
i.MX RT VGLite API Reference Manual

NXP Semiconductors Document identifier: IMXRTVGLITEAPIRM
Reference Manual Rev. 0, 22 February 2021

Contents
Chapter 1 Introduction... 5

Chapter 2 Vivante VGLite Graphics API.. 6
2.1 API Partitions...6
2.2 API Files.. 6

Chapter 3 Common Parameters and Error Values.. 7
3.1 Common Parameter Types... 7
3.2 Enumeration used for Error Reporting...7

3.2.1 vg_lite_error_t Enumeration.. 7

Chapter 4 Hardware Product and Feature Information..9
4.1 Enumerations for Product and Feature Queries..9

4.1.1 vg_lite_feature_t Enumeration...9
4.2 Structures for Product and Feature Queries..9

4.2.1 vg_lite_info_t Structure.. 9
4.3 Functions for Product and Feature Queries.. 10

4.3.1 vg_lite_get_product_info..10
4.3.2 vg_lite_get_info..10
4.3.3 vg_lite_get_register... 10
4.3.4 vg_lite_query_feature.. 11
4.3.5 vg_lite_mem_avail... 11

Chapter 5 API Control..13
5.1 Context Initialization and Control Functions.. 13

5.1.1 vg_lite_set_command_buffer_size...13
5.1.2 vg_lite_init..13
5.1.3 vg_lite_close..14
5.1.4 vg_lite_finish..14
5.1.5 vg_lite_flush...14

Chapter 6 Pixel Buffers.. 15
6.1 Pixel Buffer Alignment... 15
6.2 Pixel Cache... 15
6.3 Internal Representation... 15
6.4 Pixel Buffer Enumerations...15

6.4.1 vg_lite_buffer_format_t Enumeration...15
6.4.1.1 Alignment Notes...22

6.4.2 vg_lite_buffer_image_mode_t Enumeration.. 23
6.4.3 vg_lite_buffer_layout_t Enumeration... 23
6.4.4 vg_lite_buffer_transparency_mode_t Enumeration... 23
6.4.5 vg_lite_swizzle_t Enumeration.. 24
6.4.6 vg_lite_yuv2rgb_t Enumeration... 24

6.5 Pixel Buffer Structures...24
6.5.1 vg_lite_buffer_t Structure...24
6.5.2 vg_lite_yuvinfo_t Structure.. 25

NXP Semiconductors

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 2 / 69

6.6 Pixel Buffer Functions..26
6.6.1 vg_lite_allocate..26
6.6.2 vg_lite_free.. 26
6.6.3 vg_lite_buffer_upload.. 27
6.6.4 vg_lite_map... 27
6.6.5 vg_lite_unmap... 27
6.6.6 vg_lite_set_CLUT.. 28

Chapter 7 Matrices...29
7.1 Matrix Control Float Parameter Type.. 29
7.2 Matrix Control Structures...29

7.2.1 vg_lite_matrix_t Structure.. 29
7.3 Matrix Control Functions..29

7.3.1 vg_lite_identity...29
7.3.2 vg_lite_perspective..30
7.3.3 vg_lite_rotate... 30
7.3.4 vg_lite_scale..30
7.3.5 vg_lite_translate.. 31

Chapter 8 BLITs for Compositing and Blending...32
8.1 BLIT Enumerations..32

8.1.1 vg_lite_blend_t Enumeration... 32
8.1.2 vg_lite_color_t Parameter..36
8.1.3 vg_lite_filter_t Enumeration... 36

8.2 BLIT Structures..36
8.2.1 vg_lite_buffer_t Structure...37
8.2.2 vg_lite_matrix_t Structure.. 37
8.2.3 vg_lite_path_t Structure...37
8.2.4 vg_lite_rectangle_t Structure... 37

8.3 BLIT Functions.. 37
8.3.1 vg_lite_blit..37
8.3.2 vg_lite_blit_rect..38
8.3.3 vg_lite_clear.. 39

8.4 Premultiply and Scissor Functions.. 40
8.4.1 vg_lite_enable_premultiply.. 40
8.4.2 vg_lite_disable_premultiply..40
8.4.3 vg_lite_enable_scissor.. 40
8.4.4 vg_lite_disable_scissor..41
8.4.5 vg_lite_set_scissor.. 41

Chapter 9 Vector Path Control...42
9.1 Vector Path Enumerations...42

9.1.1 vg_lite_format_t Enumeration..42
9.1.2 vg_lite_quality_t Enumeration..42

9.2 Vector Path Structures.. 42
9.2.1 vg_lite_hw_memory Structure... 42
9.2.2 vg_lite_path_t Structure...43

9.3 Vector Path Functions... 44
9.3.1 vg_lite_path_calc_length... 44
9.3.2 vg_lite_path_append... 45
9.3.3 vg_lite_init_path...45
9.3.4 vg_lite_upload_path...46

NXP Semiconductors
Contents

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 3 / 69

9.3.5 vg_lite_clear_path..47
9.4 Vector Path Opcodes for Plotting Paths..47

Chapter 10 Vector Based Draw Operations...50
10.1 Draw and Gradient Enumerations... 50

10.1.1 vg_lite_blend_t Enumeration... 50
10.1.2 vg_lite_color_t Parameter..50
10.1.3 vg_lite_fill_t Enumeration...50
10.1.4 vg_lite_filter_t Enumeration... 50
10.1.5 vg_lite_pattern_mode_t Enumeration.. 50
10.1.6 vg_lite_radial_gradient_spreadmode_t Enumeration...51

10.2 Draw and Gradient Structures...51
10.2.1 vg_lite_buffer_t Structure...51
10.2.2 vg_lite_color_ramp_t Structure.. 51
10.2.3 vg_lite_linear_gradient_t Structure.. 52
10.2.4 vg_lite_matrix_t Structure.. 52
10.2.5 vg_lite_path_t Structure...52
10.2.6 vg_lite_radial_gradient_parameter_t Structure.. 52
10.2.7 vg_lite_radial_gradient_t Structure.. 53

10.3 Draw Functions..53
10.3.1 vg_lite_draw.. 54
10.3.2 vg_lite_draw_gradient..54
10.3.3 vg_lite_draw_radial_gradient... 55
10.3.4 vg_lite_draw_pattern... 56

10.4 Linear Gradient Initialization and Control Functions..57
10.4.1 vg_lite_init_grad...57
10.4.2 vg_lite_set_grad.. 58
10.4.3 vg_lite_update_grad.. 58
10.4.4 vg_lite_get_grad_matrix...59
10.4.5 vg_lite_clear_grad... 59

10.5 Radial Gradient Functions...59
10.5.1 vg_lite_set_rad_grad... 59
10.5.2 vg_lite_update_rad_grad... 60
10.5.3 vg_lite_get_rad_grad_matrix..61
10.5.4 vg_lite_clear_rad_grad.. 61

Chapter 11 VGLite API Programming Examples... 62
11.1 vg_lite_clear Example..62
11.2 vg_lite_blit Example...62
11.3 vg_lite_draw Example..63
11.4 vg_lite_draw_gradient Example...64
11.5 vg_lite_draw_pattern Example...64
11.6 Vector-based Font Rendering Example.. 65

Chapter 12 Revision history...68

NXP Semiconductors
Contents

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 4 / 69

Chapter 1
Introduction
Vivante’s platform independent VGLite Graphics API (Application Programming Interface) is designed to support 2D vector and
2D raster-based operations for rendering interactive user interface that may include menus, fonts, curves, and images. Its goal is
to provide the maximum 2D vector/raster rendering performance, while keeping the memory footprint to the minimum. The Vivante
VGLite Graphics API is a common interface to i.MX RT500 and i.MX RT1170 2D GPUs.

This document contains copyright material disclosed with permission of Vivante Corporation.

NXP Semiconductors

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 5 / 69

Chapter 2
Vivante VGLite Graphics API
The Vivante VGLite Graphics API is used to control the i.MX RT500 and i.MX RT1170 2D GPUs vector graphics hardware unit,
which provides accelerated vector and raster operations.

The Vivante VGLite API is intended for use with i.MX RT500 and i.MX RT1170 2D GPUs hardware. Supported features include:
Porter-Duff Blending, Gradient Controls, Fast Clear, Arbitrary Rotations, Path Filling rules, Path painting, and Pattern Path Filling,
The API supports only one implicit global application context.

2.1 API Partitions
The Vivante VGLite Graphics API has been designed to allow for fine granularity in memory usage. It is appropriate for those cases
where the user wants to use only one of the available rendering classes. The API is partitioned into these independent parts:

• Initialization – Used for initializing hardware and software structures.

• Blit API – Used for the raster part of rendering.

• Draw API – Used for 2D vector-based draw operations.

2.2 API Files
The Vivante VGLite Graphics API functions are defined in the header file VGLite/inc/vg_lite.h.

All VGLite enumerations and data types are also defined in VGLite/inc/vg_lite.h.

NXP Semiconductors

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 6 / 69

Chapter 3
Common Parameters and Error Values
This section provides an overview of the common parameter types and the enumeration ised for error reporting.

3.1 Common Parameter Types
Vivante VGLite Graphics API uses a naming convention scheme wherein definitions are preceded by ‘vg_lite’.

Below is the list of most proprietary defined types and structures in the drivers:

These are the types currently used by the API.

Table 1. Common parameter types

Name Typedef Value

int32_t int A signed 32 bit integer

uint32_t Unsigned int A unsigned 32 bit integer

VG_LITE_S8 enum vg_lite_format_t A signed 8 bit integer coordinate

VG_LITE_S16 enum vg_lite_format_t A signed 16 bit integer coordinate

VG_LITE_S32 enum vg_lite_format_t A signed 32 bit integer coordinate

vg_lite_float_t float A single precision floating point number

vg_lite_color_t uint32_t A 32 bit color value

The color value specifies the color used in various
functions. The color is formed using 8-bit RGBA channels.
The red channel is in the lower 8-bit of the color value,
followed by the green and blue channels. The alpha
channel is in the upper 8-bit of the color value.

For L8 target formats, the RGB color is converted to L8 by
using the default ITU-R BT.709 conversion rules.

3.2 Enumeration used for Error Reporting
This section provides an overview of the enumeration used for error reporting.

3.2.1 vg_lite_error_t Enumeration
Most functions in the API include an error status via the vg_lite_error_t enumeration. API functions return the status of the
command and will report VG_LITE_SUCCESS if successful with no errors. Possible error values include the values in the
table below.

Used in many functions, including initialization, flush, blit, draw, gradient and pattern functions.

NXP Semiconductors

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 7 / 69

Table 2. vg_lite_error_t enumeration

vg_lite_error_t String Values Description

VG_LITE_GENERIC_IO Cannot communicate with the kernel driver

VG_LITE_INVALID_ARGUMENT Invalid argument specified

VG_LITE_MULTI_THREAD_FAIL Multi-thread/tasks fail

VG_LITE_NO_CONTEXT No context specified

VG_LITE_NOT_SUPPORT Function call not supported

VG_LITE_OUT_OF_MEMORY Out of memory (driver heap)

VG_LITE_OUT_OF_RESOURCES Out of resources (OS heap)

VG_LITE_SUCCESS Successful with no errors

VG_LITE_TIMEOUT Timeout

NXP Semiconductors
Common Parameters and Error Values

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 8 / 69

Chapter 4
Hardware Product and Feature Information
These query functions can be used to identify the product and its key features and to get VGLite driver information.

4.1 Enumerations for Product and Feature Queries
This section provides and overview of the enumerations for product and feature queries.

4.1.1 vg_lite_feature_t Enumeration
The following feature values may be queried for availability in compatible hardware.

Used in information function: vg_lite_query_feature.

Table 3. vg_lite_feature_t enumeration

vg_lite_feature_t String Values Description

gcFEATURE_BIT_VG_IM_INDEX_FORMAT Index format support (not supported on i.MX RT1170)

gcFEATURE_BIT_VG_PE_PREMULTIPLY Premultiply alpha support for image (not supported on
i.MX RT500)

gcFEATURE_BIT_VG_SCISSOR Scissor support

gcFEATURE_BIT_VG_RADIAL_GRADIENT Radial gradient support (not supported on i.MX RT500)

gcFEATURE_BIT_VG_BORDER_CULLING Border_culling support

gcFEATURE_BIT_VG_RGBA2_FORMAT RGBA2222 format support

4.2 Structures for Product and Feature Queries
This section provides an overview of the structures for product and feature queries.

4.2.1 vg_lite_info_t Structure
This structure is used to query VGLite driver information.

Used in function: vg_lite_get_info.

vg_lite_info_t Members Type Description

api_version uint32_t VGLite API version

header_version uint32_t VGLite header version

release_version uint32_t VGLite driver release version

reserved uint32_t Reserved for future use

NXP Semiconductors

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 9 / 69

4.3 Functions for Product and Feature Queries
This section provides an overview of the functions for product and feature queries.

4.3.1 vg_lite_get_product_info
Description:

This function is used to identify the VGLite compatible product.

Syntax:

uint32_t vg_lite_get_product_info (
char *name
uint32_t *chip_id
uint32_t *chip_rev
);

Parameters:

*name Character array to store the name of the chip.

*chip_id Stores an ID number for the chip.

*chip_rev Stores a revision number for the chip.

Returns:

The length of the name string, including the ending ‘\0’.

4.3.2 vg_lite_get_info
Description:

This function is used to query the VGLite driver information.

Syntax:

void vg_lite_get_info (
vg_lite_info_t *info
);

Parameters:

*info Points to the VGLite driver information structure which includes the API version,
header version, and release version.

4.3.3 vg_lite_get_register
Description:

This function can be used to read a GCNanoLiteV AHB register value given the AHB Byte address of a register. Refer to Vivante
GCNanoLiteV AHB Register specification documents for register descriptions. The value range of AHB accessible addresses for
VGLite cores is usually 0x0 to 0x1FF and 0xA00 to 0xA7F.

