_MODEL_ID "dtmi:renesas:ra:ckraém5:AZCKRAGMSETH;2"

31 S /* Defined, DPS is enabled. */
32 //#define ENABLE_DPS_SAMPLE
33 /* Defined, telemetry is disabled. */
34 #define DISABLE_TELEMETRY_SAMPLE
35 /* Defined, C2D is disabled. */
36 #define DISABLE_C2D SAMPLE
37 /* Defined, Direct method is disabled. */
38 #define DISABLE_DIRECT_METHOD_SAMPLE
39 /* Defined, Device twin is disabled. */
49 #define DISABLE_DEVICE_TWIN_SAMPLE
41
42 “#ifndef ENABLE_DPS_SAMPLE
43
44 /* Required when DPS is not used. */ =1
A5 = /* These values can be picked from device connection string which is of format : HostName=<hostl>;DeviceId
46 HOST_NAME can be set to <hostl>, DEVICE_ID can be set to <devicel?>, DEVICE_SYMMETRIC_KEY can be se
- #ifndef HOST MWAME
8 [#define HOST_NAME "RACLOUDHUB. azure-devices.net” |
50 #endif /* HOST_NAME */
51
52 - #ifndef DEVICE ID
53 [#define DEVICE ID "CK_RAGM5_X509" |
54
55 #endif /* DEVICE_ID */ o
o < >
Figure 33. Configuration Changes to sample_config.h

Constant name Value

HOST_NAME {Your IoT hub hostName value}

DEVICE ID {Your devicelD value}

USE DEVICE CERTIFICATE 1

R11ANO754EU0101 Rev.1.01 Page 36 of 51

May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

3.10 Building and Running the Application

The project is now ready to compile. Press the Build (hammer icon) to start building the project.

@ -

Figure 34. Starting to Build the Project

The toolchain will report compilation and build status to the console pane in the lower-right corner of e’studio.
When the build has completed, confirm that there are zero errors and few warnings. Warnings, if any, may

result from highly restrictive compilation warnings settings being applied by e’ studio to third partycode.

(%1 Problerns ENESUEREMPE T Properties ‘@ Smart Browser [Smart Manual

x| 4G

DT Build Console [AzureCloudCKRA6M5X5038_FSP420]

Building file: ../ra/fsp/src/bsp/mcufall/bsp_rom_registers.c

Building file: ../ra/fsp/src/bsp/mcufall/bsp_security.c

Building file: ../ra/fsp/src/bsp/cmsis/Device/RENESAS/Source/startup.c
Building file: ../ra/fsp/src/bsp/cmsis/Device/RENESAS/Source/system.c
Building file: ../ra/board/raém5_ck/board_init.c

Building file: ../ra/board/raém5_ck/board_leds.c

Building target: AzureCloudCKRABMSX5089_FSP420.elf

larm-none-eabi-size --format=berkeley "AzureCloudCKRAG6M5XS89 FSP420.elf"
text data bss dec hex filename

396932 2012 520868 919812 e0984 AzureCloudCKRABMSX589_FSP428.elf

22:32:18 Build Finished. @ errors, 85 warnings. (took 4m:3s5.663ms)

larm-none-eabi-objcopy -0 srec "AzureCloudCKRAGMSX589 FSP420.elf" "AzureCloudCKRASM5X589 FSP420@.srec"

Figure 35. Compilation and Build Status Report

3.11 Download and Run the Project

1. Connect the micro-USB cable to the DEBUGL1 port (J14) of the CK-RA6M5 Cloud Kit and other end to

the host computer.

2. Connect the second USB Cable to J20 connector of the CK-RA6M5 board and other end to the second
USB Port of the PC (This will be the Console Port for application). Users are required to use the

Command Line Interface (CLI) to configure and run the application.

3. Make sure the Cellular Module is connected to the PMOD2 of the board and other end to the supplied

antenna.

4. Iné studio, open the Debug Configurations dialog and launch the

AzureCloudCKRA6M5X509_FSP440 Debug_Flat debug configuration.

i=t Debug Configurations|

Create, manage, and run configurations

] LIENE Name: | AzureCloudCKRAGMSX509_FSP440.elf

[T] ¢/C++ Application

‘ty::ef ter text | |~ Main <3 Debugger B Startup| % - Source|] Common

Filter matched 11 of 13 items

?

