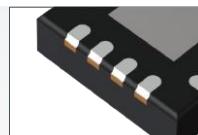


Featured Products

QuiCur™ technology maximizes load response

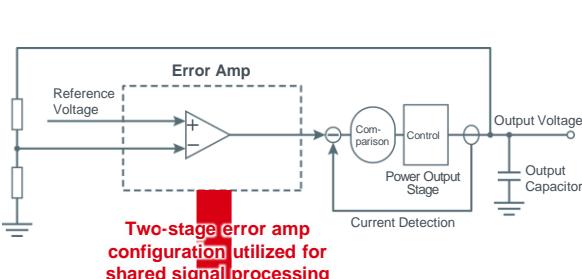
2.2MHz Automotive Secondary DC-DC Converter IC

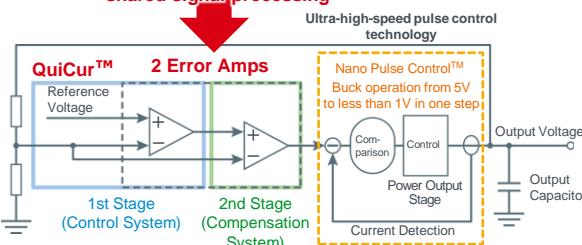
BD9S402MUF-C


QuiCur™ and Nano Pulse Control™ are trademarks or registered trademarks of ROHM Co., Ltd.

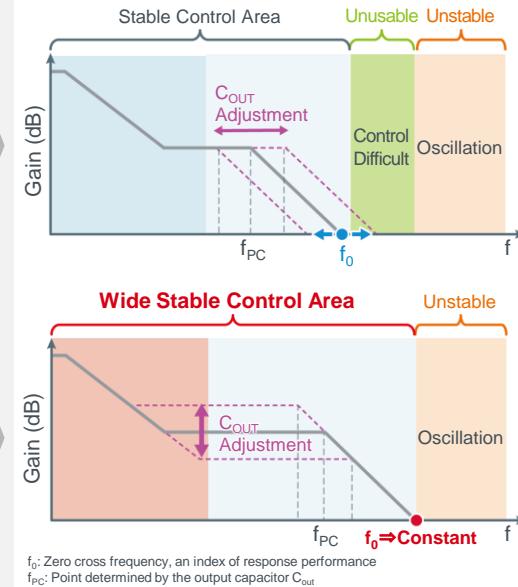
QuiCur™

- QuiCur™ technology provides outstanding output characteristics**
(QuiCur™ is a trademark name for ROHM's original Quick Current circuit that achieves high-speed load response)
Role-sharing using two error amps improves both output stability and response performance
- Delivers low voltage output via Nano Pulse Control™**
Low voltage output of less than 1V from 5V input is possible while maintaining a high switching frequency of 2.2MHz
- Built-in gain selection function increases design flexibility**
Gain settings can be optimized to meet set specifications


Wettable Flank Design

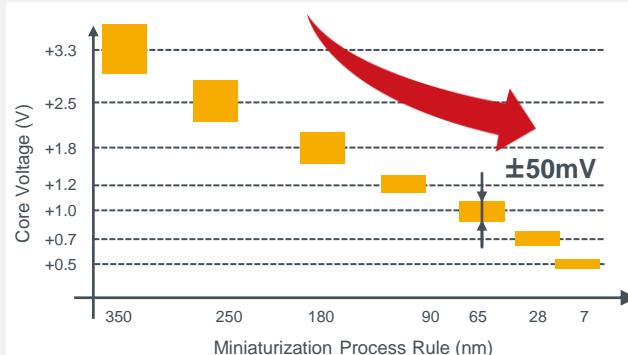

BD9S402MUF-C (3.0×3.0×1.0mm)