NXP Semiconductors
Hardware Product and Feature Information

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 10 / 69

Syntax:

vg_lite_error_t vg_lite_get_register (
uint32_t address
uint32_t *result
);

Parameters:

address Address of the register whose value you want.

*result The registers value.

Returns:

VG_LITE_SUCCESS. The behavior is undefined if register is outside the range of VGLite core accessible addresses.

4.3.4 vg_lite_query_feature
Description:

This function is used to query if a specific feature is available.

Syntax:

uint32_t vg_lite_query_feature (
vg_lite_feature_t feature
);

Parameters:

feature Feature being queried, as detailed in enum vg_lite_feature_t.

Returns:

Either the feature is not supported (0) or supported (1).

4.3.5 vg_lite_mem_avail
Description:

This function queries whether or not there is any remaining allocated contiguous video memory.

Syntax:

vg_lite_error_t vg_lite_mem_avail (
uint32_t *size
);

Parameters:

size Pointer to the remaining allocated contiguous video memory.

Returns:

NXP Semiconductors
Hardware Product and Feature Information

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 11 / 69

Returns VG_LITE_SUCCESS if the query is successful and memory is available. Returns VG_LITE_NO_CONTEXT if the driver
is not initialized, or there is no available memory.

NXP Semiconductors
Hardware Product and Feature Information

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 12 / 69

Chapter 5
API Control
Before calling any VGLite API function, the application must initialize the VGLite implicit (global) context by calling vg_lite_init(),
which will fill in a features table, reset the fast-clear buffer, reset the compositing target buffer, as well as allocate the command
and tessellation buffers.

The vg_lite_init() function does not initialize clocks. Driver users are responsible for ensuring that all necessary
clocks are running and attached before calling this function.

 NOTE

The VGLite driver only supports one current context and one thread to issue commands to GCNanoLiteV hardware. The VGLite
driver does not support multiple concurrent contexts running simultaneously in multiple threads/processes, as the VGLite kernel
driver does not support context switching. A VGLite application can only use a single context at any time to issue commands to
GCNanoLiteV hardware. If a VGLite application needs to switch contexts, vg_lite_close() should be called to close the current
context in the current thread, then vg_lite_init() can be called to initialize a new context either in the current thread or from another
thread/process.

5.1 Context Initialization and Control Functions
This section provides an overview of the context initialization and control functions.

5.1.1 vg_lite_set_command_buffer_size
Description:

This function is optional. If used, call it before vg_lite_init if you want to change the command buffer size.

This function is useful for devices where memory is limited and less than the default. The VGLite Command buffer is set to 64K by
default, so that VGLite applications can render more complex paths with better performance. This function can be used to adjust
the command buffer size to fit specific application and system/device requirements.

Syntax:

vg_lite_error_t vg_lite_set_command_buffer_size (
uint32_t size
);

Parameters:

size Size of the VGLite Command buffer. Default is 64K.

5.1.2 vg_lite_init
Description:

This function initializes the memory and data structures needed for VGLite draw/blit functions, by allocating memory for the
command buffer and a tessellation buffer of the specified size. The tessellation buffer width & height must be a multiple of 16. The
tessellation window can be specified based on the amount of memory available in the system and the desired performance. A
smaller window can have a lower memory footprint but may result in lower performance. The minimum window that can be used for
tessellation is 16x16. If the height or width is less than 0, then no tessellation buffer is created, thus it can be used in a blit-only case.

If this would be the first context that accesses the hardware, the hardware will be turned on and initialized. If a new context needs
to be initialized, vg_lite_close must be called to close the current context. Otherwise, vg_lite_init will return an error.

NXP Semiconductors

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 13 / 69

Syntax:

vg_lite_error_t vg_lite_init(
int32_t tessellation_width,
int32_t tessellation_height
);

Parameters:

tessellation_width Width of tessellation window. Value should be a multiple of 16; minimum width is 16
pixels, maximum cannot be greater than frame width. If less than or equal to 0, then
no tessellation buffer is created, in which case the function is used for a blit init.

tessellation_height Height of tessellation window. Value should be a multiple of 16; minimum height is 16
pixels; maximum cannot be greater than frame height. If less than or equal to 0, then
no tessellation buffer is created, in which case the function is used for a blit init.

5.1.3 vg_lite_close
Description:

This function will deallocate all the resource and free up all the memory that was initialized earlier by the vg_lite_init function. It
will also turn OFF the hardware automatically if this was the only active context.

Syntax:

vg_lite_error_t vg_lite_close (
 void
);

5.1.4 vg_lite_finish
Description:

This function explicitly submits the command buffer to the GPU and waits for it to complete.

Syntax:

vg_lite_error_t vg_lite_finish (
void
);

5.1.5 vg_lite_flush
Description:

This function explicitly submits the command buffer to the GPU without waiting for it to complete.

Syntax:

vg_lite_error_t vg_lite_flush (
void
);

Returns:

Returns VG_LITE_SUCCESS if the flush is successful. See vg_lite_error_t enum for other return codes.

NXP Semiconductors
API Control

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 14 / 69

Chapter 6
Pixel Buffers
This topic provides an overview of the pixel buffer alignment, cache, internal representation, enumerations, structures
and functions.

6.1 Pixel Buffer Alignment
The VGLite hardware requires the pixel buffer width to be a multiple of 16 pixels. This requirement applies to all image formats.
So the user needs to pad an arbitrary pixel buffer width to a multiple of 16 pixels for VGLite hardware to work correctly. The Byte
alignment requirement for a pixel depends on the specific pixel format. See Alignment Notes Table 1. Image Source Alignment
Summary later in this document.

The pixel buffer start address alignment requirement varies depending on whether or not the buffer layout format is tiled or linear
(vg_lite_buffer_layout_t enum):

• If the format is tiled (4x4 tiled), the start address and stride need to be 64 byte aligned.

• If the format is linear, the start address and stride do not have an alignment requirement.

6.2 Pixel Cache
The Vivante Imaging Engine (IM) includes two fully associative caches. Each cache has 8 lines, each line has 64 bytes. In this
case, one cache line can hold either a 4x4-pixel Tile or a 16x1-pixel row.

6.3 Internal Representation
For non 32-bit color formats, each pixel will be extended to 32-bits as such:

If the source and destination formats have the same color format, but differ in the number of bits per color channel, the source
channel is multiplied by(2d- 1)/(2s– 1) and rounded to the nearest integer, where:

• d is the number of bits in the destination channel

• s is the number of bits in the source channel

Example: a b11111 5-bit source channel gets converted to an 8-bit destination b11111000.

The YUV formats are internally converted to RGB. Pixel selection is unified for all formats by using the LSB of the coordinate.

6.4 Pixel Buffer Enumerations
This section provides an overview of the pixel buffer enumerations.

6.4.1 vg_lite_buffer_format_t Enumeration
This enumeration specifies the color format to use for a buffer. This applies to both Image and Render Target. Formats include
supported swizzles for RGB. For YUV swizzles, use the related values and parameters in vg_lite_swizzle_t.

See Alignment Notes following the value descriptions for alignment requirements summary for the image formats.

 NOTE

Used in structure: vg_lite_buffer_t.

See also vg_lite_blit, vg_lite_clear, vg_lite_draw.

NXP Semiconductors

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 15 / 69

Table 4. vg_lite_buffer_format_t enumeration

vg_lite_buffer_format_t
String Value

Description Supported
as Source

Supported
as Dest

Align

(Bytes)

VG_LITE_ABGR8888 32-bit ABGR format with 8 bits per color channel.

Alpha is in bits 7:0, blue in bits 15:8, green in bits 23:16,
and the red channel is in bits 31:24.

31:24 23:16 15:8 7:0

ABGR8888 R G B A

Yes Yes 64

VG_LITE_ARGB8888 32-bit ARGB format with 8 bits per color channel.

Alpha is in bits 7:0, red in bits 15:8, green in bits 23:16,
and the blue channel is in bits 31:24.

31:24 23:16 15:8 7:0

ARGB888
8

B G R A

Yes Yes 64

VG_LITE_BGRA8888 32-bit BGRA format with 8 bits per color channel.

Blue in bits 7:0, green in bits 15:8, red is in bits 23:16,
and the alpha channel is in bits 31:24.

31:24 23:16 15:8 7:0

BGRA8888 A R G B

Yes Yes 64

VG_LITE_RGBA8888 32-bit RGBA format with 8 bits per color channel.

Red is in bits 7:0, green in bits 15:8, blue in bits 23:16,
and the alpha channel is in bits 31:24.

31:24 23:16 15:8 7:0

RGBA888
8

A B G R

Yes Yes 64

VG_LITE_BGRX8888 32-bit BGRX format with 8 bits per color channel.

Blue in bits 7:0, green in bits 15:8, red is in bits 23:16,
and the X channel is in bits 31:24.

Yes Yes 64

Table continues on the next page...

NXP Semiconductors
Pixel Buffers

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 16 / 69

Table 4. vg_lite_buffer_format_t enumeration (continued)

vg_lite_buffer_format_t
String Value

Description Supported
as Source

Supported
as Dest

Align

(Bytes)

31:24 23:16 15:8 7:0

BGRX8888 X R G B

VG_LITE_RGBX8888 32-bit RGBX format with 8 bits per color channel.

Red is in bits 7:0, green in bits 15:8, blue in bits 23:16,
and the X channel is in bits 31:24.

31:24 23:16 15:8 7:0

RGBX8888 X B G R

Yes Yes 64

VG_LITE_XBGR8888 32-bit XBGR format with 8 bits per color channel.

X channel is in bits 7:0, blue in bits 15:8, green in bits
23:16, and the red channel is in bits 31:24.

31:24 23:16 15:8 7:0

XBGR8888 R G B X

Yes Yes 64

VG_LITE_XRGB8888 32-bit XRGB format with 8 bits per color channel.

X channel is in bits 7:0, red in bits 15:8, green in bits
23:16, and the blue channel is in bits 31:24.

31:24 23:16 15:8 7:0

XRGB8888 B G R X

Yes Yes 64

VG_LITE_ABGR1555 16-bit ABGR format with 5 bits per color channel and
one bit alpha.

Alpha channel is in bit 0:0, blue in bits 5:1, green in bits
10:6 and the red channel is in bits 15:11.

15:11 10:6 5:1 0:0

ABGR5551 R G B A

Yes Yes 32

Table continues on the next page...

NXP Semiconductors
Pixel Buffers

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 17 / 69

Table 4. vg_lite_buffer_format_t enumeration (continued)

vg_lite_buffer_format_t
String Value

Description Supported
as Source

Supported
as Dest

Align

(Bytes)

VG_LITE_ARGB1555 16-bit ARGB format with 5 bits per color channel and
one bit alpha.

The alpha channel is bit 0:0, red in bits 5:1, green in bits
10:6 and the blue channel is in bits 15:11.

15:11 10:6 5:1 0:0

ARGB5551 B G R A

Yes Yes 32

VG_LITE_BGRA5551 16-bit BGRA format with 5 bits per color channel and
one bit alpha.

Blue is in bit 4:0, green in bits 9:5,red in bits 14:0 and
the alpha channel is bit 15:15.

15:15 14:10 9:5 4:0

BGRA5551 A R G B

Yes Yes 32

VG_LITE_RGBA5551 16-bit RGBA format with 5 bits per color channel and
one bit alpha.

Red is in bit 4:0, green in bits 9:5, blue in bits 14:0 and
the alpha channel is bit 15:15.

15:15 14:10 9:5 4:0

RGBA5551 A B G R

Yes Yes 32

VG_LITE_BGR565 16-bit BGR format with 5 and 6 bits per color channel.

Blue is in bits 4:0, green in bits 10:5 and the red channel
is in bits 15:11.

15:11 10:5 4:0

BGR565 R G B

Yes Yes 32

VG_LITE_RGB565 16-bit RGB format with 5 and 6 bits per color channel.

Red is in bits 4:0, green in bits 10:5 and the blue
channel is in bits 15:11.

Yes Yes 32

Table continues on the next page...

NXP Semiconductors
Pixel Buffers

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 18 / 69

Table 4. vg_lite_buffer_format_t enumeration (continued)

vg_lite_buffer_format_t
String Value

Description Supported
as Source

Supported
as Dest

Align

(Bytes)

15:11 10:5 4:0

RGB565 B G R

VG_LITE_ABGR4444 16-bit ABGR format with 4 bits per color channel.

Alpha is in bits 3:0, blue in bits 7:4, green in bits 11:8
and the red channel is in bits 15:12.

15:12 11:8 7:4 3:0

ABGR444
4

R G B A

Yes Yes 32

VG_LITE_ARGB4444 16-bit ARGB format with 4 bits per color channel.

Alpha is in bits 3:0, red in bits 7:4, green in bits 11:8 and
the blue channel is in bits 15:12.

15:12 11:8 7:4 3:0

ARGB444
4

B G R A

Yes Yes 32

VG_LITE_BGRA4444 16-bit BGRA format with 4 bits per color channel.

Red is in bits 11:8, green in bits 7:4, blue in bits 3:0 and
the alpha channel is in bits 15:12.

15:12 11:8 7:4 3:0

BGRA4444 A R G B

Yes Yes 32

VG_LITE_RGBA4444 16-bit RGBA format with 4 bits per color channel.

Red is in bits 3:0, green in bits 7:4, blue in bits 11:8 and
the alpha channel is in bits 15:12.

15:12 11:8 7:4 3:0

RGBA4444 A B G R

Yes Yes 32

Table continues on the next page...

NXP Semiconductors
Pixel Buffers

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 19 / 69

Table 4. vg_lite_buffer_format_t enumeration (continued)

vg_lite_buffer_format_t
String Value

Description Supported
as Source

Supported
as Dest

Align

(Bytes)

VG_LITE_ABGR2222 8-bit BGRA format with 2 bits per color channel.

