MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Rev. 0 — 25 October 2022

User guide

Document information

Information Content
Keywords SLN-TLHMI-IOT, Human Machine Interface (HMI), loT
Abstract

The purpose of this guide is to help developers better understand the
software design and architecture of the applications in order to more easily
and efficiently implement applications using the SLN-TLHMI-IOT

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

1 Introduction

Welcome to the Developer Guide for the SLN-TLHMI-IOT!

The purpose of this guide is to help developers better understand the software design
and architecture of the applications in order to more easily and efficiently implement
applications using the SLN-TLHMI-IOT.

This guide covers such topics as the bootloader and the framework + HAL architecture
design, as well as other features that may be relevant to application development using
SLN-TLHMI-IOT.

Check out the Smart HMI Getting Started Guide for an overview of the out of box
features available in the SLN-TLHMI-IOT applications.

2 Setup and installation

This section is focused on the setup and installation of the tools necessary to begin
developing applications using NXP's framework architecture.

This guide focuses on MCUXpresso IDE for development.

2.1 MCUXpresso IDE

MCUXpresso IDE brings developers an easy-to-use Eclipse-based development
environment for NXP MCUs based on Arm Cortex-M cores, including its general-
purpose crossover and Bluetooth-enabled MCUs. MCUXpresso IDE offers advanced
editing, compiling, and debugging features with the addition of MCU-specific debugging
views, code trace and profiling, multicore debugging, and integrated configuration tools.
MCUXpresso IDE debug connections support Freedom, Tower system, LPCXpresso,
i.MX RT-based EVKSs, and your custom development boards with industry-leading open-
source and commercial debug probes from NXP, P&E Micro, and SEGGER.

For more information, see the NXP website

2.2 |Install the toolchain

MCUXpresso IDE can be downloaded from the NXP website by using the below link:
Get MCUXpresso IDE

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

2/190

http://www.nxp.com/mcu-smhmi
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=MCUXPRESSO

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

MCUXpresso Integrated Development Environment (IDE)

MCUXpresso-IDE Receive alerts ®

Qverview Software Details Design Resources ® Training Support DOWNLOADS

The MCUXpresso IDE brings developers an easy-to-use Eclipse-based
development environment for NXP® MCUs based on Arm® Cortex®-M cores,
including its general purpose crossover and wireless - enabled MCUs. The
MCUXpresso IDE offers advanced editing, compiling, and debugging features
with the addition of MCU-specific debugging views, code trace and profiling
multicore debugging, and integrated configuration tools. The MCUXpresso
IDE debug connections support Freedom, Tower® system, LPCXpresso, i MX
RT-based EVKSs, and your custom development boards with optimized open-
source and commercial debug probes from NXP, P&E Micro®, and SEGGER®.

Roll over image to zoom in

g

Figure 1. Download MCUXpresso IDE

To download the correct version of IDE, check out the Smart HMI Getting Started Guide.
Once the download has been completed, follow the instructions in the installer to get
started.

Note: There is a bug in version 11.5.1 of MCUXpresso IDE that prevents building
projects for SLN-TLHMI-IOT, so version 11.5.0, 11.6.0, or greater is required.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

3/190

http://www.nxp.com/mcu-smhmi

NXP Semiconductors MCU-SMHMI-SDUG

2.3

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

38 About MCUXpresso IDE O X

MCUXpresso IDE v11.5.0 [Build 7232] [2022-01-11] A
(c) Copyright 2006-2022 NXP

For further information about NXP and NXP products, visit:

T: NXP Semiconductors: http://www.nxp.com

‘7 NXP Microcontrollers:
http://www.nxp.com/products/microcontrollers

MCUXpresso IDE: http://www.nxp.com/mcuxpresso/ide

MCUXpresso
IDE For community-based support visit the MCUXpresso IDE
' forum at http://www.nxp.com/mcuxpresso/ide

Check for latest version at:
http://www.nxp.com/mcuxpresso/ide

T ocimakbd IO O Celimecn comteilboatore s atbooes

cCSENNXNOB ! &

@ Installation Details | Close

Figure 2. Check MCUXpresso IDE version with v11.5.0

Install the SDK

To build projects using MCUXpresso IDE, install an SDK for the platform you intend to
use. A compatible SDK has the required dependencies and platform-specific drivers
needed to compile projects.

A compatible SDK can be downloaded from the official NXP_SDK builder

1. To build the SDK for your preferred setup, use MCUXpresso IDE to install the SDK.

2. To do this, open the application and clickDownload and Install SDKs on the
MCUXpresso IDE welcome screen as shown below:

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
4/190

https://mcuxpresso.nxp.com/en/select

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

9 e e = &

Home Overview What's New First Steps Web Resources Documentstion IDE
Welcome to MCUXpresso IDE
MCUXpresso IDE provides an easy-to- Download and Install SDKs
use Eclipse-based development T

environment for NXP MCUs based on

ARM Cortex-M cores, including LPC and

Kinetis microcontrollers and i MX RT -

crossover processors. It offers advanced 'j

editing, compiling, and debugging m

features with the addition of MCU-

specific debugging views, code race

and profiling, multicore debugging, and ::_,/.
(ioe J

integrated configuration tools

Create a New Project

Import SDK Examples

v
k{ ¥ Always show Welcome at start up

Figure 3. Download and Install SDKs

3. A catalog of all the SDKs that can be downloaded through MCUXpresso is available.
These SDKs provide device knowledge, drivers, middleware, and reference example
applications for your development board or MCU. Type evkmimxrt1170 in the filter
section and download evkmimxrt1170 SDK. The current applications were developed

and tested on SDK 2.11.1.

@550 SDKs to install from hitps://mcuxpresso.nxp.com/eclipse/sdk

MOUXgresso IDE allowing projects 10 be Created and Seougged.
v MCLX, D3 10 provice Gevice Knowledge, drivers, micdiemane, and reference example appCatons for your development boand of MCU
Board Processon

cart SOK Nersaon Package Flash RAM Stbs nee [197

e Inetalied 7 Shom tatest [Hade board mages

Min Flash (KBx g

M Flash (CBT a0

Min RAM 0B g

M BAM (CBX 5120

Mancere
W anCores OConenM s b

Figure 4. Download RT1170 SDK
4. A prompt displays the license agreement associated with the 1170 SDK.

5. Read and accept the license to automatically start the SDK installation.
6. MCUXpresso proceeds to download the SDK.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

MCU-SMHMI-SDUG
User guide

Rev. 0 — 25 October 2022
5/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

. Installing Software O X

0 Operation in progress...

Fetching com.nxp.mcuxpresso.sdk.sdk_2x_mimxr...1/plugins/ (128.66MEB of 379.36MB at 1.46MB/s)

[Always run in background

Run in Backgmundl Cancel Details >>

Figure 5. Install RT1170 SDK

2.4 Import example projects

241

MCU-SMHMI-SDUG

Note: To build example projects that you import regardless of how they are imported,
you must have a compatible MCUXpresso SDK package for SLN-TLHMI-IOT installed.

MCUXpresso IDE allows you open example projects from the source folder.

Import from Github

Note: Before you begin, make sure you have Git downloaded and installed on the
machine you intend to use.

The latest software updates for the SLN-TLHMI-IOT application can be downloaded from
our official Github repository. Here, you will find the most up-to-date version of the code
that contains the newest features available for the Smart TLHMI project.

To import the SLN-TLHMI-IOT Smart TLHMI application into MCUXpresso IDE using
Github, perform the following steps:

1. Clone the s1n tlhmi iot repository.

 Cloning directly to your MCUXpresso workspace location is recommended, but not
required.

In MCUXpresso, navigate to the File from Toolbar.

Click Open Projects from File System....

Select Directory....

Navigate to the file path of the project cloned in the first step and click Select Folder.

Check the box next to each project (bootloader, coffee machine\cm4,
coffee machine\cm7, coffee machine\lvgl vglite 1lib and elevator
\cm4, elevator\cm7, elevator\lvgl vglite 1lib) you wish toimport.

7. Click Finish

o0k wN

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
6/190

https://git-scm.com/downloads
https://github.com/NXP/mcu-smhmi

NXP Semiconductors

MCU-SMHMI-SDUG

3 Ivaldi

Smart HMI Software Development User Guide

N WUIKSpDALE - MUUARIESSO IVE
File Edit Navigate Search Project ConfigTlools Run RI
New Alt+Shift+N> |1 .
Open File... a
(. Open Projects from File System... 3
Recent Files >

Close Editor
Select &

Close All Editors

Move.

Rename. F2
&) Refresh F5
Convert Line Delimiters To >

Print... Ctrl+P [A proyect 10 workng sets Now.
Lz Import..
& Export..

Properties Alt+Enter

Switch Workspace > 7
Restart
Exit

Figure 6. Open SLN-TLHMI-IOT project

After following the above steps, confirm that the projects can be found in the Project
Explorer panel to ensure they were successfully imported.

File Edit Navigate Search Project ConfigTools Run RTOS Analysis Window Help
A~ | &~ { v m OB oAl R R R
i Project Explorer 22 i Registers ¥ Faults = Peripherals+ B8 Y
& > bootloader (in sin_bootloader) [sin_bootloader tlhmi]
&5 > Ivgl_vglite_lib_coffee_machine (in Ivgl_vglite_lib) [sin_smart_tlhmi master]
=5 Ivgl_vglite_lib_elevator (in Ivgl_vglite_lib) [sIn_smart_tIhm
£ sln_smart_tlhmi_coffee_machine_cmé4 (in cm4) <Slave> [sin_sn aster

=% > sIn_smart_tlhmi_coffee_machine_cm7 (in cm7) <Master> <Debug> [sIn_smart_tlhmi master]
5 sIn_smart_tlhmi_elevator cm4 (in cm4) <Slave> [sln_smart_tlhmi master]

&= sin_smart_tlhmi_elevator_cm7

Figure 7. Example projects

MCU-SMHMI-SDUG

3.1

3.1.1

Automated manufacturing tools

This section provides an overview of Ivaldi, prerequisites, platform configuration, and
open boot programming.

About Ivaldi

Ivaldi is a package that is responsible for manufacturing and reprogramming without J-
Link. It uses the serial downloader mode within the RT117H boot ROM to communicate
with an application called Flashloader that is programmed into RT117H. It then
communicates with a program called blhost that controls various parts of the chip and
flash. Ivaldi was created to focus on the build infrastructure of a customer’s development
and manufacturing cycle. lts primary focuses are:

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
71/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

3.1.2

3.1.3

Smart HMI Software Development User Guide

¢ Factory programming and setting up a new device/product
* Generating AWS loT Devices

» Creating certificate/key pairs for devices

» Associating policies with devices

* Signing images for OTA and HAB

» Writing and Accessing OTP fuses

The following section gives information about the general flashing of a device without
debugging tools.

Note: ITo use lvaldi, put the board in Serial Download Mode. For doing that, move
Jjumper J203 on the top of the board into position “0”. For more information, see Smart
HMI Hardware Development User Guide

Requirements

¢ Section 5.1.1 must be followed

¢ OpenSSL

AWS CLI installed

— https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

— https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-

configuration
Python 3.6.x

Linux / Windows CMD / Ubuntu for Windows
* README.md from ivaldi root folder must be followed

Platform configuration

Ivaldi uses a platform configuration file Scripts/sln platforms config/sln
tlhmi iot config/board config.py. This file describes:

* The names of the binaries (from the Image Binaries folder) which will be flashed:
— BOOTLOADER_NAME
— DEMO1_NAME
— DEMO1_NAME_RESOURCES
— DEMO2_NAME
— DEMO2_NAME_RESOURCES
¢ Flash configurations:
— FLASH_TYPE
— FLASH_START_ADDR
— FLASH_SIZE
* Flash Map
— Binaries’ images addresses
— Filesystem starting address and size
— FICA table addresses

To configure lvaldi to use specific image binaries from Image_Binaries folder, update
Scripts/sln platforms config/sln tlhmi iot config/board config.py
file.

Note: Any changesin scripts/sln platforms config/sln tlhmi iot
config/board config.py (except binaries’ names) require updating the embedded
code and configurations.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
8/190

http://www.nxp.com/mcu-smhmi
http://www.nxp.com/mcu-smhmi
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

3.1.4 Open Boot Programming

The Open Boot Programming tool is responsible for creating a device and programming
it with the correct images, certificates, and artifacts. This method is a quick and easy
way of taking a device/product from the assembly line and getting it ready to ship. It

is also good practice to run the Open Boot Programming script before enabling the
security features to ensure that all images and artifacts are in the working order. The
Open Boot Programming script must only be run when all the images and artifacts are
obtained. Before running the script, ensure that the following files and folders exist

in the “Image_Binaries” directory of Ivaldi root and that all the files mentioned in the
board config.py exist. After the script was executed, do not forget to exit the serial
downloader mode by moving back the J203 jumper.

A directory "Scripts/sin_tlhmi_iot_open_boot" within the Ivaldi package contains the
“open_prog_full.py” script and a README.

The README file contains build requirements for each image before running the script. If
the requirements are not fulfilled, it could cause the boot failure.

To program the firmware and artifacts, execute theopen prog full.py script that
performs the following actions:

e Communicate with the BootROM to program Flashloader
* Create a device with
— Certificate
— Private Key
— Policy Attached in the cloud
Erase the flash
* Generate littlefs format filesystem, that contains files specified in the
littlefs file list.py
* Programming the images
— Bootloader
— demo1
— demo1_resources
— demo2
— demo2_resources
— Program the FICA
— Program the littlefs

In the current open prog full.py python script, the littlefs is being generated to
contain all the files mentioned in 1ittlefs file list.py. Four files are expected:

* Root CA certificate

* AppA sign certificate - validated by the CA certificate and used to sign all the images
that are being written or send for update

* AWS certificate - used to validate connection with AWS server

¢ AWK public key - used to communicate with AWS MQTT server

One drawback of the current littlefs implementation is that it does not support the
attributes. It is used in the SLN_TLHMI IOT project to generate encrypted files.

Note: Open programming script assumes that the policy is called t1hmi deployment.
Update the script to use the correct policy name in the customers aws account..

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

9/190

NXP Semiconductors MCU-SMHMI-SDUG

4 Bootloader

Smart HMI Software Development User Guide

MCU-SMHMI-SDUG

41

41.1

41.2

413

Introduction

The Smart Lock project uses a "bootloader + main application" architecture to provide
additional security and update-related functionality to the main application. The
bootloader handles all boot-related tasks including, but not limited to:

¢ Launching the main application and, if necessary, initializing the peripherals
¢ Firmware updates using either the Mass Storage Device (MSD), Over-the-Air, or Over-
the-Wire update method
— Protects against update failures by using a primary and backup application "flash
bank"
* Image certification/verification

Why use a bootloader?

By separating the boot process from the main application, the main application can be
safely updated and verified without the risk of creating an irrecoverable state due to

a failed update, or running a malicious, unauthorized, and unsigned firmware binary
flashed by a bad actor. It is essential in any production application to take precautions to
ensure the integrity and stability of the firmware before, during, and after an update, and
the bootloader application is simply one measure to help provide this assurance.

The following sections describe how to use many of the bootloader's primary features to
assist developer interested in understanding, utilizing, and expanding them.

Application Banks

The bootloader file system uses dual application "banks" referred to as "Bank A" and
"Bank B" to provide a backup/redundancy "known good" application to prevent bricking
when flashing an update via either the MSD, OTA, or OTW update method. For example,
if an application update is being flashed via MSD to the Bank A application bank, even if
that update fails midway, Bank B still contains a fully operational backup.

In the SLN-TLHMI-IOT, Bank Ais at 0x30100000 while Bank B is at 0x31500000.

Providing an application binary built for the proper application bank address is crucial
during MSD, OTA, and OTW updates, and the failure will result in a failure to flash the
binary.

Note: The bootloader does not automatically recover from a botched flashing procedure
but reverts to the alternate working application flash bank instead.

Logging

The bootloader supports debug logging over UART to help diagnose and debug issues
that may arise while using or modifying the bootloader. For example, the debug logger
can be helpful when trying to understand why an application update might have failed.

Logging is enabled by default in the Debug build mode configuration. The logging
functionality, however, comes with an increase in bootloader performance and can slow
down the boot process by as much as 200 ms. As a result, it may be desirable to disable
debug logging in production applications. To disable logging to the bootloader, simply
build and run the bootloader in the Release build mode configuration. It can be done by

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
10/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

4.2

4.2.1

4.3

Smart HMI Software Development User Guide

right-clicking on the bootloader project in the Project Explorer view and navigating to
Build Configurations -> Set Active -> Release as shown in the figure below:

To make use of the debug logging feature, use a UART->USB converter to:

¢ Connect GND pin of converter to J202: Pin 8
¢ Connect TX pin of converter to J202: Pin 3
¢ Connect RX pin of converter to J202: Pin 4

Once the converter has been properly attached, connect to the board using a serial
terminal emulator, for example, PuTTY or Tera Term configured with the following serial
settings:

e Speed: 115200

e Data: 8 Bit

* Parity: None

e Stop Bits: 1 bit

e Flow Control: None

Overview

The bootloader employs several different boot-up methods to augment the boot-up
behavior. Currently, the bootloader supports two primary boot modes:

¢ Normal Mode
* Mass Storage Device (MSD) Update Mode

Normal mode, as the name would imply, is the default boot mode in which the bootloader
simply loads the main application.

