
 Application Note

R11AN0604EU0103 Rev.1.03 Page 1 of 24
May.08.23

Renesas RA Family

RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular
Introduction
This application note describes IoT Cloud connectivity solution in general, provides a brief introduction to IoT
Cloud providers like Amazon Web Services (AWS), and covers the FSP MQTT/TLS module and its features.
The application example provided in the package uses AWS IoT Core. The detailed steps in this document
show first-time AWS IoT Core users how to configure the AWS IoT Core platform to run this application
example.

This application note enables developers to effectively use the FSP MQTT/TLS modules in end-product
design. Upon completion of this guide, developers will be able to add the “AWS Core MQTT”, “Mbed TLS”,
and “AWS cellular sockets” using the Cellular interface, configure them correctly for the target application,
and write code using the included application example code as a reference for an efficient starting point.

References to detailed API descriptions, and other application projects that demonstrate more advanced
uses of the module, are in the FSP User’s Manual (available at: https://renesas.github.io/fsp/), which serves
as a valuable resource in creating more complex designs.

This MQTT/TLS AWS Cloud Connectivity solution is supported on the CK-RA6M5.

Applies to:
• RA6M5 MCU Group

Required Resources
To build and run the MQTT/TLS application example, the following resources are needed.

Development tools and software
• e2 studio ISDE v23.4.0 or later (renesas.com/us/en/software-tool/e-studio)
• Flexible Software Package (FSP) v4.4.0 (renesas.com/us/en/software-tool/flexible-software-package-fsp)

Hardware
• Renesas CK-RA6M5 kit (renesas.com/ra/ck-ra6m5)
• PC running Windows® 10 and an installed web browser (Google Chrome, Internet Explorer, Microsoft

Edge, Mozilla Firefox, or Safari)
• Micro USB cables (included as part of the kit. See CK-RA6M5 User’s Manual)

Prerequisites and Intended Audience
This application note assumes that the user is adept at operating the Renesas e2 studio IDE with Flexible
Software Package (FSP). If not, we recommend reading and following the procedures in the FSP User's
Manual sections for ‘Starting Development’ including ‘Debug the Blinky Project’. Doing so enables
familiarization with e2 studio and FSP and validates proper debug connection to the target board. In addition,
this application note assumes prior knowledge of MQTT/TLS and its communication protocols and
knowledge of cellular modems.

The intended audience is users who want to develop applications with MQTT/TLS modules using Cellular
modules on Renesas RA6 MCU Series.

Note: If you are a first-time user of e2 studio and FSP, we highly recommend you install e2 studio and FSP
on your system in order to run the Blinky Project and to get familiar with the e2 studio and FSP
development environment before proceeding to the next sections.

Note: This Application Project and Application Note can only use versions FSP v4.4.0.

Note: If you want to quickly build and run the attached application, please jump to section (2 Running the
MQTT/TLS Cellular Application Example).

https://renesas.github.io/fsp/
https://www.renesas.com/ra/ck-ra6m5
https://www.renesas.com/us/en/software-tool/e-studio
https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp
https://www.renesas.com/ra/ck-ra6m5

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 2 of 24
May.08.23

Prerequisites

1. Access to online documentation available in the Cloud Connectivity References section
2. Access to latest documentation for identified Renesas Flexible Software Package
3. Prior knowledge of operating e2 studio and built-in (or standalone) RA Configurator
4. Access to associated hardware documentation such as User Manuals, Schematics, and other relevant

kit information (renesas.com/ra/ck-ra6m5)).

Contents

1. Introduction to Components for Cloud Connectivity .. 3
1.1 General Overview .. 3
1.2 Cloud Service Provider .. 3
1.3 Cloud Dashboard .. 3
1.3.1 Data Monitoring ... 4
1.3.2 Device Management ... 4
1.4 AWS IoT Core ... 4
1.5 MQTT Protocol Overview .. 4
1.6 TLS Protocol Overview .. 4
1.7 Device Certificates, CA, and Keys .. 5

2. Running the MQTT/TLS Cellular Application Example .. 5

3. AWS Core MQTT with Cellular Interface ... 5
3.1 AWS Core MQTT .. 5
3.2 Transport Layer Implementation ... 7
3.3 Mbed TLS .. 8
3.4 MQTT Module APIs Usage ... 9

4. Cloud Connectivity Application Example ... 9
4.1 Overview .. 9
4.2 MQTT/TLS Application Software Overview ... 10
4.3 Creating the Application Project using the FSP Configurator ... 13
4.4 MQTT/TLS Configuration .. 20

5. Sensor Stabilization Time .. 21

6. MQTT/TLS Module Next Steps ... 21

7. Bibliography ... 21

8. Known Issues .. 22

9. Debugging ... 22

10. Troubleshooting ... 22

Revision History .. 24

https://www.renesas.com/ra/ck-ra6m5

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 3 of 24
May.08.23

1. Introduction to Components for Cloud Connectivity
1.1 General Overview
The Internet-of-Things (IoT) is a global infrastructure for the information society, enabling advanced services
by interconnecting (physical and virtual) things based on existing and evolving interoperable information and
communication technologies. The ‘things’ in this definition are objects in the physical world (physical objects)
or information world (virtual) that can be identified and integrated into communication networks. In the
context of the IoT, a ‘device’ is a piece of equipment with the mandatory capabilities of communication and
the optional capabilities of sensing, actuation, data capture, data storage and data processing.
Communication is often performed with providers of network-hosted services, infrastructure, and business
applications to process/analyze the generated data and manage the devices. Such providers are called
Cloud Service Providers. While there are many manufacturers for devices and cloud service providers, for
the context of this application note, the device is a Renesas RA Microcontroller (MCU) connecting to services
provided by Amazon Web Services (AWS) for IoT.

1.2 Cloud Service Provider
AWS IoT provides the cloud services that connect your IoT devices to other devices and AWS cloud
services As a Cloud Service Provider, AWS IoT provides the ability to:

• Connect and manage devices
• Secure device connections and data
• Process and act upon device data
• Read and set device state at any time

Figure 1 summarizes the features provided by AWS IoT.

Figure 1. AWS IoT Features, Service Components, and Data Flow Diagram
A key feature provided by AWS is the AWS IoT Software Development Kit (SDK) written in C, which allows
devices such as sensors, actuators, embedded micro-controllers, or smart appliances to connect,
authenticate, and exchange messages with AWS IoT using the MQTT, HTTP, or WebSocket’s protocols.
This application note focuses on configuring and using the AWS IoT Device SDK and the included MQTT
protocol available through the Renesas Flexible Software Package (FSP) for Renesas RA MCUs.