Alpha is in bits 1:0,blue in bits 3:2,green in bits 5:4 and
the red channel is in bits 7:6.

Not available for i.MX RT1170.

 NOTE

7:6 5:4 3:2 1:0

ABGR2222 R G B A

Yes Yes 16

VG_LITE_ARGB2222 8-bit BGRA format with 2 bits per color channel.

Alpha is in bits 1:0,red in bits 3:2,green in bits 5:4 and
the blue channel is in bits 7:6.

Not available for i.MX RT1170.

Table 5.

7:6 5:4 3:2 1:0

ARGB2
222

B G R A

 NOTE

Yes Yes 16

VG_LITE_BGRA2222 8-bit BGRA format with 2 bits per color channel.

Blue is in bits 1:0, green in bits 3:2, red in bits 5:4 and
the alpha channel is in bits 7:6.

Not available for i.MX RT1170.

 NOTE

7:6 5:4 3:2 1:0

BGRA2222 A R G B

Yes Yes 16

VG_LITE_RGBA2222 8-bit RGBA format with 2 bits per color channel.

Red is in bits 1:0, green in bits 3:2, blue in bits 5:4 and
the alpha channel is in bits 7:6.

Yes Yes 16

Table continues on the next page...

NXP Semiconductors
Pixel Buffers

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 20 / 69

Table 4. vg_lite_buffer_format_t enumeration (continued)

vg_lite_buffer_format_t
String Value

Description Supported
as Source

Supported
as Dest

Align

(Bytes)

Not available for RT1170.

 NOTE

7:6 5:4 3:2 1:0

RGBA2222 A B G R

VG_LITE_L8 8-bit luminance value. There is no alpha value. Yes Yes 16

VG_LITE_YUYV Packed YUV format, 32-bit for 2 pixels.

Y0 is in bits 7:0 and V is in bits 31:23. (available for
Source IMAGE only).

31:24 23:16 15:8 7:0

YUYV V0 Y1 U0 Y0

Yes No 32

VG_LITE_A4 4-bit alpha format. There are no RGB values.

Premultiply support available
with i.MX RT1170.

 NOTE

3:0

A4 A

Yes No 8

VG_LITE_A8 8-bit alpha format. There are no RGB values.

Premultiply support available
with RT1170.

 NOTE

.

7:0

A8 A

Yes Yes 16

NXP Semiconductors
Pixel Buffers

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 21 / 69

Table 6. Hardware dependent formats

Hardware dependent formats
for vg_lite_buffer_format_t Description Supported as

Source
Supported as

Dest
Align

(Bytes)

VG_LITE_INDEX_1 1-bit index format. Yes No 8

VG_LITE_INDEX_2 2-bit index format. Yes No 8

VG_LITE_INDEX_4 4-bit index format. Yes No 8

VG_LITE_INDEX_8 8-bit index format. Yes No 8

6.4.1.1 Alignment Notes

Source Image Alignment Requirement

The VGLite hardware requires the raster image width to be a multiple of 16 pixels. This requirement applies to all image formats.
So the user needs to pad an arbitrary image width to a multiple of 16 pixels for VGLite hardware to work correctly.

The Byte alignment requirement for a pixel depends on the specific pixel format.

Table 7. Image Source Alignment Summary

Image Format Bits per pixel
Alignment

Requirement
in Bytes

Supported

for Source IMAGE

Supported

for Destination

VG_LITE_INDEX1 1 8B Yes

VG_LITE_INDEX2 2 8B Yes

VG_LITE_INDEX4 4 8B Yes

VG_LITE_INDEX8 8 16B Yes

VG_LITE_A4 4 8B Yes

VG_LITE_A8 8 16B Yes Yes

VG_LITE_L8 8 16B Yes Yes

VG_LITE_ARGB2222 group 8 16B Yes Yes

VG_LITE_RGB565 group 16 32B Yes Yes

VG_LITE_ARGB1555 group 16 32B Yes Yes

VG_LITE_ARGB4444 group 16 32B Yes Yes

VG_LITE_YUY2/UYVY 16 32B Yes

VG_LITE_ARGB8888/XRGB8888 group 32 64B Yes Yes

Destination Alignment Requirement

NXP Semiconductors
Pixel Buffers

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 22 / 69

• For Pixel Engine (PE) destination, the alignment should be 64B for all tiled (4x4) formats. There is no alignment requirements
for linear buffer formats.

• Alignment may also be limited by the alignment requirements of backend modules such as DC (Display Controller).

6.4.2 vg_lite_buffer_image_mode_t Enumeration
Specifies how an image is rendered onto a buffer.

Used in structure: vg_lite_buffer_t.

Table 8. vg_lite_buffer_image_mode_t enumeration

vg_lite_buffer_image_mode_t String Value Description

VG_LITE_NORMAL_IMAGE_MODE Image drawn with blending mode

VG_LITE_NONE_IMAGE_MODE Image input is ignored

VG_LITE_MULTIPLY_IMAGE_MODE Image is multiplied with paint color

6.4.3 vg_lite_buffer_layout_t Enumeration
Specifies the buffer data layout in memory.

Used in structure: vg_lite_buffer_t.

Table 9. vg_lite_buffer_layout_t enumeration

vg_lite_buffer_layout_t String Value Description

VG_LITE_LINEAR linear (scanline) layout. Note: this layout does not have an alignment requirement
for the buffer.

VG_LITE_TILED data is organized in 4x4 pixel tiles. Note: for this layout, the buffer start address and
stride need to be 64 byte aligned.

6.4.4 vg_lite_buffer_transparency_mode_t Enumeration
Specifies the transparency mode for a buffer.

Used in structure: vg_lite_buffer_t.

Table 10. vg_lite_buffer_transparency_mode_t enumeration

vg_lite_buffer_transparency
_mode_t String Value Description

VG_LITE_IMAGE_OPAQUE Opaque image: all image pixels are copied to the VG PE for rasterization

VG_LITE_IMAGE_TRANSPAR
ENT

Transparent image: only the non-transparent image pixels are copied to the VG PE.

This mode is only valid when IMAGE_MODE
(vg_lite_buffer_image_mode_t) is either VG_LITE_NORMAL_IMAGE_MODE
or VG_LITE_MULTIPLY_IMAGE_MODE.

 NOTE

NXP Semiconductors
Pixel Buffers

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 23 / 69

6.4.5 vg_lite_swizzle_t Enumeration
This enumeration specifies the swizzle for the UV components of YUV data.

Used in structure: vg_lite_yuvinfo_t.

Table 11. vg_lite_swizzle_t enumeration

vg_lite_swizzle_t String Value Description

VG_LITE_SWIZZLE_UV U in lower bits, V in upper bits

VG_LITE_SWIZZLE_VU V in lower bits, U in upper bits

6.4.6 vg_lite_yuv2rgb_t Enumeration
This enumeration specifies the standard for conversion of YUV data to RGB data.

Used in structure: vg_lite_yuvinfo_t.

Table 12. vg_lite_yuv2rgb_t enumeration

vg_lite_yuv2rgb_t String Value Description

VG_LITE_YUV601 YUV Converting with ITC.BT-601 standard

VG_LITE_YUV709 YUV Converting with ITC.BT-709 standard

6.5 Pixel Buffer Structures
This section provides an overview on the pixel buffer structures.

6.5.1 vg_lite_buffer_t Structure
This structure defines the buffer layout for a VGLite image or memory data.

Used in structures: vg_lite_linear_gradient_t, vg_lite_radial_gradient_t.

Used in init functions: vg_lite_allocate, vg_lite_free, vg_lite_buffer_upload, vg_lite_map, vg_lite_unmap.

Used in blit functions: vg_lite_blit, vg_lite_blit_rect, vg_lite_clear.

Used in draw functions: vg_lite_draw, vg_lite_draw_pattern, vg_lite_draw_gradient, vg_lite_draw_radial_gradient.

Table 13. vg_lite_buffer_t structure

vg_lite_buffer_t
Members Type Description

width int32_t Width of buffer in pixels

height int32_t Height of buffer in pixels

stride int32_t Stride in bytes

tiled vg_lite_buffer_layout_t Linear or tiled format for buffer enum

format vg_lite_buffer_format_t color format enum

Table continues on the next page...

NXP Semiconductors
Pixel Buffers

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 24 / 69

Table 13. vg_lite_buffer_t structure (continued)

vg_lite_buffer_t
Members Type Description

handle void * memory handle

memory void * pointer to the start address of the memory

address uint32_t GPU address

yuv vg_lite_yuvinfo_t YUV format info struct

image_mode vg_lite_buffer_image_mode_t Blit image mode enum

transparency_mode vg_lite_buffer_transparency_mode_t Image transparency mode enum

6.5.2 vg_lite_yuvinfo_t Structure
This structure defines the organization of VGLite YUV data.

Used in structure: vg_lite_buffer_t.

Table 14. vg_lite_yuvinfo_t Structure

vg_lite_yuvinfo_t Members Type Description

swizzle vg_lite_swizzle_t UV swizzle enum

yuv2rgb vg_lite_yuv2rgb_t YUV conversion standard enum

uv_planar uint32_t UV (U) planar address for GPU, generated by driver

v_planar uint32_t V planar address for GPU, generated by driver

alpha_planar uint32_t Alpha planar address for GPU, generated by driver

uv_stride uint32_t UV (U) stride in bytes

v_stride uint32_t V planar stride in bytes

alpha_stride uint32_t Alpha stride in bytes

uv_height uint32_t UV (U) height in pixels

v_height uint32_t V stride in bytes

uv_memory void * Logical pointer to the UV (U) planar memory

v_memory void * Logical pointer to the V planar memory

uv_handle void * Memory handle of the UV (U) planar, generated by driver

v_handle void * Memory handle of the V planar, generated by driver

NXP Semiconductors
Pixel Buffers

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 25 / 69

6.6 Pixel Buffer Functions
This section provides an overview of the pixel buffer functions.

6.6.1 vg_lite_allocate
Description:

This function is used to allocate a buffer before using it in either blit or draw functions.

In order for the hardware to access some memory, like a source image or a target buffer, it needs to be allocated first. The supplied
vg_lite_buffer_t structure needs to be initialized with the size (width and height) and format of the requested buffer. If the stride is
set to zero, this function will fill it in. The only input parameter to this function is the pointer to the buffer structure. If the structure
has all the information needed, appropriate memory will be allocated for the buffer.

This function will call the kernel to actually allocate the memory.The memory handle, logical address, and hardware addresses
in the vg_lite_buffer_t structure will be filled in by the kernel.

Alignment Note: Though GCNanoLiteV have an alignment requirement of 64 bytes, the VGLite Driver sets alignment to 128 bytes
for render target buffer to conform to the alignment requirement of Vivante Display Controller. For source image buffer alignment
requirement, see Alignment Notes Table 3 following the vg_lite_buffer_format_t value descriptions.

Syntax:

vg_lite_error_t vg_lite_allocate (
vg_lite_buffer_t *buffer
);

Parameters:

*buffer Pointer to the buffer that holds the size and format of the buffer being allocated. Either
the memory or address field needs to be set to a non-zero value to map either a logical
or physical address into hardware accessible memory.

Returns:

VG_LITE_SUCCESS if the allocating contiguous buffer is allocated successfully.

VG_LITE_OUT_OF_RESOURCES if there is insufficient memory in the host OS heap for the buffer

VG_LITE_OUT_OF_MEMORY if allocation of a contiguous buffer failed.

6.6.2 vg_lite_free
Description:

This function is used to deallocate the buffer that was previously allocated. This will free up the memory for that buffer.

Syntax:

vg_lite_error_t vg_lite_free (
vg_lite_buffer_t *buffer
);

Parameters:

*buffer Pointer to a buffer structure that was filled in by vg_lite_allocate.

NXP Semiconductors
Pixel Buffers

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 26 / 69

6.6.3 vg_lite_buffer_upload
Description:

The function uploads the pixel data to a GPU memory buffer object. Note that the format of the data (pixel) to be uploaded must
be the same as described in the buffer object. The input data memory buffer should contain enough data to be uploaded to the
GPU buffer pointed by the input parameter “buffer”.

i.MX RT500 only uses data[0] and stride[0] as i.MX RT500 does not support planar YUV formats.

 NOTE

Syntax:

vg_lite_error_t vg_lite_buffer_upload (
vg_lite_buffer_t *buffer,
uint8_t *data[3],
uint32_t stride[3]
);

Parameters:

*buffer Pointer to a buffer structure that was filled in by vg_lite_allocate.

*data[3] Pointer to pixel data. For YUV format, there may be up to 3 pointers.

stride[3] Stride for the pixel data.

6.6.4 vg_lite_map
Description:

This function is used to map the memory appropriately for a particular buffer. For some operating systems, it will be used to get
proper translation to physical or logical address of the buffer needed by the GPU.

If you want the use a frame buffer directly as a target buffer, you need to wrap a vg_lite_buffer_t structure around it and call the
kernel to map the supplied logical or physical address into hardware accessible memory. For example, if you know the logical
address of the frame buffer, set the memory field of the vg_lite_buffer_t structure with that address and call this function. If you
know the physical address, set the memory field to NULL and program the address field with the physical address.

Syntax:

vg_lite_error_t vg_lite_map (
vg_lite_buffer_t *buffer
);

Parameters:

*buffer Pointer to a buffer structure that was filled in by vg_lite_allocate.

6.6.5 vg_lite_unmap
Description:

This function unmaps the buffer and frees any memory resources allocated by a previous call to vg_lite_map.

NXP Semiconductors
Pixel Buffers

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 27 / 69

Syntax:

vg_lite_error_t vg_lite_unmap (
vg_lite_buffer_t *buffer
);

Parameters:

*buffer Pointer to a buffer structure that was filled in by vg_lite_map.