Mass Storage Device Update mode is a special boot mode in which the board enters an
update state where the board appears as a mass storage device to a host PC device. In
this mode, the bootloader is capable of receiving and flashing a new binary by copying
that binary to the board as one would for a regular USB storage device.

More information on each of these modes can be found in the subsequent sections of
this document.

How is boot mode determined?

To determine the boot mode, the bootloader checks several different boot flags, which
are set based on various conditions.

For each different boot mode (excluding Normal boot, which is taken by default), there
is a different corresponding boot flag. Boot flag gets set depending on the boot mode in
question and the platform being used. On the SLN-TLHMI-IOT, for example, the MSD
boot flag is set when the sw0 button is held during bootup.

Normal boot

By default, if no other boot flags are set during the boot phase, the Normal boot mode
is used. During Normal boot, the Bootloader boots to the "main" application, which

is flashed at the current application bank flash address (for more information, see
Application Banks). For example, if the current flash bank is set to Bank A, then the
Bootloader jumps to the flash address associated with Bank A and begins running the
application at that address.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
117190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The OOBE has a set of three applications that can be booted into at startup. By default,
the application always boots in the Bank A, which corresponds to the coffee machine
application. To change the boot application, use buttons labeled sw1-sw3 when
powering the board.

The following list shows the associations of boot application to switch.

e SW1 - Bank A - coffee_machine
* SW2 - Bank B - elevator
e SW3 -Bank C - TBD

The decision to what application to jump is handled inside the bootloader. To reach the
bootloader, a soft or hard reset is needed.

For example, to boot in elevator application:

1. Unplug the board
2. Press and hold the SW2 button
3. Plug the board in.

From the Bootloader's perspective, there is no information what application it is jumping
into, because it uses addresses and not names. After an update procedure, the
application that was written in an inactive bank is overwritten, so the links between banks
and demos are not valid anymore.

4.3.1 Turn on Image Verification

In the OOBE Bootloader demo, Image Verification is disabled to encourage developers
to play with the code. If Image Verification is enabled, Normal boot checks that the image
certificate for the firmware image to run has been signed by a trusted certificate authority
to ensure that the application comes from a trusted source. Should the signature check
fail, the Bootloader does not run the application to avoid executing untrusted, potentially
malicious firmware.

For more details regarding image verification, see Image Verification.

To enable the image verification, DISABLE_IMAGE_VERIFICATION must be setto 0
inside the Preprocessors sections:

1. Within the MCUXpresso Bootloader project, right-click the root project and navigate
to Properties > C/C++ Build > Settings > Preprocessor .

2. Inside the Preprocessors section, change the MACRO
DISABLE_IMAGE_VERIFICATION to “0” and click the Apply and Close button as
described in the figure below.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

12/190

NXP Semiconductors

MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

4.3.2

4.4

4.4.1

Smart HMI Software Development User Guide

Settings ey i

Configuration: |Debug [Active | ~ | Manage Configurations...

& Tool Settings # Build steps /" Build Artifact i Binary Parsers @ Emor Parsers

~ i MCU C Compiler

3 Dialect
% Preprocessor
3 Includes

[] Preprocess only (-E)
Defined symbols (-D)

[] Do not search system directories (-nostdinc)

a8 a§e

i ptimization ~
= ENABLE_ENCRYPTION=0
& Debugging EMARLE LINSIGNED LISB MSD=1
@8 Warnings 7| Edit Dialog x
2 Miscellaneous
3 Architecture Pl Defined symbols (-D)
¥ % MCU Assembler i | DISABLE_IMAGE_VERIFICATION=(]
& General
(2 Architecture & Headers
~ & MCU Linker
& General
¢ Libraries Cancel .
@ Miscellaneous E
(2 Shared Library Settings ndefined symbols (-U) € E

& Architecture
(2 Managed Linker Script
& Multicore
~ & MCU Debugger
2 Debug
(& Miscellaneous

Restore Defaults Apply

Apply and Close Cancel

Figure 8. Enable image verification
3. After that change, rebuild the Bootloader.

4. To flash the device with proper FICA and certificates, use Automated manufacturing
tools (Ivaldi).

Disable Debug Console

In the OOBE Bootloader demo, Debug Console is enabled to help developers test
and debug their code. This feature introduces unwanted message being displayed
and increases the boot-up time. To disable this, set ENABLE_LOGGING to 0 in
FreeRTOSConfig.h

Note: The current implementation of the debug console adds about 150 ms to the boot
time.

Mass Storage Device updates (MSD)

The MSD feature allows the device to be updated using USB instead of the Segger

tool. Only the main application or its resources (coffee_machine/elevator) can be
flashed in this manner. If the bootloader must be updated, the Segger tool or the Factory
Programming flow is necessary. The MSD feature, by default, bypasses the signature
verification to simplify the development flow, since signing images can be unsuitable for
quick debugging and validation.

Enabling MSD mode

To enable MSD mode on the SLN-TLHMI-IOT, press and hold the SWO0 button while
powering on the board. If done correctly, the board's onboard LED changes to purple and
begins blinking at an interval of roughly 1 second.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
13/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

4.4.2

44.21

4.4.2.2

Smart HMI Software Development User Guide

Note: As mentioned in the Smart HMI Getting Started Guide, to properly use 'SWO0" as a
general-purpose switch the "SW8" dip switch must be set as 0001.

Additionally, if connected to a Windows PC, your computer must make a sound indicating
a new USB device has been connected. After observing the LED blinking behavior,
navigate to “My Computer”, and confirm that the SLN-TLHMI-IOT kit has mounted as a
Mass Storage Device as shown in the picture below.

- OsDisk (C:) USE Drive (D:)

[=

o N

Wy 755 GB free of 952 GB Ny 19.9 MB free of 199 MB

Figure 9. Bootloader MSD file explorer

The size of the new storage device is equal to the Bank Size of the device from which
you subtract the file system metadata.

Flashing a new binary

The binary size increases exponentially when adding the GUI resources. Almost 70 % of
the total size is occupied by these sounds and images. To speed up the development and
to decrease the load on the updating mechanism, the large images have been split into
code and resources, both with fixed addresses in the flash. Update operations can be
done on individual components, or all together into a bundle.

Right now the MSD can be used to update:

* Main Application
* Resources
* Bundle update (Main Application + Resources)

Main application

To update the main application, a binary must be built for the address 0x30100000.
Because of the remap functionality enabled in the bootloader, this binary can be placed

in each of the three banks, and still work as it is running from the base address. The
bootloader checks for the current unused bank and tries to write the image in that specific
bank. When dragging and dropping a binary for the main application, the bootloader
checks if the reset handler of the new image is a flash address. No other verification is
done; the functionality's correctness must be handled by the developer. After the new
image has been written, a resource copy is done. This means that during the update
procedure, the resources will stay the same.

Resources

When updating the resources, the binary needs to be renamed into RES.bin. The
Bootloader contains a list of known files, res.bin is one of those files. No verification is
done on the resources binary.

In the same way as updating the main application, the bootloader checks for active bank
and writes the binary in the unused one. After the write is completed, the older firmware
is copied, and the new bank is activated.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
14 /190

http://www.nxp.com/mcu-smhmi

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

BANK A BANK B

2. Copy the current firmware in Bank B

»

Firmware

3. Make Bank B the current active bank

»

Clearly established Resources start
address in the bank.

1. Write the new resources to Bank B

v

Filesystem

Figure 10. Update resources

4.4.2.3 Bundle

To update using the bundle method, a python script is used to generate the bundle. The
script is part of the ivaldi suite of scripts that are delivered to the customer. The script is
called bundle generate tlhmi.py. When calling it, two parameters must be set,
both being the locations for two important files:

* bundle configuration file (-bf) - contains a list of files that are going to be fused to
generate the bundle.
* board configuration file (-cf) - position of the files in flash to build the metadata.

In the released version of ivaldi, both bundle config and board config are placed under
the platform config folder. A full linux bash command to call this script looks like:

python bundle generate tlhmi.py -bf ../../../Scripts/
sln platforms config/sln tlhmi iot config/ -cf ../../../
Scripts/sln platforms config/sln tlhmi iot config/

After this, in the Scripts\ota signing\sign\output folder, four files are present.

«] bundle.bin 6/20/2022 11:38 PM BIN File 18,671 KB
«] bundle.bin.sha256 6/20/2022 11:38 PM SHA256 File 1KB
bundle.bin.sha256.txt 6/20/2022 11:38 PM Text Document 1KB
< bundle.bundle.bin 6/20/2022 11:38 PM BIN File 18,673 KB

Figure 11. Update bundle_generate script

For MSD only bundle.bin is of interest, the other three are relevant for Over-
The-Air (OTA) updates, where validation is an important feature. To update with the

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. Al rights reserved.

User guide

Rev. 0 — 25 October 2022
15/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

bundle.bin, drag and drop the binary. The name must not be modified, as this name is
part of a hardcoded list of known files.

BANK A BANK B BANK B

2. Parse the
metadata, write
Firmware and
Resources at their

Firmware designated
addresses
. >
1. Write the
new bundle
in Bank B

Clearly established
Resources start
address in the
bank.

3. Make Bank B the
current active bank

_ >

Filesystem

Figure 12. Update bundle

For the bootloader to parse and write all the modules to their designated addresses,
metadata must be added to the package. Two types of metadata exist:

¢ Bundle metadata is placed at the end of the bundle and contains:
— Bundle size
— Number of modules
— Signature of the whole bundle
¢ Module metadata is placed after every module and contains:
— Module type (Application or Resources)
— Module starting address
— Module length
— Module signature

Upon completion, the board automatically reboots itself into the new firmware, which was
flashed. . To verify this, open the serial CLI, type typing the version command, and
check that the application is running from the alternate flash bank.

4.5 Image Verification

Image Verification is a mechanism in which we validate that the image running has not
been altered either by internal or external factors.

4.5.1 Application chain of trust

The basis of the security architecture implemented in the SLN-TLHMI-IOT has signed
application images. Signing requires the use of a Certificate Authority (CA). NXP has its

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. Al rights reserved.

User guide Rev. 0 — 25 October 2022

16/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

4.5.2

4.6

Smart HMI Software Development User Guide

own CA for signing applications at the factory, but the CA is not something that is shared
with customers.

The CA is used to create signing entities for applications as shown in the figure below. A
certificate from the CA is stored in the SLN-TLHMI-IOT’s filesystem and is used to verify
the signatures of the signing entity certificates. In addition, locally stored certificates from
the signing entities are used to verify the signature of firmware images coming in Over-
the-Air (OTA) updates.

NXP Production
CA

Bootloader Flash Bank A
Signing Entity Signing Entity

Flash Bank B

Signing Entity

Signing entities

Figure 13. Chain of trust

Flash Image Configuration Area (FICA) and Image Verification

The FICA table is a section inside the filesystem that is responsible for describing the
images that will be booted. It contains information about the image and signatures of
the applications that will be used to ensure that only verified firmware is executed. This
ensures malicious images cannot be executed without it being sighed with the certificate
authority and certificate that is programmed into the filesystem. Before any image is
jumped to, it is first verified using the signature from its associated FICA entry.

* The bootloader uses the AppA FICA entry to validate the AppA image
* The bootloader uses the AppB FICA entry to validate the AppB image

Note: As mentioned when describing the application banks, ‘Bank C" is not used for
redundancy in the update mechanism, as such, it has no entry into the FICA table. The
purpose of the bank is only to showcase all 3 applications without the need of reflashing
the board.

Developers can turn on the image verification and reprogram the bootloader as shown in
the Turning on image verification section. To decrease the risks of an attack, have Image
Verification on.

Application banks

For this project, we enabled three application flash banks, Bank A, Bank B, and Bank
C. It is done to showcase in our OOBE all projects (coffee machine, elevator)
simultaneously.

In a real-life scenario, only 2 banks are needed. In the updating mechanism that has
been implemented, we use 2 banks by doing a ping-pong between Bank A and Bank B.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
1771190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

4.6.1

4.6.2

4.6.3

Smart HMI Software Development User Guide

The SLN-TLHMI-IOT utilizes a series of dual "application flash banks" used as a
redundancy mechanism when updating the firmware via one of the bootloader's update
mechanisms (see Section 4.4) or via the AWS OTA mechanism.

Banks

The application we developed for SLN-TLHMI has 2 inter-dependent parts:

* Application (code)
¢ Resources (icons, sounds, pictures)

So a bank is a reserved space in the flash that stores both of these components. The
application running tries to read resources from the same bank.

In the OOBE, the size of a bank is 20 MB (0x1400000), 6 MB (0x600000) for the code
area and 14 MB (0xE00000) for resources. If there is a need to increase or decrease this
value, check fica definitions.h

Code

6MB

Figure 14. Bank components

Addresses

The flash address for each of the application flash banks is as follows:

e Bank A-0x30100000

—Bank A App - 0x30100000

— Bank A resources - 0x30700000
e Bank B-0x31500000

— Bank B App - 031500000

— Bank B resources - 0x31B00000
e Bank C - 0x32900000

—Bank C App - 0x32900000

— Bank C resources - 0x32F00000

Remapping

The i.MXRT117H chip supports the flash remapping function, which allows users to
remap flash address to the FlexSPI interface. The flash remapping function is beneficial
in the following use-cases:

* To flash multiple firmware.
¢ To switch one of the firmware to run when the condition is met.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
18 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

4.6.3.1

Smart HMI Software Development User Guide

* To update the firmware in the wireless application (the usual process is to download the
firmware to flash, perform the validity check, and then switch to new firmware to run.
The flash remapping function helps to directly run the firmware wherever it locates to
XIP flash.)

For more information, check: How to Use Flash Remapping Function

In older Solution's projects like SLN-VIZN3D-IOT and SLN-VIZNAS-IOT, the images
were built for a specific bank. With the enablement of the remapping functionality, all
applications must be built having the Flash Starting Address set to 0x30100000.

The updating mechanisms implemented in the bootloader or the main application
leverage this feature. Because of this, the updating procedure does not have to keep
track of what bank the application is running from. The binary that is going to be used for
an update, is always going to be built with the Bank A memory settings and is going to
be placed in the non-active slot.

Note: The OOBE is meant to showcase all 3 applications. After an update procedure,
the application that was written in a non-active bank is going to be overwritten.

Convert .axf to .bin

When building a project in MCUXpresso IDE, the default behavior is to create an .axf
file. However, some of the bootloader update mechanisms including MSD updates
require the use of a .bin file.

Converting an . axf file to .bin can be done in MCUXpresso without any additional
setup.

To perform this conversion, navigate to the project directory that contains your compiled
project binary and right-click the . axf file in that directory.

Note: The binary for your project is located in either the **Debug** or **Release** folder
depending on your current build config.

In the context menu, select Binary Utilities->Create binary.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
19/190

https://www.nxp.com/docs/en/application-note/AN12255.pdf
https://www.nxp.com/design/designs/nxp-edgeready-mcu-based-solution-for-3d-face-recognition:VIZN3D
https://www.nxp.com/design/designs/nxp-edgeready-mcu-based-solution-for-face-recognition-with-liveness-detection:SLN-VIZNAS-IOT

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

v [=Debug

(= board

’ New >

> L_ component

» (= device Open

> (= drivers

> [=freertos Show In >

> [=HAL Open With >

> [z littlefs Show in Local Terminal >

? [=source

> [=startup = Copy

» [ui_resources

» [=usb

> (= utilities & Delete

> (= video Move...

> Bxp _ Rename...

> sin_vizn3d_jot_smart_lock.axf - [arm/|
ixg Import
w7y Export
Build Project

Refresh

© Run As >
%5 Debug As >
Profile As >
Profiling Tools >
Utilities >
Binary Utilities 2 Create hex
Tools > Create binary
~| Validate Create S-Record
%" Run C/C++ Code Analysis Disassemble
Team > ELF Information
Compare With b3 Size
Replace With 5
Properties

Figure 15. Convert to binary

Verify that the binary has been successfully created.

5 Over the air update

MCU-SMHMI-SDUG

5.1 OTA (Over-the-Air) updates

The following section gives instructions on how to generate, sign, deploy, and update the
firmware. It also describes all the tools provided with this solution to give context to what
is happening. This section assumes that the SLN-TLHMI-TOT kit has been migrated

to communicate with a non-NXP AWS loT Cloud server and the reader has access

with the correct permissions. OTA (Over-the-Air) updates are the process of pushing
new firmware from a remote service down to a connected device. When it happens, the
device programs the new image into the flash and reboots into that image assuming all
necessary checks have passed. As shown in the architecture section of this document,
there are two application partitions. The application is always going to run into one of
these sections. It means that the second section is free to write into without affecting the
existing image. It also ensures that the device is safe to jump into the new image without
worrying about being compromised assuming the relevant checks have been made.

