RE NESAS Application Note

Renesas RA Family
RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

Introduction

This application note describes IoT Cloud connectivity solution in general, provides a brief introduction to 10T
Cloud providers like Amazon Web Services (AWS), and covers the FSP MQTT/TLS module and its features.
The application example provided in the package uses AWS loT Core. The detailed steps in this document
show first-time AWS IoT Core users how to configure the AWS loT Core platform to run this application
example.

This application note enables developers to effectively use the FSP MQTT/TLS modules in end-product
design. Upon completion of this guide, developers will be able to add the “AWS Core MQTT”, “Mbed TLS”,
and “AWS cellular sockets” using the Cellular interface, configure them correctly for the target application,
and write code using the included application example code as a reference for an efficient starting point.

References to detailed API descriptions, and other application projects that demonstrate more advanced
uses of the module, are in the FSP User’'s Manual (available at: https://renesas.qgithub.io/fsp/), which serves
as a valuable resource in creating more complex designs.

This MQTT/TLS AWS Cloud Connectivity solution is supported on the CK-RA6M5.
Applies to:
¢ RA6M5 MCU Group

Required Resources
To build and run the MQTT/TLS application example, the following resources are needed.
Development tools and software

e e?studio ISDE v23.4.0 or later (renesas.com/us/en/software-tool/e-studio)
e Flexible Software Package (FSP) v4.4.0 (renesas.com/us/en/software-tool/flexible-software-package-fsp)

Hardware

e Renesas CK-RA6M5 kit (renesas.com/ra/ck-ra6mb)

e PC running Windows® 10 and an installed web browser (Google Chrome, Internet Explorer, Microsoft
Edge, Mozilla Firefox, or Safari)

e Micro USB cables (included as part of the kit. See CK-RA6M5 User’'s Manual)

Prerequisites and Intended Audience

This application note assumes that the user is adept at operating the Renesas e? studio IDE with Flexible
Software Package (FSP). If not, we recommend reading and following the procedures in the FSP User's
Manual sections for ‘Starting Development’ including ‘Debug the Blinky Project’. Doing so enables
familiarization with e? studio and FSP and validates proper debug connection to the target board. In addition,
this application note assumes prior knowledge of MQTT/TLS and its communication protocols and
knowledge of cellular modems.

The intended audience is users who want to develop applications with MQTT/TLS modules using Cellular
modules on Renesas RA6 MCU Series.

Note: If you are a first-time user of e? studio and FSP, we highly recommend you install e? studio and FSP
on your system in order to run the Blinky Project and to get familiar with the e? studio and FSP
development environment before proceeding to the next sections.

Note: This Application Project and Application Note can only use versions FSP v4.4.0.

Note: If you want to quickly build and run the attached application, please jump to section (2 Running the
MQTT/TLS Cellular Application Example).

R11AN0604EU0103 Rev.1.03 Page 1 of 24
May.08.23 RENESAS

https://renesas.github.io/fsp/
https://www.renesas.com/ra/ck-ra6m5
https://www.renesas.com/us/en/software-tool/e-studio
https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp
https://www.renesas.com/ra/ck-ra6m5

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

Prerequisites

1.

Access to online documentation available in the Cloud Connectivity References section

2. Access to latest documentation for identified Renesas Flexible Software Package
3. Prior knowledge of operating e? studio and built-in (or standalone) RA Configurator
4. Access to associated hardware documentation such as User Manuals, Schematics, and other relevant
kit information (renesas.com/ra/ck-raémb5)).
Contents
1. Introduction to Components for Cloud CONNECLIVILYcoeeiiiiiiiiiiiie e, 3
I 1= o (=T = @)Y V1 USSP ERPT 3
N O (o 10 o IS T= T Aot I o (0)Y/ o [PO 3
G N O (o 10 o B =T] o Yo = (o EO TP 3
I 0 Y I - = T8 1Y o 1 o OSSR 4
1.3.2 DEVICE MANAGEMIENTetiiieiitiie ettt ettt e ettt e e sttt e e e e be et e e sabb et e e aabe e e e e sabb e e e e anbbe e e e aabbe e e e anbbeeeennnnneas 4
O N VLS T 1 B o Y PSSR 4
T Y/ @ I =] (T o] @ =T T 4
1.6 TLS PrOtOCOI OVEIVIEW.......ueiiiiiiiiiieeiiiiiee e sttt e e st te e e sttt e e e sste e e e e ssteeeeessbeeeeeanbeeeeesnbeeeeesnsbeeeeanseeeeeanseeeeesnseeeas 4
1.7 Device Certificates, CA, @Nd KEYSuuuiiiiieeiiiiiieiie e s csree e e e e s s e e e e e s s s e e e e e e s s s snnbeaeeeaeesannsnnnees 5
2. Running the MQTT/TLS Cellular Application EXample.............uuuuuuuimmmiimmiiiiiiiiiinnnes 5
3. AWS Core MQTT With Cellular INTEIaCEuuuurieiiiii e 5
K R A\ V1Y SR 1o 1= /[1 ISP 5
3.2 Transport Layer IMPIEMENTATIONooiiiiiiiiii ettt e e e e e e e st e e e e e e e e s snnbbaeeeaaeeeaanns 7
K T8 T /oY= I I SRR 8
I Y (@ 3 I Y o o [N TR AN o £ U Vo [SO 9
4. Cloud Connectivity Application EXAMPIEccooiiiiiiiiiiiiieeee e 9
N @ Y= T Yo PRSP 9
4.2 MQTT/TLS Application SOftWAre OVEIVIEW........cicciiiiiiiiieiee e esstteee e e e e e s ssseee e e e e s s snnrrae e e e e e s s e snsnnneeeees 10
4.3 Creating the Application Project using the FSP Configuratorcccccoeviiiiiieieie e 13
4.4 MQTT/TLS CONFIQUIALION ...uetiiieiiiiiie ettt ettt e ettt e e e sa b e e e s skt e e e e s abba e e e e abbeeeesaabeeeeaas 20
5. Sensor StabiliZatiON TIMEuiii it e e e e e e e s abbeeees 21
6. MQTT/TLS MOAUIE NEXE STEPSuiieiiiiiieiiiiiiiee ittt e e e e e e e e r e e e e e e e e 21
T BIDHOGraPNY ... e 21
8. KNOWIN ISSUES ...ttt et e ettt e e ettt e et e e e e e et e e e be e e e e e e e e e nnnn e e eeeas 22
LS B B 1= o 18 o [o o IR P TP PRPPPPR PPN 22
O I I o 18] o1 (1] g oo 1] o [PP PP O PPPPPPPRPPPRN 22
LAY S (0T 1] (] YA S 24
R11AN0604EU0103 Rev.1.03 Page 2 of 24

May.08.23 RENESAS

https://www.renesas.com/ra/ck-ra6m5

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

1. Introduction to Components for Cloud Connectivity

1.1 General Overview

The Internet-of-Things (loT) is a global infrastructure for the information society, enabling advanced services
by interconnecting (physical and virtual) things based on existing and evolving interoperable information and
communication technologies. The ‘things’ in this definition are objects in the physical world (physical objects)
or information world (virtual) that can be identified and integrated into communication networks. In the
context of the 10T, a ‘device’ is a piece of equipment with the mandatory capabilities of communication and
the optional capabilities of sensing, actuation, data capture, data storage and data processing.
Communication is often performed with providers of network-hosted services, infrastructure, and business
applications to process/analyze the generated data and manage the devices. Such providers are called
Cloud Service Providers. While there are many manufacturers for devices and cloud service providers, for
the context of this application note, the device is a Renesas RA Microcontroller (MCU) connecting to services
provided by Amazon Web Services (AWS) for IoT.

