

PointLED® – It's nice to be different

Application Note

Valid for:
PointLED®

Abstract

This application note provides insight into the universally deployable and flexibly mountable light source of the PointLED® product family.

A fundamental overview of the LED construction as well as the optical and electrical characteristics and performance of the LED are presented. The unique and versatile mounting capability of the PointLED® is examined in detail.

Author: Retsch, Stefanie / Lang, Kurt-Juergen

Table of contents

A. Applications2
B. PointLED® product family4
Features4
Dimensions4
Product portfolio4
C. Handling and processing5
ESD stability5
Manual handling5
Automated handling5
Pick-and-place nozzle design6
Solder pad design6
Reflow profile7
D. Assembly of the PointLED®8
Through-hole mounting8
SMT mounting9
E. Conclusion9

A. Applications

At first glance, the PointLED® product family differs from other commercially available conventional SMT LEDs. Unlike customary SMT LEDs, the PointLED® does not have a rectangular package, but was developed and constructed as a round component (see Figure 1).

Figure 1: PointLED® from OSRAM Opto Semiconductors

Compared to the rectangular component, the round package has the advantage that it exactly fits into a simple drill hole. In addition to being mounted in the normal manner on the surface (SMT), this permits a perfectly flat, "through-hole" mounting on the circuit board. As a result, the package disappears within the circuit board rather than projecting outward from the surface. An even surface is formed, free of obstructions, so that the connection or mounting of additional components such as a light guide, a button or keyboard is possible.

Conventional SMT LEDs, however, rest directly on the surface of the circuit board or are mounted with reverse-gullwing contacts on the reverse side of the board, so that their light can shine through an appropriately laid-out hole. However, depending on the diameter of the hole a portion of the light radiated by a reverse-gullwing LED can be shadowed by the circuit board, and therefore cannot be used by the application. Furthermore, as the thickness of the circuit board increases, the radiation angle becomes narrower.

For use in a design with several circuit board layers, a reverse-gullwing LED is only conditionally suitable or not at all suitable, due to the full effective component height (≥ 2 mm). The component increases the total thickness of the construction or influences or interferes with the position of other components on the next level.

The versatile PointLED® can be used in many different areas; for applications in which the available space is critical, it represents the ideal choice. Depending on the chip technology employed, the PointLED® can be used as a universal light source in the following areas:

- Backlighting (LCD, buttons, keyboards, advertising)
- Replacement for miniature lamps
- Indicator lighting (e.g. steps, emergency exits etc.)
- Signal and symbol illumination
- Coupled to light guides
- Optical indicators
- Effects lighting (mobile telephone, PC, etc.)

Furthermore, due to its high quality and reliability, it is also suitable for applications in the automotive area, such as:

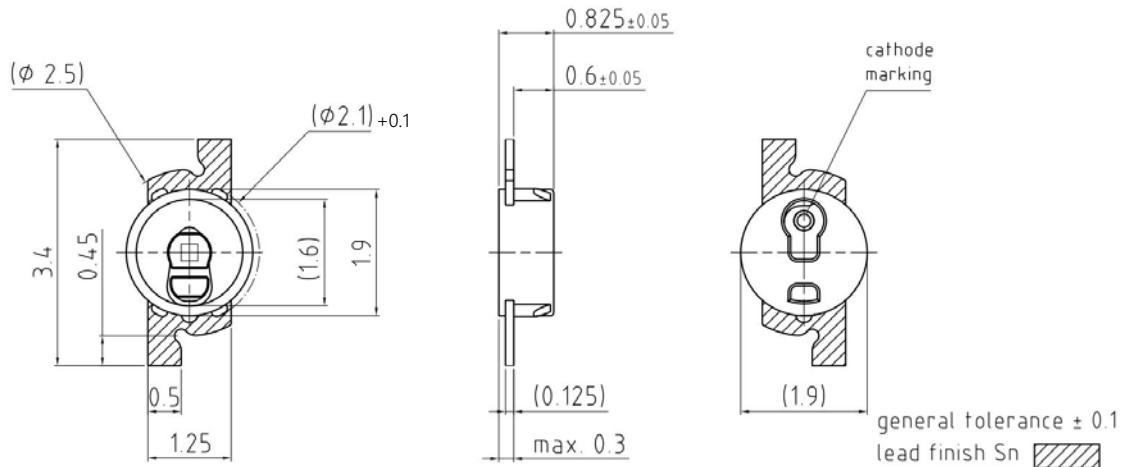
- Interior lighting (e.g. instrument lighting etc.)
- Stop lights (CHMSL)

With its characteristics and extended mounting capability, the PointLED® represents ultimate flexibility in LED selection, gives the developer an enormous freedom and opens up new ways and options.

