PIC32CX-BZ3 Programming Specification .
8 &P Q\Mlcnocmp

Introduction

This programming specification applies to the PIC32CX-BZ3 family of wireless microcontroller and guides the
developers of external programming tools. This document also applies to the module WBZ35x as it contains
PIC32CX-BZ3.

In the development of a programming tool, it is necessary to understand the internal Flash program operations
of the target device and the Special Function Registers (SFRs) that control Flash programming, as an external

programming tool and its software use the same operations and registers. For more details on these operations
and control registers, see Program Flash Memory in the PIC32CX-BZ3 and WBZ35x Family Data Sheet (DS70005541).

The programming tool is responsible for executing the necessary programming steps and completing the
programming operation by sending Device Service Unit (DSU) commands over the Serial Wire Debug (SWD)
interface of the PIC32CX-BZ3.

Table of Contents

INEFOAUCTION .ttt s b st st sttt et et e st et e st e bt sbe s b s b e s b e s b e b e be b e b e st e st ensens e st e st ese e bt ebesbesbesbesbesbebesensensensans 1
T QUICK REFEIENCES. ... ittt ettt s e st st e st et et e e e s e e st esaessesseseeseeseesassaebesbesbesbesesbansansansansan 4
1.1, Reference DOCUMEBNTATION. ...cccvivirererterertestestet ettt s e st s b st st st te st et e s et e s esasbesbesbesbesbesbesbesbessensens 4
2. OVBIVIEW.iutiiiiiteeieeiteiteete st etesteeste st esbeestesteessesss e besssesseessesbeessesasebeessesseenseessenseassabeessesbeenseeatesbeenseneeensasseensesssanbesssessenn 5
R B Vg 11 (= Tot (T OO OO OO OO OO OSSP SUOURRRORUUOTRUOT 5
2.2, DeViCe SEIVICE UNIT (DSU)uuuiiiiiiiiiiiiiieieeecctee ettt cebee e cstree e esare e eebaeeeebbeeeebaeesasbesesasbesesssssesssbseesssssecesbasesastesesnes 5
2.3, Programming INTEITACE. ..ottt ettt st b e bt e e s b et sbe e ebenesbenesbenesbeneens 5
S |V =10 oo o YOO PSPPSR 6
2.5, SecUre BOOt ROM @Nd EFUSE......cciririirierienieiesietet ettt st stestesteste st e sbe st e tesae s e s esaesassesbesbesbesbesbesbessensensansons 6
2.6. BoOt, BCFG and OTP PAES (BFIM)....c.cerueutrieirieirieinieisietetetetete et etest et st ebestebe st seste e stesessesesaenesbenesbenesbenenes 6
2.7. Code Protection and SECUIEd DEVICE........ccuiveireririiirtireetestee ettt s st ste s be e stesesbesassensesensssenessensens 7
2.8, MEIMONY MAP . iutiiirientieie ittt et st st s et st e bt et e s bt et e s ae e s e s st e be s st e bt ease s bt e s e sae e b e embesseeasesseensesaeenseennesbesnsennes 7
3. DBVICE RESEL...uiiiiiieieetese ettt ettt st e b e st st e s be e bt sbe e ke s ab e s be e st e s b e e st e e bt et e e Rt e a b e e eeshe et e e Rt e beesbenaeenbeebeentesanenbeens 8
3T SYSTOIM RESEE ..ttt ettt sttt et sb et e s bt et e s bt et sh e ke e a b e s b e et e s h e e b e e a e e bt eat e bt e beshe et e sab e beentenaeeatens 8
0 VYl (o gl G- | ol o T OO OO OO O OO PUPPRPRRORRPRRO 8
3.3, EXEEINAI RSB uiiuieiietictieteetesteeteste st ste ettt et e et e et e et e st e st e s be st e b et e s esbesaesaeseeseebeabeebeebesbesbe st e b ensensensenseraeneans 8
3.4, CPU RESEE EXTENSION...iiiiiieieetes ettt st st st e s b e b e s b e bt saee s bt et e sre et e ennebesneesneennes 8
3.5, CPU BOOT.i ittt sttt ettt ettt s bt ettt b e et e s bt et e s bt et e sae e beeat e s b e e bt s h b e b e e abenbeeabesae e b e eae e bt eateshe e besanenrenn 8
4, Serial Wire DebUZ POIt (SW-DP)......cc.ecirieirieirieirieisieesietstetssestsseessesesseestesestessesessesessesessesassesessesessesessesessesensenenss 10
470 OVBIVIBW..ueiiiiiieiesitente ettt ete st et e st este st e s bt ebeshe e be s st e sbee st esaeesbesseebesab e beeabesaeenbesabenbeesbesaeeabesbeenbesatenbesasessannsanns 10
4.2, OPEratiON SEOUENCES. ..cuevueeeteuteteitetteiteieeteereste st stestessestessessesteste s et e st e st e st e bt esesbesbesbesbesbesbebensensensensenteneeneane 10
5. ACCESS POIT(S) (IMEIM=AP)..c.. oottt e e ettt e e e e se bbb e e e e e s saabbeeeesesssaasaeeeeesssababseesssssnaraseeseesssnrannees 11
5.1. Implementation DefiNed BifS.......ccccveireirieiirieirieirieisiesie ettt sttt sttt se s se e be e ebe st besaesesaenessenens 11
5.2, DeViCe ProteCtOA STAte....iiiririiieiiieietetetrt ettt st st ste st st sttt ettt e e e e sbesbesbesbesbesbesbesbesbensensensensenes 11
5.3, ACCESS PriMItIVES. ..ottt ettt et s bt et s bt et s at e b e st e s be et e s bt et e sbeenbesatesbesabesaeenbesasenbesssensesasenseens 11
B, PrOZIaAMIMINEG...ciiiiieitieite ettt ettt st s bt et sttt st e bt e e e b s e s bt e b e s bt e bt s ae e s bt e b e she e s e emt e b e s aee bt eanesbe e s e srne b e ennenes 12
6.1, OPEratiON SEOUENCES...c..eititeietetetete ettt b e bbbt b e b e et et et ebe s bt s b e s b e s bt s b e b et e b e b et eneseeneenis 12
6.2, GEEDEVICE ID.ciuiiiiiieieiieiteieet ettt sttt sttt s et s e et e st e s besaaesbe e besas et e e st e sbeensesseentesseenbeessesbeentesaseseensantaensans 12
6.3. Get DeViCe ProteCtioN STAte......ciici ittt sttt e s bbb e s re e b e sseenesmeesneenne 12
6.4. Read SRAM and Peripherals ReGISters (SFR)......ccccvviiririririirienieninenesesiestesiessessessessesse e eessessessessesseses 13
6.5. Write SRAM and Peripherals REZISTErs (SFR).....cccevrerirerieinieiinieiisieiesteeste ettt sie bbb se b saenens 13
6.6. Read Debug Halting Control and Status Register (DHCRS).......cccvcivueirieerieenieinieerieesieesieesiesesiesessenessens 13
6.7. Flash MemoOry ProgramimMing......c.ccoeeerererierierieieeeeeeeeesessessessessessessessessessensensensessesessessessessessessessessensensense 13
6.8. FUSE MEMOIY PrOZramMiNE....ccccecereeiiereeniintenieetesieetesseessesieesbesssessessesaeesesssessesssessesnsesseensesssessessessassens 18
6.9. CONFIGUING COAE PrOtECTION. ..c.ciuiiieieietetetetetet ettt ettt ettt s be et sttt b et b e sbe e ebe e es 19
6.10. CONFIGUING DEDUE LOCK...c.uiuiieiiieiirieiirieiertee ettt ettt b ettt et b sttt et bbb b e bt st e b enesbeneee 19
7. IN-CIrCUIt DEDUGEING ... ettt ettt sttt ettt s b et s h et s b etk et b e e s b e b e e b e e eb e e eb e e eb e s b ebe st enesenenee 20
7.1, DebUE STate Sid@ EffECES...cuicivieirieirieirieere ettt ettt a ettt st se st e ses e s e s e saenessesesbenessenenes 20
7.2, DEDUE LOGIC RESEL....eiiiiriiririisiiriesiesiestesteste ettt et ettt st s b e sbe st e s be st e be s b et e s s et essesaesassesbasbasbesbesbesbenbensensen 20
7.3, DeEbUEZ ANA TraCe SUPPOIt...cciiiieietiirterietestetetetete ettt et st ettt st be st e b st e bt steb et e bt sbebesbe st s be st benenbesessesesbenesaens 20
7.4, DEDUZEET ACCESS SUPPOI . .iiiiuieieieieiirietstetetertetestetestete st beste b e te bt stebesbesesbesesbesesbestsbestebentsbentsbentebetebensesensenens 20