6.6.6 vg_lite_set_CLUT
Description:

This function sets a global context state for Index color image. Once it is set (Not NULL), when an indexed format image is
rendered, the image color is obtained from the Color Lookup Table (CLUT)according to the image's pixel indices.

Only available on i.MX RT500.

 NOTE

Syntax:

vg_lite_error_t vg_lite_set_CLUT (
uint32_t count,
uint32_t *colors
);

Parameters:

count This is the count of the colors in the color look up table.

For INDEX_1, there can be up to 2 colors in the table;

For INDEX_2, there can be up to 4 colors in the table;

For INDEX_4, there can be up to 16 colors in the table;

For INDEX_8, there can be up to 256 colors in the table.

*colors This pointer is directly programmed to the command buffer. It will not take effect unless the
command buffer is submitted. The color is in ARGB format with A located at the high bits.

Note: The VGLite driver does not validate the CLUT data.

Returns:

VG_LITE_SUCCESS since no checking is done.

NXP Semiconductors
Pixel Buffers

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 28 / 69

Chapter 7
Matrices
This part of the API provides matrix controls.

Note: All the transformations in the driver/API are actually the final plane/surface coordinate system. There is no transformation
of different coordinate systems with VGLite.

7.1 Matrix Control Float Parameter Type

Name Typedef Value

vg_lite_float_t float A single precision floating point number

7.2 Matrix Control Structures
This section provides an overview of the matrix control structures.

7.2.1 vg_lite_matrix_t Structure
This structure defines a 3x3 float matrix.

Used in structures: vg_lite_linear_gradient_t, vg_lite_radial_gradient_t.

Used in blit functions: vg_lite_blit, vg_lite_blit_rect.

Used in draw functions: vg_lite_draw, vg_lite_draw_gradient, vg_lite_draw_radial_gradient, vg_lite_draw_pattern, vg_lite_identity,
vg_lite_scale, vg_lite_translate.

Table 15. vg_lite_matrix_t structure

vg_lite_matrix_t Members Type Description

m[3][3] vg_lite_float_t 3x3 matrix, in [row] [column] order

7.3 Matrix Control Functions
This section provides an overview of the matrix control functions.

7.3.1 vg_lite_identity
Description:

This function loads an identity matrix into a matrix variable.

Syntax:

void vg_lite_identity (
vg_lite_matrix_t *matrix,
);

Parameters:

*matrix Pointer to the vg_lite_matrix_t structure that will be loaded with an identity matrix

NXP Semiconductors

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 29 / 69

7.3.2 vg_lite_perspective
Description:

This function sets a matrix for perspective transformation.

Syntax:

void vg_lite_perspective (
vg_lite_float_t px,
vg_lite_float_t py,
vg_lite_matrix_t *matrix
);

Parameters:

px w0 of the perspective transformation matrix.

py w1 of the perspective transformation matrix.

*matrix Pointer to the vg_lite_matrix_t structure for the perspective transformation.

7.3.3 vg_lite_rotate
Description:

This function rotates a matrix a specified number of degrees.

Syntax:

void vg_lite_rotate (
vg_lite_float_t degrees,
vg_lite_matrix_t *matrix
);

Parameters:

degrees Number of degrees to rotate the matrix. Positive numbers rotate clockwise.

The coordinates for the transformation are given in the surface coordinate
system (top-to-bottom orientation). Rotations with positive angles are in the
clockwise direction

*matrix Pointer to the vg_lite_matrix_t structure that will be rotated.

7.3.4 vg_lite_scale
Description:

This function scales a matrix in both horizontal and vertical directions.

Syntax:

void vg_lite_scale (
vg_lite_float_t scale_x,
vg_lite_float_t scale_y,
vg_lite_matrix_t *matrix
);

NXP Semiconductors
Matrices

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 30 / 69

Parameters:

scale_x Horizontal scale.

scale_y Vertical scale.

*matrix Pointer to the vg_lite_matrix_t structure that will be scaled.

7.3.5 vg_lite_translate
Description:

This function translates a matrix to a new location.

Syntax:

void vg_lite_translate (
vg_lite_float_t x,
vg_lite_float_t y,
vg_lite_matrix_t *matrix
);

Parameters:

x X location of the transformation.

y Y location of the transformation.

*matrix Pointer to the vg_lite_matrix_t structure that will be translated.

NXP Semiconductors
Matrices

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 31 / 69

Chapter 8
BLITs for Compositing and Blending
This part of the API performs the hardware accelerated blit operations.

Compositing rules describes how two areas are combined to form a single area. Blending rules describes how combining the
colors of the overlapping areas are combined. VGLite supports two blending operations and a subset of the Porter-Duff operations
[PD84]. The Porter-Duff operators assume the pixels have the alpha associated (premultiplied), that is, pixels are premultiplied
prior to the blending operation.

Be sure to use the vg_lite_query_feature function to determine if your product supports premultiplication.

 NOTE

The source image is copied to the destination window with a specified matrix that can include translation, rotation,scaling, and
perspective correction.

• The blit function can be used with or without the blend mode.

• The blit function can be used with or without specifying any color value.

• The blit function can be used for color conversion with an identity matrix and appropriate formats specified for the source
and the destination buffers. In this case do not specify blend mode and color value.

8.1 BLIT Enumerations

8.1.1 vg_lite_blend_t Enumeration
This enumeration defines the blending modes supported by some VGLite API functions. S and D represent source and destination
color channels and Sa and Da represent the source and destination alpha channels.

Reference: Thomas Porter and Tom Duff. Compositing digital images. SIGGRAPH Comput. Graph., 18(3):253–259,
January 1984.

Table 16. Porter Duff Operators and Related vg_lite_blend_t enum Values

Sf/Df 0 1 Sa 1 - Sa

0 clear (n/a) dst (n/a)
dst-in

VG_LITE_BLEND_DST_I
N

dst-out

VG_LITE_BLEND_SUBTRA
CT

1
src

VG_LITE_BLEND_NONE

plus

VG_LITE_BLEND_ADDITIV
E

…
src-over

VG_LITE_BLEND_SRC_OV
ER

Da
src-in

VG_LITE_BLEND_SRC_I
N

… … src-atop(n/a)

1 - Da src-out (n/a)
dst-over

VG_LITE_BLEND_DST_OV
ER

dst-atop (n/a) xor (n/a)

Used in blit functions: vg_lite_blit, vg_lite_blit_rect.

NXP Semiconductors

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 32 / 69

Used in draw functions: vg_lite_draw, vg_lite_draw_gradient, vg_lite_draw_radial_gradient, vg_lite_draw_pattern.

Colors are shown at 100% and 50% opacity.

vg_lite_blend_t String Values Description

VG_LITE_BLEND_ADDITIVE Table 17. Porter Duff Compositing Mode: plus

S + D = Result

Plus

50%

VG_LITE_BLEND_DST_IN Table 18. Porter Duff Compositing Mode: dst-in

Sa * D = Result

DstIn

DstIn

50%

VG_LITE_BLEND_DST_OVER Table 19. Porter Duff Compositing Mode: dst-over

(1 – Da) * S + D = Result

DstOver

NXP Semiconductors
BLITs for Compositing and Blending

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 33 / 69

Table 19. Porter Duff Compositing Mode: dst-over (continued)

vg_lite_blend_t String Values Description

Table 19. Porter Duff Compositing Mode: dst-over (continued)

50%

VG_LITE_BLEND_MULTIPLY Table 20. Blending Mode: mathemathical multiply

S * (1 – Da) + D * (1 – Sa) + S * D = Result

Multiply

50%

See https://www.w3.org/TR/compositing-1/#blendingmultiply) make white
transparent for diagrams/text.

VG_LITE_BLEND_NONE Table 21. Porter Duff Compositing Mode: src

S = Result

Src

Src

50%

Table continues on the next page...

NXP Semiconductors
BLITs for Compositing and Blending

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 34 / 69

https://www.w3.org/TR/compositing-1/%23blendingmultiply

Table continued from the previous page...

vg_lite_blend_t String Values Description

VG_LITE_BLEND_SCREEN Table 22. Blending Mode: mathemathical screen

S + D – S * D = Result

Screen

50%

See https://www.w3.org/TR/compositing-1/#blendingscreen) make black
transparent for diagrams/text.

VG_LITE_BLEND_SRC_IN Table 23. Porter Duff Compositing Mode: src-in, also known as clipping

Da * S = Result

SrcIn

50%

VG_LITE_BLEND_SRC_OVER Table 24. Porter Duff Compositing Mode: src-over

S + (1 - Sa) * D = Result

SrcOver

Table continues on the next page...

NXP Semiconductors
BLITs for Compositing and Blending

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 35 / 69

https://www.w3.org/TR/compositing-1/%23blendingscreen

Table continued from the previous page...

vg_lite_blend_t String Values Description

Table 24. Porter Duff Compositing Mode: src-over (continued)

50%

VG_LITE_BLEND_SUBTRACT Table 25. Porter Duff Compositing Mode: dst-out

D * (1 – Sa) = Result

DestOut

50%

8.1.2 vg_lite_color_t Parameter
The common parameter vg_lite_color_t is described in Section 1.4. LINK to Common Parameter Types.

8.1.3 vg_lite_filter_t Enumeration
Specifies the sample filtering mode in VGLite blit and draw APIs.

Used in blit functions: vg_lite_blit, vg_lite_blit_rect,

Used in draw functions: vg_lite_draw_radial_gradient, vg_lite_draw_pattern.

Table 26. vg_lite_filter_t Enumeration

vg_lite_filter_t String Values Description

VG_LITE_FILTER_POINT Fetch only the nearest image pixel.

VG_LITE_FILTER_LINEAR Use linear interpolation along horizontal line.

VG_LITE_FILTER_BI_LINEAR Use a 2x2 box around the image pixel and perform an interpolation.

8.2 BLIT Structures

NXP Semiconductors
BLITs for Compositing and Blending

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 36 / 69

8.2.1 vg_lite_buffer_t Structure
Defined under Pixel Buffer Structures. LINK to vg_lite_buffer_t structure.

8.2.2 vg_lite_matrix_t Structure
Defined under Matrix Control Structures LINK to vg_lite_matrix_t structure

8.2.3 vg_lite_path_t Structure
Defined under Vector Path Structures. LINK to vg_lite_path_t structure

8.2.4 vg_lite_rectangle_t Structure
This structure defines the organization of a rectangle of VGLite data.

Used in blit function: vg_lite_clear.

Table 27. vg_lite_rectangle_t Structure

vg_lite_rectangle_t Members Type Description

x int32_t X Origin of rectangle, left coordinate in pixels

y int32_t Y Origin of rectangle, top coordinate in pixels

width int32_t X Width of rectangle in pixels

height int32_t Y Height of rectangle in pixels

8.3 BLIT Functions
This section provides an overview on BLIT functions.

8.3.1 vg_lite_blit
Description:

This is the blit function. The blit operation is performed using a source and a destination buffer. The source and destination buffer
structures are defined using the vg_lite_buffer_t structure. Blit copies a source image to the destination window with a specified
matrix that can include translation, rotation, scaling, and perspective correction. Note that vg_lite_blit does not support coverage
sample anti-aliasing so the destination buffer edge may not be smooth especially with a rotation matrix. VGLite path rendering can
be used to achieve high quality coverage sample anti-aliasing (16X, 4X) rendering effect.

• The blit function can be used with or without the blend function (vg_lite_blend_t).

• The blit function can be used with or without specifying any color value(vg_lite_color_t).

• The blit function can be used for color conversion with an identity matrix and appropriate formats specified for
the source and the destination buffers. In this case do not specify blend mode and color value.

 NOTE

Syntax:

vg_lite_error_t vg_lite_blit (
vg_lite_buffer_t *target,
vg_lite_buffer_t *source,
vg_lite_matrix_t *matrix,
vg_lite_blend_t blend,
vg_lite_color_t color

NXP Semiconductors
BLITs for Compositing and Blending

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 37 / 69

vg_lite_filter_t filter
);

Parameters:

*target Points to the vg_lite_buffer_t structure which defines the destination buffer. See
Image Source Alignment Requirement for valid destination color formats for the
blit functions.

*source Points to the vg_lite_buffer_t structure for the source buffer. All color formats
available in the vg_lite_buffer_format_t enum are valid source formats for the
blit function.

*matrix Points to a vg_lite_matrix_t structure that defines the x3 transformation matrix of
source pixels into the target. If matrix is NULL, an identity matrix is assumed,
meaning the source will be be directly copied on the target at 0,0 location.

blend Specifies one of the hardware supported blend modes to be applied to each image
pixel. If no blending is required, set this value to VG_LITE_BLEND_NONE (0).

Note: If the “matrix” parameter is specified with rotation or perspective,
and the “blend" parameter is specified as VG_LITE_BLEND_NONE,
VG_LITE_BLEND_SRC_IN, or VG_LITE_BLEND_DST_IN, the VGLite driver will
overwrite the application’s setting for the BLIT operation as follows:

• If gcFEATURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is supported,
the transparency mode will always be set to TRANSPARENT.

• If gcFEATURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is
not supported, the blend mode will always be set to
VG_LITE_BLEND_SRC_OVER.

This is due to some limitations in the VGLite hardware.

color If non-zero, this color value is used as a mix color. The mix color gets multiplied with
each source pixel before blending happens.If you don't need a mix color, set the color
parameter to 0.

filter Specifies the filter type. All formats available in the vg_lite_filter_tenum are valid
formats for this function. A value of zero (0) indicates VG_LITE_FILTER_POINT.

