
USER GUIDE

VIA Neuron Runtime Helper

1.00-06062024

Copyright

Copyright © 2024 VIA Technologies Incorporated. All rights reserved.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any
form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of
VIA Technologies, Incorporated.

Trademarks

All brands, product names, company names, trademarks and service marks are the property of their respective holders.

Disclaimer

VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document.
The information provided in this document is believed to be accurate and reliable as of the publication date of this document. However,
VIA Technologies assumes no responsibility for the use or misuse of the information (including use or connection of extra device/
equipment/add-on card) in this document and for any patent infringements that may arise from the use of this document. The information
and product specifications within this document are subject to change at any time, without notice and without obligation to notify any
person of such change.

VIA Technologies, Inc. reserves the right the make changes to the products described in this manual at any time without prior notice.

ii

 iii

	 VIA Neuron Runtime Helper User Guide

Revision History

Version Date Remarks
1.00 06/06/2024 Initial release

 iv

	 VIA Neuron Runtime Helper User Guide

Table of Contents

1.	 Overview��� 1

2.	 AI Inferencing and Hardware Acceleration on the VIA AI Transforma Model 1��� 1

2.1	 Converting a 32-bit Floating Point TFLite Model to a DLA File��� 2
2.2	 Converting a Quantized 8-bit Asymmetric Unsigned Integer TFLite Model to a DLA File���������������������� 2

2.2.1	 Online Method�� 2
2.2.2	 Offline Method��� 3

2.3	 Running the Neuron Runtime Helper Sample Code�� 4

3.	 Neuron Runtime Helper API Reference��� 4

 1

	 VIA Neuron Runtime Helper User Guide

1.	 Overview
VIA Neuron Runtime Helper is a Python package to speed up building of new projects with machine learning
capabilities, or integrating AI into existing projects. By providing APIs tightly integrated with MediaTek’s AI
Framework "NeuroPilot", VIA Neuron Runtime Helper simplifies the complex task of setting up hardware
accelerated AI inferencing. This user guide will walk through the basic steps of compiling AI models for
hardware acceleration, and executing AI inferencing using the VIA Neuron Runtime Helper’s Python APIs.

2.	 AI Inferencing and Hardware Acceleration
on the VIA AI Transforma Model 1
AI model inferencing on Edge devices is typically built upon executing mathematical operations such as
arithmetic functions, grouping and sorting values, etc. These mathematical operations can be accelerated
using specific hardware separated from the general-purpose processor. To allow hardware accelerated AI
inferencing, tasks of function execution can be delegated through an AI framework, instead of building a
pipeline.

The VIA AI Transforma Model 1 board supports TensorFlow Lite ("TFLite") as the underlaying framework for
AI hardware acceleration. TFLite models can be executed directly on the VIA AI Transforma Model 1 board's
C.P.U and G.P.U without special conversion. For instructions on running TFLite models (.tflite files) on the VIA AI
Transforma Model 1 board, visit webpage https://www.tensorflow.org/lite/guide/inference#linux_platform.

To leverage dedicated hardware acceleration with the onboard N.P.U, a TFLite model needs to be converted
to a statically compiled network (DLA file) before being executed by the NPU. "ncc-tflite" is a compiler tool
provided by MediaTek to generate such a network.

Before converting a TFLite model to a DLA file, determine whether the source TFLite model has a 32-bit
floating point data type, which generates results that are more accurate but are slower to execute, or, has been
optimized and quantized to an 8-bit integer data type, which generates results that execute faster but sacrifices
accuracy.

Note:
For more information on Model Optimization and Quantization, visit Google's TFLite webpage https://www.
tensorflow.org/lite/performance/model_optimization.

Processors on the VIA AI Transforma Model 1 board can support the execution of TFLite models of various data
types. The following table specifies the supported TFLite model data types:

Processor

TFLite Model Data Types
8-bit

Asymmetric
Unsigned

Integer

8-bit
Asymmetric

Integer

8-bit
Symmetric

Integer

16-bit
Symmetric

Integer

16-bit
Floating

Point

32-bit
Floating

Point

8-bit
Boolean

32-bit
Integer

NPU (MDLA 3.0) ü ü ü ü ü û û û
G.P.U û û û û ü ü û û
C.P.U ü ü û û ü ü ü ü

Note:
For more information on Google’s TFLite 8-bit quantization specification, visit Google's TFLite webpage https://www.
tensorflow.org/lite/performance/quantization_spec.