— L Project:
¢ | C/C++ Remote Application
EASE Seript | AzureCloudCKRAGMSX509_FsPad0 | | Browse..
[€] GDB Hardware Debugging C/C++ Application:
<7 GDB Simulator Debugging (RHE30) | Debug/AzureCloudCKRAGMSX509_FSP440.elf |
@ Launch Group
~ [c7] Renesas GDB Hardware Debugging Variables... Search Project... Browse...
7] aws_ck_ra6ms_cellular_app_fsp440 Debi Build (if required) before launching
[AztreCIoudCRRABMBSXG00_FSP2aUel |
[£*] bbb Debug_Flat Build Configuration; |Use Active ~
€9 Renesas Simulator Debugging (RX, RL78) O Enable auto build O Disable auto build
(@ Use workspace settings Configure Workspace Settings...
< >
Revert Apply

Figure 36. Start Debug

R11ANO754EU0101 Rev.1.01
May.02.23 RENESAS

Page 37 of 51

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

File Edit Source Refactor Mavigate Search Project RenesasViews Run Window Help
KR S IR N T R Y R B[S
15 Debug = O AzureCIoudCKE}] FSP Configuration € startup.c X
= 2&| i» § ||® 64 0005823cC SystemInit();
: . i 65
v [c'] <terminated>Azure(|| | -
'-_|, ‘erminated. exit g 66 /* Call user application. */
o <terminated, &t 188 67 00058242 main();
m <terminated, exit ||? 68
v [£7] AzureCloudCKRAGM || 40 = while (1)
v 1 AzureCloudCKRA 70 {
~ o Thread #1 1 (si 71 /* Infinite Loop. */
= Reset_Hand 72 80058246 ¥
g el EE 1
». arm-none-eabi-g -
| Renesas GDB "
B henesas sery 76 ® * Default exception handler.[]
78 - void Default Handler (void)

Figure 37. Resume the Debug

5. Toview output, you have use serial terminal like tera term. To know your COM port, On the host PC,
open Windows Device Manager. Expand Ports (COM & LPT), locate USB Serial Device (COMxx) and
note down the COM port number for reference in the next step.

Note: USB Serial Device drivers are required to communicate between the CK-RA6M5 board and the
terminal application on the host PC.

i |

File Action Vew Help
= m EmM
w o REAPCOYMTED “
¥ Audio inguts and cutputs
-ﬁ' Battenes
B Bietooth
& Cameras
| Computer
e Diish drives
B Dusplay adaplers
= Eirraare
=% Human Interface Devices
= Keyboards
a Mook and other painting divices
W Monitars
@ Metweork adapters
w = Ports (COM & LPT)
= USE Serial Device (COMS)
B Print quewes
=== Processorns
B Security devices

.: Softwarg components

Figure 38. USB Serial Device in Windows Device Manager

R11ANO754EU0101 Rev.1.01 Page 38 of 51
May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

6. Open Tera Term select New connection and select Serial and COMxx: USB Serial Device (COMxX)
and click OK.

T Tera Term: New connection x

OTCPIP pi@192.168.137.67 A
History
Telnet 22
5S8H S5H2
Cther U@
@® Serial Portl COMb: USE Serial Device (COMb) ~

Cancel Help

Figure 39. Selecting the Serial Port on Tera Term

Gl

File Edit Setup Control Window Help

Tera Term: Serial port setup and connection

Port: COMS ~
° | New setting

Speed: |115200 ~

Data: 8 bit v

Cancel
Parity: none v

Stop bits: 1 bit v Help

Flow control: none ~

Transmit delay

EI msecichar D mseciline

Device Friendly Name: USB Serial Device (COM3)

Device Instance ID: USBWYID_045B&PID_811110000000000001
Device Manufacturer: Microsoft

Provider Name: Microsoft

Driver Date: 6-21-2006

Driver Version: 10.0.18362.1

Figure 40. Select 115200 on the Speed Pulldown

7. Using the Setup menu pull-down, select Serial port... and ensure that the speed is set to 115200,
shown as follows.

8. Complete the connection. The Configuration CLI Menu will be displayed on the console shown as
follows.

Note: Please reset the board by pressing the S1 user switch if the menu is not displayed.