B. PointLED® product family

Features

The construction of the PointLED® represents the perfect combination of advanced packaging and modern chip technology. With its round, flat miniature package consisting of white plastic, lead frame and encapsulant, it is the smallest light source with a built-in reflector available on the market (Figure 2).


Specially developed for applications with extremely small space requirements, the PointLED® has a diameter of only 2 mm and a total height of 0.775 mm. The reflector itself is only 0.5 mm in height and consequently can be ideally integrated in thin circuit boards.

In development of the package, particular attention was given to flexibility regarding mounting technology. Due to its design, the PointLED® is suited for both variants — for normal surface mount technology (SMT) and for through-hole mounting.

As with all LEDs from OSRAM Opto Semiconductors, the PointLED® product family adheres to the RoHS guideline and contains no lead or other hazardous substances.

Dimensions

Figure 2: Dimensions of the PointLED®

A further significant advantage of the PointLED® product family is shown by the adaptable sealing concept. This permits the use of either a simple clear encapsulant or colored silicone for color conversion (with white LEDs). In combination with the various chip technologies, all colors can be produced and a higher LED lifetime can be achieved.

Product portfolio

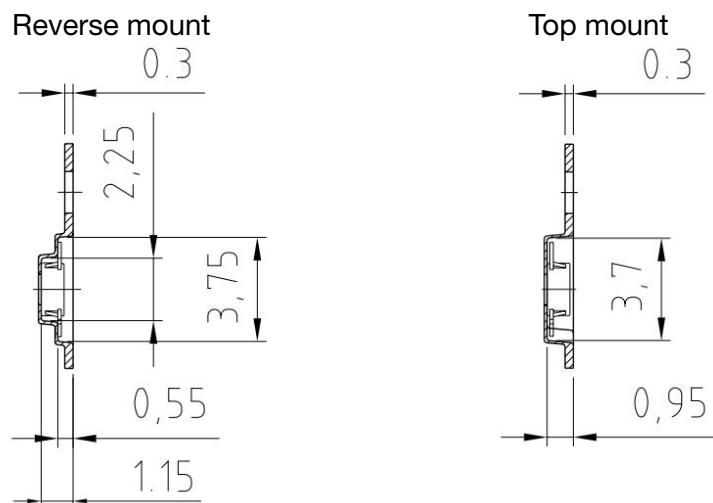
The available product palette ranges from normal LED types with standard chip technology, various low-current LEDs for low power applications and highly efficient PointLED® variants with the latest thin film chip technology.

An overview of the various versions with their type designation, color, wavelength and typical brightness for the respective grouping current can be found on the [OSRAM Opto Semiconductors website](#).

C. Handling and processing

ESD stability

It should additionally be noted that due to the miniature package, the LED does not contain an ESD protective diode. Depending on the chip technology employed, few PointLED® types are therefore sensitive to electrostatic discharge (ESD). It is recommended to use and adhere to the corresponding protective measures (e.g. grounding armband, grounding of equipment etc.). — ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2).


Manual handling

With the variants with a silicone encapsulant, it should be noted however, that direct stress or load on the silicone, e.g. with the ejector, pick-up needle etc., should be avoided. This can lead to damage of the LED (see application note “[Handling of silicone resin LEDs](#)”).

Automated handling

The PointLED® is delivered on tape and reel. The tapes are adapted to the appropriate mounting technique, so that an individual tape is available for top or reverse mounting and the LEDs are correspondingly taken from the reel with the correct orientation (Figure 3).