1.2 Cloud Service Provider

AWS loT provides the cloud services that connect your loT devices to other devices and AWS cloud
services As a Cloud Service Provider, AWS loT provides the ability to:

e Connect and manage devices
Secure device connections and data
Process and act upon device data
Read and set device state at any time

Figure 1 summarizes the features provided by AWS loT.

AWS loT

() == [(e

AWS SERVICES

With these endpoints you can delfver
4 r RULES ENGINE "
MESSAGES |- @]| messaces Transfor e messages to every AWS service.
1y) sex route to

AWS loT DEVICE SDK AUTHENTICATION DEVICE GATEWAY
C te with

Set of client libries to connect, & AUTHORIZATION
authenticate and exchange messages Secure with mutual

authentication and encryption

APPLICATIONS
DEVICE SHADOWS Applications can connect to
Persistent device state during shadows at any time using an AP/
intermittent connections

REGISTRY f -
1 aunique identity to AWS loT API [JI

each device

Figure 1. AWS loT Features, Service Components, and Data Flow Diagram

A key feature provided by AWS is the AWS loT Software Development Kit (SDK) written in C, which allows
devices such as sensors, actuators, embedded micro-controllers, or smart appliances to connect,
authenticate, and exchange messages with AWS IoT using the MQTT, HTTP, or WebSocket’s protocols.
This application note focuses on configuring and using the AWS IoT Device SDK and the included MQTT
protocol available through the Renesas Flexible Software Package (FSP) for Renesas RA MCUs.

1.3 Cloud Dashboard

A cloud dashboard is a monitoring and controlling GUI for the multiple services, that you can build and
access on a web browser. It has key advantages over on-premises software such as being easier to deploy,
requiring little to no IT support and is accessible on multiple devices.

The Dashboard provides a high-level view of your entire fleet of devices and allows you to act on individual
devices quickly. You can view graphical representations of relevant device information for your fleet, such as
device ownership type, compliance statistics, and platform and OS breakdowns. You can access each set of
devices in the presented categories by selecting any of the available data views from the Device
Dashboard.

R11AN0604EU0103 Rev.1.03 Page 3 of 24
May.08.23 RENESAS

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

1.3.1 Data Monitoring

Data monitoring on the dashboard is a cloud data analytics monitoring solution that lets you track your
performance metrics and easily visualize your data sets. You will be able to get a high-level view of your
metrics, or you can drill down and analyze the detail.

For instance, it can be sensor data coming from the device in the form of temperature, pressure, and so
forth.

1.3.2 Device Management

Device Management provides high-level control to configure the devices in bulk for the entire fleet of
devices or to control the individual devices.

Note: All the Dashboard-specific details for this Application Project are discussed in the later section of the
document.

1.4 AWS IoT Core

AWS IoT Core is a managed cloud service that lets connected devices easily and securely interact with
cloud applications and other devices. AWS IoT Core can support billions of devices and trillions of
messages. It can process and route messages to AWS endpoints and to other devices reliably and securely.
With AWS loT Core, customer applications can keep track of all devices, all the time, even when devices are
not connected.

AWS IoT Core addresses security concerns for the infrastructure by implementing mutual authentication and
encryption. AWS loT Core provides automated configuration and authentication upon a device’s first
connection to AWS IoT Core, as well as end-to-end encryption throughout all points of connection, so that
data is only exchanged between devices and AWS loT Core with proven identity.

This application note focuses on complementing the security needs of AWS IoT Core through installing a
proven identity for the RA MCU by storing a X.509 certificate and asymmetric cryptography keys in Privacy
Enhanced Mail (PEM) format in the on-board flash. The RA MCU has on-chip security features, such as Key
Wrapping, to protect the private key associated with the public key and the certificate associated with the
devicel. Additionally, RA MCUs can also generate asymmetric keys using features of the Secure
Cryptography Engine (SCE) and API available through the FSP. The SCE accelerates symmetric
encryption/decryption of data between the connected device and AWS loT, allowing the ARM Cortex-M
processor to perform other application specific computations.

1.5 MQTT Protocol Overview

This application note features Message Queuing Telemetry Transport (MQTT) as it is a lightweight
communication protocol specifically designed to tolerate intermittent connections, minimize the code footprint
on devices, and reduce network bandwidth requirements. MQTT uses a publish/subscribe architecture which
is designed to be open and easy to implement, with up to thousands of remote clients capable of being
supported by a single server. These characteristics make MQTT ideal for use in constrained environments
where network bandwidth is low or where there is high latency and with remote devices that might have
limited processing capabilities and memory. The RA MCU device in this application note implements a Core
MQTT which communicates with AWS IoT and exchanges example telemetry information, such as
temperature, pressure, humidity, accelerometer, magnetometer and many more types of sensor data.

1.6 TLS Protocol Overview

The primary goal of the Transport Layer Security (TLS) protocol is to provide privacy and data integrity
between two communicating applications or endpoints. AWS loT mandates use of secure communication.
Consequentially, all traffic to and from AWS IoT is sent securely using TLS. TLS protocol version 1.2 or later
ensures the confidentiality of the application protocols supported by AWS loT. A variety of TLS Cipher Suites
are supported. This application note configures the RA Flexible Software Package for the MCU based device
to provide the following capabilities and AWS IoT negotiates the appropriate TLS Cipher Suite configuration
to maximize security.

1 This application note does not focus on using Key Wrapping for securely storing the private key for devices
deployed in a production environment.

R11AN0604EU0103 Rev.1.03 Page 4 of 24
May.08.23 RENESAS

https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

Table 1. TLS with Crypto Capabilities in RA FSP

Secure Crypto Hardware Acceleration Supported

Key Format Supported AES, ECC, RSA
Hash SHA-256

Cipher AES

Public Key Cryptography ECC, ECDSA, RSA
Message Authentication Code (MAC) HKDF

On top of these supported features, Mbed Crypto middleware also supports a variety of features which can
be enabled through the RA Configurator. Refer to the FSP User’'s Manual section for the Crypto Middleware
(rm_psa_crypto).

1.7 Device Certificates, CA, and Keys

Device Certificates, Certificate Authorities (CA), and Asymmetric Key Pairs create the foundation for trust
needed for a secure environment. The background information on these commonly used components in
AWS is as follows:

A digital certificate is a document in a known format that provides information about the identity of a device.
The X.509 standard includes the format definition for public-key certificate, attribute certificate, certificate
revocation list (CRL), and attribute certificate revocation list (ACRL). X.509-defined certificate formats (X.509
Certificates) are commonly used on the internet and in AWS IoT for authenticating a remote entity/endpoint,
that is, a Client and/or Server. In this application note, an X.509 certificate and asymmetric cryptography key
pair (public and private keys) are generated from AWS loT and installed (during binary compilation) into the
RA MCU device running the Core MQTT to establish a known identity. In addition, a root Certification
Authority (CA) certificate is also downloaded and used by the device to authenticate the connection to the
AWS loT gateway.

Certification authority (CA) certificates are certificates that are issued by a CA to itself or to a second CA for
the purpose of creating a defined relationship between the two CAs. The root CA certificate allows devices to
verify that they're communicating with AWS loT Core and not another server impersonating AWS loT Core.