T COMDS - Tera Term VT — O x
File Edit Setup Control Window Help

> Select from the options in the menu below:

MEN
. Get FSP version
. Data flash
. Get UUID
. Get CATM Info
. Ualidate SIM activation
. Start Application
Help

Figure 41. Main Menu

R11ANO754EU0101 Rev.1.01 Page 39 of 51
May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

9. Here you can select options from the MENU by pressing key 1 to 7. Press spacebar to go to previous
menu.
10. User can get FSP Version by pressing key 1, and UUID by pressing key 3, as follows.

COMS - Tera Term VT —

File Edit Setup Control Window Help

1. GET FSP VERSION
4.2.8

> Press space bar to return to MENU

Figure 42. FSP Version Information

T COMDS - Tera Term VT - d
File Edit Setup Control Window Help

3. GET UUID
RA MCU 128-hit Unigque ID <hex> = 248 - 1-57363632-¢

> Press space bhar to return to MENU

Figure 43. Getting Board UUID Information

11. Press 4 to display CAT-M Information. This menu will communicate with the RYZ014A PMOD module
to obtain the ICCID value needed for activating the SIM card. Upon success, the IMEI and ICCID values
will be displayed on the terminal screen. The program will continue to attempt to communicate with the
RYZ014A PMOD module until it has successfully connected or timed out. After obtaining the ICCID
value, go to Truphone https://www.truphone.com/connectit/ to activate the SIM card (see section 3.12
Activating the SIM card).

T COMS - Tera Term VT - O x
File Edit Setup Control Window Help
4. CAT-M INFORMATION

a» IMEI: 3.aLu?6280 -9
bh> ICCID: 8%444 - ~w--B331.70

> Next go to "Activating the SIM Card'" section in the Application Note (Renesa
s Part Number rilan@754)

> Press space bar to return to MENU

Figure 44. Getting CAT-M Information

R11ANO754EU0101 Rev.1.01 Page 40 of 51
May.02.23 RENESAS

https://www.truphone.com/connectit/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

3.12 Activating the SIM card

To activate the included SIM card, please visit the Truphone SIM Activation platform at
truphone.com/connectit and use the following steps:

1. On the Business page, click Start activation button under 10T SIM Activation.

BUSINESS

PLRSONAL
a vvuont
Business

—
loT SIMACTIVATION
R S

Activation

Online activation for you and
your customers.

Figure 45. Activating the SIM card

2. Create a new Truphone Account by selecting Sign up (next to Don’t have an account yet?) and fill-in
your full name, Email, and a password. Then Click Sign up to create a new account.

3. Select Personal as the account type.

4. Select Get Started.

5. Verify your email by entering the activation code sent to your email account.

6. Complete the Profile information form — then select Create account.

7. Select Activate SIMS to Activate your individual SIM by ICCID and PUK found on the SIM Card
packaging.

8. Enter the ICCID value obtained from the Running the Application project. See the ICCID value in
Figure 44. Getting CAT-M Information. Fill other fields as needed.

9. You will receive email confirmation when the SIM Card activation is complete.

10. Ensure the SIM card is inserted in the RYZ014A PMOD. From the Console Main Menu 5, Validate SIM
activation to verify that the SIM card is activated.
The SIM card should be activated on the Truphone SIM Activation platform after 15 minutes and can be
validated on the Tera Term terminal as shown in . The time for the SIM Card to be activated
by Truphone can vary depending on their system demand. In most cases, if PING Response fails, wait a
few more minutes and repeat Menu 5 Validate SIM activation.

Disclaimer

The activation steps above are provided by SIM Provider Truphone. They are the most current at the time of
publishing this application note. If you need help activating your SIM Card, contact Truphone support
iot.truphone.com or Contact Support | Truphone.

If you have a SIM card from any other provider then contact the technical support for that provider.
For any other issue that cannot be resolved please contact Renesas Support at Technical Support.

Note: The SIM card Provider for the Application project is Truphone. If you use any other SIM Card
provider you must change the Access Point Name required for the SIM Card Provider in your global
region. Failure to do so could result in the RYZ014A not connecting to the Cellular network.

To set the Access Point Name (APN) for SIM Card provider other than Truphone

The APN is set in the Application project in /src/cellular setup.c

R11ANO754EU0101 Rev.1.01 Page 41 of 51
May.02.23 RENESAS

https://truphone.com/connectit
https://iot.truphone.com/
https://www.truphone.com/support/contact-support/
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/rx-32-bit-performance-efficiency-mcus/support

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

See #define CELLULAR_APN "iot.truphone.com" /* APN : Truphone SIM Card */

T COMS - Tera Term VT — O *

File Edit 5etup Control Window Help

5. Ualidating SIM activation

Received Signal Power is low

> AT+PING="9.9.9.9",1.32.15

provdLlength=33, rcvd=+PING: 1.,9.9.9.9,388,.53

0K

< +PING returned
Ping Successful *t?