@ MICROCHIP

7.5, OPErationN SEQUENCES.......oicieriieieriertt ettt ettt sit et st e sr e st e s bt e te s bt et e sseesbeeseebesaeesbeeaseshee b e sanesbesnsessesnsesseenses 20

8. DSU.DID VS SW-DP ID....iuiiiriiiirieirietrienteientetestetet ettt et ste b st et st ebe st e st ese st e st s b e st st eaesbenesbe st st et et enteb et ebe st ebeneebentebeneens 25
9. DOCUMENT REVISION HISTOMY....iiiiiiiiiiiiiiiietcteectctt ettt sb bbbt sbesnes 26
MICrOCHIP INFOIMIATION ..ottt sttt sttt st b ettt ne 27
THE MICrOCHIP WEDSIT. ...ttt ettt ettt s b et bbb e b e b ebe e beeene 27
Product Change NOtIfiCatioN SEIVICE. ..ottt ettt ettt ettt b s b e bt be s b nes 27
(@IU S uo] 0 aT=T G] o] oo o PP TP U TP PSPPI 27
Microchip Devices COde ProteCtion FEATUIE.......ccvivirirereresentestetertet ettt st st sbe st sbe st sbessesaesenaennens 27
LEEAI NOTICE ettt ettt b et b et b e b et e b et e b et e b e b e b e b e b et e b et e b et e b e e b e bt sbe st e b e st b e nee 27
TFAARIMAIKS. ..ttt ettt ettt b et b e s b st b stk e st et e st e b e st e b e st e b et e b et eb et ek e naebe b ebe b ebe b ebe st e st s benesbenea 28
QUAItY ManNagEMENT SYSTEIM.....c.irieirieiiteirieieteteterteres ettt s e sttt s be e st eseste st sseseesesesbenesbestsbe s esesesesesensesensesesas 29
WOrlAWide SAlES @NA SEIVICE....couiiiiieiceee ettt sttt se bt sa et sae st snenea 30

@ MICROCHIP

1. Quick References

1.1 Reference Documentation

The following documents are referenced in this document for general understanding or detailed
information:

ARM® v7-M Architecture Reference Manual - ARM DDI 0403E.c

ARM Debug Interface v5 Architecture Specification - IHI0031A or higher

ARM Debug Interface v5 Architecture Specification ADIv5.1 Supplement - DSA09-PRDC-008772 1.0
PIC32CX-BZ3 and WBZ35x Family Data Sheet (DS70005541)

ROM Tables Handling

ARM CoreSight” Architecture Specification v2.0 - ARM IHI 0029D

ETM/ETB Trace

CoreSight ETM"™ M4 Technical Reference Manual - ARM DDI 0440C

@ MICROCHIP

2. Overview

2.1 Architecture

The PIC32CX-BZ3 is based on an ARM Cortex® M4F core with a CPU clock running up to 64 MHz. The
Flash Controller (FC) abstracts the Flash topology for programming the single internal embedded
Flash. The Device Service Unit (DSU) is the programming interface, with the ARM 2-wire SWD
interface.

The Device Service Unit (DSU) module on the device provides a means to detect debugger probes.
This enables the ARM Debug Access Port (DAP) to have control over multiplexed debug pads and
CPU Reset. Serial Wire Debug (SWD) is a two-wire protocol for accessing the ARM debug interface
(Refer to ARM Debug Interface Specification v5).

Figure 2-1. DSU Block Diagram

DSU
_ debugger_present
ReseT [DEBUGGER PROBE
SWCLK [X INTERFACE cpu_reset_extension
! v
DAP cPU FLASH
AHB-AP|K=—T> DAP SECURITY FILTER K"~ oo CONTROLLER

CORESIGHT ROM
L
M S

CRC-32

swoio [X] HIGH-SPEED
- MBIST ¢£\> M BUS MATRIX

CHIP ERASE

2.2 Device Service Unit (DSU)

The DSU provides basic services to allow on-chip debug using the ARM Debug Access Port (DAP) and
the ARM processor debug resources:

+ CPU Reset extension

+ Debugger probe detection (Cold- and Hot-Plugging)

+ Chip-Erase command and status

* ARM CoreSight-compliant device identification

+ Debug access port security filter (code protection feature)

2.3 Programming Interface

This device uses the 2-wire Serial Wire Debug (SWD) for all user debug, programming and emulation
features. For more information on the SWD interface, refer to the ARM Core-sight Documentation.

The SWD consists of two lines:
+ SWDIO - A bidirectional data line

+ SWCLK - A clock driven by the debugger/programmer

@ MICROCHIP

When designing the debug header, it is common to also include the RESET pin (MCLR pin) and one
pin for sensing the target board voltage in addition to ground.

2.4 Memory

SRAM memories are accessed at their address in a memory space for both reads and writes at any
granularity (byte, half word or word). No special controller is needed to access the SRAM memory.

Flash memories are accessed for read at their address in memory space. Read granularity is byte,
half word or word. FC erases and writes the Flash memories. The Flash memory supports quad-
word read (128-bit) and single-word write (32-bit). The page size is 4 KB with 256 words per row and
four rows per page.

The FC supports erase for the entire Program Flash Memory (PFM) or page erase for the
unprotected pages. It supports the Single Word Program (32-bit), Quad Word Program (128-bit) and
row programming with built-in DMA for reading data from SRAM with a four- or eight-word buffer.

In addition, there are 32 KB Flash NVR pages (Boot Flash Memory (BFM)) separate from the Program
Flash Memory (PFM) partition, with eight pages (0 to 7) where:

+ One page is allocated to Factory Test Memory

+ One page is allocated to Cal Space (called OTP page)

+ One page is allocated to Boot/Device Configuration (BCFG)
+ Five pages is allocated to user Boot Code

Each NVR page has write-protect capability. Factory Test Memory is not programmable by the user.

The device memory supports a partial write feature, but using partial write-only that are ‘1’ can be
set to ‘'0". The user can erase the entire Flash memory except the OTP and Factory test memory
pages using a dedicated FC command.

Refer to the device data sheet for Flash and SRAM memory size and the memory map of a specific
device variant.

2.5 Secure Boot ROM and eFuse

The PIC32CX-BZ3 family of devices has ROM memory dedicated for the secure boot firmware for
the root of trust. On a Power-on Reset (POR), secure boot firmware authenticates the rest of

the program Flash memory. The secure boot code is already programmed in Microchip Silicon
production on the Masked ROM.