The SLN-TLHMI-IOT Kit leverages the Amazon OTA service within AWS |oT. This also

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
20/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

5.1.1

51.1.1

Smart HMI Software Development User Guide

leverages the Amazon FreeRTOS OTA client to check for updates and download the

image.
Create and AWS Store OTA
sign application | create aws Joo j_)) Update Availablel | image to flash

|

Yy

Authenticate Verify image in ‘Update blank
.) pointer and jump to
signed image 0K flash
L new app
Fail
Abandon OTA
revert to
existing app

Figure 16. OTA high-level architecture

Migration guide

This section provides the steps to migrate the SLN-TLHMI-IOT kit to a developer's/
organization's own fully controlled AWS account. If the SLN-TLHMI-IOT kit is left
connected to the default server, it is managed by NXP and restricts the developer’s
access and control of certain features. The unavailable features are described in the
SLN-TLHMI-IOT-DG.

The advantages of doing migrating are:

 Full control of OTA jobs and deployment
¢ Customization of firmware/cloud control

To fully use the aws environment, create an AWS Account.

To communicate with AWS, the device must provide certain artifacts and securely
connect to AWS IloT. If the artifacts are provided on the cloud, the device cannot connect
successfully. For steps to create an Amazon “Thing”, see https://docs.aws.amazon.com/
iot/latest/developerguide/create-iot-resources.html The communication between the
device and the AWS loT cloud is secured based on the private key and on the device
certificates created together with the Amazon “Thing”.

Note: These steps are not required, as our manufacturing tool scripts (Ivaldi) do all the
necessary setups, including “Thing” creation. For more details on lvaldi, see Automated
manufacturing tools.

RT117H firmware changes

This section provides an overview of steps to make the necessary source code changes
to ensure that the firmware communicates with the correct AWS Account.

As prerequisites:

¢ an AWS Account is created.

¢ the Get Started with MCUXpresso Tool suite and Building and Programming sections in
the MCU-SMHMI-SDUG guide are read.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
21/190

https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html
https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* the projects are in your workspace and you are ready to make code changes

The change is required only in the coffee machine application. The changes are a must
to ensure that the device connects to the correct AWS Endpoint for OTA.

To get started:

1. Follow the IoT Console Sign-in online resource to log in to the desired account.

2. Navigate to the AWS loT Core service which opens the console.

3. Within the AWS loT Console, select the Settings button down toward the bottom left
section of the page as shown in Figure 17 below.

Manage

» All devices

p Greengrass devices

» Remote actions

» Message Routing
Retained messages

P Security

» Fleet Hub

Device Software
Billing groups
Settings

Learn

Feature spotlight

Documentation [}

Figure 17. AWS loT monitor console
Warning:
Ensure that the correct server location for the device that was created is used. If the
wrong server is used, it causes a connection issue.

4. It opens the Settings page that has controls for logging and events. At the top of
the page, there are Endpoint Settings. Copy the endpoint string, which has the
following structure "id".iot."server".amazon.comn.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
22/190

https://docs.aws.amazon.com/iot/latest/developerguide/setting-up.html

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

5.1.1.2

Smart HMI Software Development User Guide

SettingS Info

Device data endpoint info C

Your devices can use your account's device data endpoint to connect to AWS.

Each of your things has a REST API available at this endpoint. MQTT clients and AWS loT Device SDKs [4 also use this
endpoint.

Endpoint

Figure 18. AWS Custom endpoint URL

5. The endpoint is obtained and must be inserted into the firmware. Within the
bootloader application, navigate to the source > aws_clientcredential.h
file. Within the aws_clientcredential.h file, locate the array called
clientcredentialMQTT BROKER_ENDPOINT and change the existing contents to
the endpoint obtained from AWS loT Endpoint Settings.

[

~ 8 source 34 %/
Gy event_handlers 35 #include "aws_clientcredential_keys.h"
@ filesystem 36
2 flash_config 37e /%
{5 app_configc 38 * MQTT Broker endpoint.
& app_configh 39 %/

[, aws_application_versiont

l49 static const char clientcredentialMQTT_BROKER_ENDPOINT[] = "<insert endpoint her‘e)";|
41

[} aws_clientcredential.h

Figure 19. AWS broker endpoint update in aws_clientcredential.h for coffee_machine

lvaldi guide

The following section describes the steps to set up the Ivaldi environment. This
chapter assumes that the client has already downloaded and unzipped the
Ivaldi sln tlhmi iot.zip package. For additional details, check Section 3.1.

Perform the following steps to configure the lvaldi environment.

Note: These steps must be executed only once. Ensure that none of the commands
return errors. For additional details, check the Ivaldi sln tlhmi iot/README.md
and Ivaldi sln tlhmi iot/Scripts/ota signing/README.md files. The Ivaldi
tool was tested on the below Operating Systems and the corresponding Command-Line
Interfaces:

e Linux — Bash CLI

e Windows — WSL (Windows Subsystem for Linux)
e CLI

* Windows — CMD (Command Prompt) CLI

1. Install the following tools.
* OpenSSL # to check if installed: openssl version
e AWS CLI # to check if installed: aws --version
— Must be configured according to your account # to configure: aws configure
— https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
— https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
23/190

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* Python 3.6.x

. Set up the environment and install the requirements. Open a CLI (from the list

mentioned above) and run the below commands.

* cd Ivaldi sln tlhmi iot/

* pip install virtualenv # installs the virtual environment tool

* virtualenv env # generates a new virtual environment

* source env/bin/activate # activates the virtual environment (on Linux or
WSL)

* env\Scripts\activate # activates the virtual environment (on CMD)

* (env) pip install -r requirements.txt # installs the python
dependencies

* (env) python setup.py install # setups the environment.

. Generate the certificates. Adjust the below command’s parameters according to your

needs (replace: [code], [country], [state], [org]) and run it within the same terminal

opened in the previous step. The script below asks for the password several times,

each time provide the same password. As a result, the Ivaldi sln tlhmi iot/

Scripts/ ota_signing/ca/ folder containing all the required certificates is

created.

* cd Scripts/ota_signing/

* (env) python generate signing artifacts.py prod [code]
[country] [state] [org]

Example: (env) python generate signing artifacts.py prod FR France

Normandy NXP

. Add the previously generated certificates in the filesystem that is going to be

deployed on the board. To do that, add the path for the file in Scripts/sln
platforms config/sln tlhmi iot config/littlefs file list.py

. Add the password provided in Step 3 to the ivaldi scripts. This approach of providing

the password is not recommended due to security reasons, but may be used for a

quick test of the setup.

* Openthe Scripts/ota signing/sign/sign me.py file and add the
password on line 49 (example: PKEY_PASS = 'my_password').

* Openthe Scripts/ota signing/sign/bundle generate tlhmi.py file
and add the password on line 139 (PKEY_PASS ='my_password').

. Test the environment by flashing an open boot device. Connect the device to the PC

via USB. Make sure you have all the required demos inside the Image Binaries folder
and that the serial mode jumper is properly set. Within the same terminal as before,
run the below commands.

* (env) cd ../sln tlhmi iot open boot/

* (env) python open prog full.py

5.1.2 Preparing an OTA image

This section describes the steps to create a binary to update the demo app. When
building an OTA image, make sure to properly sign the image that will be sent. Image
authentication is a key factor in the AWS high-level architecture. As the SLN-TLHMI-
IOT kit is built to communicate with an NXP demonstration AWS loT account, OTA

is managed by NXP. For OTA to be managed by the developer, the Migration Guide
must be executed to provide access to an AWS loT Core implementation for OTA
management. Without this process, OTA is not manageable for the developer. Before
starting, check the Ivaldi tool

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
24/190

NXP Semiconductors MCU-SMHMI-SDUG

51.3

514

5.1.4.1

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Building image

As mentioned before in Section 4.4 , the current bootloader enables the remapping
feature that helps customers easily deploy new images, without keeping track of

the currently active bank. All bootable images must be built with Flash address at
0x30100000. The current implementation supports update with the same image
version or an older version. Best practices dictate that the version must be always
higher. To re-enable this functionality set otaconfigAllowDowngrade to O inside the
ota config.hfile.

Sign Image

The following section describes what the NXP Application Image Signing Tool (Signing
Tool) is and how to use it. The Signing Tool is a python application that is responsible for
using a signed Certificate Signing Request (CSR) to sign the binaries and append the
certificate to the binary ready to be deployed to the AWS loT OTA service. The Signing
Tool requires Python3 to run. The following instructions assume that the README file

in the lvaldi root directory has been followed to set up the Python virtual environment.

If this is not done, the scripts fail. Navigate to the Scripts/ota signing directory
inside Ivaldi. For more details, check the “QUICK SETUP” section from the Scripts/
ota signing/README.md file.

Creating a root, intermediate pair with sign server, and certificates

A tool was created to generate all the artifacts needed for OTA signing. This

tool is called generate signing artifacts.py and was derived from

publicly available information for generating CA certificate artifacts. The

generate signing artifacts.py takes 5 parameters that are all used to create
the artifacts. The ca_name is the entity where all the file names are labeled and used as
the common name. It asks you to enter a “pass phrase” and enter the same each time.
Once generate signing artifacts.py succeeds, a “ca” folder inside Scripts/
ota_ signing appears. Inside the “ca” folder you can find: “certs” and “private” folders.

Inside the “certs” folder there are 3 files:

* “<ca name>.app.a.crt.pem”
* “<ca name>.app.b.crt.pem”
¢ “<ca name>.root.ca.crt.pem”.

Inside the “private” folder there are 3 files:

¢ “<ca name>.app.a.key.pem”
* “<ca name>.app.b.key.pem”
* “<ca name>.root.ca.key.pem”

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
25/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

(env) U fota_signing$ python3 generate_signing artifacts.py
Usage:
generate_signing artifacts.py ca_name country code country_name state organization
ca_name: Name of CA for image signature chain of trust
country code: GB/US
country_name: CA Country Name
state: CA Country State
organization: CA Company Organization
(env) User@TLHMI :/ivaldi/Scripts/ota_signing$ python3 generate_signing artifacts.py ca_cert US Texas Austin NXP

Creating directories...

Creating directories...

[‘mkdir’, “certs’, ‘crl’, ‘newcerts’, ‘private’, ‘csr’]
SUCCESS: Successfully prepared the directories

chmod directories...

[‘chmod’', "7@@°', 'private’]

SUCCESS: Successfully prepared the directories

creating index file...

["touch’, ‘index.txt', "serial’', 'crlnumber', "index.txt.attr']
SUCCESS: Successfully prepared the directories

Creating Serial File...

Modifying contents for local path...

SUCCESS: openssl.cnf copied.

Creating Root Key...

Enter pass phrase for private/ca_cert.root.ca.key.pem:
verifying - Enter pass phrase for private/ca_cert.root.ca.key.pem:
SUCCESS: Created Root Key

Changing Root Key Permissions...

SUCCESS: Changed Root Key Permissions

Creating Root Certificate...

Enter pass phrase for private/ca_cert.root.ca.key.pem:

SUCCESS: Created Root Certificate

Changing certificate permissions...

SUCCESS: Changed certificate permissions

Creating Private Key...

Enter pass phrase for private/ca_cert.app.a.key.pem:

Verifying - Enter pass phrase for private/ca_cert.app.a.key.pem:
SUCCESS: Created private key

Changing Key Permissions..

SUCCESS: Changing Key Permissions

Creating Certificate..

Enter pass phrase for private/ca_cert.app.a.key.pem:

SUCCESS: Creating Certificate

Sign the CSR..

Enter pass phrase for /mnt/c/ivaldi/Scripts/ota_signing/ca/private/ca_cert.root.ca.key.pem:
SUCCESS: Signed the CSR

Modifying certificate permissions...

SUCCESS: Modifed the certificate permissions

Creating Private Key...

Enter pass phrase for private/ca_cert.app.b.key.pem:

Verifying - Enter pass phrase for private/ca_cert.app.b.key.pem:
SUCCESS: Created private key

Changing Key Permissions..

SUCCESS: Changing Key Permissions

Creating Certificate..

Enter pass phrase for private/ca_cert.app.b.key.pem:

SUCCESS: Creating Certificate

Sign the CSR..

Enter pass phrase for /mnt/c/ivaldi/Scripts/ota_signing/ca/private/ca_cert.root.ca.key.pem:
SUCCESS: Signed the CSR

Modifying certificate permissions...

Figure 20. generate_signing_artifacts.py description, usage, and logs

The script has been run from the Windows Linux subsystem, but it can be run from any
terminal.

The Ivaldi tools should have access to the password used in the previous step for
running the generate signing artifacts.py script. To achieve this, two files must
be modified:

* Openthe Scripts/ota signing/sign/sign_me.py file and add the password on
line 49 (example: PKEY_PASS ='my_password').

* Openthe Scripts/ota signing/sign/bundle generate tlhmi.py file and
add the password on line 139 (PKEY_PASS ='my_password').

Note: This approach of providing the password is not recommended due to security
reasons, but may be used for a quick test of the setup.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
26 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

5.1.4.2

5.1.5

Smart HMI Software Development User Guide

Navigate into the Scripts/ota signing/sign folder and run the sign me.py

tool with the name of the binary to sign (for example ais ffs demo binary) and the
certificate name (for example, the prod. app. a that we have generated in the previous
step) for the entity.

Formatting the CA and the application certificate

For the device to be able to verify the image signature, it must have the
root CA certificate. (ca/certs/<cert_name>.root.ca.crt.pem)and
the application certificate derived from the signing entity (ca/ certs/
<cert_name>.app.a.crt. pem) .

The certificates do not have a specific address at which to be written, both need to
be included in the filesystem. The obtained filesystem is going to be transformed into
binary format and loaded with the rest of the images. It is done when running the
open_prog full.py script. Generate all the needed certificates before running the
script.

OTA Workflow with AWS loT Console

On the device side, if the filesystem has been properly loaded and the board is
connected to a WiFi network, the application creates a secure MQTT connection with the
AWS cloud. MQTT connection is used to receive push update requests from the AWS
cloud.

To use Amazon OTA, configure various roles to allow AWS loT access to the S3 Bucket
(this is the server that holds your images). The following link was used by NXP to
configure their OTA service:https://docs.aws.amazon.com/freertos/latest/userguide/ota-

preregs.html
To create an OTA Job, follow these steps:

1. Navigate to the following link: https://docs.aws.amazon.com/freertos/latest/userguide/
ota-console-workflow.html. Focus on the area named “Use my custom-signed
firmware image” as this is the process that focuses on custom-signed image creation.
No other way of deploying images is currently supported. Click the Create job button
inside the AWS loT > Jobs tab.

2. A new window appears. Inside this window, select Create FreeRTOS OTA update job
as shown in Figure 21:

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
27 /190

https://docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-console-workflow.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-console-workflow.html

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

AWS laT lobs Create job

Create job .

Jobs define remote operations to send to and run on devices that are connected to AWS loT. Create a custom job, a FreeRTOS
over-the-air (OTA) update job, or a Greengrass Core update job.

Job type

Create custom job

fil f SIk T t S loT
© Create FreeRTOS OTA update job
Send a request to acquire an executable job file from one of your 53 buckets to one or mone devices connected to AWS loT
Create Greengrass V1 Core update job
Create a snapshot job to update one or mone Greengrass Cone devioes with the latest Greengrass Core or OTA agent version

Figure 21. Create OTA job — Job types

3. The OTA Job Properties window appears. Provide a job name as shown Figure 22:

OTA job properties i

Job properties
Job name

OTA_Update_Bank_B

Enter a que name without spaces. Valid characters: a-z, A-Z, 0-9, - (hyphen), and _ (underscare)

Description - optional

> Tags - optional

Figure 22. Create OTA job — Job name

4. The OTA File Configuration window appears. Specify the serial numbers of the
devices to be updated. Select the MQTT option as the protocol for file transfer as
shown in Figure 23 :

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
28 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

OTA file configuration .

Devices info

This OTA update job will send your file urely over MQTT or HTTP to the FreeRTO5-based things and/or the th roups that you choo:

Devices to update

2c0209d265f82949 X

Select the protocol for file transfer
elect t t that your device support

MQTT
HTTP

Figure 23. Create OTA job — Devices to update and protocol for file transfer
5. Select the image that is going to be delivered to the remote device. To
do this, select Use my custom signed file and copy in the Signature
textbox the content that has been obtained as the output of the Signing Tool
(sln demo new img.bin.sha256.txt). The following fields must be properly
set:
* Original hash algorithm - SHA-256
* Original encryption algorithm - RSaA
» Path name of code signing certificate on device - app a sign cert.dat (check
littlefs_file_list.py for the name of the file)

Check the images below for more information.