8.3.2 vg_lite_blit_rect
Description:

This is the blit rectangle function. The blit operation is performed using a source and a destination buffer. The source and
destination buffer structures are defined using the vg_lite_buffer_t structure. Blit copies a source image to the destination window
with a specified matrix that can include translation, rotation, scaling, and perspective correction. Note that vg_lite_blit_rect does not
support coverage sample anti-aliasing so the destination buffer edge may not be smooth especially with a rotation matrix. VGLite
path rendering can be used to achieve high quality coverage sample anti-aliasing (16X, 4X) rendering effect.

• The blit_rect function can be used with or without the blend function (vg_lite_blend_t).

• The blit_rect function can be used with or without specifying any color value(vg_lite_color_t).

• The blit_rect function can be used for color conversion with an identity matrix and appropriate formats specified
for the source and destination buffers. In this case do not specify blend mode and color value.

 NOTE

NXP Semiconductors
BLITs for Compositing and Blending

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 38 / 69

Syntax:

vg_lite_error_t vg_lite_blit_rect (
vg_lite_buffer_t *target,
vg_lite_buffer_t *source,
uint32_t *rect,
vg_lite_matrix_t *matrix,
vg_lite_blend_t *blend,
vg_lite_color_t color,
vg_lite_filter_t filter
);

Parameters:

*target Points to the vg_lite_buffer_t structure which defines the destination buffer. See
Source Image Alignment Requirement for valid destination color formats for the
blit_rect functions.

*source Points to the vg_lite_buffer_t structure for the source buffer. All color formats
available in the vg_lite_buffer_format_t enum are valid source formats for the
blit_rect function.

*rect Specifies the rectangle area of the source image to blit. rect[0]/[1]/[2]/[3] are x, y,
width and height of the source rectangle respectively.

*matrix Points to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix
of source pixels into the target. If matrix is NULL, an identity matrix is assumed,
meaning the source will be copied directly on the target at 0,0 location.

blend Specifies one of the hardware supported blend modes to be applied to each image
pixel. If no blending is required, set this value to VG_LITE_BLEND_NONE (0).

Note: If the “matrix” parameter is specified with rotation or perspective,
and the “blend" parameter is specified as VG_LITE_BLEND_NONE,
VG_LITE_BLEND_SRC_IN, or VG_LITE_BLEND_DST_IN, the VGLite driver will
overwrite the application’s setting for the BLIT operation as follows:

• If gcFEATURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is supported,
the transparency mode will always be set to TRANSPARENT.

• If gcFEATURE_BIT_VG_BORDER_CULLING (vg_lite_feature_t) is
not supported, the blend mode will always be set to
VG_LITE_BLEND_SRC_OVER.

This is due to some limitations in the VGLite hardware.

color If non-zero, this color value is used as a mix color. The mix color gets multiplied with
each source pixel before blending happens. If you don't need a mix color, set the
color parameter to 0.

filter Specifies the filter type. All formats available in the vg_lite_filter_t enum are valid
formats for this function. A value of zero (0) indicates VG_LITE_FILTER_POINT.

8.3.3 vg_lite_clear
Description:

NXP Semiconductors
BLITs for Compositing and Blending

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 39 / 69

This function performs the clear operation, clearing/filling the specified buffer (entire buffer or partial rectangle in a buffer) with an
explicit color.

Syntax:

vg_lite_error_t vg_lite_clear (
vg_lite_buffer_t *target,
vg_lite_rectangle_t *rectangle,
vg_lite_color_t color
);

Parameters:

*target Pointer to the vg_lite_buffer_t structure for the destination buffer. All color formats
available in the vg_lite_buffer_format_t enum are valid destination formats for the
clear function.

*rectangle Pointer to a vg_lite_rectangle_t structure that specifies the area to be filled. If the
rectangle is NULL, the entire target buffer will be filled with the specified color.

color Clear color, as specified in the vg_lite_color_t enum which is the color value to use for
filling the buffer. If the buffer is in L8 format, the RGBA color will be converted into a
luminance value.

8.4 Premultiply and Scissor Functions
This section provides an overview of the premultiply and scissor functions.

8.4.1 vg_lite_enable_premultiply
Description:

This function will enable premultiply and return a status error code.

Syntax:

vg_lite_error_t vg_lite_enable_premultiply (
void
);

8.4.2 vg_lite_disable_premultiply
Description:

This function will enable premultiply and return a status error code.

Syntax:

vg_lite_error_t vg_lite_disable_premultiply (
void
);

8.4.3 vg_lite_enable_scissor
Description:

This function enables scissor operations for a render targets boundary.

NXP Semiconductors
BLITs for Compositing and Blending

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 40 / 69

Syntax:

vg_lite_error_t vg_lite_enable_scissor (
void
);

8.4.4 vg_lite_disable_scissor
Description:

This function disables scissor operations for a render targets boundary.

Syntax:

vg_lite_error_t vg_lite_disable_scissor (
void
);

8.4.5 vg_lite_set_scissor
Description:

This function is used to set a scissor into a render target so that the region outside the scissor boundary is not drawn.

Syntax:

vg_lite_error_t vg_lite_set_scissor (
int32_t x,
int32_t y,
int32_t width,
int32_t height
);

Parameters:

x

y

X and Y specify the boundary origin for the scissor.

width

height

Width and height of the scissor

NXP Semiconductors
BLITs for Compositing and Blending

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 41 / 69

Chapter 9
Vector Path Control
This section provides overview of the vector path enumerations, structures, functions, and opcodes for plotting paths.

9.1 Vector Path Enumerations
This section provides an overview of vector path enumerations.

9.1.1 vg_lite_format_t Enumeration
Values for vg_lite_format_t are defined in the table Common Parameters Types. LINK to Common Parameters table.

9.1.2 vg_lite_quality_t Enumeration
Specifies the level of hardware assisted anti-aliasing.

Used in structure: vg_lite_path_t.

Used in function: vg_lite_init_path.

Table 28. vg_lite_quality_t Enumeration

vg_lite_quality_t String Values Description

VG_LITE_HIGH High quality: 16x coverage sample anti-aliasing

VG_LITE_MEDIUM Medium quality: 4x coverage sample anti-aliasing

VG_LITE_LOW Low quality: no anti-aliasing

9.2 Vector Path Structures
This section provides an overview of vector path structures.

9.2.1 vg_lite_hw_memory Structure
This structure simply records the memory allocation info by kernel.

Used in structure: vg_lite_path_t.

Table 29. vg_lite_hw_memory structure

vg_lite_hw_memory_t Members Type Description

handle void * GPU memory object handle

memory void * Logical memory address

address uint32_t GPU memory address

bytes uint32_t Size of memory

property uint32_t Bit 0 is used for path upload:

Table continues on the next page...

NXP Semiconductors

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 42 / 69

Table 29. vg_lite_hw_memory structure (continued)

vg_lite_hw_memory_t Members Type Description

0: Disable path data uploading (always embedded
into command buffer).

1: Enable auto path data uploading.

9.2.2 vg_lite_path_t Structure
This structure describes VGLite path data.

Path data is composed of op codes and coordinates. The format for op codes is always VG_LITE_S8. Refer to the section on
Vector Path Data Opcodes in this document for opcode detail.

Used in init functions: vg_lite_init_path, vg_lite_upload_path, vg_lite_clear_path, vg_lite_path_append.

Used in draw functions: vg_lite_draw, vg_lite_draw_gradient, vg_lite_draw_radial_gradient, vg_lite_draw_pattern.

Table 30. vg_lite_path_t Structure

vg_lite_path_t Members Type Description

bounding_box[4] vg_lite_float_t bounding box for path

[0] left

[1] top

[2] right

[3] bottom

quality vg_lite_quality_t enum for quality hint for the path, anti-aliasing level

format vg_lite_format_t enum for coordinate format

uploaded vg_lite_hw_memory_t struct with path data that has been uploaded into GPU
addressable memory

path_length int32_t number of bytes in the path

path void * pointer to path data

path_changed int32_t 0: not changed; 1: changed.

The coordinate may have the formats listed in the following table.

Table 31. Coordinate format

If vg_lite_format_t Path data alignment in array should be:

VG_LITE_S8 8 bit

VG_LITE_S16 2 bytes

VG_LITE_S32 4 bytes

Special Notes for Path Objects:

NXP Semiconductors
Vector Path Control

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 43 / 69

• Endianness has no impact, as it is aligned against the boundaries.

• Multiple contiguous op codes should be packed by the size of the specified data format. E.g., by 2 bytes for VG_LITE_S16
or by 4 bytes for VG_LITE_S32.

For example, since opcodes are 8-bits (1 byte), for 16-bit (2 byte) or 32-bit (4 byte) data types:

…

<opcode1_that_needs_data>

<align_to_data_size>

<data_for_opcode1>

<opcode2_that_doesnt_need_data>

<opcode3_that_needs_data>

<align_to_data_size>

<data_for_opcode3>

…

• Path data in the array should always be 1-, 2, or 4-byte aligned, depending on the format:

For example, for 32-bit (4 byte) data types:

…

<opcode1_that_needs_data>

<pad to 4 bytes>

<4 byte data_for_opcode1>

<opcode2_that_doesnt_need_data>

<opcode3_that_needs_data>

<pad to 4 bytes>

<4 byte data_for_opcode3>

…

9.3 Vector Path Functions
When using a small tessellation window and depending on a path’s size, a path might be uploaded to the hardware multiple times
because the hardware scanline convert path with the provided tessellation window size, so VGLite path rendering performance
might go down. So it is better to set the tessellation buffer size to the most common path size, for example if you only render 24-pt
fonts, you can set the tessellation buffer to be 24x24.

All the RGBA color formats available in the vg_lite_buffer_format_t are supported as the destination buffer for the draw function.

9.3.1 vg_lite_path_calc_length
Description:

This function calculates the path command buffer length (in bytes).

The application is responsible for allocating a buffer according to the buffer length calculated with this function. Then the buffer
is used by the path as a command buffer. The VGLite driver does not allocate the path command buffer.

Syntax:

int32_t vg_lite_path_calc_length (
uint8_t *cmd,
uint32_t count,

NXP Semiconductors
Vector Path Control

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 44 / 69

vg_lite_format_t format
);

Parameters:

*cmd Pointer to the opcode array to use to construct the path.

count The opcode count.

format The coordinate data format. All formats available in the vg_lite_format_t enum are
valid formats for this function.

9.3.2 vg_lite_path_append
Description:

This function assembles the command buffer for the path. The command buffer is allocated by the application and assigned to the
path. This function makes the final GPU command buffer for the path based on the input opcodes (cmd) and coordinates (data).
Note that the application is responsible to allocate a buffer large enough for the path.

Syntax:

int32_t vg_lite_path_append (
vg_lite_path_t *path
uint8_t *cmd,
void *data,
uint32_t seg_count
);

Parameters:

*path Pointer to the path definition.

*cmd Pointer to the opcode array to use to construct the path.

*data Pointer to the coordinate data array to use to construct the path.

seg_count The opcode count.

9.3.3 vg_lite_init_path
Description:

This function initializes a path definition with specified values.

Syntax:

vg_lite_error_t vg_lite_init_path (
vg_lite_path_t *path,
vg_lite_format_t data_format,
vg_lite_quality_t quality,
uint32_t path_length,
void *path_data,
vg_lite_float_t min_x,
vg_lite_float_t min_y,
vg_lite_float_t max_x,

NXP Semiconductors
Vector Path Control

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 45 / 69

vg_lite_float_t max_y
);

Parameters:

*path Pointer to the vg_lite_path_t structure for the path object to be initialized with the
member values specified.

data_format The coordinate data format. All formats available in the vg_lite_format_t enum are
valid formats for this function.

quality The quality for the path object. All formats available in the vg_lite_quality_t enum are
valid formats for this function.

path_length The length of the path data (in bytes).

*path_data Pointer to path data.

min_x

min_y

max_x

max_y

Minimum and maximum x and y values specifying the bounding box of the path.

Returns:

Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

9.3.4 vg_lite_upload_path
Description:

This function is used to upload a path to GPU memory.

In normal cases, the VGLite driver will copy any path data into a command buffer structure during runtime. This does take some
time if there are many paths to be rendered. Also, in an embedded system the path data won’t change - so it makes sense to
upload the path data into GPU memory in such a form that the GPU can directly access it.This function will signal the driver to
allocate a buffer that will contain the path data and the required command buffer header and footer data for the GPU to access
the data directly.

Syntax:

vg_lite_error_t vg_lite_upload_path (
vg_lite_path_t *path
);

Parameters:

*path Pointer to a vg_lite_path_t structure that contains the path to
be uploaded.

Returns:

VG_LITE_OUT_OF_MEMORY if not enough GPU memory is available for buffer allocation.

NXP Semiconductors
Vector Path Control

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 46 / 69

9.3.5 vg_lite_clear_path
Description:

This function will clear and reset path member values. If the path has been uploaded, it frees the GPU memory allocated when
uploading the path.

Syntax:

vg)lite_error_t vg_lite_clear_path (
vg_lite_path_t *path
);

Parameters:

*path Pointer to the path definition to be cleared.

Returns:

Returns VG_LITE_SUCCESS if successful. See vg_lite_error_t enum for other return codes.

9.4 Vector Path Opcodes for Plotting Paths
The following opcodes are path drawing commands available for vector path data.

A Path operation is submitted to the GPU as [Opcode | Coordinates]. The Operation code is stored as a VG_LITE_S8 while the
Coordinates are specified via vg_lite_format_t.

Table 32. . Vector Path Data Opcodes

Opcode Arguments Description

0x00 None END. Finish tessellation. Close any open path.

0x02 (x,y) MOVE. Move to the given vertex. Close any open path.

0x03 (∆x,∆y) MOVE_REL. Move to the given relative point. Close any open path.

0x04 (x,y) LINE. Draw a line to the given point.

0x05 (∆x,∆y) LINE_REL. Draw a line to the given relative point.

Table continues on the next page...