The public and private keys downloaded from AWS IoT use RSA algorithms for encryption, decryption,
signing and verification?. These key pairs, and certificates are used together in the TLS process to:

1. Verify device identity.
2. Exchange symmetric keys, for algorithms such as AES, for encrypting and decrypting data transfers
between endpoints.

2. Running the MQTT/TLS Cellular Application Example

Refer to RA CK-RA6M5 AWS Ethernet Getting Started Guide as part of this project bundle for details on
running the project and visualizing the sensor data on Renesas AWS dashboard.

3. AWS Core MQTT with Cellular Interface

3.1 AWS Core MQTT

The AWS MQTT library included in RA FSP can connect to either AWS MQTT or to any third party MQTT
broker such as Mosquitto. The complete documentation for the library can be found on the AWS loT Device
SDK C: MQTT website. Primary features supported by the library are:

e MQTT connections over TLS to an AWS loT Endpoint or Mosquitto server or other MQTT broker.

The AWS Core MQTT can be directly imported into a Thread stack. It is configured through the RA
Configuration Perspective. To add the AWS Core MQTT to a new thread, open Configuration.xml with
the RA Configuration. While ensuring that the correct thread is selected on the left, use the tab for Stacks >
New Stack > Search and search for the keyword AWS Core MQTT.

2 Public Key length used is 2048 bits.

R11AN0604EU0103 Rev.1.03 Page 5 of 24
May.08.23 RENESAS

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html#mqtt-sdk
https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html#mqtt-sdk

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

Stacks Configuratlon Generate Project Content
Threads | New Thread #Remove | New Thread Stacks nal:gr S P rmove
~ 4 HAL/Common ‘@ Add stacks to the selected thread by using the 'New Stack > toolbar button (above), or by pasting t Artificial Intelligence >
& g_ioport I/O Port (r_ioport) Audio >
4 FreeRTOS Port (rm_freertos_port) Bootloader >
CapTouch >
Connectivity >
DsP >
Input >
Monitoring >
Motor 4
Netwaorking >
Power >
RTOS 4
Security >
Sensor 4
Storage >
System >
Objects €] New Object > # Rermove Timers ’
Transfer >
| Search.. |

Summary ‘ BSP ‘ Clocks ‘ Pmsllnterrupts Event Links {Sta:ksJ Cnmpﬂnehtsl

Figure 2. AWS Core MQTT Module Selection

Adding the AWS Core MQTT stack results in the default configuration with some unmet dependencies, as
shown in the following Figure 3. FSP offers different Transport interfaces to the users. In this application note
we will be covering the Cellular Interface which uses the AWS Transport Interface on MbedTLS/PKCS11 as
shown in the Figure 4.

& aws Transport Interface on MbedTLS/PKCS11 (rm_aws_transport_interface_port)

@

% Add Sockets Wrapper | |# AWS PKCS11 to MbedTLS

Figure 3. AWS Core MQTT Stack View

While the AWS Core MQTT stack shown contains a lot of dependencies and configurable properties, most
default settings can be used as-is. The following change is needed to meet all unmet dependencies (marked
in red) for the AWS Core MQTT stack added to a new project (as shown above):

e Enable Mutex and Recursive Mutex usage support as needed by IoT SDK and FreeRTOS in the created
Thread properties.

Upon completion of the above step, the AWS Core MQTT is ready to accept a socket implementation, which
has dependencies on using a TLS Session and an underlying TCP/IP implementation.

Additional documentation on the AWS Core MQTT is available in the FSP User's Manual under RA Flexible
Software Package Documentation > API| Reference > Modules > AWS Core MQTT.

R11ANO604EU0103 Rev.1.03 Page 6 of 24
May.08.23 RENESAS

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

3.2 Transport Layer Implementation

The FSP provided AWS Transport Interface provides options for Cellular, Ethernet and Wi-Fi. AWS
Transport Interface on MbedTLS11 module is used for the Cellular Interface. While the RA FSP contains a
Secure Socket Implementation for both Wi-Fi and Ethernet, this application and application note focuses on
the use of the Cellular Interface.

Cellular Sockets can be added to the Thread Stack by clicking on Add Sockets Wrapper > New > AWS
Cellular Sockets Wrapper.

AWS Core MQTT

@©

=

AWS Transport Interface on MbedTLS/PKCS11 (rm_aws_transport_interface_port)

©

+ Add Sockets Wrapper & AWS PKCS11 to MbedTLS

AWS Cellular Sockets Wrapper I
AWS Silex WiFi Sockets Wrapper (rm_aws_sockets_wrapper_silex)
AWS TCP Sockets Wrapper

AWS da16200 WiFi Sockets Wrapper (rm_aws_sockets_wrapper_da16200)
(rm_aws_pkcs11_pal_littl

®efs) H@

New

48

p
L

“IT
¢ ¢ ey

Figure 4. Adding Cellular Interface to the Core MQTT Module
Upon addition, the needed stack is complete and has unmet dependencies for the dependent modules.
Now hover the cursor over the red blocks and the error will pop up. Make the appropriate settings.

e For the Buffer Allocation error: Choose the heap implementation using New Stack > RTOS >
FreeRTOS Heap 4. Also, set Dynamic Memory allocation using Application Thread > Properties >
Memory Allocation > Support Dynamic Allocation > Enabled.

e xTimerPendFuncionCall must be enabled using Application Thread > Common > Optional Functions
> xTimerPendFunctionCall() Function > Enabled

e For AWS PKCS11 to MbedTLS error: MBEDTLS_CMAC_C must be defined Using MbedTLS(Crypto
Only) > Common > Message Authentication Code > MBEDTLS_CMAC_C.

e For Crypto, MBEDTLS_ECDH_C in MbedTLS must be defined when using MbedTLS. Using
MbedTLS(Crypto Only) > Public Key Cryptography(PKC) >ECC > MBEDTLS_ECDH_C.

e For Crypto: MBEDTLS_FS_IO, MBEDTLS_PSA_CRYPTO_STORAGE_C,

MBEDTLS PSA_ITS_FILE_C in MbedTLS must be defined when using MbedTLS. Using
MbedTLS(Crypto Only) > Common > Storage.

e For RTOS Heap memory error, set Heap Memory allocation using Application Thread > Properties >
Memory Allocation > Total Heap Size > 0x20000.

e The flash file system for the persistent storage is needed. This can be added by clicking on Add AWS
PKCS11 PAL module > New > AWS PKCS11 PAL on LittleFS.(Note: If already added Ignore this step)

e Add heap under BSP | RA Common | Heap Size of 0x20000 is required to do malloc with LittleFS
and other standard library functions.

e Mutexes must be enabled using Application Thread > Common > General > Use Mutexes > Enabled

e Mutexes must be enabled using Application Thread > Common > General > Use Recursive Mutexes
> Enabled

o UART specific errors can be resolved by enabling the Flow control and selecting the appropriate RTS and
CTS pin selection.

Note: These are the Basic settings required to remove the error from the configurator. More specific

configurations are listed in the specific module and its usage.

R11AN0604EU0103 Rev.1.03 Page 7 of 24
May.08.23 RENESAS

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

After all the appropriate settings have taken care of the errors due to the missing configuration, the new
configurator screenshot looks clean with no errors as shown below in the Figure 5.