Details of QuiCur™ High-Speed Load Response Technology

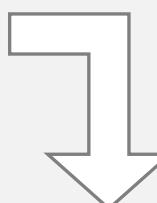

Conventional Circuit

QuiCur™ Circuit

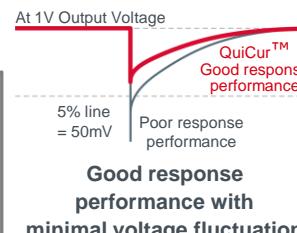
Frequency Response Graphs by Bode Plot

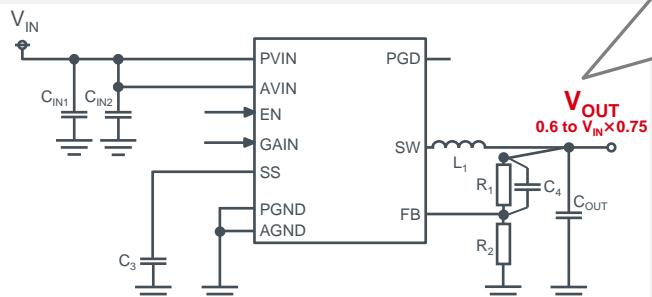

Response Performance Comparison

	Conventional DC-DC Converter IC	QuiCur™ -Equipped BD9S402MUF-C
Output Capacitance	44μF (22μF×2)	44μF (22μF×2)
Board Image		
Zero Cross Frequency f_0	100kHz	300kHz
Load Response Waveforms	V_{out} [50mV/div] I_{out} [1A/div] $\Delta V=100mV$	V_{out} [50mV/div] I_{out} [1A/div] $\Delta V=33mV$


Good response performance with minimal voltage fluctuation

■ BD9S402MUF-C (QuiCur™ + Nano Pulse Control™) Advantages


Process Miniaturization and Core Voltage Reduction


Nano Pulse Control™ technology supports Lower CPU/DSP (load) voltage

QuiCur™ Technology

Application Circuit (BD9S402MUF-C)

■ 2.2MHz Automotive Secondary DC-DC Converter IC BD9S402MUF-C Specifications

Part No.	Rated Voltage (V)	Output Current (Max) (A)	Input Voltage (V)	Output Voltage (V)	Output Voltage Accuracy (%)	Switching Frequency (MHz)	ON Resistance (Typ) (mΩ)		Operating Temperature (°C)	ComfySIL™ Functional Safety Category	Package (mm)
							Pch FET	Nch FET			
New BD9S402MUF-C	7.0	4.0	2.7 to 5.5	Adj. (0.6 to $V_{IN} \times 0.75$)	±1	2.2±10%	60	35	-40 to +125	FS supportive*	 VQFN16FV3030 (3.0×3.0×1.0)

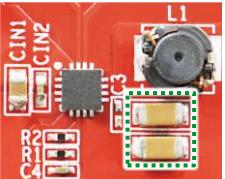
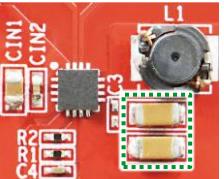
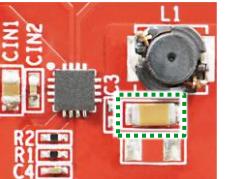
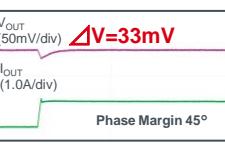
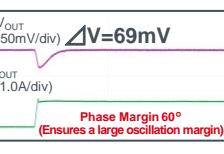
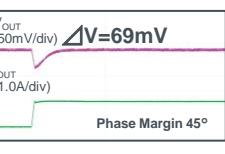
ComfySIL™ is a trademark or registered trademark of ROHM Co., Ltd.

*FS supportive: A product that has been developed for automotive use and is capable of supporting safety analysis with regard to the functional safety.

 Click on the icon to access the product page on ROHM's website. Click on the icon to access the product datasheet on ROHM's website.

The information contained in this document is current as of August 1, 2022.

ROHM Co.,Ltd.







21 Saini Mizonaki-cho, Ukyo-ku,
Kyoto 615-8585 Japan

www.rohm.com

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

■ Gain Setting Accommodates Various Set Specifications

Mode selection function contributes to design optimization and reduced man-hours

Mode	Prioritizing Voltage Fluctuation	Prioritizing Stability	Prioritizing Capacitor Reduction
Gain Terminal Setting	High	Low	Low
Output Capacitance	44µF (22µF×2)	44µF (22µF×2)	22µF (22µF×1)
Board Image			
Load Response Waveforms	 V_{OUT} (50mV/div) $\Delta V = 33mV$ I_{OUT} (1.0A/div)	 V_{OUT} (50mV/div) $\Delta V = 69mV$ I_{OUT} (1.0A/div) Phase Margin 60° (Ensures a large oscillation margin)	 V_{OUT} (50mV/div) $\Delta V = 69mV$ I_{OUT} (1.0A/div) Phase Margin 45°

3-mode selection based on set specifications contributes to optimal design and reduced man-hours