NXP Semiconductors
Vector Path Control

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 47 / 69

Table 32. . Vector Path Data Opcodes (continued)

Opcode Arguments Description

0x06 (cx,cy) (x,y) QUAD. Draw a quadratic curve to the given end point using the specified
control point.

0x07 (∆cx,∆cy)

(∆x,∆y)

QUAD_REL. Draw a quadratic curve to the given relative end point using the
specified relative control point.

0x08 (cx-1,cy1) (cx2,cy2) (x,y) CUBIC. Draw a cubic curve to the given end point using the specified control points.

0x09 (∆cx-1,∆cy1)

(∆cx2,∆cy2)

(∆x,∆y)

CUBIC_REL. Draw a cubic curve to the given relative end point using the specified
relative control points.

Table continues on the next page...

NXP Semiconductors
Vector Path Control

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 48 / 69

Table 32. . Vector Path Data Opcodes (continued)

Opcode Arguments Description

NXP Semiconductors
Vector Path Control

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 49 / 69

Chapter 10
Vector Based Draw Operations
This part of the API performs the hardware accelerated draw operations.

10.1 Draw and Gradient Enumerations
This section provides an overview of draw and gradient enumerations.

10.1.1 vg_lite_blend_t Enumeration
This enumeration is detailed under the Blit section. LINK to vg_lite_blend_t enumeration.

10.1.2 vg_lite_color_t Parameter
The common parameter vg_lite_color_t is described in Section 1.4 Common Parameter Types.

LINK to vg_lite_color_t color parameter description.

10.1.3 vg_lite_fill_t Enumeration
This enumeration is used to specify the fill rule to use. For drawing any path, the hardware supports both non-zero and odd-even
fill rules.

To determine whether any point is contained inside an object, imagine drawing a line from that point out to infinity in any direction
such that the line does not cross any vertex of the path. For each edge that is crossed by the line, add 1 to the counter if the edge is
crossed from left to right, as seen by an observer walking across the line towards infinity, and subtract 1 if the edge crossed from
right to left. In this way, each region of the plane will receive an integer value.

The non-zero fill rule says that a point is inside the shape if the resulting sum is not equal to zero. The even/odd rule says that a
point is inside the shape if the resulting sum is odd, regardless of sign.

Used in draw functions: vg_lite_draw, vg_lite_draw_gradient, vg_lite_draw_radial_gradient, vg_lite_draw_pattern.

Table 33. vg_lite_fill_t enumeration

vg_lite_fill_t String Values Description

VG_LITE_FILL_NON_ZERO Non-zero fill rule. A pixel is drawn if it crosses at least one path pixel.

VG_LITE_FILL_EVEN_ODD Even-odd fill rule. A pixel is drawn if it crosses an odd number of path pixels.

10.1.4 vg_lite_filter_t Enumeration
Defined under Blit. LINK to vg_lite_filter_t enumeration.

10.1.5 vg_lite_pattern_mode_t Enumeration
Defines how the region outside the image pattern is filled for the path.

Used in function: vg_lite_draw_gradient, vg_lite_draw_pattern.

NXP Semiconductors

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 50 / 69

Table 34. vg_lite_pattern_mode_t enumeration

vg_lite_pattern_mode_t String Values Description

VG_LITE_PATTERN_COLOR Fill the outside of the pattern by color

VG_LITE_PATTERN_PAD The color of the pattern border is expanded to fill the region outside the pattern.

10.1.6 vg_lite_radial_gradient_spreadmode_t Enumeration
Defines the radial gradient padding mode.

Used in structure: vg_lite_radial_gradient_t.

Table 35. vg_lite_radial_gradient_spreadmode_t enumeration

vg_lite_radial_gradient_spreadmode_t String Values Description

VG_LITE_RADIAL_GRADIENT_SPREAD_FILL = 0 Coordinates outside the gradient area filled with black
color.

VG_LITE_RADIAL_GRADIENT_SPREAD_PAD The area is filled with the closest stop color.

VG_LITE_RADIAL_GRADIENT_SPREAD_REPEAT The gradient is repeated outside the gradient area.

VG_LITE_RADIAL_GRADIENT_SPREAD_REFLECT The gradient is reflected outside the gradient area.

10.2 Draw and Gradient Structures
This section provides an overview of the draw and gradient structures.

10.2.1 vg_lite_buffer_t Structure
Defined under Pixel Buffer Structures. LINK to vg_lite_buffer_t structure.

10.2.2 vg_lite_color_ramp_t Structure
This structure defines the stops for the radial gradient. The five parameters provide the offset and color for the stop. Each stop
is defined by a set of floating point values which specify the offset and the sRGBA color and alpha values. Color channel values
are in the form of a non-premultiplied (R, G, B, alpha) quad. All parameters are in the range of [0,1]. The red, green, blue, alpha
value of [0, 1] is mapped to an 8-bit pixel value [0, 255].

The define for the max number of radial gradient stops is #define MAX_COLOR_RAMP_STOPS 256.

Used in radial gradient structure: vg_lite_radial_gradient_t.

Table 36. vg_lite_color_ramp_t Structure

vg_lite_color_ramp_t Members Type Description

stop vg_lite_float_t Offset value for the color stop

red vg_lite_float_t Red color channel value for the color stop

green vg_lite_float_t Green color channel value for the color stop

blue vg_lite_float_t Blue color channel value for the color stop

Table continues on the next page...

NXP Semiconductors
Vector Based Draw Operations

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 51 / 69

Table 36. vg_lite_color_ramp_t Structure (continued)

vg_lite_color_ramp_t Members Type Description

alpha vg_lite_float_t Alpha color channel value for the color stop

10.2.3 vg_lite_linear_gradient_t Structure
This structure defines the organization of a linear gradient in VGLite data. The linear gradient is applied to filling a path. It will
generate a 256x1 image according the settings.

Used in init and draw functions: vg_lite_init_grad, vg_lite_set_grad, vg_lite_update_grad, vg_lite_get_grad_matrix,
vg_lite_clear_grad, vg_lite_draw_gradient.

Table 37. vg_lite_linear_gradient_t structure

vg_lite_linear_gradient_t
Constants Type Description

VLC_MAX_GRAD int32_t Constant. Maximum number of gradient colors = 16.

VLC_GRADBUFFER_WIDTH int32_t Constant. Width of the internal color ramp = 256.

Table 38. vg_lite_linear_gradient_t structure members

vg_lite_linear_gradient_t Members Type Description

colors[VLC_MAX_GRAD] uint32_t Color array for the gradient

count uint32_t Number of colors

stops[VLC_MAX_GRAD] uint32_t Number of color stops, from 0 to 255

matrix vg_lite_matrix_t Struct for the matrix to be used to
transform the gradient color ramp

image vg_lite_buffer_t Image object struct to represent the
color ramp

10.2.4 vg_lite_matrix_t Structure
Defined under Matrix Structures. LINK to vg_lite_matrix_t structure.

10.2.5 vg_lite_path_t Structure
Defined under Vector Path Structures. LINK to vg_lite_path_t structure.

10.2.6 vg_lite_radial_gradient_parameter_t Structure
This structure defines the gradient radius and the X and Y coordinates for the center and focal points of the gradient.

Used in radial gradient structure: vg_lite_radial_gradient_t.

NXP Semiconductors
Vector Based Draw Operations

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 52 / 69

Table 39. vg_lite_radial_gradient_parameter_t structure

vg_lite_radial_gradient_parameter_t Members Type Description

cx vg_lite_float_t X coordinate of the gradient’s center point

cy vg_lite_float_t Y coordinate of the gradient’s center point

fx vg_lite_float_t X coordinate of the gradient’s focal point

fy vg_lite_float_t Y coordinate of the gradient’s focal point

r vg_lite_float_t Radius of the gradient

10.2.7 vg_lite_radial_gradient_t Structure
This structure defines the application of the radial gradient to fill a path. (from November 2020

Used in radial gradient functions: vg_lite_draw_gradient, vg_lite_set_rad_grad, vg_lite_update_rad_grad,
vg_lite_get_rad_grad, vg_lite_clear_rad_grad

Table 40. vg_lite_radial_gradient_t structure

vg_lite_radial_gradient_t Members Type Description

count uint32_t Count of colors, up to 256

matrix vg_lite_matrix_t Structure which specifies the transform matrix for the gradient

image vg_lite_buffer_t Structure which specifies the image for rendering as a
gradient pattern

radialGradient vg_lite_radial_gradient_p
arameter_t

Structure which specifies the location of the gradient’s center
point, focal point and radius

vgColorRampLength uint32_t Color ramp parameters for gradient paints provided to
the driver

vgColorRamp[MAX_COLOR_RA
MP_STOPS]

vg_lite_color_ramp_t Structure which specifies the color ramp.

intColorRampLength uint32_t Converted internal color ramp

intColorRamp[MAX_COLOR_RA
MP_STOPS+2]

vg_lite_color_ramp_t Structure which specifies the Internal color ramp.

colorRampPremultiplied uint32_t If this value is set to 1, the color value of vgColorRamp will be
multiplied by the alpha value of vgColorRamp.

SpreadMode vg_lite_radial_gradient_s
preadmode_t

Enum which specifies the tiling mode that is applied to the
pixels out of the image after transformation.

10.3 Draw Functions
This section provides an overview of the draw functions.

NXP Semiconductors
Vector Based Draw Operations

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 53 / 69

10.3.1 vg_lite_draw
Description:

Performs a hardware accelerated 2D vector draw operation.

The size of the tessellation buffer can be specified, and that size will be aligned to the minimum required alignment of the hardware
by the kernel. If you make the tessellation buffer smaller, less memory will be allocated, but a path might be sent down to the
hardware multiple times because the hardware will walk the target with the provided tessellation window size, so performance
might be lower. It is good practice to set the tessellation buffer size to the most common path size. For example, if all you do is
render up to 24-pt fonts, you can set the tessellation buffer to be 24x24.

• All the color formats available in the vg_lite_buffer_format_t enum are supported as the destination buffer for

the draw function.

• Strokes are not supported by the hardware. They need to be converted to paths before being used in the
draw API.

 NOTE

Syntax:

vg_lite_error_t vg_lite_draw (
 vg_lite_buffer_t *target,
 vg_lite_path_t *path,
 vg_lite_fill_t fill_rule,
 vg_lite_matrix_t *matrix,
 vg_lite_blend_t blend,
 vg_lite_color_t color
);

Parameters:

*target Pointer to the vg_lite_buffer_t structure for the destination buffer. All color formats available
in the vg_lite_buffer_format_t enum are valid destination formats for the draw function.

*path Pointer to the vg_lite_path_tstructure containing path data which describes the path to draw.
Refer to the section on Vector Path Data Opcodes in this document for opcode detail.

fill_rule Specifies the vg_lite_fill_t enum value for the fill rule for the path.

*matrix Pointer to a vg_lite_matrix_tstructure that defines the affine transformation matrix of the
path. If matrix is NULL, an identity matrix is assumed. Note: non-affine transformation is not
supported for vg_lite_draw, so a perspective transformation matrix has no effect on path.

blend Select one of the hardware supported blend modes in the vg_lite_blend_t enum
to be applied to each drawn pixel. If no blending is required, set this value to
VG_LITE_BLEND_NONE (0).

color The color applied to each pixel drawn by the path.

10.3.2 vg_lite_draw_gradient
Description:

This function is used to fill a path with a linear_gradient according to specified fill rules. The specified path will be transformed
according to the selected matrix and filled with the gradient.

NXP Semiconductors
Vector Based Draw Operations

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 54 / 69

Syntax:

vg_lite_error_t vg_lite_draw_gradient (
 vg_lite_buffer_t *target,
 vg_lite_path_t *path,
 vg_lite_fill_t fill_rule,
 vg_lite_matrix_t *matrix,
 vg_lite_linear_gradient_t *grad,
 vg_lite_blend_t blend
);

Parameters:

*target Pointer to the vg_lite_buffer_t structure containing data
describing the target path.

*path Pointer to the vg_lite_path_t structure containing path data
which describes the path to draw for the linear gradient.
Refer to the section on Vector Path Data Opcodes in this
document for opcode detail.

fill_rule Specifies the vg_lite_fill_t enum value for the fill rule for the
path.

*matrix Pointer to a vg_lite_matrix_t structure that defines the 3x3
transformation matrix of the path. If matrix is NULL, an
identity matrix is assumed which is usually a bad idea since
the path can be anything.

*grad Pointer to the vg_lite_linear_gradient_t structure which
contains the values to be used to fill the path.

blend Specified the blend mode in the vg_lite_blend_t enum to be
applied to each drawn pixel. If no blending is required, set
this value to VG_LITE_BLEND_NONE (0).

10.3.3 vg_lite_draw_radial_gradient
Description:

This function is used to fill a path with a radial gradient according to specified fill rules. The specified path will be transformed
according to the selected matrix and filled with the gradient.

Syntax:

vg_lite_error_t vg_lite_draw_radial_gradient (
 vg_lite_buffer_t *target,
 vg_lite_path_t *path,
 vg_lite_fill_t fill_rule,
 vg_lite_matrix_t *path_matrix,
 vg_lite_radial_gradient_t *grad,
 vg_lite_color_t paint_color,
 vg_lite_blend_t blend,
 vg_lite_filter_t filter
);

Parameters:

NXP Semiconductors
Vector Based Draw Operations

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 55 / 69

*target Pointer to the vg_lite_buffer_t structure containing data describing the target path.

*path Pointer to the vg_lite_path_t structure containing path data which describes the path to
draw for the linear gradient. Refer to the section on Vector Path Data Opcodes in this
document for opcode detail.

fill_rule Specifies the vg_lite_fill_t enum value for the fill rule for the path.

*path_matrix Pointer to a vg_lite_matrix_t structure that defines the 3x3 transformation matrix of the
path. If matrix is NULL, an identity matrix is assumed which is usually a bad idea since
the path can be anything.