Some of the immutable data that cannot be modified after they are determined and programmed
include: secure boot key, SECCFG, UUID and Device ID. Immutable data are stored in non-erasable
storage called eFuse memory. For more details, refer to the eFuse memory section in the PIC32CX-
BZ3 and WBZ35x Family Data Sheet (DS70005541).

2.6 Boot, BCFG and OTP Pages (BFM)

Programming tools support reading and writing of NVR pages (BFM), as they contain critical
parameters for the device to run in the user-defined conditions, as well as to boot code. For
more details on each NVR page content, refer to the PIC32CX-BZ3 and WBZ35x Family Data Sheet
(DS70005541).

One page in the BFM region is implemented as a one-time programmable called OTP. The user can
only write and cannot erase by page or chip erase. This region stores the user system calibration
data that must survive a Flash erase. The user can use OTP to store and preserve identification
values such as Bluetooth/Zigbee MAC address, OEM/ODM version numbers, board version numbers
and so on. The other uses are for calibration values of circuits external to the chip but constant for a
board design where the chip exists.

@ MICROCHIP

There is no difference in the programming algorithm for the BFM pages from programming the
Program Flash Memory (PFM) pages except that the DSU.TESTMODE[3] but must be set to ‘1". The
user needs to manipulate the differences in the memory protection registers.

2.7 Code Protection and Secured Device

There are two protection mechanisms in the PIC32CX-BZ3 devices. One is code protection and the

other is secured device and are described as follows:

1. When the code protection is enabled, the device is locked from programming and debugging.
Only chip erase can retrieve the device to normal programming and debugging condition.

2. DEBUG_LCK bits in SECCFG register in the root of trust determines if the device is locked for
debug. If the DEBUG_LCK bits are non-zero, the device is a secured device. Securing of the device

implies:

a. No unauthenticated firmware can be executed.

b. The debug features of the device are not available and are locked down.

c. Device programming through SWD is available. The debugger can be plugged in only through
the cold-plugging procedure. The hot plugging feature is not available. (Refer to the DSU
section of device data sheet for cold and hot plugging.)

d. The DEBUG_LCK bits are in eFuse (one time programmable memory); therefore, once locked,

the device is permanently locked for debug, unlike the code protection mechanism, which
can be cleared on a chip erase.

2.8 Memory Map

The programming tools used refer to the cMSIs *.svD files provided for each part or device data
sheet. The CMSIS file contains the most up-to-date information on the device.

@ MICROCHIP

3. Device Reset

This section describes the device's available Reset sources. For more detailed information, refer to
the PIC32CX-BZ3 and WBZ35x Family Data Sheet (DS70005541).

3.1 System Reset

CRU, RSWRST register and SWRST bit (RSWRST[1]) reset the software. This register is in the CRU at
address 0x4400_0A00. A write of a logic ‘1’ to this bit enables the software Reset. A subsequent

read of this register triggers the system Reset sequence. The system unlock sequence must be done
before the bit can be written. The system unlock register belongs to the CFG register CFG_SYSKEY at
address 0x4400_00B0.

Run the following sequencer to unlock:

1. Set CFG_SYSKEY=0x00000000 (reset key)
2. Set CFG_SYSKEY=0xAA996655

3. Set CFG_SYSKEY=0x556699AA

3.2 Vector Catch

The vector catch feature allows the CPU to halt after a Reset or other exception. For more details,
see the ARMv7-M Architecture Reference Manual.

3.3 External Reset

A debugger can pull the external Reset pin low to reset the device. (The MCLR pin of the device must
be pulled to a logic low level for 2 uS minimum pulse width).

Note: The SWCLK pins must not be pulled low by the debugger when the MCLR pin rises; it triggers
a CPU Reset Extension (see 3.4. CPU Reset Extension).

34 CPU Reset Extension

The DSU module on the device has the CPU Reset extension feature that allows it to connect a
debugger while the CPU is on Reset. This is also known as cold-plugging or, also, a core-hold Reset.
Refer to the PIC32CX-BZ3 and WBZ35x Family Data Sheet (DS70005541).

This feature requires the debugger to control the level of SWCLK and MCLR pins. The CPU Reset
extension is detected on an MCLR release event when SWCLK is low.

The main usage is to avoid executing potentially corrupted code at boot and allow a safe way
to connect to a device without any assumption on its current state. The debugger can read/write
memory and peripherals without the CPU interference.

Note: After the initial connect sequence, the debugger must release the CPU Reset extension to
write to memory located outside the CPU (in other words, SRAM, Flash and peripherals) using MEM-
AP. When the CPU is held in the Reset extension phase, the CPU Reset Extension (bit1) of the Status
A register (STATUSA.CRSTEXT) @0x4100_0101 of the DSU module is set. To release the CPU, write a ‘1’
to STATUSA.CRSTEXT. STATUSA.CRSTEXT will, then, be set to '0". Writing a ‘0’ to STATUSA.CRSTEXT has
no effect. To keep the CPU from executing the user code, the debugger can rely on the Reset vector
catch.

3.5 CPU Boot

At Reset, the Cortex-M4 processors always boot from a vector table at address zero. The processor
reads the Main Stack Pointer value from address 0x0 and code entry point (Reset vector) from
address 0x4. In the PIC32CX-BZ3 family of devices, the 0x0 address points to the secure boot ROM
where the CPU starts after Reset. The Reset handler and interrupt vectors are stored here.

After the boot code is done running and the secure boot code is done with the authentication
procedure, the program jumps to the application code image in the Flash section. The stack pointer

@ MICROCHIP

and Reset vector are permanent in the boot ROM and will be pointing to the address in ROM code
itself. Therefore, the debugger does not need to write the application Flash image-specific vector
into these addresses.

@ MICROCHIP

4.1

4.2

4.2.1

4.2.2

Serial Wire Debug Port (SW-DP)

This section describes accessing the Serial Wire Debug Port (SW-DP):
« SWD version 1 protocol is used (refer to DSA09-PRDC-008772)

* ARM Debug Interface v5 Architecture Specification (ADIV5 revision)

Overview

Out of Reset, both SWDIO and SWCLK are connected to SW-DP. The serial wire debug protocol, as
described in the ARM Debug Interface v5 Architecture Specification (ARM IHI 0031 Revision A or higher),
must be followed to communicate with the device.

Operation Sequences

Initialize SWD

There are no additional steps apart from what is described in the ARM IH/ 0031. The SW-DP starts in
the SWD mode and does not require a switching sequence, such as JTAG to SWD.

Uninitialize SWD
There are no additional steps apart from what is described in the ARM IH/ 0031.

@ MICROCHIP

5.1

5.2

5.3

Access Port(s) (MEM-AP)

This section describes the access port used to access the device memory. When access to SW-DP is
enabled, the debugger can access the MEM-AP. When the device security bit is cleared, two MEM-AP
(APO and AP1) are accessible. The second AP may be used for non-intrusive debugging.

Even if it is not mandatory for this device, before accessing a MEM-AP, the debugger can wait for the
CSW.DeviceEn bit to be set. (Refer to ARM IHI 0037). A CoreSight ROM table is attached to each AP,
describing the available debug components. Alternatively, the debugger can rely on the DSU device
ID.

Implementation Defined Bits

MEM-AP Control/Status Word Register(CSW) protection bits [30:24] are implementation-defined by
Microchip. 0x23 needs to be used for these bits [30:24]. The lower two bits correspond to HPROT
lines on the AHB bus and 0x23 gives maximum access, which is useful for a debugger/programmer.