If a new image is going to be loaded, check Upload a new file, click Choose file and
select the image. S3 storage address must be specified in the "s3 URL" field. If the
loaded binary image already exists in the location, the user can select the checkbox
corresponding to Select an existing file and use the existing image.

The binary size increases exponentially when adding the GUI resources. Almost 70 %
of the total size is occupied by those. To speed up the development and to decrease the
load on the updating mechanism, the image has been split into code and resources,
both with the fixed address in the flash. Update operation can be done on components,
or all together into a bundle. Right now the OTA can be used to update:

* Main Application
* Resources
¢ Bundle update (Main App + Resources)

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

29/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Sign and choose your file
Code signing ensures that devices only run code published by trusted authors and that the code hasn't
been changed or corrupted since it was signed. You have three options for code signing.

Sign a new file for Choose a O Use my custom
me. previously signed signed file.
file.

Code signing information

Enter information about your file and how it was signed so that your devices can verify its authenticity
before they install it.
Signature

EnArrAO4142cmH0ObkSKy1dJTYBdncSAbRgMNPVeljLsutdgbG2ZNOOUeGg3GhWkRSy
msSCMFZPedFeFGRYK1d2TuoZn3UBeS3fYj9wLxpD 1FiDAaN]Y2cPixcOwOEkO+2318i
apLdQGxO47XLEWUvEBICQVGreifRTE/mEUWwpmguEBX4fF +xLigX3pg+InNPuZl

Original hash algorithm

Choose the hash algorithm that was used to create your file signature.

SHA-256 v
Original encryption algorithm
Choose the encryption algorithm that was used to create your file signature.

RSA v
Path name of code signing certificate on device

app_a_sign_cert.dat

File

‘ © Upload a new file. Select an existing file.

File to upload

[Choose file

File upload location in 53

This is the location in 53 where your file will be stored.

53 URL

Q, s3://nxp-ais X View [A | ‘ Browse 53 H Create 53 bucket

Format: s3://bucket/prefix/object.

Path name of file on device
This is the name and location where the file will be stored on the FreeRTOS device.

Bundle / AppA / Resources

Figure 24. Create OTA job - File info

Until now the configuration for the update was the same. The difference, as was for the
MSD, is in the name of the file that must be updated in the Path name of the file on the
device. The files should be completed with:

* AppA , when updating the main application
* Resources, when updating only resources
* Bundle, update both at the same time

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
30/190

NXP Semiconductors MCU-SMHMI-SDUG

5.1.5.1

Smart HMI Software Development User Guide

Update main application

Because of the remap functionality enabled in the bootloader, this binary can be placed

in each of the three banks and still work as it is running from the base address. When
receiving an OTA request, the OTA_Agent checks for the unused bank. The empty bank
is erased to prepare it for the update. All the erase is done before starting to receive
actual data. It is a measure to work around the not-in-order MQTT packets' arrival. After
the new image has been written, verification is done to check the signature. Using the
Signature field and Path name of the code signing certificate on device field, the
main application can start validating the new image. If everything is right, a resource copy
is done, and the empty bank is set as an active bank. It means that during the update
procedure the resources stay the same.

BANK A BANK B

1. Write the new firmware in Bank B

v

Firmware

3. Make Bank B the current active bank

»

Clearly established Resources start
address in the bank.

i Free memory i

2. Copy the current resources to Bank B

»

Filesystem

Figure 25. Update main application

5.1.5.2 Update resources

MCU-SMHMI-SDUG

Similarly to updating the main application, the OTA_Agent on request checks for active
bank and writes the binary in the opposite one. A complete erase is done beforehand.
After the write is completed, the older firmware is copied, and the new bank is activated.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. Al rights reserved.

User guide

Rev. 0 — 25 October 2022
31/190

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

BANK A

Firmware

i Free memory i

BANK B

2. Copy the current firmware in Bank B

»

3. Make Bank B the current active bank

»

Clearly established Resources start
address in the bank.

1. Write the new resources to Bank B

Figure 26. Update resources

v

Filesystem

5.1.5.3 Update with Bundle

To update with a bundle, a python script is used to generate the bundle. The script is
part of the ivaldi suites of scripts that are delivered to the customer. The script is called
bundle generate tlhmi.py. When calling it, two parameters must be set, both
being the location of two important files:

* bundle configuration file (-bf) - contains a list of files that are going to be fused to

generate the bundle

* board configuration file (-cf) - position of the files in flash to build the metadata.

After running the script, there is no need to pass the binary through the singing process
as this script generates a signature used by the device to validate the new image.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. Al rights reserved.

User guide

Rev. 0 — 25 October 2022

32/190

NXP Semiconductors MCU-SMHMI-SDUG

6 Framework

Smart HMI Software Development User Guide

BANK A BANK B BANK B

2. Parse the
metadata, write
Firmware and
Resources at their

Firmware designated
addresses
. >
1. Write the
new bundle
in Bank B
R

Clearly established
Resources start
address in the
bank.

3. Make Bank B the
current active bank

—_—>

Filesystem

Figure 27. Update bundle

The current firmware sets all the images in the right positions based on the metadata.
After the parsing of the bundle is complete and all images are placed accordingly to the
fica definitions.h file, the new bank is activated.

After completion, the application reboots in self-test mode. For now, nothing is done in
self-test mode except checking for the version of the new application. Reboot to make
sure self-test mode is not used.

6.1

MCU-SMHMI-SDUG

Framework introduction

This section describes the architectural design of the framework. The application is
primarily designed around the use of a "framework" architecture that is composed of
several different parts.

The constituent parts include:

* Device Managers
e Hardware Abstraction Layer (HAL) Devices
* Messages/Events

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. Al rights reserved.

User guide

Rev. 0 — 25 October 2022
33/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.1.1

6.1.2

6.2

Smart HMI Software Development User Guide

[ul][Algorithm Callbacks][Feature database][Customerspeciﬁcservices] Application

" Camera | Display Algorithm nput Output . Framework
Manager Manager Manager Manager Manager
g N ' ™\ [~ N ' N F =
ap gy, ab) Qo)
b @D QD @D)

Low level driver] [Low level driver] [Low level driver] [I.ow!evel driver] [Low level driver] Low Level Driver

Software [(csl) (MIPI C512) (5P1) (GPIO) (usB)

Hardware
RGB Camera IR Camera 3D Camera LCD GPIO Button UART
\ T

Figure 28. Architecture Diagram

Each of these different components is discussed in detail in the following sections.

Design goals

The architectural design of the framework was centered around 3 primary goals:

1. Ease-of-use
2. Flexibility/Portability
3. Performance

In the course of project development, many problems can arise which hinder the speed
of that development. The framework architecture was designed to help combat those
problems.

The framework is designed with the goal of speeding up the time to market for vision
and other machine-learning applications. To ensure a speedy time to market, it is critical
that the software itself is easy to understand and modify. Keeping this goal in mind, the
architecture of the framework is easy to modify without being restrictive, and without
coming at the cost of performance.

Relevant files

The files which pertain to the framework architecture can primarily be found in the
framework/ folder of the specific application. Because the application is designed
around the use of the framework architecture, it is likely that the bulk of a developer's
efforts will be focused on the contents of these folders.

Naming conventions

The framework code adheres to a set of naming conventions for making the code easily
readable and searchable using modern code completion tools.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
34/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.2.1

Smart HMI Software Development User Guide

Note: The naming conventions described below apply *only* to framework-related code
that is primarily located in the framework folder and source folder of the application.
Functions

Functions names follow the format of {APP/FWK/HAL} {DevType} {DevName}
{Action}.

For example:

hal input status t HAL InputDev PushButtons Start (const
input dev t *dev);

To increase searchability using code completion tools, functions for each framework
component have their own prefix denoting the component they relate to:

* APP - app-specific function. Usually device registration or event handler-related.
* FWK - framework-specific function. Usually framework API function.
¢ HAL - HAL-specific function. Usually HAL device operators.

Additionally, an underscore may be placed in front of a function name to indicate that
the function is static/private.

Note: Static functions oftentimes exclude all but the underscore and the “Action” as the
component, devType, and devName are implicit.

For example:

static shell status t VersionCommand(shell handle t
shellContextHandle, int32 t argc, char **argv);
static shell status t ResetCommand(shell handle t
shellContextHandle, int32 t argc, char **argv);
static shell status t SaveCommand(shell handle t
shellContextHandle, int32 t argc, char **argv);
static shell status t AddCommand(shell handle t
shellContextHandle, int32 t argc, char **argv);
static shell status t DelCommand(shell handle t
shellContextHandle, int32 t argc, char **argv);

One of the above prefixes is the device type of the device defining the function.

* InputDev

* OQutputbDev
* CameraDev
* DisplayDev
* and so forth.

As the device type is the name of the device, the name must match the name of the
device specified in the filename.

For example:

hal input status_ t HAL InputDev PushButtons Start (const
input dev t *dev);

The name of the device is the "action" performed on/by the device. It could be anything
including start, Stop, Register, and so on.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
35/190

NXP Semiconductors

MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Below are several examples of different function names:

void APP InputDev Shell RegisterShellCommands (shell handle t

shellContextHandle,
input dev t
*shellDev,

input dev callback t callback)
{

s_InputCallback = callback;

S_SourceShell = shellDev;

s_ShellHandle = shellContextHandle;

s FrameworkRequest.respond = FrameworkEventsHandler;

SHELL RegisterCommand (shellContextHandle,
SHELL COMMAND (version)) ;

SHELL RegisterCommand (shellContextHandle,
SHELL COMMAND (reset)) ;

SHELL RegisterCommand (shellContextHandle,
SHELL_COMMAND(save));

SHELL RegisterCommand (shellContextHandle,
SHELL_COMMAND(add));

int HAL InputDev PushButtons Register ()
{

int error = 0;
LOGD ("input dev push buttons register");
error =

FWK InputManager DeviceRegister (&s InputDev PushButtons) ;
return error;

hal input status t HAL InputDev PushButtons Init (input dev t

*dev, input dev callback t callback);

hal input status t HAL InputDev PushButtons Deinit (const
input dev t *dev);

hal input status_ t HAL InputDev PushButtons Start (const
input dev t *dev);

hal input status_ t HAL InputDev PushButtons Stop (const
input dev t *dev);

hal input status t HAL InputDev PushButtons InputNotify (const

input_deG_t *dev, void *param) ;

6.2.2 Variables

Local and global variables use camelCase.

static hal output status t

HAL OutputDev RgbLed InferComplete (const output dev t *dev,

output algo source t source,

void *inferResult)
{
vision algo result t *visionAlgoResult =
(vision algo result t *)inferResult;
hal output status t error =
kStatus HAL OutputSuccess;

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

36/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Static variables are prefixed with s PascalCase

For example:

static event common t s CommonEvent;

static event face rec t s FaceRecEvent;

static event recording t s RecordingEvent;

static input event t s InputEvent;

static framework request t s FrameworkRequest;

static input dev callback t s InputCallback;

static input dev_t *s SourceShell; /* Shell device that
commands are sent over */

static shell handle t s ShellHandle;

6.2.3 Typedefs

Type definitions are written in snake caseandendin t.

For example:

typedef struct
{
fwk task t task;
input task data t inputData;
} input task t;

6.2.4 Enums

Enumerations are written in the the form kEventType State.

For example:

typedef enum rgb led color

{
kRGBLedColor Red, /*!< LED Red Color */
kRGBLedColor Orange, /*!< LED Orange Color */
kRGBLedColor Yellow, /*!< LED Yellow Color */
kRGBLedColor Green, /*!< LED Green Color */

kRGBLedColor Blue, /*!< LED Blue Color */
kRGBLedColor Purple, /*!< LED Purple Color */
kRGBLedColor Cyan, /*!< LED Cyan Color */
kRGBLedColor White, /*!< LED White Color */
kRGBLedColor Off, /*!< LED Off */

} rgbLedColor t;

Enumerations for a status specifically must be written in the form
kStatus_ {Component} {State}.

For example:

/*! @brief Error codes for input hal devices */
typedef enum hal input status
{
kStatus HAL InputSuccess = 0,
/*!< Successfully */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

37/190

NXP Semiconductors

MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

kStatus HAL InputError =

MAKE FRAMEWORK STATUS (kStatusFrameworkGroups Input,

Error occurs */
} hal input status t;

1), /*'<

6.2.5 Macros and Defines

Defines are written in all caps.

For example:

#define
#define

INPUT DEV_PB WAKE GPIO
INPUT DEV PB WAKE GPIO PIN

BOARD USER BUTTON GPIO PIN

BOARD USER BUTTON GPIO

#define INPUT DEV_SW1 GPIO BOARD BUTTON_ SW1 GPIO
#define INPUT DEV_SW1 GPIO PIN BOARD BUTTON_ SW1 PIN
#define INPUT DEV SW2 GPIO BOARD BUTTON_ SW2_ GPIO
#define INPUT DEV_SW2 GPIO PIN BOARD BUTTON_ SW2_ PIN
#define INPUT DEV_SW3_GPIO BOARD BUTTON_SW3_GPIO
#define INPUT DEV_SW3 GPIO PIN BOARD BUTTON_SW3 PIN
#define INPUT DEV_PUSH BUTTONS IRQ GPIO13 Combined 0 31 IRQn
#define INPUT DEV_PUSH BUTTON SW1 IRQ BOARD BUTTON SWI IRQ

#define
#define

INPUT DEV PUSH BUTTON SW2 _IRQ BOARD BUTTON SW2 _IRQ
INPUT DEV PUSH BUTTON SW3 _IRQ BOARD BUTTON SW3 _IRQ

6.3 Device managers

6.3.1

6.3.1.1

Overview

As the name would imply, device managers are responsible for "managing" devices used
by the system. Each device type (input, output, and so on) has its own type-specific
device manager.

A device manager serves two primary purposes:

e Initializing and starting each device registered to that manager
» Sending data to and receiving data from each device registered to that manager

This section avoids low-level implementation details of the device managers and instead
focus on the device manager APIs and the startup flow for the device managers. The
device managers themselves are provided as a library binary file to, in part, help abstract
the underlying implementation details and encourage developers to focus on the HAL
devices being managed instead.

Note: The device managers themselves are provided as a library binary file in the
framework folder, while the APIs for each manager can be found in the framework/
inc folder.

Initialization flow

Before a device manager can properly manage devices, it must follow a specific startup
process. The startup process for device managers is summarized as follows:

1. Initialize managers
2. Register each device to their respective manager
3. Start managers

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
38/190

NXP Semiconductors MCU-SMHMI-SDUG

6.3.2

6.3.2.1

6.3.2.1.1

6.3.2.1.2

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

This process is clearly demonstrated in the main function found in source/main.cpp

/*
* @brief Application entry point.
Y/

int main (void)

{

/* Init board hardware. */
APP BoardInit();

LOGD (" [MAIN] :Started") ;

/* init the framework*/
APP InitFramework();

/* register the hal devices*/
APP RegisterHalDevices() ;

/* start the framework*/
APP StartFramework() ;

// start
vTaskStartScheduler () ;

while (1)
{
LOGD ("#") ;

}

return 0;

As part of a manager's start routine, the manager calls the init and start functions
of each of its registered devices.

Note: In general, developers must only be concerned aout adding/removing devices
from the APP RegisterHalDevices () function as the init and start functions for
each manager are already called by default inside the APP InitFramework () and
APP StartFramework () functionsin main ().

Vision input manager

The Vision input manager manages the input HAL devices that can be registered into the
system.

APls

FWK_InputManager_Init

/**

* @brief Init internal structures for input manager.

* @return int Return O if the init process was successful
R/
int FWK InputManager Init();

FWK_InputManager_DeviceRegister

/**

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
39/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* @brief Register an input device. All input devices need to
be registered before FWK InputManager Start is called.
* @param dev Pointer to a display device structure
* @return int Return 0 if registration was successful
*
/

int FWK InputManager DeviceRegister (input dev t *dev);

6.3.2.1.3 FWK InputManager_Start

/**

* @Qbrief Spawn Input manager task which will call init/start
for all registered input devices

* @return int Return 0 if the starting process was successful
)
int FWK InputManager Start();

6.3.2.1.4 FWK InputManager_Deinit

/**

* @brief Denit internal structures for input manager.

* @return int Return 0 if the deinit process was successful
)
int FWK InputManager Deinit ();

Note: Calling this function is unnecessary in most applications and must be used with
caution.

6.3.3 Output manager

The Output manager manages the output HAL devices that can be registered into the
system.

6.3.3.1 APIs

6.3.3.1.1 FWK_OutputManager_Init

/**

* @brief Init internal structures for output manager.

* (@return int Return 0 if the init process was successful
*/
int FWK OutputManager Init();

6.3.3.1.2 FWK_OutputManager_DeviceRegister

/**

* @brief Register a display device. All display devices need
to be registered before FWK OutputManager Start is called.

