VIA Neuron Runtime Helper

0000000000000

Copyright
Copyright © 2024 VIA Technologies Incorporated. All rights reserved.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any
form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of

VIA Technologies, Incorporated.

Trademarks

All brands, product names, company names, trademarks and service marks are the property of their respective holders.

Disclaimer

VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document.
The information provided in this document is believed to be accurate and reliable as of the publication date of this document. However,
VIA Technologies assumes no responsibility for the use or misuse of the information (including use or connection of extra device/
equipment/add-on card) in this document and for any patent infringements that may arise from the use of this document. The information
and product specifications within this document are subject to change at any time, without notice and without obligation to notify any

person of such change.

VIA Technologies, Inc. reserves the right the make changes to the products described in this manual at any time without prior notice.

VIA Neuron Runtime Helper User Guide

Revision History

1.00 06/06/2024 Initial release

cee

VIA Neuron Runtime Helper User Guide

Table of Contents

O O V=T V1 Y O P PRSP UP T OPPPPRP 1
2. Al lInferencing and Hardware Acceleration on the VIA Al Transforma Model 1........cccceeeviieeeiiieeeeciiee e, 1
2.1 Converting a 32-bit Floating Point TFLite Model t0 @ DLA Fil€.....cvvvivciieeeciiee e 2

2.2 Converting a Quantized 8-bit Asymmetric Unsigned Integer TFLite Model to a DLA File.........cccccu.... 2
B0 R O 10111 Y= IV 1= d o o o F TP PP OPPRPPO 2

2.2.2 OffliN€ IMELNOM ...ttt ettt e e e ba e e s aae e tbeessae e st e e ssbeessbeesneeenseas 3

2.3 Running the Neuron Runtime Helper Sample COde........uuiiiiiiiiiiiieiciee et aee e e 4

3. Neuron RUNtIME Helper APl REFEIENCEcciuiieeeiii ettt e et e e et e e e st e e e s nte e e enaaeeesnsaeaeanes 4

1. Overview

VIA Neuron Runtime Helper is a Python package to speed up building of new projects with machine learning
capabilities, or integrating Al into existing projects. By providing APIs tightly integrated with MediaTek’s Al
Framework "NeuroPilot", VIA Neuron Runtime Helper simplifies the complex task of setting up hardware
accelerated Al inferencing. This user guide will walk through the basic steps of compiling Al models for
hardware acceleration, and executing Al inferencing using the VIA Neuron Runtime Helper’s Python APIs.

2. Al Inferencing and Hardware Acceleration
on the VIA Al Transforma Model 1

Al model inferencing on Edge devices is typically built upon executing mathematical operations such as
arithmetic functions, grouping and sorting values, etc. These mathematical operations can be accelerated
using specific hardware separated from the general-purpose processor. To allow hardware accelerated Al
inferencing, tasks of function execution can be delegated through an Al framework, instead of building a
pipeline.

The VIA Al Transforma Model 1 board supports TensorFlow Lite ("TFLite") as the underlaying framework for
Al hardware acceleration. TFLite models can be executed directly on the VIA Al Transforma Model 1 board's
C.P.U and G.P.U without special conversion. For instructions on running TFLite models (.tflite files) on the VIA Al
Transforma Model 1 board, visit webpage https://www.tensorflow.org/lite/guide/inference#linux_platform.

To leverage dedicated hardware acceleration with the onboard N.P.U, a TFLite model needs to be converted
to a statically compiled network (DLA file) before being executed by the NPU. "ncc-tflite" is a compiler tool
provided by MediaTek to generate such a network.

Before converting a TFLite model to a DLA file, determine whether the source TFLite model has a 32-bit
floating point data type, which generates results that are more accurate but are slower to execute, or, has been
optimized and quantized to an 8-bit integer data type, which generates results that execute faster but sacrifices
accuracy.

t Note:

For more information on Model Optimization and Quantization, visit Google's TFLite webpage https://www.
tensorflow.org/lite/performance/model_optimization.