1.3 Cloud Dashboard
A cloud dashboard is a monitoring and controlling GUI for the multiple services, that you can build and
access on a web browser. It has key advantages over on-premises software such as being easier to deploy,
requiring little to no IT support and is accessible on multiple devices.

The Dashboard provides a high-level view of your entire fleet of devices and allows you to act on individual
devices quickly. You can view graphical representations of relevant device information for your fleet, such as
device ownership type, compliance statistics, and platform and OS breakdowns. You can access each set of
devices in the presented categories by selecting any of the available data views from the Device
Dashboard.

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 4 of 24
May.08.23

1.3.1 Data Monitoring
Data monitoring on the dashboard is a cloud data analytics monitoring solution that lets you track your
performance metrics and easily visualize your data sets. You will be able to get a high-level view of your
metrics, or you can drill down and analyze the detail.

For instance, it can be sensor data coming from the device in the form of temperature, pressure, and so
forth.

1.3.2 Device Management
Device Management provides high-level control to configure the devices in bulk for the entire fleet of
devices or to control the individual devices.

Note: All the Dashboard-specific details for this Application Project are discussed in the later section of the
document.

1.4 AWS IoT Core
AWS IoT Core is a managed cloud service that lets connected devices easily and securely interact with
cloud applications and other devices. AWS IoT Core can support billions of devices and trillions of
messages. It can process and route messages to AWS endpoints and to other devices reliably and securely.
With AWS IoT Core, customer applications can keep track of all devices, all the time, even when devices are
not connected.

AWS IoT Core addresses security concerns for the infrastructure by implementing mutual authentication and
encryption. AWS IoT Core provides automated configuration and authentication upon a device’s first
connection to AWS IoT Core, as well as end-to-end encryption throughout all points of connection, so that
data is only exchanged between devices and AWS IoT Core with proven identity.

This application note focuses on complementing the security needs of AWS IoT Core through installing a
proven identity for the RA MCU by storing a X.509 certificate and asymmetric cryptography keys in Privacy
Enhanced Mail (PEM) format in the on-board flash. The RA MCU has on-chip security features, such as Key
Wrapping, to protect the private key associated with the public key and the certificate associated with the
device1. Additionally, RA MCUs can also generate asymmetric keys using features of the Secure
Cryptography Engine (SCE) and API available through the FSP. The SCE accelerates symmetric
encryption/decryption of data between the connected device and AWS IoT, allowing the ARM Cortex-M
processor to perform other application specific computations.

1.5 MQTT Protocol Overview
This application note features Message Queuing Telemetry Transport (MQTT) as it is a lightweight
communication protocol specifically designed to tolerate intermittent connections, minimize the code footprint
on devices, and reduce network bandwidth requirements. MQTT uses a publish/subscribe architecture which
is designed to be open and easy to implement, with up to thousands of remote clients capable of being
supported by a single server. These characteristics make MQTT ideal for use in constrained environments
where network bandwidth is low or where there is high latency and with remote devices that might have
limited processing capabilities and memory. The RA MCU device in this application note implements a Core
MQTT which communicates with AWS IoT and exchanges example telemetry information, such as
temperature, pressure, humidity, accelerometer, magnetometer and many more types of sensor data.

1.6 TLS Protocol Overview
The primary goal of the Transport Layer Security (TLS) protocol is to provide privacy and data integrity
between two communicating applications or endpoints. AWS IoT mandates use of secure communication.
Consequentially, all traffic to and from AWS IoT is sent securely using TLS. TLS protocol version 1.2 or later
ensures the confidentiality of the application protocols supported by AWS IoT. A variety of TLS Cipher Suites
are supported. This application note configures the RA Flexible Software Package for the MCU based device
to provide the following capabilities and AWS IoT negotiates the appropriate TLS Cipher Suite configuration
to maximize security.

1 This application note does not focus on using Key Wrapping for securely storing the private key for devices
deployed in a production environment.

https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 5 of 24
May.08.23

Table 1. TLS with Crypto Capabilities in RA FSP

Secure Crypto Hardware Acceleration Supported
Key Format Supported AES, ECC, RSA
Hash SHA-256
Cipher AES
Public Key Cryptography ECC, ECDSA, RSA
Message Authentication Code (MAC) HKDF

On top of these supported features, Mbed Crypto middleware also supports a variety of features which can
be enabled through the RA Configurator. Refer to the FSP User’s Manual section for the Crypto Middleware
(rm_psa_crypto).
1.7 Device Certificates, CA, and Keys
Device Certificates, Certificate Authorities (CA), and Asymmetric Key Pairs create the foundation for trust
needed for a secure environment. The background information on these commonly used components in
AWS is as follows:

A digital certificate is a document in a known format that provides information about the identity of a device.
The X.509 standard includes the format definition for public-key certificate, attribute certificate, certificate
revocation list (CRL), and attribute certificate revocation list (ACRL). X.509-defined certificate formats (X.509
Certificates) are commonly used on the internet and in AWS IoT for authenticating a remote entity/endpoint,
that is, a Client and/or Server. In this application note, an X.509 certificate and asymmetric cryptography key
pair (public and private keys) are generated from AWS IoT and installed (during binary compilation) into the
RA MCU device running the Core MQTT to establish a known identity. In addition, a root Certification
Authority (CA) certificate is also downloaded and used by the device to authenticate the connection to the
AWS IoT gateway.

Certification authority (CA) certificates are certificates that are issued by a CA to itself or to a second CA for
the purpose of creating a defined relationship between the two CAs. The root CA certificate allows devices to
verify that they're communicating with AWS IoT Core and not another server impersonating AWS IoT Core.
The public and private keys downloaded from AWS IoT use RSA algorithms for encryption, decryption,
signing and verification2. These key pairs, and certificates are used together in the TLS process to:

1. Verify device identity.
2. Exchange symmetric keys, for algorithms such as AES, for encrypting and decrypting data transfers

between endpoints.

2. Running the MQTT/TLS Cellular Application Example
Refer to RA CK-RA6M5 AWS Ethernet Getting Started Guide as part of this project bundle for details on
running the project and visualizing the sensor data on Renesas AWS dashboard.