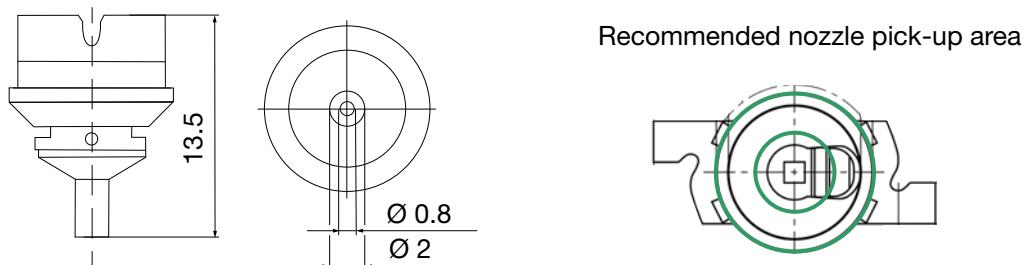
Figure 3: Taping of the PointLED® corresponding to the individual mounting

Therefore the necessary taping should be already considered with order of the LED (Figure 4). In the designation system of the PointLED® the top mount technique is marked by the additional letter “F” (= Flipped). The reverse mounting — standard technology of the PointLED® group — is not marked in the designation additionally.

Figure 4: Individual designation of the PointLED® corresponding to the mounting

Ordering Information

Type	Luminous Intensity ¹⁾ $I_F = 30 \text{ mA}$ I_V	Mounting methode	Ordering Code
LY P47B-T2V1-26-1	355 ... 900 mcd	Reverse	Q65110A4726
LY P47B-T2V1-26-1-F	355 ... 900 mcd	Top	Q65110A4727


Flipped LED in tape for top mount

Each reel only contains a single brightness group and a single wavelength group. That is, from the brightness groups within the family, one tape contains only one of the groups. Generally, the PointLED® is compatible with the existing industrial SMT processing process, so that all prevalent population techniques can be used for the mounting process.

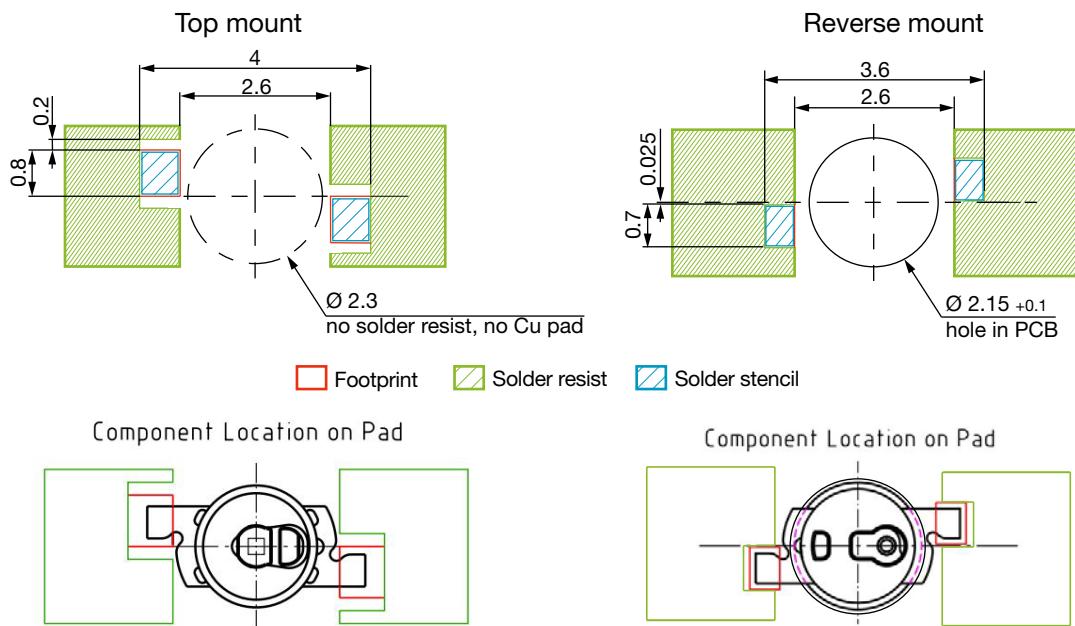
Pick-and-place nozzle design

When processing by means of automated placement machines, care should be taken that an appropriate pick-and-place tool is used and that the process parameters conform to the package characteristics. Figure 5 shows a nozzle recommendation for automated placement.