SIM Activated e

> Press space bar to return to MENU

Figure 46. Validating SIM Activation — SIM Card Active

3.13 Storing Device Certificate, Host Name, Device ID
Reset the board by pressing the S1 user switch if the menu is not displayed.

T COMS - Tera Term VT — | x

File Edit 5etup Control Window Help

> Select from the options in the menu bhelow:

MEN
. Get FSP version
. Data flash
. Get UUID
. Get CATM Info
. Validate SIM activation
. Start Application
. Help

Figure 47. Main Menu

1. Press 2 on the Main Menu to display Data Flash related commands as shown in the following
screenshots. This sub menu has commands to store, read, and validate the data.

1 COM3 - Tera Term VT — | X

File Edit Setup Control Window Help

> Select from the options in the menu bhelow:
2. DATA FLASH

a) Info

b> Urite Certificate

c?) Urite Private Key

d> Urite MQTT Broker end point

e? Urite IOT Thing name

f)> Read Flash

q> Check credentials stored in flash memory
h> Help

i Press space bar to return to MENU

Figure 48. Data Flash Menu

R11ANO754EU0101 Rev.1.01 Page 42 of 51
May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

2. Press b for Write Certificate.

T COMS3 - Tera Term VT — | X

File Edit Setup Control Window Help

DATA FLASH WRITE CERTIFICATE

Select the file to write data in data flash

Figure 49. Select File to Write Data in Data Flash.

3. Goto Tera Term > File > Send file

I COMS - Tera Term VT — O s
Edit Setup Control Window Help
MNew connection... Alt+N
Duplicate session Alt+D in data flash
Cygwin connection Alt+G
Log...

Transfer >
S55H SCP..

Change directory...
Replay Log...
¥ Record
Y Replay
Print... Alt+P
Disconnect Alt+l

Exit AR+Q
Exit All

Figure 50. Send File Option in File Menu

4. Browse to the folder where X509 certificates are generated as part of the section 3.5, Certificate
Creation Process. Select cert.pem. Press Open.

T Tera Term: Send file X
Look in: ﬂ Azure I V| (< Js A b
Name . Date maodified Type Size
g cert.der 2/24/2023 418 PM Security Certificate 1KB
| certpem | 2/24/2023 4:05 PM PEM File 1KB
R P 2/24/2023 412 PM Security Certificate 2KB
pri _" 2/24/2023 3:36 PM PEM File 2 KB
™ san Date modi 2412 2/24/2023 4:40 PM C File 15 KB
x509_config.cfg 2/24/2023 2:54 PM CFG File 1KB
File name: [|ceerem I | I Open I
Files oftype: Allf*.7) ~ Cancel
Help
Option
[ginary

Figure 51. Browse, Select and Open the File to be Written

R11ANO754EU0101 Rev.1.01 Page 43 of 51
May.02.23 RENESAS

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

5. Status of Device Certificate Downloading is as follows:

T COMS - Tera Term VT — O

File Edit Setup Control Window Help

DATA FLASH WRITE CERTIFICATE

Select the file to write data in data flash

Writing flash data is successful

> Press space har to return to MENU

Figure 52. Status of File Writing Process

6. To store the device private key, go back to data flash menu by pressing the space bar key. Press ¢ in
Data Flash menu, go to Tera Term > File > Send file Select file privkey.pem from the folder where
you have generated Certificates.

7. To store MQTT Broker End point aka Host Name, first copy Host Name without double quotes then
press d in Data Flash menu, Go to Tera Term > Edit > Paste<CR>, you will get copied Host Name in
the clipboard, please verify and confirm it and press OK

T COMS - Tera Term VT

DATA

Paste

Clear screen
Clear buffer

Cancel selection

Select screen
Select all

File Setup Control Window Help

pss enter to save credentials in flash
Alt+V
Alt+R

B | Tera Term: Clipboard confirmation

RACLOUDHUB.azure-devices.net | " oK ”

Figure 53. Input MQTT Broker End point aka Host Name

8. To store loT Thing Name, that is, DEVICE ID, first copy DEVICE ID created without double quotes,
press e in Data Flash Menu and follow the procedure in step 5.