Processors on the VIA Al Transforma Model 1 board can support the execution of TFLite models of various data
types. The following table specifies the supported TFLite model data types:

TFLite Model Data Types
8-bit

Processor Asymmetric 8-bit ' 8-bit . 16—b|t' 16—b'|t 32—k?|t 3-bit 37-bit
Unsigned Asymmetric | Symmetric | Symmetric | Floating Floating Boolean Integer
'8 Integer Integer Integer Point Point g
Integer
NPU (MDLA 3.0) v v v v v x x x
G.P.U x x x x v v x x
C.PU v v x x v v v v

t Note:

For more information on Google’s TFLite 8-bit quantization specification, visit Google's TFLite webpage https://www.
tensorflow.org/lite/performance/quantization_spec.

https://www.tensorflow.org/lite/guide/inference#linux_platform
https://www.tensorflow.org/lite/performance/model_optimization
https://www.tensorflow.org/lite/performance/model_optimization
https://www.tensorflow.org/lite/performance/quantization_spec
https://www.tensorflow.org/lite/performance/quantization_spec

2.1 Converting a 32-bit Floating Point TFLite Model to
a DLA File

Open a command-line interface to the VIA Al Transforma Model 1 board, and run the following command
to convert the 32-bit floating point TFLite model (example: "yolov8s_f32_640.tflite") to a DLA file (example:
"yolov8s_f32_640.dla") :

> cd /usr/share/ai transforma/NeuronRuntimeHelper/

> ncc-tflite --arch=mdla3.0 --opt=3 --relax-fp32 yolov8s f32 640.tflite -o yolov8s £f32 640.dla

2.2 Converting a Quantized 8-bit Asymmetric
Unsigned Integer TFLite Model to a DLA File

Before converting a quantized TFLite model to DLA file, one of the following online or offline method can

be used to generate a JSON configuration file describing the model’s quantization parameters. Follow the
instructions described below for the desired method, and for conversion of the quantized TFLite model to DLA
file:

2.2.1 Online Method

Generation of the JSON Configuration File

Step 1

Open the Netron webpage https://netron.app/.

1 Note:

Netron is an open-sourced online neural network visualizer.

Step 2

Upload and view your TFLite model (example: "yolov8s_u8_640.tflite"), and identify the layer(s) in the TFLite
model that have been quantized.

Step 3

Create a JSON configuration file (example: "yolov8s_u8_640.json") at location "/usr/share/ai_transforma/
NeuronRuntimeHelper/"

Step 4

Add the following information into the JSON configuration file, replacing the values with the actual quantization
parameters shown in Netron:

e Scale (a floating-point number representing the quantization scale)

e Zero point (an integer representing the quantization zero-point)

"scale™ : "0.004030249",

"zero-point" : "-4.0"

https://netron.app/

Conversion of the Quantized TFLite Model to a DLA File

Open a command-line interface to the VIA Al Transforma Model 1 board, and run the following command
to convert the quantized TFLite model (example: "yolov8s_u8_640.tflite") to a DLA file (example: "yolov8s_
u8_640.dla"):

> cd /usr/share/ai transforma/NeuronRuntimeHelper/
> ncc-tflite --arch=mdla3.0 --opt=3 --opt-aggressive --dla-metadata dequantize:yolov8s

u8 640.json yolov8s u8 640.tflite -o yolov8s u8 640.dla

2.2.2 Offline Method

Generation of the JSON Configuration File

Step 1
Create a Python file "export_tflite_quant.py" at location "/usr/share/ai_transforma/NeuronRuntimeHelper/"
Step 2

Copy-paste the following content into the Python file, replacing the highlighted parts with the names of your
JSON configuration file and quantized TFLite model:

import tensorflow as tf
import json

def extract output details(model path):
interpreter = tf.lite.Interpreter (model path=model path)
interpreter.allocate tensors ()

output details = interpreter.get output details()
output info = {}

for output detail in output details:
output info = {
"scale": str(output detail["quantization parameters"]["scales"][0]),
"zero point": str(output detail["quantization parameters"] ["zero points"][0])

return output info

save to json (output info, filename=") g
"""Saves the output tensor details to a JSON file."""
with open (filename, "w") as json file:

json.dump (output info, Jjson file, indent=4)

outpuEﬁdetails = extract output details (model path)
save to json (output details)

Step 3

Save the Python file, and run the following command to generate the JSON configuration file:

> cd /usr/share/ai transforma/NeuronRuntimeHelper/
> python3 export tflite quant.py

Conversion of the Quantized TFLite Model to a DLA File

Run the following command to convert the quantized TFLite model (example: "yolov8s_u8_640.tflite") to a DLA
file (example: "yolov8s_u8_640.dla"):

> cd /usr/share/ai transforma/NeuronRuntimeHelper/
> ncc-tflite --arch=mdla3.0 --opt=3 --opt-aggressive --dla-metadata dequantize:yolov8s

u8 640.json yolov8s u8 640.tflite -o yolov8s u8 640.dla

t Notes:

1) For detailed instructions and parameters to use the Neuron Compiler (ncc-tflite), refer to MediaTek's official
documentation on webpage https://mediatek.gitlab.io/aiot/doc/aiot-dev-guide/master/sw/yocto/ml-guide/neuron-
sdk/neuron_tools.html#ml-neuron-compiler.