Figure 5: Recommended nozzle from ASM SIPLACE 3010529-01

The use of a too small, round tool can cause damage (e.g. cracks, breaks) to the housing or to the entire component.

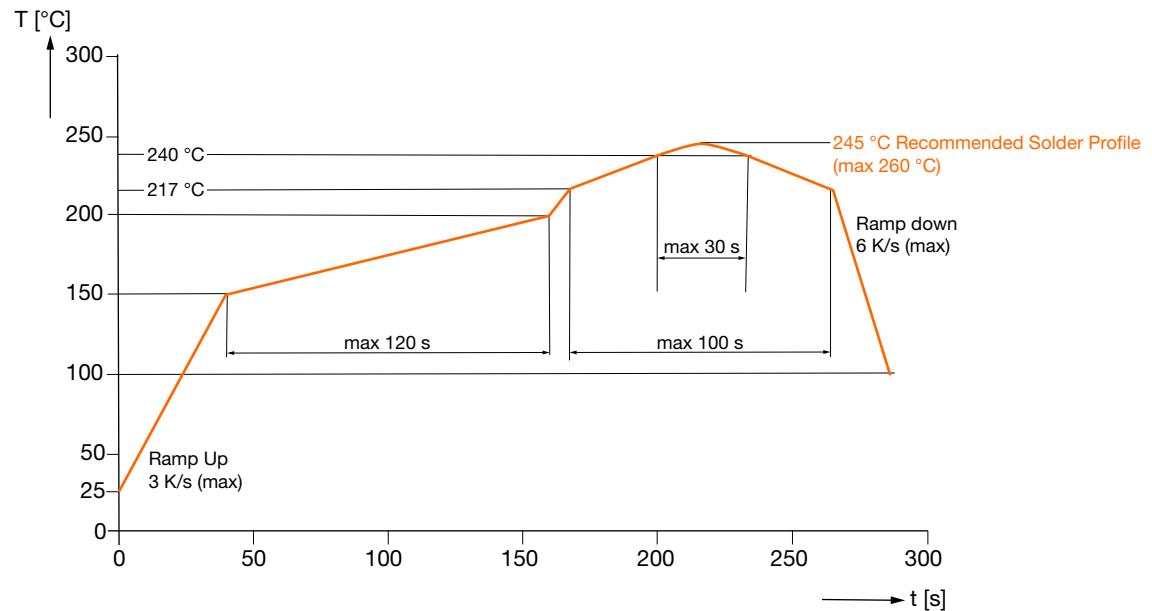
With automatic processing, care should generally be taken that the forces acting upon the LED are kept as low as possible.


Solder pad design

For optimal mounting of the LED and therefore to guarantee the performance of the LED, it is usually advantageous to make use of the recommended solder pad layout. When designing the solder pads for the PointLED® product family, in addition to the characteristics of the LED, the thermal behavior and various mounting methods were also taken into consideration. The pad geometry was optimized with respect to an improved heat transfer. In Figure 6, the solder pads for the two individual mounting methods are shown.

For top mounting, it should be noted that the circuit board area underneath the LED should be free of copper and solder resist. If this is not observed, it can

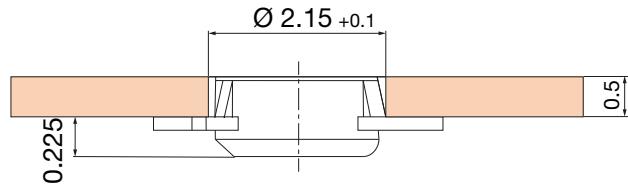
happen that an insufficient solder connection between the solder pad and LED contact is formed, due to the larger gap. This can more readily be seen if only a thin layer of solder paste is applied.