F AWS Core MQTT

@

-

¥ pws Transport Interface on MbedTLS/PECS11 (rm_aws_transport_interface_port)

@

L ry

¥ AWS Cellular Sackets Wrapper ¥ AWS PKCS11 to MbedTLS

@ o
L s s
; T - T T T

nws Cellular Interface on RYZ (ren_cellular_ryz_aws) F aws Cellular/WiFi F AWS PKCS11 PAL on ¥ FreeRTOS MbedTLS Port

MbedTLS Bio LittleFS
(rrm_aws_pkes11_pal_litt]

|@ |@ @ °f)]

Figure 5. Expanded Cellular Socket Interface Module

Additional documentation on AWS Transport Interface on MbedTLS is available in the FSP User’'s Manual
under RA Flexible Software Package Documentation > API Reference > Modules > AWS Transport Interface
on MbedTLS/PKCS11.

3.3 Mbed TLS

Mbed TLS is Arm®'s implementation of the TLS protocols as well as the cryptographic primitives required by
those implementations. Mbed TLS is also solely used for its cryptographic features even if the TLS/SSL
portions are not used.

TLS Support uses FreeRTOS+Crypto which eventually uses Mbed TLS. Use of Mbed TLS requires
configuration and operation of the Mbed Crypto module which in turn operates the SCE on the MCU.

The following underlying mandatory changes are needed to the project using the cellular Sockets on
FreeRTOS+Crypto module:

1. Use FreeRTOS heap implementation scheme 4 (first fit algorithm with coalescence algorithm) or scheme
5 (first fit algorithm with coalescence algorithm with heap spanning over multiple non-adjacent/non-
contiguous memory regions.

2. Enable support for dynamic memory allocation in FreeRTOS.

Enable Mbed TLS platform memory allocation layer.

4. Enable the Mbed TLS generic threading layer that handles default locks and mutexes for the user and
abstracts the threading layer to use an alternate thread-library.

5. Enable Elliptic Curve Diffie Hellman library.

6. Change FreeRTOS Total Heap Size to a value greater than 0x20000.

7. Add Persistent Storage on LittleFS.

w

Additional documentation on the Mbed TLS is available in the FSP User's Manual under RA Flexible
Software Package Documentation > AP| Reference > Modules > Crypto Middleware (rm_psa_crypto).

R11AN0604EU0103 Rev.1.03 Page 8 of 24
May.08.23 RENESAS

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

3.4 MQTT Module APIs Usage
Table 2 lists APIs provided by AWS Core MQTT that are used as a part of the Application Example.

Table 2. MQTT Module APIs

MQTT _Init Initializes an MQTT context

MQTT_Connect Establishes an MQTT session

MQTT_Subscribe Sends MQTT SUBSCRIBE for the given list of topic filters to
the broker

MQTT_Publish Publishes a message to the given topic name

MQTT_Ping Sends an MQTT PINGREQ to broker

MQTT_Unsubscribe Sends MQTT UNSUBSCRIBE for the given list of topic
filters to the broker

MQTT_Disconnect Disconnect an MQTT session

MQTT_ProcessLoop Loop to receive packets from the transport interface.
Handles keep-alive

MQTT_ReceiveLoop Loop to receive packets from the transport interface. Does
not handle keep-alive

MQTT_GetSubAckStatusCodes | Parses the payload of an MQTT SUBACK packet that
contains status codes corresponding to topic filter
subscription requests from the original subscribe packet

MQTT_Status_strerror Error code to string conversion for MQTT statuses.

MQTT_PublishToResend Get the packet ID of the next pending publish to be resent

4. Cloud Connectivity Application Example

4.1 Overview

This application project demonstrates the use of APIs available through the Renesas FSP-integrated
modules for Amazon IoT SDK C, Mbed TLS module, Amazon FreeRTOS, and HAL Drivers operating on
Renesas RA MCUs. Network connectivity is established using Cellular module. The application running on a
Renesas Cloud Kit also serves as a guide for the operation of Core MQTT, Mbed TLS/Crypto, and Cellular
configuration, using the FSP configurator. The application may be used as a starting point for inspiring other
customized cloud-based solutions using Renesas RA MCUs. In addition, it simply demonstrates the
operation and setup of cloud services available through the cloud service provider.

The upcoming sub-sections show step-by-step creation of a device and security credentials policies as
required by the AWS IOT on the cloud side to communicate with the end devices. The example
accompanying this documentation demonstrates Subscribe and Publish messaging between Core MQTT
and MQTT Broker, on demand publication of sensor data, and asynchronous publication of a “sensor data”
event from the MCU to the Cloud. The device is also subscribed to receive actuation events (LED indication)
from the Cloud.

R11AN0604EU0103 Rev.1.03 Page 9 of 24
May.08.23 RENESAS

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

Bif

on/Of {Aclua‘llon} ¢ Subscribe o LED ON/OFF i
I : |
TItT) ' H)
@ i« Telemetry Publishinge—: —ps (-\\
TTTTT [(Actuation) @
MCU l :
i I AWS loT
i PUBLISH / SUBSCRIBE
/»,“—", ;’Subsl:ribe tothe Sensor Data:
\.,_,./
Publish Senzor Data
SENSOR

AWS 10T Core - MOTT Broker

Figure 6. MQTT Publish/Subscribe to/from AWS loT Core
4.2 MQTT/TLS Application Software Overview
The following files from this application project serve as a reference, as shown in Table 3.

Table 3. Application Project Files

No. Filename Purpose

1. src/app_thread _entry.c Contains initialization code and has the main
thread used in Cloud Connectivity application.

2. src/cellular_setup.c Contains Cellular Specific init functions and
data structures.

3. src/common_init.c Contains code used to initialize common
peripherals across the project.

4, src/common_init.h Contains macros, data structures, and

functions prototypes used to initialize common
peripherals across the project.

5. src/common_utils.c Contains code commonly used across the
project.
6. src/common_utils.h Contains macros, data structures, and

functions prototypes commonly used across
the project.

7. src/console_thread_entry.c Contains the code for command line interface
and flash memory operations.

8. src/1CM_20948.c Contains the code for the 9-Axis MEMS
Motion Tracking™ Sensor

9. src/1CM_20948.h Contains the Data structure function

prototypes for the 9-Axis MEMS Motion
Tracking™ Sensor

10. src/ICP_10101.c Contains the code for Barometric Pressure
and Temperature Sensor
11. src/ ICP_10101.h Contains the Data structure and function

prototypes for Barometric Pressure and
Temperature Sensor

R11AN0604EU0103 Rev.1.03 Page 10 of 24
May.08.23 RENESAS

Renesas

RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

No.

Filename

Purpose

12.

src/mqtt_demo_helpers.c

Contains code and functions used in MQTT
interface for Cloud Connectivity.

13.

src/mqtt_demo_helpers.h

Accompanying header for exposing
functionality provided by
mqtt_demo_helpers.c.

14.

src/oximeter_thread _entry.c

Contains the code for Heart Rate, Blood
Oxygen Concentration, Pulse Oximetry,
Proximity, Light and Color Sensor

15.

src/Oximeter.c

Contains data structures and functions used
for the oximeter sensor

16.

src/Oximeter.h

Contains the Data structure and function
prototypes for the oximeter sensor

17.

src/oximstruct.h

Contains the Data structure for the oximeter
sensor

18.

src/r_typedefs.h

Contains the common derived data types

19.

src/RA_HS3001.c

Contains the code and function for Renesas
Relative Humidity and Temperature Sensor.

20.

src/RA_HS3001.h

Contains the common data structure’s
function prototypes for the Renesas Relative
Humidity and Temperature sensors.