3. AWS Core MQTT with Cellular Interface
3.1 AWS Core MQTT
The AWS MQTT library included in RA FSP can connect to either AWS MQTT or to any third party MQTT
broker such as Mosquitto. The complete documentation for the library can be found on the AWS IoT Device
SDK C: MQTT website. Primary features supported by the library are:

• MQTT connections over TLS to an AWS IoT Endpoint or Mosquitto server or other MQTT broker.

The AWS Core MQTT can be directly imported into a Thread stack. It is configured through the RA
Configuration Perspective. To add the AWS Core MQTT to a new thread, open Configuration.xml with
the RA Configuration. While ensuring that the correct thread is selected on the left, use the tab for Stacks >
New Stack > Search and search for the keyword AWS Core MQTT.

2 Public Key length used is 2048 bits.

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html#mqtt-sdk
https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html#mqtt-sdk

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 6 of 24
May.08.23

Figure 2. AWS Core MQTT Module Selection
Adding the AWS Core MQTT stack results in the default configuration with some unmet dependencies, as
shown in the following Figure 3. FSP offers different Transport interfaces to the users. In this application note
we will be covering the Cellular Interface which uses the AWS Transport Interface on MbedTLS/PKCS11 as
shown in the Figure 4.

Figure 3. AWS Core MQTT Stack View
While the AWS Core MQTT stack shown contains a lot of dependencies and configurable properties, most
default settings can be used as-is. The following change is needed to meet all unmet dependencies (marked
in red) for the AWS Core MQTT stack added to a new project (as shown above):

• Enable Mutex and Recursive Mutex usage support as needed by IoT SDK and FreeRTOS in the created
Thread properties.

Upon completion of the above step, the AWS Core MQTT is ready to accept a socket implementation, which
has dependencies on using a TLS Session and an underlying TCP/IP implementation.

Additional documentation on the AWS Core MQTT is available in the FSP User’s Manual under RA Flexible
Software Package Documentation > API Reference > Modules > AWS Core MQTT.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 7 of 24
May.08.23

3.2 Transport Layer Implementation
The FSP provided AWS Transport Interface provides options for Cellular, Ethernet and Wi-Fi. AWS
Transport Interface on MbedTLS11 module is used for the Cellular Interface. While the RA FSP contains a
Secure Socket Implementation for both Wi-Fi and Ethernet, this application and application note focuses on
the use of the Cellular Interface.

Cellular Sockets can be added to the Thread Stack by clicking on Add Sockets Wrapper > New > AWS
Cellular Sockets Wrapper.

Figure 4. Adding Cellular Interface to the Core MQTT Module
Upon addition, the needed stack is complete and has unmet dependencies for the dependent modules.

Now hover the cursor over the red blocks and the error will pop up. Make the appropriate settings.

• For the Buffer Allocation error: Choose the heap implementation using New Stack > RTOS >
FreeRTOS Heap 4. Also, set Dynamic Memory allocation using Application Thread > Properties >
Memory Allocation > Support Dynamic Allocation > Enabled.

• xTimerPendFuncionCall must be enabled using Application Thread > Common > Optional Functions
> xTimerPendFunctionCall() Function > Enabled

• For AWS PKCS11 to MbedTLS error: MBEDTLS_CMAC_C must be defined Using MbedTLS(Crypto
Only) > Common > Message Authentication Code > MBEDTLS_CMAC_C.

• For Crypto, MBEDTLS_ECDH_C in MbedTLS must be defined when using MbedTLS. Using
MbedTLS(Crypto Only) > Public Key Cryptography(PKC) >ECC > MBEDTLS_ECDH_C.

• For Crypto: MBEDTLS_FS_IO, MBEDTLS_PSA_CRYPTO_STORAGE_C,
MBEDTLS_PSA_ITS_FILE_C in MbedTLS must be defined when using MbedTLS. Using
MbedTLS(Crypto Only) > Common > Storage.

• For RTOS Heap memory error, set Heap Memory allocation using Application Thread > Properties >
Memory Allocation > Total Heap Size > 0x20000.

• The flash file system for the persistent storage is needed. This can be added by clicking on Add AWS
PKCS11 PAL module > New > AWS PKCS11 PAL on LittleFS.(Note: If already added Ignore this step)

• Add heap under BSP | RA Common | Heap Size of 0x20000 is required to do malloc with LittleFS
and other standard library functions.

• Mutexes must be enabled using Application Thread > Common > General > Use Mutexes > Enabled
• Mutexes must be enabled using Application Thread > Common > General > Use Recursive Mutexes

> Enabled
• UART specific errors can be resolved by enabling the Flow control and selecting the appropriate RTS and

CTS pin selection.
Note: These are the Basic settings required to remove the error from the configurator. More specific

configurations are listed in the specific module and its usage.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 8 of 24
May.08.23

After all the appropriate settings have taken care of the errors due to the missing configuration, the new
configurator screenshot looks clean with no errors as shown below in the Figure 5.

Figure 5. Expanded Cellular Socket Interface Module

Additional documentation on AWS Transport Interface on MbedTLS is available in the FSP User’s Manual
under RA Flexible Software Package Documentation > API Reference > Modules > AWS Transport Interface
on MbedTLS/PKCS11.

3.3 Mbed TLS
Mbed TLS is Arm®’s implementation of the TLS protocols as well as the cryptographic primitives required by
those implementations. Mbed TLS is also solely used for its cryptographic features even if the TLS/SSL
portions are not used.

TLS Support uses FreeRTOS+Crypto which eventually uses Mbed TLS. Use of Mbed TLS requires
configuration and operation of the Mbed Crypto module which in turn operates the SCE on the MCU.

The following underlying mandatory changes are needed to the project using the cellular Sockets on
FreeRTOS+Crypto module:

1. Use FreeRTOS heap implementation scheme 4 (first fit algorithm with coalescence algorithm) or scheme
5 (first fit algorithm with coalescence algorithm with heap spanning over multiple non-adjacent/non-
contiguous memory regions.

2. Enable support for dynamic memory allocation in FreeRTOS.
3. Enable Mbed TLS platform memory allocation layer.
4. Enable the Mbed TLS generic threading layer that handles default locks and mutexes for the user and

abstracts the threading layer to use an alternate thread-library.
5. Enable Elliptic Curve Diffie Hellman library.
6. Change FreeRTOS Total Heap Size to a value greater than 0x20000.
7. Add Persistent Storage on LittleFS.

Additional documentation on the Mbed TLS is available in the FSP User’s Manual under RA Flexible
Software Package Documentation > API Reference > Modules > Crypto Middleware (rm_psa_crypto).