VI COMS - Tera Term WT

Paste

Clear screen
Clear buffer

Cancel selection

Select screen
Select all

File Setup Control Window Help

paTn L Alt+C

Alt+V
[Paste<CR> | AR

pss enter to save credentials in flash

B | Tera Term: Clipboard confirmation

CK_RA6MS5_X509]

OK

Cancel

Figure 54. Input Device ID aka loT Thing Name

R11ANO754EU0101 Rev.1.01
May.02.23

RENESAS

Page 44 of 51

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

9. To verify the data stored in Datas Flash, press f in Data Flash menu, scroll down to see data.

¥ COMS - Tera Term VT -
File Edit Setup Control Window Help

DATA FLASH READ

AZURE certificate wead successful
v1+2tHhB36UADhS hi8Cu jREqaHUZBxVU6 jpAf¥NH

NZURE private key read iz successful
END RSA PRIUATE KEY y+zPR2H j8t tx08BysMERn] =k jCEo2mmI PuC

AZURE MQIT end point read successful
RACLOUDHUB . azure—devices.net

I0T thing name read successful
CH_RAGMS _X5892

i Press space har to return to MEMU

10.
11.
12.
13.

Figure 55. Scroll Down and Verify the Data Stored in Data Flash

To check credentials stored in Data Flash, press g.
Press spacebar to go to previous menu or main menu.
Press 6 to start the application from the main menu.
Serial terminal output on successful start of application

YT COMDS - Tera Term VT -

File Edit 5Setup Control Window Help
CHECK CREDENTIALS STORED IN DATA FLASH

Certifi saved in data f1 n is verified and s
Private saved in data f1 is verif and suc
MQTT end point saved in data F1 is verifi

thing name saved in data flash is verified and succe

Starting AZURE Cellular Cloud Application....

e B 0 e e oo e B o o e o e o e B e e 0 0 0 0 0 0 0 o o o o o D o D e D e
Renesas FSP fApplication Project for Azure RIOS NetX Duo IoT Middleware »*
Application Project Uersion 1.8 »*
Flex Software Pack Uersion 4.2.8 »*

BB e e e e e o BB o o o o e o e e e 0 B 0 0 0 0 0 B0 o o o e o D e D e D e

Refer to Application Note for more details on Application Project and

FSP User’s Manual for more information about Azure RTOS Net®X Duo [oT Middleware

B s s s s s a s s s S S e e a S

This ﬂppllcatlon project demonstrates the I0T functionalities of Azure I0T SDK
i using Azure RTO0S and Met® Duo with Cellular Interface Module »unning on
RA MCU’s

e B B e e o e B e o o o e e e e e 0 0 0 0 0 0 e o 0 o o o D e D e D e

HAL Initialization
Waiting for the module to Power Reset?
Modem IP address: 216.168.185.215
Mask: 255.255.255.0
Gateway: 216.168.185.215
DNS Server address: 8.8.8.8
Time Sync...
Time Sync...
Time Sync...
Time Sync...
Time Sync...
Time Sync...
Time Sync...
Time Sync...
Time Sync...
Time Sync...
Time Sync failed. with Retwry
Set Time to default value: SRHPLE _SYSTEM_TIME and Continue...
IoTHub Host Name: TECLOUDHUB.azure—devices.net; Device ID: CK_RAGM5_X5G9.
Connected to IoTHub.

HS30P1 sensor setup success

ZMOD441P@ sensor setup success

Figure 56. Device Connected to Azure loT Hub

R11ANO754EU0101 Rev.1.01

May.02.23 RENESAS

Page 45 of 51

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

14. Sensor Data Output on Serial Terminal.

YT COMS - Tera Term VT — O X

File Edit 5Setup Control Window Help
onnected to IoTHub.