21,

src/RA_ZMOD4XXX_Common.c

Contains the common code for the Renesas
ZMOD sensors

22,

src/RA_ZMOD4XXX_Common -h

Contains the common data structure’s
function prototypes for the Renesas ZMOD
sensors

23.

src/RA_ZMOD4XXX_1AQlstGen.c

Contains the common code for the Renesas
ZMOD Internal Air Quality sensors

24,

src/RA_ZMOD4XXX_0AQlstGen.c

Contains the common code for the Renesas
ZMOD Outer Air Quality sensors

25.

src/Rmcl2C.c

Contains the 12C wrapper functions for the
third-party sensors not integrated with FSP

26.

src/Rmcl2C.h

Contains the 12C function prototypes for
wrapper functions for the third-party sensors
not integrated with FSP

27.

src/sensor_thread_entry.c

Contains the Code to access the Sensor data
from the different sensors

28.

src/uart _CATM1.c

Contains the code to access the UART
interface to the CATM1 module for back
access the SIM info for activation

29.

src/uart_CATM1.h

Contains the Function prototypes to access
the UART interface to the CATM1 module for
back access the SIM info for activation

30.

src/ user_choice.c

Contains the code for user’s choice of sensors
and user configurations

31.

src/user_choice.h

Contains the Function prototypes for the
Sensor and its user configuration for the
different sensors and its data accessibility.

32.

src/usr_config.h

To customize the user configuration to run the
application.

33.

src/usr_hal.c

Contains data structures and functions used
for the Hardware Abstraction Layer (HAL)
initialization and associated utilities.

34.

src/usr_hal.h

Accompanying header for exposing
functionality provided by usr_hal .c.

R11ANO604EU0103 Rev.1.03

May.08.23

Page 11 of 24

RENESAS

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular
No. Filename Purpose
35. src/usr_data.h Accompanying header file for the application
thread.
36. zmod_thread_entry.c Contains the code for indoor air quality sensor
37. src/SEGGER_RTT/SEGGER_RTT.c Implementation of SEGGER real-time transfer
38. src/SEGGER_RTT/SEGGER_RTT.h (RTT) which allows real-time communication
39. src/SEGGER_RTT/SEGGER_RTT_Conf.h on targets which support debugger memory
40, Src/SEGGER_RTT/SEGGER RTT printf.c | accesses while the CPU is running.
41. src/ Retry algorithms with random back off for the
backoffAlgorithm/backoff _algorithm | nextretry attempt
-C
42. src/ Retry algorithms with random back off for the
backoffAlgorithm/backoff _algorithm | nextretry attempt header file
-h
43, src/subcription_manager/ MQTT Subscription manager, which handles
mgtt_subscription_manager.c the callback
44. src/subcription_manager/ Associated header file for MQTT Subscription
mqtt_subscription_manager.h manager, which handles the callback.
45, src/console_menu/menu_catm.c Contains functions to get SIM info of the
CATM1 from main menu on CLI
46. src/console_menu/menu_catm.h Contains function prototypes to get SIM info
of the CATM1 from main menu on CLI
47. src/console_menu/console.c Contains data structures and functions used
to print data on console using UART
48. src/console_menu/console.h Contains the Function prototypes used to print
data on console using UART
49. src/console_menu/menu_Tflash.c Contains data structures and functions used
to provide CLI flash memory related menu
50. src/console_menu/menu_flash.h Contains the Function prototypes and macros
used to provide CLI flash memory related
menu
51. src/console_menu/menu_kis.c Contains functions to get the FSP version, get
UUID and help option for main menu on CLI
52. src/console_menu/menu_kis.h Contains the function prototypes and macros
used to get fsp version, get uuid and help
option for main menu on CLI
53. src/console_menu/menu_main.c Contains data structures and functions used
to provide CLI main menu options
54, src/console_menu/menu_main.h Contains the Function prototypes and macros
used to provide CLI main menu options
55. Src/flash/ flash_hp.c Contains data structures and functions used
to perform flash memory related operations
56. src/flash/ flash_hp.h Contains the Function prototypes and macros
used to perform flash memory related
operations
57. src/i2c.c Contains data structures and functions used
for I2C communication
58. src/i2c.h Contains the Function prototypes and macros
used for I2C communication
59. src/ob1203_bio/KALMAN/kalman.c Contains algorithm for Heart Rate, Blood
60. src/ob1203_bio/KALMAN/kalman.h Oxygen Concentration, Pulse Oximetry,
61. 0b1203 bio/OB1203/0B1203.C Proximiyy, Light and Color Sensor sample
62. 0b1203_bi0/0B1203/0B1203.h calculations
63. 0b1203_bi0/SAVGOL/SAVGOL.c

R11ANO604EU0103 Rev.1.03

May.08.23

Page 12 of 24

RENESAS

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

No. Filename Purpose
64. 0b1203_bi0o/SAVGOL/SAVGOL .h
65. 0b1203_bi10o/SP02/SP02.c
66. 0b1203 bio/SP02/SP02.h
10T DEVICE ' : AWS 10T CORE
Applicstion Thread ' : MAQTT Braker

CONNECT

CONMACK

SUBSCRIBE to Topics

SUBACK
sensorpg@@wpdste | FTEEEmEmmmmmmmmmmmsseseee
PUBLIZH Petiodic and Async Topics to the

|
|

\wait for the message |Async, Periodic] |

Broker |

PUBACK

— J—

3ensors [Acuatons Publish Received from MOTT Broker.
[Subscribed Topics).

Actuator (LED ONAOFF)

PUBACK

UNSUBSCRIBE [.
i i
!\ ©On Error Exit or User terminstion. ,
i h
UNSUBACK

DISCONNECT

L R N i
I

Figure 7. Application Example Implementation Details

4.3 Creating the Application Project using the FSP Configurator

Complete steps to create the project from the start using the e? studio and FSP configurator. The table below
shows the step-by-step process in creating the Project. It is assumed that the user is familiar with the
e? studio and FSP configurator. Launch the installed e? studio for the FSP.

Table 4. Step-by-step Details for Creating the Application Project for Cellular

Steps Intermediate Steps
1 Project Creation: File — New — C/C++ Project
2 Project Template: Templates for New RA C/C++ Project —
Renesas RA C/C++ Project — Next