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 9 of 24
May.08.23

3.4 MQTT Module APIs Usage
Table 2 lists APIs provided by AWS Core MQTT that are used as a part of the Application Example.

Table 2. MQTT Module APIs

API Description
MQTT_Init Initializes an MQTT context
MQTT_Connect Establishes an MQTT session
MQTT_Subscribe Sends MQTT SUBSCRIBE for the given list of topic filters to

the broker
MQTT_Publish Publishes a message to the given topic name
MQTT_Ping Sends an MQTT PINGREQ to broker
MQTT_Unsubscribe Sends MQTT UNSUBSCRIBE for the given list of topic

filters to the broker
MQTT_Disconnect Disconnect an MQTT session
MQTT_ProcessLoop Loop to receive packets from the transport interface.

Handles keep-alive
MQTT_ReceiveLoop Loop to receive packets from the transport interface. Does

not handle keep-alive
MQTT_GetSubAckStatusCodes Parses the payload of an MQTT SUBACK packet that

contains status codes corresponding to topic filter
subscription requests from the original subscribe packet

MQTT_Status_strerror Error code to string conversion for MQTT statuses.
MQTT_PublishToResend Get the packet ID of the next pending publish to be resent

4. Cloud Connectivity Application Example
4.1 Overview
This application project demonstrates the use of APIs available through the Renesas FSP-integrated
modules for Amazon IoT SDK C, Mbed TLS module, Amazon FreeRTOS, and HAL Drivers operating on
Renesas RA MCUs. Network connectivity is established using Cellular module. The application running on a
Renesas Cloud Kit also serves as a guide for the operation of Core MQTT, Mbed TLS/Crypto, and Cellular
configuration, using the FSP configurator. The application may be used as a starting point for inspiring other
customized cloud-based solutions using Renesas RA MCUs. In addition, it simply demonstrates the
operation and setup of cloud services available through the cloud service provider.

The upcoming sub-sections show step-by-step creation of a device and security credentials policies as
required by the AWS IOT on the cloud side to communicate with the end devices. The example
accompanying this documentation demonstrates Subscribe and Publish messaging between Core MQTT
and MQTT Broker, on demand publication of sensor data, and asynchronous publication of a “sensor data”
event from the MCU to the Cloud. The device is also subscribed to receive actuation events (LED indication)
from the Cloud.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 10 of 24
May.08.23

Figure 6. MQTT Publish/Subscribe to/from AWS IoT Core

4.2 MQTT/TLS Application Software Overview
The following files from this application project serve as a reference, as shown in Table 3.

Table 3. Application Project Files

No. Filename Purpose
1. src/app_thread_entry.c Contains initialization code and has the main

thread used in Cloud Connectivity application.
2. src/cellular_setup.c Contains Cellular Specific init functions and

data structures.
3. src/common_init.c Contains code used to initialize common

peripherals across the project.
4. src/common_init.h Contains macros, data structures, and

functions prototypes used to initialize common
peripherals across the project.

5. src/common_utils.c Contains code commonly used across the
project.

6. src/common_utils.h Contains macros, data structures, and
functions prototypes commonly used across
the project.

7. src/console_thread_entry.c Contains the code for command line interface
and flash memory operations.

8. src/ICM_20948.c Contains the code for the 9-Axis MEMS
Motion Tracking™ Sensor

9. src/ICM_20948.h Contains the Data structure function
prototypes for the 9-Axis MEMS Motion
Tracking™ Sensor

10. src/ICP_10101.c Contains the code for Barometric Pressure
and Temperature Sensor

11. src/ ICP_10101.h Contains the Data structure and function
prototypes for Barometric Pressure and
Temperature Sensor

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 11 of 24
May.08.23

No. Filename Purpose
12. src/mqtt_demo_helpers.c Contains code and functions used in MQTT

interface for Cloud Connectivity.
13. src/mqtt_demo_helpers.h Accompanying header for exposing

functionality provided by
mqtt_demo_helpers.c.

14. src/oximeter_thread_entry.c Contains the code for Heart Rate, Blood
Oxygen Concentration, Pulse Oximetry,
Proximity, Light and Color Sensor

15. src/Oximeter.c Contains data structures and functions used
for the oximeter sensor

16. src/Oximeter.h Contains the Data structure and function
prototypes for the oximeter sensor

17. src/oximstruct.h Contains the Data structure for the oximeter
sensor

18. src/r_typedefs.h Contains the common derived data types
19. src/RA_HS3001.c Contains the code and function for Renesas

Relative Humidity and Temperature Sensor.
20. src/RA_HS3001.h Contains the common data structure’s

function prototypes for the Renesas Relative
Humidity and Temperature sensors.

21. src/RA_ZMOD4XXX_Common.c Contains the common code for the Renesas
ZMOD sensors

22. src/RA_ZMOD4XXX_Common.h Contains the common data structure’s
function prototypes for the Renesas ZMOD
sensors

23. src/RA_ZMOD4XXX_IAQ1stGen.c Contains the common code for the Renesas
ZMOD Internal Air Quality sensors

24. src/RA_ZMOD4XXX_OAQ1stGen.c Contains the common code for the Renesas
ZMOD Outer Air Quality sensors

25. src/RmcI2C.c Contains the I2C wrapper functions for the
third-party sensors not integrated with FSP

26. src/RmcI2C.h Contains the I2C function prototypes for
wrapper functions for the third-party sensors
not integrated with FSP

27. src/sensor_thread_entry.c Contains the Code to access the Sensor data
from the different sensors

28. src/uart_CATM1.c Contains the code to access the UART
interface to the CATM1 module for back
access the SIM info for activation

29. src/uart_CATM1.h Contains the Function prototypes to access
the UART interface to the CATM1 module for
back access the SIM info for activation

30. src/ user_choice.c Contains the code for user’s choice of sensors
and user configurations

31. src/user_choice.h Contains the Function prototypes for the
Sensor and its user configuration for the
different sensors and its data accessibility.

32. src/usr_config.h To customize the user configuration to run the
application.

33. src/usr_hal.c Contains data structures and functions used
for the Hardware Abstraction Layer (HAL)
initialization and associated utilities.

34. src/usr_hal.h Accompanying header for exposing
functionality provided by usr_hal.c.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 12 of 24
May.08.23

No. Filename Purpose
35. src/usr_data.h Accompanying header file for the application

thread.
36. zmod_thread_entry.c Contains the code for indoor air quality sensor
37. src/SEGGER_RTT/SEGGER_RTT.c Implementation of SEGGER real-time transfer

(RTT) which allows real-time communication
on targets which support debugger memory
accesses while the CPU is running.