Device Protected State

When the device is locked through code protection, MEM-AP access range is limited to DSU external
range. For more details on Intellectual Property Protection, refer to the PIC32CX-BZ3 and WBZ35x
Family Data Sheet (DS70005541). When the device debug is locked through a secure device apart
from DSU external registers, Flash Controller registers and Flash Memory addresses are placed
under a MEM-AP-permissible address range to allow programming. The debugger must first read
the status bit to handle this case. See 6.7.1. Chip Erase for unprotecting the device if the device is
protected through code protection.

Note: DSU external range (0x100-0x2000) is denoted as DSUEXT in this document.

Access Primitives
Based on MEM-AP access, the host (debugger PC utility) can rely on the following primitives:

Refer to ARM IHI 0031 for MEM-AP related sequence of transactions to read or write the memory.

Table 5-1. Access Primitives

Status ReadD8(U32 Addr, Value) Read a byte (8 bits) from device memory at address Addr
Returns OK, FAULT, WAIT or ERROR

Status ReadD16(U32 Addr,Value) Read half-word (16 bits) from device memory at address Addr
Returns OK, FAULT, WAIT or ERROR

Status ReadD32(U32 Addr,Value) Read a word (32 bits) from device memory at address Addr
Returns OK, FAULT, WAIT or ERROR

Status WriteD8(U32 Addr,Value) Write a byte (8 bits) to device memory at address Addr
Returns OK, FAULT, WAIT or ERROR

Status WriteD16(U32 Addr,Value) Write half-word (16 bits) to device memory at address Addr
Returns OK, FAULT, WAIT or ERROR

Status WriteD32(U32 Addr,Value) Write a word (32 bits) to device memory at address Addr
Returns OK, FAULT, WAIT or ERROR

Note: The user can use the speed-optimized primitives for block access using the auto-increment
feature of the MEM-AP, but they are not mandatory to support all the device features. Refer ARM IH/
0031.

The rest of the document relies on this MEM-AP layer and the above-defined primitives to describe
the interaction between the device and debugger.

@ MICROCHIP

6. Programming
This section describes the MEM-AP sequences required to program the areas of memory using the
programmer/debugger.
6.1 Operation Sequences
Following is the SW-DP sequence:
1. Perform a line Reset (refer to 3. Device Reset).
2. Enterinto the SW-DP mode by following initialization (see SW-DP section).

Once access to SW-DP is enabled, the debugger can access the MEM-AP.
Following is the MEM-AP sequence:

1. Get Device ID.
Get code protection and secure device status.

Read memory (each area of memory (SRAM, peripheral registers, Flash, eFuse) requires
programming operations to access).

4. Write memory (each area of memory (SRAM, peripheral registers, Flash, eFuse) requires
programming operations to access).

5. Read Debug Halting Control and Status Register (DHCRS).

6.2 Get Device ID

The code is equivalent to reading a word at the address DSUEXT.DID at (0x41000118) (DSU_DID
register). The value is read from the DSUEXT range; therefore, this register is always accessible even
on protected and secured devices. Each PIC32CX-BZ3 variant of the device is identified with a unique
Device ID. Refer to the device data sheet for the specific DID value for the specific device variant.

Notes:
1. Itis recommended that only the lower 16 bits of this register be used to identify the device.
2. The DSUEXT range starts at offset 0x0100.

Table 6-1. Reference

Read DSU DID register ReadD32(DSUEXT.DID)

6.3 Get Device Protection State

As described in 2.7. Code Protection and Secured Device, if the device is code protected or a
secured device or both, there is a limitation to programming and debugging functionality and
accessing the memory.

1. Read the DSUEXT.STATUB (@0x41000102) (DSU_STATUSB register).

2. Check the PROT[bit 0] bit set for code protection enabled.

3. Read the DSUEXT.SECCFG (@0x4100012C) (DSU_SECCFG register).

4. Check for DEBUG_LCK [7:6] bits for a non-zero value if set for secured device.

Note: Similarly, some of the eFuse content as listed below are also mapped to DSU registers to be
accessible when the device is a secured device. For more details on address mapping, refer to the
DSU section in the PIC32CX-BZ3 and WBZ35x Family Data Sheet (DS70005541).

+ Unique Identifier: 128 bits. Unique identifier of the device.

+ Secure Configuration bits: 32 bits. All the security related configurations are a part of this
register.

@ MICROCHIP

+ Roll back Counter: 8 bits. Roll back counter associated with the current firmware image.

« Boot Status: 8 bits. This indicates the status of the previous boot. Firmware dictates the
codes and their corresponding status message. An example can be value 8’ hF0 may indicate
authentication failure during the previous boot.

+ Life Cycle Counter: 5 bits. Current stage of the device in its life cycle.
+ Boot Key: 384 bits. Public boot or OTA authentication key.

Table 6-2. Reference

Read DSU STATUSB register ReadD32(DSUEXT.STATUSB)
Read DSU SECCFG register ReadD32(DSUEXT.SECCFG)

6.4 Read SRAM and Peripherals Registers (SFR)

Reading from SRAM or peripherals requires no specific handling. The MEM-AP sequence of
commands are followed.

Note: MEM-AP transactions may be handled differently than CPU transactions to provide non-
intrusive debugging.

Table 6-3. Reference

Read 8 bits item from address ReadD8(Addr Value)
Read 16 bits item from address ReadD16(Addr Value)
Read 32 bits item from address ReadD32(Addr,Value)

6.5 Write SRAM and Peripherals Registers (SFR)
Writing to SRAM or peripherals requires no specific handling.

See the Note in 3.4. CPU Reset Extension.

Table 6-4. Reference

Write 8-bit item from address WriteD8(Addr Value)
Write 16-bit item from address WriteD16(Addr Value)
Write 32-bit item from address WriteD32(Addr Value)

6.6 Read Debug Halting Control and Status Register (DHCRS)

Reading DHCRS requires no specific handling. The code is just equivalent to reading a word at the
address OxEOOOEDFO (System Control Block DHCSR register).

Table 6-5. Reference

Read 32-bit item from address ReadD32(Addr)

6.7 Flash Memory Programming

The Flash Controller (FC) works with a single panel made from 4 KB pages, with each page containing
four rows of Flash data. A row is the largest selectable region for contiguous programming of write
words.

The FC state machine accepts commands from the NVMCON register NVMOP commands
(NVMCON.NVMOP).

@ MICROCHIP

A page of Flash is the smallest unit of memory that can be erased in a single operation. The whole
Program Flash Memory (PFM) region can be erased in a single operation.

The FC supports the following functions:

* Row Programming - Word-by-word programming until the whole row is programmed. The FC
reads the data from the system SRAM

* Quad Word Programming - The FC performs four writes of data from holding registers
+ Single Word Programming - The FC performs one write of data from holding registers

+ Page Erase

Figure 6-1. 128-Bit-Wide Flash Module Application View

it AKBP
Flash Built it Flash Read Word is 16 bytes
of Pages ul
of 4 Rows
-~7"| pagen ; Read Word
/| row 3 . ~<
. ’l /// \\‘\
/| row2 /] =~
Flash page2 | / 7 ww 255 --- | ww 3] ww 2] ww 1] ww o]
Panel bage] // row / // // \\ [
row0 |,
page0 | __- Write Word Lowest
e - Address
Flash Row is 1024 bytes Flash Write Word is 4 bytes

The following procedures must be used to program the device Flash using DSU. Programming the
Flash is only possible when the device is not code protected. If the device is already code protected,
issue the chip erase procedure to make the device unprotected and programming ready.
Programming whole Flash (PFM and BFM regions or only PFM regions):

1. Issue the cold plugging procedure to enter into the DAP mode.

2. lIssue a chip erase procedure (only if device is code protected as described in 6.7.1. Chip Erase).