* (@param dev Pointer to an output device structure

* @return int Return 0 if registration was successful

=/

int FWK OutputManager DeviceRegister (output dev t *dev);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

40/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.3.3.1.3 FWK_ OutputManager_Start

/**

* @Qbrief Spawn output manager task which will call init/start
for all registered output devices.

* @Qreturn int Return 0 if starting was successful

*/
int FWK OutputManager Start();

6.3.3.1.4 FWK_OutputManager_Deinit

/**

* @brief DeInit internal structures for output manager.

* @return int Return O if the deinit process was successful
=)

int FWK OutputManager Deinit();

Calling this function is unnecessary in most applications and
should be used with caution.

/**

* @brief A registered output device doesn't need to be also
active. After the start procedure, the output device

w can register a handler of capabilities to receive
events.

* (@param dev Device that register the handler

* (@param handler Pointer to a handler

* @return int Return 0 if the registration of the event
handler was successful

*

/
int FWK OutputManager RegisterEventHandler (const output dev t
*dev, const output dev event handler t *handler);

6.3.3.1.5 FWK_OutputManager_UnregisterEventHandler

/**

* @brief A registered output device doesn't need to be also
active. A device can call this function to unsubscribe

* from receiving events

* @param dev Device that unregister the handler

* @return int Return 0 if the deregistration of the event
handler was successful

*

/
int FWK OutputManager UnregisterEventHandler (const output dev t
*dev) ;

6.3.4 Camera manager

Camera manager manages the camera HAL devices that can be registered into the
system.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

417190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.3.4.1 APIs

6.3.4.1.1 FWK_CameraManager_Init

/**

* @brief Init internal structures for Camera manager.

* @return int Return 0 if the init process was successful
*/

int FWK CameraManager Init();

6.3.4.1.2 FWK_CameraManager_DeviceRegister

/**

* @brief Register a camera device. All camera devices need to
be registered before FWK CameraManager Start is called

* (@param dev Pointer to a camera device structure

* @return int Return 0 if registration was successful

*/

int FWK CameraManager DeviceRegister (camera dev t *dev);

6.3.4.1.3 FWK_CameraManager_Start

/**
* @Qbrief Spawn Camera manager task which will call init/start
for all registered camera devices
* @return int Return 0 if the starting process was successul
4
int FWK CameraManager Start();

6.3.4.1.4 FWK_CameraManager_Deinit

/**

* @brief Deinit CameraManager

* @return int Return 0 if the deinit process was successful
*/

int FWK CameraManager Deinit();

Note: Calling this function is unnecessary in most applications and must be used with
caution.

6.3.5 Display manager

The Display manager manages the display HAL devices that can be registered into the
system.

6.3.5.1 APIs

6.3.5.1.1 FWK DisplayManager_Init

/**
* @brief Init internal structures for display manager.
* @return int Return 0O if the init process was successful

*/

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

42/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

int FWK DisplayManager Init();

6.3.5.1.2 FWK_DisplayManager_DeviceRegister

/**

* @brief Register a display device. All display devices need
to be registered before FWK DisplayManager Start is

* called.

* (@param dev Pointer to a display device structure

* @return int Return 0 if registration was successful

*/
int FWK DisplayManager DeviceRegister (display dev t *dev);

6.3.5.1.3 FWK_DisplayManager_Start

/**

* @brief Spawn Display manager task which will call init/start
for all registered display devices. Will start the flow

* to recive frames from the camera.

* @return int Return 0 if starting was successful

=/
int FWK DisplayManager Start();

6.3.5.1.4 FWK_DisplayManager_Deinit

/**

* @brief Init internal structures for display manager.

* @return int Return 0 if the init process was successful
*/
int FWK DisplayManager Deinit ();

Note: Calling this function is unnecessary in most applications and must be used with
caution.

6.3.6 Vision algorithm manager

The Vision algorithm manager manages the vision algorithm HAL devices that can be
registered into the system.

6.3.6.1 APIs

6.3.6.1.1 FWK_VisionAlgoManager_|Init

/**

* @brief Init internal structures for VisionAlgo manager.
* @return int Return 0 if the init process was successful
=Y
int FWK VisionAlgoManager Init();

6.3.6.1.2 FWK_VisionAlgoManager_DeviceRegister

/**
* @brief Register a vision algorithm device. All algorithm
devices need to be registered before

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

43 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* FWK VisionAlgoManager Start is called

* (@param dev Pointer to a vision algo device structure

* @return int Return 0 if registration was successful

)
int FWK VisionAlgoManager DeviceRegister (vision algo dev t
*dev) ;

6.3.6.1.3 FWK_VisionAlgoManager_Start

/**

* @brief Spawn VisionAlgo manager task which will call init/
start for all registered VisionAlgo devices

* @return int Return 0 if the starting process was successul
)
int FWK VisionAlgoManager Start();

6.3.6.1.4 FWK VisionAlgoManager_Deinit

/**

* @brief Deinit VisionAlgoManager

* @return int Return 0 if the deinit process was successful
)

int FWK VisionAlgoManager Deinit();

Note: Calling this function is unnecessary in most applications and must be used with
caution.

6.3.7 Voice algorithm manager

The Voice algorithm manager manages the voice algorithm HAL devices that can be
registered into the system.

6.3.7.1 APIs

6.3.7.1.1 FWK_VoiceAlgoManager_Init

/**

* @brief Init internal structures for VisionAlgo manager.
* (@return int Return 0 if the init process was successful
*/
int FWK VoiceAlgoManager Init();

6.3.7.1.2 FWK_ VoiceAlgoManager_DeviceRegister

/**
* @brief Register a voice algorithm device. All algorithm
devices need to be registered before
* FWK VoiceAlgoManager Start is called
* (@param dev Pointer to a vision algo device structure
* @return int Return 0 if registration was successful
*
/

int FWK VoiceAlgoManager DeviceRegister (voice algo dev t *dev);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

44190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.3.7.1.3 FWK VoiceAlgoManager_Start

/**
* @brief Spawn VisionAlgo manager task which will call init/
start for all registered VisionAlgo devices
* @return int Return 0 if the starting process was successful
*/
int FWK VoiceAlgoManager Start();

6.3.7.1.4 FWK VoiceAlgoManager_Deinit

/**

* @brief Deinit VisionAlgoManager

* @return int Return O if the deinit process was successful
=)

int FWK VoiceAlgoManager Deinit ();

Note: Calling this function is unnecessary in most applications and must be used with
caution.

6.3.8 Low-Power device manager

The Low-Power device manager is unigue among the managers because it does not
have the typical Init and Start functions that the other managers do. Instead, the
Low-Power Manager has APlIs to register a device (only one at a time), configure how the
board should enter deep sleep, enable sleep mode, and more.

Note: Due to the unique nature of low-power devices being an abstract "virtual” device,
only one LPM device can be registered to the LPM manager at a time. However, there
must be no need for more than one LPM device because other devices can configure the
current low-power mode states by using the Low-Power Manager APIs.

6.3.8.1 APIs

6.3.8.1.1 FWK_LpmManager_DeviceRegister

/**

* @brief Register a low power mode device. Currently, only one
low power mode device can be registered at a time.

* (@param dev Pointer to a low power mode device structure

* @Qreturn int Return 0 if registration was successful

*/
int FWK LpmManager DeviceRegister (lpm dev t *dev);

6.3.8.1.2 FWK_LpmManager_RegisterRequestHandler

int FWK LpmManager RegisterRequestHandler (hal lpm request t
*req) ;

6.3.8.1.3 FWK_LpmManager_UnregisterRequestHandler

int FWK LpmManager UnregisterRequestHandler (hal lpm request t
Sreq);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

45/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.3.8.1.4 FWK_ LpmManager_RuntimeGet

int FWK LpmManager RuntimeGet (hal lpm request t *req);

6.3.8.1.5 FWK_LpmManager_RuntimePut

int FWK LpmManager RuntimePut (hal lpm request t *req);

6.3.8.1.6 FWK_LpmManager_ RuntimeSet

int FWK LpmManager RuntimeSet (hal lpm request t *req, int8 t
count) ;

6.3.8.1.7 FWK_LpmManager RequestStatus

int FWK LpmManager RequestStatus (unsigned int
*totalUsageCount) ;

6.3.8.1.8 FWK_LpmManager_SetSleepMode

/**
* @brief Configure the sleep mode to use when entering sleep
* (@param sleepMode sleep mode to use when entering sleep.
Examples include SNVS and other "lighter" sleep modes
* @return int Return 0 if successful
*/
int FWK LpmManager SetSleepMode (hal lpm mode t sleepMode) ;

6.3.8.1.9 FWK_LpmManager_EnableSleepMode

/**
* @Qbrief Configure sleep mode on/off status
* @param enable used to set sleep mode on/off; true is enable,
false is disable
* @return int Return 0 if successful
*/
int FWK LpmManager EnableSleepMode (hal lpm manager status t
enable) ;

6.3.9 Audio processing manager

The Audio processing manager manages the audio processing HAL devices that can be
registered into the system.

6.3.9.1 APIs

6.3.9.1.1 FWK_AudioProcessing_Init

/**
* @brief Init Audio Processing manager
*

* @return int Return 0 if the init process was successful

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

46 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

*/

int FWK AudioProcessing Init (void);

6.3.9.1.2 FWK_AudioProcessing_DeviceRegister

/‘k‘k
* @brief Register an audio processing device
*
* (@param dev Pointer to an Audio Processing device
* @return int Return 0 if the register was successful
*/
int FWK AudioProcessing DeviceRegister (audio processing dev t
*dev) ;

6.3.9.1.3 FWK_AudioProcessing_Start

/**

* @brief Start Audio Processing manager
*

* @return int Return 0 if the starting process was successful
=/

int FWK AudioProcessing Start (void);

6.3.9.1.4 FWK_AudioProcessing_Deinit

/**

* @brief Deinit Audio Processing manager
*

* @return int Return 0O if the deit process was successful
=Y

int FWK AudioProcessing Deinit (void) ;

Note: Calling this function is unnecessary in most applications and must be used with
caution.

6.3.10 Flash manager

The Flash manager is used to provide an abstraction for an underlying filesystem
implementation.

Due to the unique nature of the filesystem being an abstract "virtual" device, only one
flash device can be registered at a time. However, generally there should be no need to
have more than one filesystem. It means the Flash manager's API functions essentially
act as wrappers that call the operators of the underlying flash HAL device.

Warning: Flash access is exclusive, one request at a time.

Note: When working with the Flash Manager, unlike most other managers,
FWK_Flash DeviceRegister must be called _before FWK Flash Init

6.3.10.1 Device APIs

6.3.10.1.1 FWK_Flash_DeviceRegister

/**

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

4717190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* @brief Only one flash device is supported. Registered a
flash filesystem device

* (@param dev Pointer to a flash device structure

* @return int Return 0 if registration was successful

)
int FWK Flash DeviceRegister (const flash dev t *dev);

Note: Unlike the flow for most other managers, this function must be called before
FWK Flash Init.

6.3.10.1.2 FWK_Flash_lInit

/**

* @brief Init internal structures for flash.

* @return int Return 0O if the init process was successful
)

sln flash status t FWK Flash Init();

6.3.10.1.3 FWK_Flash_Deinit

/**

* @brief Deinit internal structures for flash.

* @return int Return O if the init process was successful
=/

sln flash status t FWK Flash Deinit();

6.3.10.2 Operations APIs

The Flash Manager and underlying flash HAL device define only a few operations in
order to keep the API simple and easy to implement. These API functions include:

e Format

* Save

* Delete

* Read

* Make Directory
* Make File

* Append

* Rename

¢ Cleanup

While it might limit filesystem functionality, it also helps to keep the code readable,
portable, and maintainable.

Note: If the default list of APIs does not satisfy the requirements of a use-case, the API
can always be extended or bypassed in the code directly.

6.3.10.2.1 FWK_Flash_Format

/**

* @brief Format the filesystem

* (@dreturn the status of formatting operation
=/

sln flash status t FWK Flash Format () ;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

48 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.3.10.2.2 FWK_Flash_Save

/**

* @brief Save the data into a file from the file system

* @param path Path of the file in the file system

* @param buf Buffer which contains the data that is going to
be saved

* @param size Size of the buffer

* (@return the status of save operation

*

/
sln flash status t FWK Flash Save(const char *path, void *buf,
unsigned int size);

6.3.10.2.3 FWK_Flash_Append

/**
* @brief Append the data to an existing file.
* (@param path Path of the file in the file system
* @param buf Buffer which contains the data that is going to
be append
* @param size Size of the buffer
* (@param overwrite Boolean parameter. If true the existing
file will be truncated. Similar to SLN flash save
* (@return the status of append operation
*
/
sln flash status t FWK Flash Append(const char *path, void
*buf, unsigned int size, bool overwrite);

6.3.10.2.4 FWK_Flash_Read

/**

* Qbrief Read from a file

* @param path Path of the file in the file system

* @param buf Buffer in which to store the read value

* @param offset If reading in chunks, set offset to file
current position

* (@param size Size that was read.

* (@return the status of read operation

*

/
sln flash status t FWK Flash Read(const char *path, void *buf,
unsigned int offset, unsigned int *size);

6.3.10.2.5 FWK_Flash_Mkdir

/**
* @brief Make directory operation
* @param path Path of the directory in the file system
* @dreturn the status of mkdir operation
*/
sln flash status t FWK Flash Mkdir (const char *path);

6.3.10.2.6 FWK_Flash_Mkfile

/**

* @brief Make file with specific attributes

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

49/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* (@param path Path of the file in the file system

* @param encrypt Specify if the files should be encrypted.
Based on FS implementation

* this param can be neglected

* @return the status of mkfile operation

*

/
sln flash status t FWK Flash Mkfile(const char *path, bool
encrypt) ;

6.3.10.2.7 FWK_Flash_Rm

/**

* @brief Remove file

* (@param path Path of the file that shall be removed
* @return the status of rm operation

*/
sln flash status t FWK Flash Rm(const char *path);

6.3.10.2.8 FWK _Flash_Rename

/*'k
* @brief Rename existing file
* @param OldPath Path of the file that is renamed
* @param NewPath New Path of the file
* (@dreturn status of rename operation
*
/
sln flash status t FWK Flash Rename (const char *oldPath, const
char *newPath) ;

6.3.10.2.9 FWK_Flash_Cleanup

MCU-SMHMI-SDUG

6.3.11

/**
* @brief Cleanup function. Might imply defragmentation, erased

unused sectors etc.
*

* @param timeout Time consuming operation. Set a time
constrain to be sure that is not disturbing the system.

w Timeout = 0 means no timeout
* @return status of cleanup operation
*/

sln flash status t FWK Flash Cleanup(uint32 t timeout);

Multicore manager

The Multicore manager manages the multicore HAL device that can be registered into
the system. In the current framework implementation, there are two ways of making a
message multicore:

1. isMulticoreMessage flag set to 1
A message constructed with isMulticoreMessage set to 1, becomes automatically a
multicast message and is sent to both cores. The taskld field specifies the task that
must handle the message from the other core. The below code snip shows how the

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
50/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

message is sent to both CM4/CM7 with the Multicore manager as the man in the
middle.

pVAlgoResMsg->multicore.isMulticoreMessage = 1;

pVAlgoResMsg->multicore.taskId =
kFWKTaskID Output;

FWK Message Put (kFWKTaskID VisionAlgo, &pVAlgoResMsg) ;

If the message has been sent by the CM7/Camera_Manager, the message is sent to
CM7/VisionAlgo and to CM4/Output via Multicore Manager

FWK Message Put (kFWKTaskID VisionAlgo, &pVAlgoResMsg) ;
Message send to CM7/kFWKTaskID VisionAlgo
Message send to CM7/Multicore Manager -> Deep Copy ->
Message send to CM4/Multicore Manager -> Message send to
CM4 /pVAlgoResMsg.taskId

2. isMulticoreMessage field set to 0
A message constructed with isMulticoreMessage set to 0 is a unicast message sent
only to the task specified in the FWK_Message Put. If the task is Multicore, an
additional taskld must be specified:

0;

pAudioRegMsg->multicore.isMulticoreMessage

pAudioRegMsg->multicore.taskId =
kFWKTaskID Output;

FWK Message Put (kFWKTaskID Multicore, &pAudioRegMsg) ;

If the message has been sent by the CM7/Camera_Manager, the message is sent
only to CM4/Output via Multicore Manager

FWK Message Put (kFWKTaskID Multicore, &pAudioRegMsg) ;

— Message send to CM7/Multicore Manager -> Deep Copy —>
Message send to CM4/Multicore Manager -> Message send to
CM4 /pAudioRegMsg.taskId

When sending a message, a deep copy of the message is done by the Multicore
Manager. The purpose of the deep copy is to avoid sending references from untouchable
regions (for example, CM7 sending a reference that points to internal TCM memory that
cannot be seen by CM4). Deep copy ensures that the messages are stored in a shared
buffer, therefore the messages must be small.