38. src/SEGGER_RTT/SEGGER_RTT.h
39. src/SEGGER_RTT/SEGGER_RTT_Conf.h
40. src/SEGGER_RTT/SEGGER_RTT_printf.c
41. src/

backoffAlgorithm/backoff_algorithm
.c

Retry algorithms with random back off for the
next retry attempt

42. src/
backoffAlgorithm/backoff_algorithm
.h

Retry algorithms with random back off for the
next retry attempt header file

43. src/subcription_manager/
mqtt_subscription_manager.c

MQTT Subscription manager, which handles
the callback

44. src/subcription_manager/
mqtt_subscription_manager.h

Associated header file for MQTT Subscription
manager, which handles the callback.

45. src/console_menu/menu_catm.c Contains functions to get SIM info of the
CATM1 from main menu on CLI

46. src/console_menu/menu_catm.h Contains function prototypes to get SIM info
of the CATM1 from main menu on CLI

47. src/console_menu/console.c Contains data structures and functions used
to print data on console using UART

48. src/console_menu/console.h Contains the Function prototypes used to print
data on console using UART

49. src/console_menu/menu_flash.c Contains data structures and functions used
to provide CLI flash memory related menu

50. src/console_menu/menu_flash.h Contains the Function prototypes and macros
used to provide CLI flash memory related
menu

51. src/console_menu/menu_kis.c Contains functions to get the FSP version, get
UUID and help option for main menu on CLI

52. src/console_menu/menu_kis.h Contains the function prototypes and macros
used to get fsp version, get uuid and help
option for main menu on CLI

53. src/console_menu/menu_main.c Contains data structures and functions used
to provide CLI main menu options

54. src/console_menu/menu_main.h Contains the Function prototypes and macros
used to provide CLI main menu options

55. Src/flash/ flash_hp.c Contains data structures and functions used
to perform flash memory related operations

56. src/flash/ flash_hp.h Contains the Function prototypes and macros
used to perform flash memory related
operations

57. src/i2c.c Contains data structures and functions used
for I2C communication

58. src/i2c.h Contains the Function prototypes and macros
used for I2C communication

59. src/ob1203_bio/KALMAN/kalman.c Contains algorithm for Heart Rate, Blood
Oxygen Concentration, Pulse Oximetry,
Proximity, Light and Color Sensor sample
calculations

60. src/ob1203_bio/KALMAN/kalman.h
61. ob1203_bio/OB1203/OB1203.c
62. ob1203_bio/OB1203/OB1203.h
63. ob1203_bio/SAVGOL/SAVGOL.c

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 13 of 24
May.08.23

No. Filename Purpose
64. ob1203_bio/SAVGOL/SAVGOL.h
65. ob1203_bio/SPO2/SPO2.c
66. ob1203_bio/SPO2/SPO2.h

Figure 7. Application Example Implementation Details

4.3 Creating the Application Project using the FSP Configurator
Complete steps to create the project from the start using the e2 studio and FSP configurator. The table below
shows the step-by-step process in creating the Project. It is assumed that the user is familiar with the
e2 studio and FSP configurator. Launch the installed e2 studio for the FSP.

Table 4. Step-by-step Details for Creating the Application Project for Cellular

 Steps Intermediate Steps
1 Project Creation: File → New → C/C++ Project
2 Project Template: Templates for New RA C/C++ Project →

Renesas RA C/C++ Project → Next

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 14 of 24
May.08.23

 Steps Intermediate Steps
3 e2 studio - Project Configuration (RA

C Executable Project) →
Project Name (Name for the Project)
Note: Input your desired name for the project -> Next

4 Device Selection → FSP Version: 4.4.0
Board: CK-RA6M5
Device: R7FA6M5BH3CFC
Language: C

5 Select Tools Toolchain: GNU ARM Embedded (Default)
Toolchain version: (10.3.1.20210824 or newer)
Debugger: J-Link ARM  Next

5a Project Type Selection Flat (Non-TrustZone) Project  Next
6 Build Artifact and RTOS Selection Artifact Selection: Executable

RTOS Selection: FreeRTOS(v10.4.6+fsp4.4.0) → Next
 Project Template Selection Project Template Selection: FreeRTOS – Minimal – Static

Allocation → Finish
7 Clock HOCO 20MHz →PLL Src:HOCO → PLL Div/2 →PLL Mul

x20.0 → PLL 200MHz
8 Stacks Tab (Part of the FSP

Configurator)→
Threads → New Thread

9 Config Thread Properties→
Symbol: app_thread
Name: App Thread
Stack size: 0x12000 Bytes
Priority: 3
Thread Context: NULL
Memory Allocation: Static

10 Generic RTOS configs under thread (Additional configuration on top of the Default Config provided by
FSP)
Common → General Use Mutexs: Enabled

Use Recursive Mutexes: Enabled
Max Task Name Len: 32
Minimal Stack Size: 512

Common → Memory Allocation Support Dynamic Allocation: Enabled
Total Heap Size: 0x20000

Common->Optional Functions xTimerPendFunctionCall() Function: Enabled
11 Add the Heap Implementation in HAL/Common

New Stack → RTOS → FreeRTOS Heap 4
12 Adding the AWS MQTT Wrapper Module to the Application Thread

Note: Now the Newly created thread (Application thread) is ready to add new stack (Here the AWS
Core MQTT is added)
New Stack → Networking → AWS Core MQTT

12a Under the AWS Transport Interface
on MbedTLS/PKCS11 ->Add
Sockets Wrapper, add

New → AWS Cellular Sockets Wrapper

12b Under the SCE Compatibility mode,
add

New → Key Injection for PSA CRYPTO

12c Under the AWS Core MQTT Common → Retry count for reading CONNACK from
network → 10

13 Adding persistent storage support for AWS PKCS11 and resolve the error in the configurator by
selecting the Heap size in the BSP Tab. Right-click on pink highlighted stack to:
Under the MbedTLS(Crypto only)Add
LittleFS module →

Use → LittleFS

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 15 of 24
May.08.23

 Steps Intermediate Steps
BSP Tab → RA Common→ Heap size: 0x20000

14a Under LittleFS on Flash Block count → (BSP_DATA_FLASH_SIZE_BYTES/256)
15 Some dependency related to TLS Support are needed to be resolved to remove the error in the FSP

configurator by modifying the MbedTLS(Crypto Only) property settings.
Common → Platform → MBEDTLS_PLATFORM_MEMORY: Define
Common → General → MBEDTLS_THREADING_C: Define
Common → General → MBEDTLS_THREADING_ALT: Define
Common → Public Key
Cryptography (PKC) →