3. This step is needed only if programming the BFM memory region.
a. Perform the system unlock sequence and write to the NVMLBWP register (0x440006F0)=
0x80000000.
b. Clear LBWPn bits of NVMLBWP to remove the write protect on the corresponding page.
Note: At Reset, all LBWPn bits of NVMLBWP are set to logic ‘1', write protecting all user
accessible NVR pages (BFM).

c. Set DSUEXT.TESTMODE (@0x410001FC) bit 3 to '1".
4. Perform the procedures mentioned in 6.7.2.2. Row Programming Sequence.

Programming BCFG single boot page for Configurations:

One page of the BFM boot region, called BCFG, is where the configuration bits are stored. These
bits are set with #pragma directives embedded in the source file(s) and can be programmed as
mentioned above in programming the whole Flash procedure. It can also be programmed with
external IDEs like Microchip's MPLAB® X, using the configuration bits window by writing to a single
BCFG page alone as mentioned below.

1. Issue the cold plugging procedure to enter into the DAP mode.
2. Perform the below steps to disable write protection.

a. Perform the system unlock sequence and write to the NVMLBWP register (0x440006F0)=
0x80000000.

b. Clear the LBWPS5 bit (Page 5) of NVMLBWP to remove the write protect on the corresponding
page.

@ MICROCHIP

c. Set DSUEXT.TESTMODE (@0x410001FC) bit 3 to ‘1".
3. Issue a page erase procedure.
4. Perform the procedures mentioned in 6.7.2.2. Row Programming Sequence.

6.7.1 Chip Erase
Erase the entire Flash (PFM and BFM memory regions) except the OTA BFM page using a DSU
command.

When the device is protected, the debugger must reset the device to be detected. This ensures
that internal registers are reset after the protected state is removed. The Chip Erase operation
is triggered by writing a ‘1’ to the Chip Erase bit in the Control register (DSUEXT.CTRL.CE). This
command will be discarded if the DSU is protected by the Peripheral Access Controller (PAC).

The chip erase operation depends on clocks and power management features that can be altered
by the CPU. For that reason, it is recommended that a chip erase be issued after a cold-plugging
procedure to ensure that the device is in a known and safe state.

The recommended sequence is as follows:

1. Perform the cold plugging procedure (refer to the Cold Plugging from DSU section in the PIC32CX-
BZ3 and WBZ35x Family Data Sheet (DS70005541)). The device, then:

a. Detects the debugger probe
b. Holds the CPU in Reset

2. Perform the chip erase command by writing a ‘1’ to DSUEXT.CTRL.CE at (0x41000100 address).
The device, then:

1. Clears the system volatile memories
2. Erases the whole Flash array (excluding OTP page)
3. Erases the code protection row, removing the code protection security bit protection

3. Check for completion by polling DSUEXT.STATUSA.DONE at (0x41000101 address) (read as ‘1’
when completed).

4. Reset the device.

Table 6-6. Reference

Clear flags in STATUSA WriteD8(@DSUEXT.STATUSA.DSU_STATUSA_DONE_MASK)
Issue chip erase WriteD8(@DSUEXT.CTRL, DSU_CTRL_CE)
Wait until erase is done ReadD8(@DSUEXT.STATUSA, StatusValue)

While ((StatusValue& DSU_STATUSA_DONE) == 0)
{ ReadD8(@DSUEXT.STATUSA,StatusValue) }

Bitfields Definitions
+ DSU_CTRL_CE=0x10

+ DSU_STATUSA_MASK = Ox1F
+ DSU_STATUSA_DONE = 0x1

Note: The recommended time-out for waiting for erase completion is 20 seconds.

6.7.2 Programming Sequences
The following tables describe the register addresses and bit fields for the Flash controller.

@ MICROCHIP

Table 6-7. Register Addresses for the NVMCON Register

NVMCON 0x4400_0600
NVMCONCLR 0x4400_0604
NVMCONSET 0x4400_0608
NVMKEY 0x4400_0620
NVMADDR 0x4400_0630
NVMDATAO 0x4400_0640
NVMDATA1 0x4400_0650
NVMDATA2 0x4400_0660
NVMDATA3 0x4400_0670
NVMSRCADDR 0x4400_06C0O

Table 6-8. Bit Fields for the NVMCON Register

WREN_MASK 0x4000
NVMWR_MASK 0x8000
NVMERR_MASK 0x2000
BORERR_MASK 0x1000
NVMOP_MASK 0x000F
WORD_NVMOP 0b0001
QUAD_NVMOP 0b0010
ROW_NVMOP 0b0011
PAGE_ERASE_NVMOP 0b0100
PFM_REGION_ERASE_NVMOP 0b0101

6.7.2.1 Single/Quad Word Programming Sequence
Follow this sequence of steps for single word or quad word programming:

1. Write data to be programmed into the NVMDATAQO register for single word, NVMDATAO-3 for
quad word.

Load NVMADDR with the address to be programmed.

Run the sequencer start unlock sequence using word (quad) program command to start the
sequence:

a. Set NVMCON.WREN=1 (allow writes to NVMCON.NVMWR) and set NVMCON.NVMOP to the
desired operation WORD_NVMOP or QUAD_NVMOP (using a single write).

b. Unlock the sequence to be followed for the programming to take place.
i. Set NVMKEY = 0x00000000 (Reset key)
ii. Set NVMKEY = 0XxAA996655
iii. Set NVMKEY = 0x556699AA

c. Write to the target register NVMCONSET to set the NVMWR bit (not the NVMCON register
itself). This starts the FC operation.

Note: The program sequence completes when the hardware clears the NVMCON.NVMWR bit.
This pulses a Flash event.

Clear the NMVCON.WREN bit.

5. Check the NVMCON.NVMERR and NVMCON.BORERR bits to ensure that the programming is
successful.

@ MICROCHIP

6.7.2.2

6.7.3
6.7.3.1

Row Programming Sequence

The largest block of data that can be programmed by a single NVMOP command is one row.
Arow is 1024 bytes of data. NVMADDR is the row-aligned address where the Flash address
starts programming the data. The controller ignores the sub-row address bits and always starts
programming at the beginning of a row.

Follow this sequence of steps for row programming:

1. Write the entire row of data to be programmed into the system SRAM. The source address must
be word-aligned but is otherwise unrestricted.

Set NVMADDR with the start address of the Flash row to be programmed.
Set NVMSRCADDR with the 32-bit physical source address from step 1.

Run the following sequencer start unlock sequence using the row program command to start the
sequence:

a. Set NVMCON.WREN = 1 (allow writes to NVMCON.NVMWR) and set NVMCON.NVMOP to
ROW_NVMOP (using a single write)

Set NVMKEY = 0x00000000 (reset key)
Set NVMKEY = 0XAA996655
Set NVMKEY = 0x556699AA

Write to the target register NVMCONSET to set the NVMWR bit (not the NVMCON register
itself). This starts the FC operation.

P o n T

Note: The program sequence completes when the hardware clears the NVMCON.NVMWR bit.
This pulses the Flash event.

5. Clear the NVMCON.NVMWREN bit.

Check the NVMCON.NVMERR and NVMCON.BORERR bits to ensure that the programming is
successful.

Erase Sequences

Page Erase

A page erase performs an erase of a single page of main program (PFM), boot/configuration (BFM).
The page to be erased is selected using NVMADDR. The lower bits of the address given by NVMADDR
are ignored in page selection. A page of Flash can be erased if its associated page write protection is
not enabled.