If bigger buffers must be sent, they have to be in a shared memory area and passed by
reference (camera buffers).

6.3.11.1 APIs

6.3.11.1.1 FWK_MulticoreManager_Init

/**
* @brief Init internal structures for Multicore Manager
* @return int Return O if the init process was successful
=/

int FWK MulticoreManager Init();

6.3.11.1.2 FWK_MulticoreManager_DeviceRegister

/**
* @brief Register a Multicore device. Only one multicore
device is supported. The dev needs to be registered before

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

51/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* FWK MulticoreManager Start is called

* (@param dev Pointer to a camera device structure

* @return int Return 0 if registration was successful
*/

int FWK MulticoreManager DeviceRegister (multicore dev t *dev);

6.3.11.1.3 FWK_MulticoreManager_Start

/**

* @brief Spawn Multicore manager task which will call init/
start for all registered multicore devices

* (@param taskPriority the priority of the Multicore manager
task

* @return int Return 0 if the starting process was successful
*

/
int FWK MulticoreManager Start (int taskPriority);

6.3.11.1.4 FWK_MulticoreManager_Deinit

/‘k*

* @brief Deinit MulticoreManager

* @return int Return 0 if the deinit process was successful
)

int FWK MulticoreManager Deinit ();

6.4 HAL devices

6.4.1 Overview

One of the most important steps in the creation of any embedded software project is
peripheral integration. This step can often be one of the most time-intensive steps of
the process. Additionally, peripheral drivers are often heavily tied to the specific platform
those drivers were originally written for. It makes upgrading/moving to another platform
difficult and costly.

The Hardware Abstraction Layer (HAL) component of the framework architecture was
designed in direct response to these issues.

HAL devices are designed to be written "on top of" lower-level driver code, helping to
increase code understandability by abstracting many of the underlying details. HAL
devices can be reused across different projects and NXP platforms, increasing code
reuse, which can help cut down on development time.

6.4.1.1 Device Registration

In order for a manager to communicate with a HAL device, that device must
first be registered with its respective manager. Registration of each HAL device
takes place at the beginning of application startup when main () calls the

APP RegisterHalDevices () function as shown below:

int main (void)

{
/* Init board hardware. */
APP BoardInit();
LOGD (" [MAIN] :Started") ;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

52/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.4.1.2

Smart HMI Software Development User Guide

/* init the framework*/
APP InitFramework();

/* register the hal devices*/
APP RegisterHalDevices() ;

/* start the framework*/
APP StartFramework() ;

// start
vTaskStartScheduler () ;

while (1)
{
LOGD ("#") ;

}

return 0;

}

To register a device to its manager, each HAL device implements a registration function
that is called prior to starting the managers themselves. For example, the "register"
function for the push button input device looks as follows:

int HAL InputDev PushButtons Register ()
{

int error = 0;
LOGD ("input dev push buttons register");
error =

FWK InputManager DeviceRegister (&s InputDev PushButtons) ;
return error;

}

As HAL devices do not have header . h files associated with them, the registration
function for each device is exposed via the board define.h file found inside the
boards folder. To be registered on startup, each HAL device must be added to the
APP RegisterHalDevices function in the board hal registration.c file. The
board hal registration.c fileis also found in the boards folder.

Device Types

There are several different device types to encapsulate the various peripherals that a
user may wish to incorporate into their project. These device types include:

e Input

e Output

* Camera

 Display

* VAlgo (Vision/Voice)

As well as a few others which are not listed here.

Each device type has specific methods and fields based on the unique characteristics of
that device type. For example, the camera HAL device definition looks as follows:

/**
* @brief Callback function to notify camera manager that one
frame is dequeued

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
53/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* (@param dev Device structure of the camera device calling
this function

* @param event id of the event that took place

* @param param Parameters

* (@param fromISR True if this operation takes place in an irq,
0 otherwise

* @return 0 if the operation was successfully

*

/

typedef int (*camera dev callback t) (const camera dev_t *dev,
camera_ event t event, void *param, uint8 t fromISR);

/*! @brief Operation that needs to be implemented by a camera
device */
typedef struct camera dev operator
{
/* initialize the dev */
hal camera status t (*init) (camera dev t *dev, int width,
int height, camera dev callback t callback, void *param);
/* deinitialize the dev */
hal camera status t (*deinit) (camera dev t *dev);
/* start the dev */
hal camera status t (*start) (const camera dev t *dev);
/* enqueue a buffer to the dev */
hal camera status t (*enqueue) (const camera dev_t *dev,
void *data);
/* dequeue a buffer from the dev */
hal camera status t (*dequeue) (const camera dev t *dev,
void **data, pixel format t *format):;
/* postProcess a buffer from the dev */
/*
* Only do the minimum determination(data point and the
format) of the frame in the dequeue.
*
* And split the CPU based post process (IR/Depth/...
processing) to postProcess as they will eat CPU
* which is critical for the whole system as camera manager
is running with the highest priority.
*
* Camera manager will do the postProcess if there is a
consumer of this frame.
*
* Note:
* Camera manager will call multiple times of the
posProcess of the same frame determinted by dequeue.
* The HAL driver needs to guarantee the postProcess only
do once for the first call.
*
*/
hal camera status t (*postProcess) (const camera dev t *dev,
void **data, pixel format t *format):;
/* input notify */
hal camera status t (*inputNotify) (const camera dev_t *dev,
void *data) ;
} camera dev operator t;

/*! @brief Structure that characterize the camera device. */
typedef struct
{

/* buffer resolution */
int height;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

54 /190

NXP Semiconductors MCU-SMHMI-SDUG

6.4.1.3

6.4.1.3.1

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

int width;
int pitch;
/* active rect */
int left;
int top;
int right;
int bottom;
/* rotate degree */
cw_rotate degree t rotate;
/* flip */
flip mode t flip;
/* swap byte per two bytes */
int swapByte;
} camera dev static config t;

In many ways, HAL devices can be thought of as similar to interfaces in C++ and other
object-oriented languages.

Anatomy of a HAL device

HAL devices are made up of several components which can vary by device type.
However, each HAL device regardless of type has at least 3 components:

e id

® name

® operators

The id field is a unique device identifier that is assigned by the device's manager when
the device is first registered.

The name field is used to help identify the device during various function calls and when
debugging.

The operators field is a struct that contains function pointers to each of the functions
that the HAL device is required to implement. The operators a device is required to
implement vary based on the device type.

A HAL device's definition is stored in a struct that gets passed to that device's respective
manager when the device is registered. It gives the manager information about the
device and allows the manager to call the device's operators when necessary.

Operators

Operators are functions that "operate" on the device itself and are used by the device's
manager to control the device and/or augment its behavior. Operators are used for
initializing, starting, and stopping devices, as well as serving many other functions
depending on the device.

As mentioned previously, the operators a HAL device must implement varies based on
device type. For example, input devices must implementan init, deinit, start,
stop, and inputNotify function

typedef struct
{
/* initialize the dev */
hal input status t (*init) (input dev t *dev,
input dev callback t callback);
/* deinitialize the dev */
hal input status t (*deinit) (const input dev t *dev);

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
55/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.4.1.4

6.4.1.4.1

6.4.1.4.2

Smart HMI Software Development User Guide

/* start the dev */

hal input status t (*start) (const input dev t *dev);

/* stop the dev */

hal input status t (*stop) (const input dev t *dev);

/* notify the input dev */

hal input status t (*inputNotify) (const input dev t *dev,
void *param) ;
} input dev operator t;

Generally, each device regardless of type has at leasta start, stop, init, and
deinit function. Additionally, most devices also implement an inputNotify function
that is used for event handling.

Note: Failing to implement a function does not prevent the HAL device from being
registered, but is likely to prevent certain functionality from working. For example, failing
to provide an implementation for a HAL device's start function prevents its respective
manager from starting that device.

Configs

Note: This section describes a feature which is being developed.

Configs represent the individual, configurable attributes specific to a HAL device. The
configs available for a device varies from device to device, but can be altered during
runtime via user input or by other devices and can be saved to flash to retain the same
value through power cycles.

For example, the HAL device for the IR/White LEDs may only have a "brightness" config,
while a speaker device may have configs for "volume", "left/right balance", and so on.

Note: Each device can have a maximum of MAXIMUM CONFIGS PER DEVICE configs
(see framework/inc/fwk_common. h).

Each device config regardless of device type has the same fields:

®* name

* expectedValue
* description

* value

®* get

* set

Name

A string containing the name of the config. The string length must be less than
DEVICE CONFIG NAME MAX LENGTH.

char name[DEVICE CONFIG NAME MAX LENGTH];

ExpectedValue

A string that provides a description of the valid values associated with the config. The
length of the string must be less than DEVICE CONFIG EXPECTED VAL MAX LENGTH.

char expectedValue[DEVICE CONFIG EXPECTED VAL MAX LENGTH];

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
56 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.1.4.3 Description

A string that provides a description of the config. The length of the string should be less
than DEVICE CONFIG DESCRIPTION MAX LENGTH.

char description[DEVICE CONFIG DESCRIPTION MAX LENGTH];

6.4.1.4.4 Value

An int that stores the internal value of the config. The value must be set using the set
function and retrieved using the get function.

uint32 t value;

6.4.1.45 Get

A function that returns the value of the config.

status_t (*get) (char *valueToString);

6.4.1.4.6 Set

A function that sets the value of the config.

status_t (*set) (char *configName, uint32 t wvalue);

6.4.2 Input devices

The Input HAL device provides an abstraction to implement various devices that may
capture data in many different ways, and the data can represent many different things.
The Input HAL device definition is designed to encapsulate everything from physical
devices like push buttons, to "virtual" devices like a command-line interface using UART.

Input devices are used to acquire external input data and forward that data to other
HAL devices via the Input Manager so that those devices can respond to that data
accordingly. The Input Manager communicates to other devices within the framework
using inputNotify event messages. For more information about events and event
handling, see Events.

As with other device types, Input devices are controlled via their manager. The Input
Manager is responsible for managing all registered input HAL devices, and invoking input
device operators (init, start, dequeue, and so on) as necessary. Additionally, the
Input Manager allows for multiple input devices to be registered and operate at once.

6.4.2.1 Device definition

The HAL device definition for Input devices can be found under framework/
hal api/hal input dev.h and is reproduced below:

/*! @brief Attributes of an input device */
typedef struct input dev
{
/* unique id which is assigned by input manager during the
registration */
int id;
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

571190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.4.2.2

6.4.2.2.1

Smart HMI Software Development User Guide

/* name of the device */

char name [DEVICE NAME MAX LENGTH] ;

/* operations */

const input dev operator t *ops;

/* private capability */

input dev private capability t cap;
} input dev t;

The device operators associated with input HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by an input
device */
typedef struct
{
/* initialize the dev */
hal input status t (*init) (input dev t *dev,
input dev callback t callback);
/* deinitialize the dev */
hal input status t (*deinit) (const input dev t *dev);
/* start the dev */
hal input status t (*start) (const input dev t *dev);
/* start the dev */
hal input status t (*stop) (const input dev t *dev);
/* notify the input dev */
hal input status t (*inputNotify) (const input dev t *dev,
void *param) ;
} input dev operator t;

The device capabilities associated with input HAL devices are as shown below:

typedef struct
{

/* callback */

input dev callback t callback;
} input dev private capability t;

Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to
"public methods" in object oriented-languages and are used by the Input Manager to set
up, start, and so on, each of its registered input devices.

For more information about operators, see Section 6.4.1.3.1.

Init

/* initialize the dev */
hal input status t (*init) (input dev t *dev,
input dev callback t callback);

Initialize the input device.

Init should initialize any hardware resources the input device requires (I/O ports, IRQs,
and so on), turn on the hardware, and perform any other setup the device requires.

The callback function to the device's manager is typically installed as part of the Tnit
function as well.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
58 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.4.2.2.2

6.4.2.2.3

6.4.2.2.4

6.4.2.2.5

Smart HMI Software Development User Guide

This operator will be called by the Input Manager when the Input Manager task first
starts.

Deinit

/* deinitialize the dev */
hal input status t (*deinit) (const input dev_ t *dev);

"Deinitialize" the input device.

DeInit should release any hardware resources the input device uses (/O ports, IRQs,
and so on), turn off the hardware, and perform any other shutdown the device requires.

This operator will be called by the Input Manager when the Input Manager task ends!'.

[(1lThe “DeInit’ function generally will not be called under
normal operation.

Start

/* start the dev */
hal input status t (*start) (const input dev t *dev);

Start the input device.

The start operator will be called in the initialization stage of the Input Manager's task
after the call to the Init operator. The startup of the display sensor and interface should
be implemented in this operator. This includes, for example, starting the interface and
enabling the IRQ of the DMA used by the interface.

Stop

/* start the dev */
hal input status t (*stop) (const input dev t *dev);

Stop the input device.

The Stop operator functions as the inverse of the start function and is not called under
normal operation.

InputNotify

/* notify the input dev */
hal input status t (*inputNotify) (const input dev t *dev, void
*param) ;

Handle input events.

The InputNotify operator is called by the Input Manager whenever a
kFWKMessageID InputNotify message received by and forwarded from the Input
Manager's message queue.

For more information regarding events and event handling, see Events.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
59 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.2.3 Capabilities

typedef struct
{

/* callback */

input dev callback t callback;
} input dev private capability t;

The capabilities structis primarily used for storing a callback to communicate
information from the device back to the Input Manager. This callback function is typically
installed via a device's init operator.

6.4.2.3.1 callback

/**
* @brief callback function to notify input manager with an
async event
* (@param dev Device structure
* (@param eventId Id of the event that took place
* (@param receiverList List with managers that should be notify
* (@param event Pointer to a event structure.
* (@param size If size is 0 event should be in a persistent
memory zone else the framework will allocate memory for the
* object Note the message delivery might go slow if the size
is too much.
* @param fromISR True if this operation takes place in an irgq,
0 otherwise
* @return 0 if the operation was successfully
*
/
typedef int (*input dev callback t) (const input dev_t *dev,
input event id t eventlId,
unsigned int receiverlist,
input event t *event,
unsigned int size,
uint8 t fromISR);

Callback to the Input Manager.

The capabilities structis primarily used for storing a callback to communicate
information from the device back to the Input Manager.

The Vision Algorithm manager provides the callback to the device when the init
operator is called. As a result, the HAL device should make sure to store the callback in
the init operator's implementation.

static hal input status t

HAL InputDev_ PushButtons Init (input dev t *dev,
input dev callback t callback)

{

hal input status t error = 0;

/* PERFORM INIT FUNCTIONALITY HERE */

/* Installing callback function from manager... */
memset (&dev->cap, 0, sizeof (dev->cap));
dev->cap.callback = callback;

return ret;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

60 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The HAL device invokes this callback to notify the vision algorithm manager of specific
events.

The definition for valgo _dev_callback_t is as shown below:

typedef int (*input dev callback t) (const input dev t *dev,
input event id t eventlId,
unsigned int receiverlist,
input event t *event,
unsigned int size,
uint8 t fromISR);

The fields passed as part of the callback are described in more detail below.

6.4.2.3.2 Eventld

typedef enum input event id

{
kInputEventID Recv,
kInputEventID AudioRecv,
kInputEventID FrameworkRecv,

} input event id t;

Describes the type of source event being sent/received.

6.4.2.3.3 ReceiverList

typedef enum fwk task id
{
kFWKTaskID Camera = 0, /* This should always stay first */
kFWKTaskID Display,
kFWKTaskID VisionAlgo,
kFWKTaskID VoiceAlgo,
kFWKTaskID Output,
kFWKTaskID Input,
kFWKTaskID Audio,
kFWKTaskID APPStart, /* APP task ID should always start
from here */
kFWKTaskID COUNT = (kFWKTaskID APPStart + APP TASK COUNT)
} fwk task id t;

List of device managers meant to receive the input event message.

6.4.2.3.4 Event

typedef struct input event
{

union

{
/* Valid when message is kInputEventID RECV */

void *inputData;

/* Valid when eventId is kInputEventID AudioRECV */
void *audioData;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

61/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

/* Valid when framework information is needed
GET FRAMEWORK_INFO*/
framework request t *frameworkRequest;
}i

} input event t;

6.4.2.4 Example

The project has several input devices implemented for use as-is or for use as reference
for implementing new input devices. Source files for these input HAL devices can be
found under HAL/common/ and HAL/face rec.