Figure 6: Solder pads of the PointLED® for top – and reverse mounting

Reflow profile

For mounting the components, a standard reflow soldering procedure is recommended, in which a customary SnAgCu metal alloy solder is used. Figure 7 shows the soldering conditions and temperature curve for lead-free soldering of the PointLED® product family.

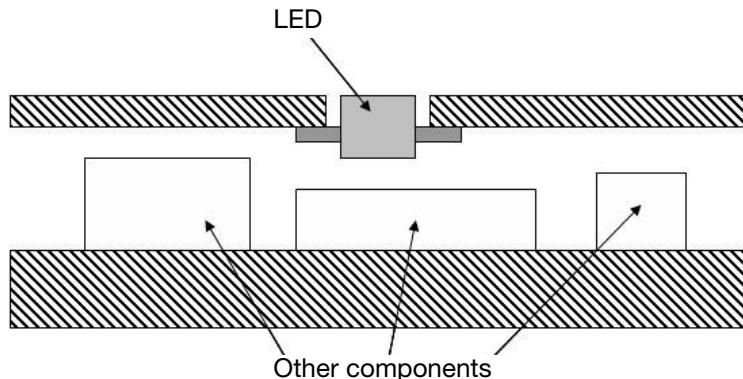
Figure 7: Reflow soldering profile for lead-free soldering


D. Assembly of the PointLED®

The most significant advantage of the PointLED® group is its unique and versatile mounting capability. Developed for extremely flat through-hole mounting by default, it can also be mounted on the circuit board such as a Toplooker LED, directly from above, as usual.

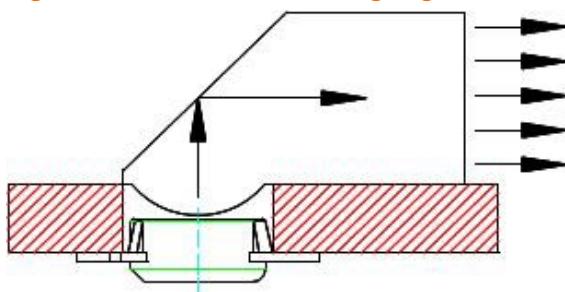
Through-hole mounting

With through-hole mounting, the LED is inserted from the reverse side of the circuit board and sunken in a drilled hole with a diameter of 2.15 mm (+0.1 mm). Connections to the PointLED® occur on the reverse side.


Figure 8: Through-hole mounting

Embedded in a thin circuit board with a thickness of 0.5 mm, a single planar surface is created when the two surfaces are brought flush with each other. This area can be used for other structures, mounting of other components or additional circuit traces. On the reverse side, the LED itself only extends 0.225 mm from the circuit board.

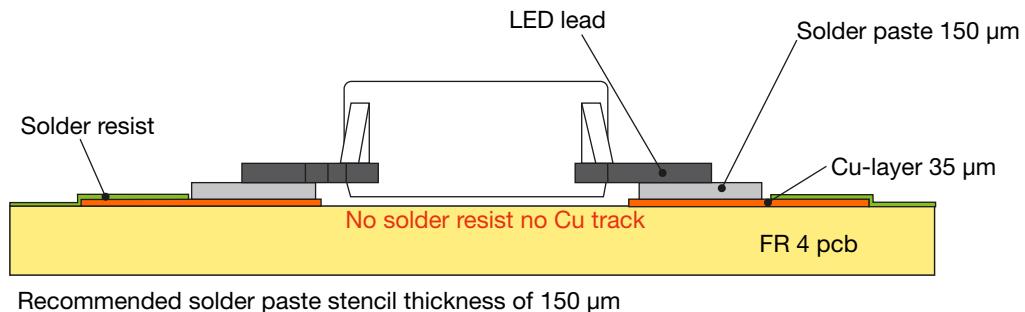
In a multilayer circuit board composite, this has the advantage that components on the following layers have not to be taken into consideration, since the minimum protruding portion of the PointLED® does not represent any interference.


Figure 9: Location of PointLED® in a stack construction

With this use of thicker circuit boards (> 0.5 mm), The LED lies a bit below the surface. Depending on the thickness of the circuit board, this also leads to a narrowing of the radiation characteristics, similar to reverse-gullwing LEDs. In this case however, it is significantly less important.