Follow this sequence of steps for page erase:

1. Set NVMADDR with the address of the page to be erased.

2. Run the following unlock sequence using the page erase command to start the sequence:

1. Set NVMCON.WREN = 1 (allow writes to NVMCON.NVMWR) and set NVMCON.NVMOP to
PAGE_ERASE_NVMOP (using a single write)

Set NVMKEY = 0x00000000 (reset key)
Set NVMKEY = 0xAA996655
Set NVMKEY = 0x556699AA

Write to the target register NVMCONSET to set the NVMWR bit (not the NVMCON register
itself). This begins the FC operation.

vk N

Note: The erase sequence completes when the hardware clears the NVMCON.NVMWR bit. This
generates an interrupt.

3. Clear the NVMCON.NVMWREN bit.

@ MICROCHIP

4. Check the NVMCON.NVMERR and NVMCON.BORERR bits to ensure that the erase sequence is
completed successfully.

6.7.3.2 PFM Region Erase

6.8

6.8.1

The whole PFM can be erased using the PFM_REGION_ERASE NVMOP command. This command
leaves the boot or config Flash intact. The whole PFM region can be erased if its associated page
write protection is not enabled.

Follow this sequence of steps for the PFM region erase:

1. Run the following unlock sequence using the PFM erase command to start the sequence.

1. Set NVMCON.WREN = 1 (allow writes to NVMCON.NVMWR) and set NVMCON.NVMOP to
PFM_REGION_ERASE (using a single write)

Set NVMKEY = 0x00000000 (Reset key)
Set NVMKEY = 0xAA996655
Set NVMKEY = 0x556699AA

Write to the target register NVMCONSET to set the NVMWR bit (not the NVMCON register
itself). This begins the FC operation.

vk N

Note: The erase sequence completes when the hardware clears the NVMCON.NVMWR bit. This
generates an interrupt.

Clear the NVMCON.NVMWREN bit.
Check the NVMCON.NVMERR and NVMCON.BORERR bits to ensure that the erase sequence is
completed successfully.

eFuse Memory Programming

The secure boot keys and credentials required for code authentication are stored in eFuses. There
are three blocks of 128x8 bits one-time-programmable eFuses available in the PIC32CX-BZ3 family of
devices.

The default eFuse bit value is ‘0. The eFuse controller is required to program the bits to change from
‘0"to ‘1". The programming and reading of the eFuse is done through the eFuse controller.

Table 6-9. Register Addresses for the eFuse Controller

HLD_REG From 0x44002C00 to 0x44002DFF
EFUSE_RWDATA 0x44003804
EFUSE_CON 0x44003808

Table 6-10. EFUSE_CON Register Bit Definitions

PGM_1BIT 0x1
PGM_MOD 0x2
EN_PGM 0x80
EN_LD 0x20
EN_LD_ALL 0x40
EN_OTP_LDO 0x10000

eFuse Programming Sequence

For eFuse programming operations, the eFuse controller will program 1 bit or 8 bits together at a
time.

1. Write EFUSE_CON.PGM_MODE = 0.

@ MICROCHIP

6.8.2

6.9

6.10

Write EFUSE_CON.EN_LD =0 and EFUSE_CON.EN_LD_ALL = 0.
Write EFUSE_CON.EN_OTP_LDO = 1. This enables the PMU OTP LDO output to 1.5V.

Write the EFUSE_RWDATA register with the offset address of eFuse and the data to be written.
a. For single-bit write operation: Write eFuse offset address on EFUSE_RWDATA.ADDR[11:0] and
data on EFUSE_RWDATA.DATA[O].

b. For 8-bit write operation: Write eFuse offset address on EFUSE_RWDATA.ADDR[11:3] and data
on EFUSE_RWDATA.DATA[7:0].
The above options are controlled by the EFUSE_CON.PGM_1BIT register bit as in Step 5.2.
5. All the below steps must be done in a single step:
a. Setthe EFUSE_CON.PGM_MODE register bit.

b. Setthe EFUSE_CON. PGM_1BIT register bit for a 1-bit write operation. Clear the bit for the
8-bit write operation.

c. Setthe EFUSE_CON.EN_PGM register bit.

6. The eFuse controller clears the EFUSE_CON.EN_PGM register bit when the eFuse programming is
complete.

Repeat the steps 4 to 5 until all the values are programmed.
8. Write EFUSE_CON.EN_OTP_LDO = 0 to switch off PMU OTP LDO.

eFuse Reading Sequence

The read from the eFuse panel happens at boot time and the holding registers are loaded with the
eFuse values. Therefore, the memory map of the eFuse is in 1:1 correspondence with the memory
map of the holding registers. If required to verify the values in eFuse, reset the device after the
eFuse programming sequence is done. The modified eFuse values are read from the eFuse and
loaded on holding registers at boot-up.

Read the holding registers in the same way as reading the peripheral registers, and, then, verify
these registers.

Configuring Code Protection

The CP bit (Bit 29) of FCPNO in BCFG NVR page determines the code protection. When the CP bit
is set, the device is locked from programming and debugging. Only the chip erase can return the
device to the normal programming and debugging condition.

As this code protection is part of the BCFG NVR Flash page, the steps mentioned in “Programming
whole flash (PFM and BFM regions or only PFM regions)” can be followed to enable Code Protection.

Configuring Debug Lock

The DEBUG_LCK][1:0] bits in FSECCFG[7:6] eFuse at 0x0000 offset address determine if the device

is locked for debug. If the DEBUG_LCK[1:0] bits are non-zero, the device is a secured device. On a
secured device, programming is still possible but debugging is completely locked because these bits
are in eFuse.

Follow the procedure mentioned in 6.8.1. eFuse Programming Sequence with the eFuse offset
address at 0x0000 to write these bits.

@ MICROCHIP

7.2

7.3

7.4

74.1

7.5

In-Circuit Debugging
Debug State Side Effects

The following are side effects of the debug state:

+ The device debug mode is entered as soon as the SW-DP CTRLSTAT.CDBGPWRUPREQ bit (Refer
to ARM Debug Interface v5 Architecture Specification) is set (and acknowledged by the system when
the start-up sequence is complete). In this device debug mode:

- Sleep modes behavior is changed to allow debugging
- Debug clock is running
- Internal clock requests are altered

+ Peripherals behavior on CPU halt is controlled by DBGCTRL registers in the device's individual
peripheral module.

Debug Logic Reset
+ CPU debug logic is reset by any Reset source, except SysResetReq.
+ Peripherals DBGCTRL registers are reset by any Reset source, except SysResetReq.

Debug and Trace Support

+ The Data Watchdog and Trace (DWT) unit provides four data watchpoint comparators and
execution monitoring.

+ The Flash Patch and Breakpoint (FPB) unit provides up to eight hardware breakpoint comparators
that debuggers can use.

« Implements Embedded Trace Buffer (ETB) for execution tracing.

CoreSight ETM-M4 Technical Reference Manual - ARM DDI 0440C provides a detailed description of the
ETB or ETM operation. Configuration can be done by the debugger or the CPU but the debugger
must know where the trace data will be placed in RAM.

Debugger Access Support

Debugger access port used to access device memory. When access to SW-DP is enabled, the
debugger can access the MEM-AP.

Table 7-1. Debugger Access Support

ARM Debug Mode JTAG ID

SW-DP (2-wire) 0x0bc11477
JTAG (4-wire) N/A

Debug and Access Ports (SW-DP And MEM-AP Subblocks)

Identify the Arm Debug Interface v5 Architecture Specification revision (applicable).