Below is an example of a push button input HAL device driver:

static input event t inputEvent;

const static input dev operator t s InputDev ExampleDevOps = {
.init = HAL InputDev ExampleDev Init,
.deinit = HAL InputDev ExampleDev Deinit,
.start = HAL InputDev ExampleDev Start,
.stop = HAL InputDev ExampleDev Stop,
.inputNotify = HAL InputDev ExampleDev InputNotify,
}i
static input dev t s InputDev ExampleDev = ({
.name = "buttons",
.ops = &s InputDev ExampleDevOps,
.cap = {

.callback = NULL
by
}i

/* here assume buttons push event will call this handler */
void HAL InputDev ExampleDev EvtHandler (void)
{
/* Add manager task list need notify, the id is from
fwk task id t.
* Note: here can set not only one task manager.
*/
receiverlList = 1 << kFWKTaskID Display;

/* load input data */
inputEvent.inputData = NULL;

/* callback inputmanager notify the corresponding manager
from receiverList */

inputDev.cap.callback (&inputDev, kInputEventID Recv,
receiverlist, &inputEvent, 0, fromISR);

}

hal input status t HAL InputDev ExampleDev Init (input dev t
*dev, input dev callback t callback)
{
hal input status t ret = kStatus HAL InputSuccess;

/* install manager callback for device */
dev->cap.callback = callback;

/* put hardware init here */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

62/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

return ret;

}

hal input status_ t HAL InputDev ExampleDev Deinit (const
input dev t *dev)
{
hal input status t ret = kStatus HAL InputSuccess;

/* put device deinit here */

return ret;

}

hal input status t HAL InputDev ExampleDev Start (const
input dev_t *dev)
{
hal input status t ret = kStatus HAL InputSuccess;

/* put device start here */

return ret;

}

hal input status t HAL InputDev ExampleDev Stop (const
input dev t *dev)
{
hal input status t ret = kStatus HAL InputSuccess;

/* put device stop here */

return ret;

}

hal input status_ t HAL InputDev ExampleDev InputNotify (const
input dev_t *dev, void *param)
{
hal input status t ret = kStatus HAL InputSuccess;

/* add device notify handler here */

return ret;

}

int HAL InputDev ExampleDev Register (void)

{
int ret = 0;
ret =

FWK InputManager DeviceRegister (&s InputDev ExampleDev) ;
return ret;

6.4.3 Output devices

The Output HAL devices are used to represent any device that produces output
(excluding specific devices that have their own specific device types like cameras and
displays).

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
63 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The Output devices respond to events passed by other HAL devices and produce
corresponding output. It includes changing the Ul overlay in response to a "face
recognized" event or changing the volume of the speaker in response to a specific shell
command.

Multiple output devices can be registered at a time per the design of the framework.

6.4.3.1 Subtypes

Currently, output devices can be divided into 3 "subtypes" to better represent the specific
nuances of a wider variety of output devices without creating entirely new HAL device
types:

¢ "General" output devices
¢ "Overlay/UI" output devices
* "Audio" output devices

6.4.3.1.1 General devices

"General"/generic output devices describe most output devices and include devices like
LEDs.

6.4.3.1.2 Ul devices

Overlay/Ul output devices are used for output devices that act as an overlay that sits on
top of a camera preview surface.

Overlay/Ul devices require that a frame buffer be allocated when initializing a device of
this subtype.

6.4.3.1.3 Audio devices

Audio output HAL devices represent devices that act as recipients of audio data. Audio
output HAL devices typically process audio data so that they can play a sound in
response to an event like a face being registered, or sleep mode triggering.

6.4.3.2 Device definition

The HAL device definition for output devices can be found under framework/hal api/
hal output dev.h and is reproduced below:

/*! @brief definition of an output device */
typedef struct output dev
{

/* unique id and assigned by Output Manager when this
device register */

int id;

/* device name */

char name [DEVICE NAME MAX LENGTH];

/* attributes */

output dev attr t attr;

/* optional config for private configuration of special
output device */

hal device config configs[MAXIMUM CONFIGS PER DEVICE];

/* operations */
const output dev operator t *ops;
}output dev t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

64/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The operators associated with output HAL devices are as shown below:

/*! Q@brief Operation that needs to be implemented by an output
device */
typedef struct output dev operator
{
/* initialize the dev */
hal output status t (*init) (const output dev t *dev);
/* deinitialize the dev */
hal output status t (*deinit) (const output dev t *dev);
/* start the dev */
hal output status t (*start) (const output dev t *dev);
/* stop the dev */
hal output status t (*stop) (const output dev t *dev);

} output dev operator t;

The device attributes associated with output HAL devices are as shown below:

/*! @brief Attributes of an output device */
typedef struct output dev attr t
{
/* the type of output device */
output dev type t type;
union
{
/* if the type of output device is OverlayUI, it need
to allocate overlay surface */
gfx surface t *pSurface;
/* reserve for other type of output device*/
volid *reserve;
}i
} output dev attr t;

6.4.3.3 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to
"public methods" in object-oriented languages and are used by the Output Manager to
set up, start, and so on, each of its registered output devices.

For more information about operators, see Section 6.4.1.3.1.

6.4.3.3.1 Init

hal output status t (*init) (const output dev t *dev);

The 1Init function is used to initialize the output device, Init should initialize any
hardware resources the output device requires (I/O ports, IRQs, and so on), turn on the
hardware, and perform any other setup the device requires.

This operator will be called by the Output Manager when the Output Manager task first
starts.

6.4.3.3.2 Delnit

hal output status t (*deinit) (const output dev t *dev);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

65/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The DeInit function is used to initialize the output device, DeInit should release any
hardware resources the output device uses (I/O ports, IRQs, and so on), turn off the
hardware, and perform any other shutdown the device requires.

This a?erator will be called by the Output Manager when the Output Manager task
ends" .

[1JThe “DeInit’ function generally will not be called under
normal operation.

6.4.3.3.3 Start

hal output status t (*start) (const output dev t *dev);

Starts the output device. The Start method will usually call FWK_OutputManager
RegisterEventHandler to register event handlers with the Output Manager so that
when the Output Manager receives an output event (like an "inference complete" event
or an "input notify" event), the corresponding event handler function is executed.

This operator is called by the Output Manager when the Output Manager task first starts.

6.4.3.3.4 Stop

hal output status t (*stop) (const output dev t *dev);

Stops the output device. The stop method will usually call FWK_OutputManager
UnRegisterEventHandler to unregister an event handler from the Output Manager. It
prevents the device's event handlers from executing when an event is triggered.

6.4.3.4 Attributes

6.4.3.4.1 Type

The type of output device. If the type is kOutputDevType UI, the pSurface parameter
must be set. Otherwise, pSurface can safely be ignored.

output dev type t type;

The type struct is shown below:

/*! @brief Types of output devices */

typedef enum output dev type

{
kOutputDevIype UI, /* for Overlay UI */
kOutputDevIype Audio, /* for Audio output */
kOutputDevType Other, /* for other general output, like

LED, Console, etc */

} output dev type t;

6.4.3.4.2 pSurface

The pSurface variable is used by Overlay/UI output devices to hold a frame buffer.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

66 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

If the device type "subtype" is not a kOuptutDevType UI device, then this parameter
can be safely ignored.

gfx surface t * pSurface;

The gfx surface struct is shown below:

typedef struct gfx surface

{
int height; /* the height of surface */

int width; /* the width of surface */

int pitch; /* the pitch of surface */

int left; /* the left coordinate of surface */
int top; /* the top coordinate of surface */
int right; /* the right coordinate of surface */

int bottom; /* the bottom coordinate of surface */

int swapByte; /* For each 16 bit word of surface
framebuffer, set true to swap the two bytes. */

pixel format t format; /* the pixel format of surface, like
kPixelFormat RGB565 */

void *buf; /* the pointer for the framebuffer */

void *lock; /* the mutex lock for the surface, is
determined by hal and set to null if not use in hal*/
} gfx surface t;

6.4.3.5 Example

The project has several output devices implemented for use as-is or for use as a
reference for implementing new output devices. Source files for these output HAL
devices can be found under HAL /common/.

Below is an example of the RGB LED HAL device driver HAL/common/
hal output rgb led.c

static hal output status t

HAL OutputDev RgbLed Init (output dev t *dev);

static hal output status t HAL OutputDev RgbLed Start (const
output dev_t *dev);

static hal output status t

HAL OutputDev RgbLed InferComplete (const output dev t *dev,

output algo source t source,
void *inferResult);

const static output dev event handler t
s_OutputDev RgbLedHandler = ({
.inferenceComplete = HAL OutputDev RgbLed InferComplete,
.inputNotify = NULL,
}i

/* output device operators*/
const static output dev operator t s OutputDev RgbLedOps = {

.init = HAL OutputDev RgbLed Init,
.deinit = NULL,
.start = HAL OutputDev RgbLed Start,

.stop = NULL,

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
67 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

/* output device */
static output dev t s OutputDev RgbLed = {

.name = "rgb led",

.attr.type = kOutputDevType Other,
.attr.reserve = NULL,

.0psS = &s_OutputDev RgbLedOps,

I g

/* RGB LED output device Init function*/

static hal output status t

HAL OutputDev RgbLed Init (output dev t *dev)

{
hal output status t error = kStatus HAL OutputSuccess;
/* put RGB LED hardware initialization here*/

return error;

}

/* RGB LED output device start function*/
static hal output status t HAL OutputDev RgbLed Start (const
output dev_t *dev)
{

hal output status t error = kStatus HAL OutputSuccess;

/* registered special event handler for this output device
*/

if (FWK OutputManager RegisterEventHandler (dev,
&s_OutputDev_ RgbLedHandler) != 0)

{

error = kStatus HAL OutputError;
}
return error;

}

static hal output status t
HAL OutputDev RgbLed InferComplete (const output dev t *dev,

output algo source t source,

volid *inferResult)
{
hal output status t error = kStatus HAL OutputSuccess;
/* algorithm result t is defined by special algorithm
device registered into vision pipeline */

algorithm result t *result = (algorithm result t
*)inferResult;
if (pResult != NULL)

{

/* do RGB LED hardware setting according to inference
result from valgorithm manager*/

}

return error;

}

int HAL OutputDev RgbLed Register ()
{
int error = 0;
LOGD ("output dev _rgb led register");

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

68 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

error =
FWK OutputManager DeviceRegister (&s OutputDev RgbLed) ;
return error;

An example of an Overlay Ul Output device can be found at HAL/face rec/
hal smart lock ui.c

static hal output status t HAL OutputDev OverlayUi Init (const
output dev t *dev);

static hal output status t HAL OutputDev OverlayUi Start (const
output dev_t *dev);

static hal output status t

HAL OutputDev OverlayUi InferComplete (const output dev t *dev,

output algo source t source,

void *infer result);
static hal output status t

HAL OutputDev OverlayUi InputNotify(const output dev t *dev,
void *data);

/* Overlay UI surface */

static gfx surface t s UiSurface;

/* the framebuffer for Overlay UI surface */

SDK_ALIGN (static char s AsBuffer[UI BUFFER WIDTH *

UI_BUFFER HEIGHT * UI BUFFER BPP], 32);

/* event handler */

const static output dev event handler t s OutputDev UiHandler =

{

.inferenceComplete HAL OutputDev OverlayUi InferComplete,
.inputNotify = HAL OutputDev OverlayUi InputNotify,
}i

/* output device operators */

const static output dev operator t s OutputDev UiOps = {
.init = HAL OutputDev OverlayUi Init,
.deinit = NULL,
.start = HAL OutputDev OverlayUi Start,
.stop = NULL,

bi

/* output device */
static output dev t s OutputDev Ui = {

.name = "ui",

.attr.type = kOutputDevType UI,
.attr.pSurface = &s UiSurface,

.0ops = &s_OutputDev UiOps,

bs

/* Overlay UI output device Init function*/
static hal output status t
HAL OutputDev OverlayUi Init (output dev t *dev)
{
hal output status t error = kStatus HAL OutputSuccess;
/* init overlay ui surface */
s_UiSurface.left = 0p
s_UiSurface.top = 0;
s_UiSurface.right UI BUFFER WIDTH - 1;
s _UiSurface.bottom = UI BUFFER HEIGHT - 1;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

69 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

s UisSurface.height = UI BUFFER HEIGHT;

s UiSurface.width = UI BUFFER WIDTH;

s _UiSurface.pitch = UI BUFFER WIDTH * 2;
s_UiSurface.format = kPixelFormat RGB565;
s_UiSurface.buf = s _AsBuffer;
s_UiSurface.lock = xSemaphoreCreateMutex () ;

return error;

}

/* Overlay UI output device start function*/
static hal output status t HAL OutputDev OverlayUi Start (const
output dev_t *dev)
{

hal output status t error = kStatus HAL OutputSuccess;

/* registered special event handler for this output device
*/

if (FWK OutputManager RegisterEventHandler (dev,
&s_OutputDev UiHandler) != 0)

error = kStatus HAL OutputError;
return error;

}

/* Overlay UI inferenceComplete event handler function*/
static hal output status t
HAL OutputDev OverlayUi InferComplete (const output dev t *dev,

output algo source t source,

void *infer result)
{
hal output status t error = kStatus HAL OutputSuccess;
/* algorithm result t is defined by special algorithm
device registered into vision pipeline */
algorithm result t *pResult = (algorithm result t
*)infer result;

if (pResult != NULL)
{
/* lock overlay surface to avoid conflict with PXP
composing overlay surface */
if (s_UiSurface.lock)

{
xSemaphoreTake (s_UiSurface.lock, portMAX DELAY) ;

}

/* draw overlay surface here according to inference
result from valgorithm manager */

/* unlock */
if (s_UiSurface.lock)

{

xSemaphoreGive (s_UiSurface.lock) ;
}
}

return error;
}
/* Overlay UI inputNotify event handler function*/

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

70/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

static hal output status t
HAL OutputDev OverlayUi InputNotify(const output dev t *dev,
void *data)
{
hal output status t error = kStatus HAL OutputSuccess;
event base t eventBase = *(event base t *)data;

if (eventBase != NULL)
{

/* lock overlay surface to avoid conflict with PXP
composing overlay surface */
if (s_UiSurface.lock)
{
xSemaphoreTake (s _UiSurface.lock, portMAX DELAY) ;
}

/* draw overlay surface here according to input notify
event from input manager*/

/* unlock */
if (s_UiSurface.lock)
{
xSemaphoreGive (s_UiSurface.lock) ;
}
}

return error;

int HAL OutputDev UiSmartlock Register()

int error = 0;

LOGD ("output dev ui smartlock register");

error = FWK OutputManager DeviceRegister (&s_OutputDev Ui) ;
return error;

6.4.4 Camera devices

The camera HAL device provides an abstraction to represent many different camera
devices which may have different resolutions, color formats, and even connection
interfaces.

For example, the same GC0308 RGB camera can connect with CSl or via a FlexIO
interface.

A camera HAL device represents a camera sensor + interface,
meaning a separate device driver is required for the same
camera sensor using different interfaces.

As with other device types, camera devices are controlled via their manager. The
Camera Manager is responsible for managing all registered camera HAL devices, and
invoking camera device operators (init, start, dequeue, and so on) as necessary.
Additionally, the Camera Manager allows for multiple camera devices to be registered
and operated at once.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

717190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.4.1 Device definition

The HAL device definition for Camera devices can be found under framework/
hal api/hal camera dev.hand is reproduced below:

typedef struct camera dev camera dev t;
/*! @brief Attributes of a camera device. */
struct camera dev
{
/* unique id which is assigned by camera manager during
registration */
int id;
/* state in which the device is found */
hal device state t state;
/* name of the device */
char name[DEVICE NAME MAX LENGTH];

/* operations */

const camera dev operator t *ops;

/* static configs */

camera dev_static config t config;
/* private capability */

camera dev private capability t cap;

I g

The device operators associated with camera HAL devices are as shown below:

/*! Q@brief Operation that needs to be implemented by a camera
device */
typedef struct camera dev operator
{
/* initialize the dev */
hal camera status t (*init) (camera dev t *dev, int width,
int height, camera dev callback t callback, void *param);
/* deinitialize the dev */
hal camera status t (*deinit) (camera dev t *dev);
/* start the dev */
hal camera status t (*start) (const camera dev t *dev);
/* enqueue a buffer to the dev */
hal camera status t (*enqueue) (const camera dev_t *dev,
void *data) ;
/* dequeue a buffer from the dev */
hal camera status t (*dequeue) (const camera dev t *dev,
void **data, pixel format t *format);
/* postProcess a buffer from the dev */
/*
* Only do the minimum determination (data point and the
format) of the frame in the dequeue.
*
* And split the CPU based post process (IR/Depth/...
processing) to postProcess as they will eat CPU
* which is critical for the whole system as Camera Manager
is running with the highest priority.
*
* Camera Manager will do the postProcess if there is a
consumer of this frame.
*

* Note:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

727190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

* Camera Manager will call multiple times of the
posProcess of the same frame determinted by dequeue.
* The HAL driver needs to guarantee the postProcess only

do once for the first call.
*

*
/
hal camera status t (*postProcess) (const camera dev t *dev,
void **data, pixel format t *format);
/* input notify */
hal camera status t (*inputNotify) (const camera dev_t *dev,
void *data) ;
} camera dev operator t;

The static configs associated with camera HAL devices are as shown below:

/*! @brief Structure that characterize the camera device. */
typedef struct
{
/* buffer resolution */
int height;
int width;
int pitch;
/* active rect */
int left;
int top;
int right;
int bottom;
/* rotate degree */
cw_rotate degree t rotate;
/* flip */
flip mode t flip;
/* swap byte per two bytes */
int swapByte;
} camera dev static config t;

The device capabilities associated with camera HAL devices are as shown below:

/*! Q@brief Structure that capability of the camera device. */
typedef struct
{
/* callback */
camera dev_callback t callback;
/* param for the callback */
void *param;
} camera dev private capability t;

6.4.4.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to
"public methods" in object-oriented languages, and are used by the Camera Manager to
set up, start, and so on, each of its registered camera devices.