R11AN0604EU0103 Rev.1.03 Page 13 of 24
May.08.23 RENESAS

Renesas RA Family

RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

Steps Intermediate Steps
3 e? studio - Project Configuration (RA | Project Name (Name for the Project)
C Executable Project) — Note: Input your desired name for the project -> Next
4 Device Selection — FSP Version: 4.4.0
Board: CK-RA6M5
Device: R7TFA6M5BH3CFC
Language: C
5 Select Tools Toolchain: GNU ARM Embedded (Default)
Toolchain version: (10.3.1.20210824 or newer)
Debugger: J-Link ARM - Next
5a Project Type Selection Flat (Non-TrustZone) Project = Next
6 Build Artifact and RTOS Selection Artifact Selection: Executable
RTOS Selection: FreeRTOS(v10.4.6+fsp4.4.0) — Next
Project Template Selection Project Template Selection: FreeRTOS — Minimal — Static
Allocation — Finish
7 Clock HOCO 20MHz —PLL Src:HOCO — PLL Div/2 —PLL Mul
x20.0 — PLL 200MHz
8 Stacks Tab (Part of the FSP Threads — New Thread
Configurator)—
9 Config Thread Properties—
Symbol: app_thread
Name: App Thread
Stack size: 0x12000 Bytes
Priority: 3
Thread Context: NULL
Memory Allocation: Static
10 Generic RTOS configs under thread (Additional configuration on top of the Default Config provided by
FSP)
Common — General Use Mutexs: Enabled
Use Recursive Mutexes: Enabled
Max Task Name Len: 32
Minimal Stack Size: 512
Common — Memory Allocation Support Dynamic Allocation: Enabled
Total Heap Size: 0x20000
Common->Optional Functions xTimerPendFunctionCall() Function: Enabled
11 Add the Heap Implementation in HAL/Common
New Stack — | RTOS — FreeRTOS Heap 4
12 Adding the AWS MQTT Wrapper Module to the Application Thread
Note: Now the Newly created thread (Application thread) is ready to add new stack (Here the AWS
Core MQTT is added)
New Stack — Networking — AWS Core MQTT
12a | Under the AWS Transport Interface New — AWS Cellular Sockets Wrapper
on MbedTLS/PKCS11 ->Add
Sockets Wrapper, add
12b | Under the SCE Compatibility mode, New — Key Injection for PSA CRYPTO
add
12¢ | Under the AWS Core MQTT Common — Retry count for reading CONNACK from
network — 10
13 Adding persistent storage support for AWS PKCS11 and resolve the error in the configurator by

selecting the Heap size in the BSP Tab.

Right-click on pink highlighted stack to:

Under the MbedTLS(Crypto only)Add
LittleFS module —

Use — LittleFS

R11ANO604EU0103 Rev.1.03

May.08.23

Page 14 of 24

RENESAS

Renesas RA Family

RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

Steps

Intermediate Steps

BSP Tab - RA Common—

Heap size: 0x20000

1l4a | Under LittleFS on Flash Block count — (BSP_DATA_FLASH_SIZE_BYTES/256)
15 Some dependency related to TLS Support are needed to be resolved to remove the error in the FSP
configurator by modifying the Mbed TLS(Crypto Only) property settings.
Common — Platform — MBEDTLS_PLATFORM_MEMORY: Define
Common — General — MBEDTLS_ THREADING_C: Define
Common — General — MBEDTLS THREADING_ALT: Define
Common — Public Key ECC — MBEDTLS_ECDH_C: Define
Cryptography (PKC) —
Common —Hardware acceleration RSA 3072 verify: Enabled
— Public key cryptography
Common —Hardware acceleration RSA 4096 verify: Enabled
— Public key cryptography
Common — Storage — MBEDTLS_FS _|O: Define
Common — Storage — MBEDTLS PSA CRYPTO_STORAGE_C: Define
Common — Storage — MBEDTLS_PSA ITS_FILE_C: Define
Common — Message MBEDTLS _CMAC_C : Define
Authentication Code (MAC)—
16a | AWS Cellular Sockets Wrapper Configuration
Note: This is only applicable for the Cellular application project. Most of the default settings remain the
same, except few of the default configuration needs to be changed
AWS Cellular Interface on Module Reset Pin (Port Number): 04
RYZ(rm_cellular_ryz_aws) — Module Reset Pin (Pin Number) 09
16b | AWS Cellular Interface Common > EDRX LIST MAX SIZE: 16
Common RAT PRIORITY COUNT: 1
Comm interface receive timeout: 200
Static allocation context: Enabled
Comm interface static allocation context: Enabled
Static socket context: Enabled
17 Cellular Comm Interface on UART
Name — g_cellular_comm_interface_on_uart
Common — Receive Buffer: 65536
Receive Transfer Size 512
18 g_uart0O UART

Common —

FIFO Support : Enable

DTC Support : Enable

Flow Control Support : Enable

Module g_uart0 UART

General Name: g_uart0
Channel: 0
Baud Baud Rate: 921600
Baud Rate Modulation: Enabled
Flow Control Software RTS Port 04
Software RTS Pin 12
Interrupts Receive Interrupt Priority : Priority 1

Transmit Data Empty Interrupt Priority : Priority 2

Transmit End Interrupt Priority : Priority 2

Error Interrupt Priority : Priority 2

R11AN0604EU0103 Rev.1.03
May.08.23

Page 15 of 24

RENESAS

Renesas RA Family

RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

Message Queue)

Steps | Intermediate Steps
19 Adding the HAL Modules as required for the Application Project: GPT Timer0, GPT Timerl, GPT
Timer2, External IRQ for 30 Seconds periodic timer, 1 second Periodic, Heartbeat Monitor Timer,
respectively.
HAL/Common Stacks — New Stack | — System — Clock Generation circuit on r_cgc
Property Settings for r_icu Name: g_cgcO
HAL/Common Stacks — New Stack | — Input — External IRQ Driver on r_icu
Property Settings for r_icu Name: g_sensorlRQ
Channel: 14
Trigger: Falling
Digital Filtering: disabled
Digital Filtering Sample Clock (PCLK/64)
Pin Interrupt Priority: Priority 2
Callback: sensorOBIRQCallback
HAL/Common Stacks — New Stack | — Timers — Timer Driver on r_gpt
Property Settings for r_gpt — Name: g_timer0
General Channel: 0
Mode: Periodic
Period: 10
Period Unit: Milli seconds
Interrupts: Callback: t_callback
Overflow/Crest Interrupt Priority: Priority 5
HAL/Common Stacks — New Stack | — Timers — Timer Driver on r_gpt
Property Settings for r_gpt — Name: g_timerl
General Channel: 1
Mode: Periodic
Period: 1
Period Unit: Seconds
Interrupts: Callback: g_user_timer_cb
Overflow/Crest Interrupt Priority: Priority 5
HAL/Common Stacks — New Stack | — Timers — Timer Driver on r_gpt
Property Settings for r_gpt — Name: g_timer2
General Channel: 2
Mode: Periodic
Period: 1
Period Unit: Milli Seconds
Interrupts: Callback: TimerCallback
Overflow/Crest Interrupt Priority: Priority 5
20 Modifying the BSP Settings - RA Common for (Main stack, Heap and Subclock Settings)
Property Settings for RA Common Main stack size(bytes): 0x2000
Heap size (bytes): 0x20000
Subclock Populated: ~ Not Populated
21 Adding FreeRTOS Obijects for the Application (Topic Queue needs to be created for the application —

Stacks Tab — Objects —

New Object — Queue

Property Settings for the Queue

Symbol: g_topic_queue

Item Size (Bytes): 64

Queue Length (Items): 16

Memory Allocation: Static

Stacks Tab — Objects —
Property Settings for the Mutex

New Object — Mutex

Symbol: g_sens_data_mutex

Type: Mutex

R11ANO604EU0103 Rev.1.03

May.08.23

Page 16 of 24

RENESAS

Renesas RA Family

RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

Steps

Intermediate Steps

Memory Allocation: Static

Stacks Tab — Objects —
Property Settings for the Mutex

New Object — Mutex

Symbol: g_console_out_mutex

Type: Mutex

Memory Allocation: Static

Stacks Tab — Objects —
Property Settings for the Mutex

New Object — Mutex

Symbol: g_update_console_event

Type: Mutex

Memory Allocation: Static

Stacks Tab — Objects —
Property Settings for the Mutex

New Object — Binary Semaphore

Symbol: g_0ob1203_semaphore

Memory Allocation: Static

Stacks Tab — Objects —
Property Settings for the Semaphore

New Object — Binary Semaphore

Symbol: g_console_binary_semaphore

Memory Allocation: Static

22 Stacks Tab (Part of the FSP Threads — New Thread
Configurator)—
Config Thread Properties— Symbol: sensor_thread
Name: Sensor Thread
Stack size: 8192 Bytes
Priority: 4
Thread Context: NULL
Memory Allocation: Static
23 Adding the HS300X Sensor Module and ZMOD4510 OAQ sensor module to the Sensor Thread