ARM does not specify the revision of the specification. The differences between the revisions are
minimal; therefore, any recent revision must be applicable.

Operation Sequences

The following table shows the list of debug registers and their corresponding address from the ARM
Cortex M4 Processor Reference Manual.

@ MICROCHIP

20

7.5.1

7.5.2

Table 7-2. Debug Registers

T S S S T T

OxEOOOED30 DFSR 0x00000000 Debug Fault Status
Register
Power-on Reset (POR)
only

OxEOOOEDFO DHCSR RW 0x00000000 Debug Halting Control
and Status Register

OXEOOOEDF4 DCRSR WO — Debug Core Register
Selector Register

OXEOOOEDF8 DCRDR RW — Debug Core Register
Data Register

OxEOOQOEDFC DEMCR RW 0x00000000 Debug Exception
and Monitor Control
Register

The following provides the detailed operation sequence:
+ Enter the Debug mode

+ Exit the Debug mode

+ Register Reads and Writes

* Run

+ Halt

+ Get Halt status

+ Get Core registers

+ Get Program Status Register (PSR)
+ Get and Set Program Counter

+ Get and Set Stack Pointer

+ Single Step

+ Set Core Registers

Enter the Debug Mode

To force the processor to enter the Debug state as soon as it comes out of Reset, a debugger sets
DHCSR.C_DEBUGEN to ‘1’ to enable halting debug and sets DEMCR.VC_CORERESET to ‘1’ to enable
vector catch on the Reset exception.

When the processor comes out of Reset, it sets DHCSR.C_HALT to ‘1’ and enters the Debug state.

For more details, refer to the ARM v7-M Architecture Reference Manual - ARM DDI 0403E, Debug and
Reset.

Table 7-3. Reference

Enable Debug WriteD32(DHCSR, (DBGKEY | C_DEBUGEN))
Enable Reset Vector Catch WriteD32(DEMCR, VC_CORERESET)
Issue Halt WriteD32(DHCSR, (DBGKEY | C_HALT))

Exit Debug Mode
The processor exits the Debug state:

* When the debugger writes ‘0’ to DHCSR.C_HALT
« On receipt of an external restart request

@ MICROCHIP

21

7.5.3

7.5.4

7.5.5

7.5.6

If software clears DHCSR.C_HALT to ‘0’ when the processor is in the Debug state, a subsequent
read of the DHCSR that returns ‘1’ for both C_HALT and S_HALT indicates that the processor has
re-entered the Debug state because it has detected a new debug event.

For more details, refer to the ARMv7-M Architecture Reference Manual - ARM DDI 0403E, Debug
stepping control using the DHCSR table.

Table 7-4. Reference

Exit Debug Mode WriteD32(DHCSR, (DBGKEY | 0))

Register Reads and Writes

This operation is the same as described in 7.5.3. Register Reads and Writes. The MEM-AP has access
to the entire device memory map as described in the CMSIS standard SVD (. atdf) files.

Table 7-5. Reference

Read register ReadD32(Register, Value)
Write register WriteD32(Register, Value)
Run

The processor exits the Debug state or goes into the Run state:

* When the debugger writes ‘0’ to DHCSR.C_HALT

+ On receipt of an external restart request

For more details, refer to the ARMv7-M Architecture Reference Manual - ARM DDI 0403E, Debug
stepping control using the DHCSR table.

Table 7-6. Reference

Exit Debug Mode (Run) WriteD32(DHCSR, (DBGKEY | 0))

Halt
The Halt state can be reached after the CPU hits a breakpoint.

A debugger can use halting debug stepping to exit from the Debug state, execute a single instruction
and, then, re-enter the Debug state. Halting debug stepping is active when all the following apply:

+ DHCSR.C_DEBUGEN is set to ‘1, halting debug enabled

+ DHCSR.C_STEP is set to ‘1’, halting stepping enabled

+ The processor is in the Non-debug state

For more details, refer to the ARMv7-M Architecture Reference Manual - ARM DDI 0403E, Debug
stepping control using the DHCSR table.

Table 7-7. Reference

Debug halt WriteD32(DHCSR, (DBGKEY | DHCSR_C_DEBUGEN |

DHCSR_C_MASKINTS | DHCSR_C_HALT))

Get Halt Status
Check the state of Debug Halting Control and Status Register (DHCSR) Halt Flag.

For more details, refer to the ARMv7-M Architecture Reference Manual - ARM DDI 0403E, Debug
stepping control using the DHCSR table.

@ MICROCHIP

22

7.5.7

7.5.8

Table 7-8. Reference

Read Debug Halting Control and Status Register ReadD32 (DHCSR, Value)
Poll for Halt Status bit set S HALT =1

Get Core Register

To transfer a data word from an ARM core register, special-purpose register or floating-point

extension register, a debugger:

+ Ensures the CPU is in the Debug state by reading DHCSR.S_HALT bit and places the CPU in the
Debug state if this is not the case

+ Writes to the DCRSR with the REGSEL value indicating the required register and the REGWnR bit
as ‘0’ to indicate a read access. This write clears the DHCSR.S_REGRDY bit to ‘0’

+ Polls DHCSR until DHCSR.S_REGRDY reads as ‘1". This shows that the processor has transferred
the value of the selected register to DCRDR.

+ Reads the required value from DCRDR

For more details, refer to the ARMv7-M Architecture Reference Manual - ARM DDI 0403E, C1.6.3 Debug
Core Register Selector Register, DCRSR.

Table 7-9. Reference

Write REGSEL WriteD32 (DCRSR, RegSel)
Poll DHCSR for S_REGRDY S_REGRDY =1
Read value from DCRDR ReadD32 (DCRDR, value)

Where RegSel is one of the CPU register:

RO 0

R1 1

R12 12
SP 13
LR 14
PC 15
XPSR 16

Note: For complete table details, refer to the Arch Manual C1.6.3 Debug Core Register Selector Register,
DCRSR.

Set Core Register

To transfer a data word to an ARM core register, special-purpose register or floating-point extension

register, a debugger:

+ Ensures the CPU is in the Debug state by reading DHCSR.S_HALT bit and places the CPU in the
Debug state if this is not the case

+ Writes the required value to DCRDR

+ Writes to the DCRSR, with the REGSEL value indicating the required register and the REGWnR bit
as 1’ to indicate a write access. This write clears the DHCSR.S_REGRDY bit to ‘0.

@ MICROCHIP

23

7.5.9

7.5.10

7.5.11

7.5.12

7.5.13

7.5.14

+ Polls DHCSR until DHCSR.S_REGRDY reads as ‘1". This shows that the processor has transferred
the DCRDR value to the selected register

For more details, refer to the ARMv7-M Architecture Reference Manual - ARM DDI 0403E, C1.6.3 Debug
Core Register Selector Register, DCRSR.

Table 7-10. Reference

Write value to DCRDR WriteD32 (DCRDR, value)
Write REGSEL WriteD32 (DCRSR, RegSel)
Poll DHCSR for S_REGRDY S_REGRDY =1

For more details, refer to the RegSel description in the Arch manual C1.6.4 Debug Core Register
Selector Register, DCRSR.

Get Program Status Register (PSR)
See 7.5.7. Get Core Register with RegSel = xPSR.

Get Program Counter
See 7.5.7. Get Core Register with RegSel = PC.

Set Program Counter
See 7.5.8. Set Core Register with RegSel = PC.

Get Stack Pointer
See 7.5.7. Get Core Register with RegSel = SP.