ECC → MBEDTLS_ECDH_C: Define

Common →Hardware acceleration
→ Public key cryptography

RSA 3072 verify: Enabled

Common →Hardware acceleration
→ Public key cryptography

RSA 4096 verify: Enabled

Common → Storage → MBEDTLS_FS_IO: Define
Common → Storage → MBEDTLS_PSA_CRYPTO_STORAGE_C: Define
Common → Storage → MBEDTLS_PSA_ITS_FILE_C: Define
Common → Message
Authentication Code (MAC)→

MBEDTLS_CMAC_C : Define

16a AWS Cellular Sockets Wrapper Configuration
Note: This is only applicable for the Cellular application project. Most of the default settings remain the
same, except few of the default configuration needs to be changed
AWS Cellular Interface on
RYZ(rm_cellular_ryz_aws) →

Module Reset Pin (Port Number): 04
Module Reset Pin (Pin Number) 09

16b AWS Cellular Interface Common >
Common

EDRX LIST MAX SIZE: 16
RAT PRIORITY COUNT: 1
Comm interface receive timeout: 200
Static allocation context: Enabled
Comm interface static allocation context: Enabled
Static socket context: Enabled

17 Cellular Comm Interface on UART
Name → g_cellular_comm_interface_on_uart
Common → Receive Buffer: 65536

Receive Transfer Size 512
18 g_uart0 UART

Common → FIFO Support : Enable
DTC Support : Enable
Flow Control Support : Enable

Module g_uart0 UART
General Name: g_uart0

Channel: 0
Baud Baud Rate: 921600
 Baud Rate Modulation: Enabled
Flow Control Software RTS Port 04

Software RTS Pin 12
Interrupts Receive Interrupt Priority : Priority 1

Transmit Data Empty Interrupt Priority : Priority 2
Transmit End Interrupt Priority : Priority 2
Error Interrupt Priority : Priority 2

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 16 of 24
May.08.23

 Steps Intermediate Steps
19 Adding the HAL Modules as required for the Application Project: GPT Timer0, GPT Timer1, GPT

Timer2, External IRQ for 30 Seconds periodic timer, 1 second Periodic, Heartbeat Monitor Timer,
respectively.
HAL/Common Stacks → New Stack → System → Clock Generation circuit on r_cgc
Property Settings for r_icu Name: g_cgc0
HAL/Common Stacks → New Stack → Input → External IRQ Driver on r_icu
Property Settings for r_icu Name: g_sensorIRQ

Channel: 14
Trigger: Falling
Digital Filtering: disabled
Digital Filtering Sample Clock (PCLK/64)
Pin Interrupt Priority: Priority 2
Callback: sensorOBIRQCallback

HAL/Common Stacks → New Stack → Timers → Timer Driver on r_gpt
Property Settings for r_gpt →
General

Name: g_timer0
Channel: 0
Mode: Periodic
Period: 10
Period Unit: Milli seconds

Interrupts: Callback: t_callback
Overflow/Crest Interrupt Priority: Priority 5

HAL/Common Stacks → New Stack → Timers → Timer Driver on r_gpt
Property Settings for r_gpt →
General

Name: g_timer1
Channel: 1
Mode: Periodic
Period: 1
Period Unit: Seconds

Interrupts: Callback: g_user_timer_cb
Overflow/Crest Interrupt Priority: Priority 5

HAL/Common Stacks → New Stack → Timers → Timer Driver on r_gpt
Property Settings for r_gpt →
General

Name: g_timer2
Channel: 2
Mode: Periodic
Period: 1
Period Unit: Milli Seconds

Interrupts: Callback: TimerCallback
Overflow/Crest Interrupt Priority: Priority 5

20 Modifying the BSP Settings - RA Common for (Main stack, Heap and Subclock Settings)
Property Settings for RA Common Main stack size(bytes): 0x2000

Heap size (bytes): 0x20000
 Subclock Populated: Not Populated
21 Adding FreeRTOS Objects for the Application (Topic Queue needs to be created for the application –

Message Queue)
Stacks Tab → Objects → New Object → Queue
Property Settings for the Queue Symbol: g_topic_queue

Item Size (Bytes): 64
Queue Length (Items): 16
Memory Allocation: Static

Stacks Tab → Objects →
Property Settings for the Mutex

New Object → Mutex
Symbol: g_sens_data_mutex
Type: Mutex

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 17 of 24
May.08.23

 Steps Intermediate Steps
Memory Allocation: Static

Stacks Tab → Objects →
Property Settings for the Mutex

New Object → Mutex
Symbol: g_console_out_mutex
Type: Mutex
Memory Allocation: Static

Stacks Tab → Objects →
Property Settings for the Mutex

New Object → Mutex
Symbol: g_update_console_event
Type: Mutex
Memory Allocation: Static

Stacks Tab → Objects →
Property Settings for the Mutex

New Object → Binary Semaphore
Symbol: g_ob1203_semaphore
Memory Allocation: Static

Stacks Tab → Objects →
Property Settings for the Semaphore

New Object → Binary Semaphore
Symbol: g_console_binary_semaphore
Memory Allocation: Static

22 Stacks Tab (Part of the FSP
Configurator)→

Threads → New Thread

Config Thread Properties→ Symbol: sensor_thread
Name: Sensor Thread
Stack size: 8192 Bytes
Priority: 4
Thread Context: NULL
Memory Allocation: Static

23 Adding the HS300X Sensor Module and ZMOD4510 OAQ sensor module to the Sensor Thread
New Stack → Sensor → HS300X Temperature/Humidity Sensor
Config HS300X sensor→ Name: g_hs300x_sensor0

Callback: hs300x_callback
New Stack → Sensor → ZMOD4510 OAQ Sensor
Config ZMOD4510 sensor→ Name: g_zmod4xxx_sensor1

Callback: zmod4xxx_comms_i2c1_callback
IRQ Callback: zmod4xxx_irq1_callback

Adding ICM-20948 and ICP10101 sensors to the Sensor Thread.
Note: FSP doesn’t provide a integrated module for ICM-20948 and ICP10101 sensors. This needs to
be integrated via the i2c communication device manually. Also its related sensor driver code needs to
be added to the src folder.
New Stack → Connectivity: I2C Communication Device
Config I2C Comm Device → Name: g_comms_i2c_device5