83001 sensor setup success
ZMOD4418 sensor setup success

ICP18101 sensor setup success

ZMOD4518 sensor setup success
Periodic MSG Sending TIMER Start 0@ ==

HS3881
TEMP = 830.438
HUMIDITY = 816.139

ID_HS3881 DATA SEND

ICP1681681
TEMP = 831.159
ChPressure = 102847.893

ICM20948

accelerometerd = 002 .479
accelerometerY = -011.629
accelerometerZ = 8197.469

gyroscopel -000.0833
gyroscope’ A80.0160
gyroscoper —P8a . 886

mag¥
LET L .
mag® = O86.008

ID_ZMOD4418 DATA SEND

ZMOD4518
ORQ = 990 .0A00

Figure 57. Sensor Data on Serial Terminal

R11ANO754EU0101 Rev.1.01 Page 46 of 51
May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

3.14 Send Device to Cloud Message

With Azure 10T Explorer, you can view the flow of telemetry from your device to the Cloud. To view telemetry
in Azure loT Explorer:

1. InloT Explorer select your created loT Hub and click on view devices in this hub, click on the created
device (Device ID). Finally select the Telemetry (Home > TECLOUDHUB > Devices >
CK_RABM5_X509 >Telemetry). Confirm that use built-in event hub is set to Yes.

2. Select Start.

3. View the telemetry as the device sends messages to the Cloud.

+7 Azure loT Explorer (preview)

File Edit Wiew Window Help

Azure loT Explorer

(preview)

Home > TECLOUDHUB > Devices > CK RA6M5 X509 > Telemetry

- [> Start [] Show system properties [i] Clearevents {} Simulate adevice 7T Customize Content Type

£ Device identity
Telemetry O
5 Device twin

Consumer group ' sDefault

(1 Telemetry

Specify enqueue time ©
>¢ Direct method pecly enq

®) No

& Cloud-to-devic age e
& Cloud-to-device messag Use built-in event hub

@ v

Wed Apr 26 2023 11:25:08 GMT-0700 (Pacific Daylight Time):

0 Module identities

¢’ loT Plug and Play components

"body": |
"oxygen_saturation": 0,
"heart rate": 0,

Ir
"enqueuedTime”: "Wed Apr 2¢ 2023 11:25:08 GMT-0700 (Pacific Daylight Time)",
"properties": {}

Figure 58. Device Telemetry Details

3.15 Send Cloud-to-Device Message
To send a Cloud-to-device message in Azure loT Explorer:
1. InloT Explorer select Cloud-to-device message.
Enter the message in the Message body = "LED", Key = LED, Value = Given in Table

2.
3. Check Add timestamp to message body.
4. Select Send message to device.

LED On Board Value
LED2 (Tri Color LED) TC_GREEN_ON, TC_RED_ON, TC_BLUE_ON
TC_GREEN_OFF, TC_RED_OFF, TC_BLUE_OFF
LED4 BLUE BLUE_ON, BLUE_OFF
R11ANO754EU0101 Rev.1.01 Page 47 of 51

May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

Azure loT Explorer (preview) — [m] x

File Edit View Window Help

Azure loT Explorer

Settings

(preview)

Home > TECLOUDHUB > Devices > CK_RA6M5_X509 > Cloud-to-device message

6
=1 Send message to device

B Device identity

Cloud-to-device message ©
I Device twin

o Message body C
[Telemetry

o |,

< Direct method

£ Cloud-to-device message | 1

O Module identities Edd timestgmp to message body
5

&7 10T Plug and Play components /. Properties ©
@ Add custom property @ Add system property
T
Key Value

ITC,EREEN,O N I
4

||LED | 3 ‘

Figure 59. Device Telemetry Details

5. Inthe terminal window, you can see that the message is received by the 10T Device.

1 COMS5 - Tera Term VT — O X

File Edit Setup Control Window Help
magi = 000.000

magh

mag#

ID_ZMOD4418 DATA SEND

ZM0OD4518
0onQ = 9BA.000

0B1263
spo2_val = 860.
heart_rate_Ual

breathing_rate
r_p2p = 000.600

ID_ICP DATA SEND
[Receive message from Cloud: LED = TC_GREEN_ON&messageld=08c?3de?e—4713-467b—920c-019ffa422f6f
opic Received from Cloud TC_GREEN_ON

3CGREEN LED ON
HS3861

TEMP = 830.579
HUMIDITY = 916.860

Figure 60. Serial Terminal Output
4. Importing, Building and Loading the Project

For a quick validation of this application project, import and build the project. The following steps show howto
import, build, and download the project.

Note: To run the application project successfully and to communicate to the cloud, follow the instructions for
setting up the cloud interface as described in the section Error! Reference source not found., which d
etails making changes to the credentials and creating your own cloud devices, running and validating
the application.