https://www.tensorflow.org/lite/guide/inference#linux_platform
https://www.tensorflow.org/lite/performance/model_optimization
https://www.tensorflow.org/lite/performance/model_optimization
https://www.tensorflow.org/lite/performance/quantization_spec
https://www.tensorflow.org/lite/performance/quantization_spec

 2

	 VIA Neuron Runtime Helper User Guide

2.1	 Converting a 32-bit Floating Point TFLite Model to
a DLA File
Open a command-line interface to the VIA AI Transforma Model 1 board, and run the following command
to convert the 32-bit floating point TFLite model (example: "yolov8s_f32_640.tflite") to a DLA file (example:
"yolov8s_f32_640.dla") :

> cd /usr/share/ai_transforma/NeuronRuntimeHelper/
> ncc-tflite --arch=mdla3.0 --opt=3 --relax-fp32 yolov8s_f32_640.tflite -o yolov8s_f32_640.dla

2.2	 Converting a Quantized 8-bit Asymmetric
Unsigned Integer TFLite Model to a DLA File
Before converting a quantized TFLite model to DLA file, one of the following online or offline method can
be used to generate a JSON configuration file describing the model’s quantization parameters. Follow the
instructions described below for the desired method, and for conversion of the quantized TFLite model to DLA
file:

2.2.1	 Online Method
Generation of the JSON Configuration File

Step 1

Open the Netron webpage https://netron.app/.

Note:
Netron is an open-sourced online neural network visualizer.

Step 2

Upload and view your TFLite model (example: "yolov8s_u8_640.tflite"), and identify the layer(s) in the TFLite
model that have been quantized.

Step 3

Create a JSON configuration file (example: "yolov8s_u8_640.json") at location "/usr/share/ai_transforma/
NeuronRuntimeHelper/"

Step 4

Add the following information into the JSON configuration file, replacing the values with the actual quantization
parameters shown in Netron:

•	 Scale (a floating-point number representing the quantization scale)

•	 Zero point (an integer representing the quantization zero-point)

{
 "scale" : "0.004030249",
 "zero-point" : "-4.0"
}

https://netron.app/

 3

	 VIA Neuron Runtime Helper User Guide

Conversion of the Quantized TFLite Model to a DLA File

Open a command-line interface to the VIA AI Transforma Model 1 board, and run the following command
to convert the quantized TFLite model (example: "yolov8s_u8_640.tflite") to a DLA file (example: "yolov8s_
u8_640.dla"):

> cd /usr/share/ai_transforma/NeuronRuntimeHelper/
> ncc-tflite --arch=mdla3.0 --opt=3 --opt-aggressive --dla-metadata dequantize:yolov8s_
u8_640.json yolov8s_u8_640.tflite -o yolov8s_u8_640.dla

2.2.2	 Offline Method
Generation of the JSON Configuration File

Step 1

Create a Python file "export_tflite_quant.py" at location "/usr/share/ai_transforma/NeuronRuntimeHelper/"

Step 2

Copy-paste the following content into the Python file, replacing the highlighted parts with the names of your
JSON configuration file and quantized TFLite model:

import tensorflow as tf
import json

def extract_output_details(model_path):
 interpreter = tf.lite.Interpreter(model_path=model_path)
 interpreter.allocate_tensors()

 output_details = interpreter.get_output_details()
 output_info = {}

 for output_detail in output_details:
 output_info = {
 "scale": str(output_detail["quantization_parameters"]["scales"][0]),
 "zero_point": str(output_detail["quantization_parameters"]["zero_points"][0])
 }

 return output_info

def save_to_json(output_info, filename="yolov8s_u8_640.json"):
 """Saves the output tensor details to a JSON file."""
 with open(filename, "w") as json_file:
 json.dump(output_info, json_file, indent=4)

Example
model_path = "yolov8_u8_640.tflite"
output_details = extract_output_details(model_path)
save_to_json(output_details)

Step 3

Save the Python file, and run the following command to generate the JSON configuration file:

> cd /usr/share/ai_transforma/NeuronRuntimeHelper/
> python3 export_tflite_quant.py

Conversion of the Quantized TFLite Model to a DLA File

Run the following command to convert the quantized TFLite model (example: "yolov8s_u8_640.tflite") to a DLA
file (example: "yolov8s_u8_640.dla"):

> cd /usr/share/ai_transforma/NeuronRuntimeHelper/
> ncc-tflite --arch=mdla3.0 --opt=3 --opt-aggressive --dla-metadata dequantize:yolov8s_
u8_640.json yolov8s_u8_640.tflite -o yolov8s_u8_640.dla

 4

	 VIA Neuron Runtime Helper User Guide

Notes:
1) For detailed instructions and parameters to use the Neuron Compiler (ncc-tflite), refer to MediaTek's official
documentation on webpage https://mediatek.gitlab.io/aiot/doc/aiot-dev-guide/master/sw/yocto/ml-guide/neuron-
sdk/neuron_tools.html#ml-neuron-compiler.