As an example, Figure 10 shows a construction of the PointLED® with a 1 mm thick light guide.

Figure 10: PointLED® with light guide



The goal here is to couple the radiated light into a light guide and divert the light by 90° by means of the end surface. The drilled hole serves both as an exact alignment and a coupling of the light guide to the LED.

SMT mounting

In consideration of its flat design the corresponding solder pad, the PointLED® is also suited for mounting from the top side (SMT). The LED is placed directly on the circuit board as normal.

Figure 11: SMT mounting of the PointLED® on the surface of the PCB

E. Conclusion

With its small dimensions and its versatile mounting ability, the PointLED® represents a universally deployable light source. In addition, though the possibility of a nearly full integration within the circuit board, it is ideal for applications in which the limited amount of available space plays a decisive role.

If the PointLED® is compared to larger LEDs such as the TOPLED®, it can be ascertained that through the combination of a modern package and highly efficient chip technology, an equally high brightness and optical efficiency can be achieved.

The White PointLED® for example, with a typical brightness of 1600 mcd and a radiation angle of 120°, is also suited for applications with high brightness requirements.

With its unique characteristics, the PointLED® from OSRAM Opto Semiconductors gives developers and designers enormous degrees of freedom, opening up new ways and application areas.

Don't forget: LED Light for you is your place to be whenever you are looking for information or worldwide partners for your LED Lighting project.

www.ledlightforyou.com

ABOUT OSRAM OPTO SEMICONDUCTORS

OSRAM, Munich, Germany is one of the two leading light manufacturers in the world. Its subsidiary, OSRAM Opto Semiconductors GmbH in Regensburg (Germany), offers its customers solutions based on semiconductor technology for lighting, sensor and visualization applications. OSRAM Opto Semiconductors has production sites in Regensburg (Germany), Penang (Malaysia) and Wuxi (China). Its headquarters for North America is in Sunnyvale (USA), and for Asia in Hong Kong. OSRAM Opto Semiconductors also has sales offices throughout the world. For more information go to www.osram-os.com.

DISCLAIMER

PLEASE CAREFULLY READ THE BELOW TERMS AND CONDITIONS BEFORE USING THE INFORMATION SHOWN HEREIN. IF YOU DO NOT AGREE WITH ANY OF THESE TERMS AND CONDITIONS, DO NOT USE THE INFORMATION.

The information provided in this general information document was formulated using the utmost care; however, it is provided by OSRAM Opto Semiconductors GmbH on an "as is" basis. Thus, OSRAM Opto Semiconductors GmbH does not expressly or implicitly assume any warranty or liability whatsoever in relation to this information, including – but not limited to – warranties for correctness, completeness, marketability, fitness for any specific purpose, title, or non-infringement of rights. In no event shall OSRAM Opto Semiconductors GmbH be liable – regardless of the legal theory – for any direct, indirect, special, incidental, exemplary, consequential, or punitive damages arising from the use of this information. This limitation shall apply even if OSRAM Opto Semiconductors GmbH has been advised of possible damages. As some jurisdictions do not allow the exclusion of certain warranties or limitations of liabilities, the above limitations and exclusions might not apply. In such cases, the liability of OSRAM Opto Semiconductors GmbH is limited to the greatest extent permitted in law.

OSRAM Opto Semiconductors GmbH may change the provided information at any time without giving notice to users and is not obliged to provide any maintenance or support related to the provided information. The provided information is based on special conditions, which means that the possibility of changes cannot be precluded.

Any rights not expressly granted herein are reserved. Other than the right to use the information provided in this document, no other rights are granted nor shall any obligations requiring the granting of further rights be inferred. Any and all rights and licenses regarding patents and patent applications are expressly excluded.

It is prohibited to reproduce, transfer, distribute, or store all or part of the content of this document in any form without the prior written permission of OSRAM Opto Semiconductors GmbH unless required to do so in accordance with applicable law.

OSRAM Opto Semiconductors GmbH

Head office:

Leibnizstr. 4
93055 Regensburg
Germany
www.osram-os.com

OSRAM
Opto Semiconductors