R11ANO754EU0101 Rev.1.01 Page 48 of 51
May.02.23 RENESAS

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

4.1 Importing

The application project bundled as part of this app note can be imported into e2 studio using instructions
provided in the RA FSP User’s Manual. See Section Starting Development > e2 studio ISDE User Guide >
Importing an Existing Project into e2 studio ISDE.

4.2 Building the Latest Executable Binary

Upon successfully importing and/or modifying the project into e2 studio IDE, follow instructions provided in
the RA FSP User’s Manual to build an executable binary/hex/mot/elf file. See Section Starting Development

> e2 studio ISDE User Guide > Tutorial: Your First RA MCU Project > Build the Blinky Project.
4.3 Loading the Executable Binary into the Target MCU

The executable file may be programmed into the target MCU through any one of three means.

4.3.1 Using a Debugging Interface with e? studio

Instructions to program the executable binary are found in the latest RA FSP User Manual
(www.renesas.com/RA/FSP). See SectionStarting Development > e2 studio ISDE User Guide > Tutorial:
Your First RA MCU Project > Debug theBlinky Project.

This is the preferred method for programming as it allows for additional debugging functionality available
through the on-chip debugger.
4.3.2 Using J-Link Tools

SEGGER J-Link Tools such as J-Flash, J-Flash Lite, and J-Link Commander can be used to program the
executable binary into the target MCU. Refer User Manuals UM08001, and UM08003 on www.segger.com.

4.3.3 Using Renesas Flash Programmer

The Renesas Flash Programmer (https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-
programming-gui) provides usable and functional support for programming the on-chip flash memory of
Renesas microcontrollers in each phase of development and mass production. The software supports all RA
MCUs and the software user’s manual is available on renesas.com.

5. Next Steps and References

Refer to the following GitHub repository for various FSP modules example projects and application
projects (https://github.com/renesas/ra-fsp-examples/)

Refer to Establishing and Protecting Device Identity using SCE7 and Security MPU (R11AN0449) on
renesas.com

Refer to Securing Data at Rest Utilizing the RA Security MPU (R11AN0416) on renesas.com.

Refer to Azure GitHub link for more details on Azure SDK for Embedded C
(https://github.com/Azure/azure-sdk-for-c)

6. MQTT/TLS References

e FSPv4.4.0 User’s Manual (www.renesas.com/RA/ESP).
e Azure loT documentation (https://docs.microsoft.com/en-us/azure/iot-hub/)

7. Known Issues and Limitations

1. Occasional outages in cloud connectivity may be noticed during the demonstration due to changes in the
cloud server. Contact the Renesas support team for questions.

2. Currently, there is no support for direct device-to-device communications with Azure 10T Hub.

3. Device will reconnect after 65 minutes due to SAS token refresh. Currently it is under SDK control. Users
need to know this when developing the application.

R11ANO754EU0101 Rev.1.01 Page 49 of 51

May.02.23 RENESAS

http://www.renesas.com/RA/FSP
http://www.segger.com/
https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui
https://www.renesas.com/us/en/software-tool/renesas-flash-programmer-programming-gui
http://www.renesas.com/
https://github.com/renesas/ra-fsp-examples/
http://www.renesas.com/
https://github.com/Azure/azure-sdk-for-c
http://www.renesas.com/RA/FSP
https://docs.microsoft.com/en-us/azure/iot-hub/

Renesas RA Family RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

7.1 SIM Card Activation Problem

8.

If the SIM activation fails, verify that the ICCID number and PUK numbers are correctly entered when
activating the SIM card on Truphone loT SIM activation platform truphone.com/connectit

If Menu 5 Validate SIM activation PING response returns a Ping Failed condition, it can take up to 15
minutes or longer for the card to be activated after performing Activating the SIM Card to obtain LTE
Network access. In this case, wait at least 15 minutes (or longer) and repeat Menu 5 Validate SIM
activation.

SIM cards cannot be activated more than once. To verify whether the SIM card has already been
activated, please monitor and manage your SIMs on the Truphone loT Connectivity Management
Platform or contact Truphone support through iot.truphone.com by logging into your account.

If Menu 5 Validate SIM activation PING response continues to return Ping Failed condition, first check
the external antenna is connected securely to the RYZ014A PMOD and try again. The CSQ Network
Signal Quality (RSSI) could be too low to connect. If the RSSI is 99 then check external antenna is
connected. It may be possible that no Cell Network Signal could be detected in your area. An RSSI
reading with RSSI = 15 or less indicates marginal or poor reception.