Slave Address:0x68
Callback: ICM_comms_i2c_callback

Add I2C Shared Bus→ Add I2C Shared Bus→Used→g_comms_i2c_bus0 I2C
Shared Bus

Module g_i2c_master0 I2C Master Rate: Fast Mode
Under I2C_Master → Interrupt
Priority Level →

5

 Adding I2C Communication Device (for ICP10101) into Sensor Thread
 New Stack → Connectivity: I2C Communication Device
 Config I2C Comm Device → Name: g_comms_i2c_device4
 Slave Address:0x63
 Callback: ICP_comms_i2c_callback
 Add I2C Shared Bus→ Add I2C Shared Bus→Used→g_comms_i2c_bus0 I2C

Shared Bus

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 18 of 24
May.08.23

 Steps Intermediate Steps
 Module g_i2c_master0 I2C Master Rate: Fast Mode
25 Stacks Tab (Part of the FSP

Configurator) →
Threads → New Thread

Config Thread Properties→
Symbol: oximeter_thread
Name: Oximeter Thread
Stack size: 2048 Bytes
Priority: 4
Thread Context: NULL
Memory Allocation: Static

26 Adding the OB1203 sensor module to the Oximeter Thread
Note : OB1203 sensor code uses non FSP code
New Stack → Connectivity → I2C Communication Driver

Config OB1203 sensor→ Name: g_comms_i2c_device3

Callback: comms_i2c_callback
Semaphore Timeout (RTOS only): 0xFFFFFFFF
Slave Address: 0x53
Address Mode: 7-Bit
Callback: comms_i2c_callback

27

Stacks Tab (Part of the FSP
Configurator) →

Threads → New Thread

Config Thread Properties→
Symbol: zmod_thread
Name: Zmod Thread
Stack size: 2048 Bytes
Priority: 4
Thread Context: NULL
Memory Allocation: Static

28 Adding the ZMOD4XXX sensor module to the Zmod Thread
Note: ZMOD4410 IAQ Sensor is configured (part of the FSP configurator)
New Stack → Sensor → ZMOD4XXX Gas Sensor

Config ZMOD4XXX sensor→ Name: g_zmod4xxx_sensor0

Callback: zmod4xxx_comms_i2c_callback
IRQ Callback: zmod4xxx_irq0_callback

Under External IRQ Name: g_external_irq0
Channel: 4
Pin interrupt priority: 3
Pin: P402

29 Create and add Console processing Thread
Stacks tab (Part of the FSP

Configurator)
Threads → New Thread

Configure Thread Properties
Symbol Console_Thread
Name Console_Thread
Stack size 8192 Bytes
Priority 1
Auto start Enabled
Time slicing interval (ticks) 50

30 Adding Uart to Console_Thread

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 19 of 24
May.08.23

 Steps Intermediate Steps
New Stack → Connectivity: UART
Config Common → FIFO Support: Enable

DTC Support: Enable
Flow Control Support: Enable

Config General → Name: g_console_uart
Channel:5
Data Bits: 8bits
Parity: None
Stop Bits: 1bit

Config Baud→ Baudrate: 115200
Config Interrupts → Callback: user_uart_callback
Config Pins → TXD: P501

RXD: P502
31 Adding Flash to Console Thread

New Stack → Storage: Flash
Name: user_flash
Data Flash Background Operation: Disabled
Callback: flash_callback
Flash Ready Interrupt Priority: Priority 2
Flash Error Interrupt Priority: Priority 2

32 Adding CATM1 Uart to Console Thread
New Stack →
Config General →

Connectivity: UART
Name: g_catm1_uart
Channel:0
Data Bits:8bits
Parity: None
Stop Bits:1bit

Config Baud→ Baudrate: 921600
Config Interrupts → Callback: catm1_uart_callback
Config Pins → TXD: P411

RXD: P410

The above configuration is a prerequisite to generate the required stack and features for the cloud
connectivity application provided with this application note. Once the Generate Project Content button is
clicked, it generates the source code for the project. The generated source code contains the required
drivers, stack, and middleware. The user application files must be added into the src folder.

Note: app_thread_entry.c, sensor_thread_entry.c, oximeter_thread_entry.c,
zmod_thread_entry.c, console_thread_entry.c are the auto generated file as part of the
project creation. Users are required to add code to this file.

Note: To run the application with the supplied code, app_thread_entry.c, sensor_thread_entry.c,
oximeter_thread_entry.c and console_thread_entry.c are available part of this app note
bundle can be merged or overwritten to the autogenerated file.

Note: FSP generated code must be called/used from the application, while some of the middleware needs
to be called exclusively as part of the application for proper initialization. For instance, the
Mbedtls_platform_setup() call initializes the SCE and TRNG.

For validation of the created project, the same source files listed in section MQTT/TLS Application Software
Overview (as shown in Table 3) may be added. Users are required to add the directory path and subdirectory
for proper compilation. Refer the enclosed project for more details.

The details of the configurator from the default settings to changed settings are described in the following
sections, including the reason for the change.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 20 of 24
May.08.23

4.4 MQTT/TLS Configuration
This section describes the MQTT and TLS module configuration settings that are done as part of this
application example.

The following table lists changes made to a default configuration populated by the RA Configurator.

Table 5. Default Configuration for CK-RA6M5

Property Original
Value

Changed Value Reason for Change

Application Thread
Common → General → Use Mutexes Disabled Enabled This requirement is set by

the AWS IOT SDK C
stack

Common → Memory Allocation →
Support Dynamic Allocation

Disabled Enabled This requirement is set by
the AWS IOT SDK C
stack

Common → Memory Allocation →
Total Heap Size

0 0x20000 Heap required for the
FreeRTOS, AWS IOT
SDK, Mbed TLS

AWS IoT Common
Platform Name Unknown AWS Cloud

Connectivity
This value is user
selectable and can be set
to any value.

Mbed TLS (Crypto Only)
Platform →
Mbedtls_platform_memory

Undefine Define This selection is required
in order to support the
Mbed_tls.

General → Mbedtls_threading_alt Undefine Define This selection is required
in order to support the
Mbed_tls to plug in any
thread library.

General → Mbedtls_threading_c Undefine Define This selection is required
in order to support the
Mbed_tls to abstract the
threading layer to allow
easy plugging in any
thread-library.

Public Key Cryptography → ECC →
Mbedtls_ecdh_c

Undefine Define This selection is required
in order to support the
Mbed_tls to enable the
ECDH module.