2) To learn more about the YOLOv8 model, visit webpage https://github.com/ultralytics/ultralytics.

2.3	 Running the Neuron Runtime Helper Sample
Code
Open a command-line interface to the VIA AI Transforma Model 1 board, and run the Neuron Runtime Helper
sample code using the following command:

> cd /usr/share/ai_transforma/NeuronRuntimeHelper/
> python3 ai_transforma_example.py

The output will be displayed on screen as shown below:

3.	 Neuron Runtime Helper API Reference
This section provides descriptions of the Neuron Runtime Helper APIs:

API Description
Initialize Initializes MediaTek’s NeuronRuntimeV2 instance
Execute Runs inference on the loaded model
GetInputDimensions Gets the dimensions of all input tensors
GetOutputDimensions Gets the dimensions of all output tensors

https://mediatek.gitlab.io/aiot/doc/aiot-dev-guide/master/sw/yocto/ml-guide/neuron-sdk/neuron_tools.html#ml-neuron-compiler
https://mediatek.gitlab.io/aiot/doc/aiot-dev-guide/master/sw/yocto/ml-guide/neuron-sdk/neuron_tools.html#ml-neuron-compiler
https://github.com/ultralytics/ultralytics

 5

	 VIA Neuron Runtime Helper User Guide

API Description
SetInputBuffer Sets model input data
GetOutputBuffer Gets model output data

Initialize
Function Initialize() -> bool
Description Initializes MediaTek’s NeuronRuntimeV2 instance

Return (bool)
True: If initialized successfully

False: If failed to initialize

Execute
Function Execute() -> bool
Description Runs inference on the loaded model

Return (bool)
True: If successfully run

False: If failed to run

GetInputDimensions
Function GetInputDimensions () -> list[list[int]]
Description Gets the dimensions of all input tensors

GetOutputDimensions
Function GetOutputDimensions () -> list[list[int]]
Description Gets the dimensions of all output tensors

SetInputBuffer
Function SetInputBuffer (input_buffer: numpy.ndarray, index: int)
Description Sets model input data

Parameters
•	 inputBuffer: A NumPy array (uint8, float32)

•	 index: model input tensor index

GetOutputBuffer
Function GetOutputBuffer (index: int) -> numpy.ndarray
Description Gets model output data
Parameters index: model output tensor index
Return A floating-point numpy array

Note:
For more information on AI inferencing, refer to Google’s TensorFlow Lite inference document on webpage https://
www.tensorflow.org/lite/guide/inference.

https://www.tensorflow.org/lite/guide/inference
https://www.tensorflow.org/lite/guide/inference

1F, 531 Zhong-zheng Road,
Xindian Dist., New Taipei City 231
Taiwan

Tel: 886-2-2218-5452
Fax: 886-2-2218-9860
Email: embedded@via.com.tw

940 Mission Court
Fremont, CA 94539,
USA

Tel: 1-510-687-4688
Fax: 1-510-687-4654
Email: embedded@viatech.com

Email: embedded@via-tech.eu

Taiwan Headquarters USA

Europe

Tsinghua Science Park Bldg. 7
No. 1 Zongguancun East Road,
Haidian Dist., Beijing, 100084
China

Tel: 86-10-59852288
Fax: 86-10-59852299
Email: embedded@viatech.com.cn

3-15-7 Ebisu MT Bldg. 6F,
Higashi, Shibuya-ku
Tokyo 150-0011
Japan

Tel: 81-3-5466-1637
Fax: 81-3-5466-1638
Email: embedded@viatech.co.jp

ChinaJapan

	VIA NeuronRuntimeHelper User Guide
	Contact VIA
	1.	Overview
	2.	AI Inferencing and Hardware Acceleration on the VIA AI Transforma Model 1
	2.1	Converting a 32-bit Floating Point TFLite Model to a DLA File
	2.2	Converting a Quantized 8-bit Asymmetric Unsigned Integer TFLite Model to a DLA File
	2.2.1	Online Method
	2.2.2	Offline Method

	2.3	Running the Neuron Runtime Helper Sample Code

	3.	Neuron Runtime Helper API Reference