2) To learn more about the YOLOv8 model, visit webpage https://github.com/ultralytics/ultralytics.

2.3 Running the Neuron Runtime Helper Sample
Code

Open a command-line interface to the VIA Al Transforma Model 1 board, and run the Neuron Runtime Helper
sample code using the following command:

> cd /usr/share/ai transforma/NeuronRun eHelper/

> python3 ai tran ma_ example.py

The output will be displayed on screen as shown below:

result - 0o X

s W00 CKetEn e phn -

‘“’d&dﬂ“ :ndll.M‘l’c

cer——fF
emisiones

3. Neuron Runtime Helper APl Reference

This section provides descriptions of the Neuron Runtime Helper APIs:

API Description
Initialize Initializes MediaTek’s NeuronRuntimeV2 instance
Execute Runs inference on the loaded model
GetlnputDimensions Gets the dimensions of all input tensors

GetOutputDimensions Gets the dimensions of all output tensors

https://mediatek.gitlab.io/aiot/doc/aiot-dev-guide/master/sw/yocto/ml-guide/neuron-sdk/neuron_tools.html#ml-neuron-compiler
https://mediatek.gitlab.io/aiot/doc/aiot-dev-guide/master/sw/yocto/ml-guide/neuron-sdk/neuron_tools.html#ml-neuron-compiler
https://github.com/ultralytics/ultralytics

VI

VIA Neuron Runtime Helper User Guide

SetlnputBuffer Sets model input data
GetOutputBuffer Gets model output data
Initialize

Initialize() -> bool

Initializes MediaTek’s NeuronRuntimeV2 instance

True: If initialized successfully

(bool)
False: If failed to initialize

Execute() -> bool

Runs inference on the loaded model

True: If successfully run

(bool)
False: If failed to run

m
x
(1]
(o]
c
-+
(1]

GetIlnputDimensions

GetlnputDimensions () -> list[list[int]]

Gets the dimensions of all input tensors

GetOutputDimensions

GetOutputDimensions () -> list[list[int]]
Gets the dimensions of all output tensors

SetinputBuffer

SetInputBuffer (input_buffer: numpy.ndarray, index: int)

Sets model input data

e inputBuffer: A NumPy array (uint8, float32)

e index: model input tensor index

GetOutputBuffer

GetOutputBuffer (index: int) -> numpy.ndarray

Gets model output data

index: model output tensor index

A floating-point numpy array

Note:
For more information on Al inferencing, refer to Google’s TensorFlow Lite inference document on webpage https://

www.tensorflow.org/lite/guide/inference.

https://www.tensorflow.org/lite/guide/inference
https://www.tensorflow.org/lite/guide/inference

Taiwan Headquarters BE= UsA @ | Japan China

1F, 531 Zhong-zheng Road, 940 Mission Court 3-15-7 Ebisu MT Bldg. 6F, Tsinghua Science Park Bldg. 7
Xindian Dist., New Taipei City 231 Fremont, CA 94539, Higashi, Shibuya-ku No. 1 Zongguancun East Road,
Taiwan USA Tokyo 150-0011 Haidian Dist., Beijing, 100084
Japan China
Tel: 886-2-2218-5452 Tel: 1-510-687-4688
Fax: 886-2-2218-9860 Fax: 1-510-687-4654 Tel: 81-3-5466-1637 Tel: 86-10-59852288
Email: embedded@via.com.tw Email: embedded@viatech.com Fax: 81-3-5466-1638 Fax: 86-10-59852299
Email: embedded@viatech.co.jp Email: embedded@viatech.com.cn

¥ Europe

Email: embedded@via-tech.eu

	VIA NeuronRuntimeHelper User Guide
	Contact VIA
	1.	Overview
	2.	AI Inferencing and Hardware Acceleration on the VIA AI Transforma Model 1
	2.1	Converting a 32-bit Floating Point TFLite Model to a DLA File
	2.2	Converting a Quantized 8-bit Asymmetric Unsigned Integer TFLite Model to a DLA File
	2.2.1	Online Method
	2.2.2	Offline Method

	2.3	Running the Neuron Runtime Helper Sample Code

	3.	Neuron Runtime Helper API Reference