*grad Pointer to the vg_lite_radial_gradient_t structure which contains the values to be used to
fill the path.

paint_color Specifies the paint color enum vg_lite_color_t RGBA value to be
applied by VG_LITE_RADIAL_GRADIENT_SPREAD_FILL, which set by function
vg_lite_set_rad_grad. When pixels are out of the image after transformation, this
paint_color is applied to them. See also enum vg_lite_radial_gradient_spreadmode_t.

blend Specifies the blend mode in the vg_lite_blend_t enum to be applied to each drawn pixel.
If no blending is required, set this value to VG_LITE_BLEND_NONE (0).

filter Specified the filter mode vg_lite_filter_t enum value to be applied to each drawn pixel. If
no filtering is required, set this value to VG_LITE_BLEND_POINT (0).

10.3.4 vg_lite_draw_pattern
Description:

This function fills a path with an image pattern. The path will be transformed according to the specified matrix and filled with the
transformed image pattern.

Syntax:

vg_lite_error_t vg_lite_draw_pattern (
vg_lite_buffer_t *target,
vg_lite_path_t *path,
vg_lite_fill_t fill_rule,
vg_lite_matrix_t *matrix0,
vg_lite_buffer_t *source,
vg_lite_matrix_t *matrix1,
vg_lite_blend_t blend,
vg_lite_pattern_mode_t pattern_mode,
vg_lite_color_t pattern_color,
vg_lite_filter_t filter
);

Parameters:

*target Pointer to the vg_lite_buffer_t structure that defines the path
to draw.

*path Pointer to the vg_lite_path_tstructure containing path data
which describes the path to draw. Refer to the section on
Vector Path Data Opcodes in this document for opcode
detail.

Table continues on the next page...

NXP Semiconductors
Vector Based Draw Operations

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 56 / 69

Table continued from the previous page...

fill_rule Specifies the vg_lite_fill_t enum value for the fill rule for the
path.

*matrix0 Pointer to a vg_lite_matrix_t structure that defines the 3x3
transformation matrix of the path.If matrix is NULL, an identity
matrix is assumed, which is usually a bad idea since the path
can be anything.

*source Pointer to the vg_lite_buffer_tstructure that describes the
source of the image pattern.

*matrix1 Pointer to a vg_lite_matrix_t structure that defines the 3x3
transformation matrix of the source pixels into the target.If
matrix is NULL, an identity matrix is assumed, meaning the
source will be copied directly onto the target at 0,0 location.

blend Specifies one of the hardware supported blend modes to be
applied to each drawn pixel in the image. If no blending is
required, set this value to VG_LITE_BLEND_NONE (0).

pattern_mode Specifies the vg_lite_pattern_mode_t value which defines
how the region outside the image pattern is to be filled.

pattern_color Specifies a 32bpp ARGB color to be applied to the fill outside
the image pattern area when the pattern_mode value is
VG_LITE_PATTERN_COLOR.

filter Specifies the filter type. All formats available in the
vg_lite_filter_tenum are valid formats for this function. A value
of zero (0) indicates VG_LITE_FILTER_POINT.

10.4 Linear Gradient Initialization and Control Functions
This part of the API performs linear gradient operations.

A color gradient (color progression, color ramp) is a smooth transition between a set of colors (color stops) that is done along a
line (linear, or axial color gradient) or radially, along concentric circles (radial color gradient). The color transition is done by linear
interpolation between two consecutive color stops.

10.4.1 vg_lite_init_grad
Description:

This function initializes the internal buffer for the linear gradient object with default settings for rendering.

Syntax:

vg_lite_error_t vg_lite_init_grad (
vg_lite_linear_gradient_t *grad,
);

Parameters:

*grad Pointer to the vg_lite_linear_gradient_t structure which defines the gradient to be
initialized. Default values are used.

NXP Semiconductors
Vector Based Draw Operations

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 57 / 69

10.4.2 vg_lite_set_grad
Description:

This function is used to set values for the members of the vg_lite_linear_gradient_t structure.

The vg_lite_set_grad API adopts the following rules to set the default gradient colors if the input parameters are
incomplete or invalid.

 NOTE

• If no valid stops have been specified (e.g., due to an empty input array, out-of-range, or out-of-order stops), a stop at 0
with (R, G, B, α) color (0.0, 0.0, 0.0, 1.0) (opaque black) and a stop at 1 with color (1.0, 1.0, 1.0, 1.0) (opaque white) are
implicitly defined.

• If at least one valid stop has been specified, but none has been defined with an offset of 0, an implicit stop is added with
an offset of 0 and the same color as the first user-defined stop.

• If at least one valid stop has been specified, but none has been defined with an offset of 1, an implicit stop is added with
an offset of 1 and the same color as the last user-defined stop.

Syntax:

vg_lite_error_t vg_lite_set_grad (
 vg_lite_linear_gradient_t *grad,
 uint32_t count,
 uint32_t *colors,
 uint32_t *stops
);

Parameters:

*grad Pointer to the vg_lite_linear_gradient_t structure to be set.

count This is the count of the colors in the linear gradient. The maximum color stop count
is defined by VLC_MAX_GRAD which is 16.

*colors Specifies the color array for the gradient stops. The color is in ARGB8888 format with
alpha in the upper byte.

*stops Pointer to the gradient stop offset.

Returns:

Always returns VG_LITE_SUCCESS.

10.4.3 vg_lite_update_grad
Description:

This function is used to update or generate values for an image object that is going to be rendered. The vg_lite_linear_gradient_t
object has an image buffer which is used to render the gradient pattern. The image buffer will be created or updated with the
corresponding grad parameters.

Syntax:

vg_lite_error_t vg_lite_update_grad (
vg_lite_linear_gradient_t *grad,
);

Parameters:

NXP Semiconductors
Vector Based Draw Operations

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 58 / 69

*grad Pointer to the vg_lite_linear_gradient_t structure which contains the update values to
be used for the object to be rendered.

10.4.4 vg_lite_get_grad_matrix
Description:

This function is used to get a pointer to the gradient object’s transformation matrix. This allows an application to manipulate the
matrix to facilitate correct rendering of the gradient path.

Syntax:

vg_lite_error_t vg_lite_get_grad_matrix (
vg_lite_linear_gradient_t *grad,
);

Parameters:

*grad Pointer to the vg_lite_linear_gradient_t structure which contains the matrix to
be retrieved.

10.4.5 vg_lite_clear_grad
Description:

This function is used to clear the values of a linear gradient object and free the image buffer’s memory.

Syntax:

vg_lite_error_t vg_lite_clear_grad (
vg_lite_linear_gradient_t *grad,
);

Parameters:

*grad Pointer to the vg_lite_linear_gradient_t structure which is to be cleared.

10.5 Radial Gradient Functions

There is no init function required for radial gradients. Buffer initialization is done through the
vg_lite_update_rad_grad function.

 NOTE

10.5.1 vg_lite_set_rad_grad
Description:

This function is used to set the values for the radial linear gradient definition

Syntax:

vg_lite_error_t vg_lite_set_rad_grad (
vg_lite_radial_gradient_t *grad,
uint32_t count,
vg_lite_color_ramp_t *vgColorRamp,

NXP Semiconductors
Vector Based Draw Operations

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 59 / 69

vg_lite_radial_gradient_parameter_t radialGradient,
vg_lite_radial_gradient_spreadmode_t SpreadMode,
uint8_t colorRampPremultiplied
);

Parameters:

*grad Pointer to the vg_lite_radial_gradient_t structure for the radial gradient which will
be set

count This is the count of the color stops in the gradient. The maximum color stop count is
defined by MAX_COLOR_RAMP_STOPS, which is currently 256.

*vgColorRamp Pointer to the vg_lite_color_ramp_t structure which defines the stops for the radial
gradient. The five parameters provide the offset and color for the stop. Each stop is
defined by a set of floating point values which specify the offset and the sRGBA color
and alpha values. Color channel values are in the form of a non-premultiplied (R, G,
B, alpha) quad. All parameters are in the range of [0,1]. The red, green, blue, alpha
value of [0, 1] is mapped to an 8-bit pixel value [0, 255].

radialGradient The radial gradient parameters are supplied as a vector of 5 floats in the order
{cx,cy,fx,fy,r}. Parameters(cx,cy) specify the center point, (fx,fy) the focal point and r
the radius. See structure vg_lite_radial_gradient_parameter_t.

SpreadMode The tiling mode that is applied to pixels out of the paint after transformation. See
enum vg_lite_radial_gradient_spreadmode_t.

colorRampPremultiplied Controls whether color and alpha values are interpolated in premultiplied or non-
premultiplied form. If this value is set to 1, the color value of vgColorRamp will be
multipled by the alpha value of vgColorRamp.

Returns:

Returns VG_LITE_INVALID_ARGUMENTS to indicate the parameters are wrong.

10.5.2 vg_lite_update_rad_grad
Description:

This function is used to update or generate values for an image object that is going to be rendered. The vg_lite_radial_gradient_t
object has an image buffer which is used to render the gradient pattern. The image buffer will be created or updated with the
corresponding gradient parameters.

Syntax:

vg_lite_error_t vg_lite_update_rad_grad (
vg_lite_radial_gradient_t *grad,
);

Parameters:

*grad Pointer to the vg_lite_radial_gradient_t structure which contains the update values to
be used for the object to be rendered.

NXP Semiconductors
Vector Based Draw Operations

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 60 / 69

10.5.3 vg_lite_get_rad_grad_matrix
Description:

This function is used to get a pointer to the radial gradient object’s transformation matrix. This allows an application to manipulate
the matrix to facilitate correct rendering of the gradient path.

Syntax:

vg_lite_error_t vg_lite_get_rad_grad_matrix (
vg_lite_radial_gradient_t *grad,
);

Parameters:

*grad Pointer to the vg_lite_radial_gradient_t structure which contains the matrix to
be retrieved.

10.5.4 vg_lite_clear_rad_grad
Description:

This function is used to clear the values of a radial gradient object and free the image buffer’s memory.

Syntax:

vg_lite_error_t vg_lite_clear_rad_grad (
vg_lite_radial_gradient_t *grad,
);

Parameters:

*grad Pointer to the vg_lite_radial_gradient_t structure which is to be cleared.

NXP Semiconductors
Vector Based Draw Operations

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 61 / 69

Chapter 11
VGLite API Programming Examples
This section provides an overview of VGLite API programming examples.

11.1 vg_lite_clear Example
The following code snippet demonstrates the basic flow of a VGLite application program and the usage of the vg_lite_clear
API. First, the program initializes the VGLite API with:

error = vg_lite_init(0, 0);

The tessellation buffer width and height are defined as (0, 0) in this vg_lite_init API call. This program cannot
use the path rendering vg_lite_draw APIs. Only clear and blit APIs can be used in this program.

 NOTE

After initialization, the program allocates a 256x256 render buffer with a format of VG_LITE_RGB565.

buffer.width = 256;

buffer.height = 256;

buffer.format = VG_LITE_RGB565;

error = vg_lite_allocate(&buffer);

fb = &buffer;

It clears the entire render buffer with blue color first with the vg_lite_clear API.

error = vg_lite_clear(fb, NULL, 0xFFFF0000);

Then it clears a 64x64 square at the position (64, 64) relative to the top-left origin of the render buffer.

vg_lite_rectangle_t rect = { 64, 64, 64, 64 };

error = vg_lite_clear(fb, &rect, 0xFF0000FF);

After that, it calls vg_lite_finish to flush the commands to GCNanoLiteV hardware and then frees up the allocated render buffer.
Finally it calls vg_lite_close to destroy the VGLite context which is initialized by vg_lite_init.

vg_lite_finish();

vg_lite_free(&buffer);

vg_lite_close();

Figure 1. Example using vg_lite_clear

11.2 vg_lite_blit Example
The following example test program demonstrates the usage of the vg_lite_blit API. It clears a 320x480 render buffer with blue
background color first, then it blits six 256x256 icon images to six different positions in the render buffer with a blit matrix for each

NXP Semiconductors

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 62 / 69

icon. The blit matrix scales the original icon image to a proper size and translates the scaled icon to the right position in the render
buffer. The vg_lite_blit API call is set as VG_LITE_BLEND_SRC_OVER so the icon image pixels with alpha value 0xFF cover
the background blue color.

vg_lite_blit(fb, &icons[icon_id], &icon_matrix, VG_LITE_BLEND_SRC_OVER, 0, VG_LITE_FILTER_POINT);

Figure 2. Example using vg_lite_blit

11.3 vg_lite_draw Example
This section demonstrates the usage of the vg_lite_draw API with which it draws a highlighted rectangle on the top-right
icon in above image. The program defines a path (path_data[]) for a 10x10 square bounding box, and it sets up a proper
“highlight_matrix” to translate/scale the 10x10 square to cover the top-right icon. The vg_lite_draw API call uses blend
parameter VG_LITE_BLEND_SRC_OVER and blend color 0x22444488 (alpha value 0x22) to draw a semi-transparent rectangle on
the top-right icon.

static char path_data[] = {

2, 0, 0, // moveto 0, 0

4, 10, 0, // lineto 10, 0

4, 10, 10, // lineto 10, 10

4, 0, 10, // lineto 0, 10

0, // end

};

static vg_lite_path_t path = {

{-10, -10, 10, 10}, // bounding box left, top, right, bottom

VG_LITE_HIGH, // quality

VG_LITE_S8, // -128 to 127 coordinate range

{0}, // uploaded

sizeof(path_data), // path length

path_data, // path data

1 // path changed

};

error = vg_lite_draw(fb, &path, VG_LITE_FILL_EVEN_ODD, &highlight_matrix,
VG_LITE_BLEND_SRC_OVER, 0x22444488);

NXP Semiconductors
VGLite API Programming Examples

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 63 / 69

After the vg_lite_draw call, vg_lite_clear_path(&path) is called to free and reset the path data.