New Stack —

Sensor —» HS300X Temperature/Humidity Sensor

Config HS300X sensor—

Name: g_hs300x_sensor0

Callback: hs300x_callback

New Stack —

Sensor —» ZMOD4510 OAQ Sensor

Config ZMOD4510 sensor—

Name: g_zmod4xxx_sensorl

Callback: zmod4xxx_comms_i2c1_callback

IRQ Callback: zmod4xxx_irql_callback

Adding ICM-20948 and ICP10101 sensors to the Sensor Thread.
Note: FSP doesn’t provide a integrated module for ICM-20948 and ICP10101 sensors. This needs to

be integrated via the i2c communication
be added to the src folder.

device manually. Also its related sensor driver code needs to

New Stack —

Connectivity: 12C Communication Device

Config 12C Comm Device —

Name: g_comms_i2c_device5

Slave Address:0x68

Callback: ICM_comms_i2c_callback

Add 12C Shared Bus—

Add I12C Shared Bus—Used—g_comms_i2c_bus0 I12C
Shared Bus

Module g_i2c_master0 12C Master

Rate: Fast Mode

Under 12C_Master — Interrupt
Priority Level —

5

Adding 12C Communication Device (for |

CP10101) into Sensor Thread

New Stack —

Connectivity: 12C Communication Device

Config 12C Comm Device —

Name: g_comms_i2c_device4

Slave Address:0x63

Callback: ICP_comms_i2c_callback

Add 12C Shared Bus—

Add I12C Shared Bus—Used—g_comms_i2c_bus0 I12C
Shared Bus

R11ANO604EU0103 Rev.1.03

May.08.23

Page 17 of 24

RENESAS

Renesas RA Family

RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

Steps Intermediate Steps
Module g_i2c_master0 12C Master Rate: Fast Mode
25 Stacks Tab (Part of the FSP Threads — New Thread
Configurator) —
Config Thread Properties—
Symbol: oximeter_thread
Name: Oximeter Thread
Stack size: 2048 Bytes
Priority: 4
Thread Context: NULL
Memory Allocation: Static
26 Adding the OB1203 sensor module to the Oximeter Thread
Note : OB1203 sensor code uses non FSP code
New Stack — Connectivity — 12C Communication Driver
Config OB1203 sensor— Name: g_comms_i2c_device3
Callback: comms_i2c_callback
Semaphore Timeout (RTOS only): OXFFFFFFFF
Slave Address: 0x53
Address Mode: 7-Bit
Callback: comms_i2c_callback
27 Stacks Tab (Part of the FSP Threads — New Thread
Configurator) —
Config Thread Properties—
Symbol: zmod_thread
Name: Zmod Thread
Stack size: 2048 Bytes
Priority: 4
Thread Context: NULL
Memory Allocation: Static
28 Adding the ZMOD4XXX sensor module to the Zmod Thread
Note: ZMOD4410 IAQ Sensor is configured (part of the FSP configurator)
New Stack — Sensor —» ZMOD4XXX Gas Sensor
Config ZMOD4XXX sensor— Name: g_zmod4xxx_sensor0
Callback: zmod4xxx_comms_i2c_callback
IRQ Callback: zmod4xxx_irq0_callback
Under External IRQ Name: g_external_irq0
Channel: 4
Pin interrupt priority: 3
Pin: P402
29 Create and add Console processing Thread
Stacks tab (Part of the FSP Threads — New Thread
Configurator)
Configure Thread Properties
Symbol Console_Thread
Name Console_Thread
Stack size 8192 Bytes
Priority 1
Auto start Enabled
Time slicing interval (ticks) 50
30 Adding Uart to Console_Thread
R11AN0604EU0103 Rev.1.03 Page 18 of 24
May.08.23 RENESAS

Renesas RA Family

RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

Steps

Intermediate Steps

New Stack —

Connectivity: UART

Config Common —

FIFO Support: Enable

DTC Support: Enable

Flow Control Support: Enable

Config General —

Name: g_console_uart

Channel:5

Data Bits: 8bits

Parity: None

Stop Bits: 1bit

Config Baud—

Baudrate: 115200

Config Interrupts —

Callback: user_uart_callback

Config Pins —

TXD: P501

RXD: P502

31 Adding Flash to Console Thread

New Stack —

Storage: Flash

Name: user_flash

Data Flash Background Operation: Disabled

Callback: flash_callback

Flash Ready Interrupt Priority: Priority 2

Flash Error Interrupt Priority: Priority 2

32 Adding CATML1 Uart to Console Thread

New Stack —
Config General —

Connectivity: UART

Name: g_catml_uart

Channel:0

Data Bits:8bits

Parity: None

Stop Bits:1bit

Config Baud—

Baudrate: 921600

Config Interrupts —

Callback: catml1_uart_callback

Config Pins —

TXD: P411

RXD: P410

The above configuration is a prerequisite to generate the required stack and features for the cloud
connectivity application provided with this application note. Once the Generate Project Content button is
clicked, it generates the source code for the project. The generated source code contains the required
drivers, stack, and middleware. The user application files must be added into the src folder.

Note: app_thread_entry.c, sensor_thread_entry.c, oximeter_thread_entry.c,
zmod_thread_entry.c, console_thread _entry.c are the auto generated file as part of the
project creation. Users are required to add code to this file.

Note:

To run the application with the supplied code, app_thread_entry.c, sensor_thread_entry.c,

oximeter_thread_entry.c and console_thread_entry.c are available part of this app note
bundle can be merged or overwritten to the autogenerated file.

Note:

FSP generated code must be called/used from the application, while some of the middleware needs

to be called exclusively as part of the application for proper initialization. For instance, the
Mbedtls_platform_setup() call initializes the SCE and TRNG.

For validation of the created project, the same source files listed in section MQTT/TLS Application Software
Overview (as shown in Table 3) may be added. Users are required to add the directory path and subdirectory
for proper compilation. Refer the enclosed project for more details.

The details of the configurator from the default settings to changed settings are described in the following

sections, including the reason for the change.

R11AN0604EU0103 Rev.1.03
May.08.23

Page 19 of 24

RENESAS

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

4.4 MQTT/TLS Configuration

This section describes the MQTT and TLS module configuration settings that are done as part of this
application example.

The following table lists changes made to a default configuration populated by the RA Configurator.
Table 5. Default Configuration for CK-RA6M5

Property Original Changed Value | Reason for Change
Value

Application Thread

Common — General — Use Mutexes | Disabled Enabled This requirement is set by
the AWS IOT SDK C
stack

Common — Memory Allocation — Disabled Enabled This requirement is set by

Support Dynamic Allocation the AWS IOT SDK C
stack

Common — Memory Allocation — 0 0x20000 Heap required for the

Total Heap Size FreeRTOS, AWS IOT

SDK, Mbed TLS

AWS [oT Common

Platform Name Unknown AWS Cloud This value is user
Connectivity selectable and can be set

to any value.

Mbed TLS (Crypto Only)

Platform — Undefine Define This selection is required

Mbedtls_platform_memory in order to support the
Mbed_tls.