LittleFS (Heap Selection)
BSP → RA Common Heap Size 0x0 0x20000 Heap selection for Heap 3

and below needs to be
done here.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 21 of 24
May.08.23

5. Sensor Stabilization Time
Sensor Name When Powered Up First Time After Soft or Hard Reset
ZMOD4410 IAQ Up to 1 minute Up to 1 minute
ZMOD4510 OAQ Up to 4 hours Up to 2 hours
OB1203 Up to 1 minute (after placing the

index finger on the sensor, it may
take up to 60 seconds to sense data)

Up to 10 seconds (after placing the
index finger on the sensor, it may
take up to 60 seconds to sense data)

HS3001 Up to 1 minute Up to 10 seconds
ICP Up to 1 minute Up to 10 seconds
ICM Up to 1 minute Up to 10 seconds

Note: Stabilization time of sensor provided above is from the point of sensor initialized

6. MQTT/TLS Module Next Steps
• For setting up a client using a device certificate signed by a preferred CA certificate, refer to the link:

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html
• For using a self-signed certificate to configure AWS, refer to the link:

https://developer.amazon.com/docs/custom-skills/configure-web-service-self-signed-certificate.html

7. References
[1] International Telecommunication Union, "ITU-T Y.4000/Y.2060 (06/2012)," 15 06 2012. [Online].

Available: http://handle.itu.int/11.1002/1000/11559.

[2] Amazon Web Services, "AWS IoT Core Features," [Online]. Available:
https://www.amazonaws.cn/en/iot-core/features/.

[3] Amazon Web Services, "AWS IoT Core," [Online]. Available: https://www.amazonaws.cn/en/iot-core/.

[4] W. T. L. L. O. S. R. N. S. R. X. G. K. N. K. S. F. M. K. D. L. I. R. Valerie Lampkin, Building Smarter
Planet Solutions with MQTT and IBM WebSphere MQ Telemetry, IBM Redbooks, 2012.

[5] I. E. T. Force, "The Transport Layer Security (TLS) Protocol Version 1.2," [Online]. Available:
https://tools.ietf.org/html/rfc5246.

[6] Amazon Web Services, "AWS IoT Security," [Online]. Available:
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security.html.

[7] Amazon Web Services, "Transport Security in AWS IoT," [Online]. Available:
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html.

[8] International Telecommunication Union, "X.509 (10/19) Summary," 10 2019. [Online]. Available:
https://www.itu.int/dms_pubrec/itu-t/rec/x/T-REC-X.509-201910-I!!SUM-HTM-E.htm.

[9] Eclipse Foundation, "Eclipse Mosquitto™ - An open source MQTT broker," [Online]. Available:
https://mosquitto.org/.

[10] Amazon Web Services, "AWS IoT Device SDK C: MQTT," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/index.html.

[11] R. Barry, "Mastering the FreeRTOS™ Real Time Kernel," in A Hands-On Tutorial Guide, 2016.

[12] A. I. D. S. C. Documentation, "AWS IoT Device SDK C: MQTT Functions," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/mqtt_functions.html.

[13] Amazon, "Configuring the FreeRTOS Demos," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-configure.html.

[14] "Amazon FreeRTOS mbedTLS," [Online]. Available: https://github.com/aws/amazon-
freertos/blob/master/libraries/3rdparty/mbedtls/utils/mbedtls_utils.c.

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html
https://developer.amazon.com/docs/custom-skills/configure-web-service-self-signed-certificate.html

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 22 of 24
May.08.23

[15] Renesas Electronics Corporation, "Renesas Flash Programmer (Programming GUI) - Documentation,"
[Online]. Available: https://www.renesas.com/us/en/products/software-tools/tools/programmer/renesas-
flash-programmer-programming-gui.html#documents.

8. Known Issues
This section talks about the known FSP and tool related issues. More details can be found at this link
https://github.com/renesas/fsp/issues.

Dashboard works properly with Microsoft edge browser, whereas it does not work properly with Google
Chrome browser.

9. Debugging
Enable the USR_LOG_LVL (LOG_DEBUG) macro in the application project for additional information for
debugging.

10. Troubleshooting
In case of unstable cellular connection or loss of MQTT connection, connect the USB on the RYZ014A Pmod
to the PC to provide additional power to the module. Refer to RYZ014A Pmod Errata.

If the error persists, test the project with ethernet interface (see RA AWS MQTT/TLS Cloud Connectivity
Solution - Ethernet Application Note) to verify the functionality.

https://github.com/renesas/fsp/issues
https://www.renesas.com/us/en/document/mah/ryz014a-pmod-expansion-board-errata

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 23 of 24
May.08.23

Website and Support
Visit the following vanity URLs to learn about key elements of the RA family, download components and
related documentation, and get support.

CK-RA6M5 Kit Information
RA Cloud Solutions
RA Product Information

renesas.com/ra/ck-ra6m5
renesas.com/cloudsolutions
renesas.com/ra

RA Product Support Forum renesas.com/ra/forum
RA Flexible Software Package renesas.com/FSP
Renesas Support renesas.com/support

http://www.renesas.com/ra/ck-ra6m5
http://www.renesas.com/cloudsolutions
http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0103 Rev.1.03 Page 24 of 24
May.08.23

Revision History

Rev. Date
Description
Page Summary

1.01 Jun.11.22 — Initial release
1.02 Mar.15.23 — Updated to FSP 4.2.0
1.03 May.08.23 — Support for TruPhone SIM and update to FSP 4.4.0

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1.
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and

application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	Introduction to Components for Cloud Connectivity
	1.1 General Overview
	1.2 Cloud Service Provider
	1.3 Cloud Dashboard
	1.3.1 Data Monitoring
	1.3.2 Device Management

	1.4 AWS IoT Core
	1.5 MQTT Protocol Overview
	1.6 TLS Protocol Overview
	1.7 Device Certificates, CA, and Keys

	2. Running the MQTT/TLS Cellular Application Example
	3. AWS Core MQTT with Cellular Interface
	3.1 AWS Core MQTT
	3.2 Transport Layer Implementation
	3.3 Mbed TLS
	3.4 MQTT Module APIs Usage

	4. Cloud Connectivity Application Example
	4.1 Overview
	4.2 MQTT/TLS Application Software Overview
	4.3 Creating the Application Project using the FSP Configurator
	MQTT/TLS Configuration

	5. Sensor Stabilization Time
	6. MQTT/TLS Module Next Steps
	References
	8. Known Issues
	9. Debugging
	10. Troubleshooting
	Revision History