11.4 vg_lite_draw_gradient Example
The following section demonstrates the usage of the vg_lite_draw_gradient API. It defines 5 colors (black, red, green, blue, white)
in ramps[] and 5 stops in stops[] which are used for gradient color transition. It calls the following to setup the color gradient image.

uint32_t ramps[] = {0xff000000, 0xffff0000, 0xff00ff00, 0xff0000ff, 0xffffffff};

uint32_t stops[] = {0, 66, 122, 200, 255};

vg_lite_set_grad(&grad, 5, ramps, stops);

vg_lite_update_grad(&grad);

The “colors” parameter (ramps[]) in vg_lite_set_grad API must be in ARGB8888 format with alpha at the
higher byte. It also sets up the gradient transformation matrix “matGrad” with a proper scale factor and 30
degree rotation.

 NOTE

matGrad = vg_lite_get_grad_matrix(&grad);

vg_lite_identity(matGrad);

vg_lite_rotate(30.0f, matGrad);

Then it calls:

vg_lite_draw_gradient(fb, &path, VG_LITE_FILL_EVEN_ODD, &matPath, &grad, VG_LITE_BLEND_NONE);

with a polygon path and color gradient image/matrix so that it generates the rendering effect as illustrated in the image below.

After the draw gradient API, it calls the following to flush the VGLite commands and clean up the gradient image buffer.

vg_lite_finish();

vg_lite_clear_grad(&grad);

Figure 3. Example using vg_lite_draw_gradient

11.5 vg_lite_draw_pattern Example
This section demonstrates the usage of the vg_lite_draw_pattern API. It defines a vg_lite_path_t path for a convex polygon shape
as shown below, and loads an image file "landscape.raw" with which to fill the polygon interior area.

It also defines two matrices, one named “matrix” for the image, another named “matPath” for the “path”. The image matrix rotates
the image 33 degrees clockwise based on the image center.

vg_lite_identity(&matrix);

vg_lite_translate(fb_width / 2.0f, fb_height / 4.0f, &matrix);

vg_lite_rotate(33.0f, &matrix);

NXP Semiconductors
VGLite API Programming Examples

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 64 / 69

vg_lite_scale(0.4f, 0.4f, &matrix);

vg_lite_translate(fb_width / -2.0f, fb_height / -4.0f, &matrix);

vg_lite_identity(&matPath);

vg_lite_translate(fb_width / 2.0f, fb_height / 4.0f, &matPath);

vg_lite_scale(10, 10, &matPath);

Then it calls vg_lite_draw_pattern API two times with different parameters to draw the polygon twice.

error = vg_lite_draw_pattern(fb, &path, VG_LITE_FILL_EVEN_ODD, &matPath, &image, &matrix,
VG_LITE_BLEND_NONE,VG_LITE_PATTERN_COLOR, 0xffaabbcc, VG_LITE_FILTER_POINT);

error = vg_lite_draw_pattern(fb, &path, VG_LITE_FILL_EVEN_ODD, &matPath,&image, &matrix,
VG_LITE_BLEND_NONE,VG_LITE_PATTERN_PAD, 0xffaabbcc, VG_LITE_FILTER_POINT);

With the vg_lite_pattern_mode_t setting of VG_LITE_PATTERN_COLOR, the polygon area outside the pattern image of the upper
polygon is filled with color 0xffaabbcc. With the vg_lite_pattern_mode_t setting of VG_LITE_PATTERN_PAD, the polygon area
outside the pattern image of the lower polygon is filled with the border pixel color of the pattern image.

Figure 4. Example using vg_lite_draw_pattern

11.6 Vector-based Font Rendering Example
This section demonstrates vector-based font rendering with the vg_lite_draw API, which is capable of drawing quadratic curves
and cubic curves based on end point and control point coordinates in the path data. The font path data can be generated by using
a third-party font engine that can produce VGLite path data directly, or by using VeriSilicon’s VGLite tools to convert other formats
of font data, such as SVG, etc., to VGLite path data. Here is an example of path data for the character “~” (ASCII code 126):

float ascii_font_126[] =

{

2,15.984375,20.273438,

4,16.296875,20.476563,

6,15.781250,21.351563,14.921875,21.992188,

6,13.953125,22.710938,13.046875,22.710938,

6,12.375000,22.710938,10.898438,22.203125,

6,9.421875,21.695313,8.656250,21.695313,

6,7.937500,21.695313,7.375000,22.117188,

6,7.015625,22.382813,6.421875,23.117188,

NXP Semiconductors
VGLite API Programming Examples

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 65 / 69

4,6.109375,22.914063,

6,7.593750,20.664063,9.453125,20.664063,

6,10.156250,20.664063,11.492188,21.140625,

6,12.828125,21.617188,13.531250,21.617188,

6,14.921875,21.617188,15.984375,20.273438,

0

};

The first integer in each line is the path opcode, followed by the coordinates for each opcode. As listed in Section 8.4, opcode (2,
x, y) moves the current position to (x, y); opcode (4, x, y) draws a line from the current position to (x, y); opcode (6, cx, cy, x, y)
draws a quadratic curve from the current position to the given end point (x, y) using the specified control point (cx, cy).

The program calls:

error = vg_lite_init(256, 256);

to initialize VGLite with a 256x256 path tessellation buffer, then allocates a 320x320 render buffer with the format
VG_LITE_RGBA8888.The size of the tessellation buffer is big enough to cover the font character bounding box.

The program renders the path for each character in the string "Hello,\nVerisilicon!"in a loop with calls to:

/* Draw the path using the matrix.*/

error = vg_lite_draw(fb, &path, VG_LITE_FILL_EVEN_ODD, &matrix, VG_LITE_BLEND_NONE, 0xFF0000FF);

The character’s vector path is rendered without blending (VG_LITE_BLEND_NONE). The path interior is filled with the color
red (0xFF0000FF).

Figure 5. Example using Vector Based Font Rendering

To demonstrate the smooth curve of vector-based path rendering with any scale factor, the program renders a single character
“H” with a scaled size of 8X using following API calls.

vg_lite_identity(&matrix);

vg_lite_translate(startX, startY, &matrix);

vg_lite_scale(8.0, 8.0, &matrix);

error = vg_lite_draw(fb, &path, VG_LITE_FILL_EVEN_ODD, &matrix, VG_LITE_BLEND_NONE, 0xFF0000FF);

The following image example shows the resulting vector path rendering of character “H”.

NXP Semiconductors
VGLite API Programming Examples

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 66 / 69

Figure 6. Example with Vector Based Font Rendering Upscaled 8X.

NXP Semiconductors
VGLite API Programming Examples

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 67 / 69

Chapter 12
Revision history
This table summarizes the revisions of this document.

Table 41. Revision history

Revision number Date Substantive changes

0 22 Feb 2021 Initial Draft

NXP Semiconductors

i.MX RT VGLite API Reference Manual, Rev. 0, 22 February 2021
Reference Manual 68 / 69

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to
make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating parameters, including “typicals,” must
be validated for each customer application by customer's technical experts. NXP does not convey any license
under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published
in this document, including without limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented
vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout
their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s
responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in
customer’s applications. NXP accepts no liability for any vulnerability. Customer should regularly check security
updates from NXP and follow up appropriately. Customer shall select products with security features that best
meet rules, regulations, and standards of the intended application and make the ultimate design decisions
regarding its products and is solely responsible for compliance with all legal, regulatory, and security related
requirements concerning its products, regardless of any information or support that may be provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages
the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE,
GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE
PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,
SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo,
AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package,
QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI,
Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil,
Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of
patents, copyrights, designs and trade secrets. All rights reserved.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 22 February 2021
Document identifier: IMXRTVGLITEAPIRM

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Vivante VGLite Graphics API
	2.1 API Partitions
	2.2 API Files

	3 Common Parameters and Error Values
	3.1 Common Parameter Types
	3.2 Enumeration used for Error Reporting
	3.2.1 vg_lite_error_t Enumeration

	4 Hardware Product and Feature Information
	4.1 Enumerations for Product and Feature Queries
	4.1.1 vg_lite_feature_t Enumeration

	4.2 Structures for Product and Feature Queries
	4.2.1 vg_lite_info_t Structure

	4.3 Functions for Product and Feature Queries
	4.3.1 vg_lite_get_product_info
	4.3.2 vg_lite_get_info
	4.3.3 vg_lite_get_register
	4.3.4 vg_lite_query_feature
	4.3.5 vg_lite_mem_avail

	5 API Control
	5.1 Context Initialization and Control Functions
	5.1.1 vg_lite_set_command_buffer_size
	5.1.2 vg_lite_init
	5.1.3 vg_lite_close
	5.1.4 vg_lite_finish
	5.1.5 vg_lite_flush

	6 Pixel Buffers
	6.1 Pixel Buffer Alignment
	6.2 Pixel Cache
	6.3 Internal Representation
	6.4 Pixel Buffer Enumerations
	6.4.1 vg_lite_buffer_format_t Enumeration
	6.4.1.1 Alignment Notes

	6.4.2 vg_lite_buffer_image_mode_t Enumeration
	6.4.3 vg_lite_buffer_layout_t Enumeration
	6.4.4 vg_lite_buffer_transparency_mode_t Enumeration
	6.4.5 vg_lite_swizzle_t Enumeration
	6.4.6 vg_lite_yuv2rgb_t Enumeration

	6.5 Pixel Buffer Structures
	6.5.1 vg_lite_buffer_t Structure
	6.5.2 vg_lite_yuvinfo_t Structure

	6.6 Pixel Buffer Functions
	6.6.1 vg_lite_allocate
	6.6.2 vg_lite_free
	6.6.3 vg_lite_buffer_upload
	6.6.4 vg_lite_map
	6.6.5 vg_lite_unmap
	6.6.6 vg_lite_set_CLUT

	7 Matrices
	7.1 Matrix Control Float Parameter Type
	7.2 Matrix Control Structures
	7.2.1 vg_lite_matrix_t Structure

	7.3 Matrix Control Functions
	7.3.1 vg_lite_identity
	7.3.2 vg_lite_perspective
	7.3.3 vg_lite_rotate
	7.3.4 vg_lite_scale
	7.3.5 vg_lite_translate

	8 BLITs for Compositing and Blending
	8.1 BLIT Enumerations
	8.1.1 vg_lite_blend_t Enumeration
	8.1.2 vg_lite_color_t Parameter
	8.1.3 vg_lite_filter_t Enumeration

	8.2 BLIT Structures
	8.2.1 vg_lite_buffer_t Structure
	8.2.2 vg_lite_matrix_t Structure
	8.2.3 vg_lite_path_t Structure
	8.2.4 vg_lite_rectangle_t Structure

	8.3 BLIT Functions
	8.3.1 vg_lite_blit
	8.3.2 vg_lite_blit_rect
	8.3.3 vg_lite_clear

	8.4 Premultiply and Scissor Functions
	8.4.1 vg_lite_enable_premultiply
	8.4.2 vg_lite_disable_premultiply
	8.4.3 vg_lite_enable_scissor
	8.4.4 vg_lite_disable_scissor
	8.4.5 vg_lite_set_scissor

	9 Vector Path Control
	9.1 Vector Path Enumerations
	9.1.1 vg_lite_format_t Enumeration
	9.1.2 vg_lite_quality_t Enumeration

	9.2 Vector Path Structures
	9.2.1 vg_lite_hw_memory Structure
	9.2.2 vg_lite_path_t Structure

	9.3 Vector Path Functions
	9.3.1 vg_lite_path_calc_length
	9.3.2 vg_lite_path_append
	9.3.3 vg_lite_init_path
	9.3.4 vg_lite_upload_path
	9.3.5 vg_lite_clear_path

	9.4 Vector Path Opcodes for Plotting Paths

	10 Vector Based Draw Operations
	10.1 Draw and Gradient Enumerations
	10.1.1 vg_lite_blend_t Enumeration
	10.1.2 vg_lite_color_t Parameter
	10.1.3 vg_lite_fill_t Enumeration
	10.1.4 vg_lite_filter_t Enumeration
	10.1.5 vg_lite_pattern_mode_t Enumeration
	10.1.6 vg_lite_radial_gradient_spreadmode_t Enumeration

	10.2 Draw and Gradient Structures
	10.2.1 vg_lite_buffer_t Structure
	10.2.2 vg_lite_color_ramp_t Structure
	10.2.3 vg_lite_linear_gradient_t Structure
	10.2.4 vg_lite_matrix_t Structure
	10.2.5 vg_lite_path_t Structure
	10.2.6 vg_lite_radial_gradient_parameter_t Structure
	10.2.7 vg_lite_radial_gradient_t Structure

	10.3 Draw Functions
	10.3.1 vg_lite_draw
	10.3.2 vg_lite_draw_gradient
	10.3.3 vg_lite_draw_radial_gradient
	10.3.4 vg_lite_draw_pattern

	10.4 Linear Gradient Initialization and Control Functions
	10.4.1 vg_lite_init_grad
	10.4.2 vg_lite_set_grad
	10.4.3 vg_lite_update_grad
	10.4.4 vg_lite_get_grad_matrix
	10.4.5 vg_lite_clear_grad

	10.5 Radial Gradient Functions
	10.5.1 vg_lite_set_rad_grad
	10.5.2 vg_lite_update_rad_grad
	10.5.3 vg_lite_get_rad_grad_matrix
	10.5.4 vg_lite_clear_rad_grad

	11 VGLite API Programming Examples
	11.1 vg_lite_clear Example
	11.2 vg_lite_blit Example
	11.3 vg_lite_draw Example
	11.4 vg_lite_draw_gradient Example
	11.5 vg_lite_draw_pattern Example
	11.6 Vector-based Font Rendering Example

	12 Revision history