General — Mbedtls_threading_alt Undefine Define This selection is required

in order to support the
Mbed_tls to plug in any
thread library.

General — Mbedtls_threading_c Undefine Define This selection is required
in order to support the
Mbed_tls to abstract the
threading layer to allow
easy plugging in any
thread-library.

Public Key Cryptography — ECC — Undefine Define This selection is required
Mbedtls_ecdh_c in order to support the
Mbed_tls to enable the
ECDH module.
LittleFS (Heap Selection)
BSP — RA Common Heap Size 0x0 0x20000 Heap selection for Heap 3
and below needs to be
done here.
R11AN0604EU0103 Rev.1.03 Page 20 of 24

May.08.23 RENESAS

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

5. Sensor Stabilization Time

Sensor Name When Powered Up First Time After Soft or Hard Reset

ZMOD4410 IAQ Up to 1 minute Up to 1 minute

ZMOD4510 OAQ Up to 4 hours Up to 2 hours

0B1203 Up to 1 minute (after placing the Up to 10 seconds (after placing the
index finger on the sensor, it may index finger on the sensor, it may
take up to 60 seconds to sense data) | take up to 60 seconds to sense data)

HS3001 Up to 1 minute Up to 10 seconds

ICP Up to 1 minute Up to 10 seconds

ICM Up to 1 minute Up to 10 seconds

Note: Stabilization time of sensor provided above is from the point of sensor initialized

6. MQTT/TLS Module Next Steps

e For setting up a client using a device certificate signed by a preferred CA certificate, refer to the link:
https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html

e For using a self-signed certificate to configure AWS, refer to the link:
https://developer.amazon.com/docs/custom-skills/configure-web-service-self-signed-certificate.html

7. References

[1] International Telecommunication Union, "ITU-T Y.4000/Y.2060 (06/2012)," 15 06 2012. [Online].
Available: http://handle.itu.int/11.1002/1000/11559.

[2] Amazon Web Services, "AWS loT Core Features,” [Online]. Available:
https://www.amazonaws.cn/en/iot-core/features/.

[3] Amazon Web Services, "AWS IoT Core," [Online]. Available: https://www.amazonaws.cn/en/iot-core/.

[4] W.T.L.L.O.S.R.N.S.R. X. G. K. N. K. S. F. M. K. D. L. I. R. Valerie Lampkin, Building Smarter
Planet Solutions with MQTT and IBM WebSphere MQ Telemetry, IBM Redbooks, 2012.

[5] I. E.T. Force, "The Transport Layer Security (TLS) Protocol Version 1.2," [Online]. Available:
https://tools.ietf.org/html/rfc5246.

[6] Amazon Web Services, "AWS IoT Security," [Online]. Available:
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security.html.

[71 Amazon Web Services, "Transport Security in AWS IoT," [Online]. Available:
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html.

[8] International Telecommunication Union, "X.509 (10/19) Summary," 10 2019. [Online]. Available:
https://www.itu.int/dms_pubrec/itu-t/rec/x/T-REC-X.509-201910-I!!SUM-HTM-E.htm.

[9] Eclipse Foundation, "Eclipse Mosquitto™ - An open source MQTT broker," [Online]. Available:
https://mosquitto.org/.

[10] Amazon Web Services, "AWS IoT Device SDK C: MQTT," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/index.html.

[11] R. Barry, "Mastering the FreeRTOS™ Real Time Kernel," in A Hands-On Tutorial Guide, 2016.

[12] A. 1. D. S. C. Documentation, "AWS IoT Device SDK C: MQTT Functions," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqgtt/mqtt_functions.html.

[13] Amazon, "Configuring the FreeRTOS Demos," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-configure.html.

[14] "Amazon FreeRTOS mbedTLS," [Online]. Available: https://github.com/aws/amazon-
freertos/blob/master/libraries/3rdparty/mbedtls/utils/mbedtls_utils.c.

R11AN0604EU0103 Rev.1.03 Page 21 of 24
May.08.23 RENESAS

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html
https://developer.amazon.com/docs/custom-skills/configure-web-service-self-signed-certificate.html

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

[15] Renesas Electronics Corporation, "Renesas Flash Programmer (Programming GUI) - Documentation,"
[Online]. Available: https://www.renesas.com/us/en/products/software-tools/tools/programmer/renesas-
flash-programmer-programming-gui.html#documents.

8. Known Issues

This section talks about the known FSP and tool related issues. More details can be found at this link
https://github.com/renesas/fsp/issues.

Dashboard works properly with Microsoft edge browser, whereas it does not work properly with Google
Chrome browser.

9. Debugging

Enable the USR_LOG_LVL (LOG_DEBUG) macro in the application project for additional information for
debugging.
10. Troubleshooting

In case of unstable cellular connection or loss of MQTT connection, connect the USB on the RYZ014A Pmod
to the PC to provide additional power to the module. Refer to RYZ014A Pmod Errata.

If the error persists, test the project with ethernet interface (see RA AWS MQTT/TLS Cloud Connectivity
Solution - Ethernet Application Note) to verify the functionality.

R11AN0604EU0103 Rev.1.03 Page 22 of 24
May.08.23 RENESAS

https://github.com/renesas/fsp/issues
https://www.renesas.com/us/en/document/mah/ryz014a-pmod-expansion-board-errata

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

Website and Support

Visit the following vanity URLSs to learn about key elements of the RA family, download components and
related documentation, and get support.

CK-RABMS5 Kit Information renesas.com/ra/ck-rabm5
RA Cloud Solutions renesas.com/cloudsolutions
RA Product Information renesas.com/ra
RA Product Support Forum renesas.com/ra/forum
RA Flexible Software Package renesas.com/FSP
Renesas Support renesas.com/support
R11AN0604EU0103 Rev.1.03 Page 23 of 24

May.08.23 RENESAS

http://www.renesas.com/ra/ck-ra6m5
http://www.renesas.com/cloudsolutions
http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family

RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

Revision History

Description
Rev. Date Page Summary
1.01 Jun.11.22 — Initial release
1.02 Mar.15.23 — Updated to FSP 4.2.0
1.03 May.08.23 — Support for TruPhone SIM and update to FSP 4.4.0

R11ANO604EU0103 Rev.1.03

May.08.23

Re Page 24 of 24
RENESAS

Notice

1.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and

10.

11.

12.

13.
14.

(Notel)

application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
WwWw.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2023 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	Introduction to Components for Cloud Connectivity
	1.1 General Overview
	1.2 Cloud Service Provider
	1.3 Cloud Dashboard
	1.3.1 Data Monitoring
	1.3.2 Device Management

	1.4 AWS IoT Core
	1.5 MQTT Protocol Overview
	1.6 TLS Protocol Overview
	1.7 Device Certificates, CA, and Keys

	2. Running the MQTT/TLS Cellular Application Example
	3. AWS Core MQTT with Cellular Interface
	3.1 AWS Core MQTT
	3.2 Transport Layer Implementation
	3.3 Mbed TLS
	3.4 MQTT Module APIs Usage

	4. Cloud Connectivity Application Example
	4.1 Overview
	4.2 MQTT/TLS Application Software Overview
	4.3 Creating the Application Project using the FSP Configurator
	MQTT/TLS Configuration

	5. Sensor Stabilization Time
	6. MQTT/TLS Module Next Steps
	References
	8. Known Issues
	9. Debugging
	10. Troubleshooting
	Revision History