Set Stack Pointer
See 7.5.8. Set Core Register with RegSel = SP.

Single Step
To single step CPU instructions, a debugger needs to:

« Ensure the CPU is in the Debug state by reading the DHCSR.S_HALT bit and place the CPU in the
Debug state if this is not the case

+ Write DHCSR = C_MASKINTS | C_STEP | C_DEBUGEN

+ Write DHCSR = C_MASKINTS | C_HALT | C_DEBUGEN

For more details, refer to the ARMv7-M Architecture Reference Manual - ARM DDI 0403E, C1.5.1 Debug
stepping.

Table 7-11. Reference

Single step WriteD32(DHCSR, DBGKEY | C_LMASKINTS | C_STEP |
C_DEBUGEN)

Ensure halt after step WriteD32(DHCSR, DBGKEY | C_MASKINTS | C_HALT |
C_DEBUGEN)

@ MICROCHIP

24

DSU.DID vs SW-DP ID

The SW-DP ID is a 32-bit ID comprised of an 11-bit JEDEC Manufacturer’s ID Code (assigned to
Microchip), the 20-bit Device ID and a fixed LSB of ‘1". The SW-DP ID can be read through the SWD
interface using the ARM IDCODE command. The device ID to be used by the external debugger or
programmers must be within the DSU [DSU.DID register] located at address 0x4100_00118 (external
address). Only the lower 16 bits of this register are used for the purpose of external tools to identify
the device; the upper 16 bits must be masked off on read.

Many of the fields in the SW-DP ID and the DSU.DID register are the same but positioned differently.
Refer to the following figure for how the SW-DP ID and DSU.DID are correlated, and refer to the

PIC32CX-BZ3 and WBZ35x Family Data Sheet (DS70005541) for the specific variant part number values.

The Mask ID for the PIC32CX-BZ3 family of devices is 0x9E, and JEDEC Manufacturer’s ID Code for
Microchip is 0x029. Refer to the PIC32CX-BZ3 and WBZ35x Family Data Sheet (DS70005541), as the
Device ID and Revision ID vary from variant to variant.

Figure 8-1. DSU.DID VS SW-DP ID

Bits 31| 30| 29| 28 27| 28] =25] 24| 23 22l 21| 200 19 18] 17 16
SW-DP 1D Revision 1D Mask 1D Device 1D

DSU.DID Revision ID Family ID [Reseme] Series ID

Bits 15] 4] 13 12] 1] 1] 9 8] 7] 6] 5] 4] 3] 2] 1 0
SW-DP ID Device ID JEDEC Manufacturer's ID Code Always "1
DSU.DID Mask ID | Device ID

@ MICROCHIP

25

9. Document Revision History
The revision history describes the changes that were implemented in the document. The changes
are listed by revision, starting with the most current publication.

m“

11/2023 Document Initial revision

@ MICROCHIP

26

Microchip Information
The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to
make files and information easily available to customers. Some of the content available includes:

+ Product Support - Data sheets and errata, application notes and sample programs, design
resources, user’'s guides and hardware support documents, latest software releases and archived
software

+ General Technical Support - Frequently Asked Questions (FAQs), technical support requests,
online discussion groups, Microchip design partner program member listing

+ Business of Microchip - Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip
products. Subscribers will receive email notification whenever there are changes, updates, revisions
or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:
+ Distributor or Representative

+ Local Sales Office

+ Embedded Solutions Engineer (ESE)

+ Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are
also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

* Microchip products meet the specifications contained in their particular Microchip Data Sheet.

+ Microchip believes that its family of products is secure when used in the intended manner, within
operating specifications, and under normal conditions.

+ Microchip values and aggressively protects its intellectual property rights. Attempts to breach the
code protection features of Microchip product is strictly prohibited and may violate the Digital
Millennium Copyright Act.

* Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including
to design, test, and integrate Microchip products with your application. Use of this information

in any other manner violates these terms. Information regarding device applications is provided

only for your convenience and may be superseded by updates. It is your responsibility to ensure

@ MICROCHIP

27

https://www.microchip.com/
https://www.microchip.com/pcn
https://www.microchip.com/support

that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR

ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk,

and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer,
LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper
Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge,
ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium,
TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut,
Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication,
CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic
Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge,

IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip
Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi,
MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart,
PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad 1/0, simpleMAP,
SimpliPHY, SmartBuffer, SmartHLS, SMART-LS., storClad, SQI, SuperSwitcher, SuperSwitcher II,
Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered
trademarks of Microchip Technology Inc. in other countries.

GestlC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary
of Microchip Technology Inc., in other countries.

@ MICROCHIP

28

https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

All other trademarks mentioned herein are property of their respective companies.
© 2023, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.
ISBN: 978-1-6683-3410-2

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit
www.microchip.com/quality.

@ MICROCHIP

29

https://www.microchip.com/quality

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongging
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910

Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

30

https://www.microchip.com/support
https://www.microchip.com

	Introduction
	Table of Contents
	1. Quick References
	1.1. Reference Documentation

	2. Overview
	2.1. Architecture
	2.2. Device Service Unit (DSU)
	2.3. Programming Interface
	2.4. Memory
	2.5. Secure Boot ROM and eFuse
	2.6. Boot, BCFG and OTP Pages (BFM)
	2.7. Code Protection and Secured Device
	2.8. Memory Map

	3. Device Reset
	3.1. System Reset
	3.2. Vector Catch
	3.3. External Reset
	3.4. CPU Reset Extension
	3.5. CPU Boot

	4. Serial Wire Debug Port (SW-DP)
	4.1. Overview
	4.2. Operation Sequences
	4.2.1. Initialize SWD
	4.2.2. Uninitialize SWD

	5. Access Port(s) (MEM-AP)
	5.1. Implementation Defined Bits
	5.2. Device Protected State
	5.3. Access Primitives

	6. Programming
	6.1. Operation Sequences
	6.2. Get Device ID
	6.3. Get Device Protection State
	6.4. Read SRAM and Peripherals Registers (SFR)
	6.5. Write SRAM and Peripherals Registers (SFR)
	6.6. Read Debug Halting Control and Status Register (DHCRS)
	6.7. Flash Memory Programming
	6.7.1. Chip Erase
	6.7.2. Programming Sequences
	6.7.2.1. Single/Quad Word Programming Sequence
	6.7.2.2. Row Programming Sequence

	6.7.3. Erase Sequences
	6.7.3.1. Page Erase
	6.7.3.2. PFM Region Erase

	6.8. eFuse Memory Programming
	6.8.1. eFuse Programming Sequence
	6.8.2. eFuse Reading Sequence

	6.9. Configuring Code Protection
	6.10. Configuring Debug Lock

	7. In-Circuit Debugging
	7.1. Debug State Side Effects
	7.2. Debug Logic Reset
	7.3. Debug and Trace Support
	7.4. Debugger Access Support
	7.4.1. Debug and Access Ports (SW-DP And MEM-AP Subblocks)

	7.5. Operation Sequences
	7.5.1. Enter the Debug Mode
	7.5.2. Exit Debug Mode
	7.5.3. Register Reads and Writes
	7.5.4. Run
	7.5.5. Halt
	7.5.6. Get Halt Status
	7.5.7. Get Core Register
	7.5.8. Set Core Register
	7.5.9. Get Program Status Register (PSR)
	7.5.10. Get Program Counter
	7.5.11. Set Program Counter
	7.5.12. Get Stack Pointer
	7.5.13. Set Stack Pointer
	7.5.14. Single Step

	8. DSU.DID vs SW-DP ID
	9. Document Revision History
	Microchip Information
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