CSQ Network Signal Quality (RSSI) [99 = No Cell Signal] = 15, Marginal Signal Quality

It may be necessary to move the CK-RA6M5 with PMOD to a different location to improve the Network
Signal Quality (RSSI) to get an RSSI value in the range of 16 to 98.

If Menu 5 Validate SIM activation continues to fail, verify that the APN is set for the Global Region
where the RYZ014A PMOD is trying to connect. The APN setting and LTE Band List depends on your
Global Region and the SIM card provider.

To set the Access Point Name (APN) for SIM Card provider other than Truphone

The APN is set in the Application projectin /src/cellular setup.c

See #define CELLULAR_APN "iot.truphone.com" /* APN : Truphone SIM Card */

For all other SIM card issues that cannot be resolved with these troubleshooting steps, contact Truphone
support through iot.truphone.com by logging into your account.

Website and Support

Visit the following URLSs to learn about key elements of the RA family, download components and related
documentation, and get support:

CK-RAB6MS5 Kit Information renesas.com/ra/ck-rabm5
RA Cloud Solutions renesas.com/cloudsolutions
RA Product Information renesas.com/ra
RA Product Support Forum renesas.com/ra/forum
RA Flexible Software Package renesas.com/FSP
Renesas Support renesas.com/support
R11ANO754EU0101 Rev.1.01 Page 50 of 51

May.02.23 RENESAS

https://truphone.com/connectit
https://iot.truphone.com/
https://iot.truphone.com/
http://www.renesas.com/ra/ck-ra6m5
http://www.renesas.com/cloudsolutions
http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family

RA MQTT/TLS Azure Cloud Connectivity Solution - Cellular

Revision History

Description
Rev. Date Page Summary
1.00 Mar.31.23 — Initial release
1.01 May.02.23 Added support for Truphone and updated to FSP v4.4.0

R11ANO754EU0101 Rev.1.01

May.02.23

Re Page 51 of 51
RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external
reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states
of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity
of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vi (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in
terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Notel)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2023 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Introduction to Cloud Connectivity
	1.1 Cloud Connectivity Overview
	1.2 Microsoft Azure IoT Solution
	1.2.1 Overview
	1.2.2 IoT Hub and Device Provisioning Service
	1.2.2.1 Azure IoT Hub and IoT Hub Device Provisioning Service (DPS)
	(1) Device Provisioning Service
	(2) Embedded C SDK

	1.2.3 Authentication Methods
	1.2.3.1 X.509
	1.2.3.2 Per-Device Key Authentication

	1.3 MQTT Protocol Overview
	1.4 TLS Protocol Overview
	1.4.1 Device Certificates and Keys
	1.4.2 Device Security Recommendations

	2. RA FSP MQTT/TLS Cloud Solution
	2.1 MQTT Client Module Introduction
	2.1.1 Design Considerations
	2.1.2 Supported Features

	2.2 TLS Session Module Introduction
	2.2.1 Design Considerations
	2.2.2 Supported Features

	2.3 Azure IoT Device SDK Module Introduction
	2.3.1 Design Considerations
	2.3.2 Supported Features

	3. MQTT/TLS Application Example
	3.1 Application Overview
	3.2 Creating the Application Project using the FSP configurator
	3.3 Install Azure CLI
	3.4 Create an IoT Hub
	3.5 Certificate Creation Process
	3.6 View Device Properties
	3.7 Set IoT Hub
	3.8 Register an IoT Hub Device
	3.9 Prepare the Device
	3.10 Building and Running the Application
	3.11 Download and Run the Project
	3.12 Activating the SIM card
	3.13 Storing Device Certificate, Host Name, Device ID
	3.14 Send Device to Cloud Message
	3.15 Send Cloud-to-Device Message

	4. Importing, Building and Loading the Project
	4.1 Importing
	4.2 Building the Latest Executable Binary
	4.3 Loading the Executable Binary into the Target MCU
	4.3.1 Using a Debugging Interface with e2 studio
	4.3.2 Using J-Link Tools
	4.3.3 Using Renesas Flash Programmer

	5. Next Steps and References
	6. MQTT/TLS References
	7. Known Issues and Limitations
	7.1 SIM Card Activation Problem

	8. Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