For more information about operators, see Section 6.4.1.3.1.

6.4.4.2.1 Init

hal camera status t (*init) (camera dev t *dev,
int width,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

73/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.4.4.2.2

6.4.4.2.3

6.4.4.24

6.4.4.2.5

Smart HMI Software Development User Guide

int height,
camera dev_callback t callback,
void *param) ;

Initialize the camera device.

Init should initialize any hardware resources the camera device requires (/O ports,
IRQs, and so on), turn on the hardware, and perform any other setup the device requires.

This operator is called by the Camera Manager when the Camera Manager task first
starts.

Deinit

hal camera status t (*deinit) (camera dev t *dev);

"Deinitialize" the camera device.

DeInit must release any hardware resources the camera device uses (I/O ports, IRQs,
and so on), turn off the hardware, and perform any other shutdown the device requires.

This 8Ferator will be called by the Camera Manager when the Camera Manager task
ends' .

[(1lThe “DeInit’ function generally will not be called under
normal operation.

Start

hal camera status t (*start) (const camera dev t *dev);

Start the camera device.

The start operator will be called in the initialization stage of the Camera Manager's
task after the call to the Init operator. The startup of the camera sensor and interface
should be implemented in this operator. It includes, for example, starting the interface
and enabling the IRQ of the DMA used by the interface.

Enqueue

hal camera status t (*enqueue) (const camera dev_t *dev,
void *data) ;

Enqueue a single frame.

The Enqueue operator is called by the Camera Manager to submit an empty buffer into
the camera device's buffer queue. Once the submitted buffer is filled by the camera
device, the camera device should call the Camera Manager's callback function and pass
a kCameraEvent SendFrame event.

Dequeue

hal camera status t (*enqueue) (const camera dev_t *dev,
void *data);

Dequeue a single frame.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
747190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.4.4.2.6

6.4.4.2.7

6.4.4.3

6.4.4.3.1

6.4.4.3.2

6.4.4.3.3

Smart HMI Software Development User Guide

The Dequeue operator will be called by the Camera Manager to get a camera frame from
the device. The frame address and the format will be determined by this operator.

PostProcess

hal camera status t (*postProcess) (const camera dev t *dev,
void **data,
pixel format t *format);

Handles the post-processing of the camera frame.

The PostProcess operator is called by the Camera Manager to perform any required
post-processing of the camera frame. For example, if a frame must be converted from
one format to another in some way before it is useable by the display and/or a vision algo
device, it would take place in the PostProcess operator.

InputNotify

hal camera status t (*inputNotify) (const camera dev_t *dev,
void *data);

Handle input events.

The InputNotify operator is called by the Camera Manager whenever a
kFWKMessageID InputNotify message is received by and forwarded from the
Camera Manager's message queue.

For more information regarding events and event handling, see Events.

Static configs

Static configs, unlike regular, dynamic configs, are set at compile time and cannot be
changed on-the-fly.

Height

int height;

The height of the camera buffer.

Width

int width;

The width of the camera buffer.

Pitch

int pitch;

The total number of bytes in a single row of a camera frame.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
751190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.4.3.4 Left

int left;

The left edge of the active area in a camera buffer.

6.4.4.3.5 Top

int top;

The top edge of the active area in a camera buffer.

6.4.4.3.6 Right

int right;

The right edge of the active area in a camera buffer.

6.4.4.3.7 Bottom

int bottom;

The bottom edge of the active area in a camera buffer.

6.4.4.3.8 Rotate

typedef enum cw rotate degree

{
kCWRotateDegree 0 = O,
kCWRotateDegree 90,
kCWRotateDegree 180,
kCWRotateDegree 270

} cw_rotate degree t;

cw_rotate degree t rotate;

The rotate degree of the camera sensor.

6.4.4.3.9 Flip

typedef enum flip mode

{
kFlipMode None = 0,
kFlipMode Horizontal,
kFlipMode Vertical,
kFlipMode Both

} flip mode t;

flip mode t flip;

Determines whether to flip the frame while processing the frame for the algorithm and
display.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

76 /190

NXP Semiconductors MCU-SMHMI-SDUG

6.4.4.3.10

6.4.4.4

6.4.4.41

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

SwapByte

int swapByte;

Determines whether to enable swapping bytes while processing a frame for algorithm
and display devices.

Capabilities

typedef struct

{
/* callback */
camera dev_callback t callback;
/* param for the callback */
void *param;

} camera dev private capability t;

The capabilities structis primarily used for storing a callback to communicate
information from the device back to the Camera Manager. This callback function is
typically installed via a device's init operator.

Callback

/**
* @brief Callback function to notify Camera Manager that one
frame is dequeued
* (@param dev Device structure of the camera device calling this
function
* @param event id of the event that took place
* (@param param Parameters
* (@param fromISR True if this operation takes place in an irq,
0 otherwise
* @return 0 if the operation was successfully
4
typedef int (*camera dev callback t) (const camera dev_t *dev,
camera event t event,
void *param,
uint8 t fromISR);

camera dev callback t callback;

Callback to the Camera Manager.

The HAL device invokes this callback to notify the Camera Manager of specific events
like "frame dequeued."

The Camera Manager provides this callback to the device when the init operator is
called. As a result, the HAL device should make sure to store the callback in the init
operator's implementation.

static hal camera status t HAL CameraDev ExampleDev Init (
camera dev_t *dev, int width, int height,
camera dev callback t callback, void *param)

{

hal camera status t ret = kStatus HAL CameraSuccess;

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
771190

NXP Semiconductors MCU-SMHMI-SDUG

6.4.4.4.2

6.4.4.5

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

/* PERFORM INIT FUNCTIONALITY HERE */

/* Installing callback function from manager... */
dev->cap.callback = callback;

return ret;

Param

void *param;

The parameter of the callback for kCameraEvent SendFrame event. The Camera
Manager provides the parameter while calling the Init operator, so this param should
be stored in the HAL device's struct as part of the implementation of the Init operator.

This param should be provided when calling the [Callback’]
(#callback) function.

Example

The project has several camera devices implemented for use as-is or for use as
reference for implementing new camera devices. Source files for these camera HAL
devices can be found under HAL/common/.

Below is an example of the GC0308 RGB FlexIO camera HAL device driver HAL/
common/hal camera flexio gc0308.c

hal camera status t HAL CameraDev FlexioGc0308 Init (
camera dev t *dev, int width, int height,

camera dev callback t callback, void *param);

static hal camera status t

HAL CameraDev FlexioGc0308 Deinit (camera dev t *dev);
static hal camera status t

HAL CameraDev FlexioGc0308 Start (const camera dev t *dev);
static hal camera status t

HAL CameraDev FlexioGc0308 Enqueue (const camera dev t *dev,
void *data) ;

static hal camera status t

HAL CameraDev FlexioGc0308 _Dequeue (const camera dev_t *dev,

void **data,

pixel format t *format);
static int HAL CameraDev FlexioGc0308 Notify(const camera dev t
*dev, void *data);

/* The operators of the FlexioGc0308 Camera HAL Device */
const static camera dev operator t s CameraDev FlexioGc03080ps

= {

.init = HAL CameraDev FlexioGc0308 Init,
.deinit = HAL CameraDev FlexioGc0308 _Deinit,
.start = HAL CameraDev FlexioGc0308 Start,
.enqueue = HAL CameraDev FlexioGc0308 __Enqueue,
.dequeue = HAL CameraDev FlexioGc0308 Dequeue,

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
781190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

.inputNotify = HAL CameraDev FlexioGc0308 Notify,
}i

/* FlexioGc0308 Camera HAL Device */

static camera dev_t s CameraDev FlexioGc0308 = ({
.id - = 0,
.name = CAMERA NAME,
.0ps = &s CameraDev FlexioGc03080ps,
.cap =

{
.callback = NULL,
.param = NULL,
by
}i

hal camera status t HAL CameraDev FlexioGc0308 Init (
camera dev_t *dev, int width, int height,
camera dev_callback t callback, void *param)
{
hal camera status t ret = kStatus HAL CameraSuccess;
LOGD ("camera dev flexio gc0308 init");

/* store the callback and param for late using*/
dev->cap.callback = callback;
dev->cap.param = param;

/* init the low level camera sensor and interface */

return ret;

}

static hal camera status t
HAL CameraDev FlexioGc0308 Deinit (camera dev t *dev)
{
hal camera status t ret = kStatus HAL CameraSuccess;
/* Currently do nothing for the Deinit as we didn't support
the runtime de-registraion of the device */
return ret;

}

static hal camera status t
HAL CameraDev FlexioGc0308 Start (const camera dev t *dev)
{

hal camera status t ret = kStatus HAL CameraSuccess;
/* start the low level camera sensor and interface */

return ret;

}
static hal camera status t
HAL CameraDev FlexioGc0308 Enqueue (const camera dev_t *dev,
void *data)
{
hal camera status t ret = kStatus HAL CameraSuccess;

/* submit one free buffer into the camera's buffer queue */

return ret;

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
79 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

static hal camera status t
HAL CameraDev FlexioGc0308 Dequeue (const camera dev t *dev,

void **data,

pixel format t *format)
{

hal camera status t ret = kStatus HAL CameraSuccess;

/* get the buffer from camera's buffer queue and determine
the format of the frame */

return ret;

}

static int HAL CameraDev FlexioGc0308 Notify (const camera dev t
*dev, void *data)
{

int error = 0;

event base t eventBase = *(event base t *)data;
/* handle the events which are interested in */
switch (eventBase.eventId)
{

default:

break;

}

return error;

6.4.5 Display devices

6.4.5.1

The Display HAL device provides an abstraction to represent many different display
panels which may have different controllers, resolutions, color formats, and event
connection interfaces.

Note: A display HAL device represents a display panel + interface. For example,

the hal display lcdif rk024hh298.c is the display HAL device driver for the
rk024hh298 panel with eLCDIF interface. It means a separate device driver is required
for the same display using different interfaces.

As with other device types, display devices are controlled via their manager. The Display
Manager is responsible for managing all registered display HAL devices, and invoking
display device operators (init, start, and so on) as necessary.

Device definition

The HAL device definition for display devices can be found under framework/
hal api/hal display dev.h and is reproduced below:

typedef struct display dev display dev t;
/*! Q@brief Attributes of a display device. */
struct display dev
{
/* unique id which is assigned by Display Manager during
the registration */

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
80/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

int id;

/* name of the device */

char name [DEVICE NAME MAX LENGTH];

/* operations */

const display dev operator t *ops;

/* private capability */

display dev private capability t cap;
}i

The operators associated with display HAL devices are as shown below:

/*! Q@brief Operation that needs to be implemented by a display
device */
typedef struct display dev operator
{
/* initialize the dev */
hal display status t (*init) (
display dev t *dev,
int width, int height,
display dev callback t callback,
void *param) ;
/* deinitialize the dev */
hal display status_t (*deinit) (const display dev_t *dev);
/* start the dev */
hal display status_t (*start) (const display dev_t *dev);
/* blit a buffer to the dev */
hal display status t (*blit) (const display dev t *dev,
void *frame,
int width,
int height);
/* input notify */
hal display status_t (*inputNotify) (const display dev t
*dev, void *data):;
} display dev operator t;

The capabilities associated with display HAL devices are as shown below:

/*! Qbrief Structure that characterize the display device. */
typedef struct display dev private capability
{

/* buffer resolution */

int height;

int width;

int pitch;

/* active rect */

int left;

int top;

int right;

int bottom;

/* rotate degree */

cw_rotate degree t rotate;

/* pixel format */

pixel format t format;

/* the source pixel format of the requested frame */

pixel format t srcFormat;

void *frameBuffer;

/* callback */

display dev callback t callback;

/* param for the callback */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

81/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.4.5.2

6.4.5.2.1

6.4.5.2.2

6.4.5.2.3

Smart HMI Software Development User Guide

void *param;
} display dev private capability t;

Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to
"public methods" in object oriented-languages, and are used by the Display Manager to
set up, start, and so on, each of its registered display devices.

For more information about operators, see Section 6.4.1.3.1.

Init

hal display status t (*init) (display dev t *dev,
int width,
int height,
display dev callback t callback,
void *param) ;

Initialize the display device.

Init should initialize any hardware resources the display device requires (/O ports,
IRQs, and so on), turn on the hardware, and perform any other setup the device requires.

The callback function to the device's manager is typically installed as part of the Init
function as well.

This operator will be called by the Display Manager when the Display Manager task first
starts.

Deinit

hal display status_t (*deinit) (const display dev_t *dev);

"Deinitialize" the display device.

DeInit should release any hardware resources the display device uses (I/O ports,
IRQs, and so on), turn off the hardware, and perform any other shutdown the device
requires.

This operator will be called by the Display Manager when the Display Manager task
ends.

Note: The "Delnit’ function generally will not be called under normal operation.

Start

hal display status t (*start) (const display dev_t *dev);

Start the display device.

The start operator is called in the initialization stage of the Display Manager's task after
the call to the Init operator. The startup of the display sensor and interface should be
implemented in this operator. It includes, for example, starting the interface and enabling
the IRQ of the DMA used by the interface.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
82/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.4.5.2.4

6.4.5.2.5

Smart HMI Software Development User Guide

Blit

hal display status t (*blit) (const display dev t *dev,
void *frame,
int width,
int height);

Sends a frame to the display panel and "blits" the frame with any additional required
components (Ul overlay, and so on).

Blit is called by the Display Manager once a previously requested frame of the
matching srcFormat has been sent by a camera device. The sending of the frame from
the Display Manager to the display panel should be take place in this operator.

kStatus HAL DisplaySuccess must be returned if the frame was successfully sent
to the display panel. After calling this operator, the Display Manager will request a new
frame.

If the 'Blit’ operator is working in asynchronous mode, the
hardware will continue sending the frame buffer even after the
return of the "Blit® function call.

In this case, "kStatus HAL DisplayNonBlocking should be
returned instead,

and the Display Manager will not issue a new display frame
request after this "Blit call.

To request a new frame, the device should invoke the Display
Manager's callback using a "kDisplayEvent RequestFrame event
to notify the completion of the sending of the previous frame.

Once the Display Manager sees this new request, it will
requesting a new frame.

InputNotify

hal display status_ t (*inputNotify) (const display dev t
*dev, void *data) ;

Handle input events.

The InputNotify operator is called by the Display Manager whenever a
kFWKMessageID InputNotify message is received by and forwarded from the
Display Manager's message queue.

For more information regarding events and event handling, see Events.

6.4.5.3 Capabilities

/*! @brief Structure that characterizes the display device. */
typedef struct display dev private capability
{

/* buffer resolution */

int height;

int width;

int pitch;

/* active rect */

int left;

int top;

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
83/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.4.5.3.1

6.4.5.3.2

6.4.5.3.3

6.4.5.3.4

6.4.5.3.5

Smart HMI Software Development User Guide

int right;
int bottom;
/* rotate degree */
cw_rotate degree t rotate;
/* pixel format */
pixel format t format;
/* the source pixel format of the requested frame */
pixel format t srcFormat;
void *frameBuffer;
/* callback */
display dev callback t callback;
/* param for the callback */
void *param;

} display dev private capability t;

The capabilities structis primarily used for storing a callback to communicate
information from the device back to the Display Manager. This callback function is
typically installed via a device's init operator.

Display devices also maintain information regarding the size of the display, pixel format,
and other information pertinent to the display.

Height

int height;

The height of the display buffer.

Width

int width;

The width of the display buffer.

Pitch

int pitch;

The total number of bytes in one row of the display buffer.

Left

int left;

The left edge of the active areain the display frame buffer.

Note: The active area indicates the area of the display frame buffer that will be utilized.

Top

int top;

The top edge of the active area in the display frame buffer.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
84 /190

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.5.3.6 Right

int right;

The right edge of the active area in the display frame buffer.

6.4.5.3.7 Bottom

int bottom;

The bottom edge of the active area in the display frame buffer.

6.4.5.3.8 Rotate

typedef enum cw rotate degree

{
kCWRotateDegree 0 = O,
kCWRotateDegree 90,
kCWRotateDegree 180,
kCWRotateDegree 270

} cw_rotate degree t;

cw_rotate degree t rotate;

The rotate degree of the display frame buffer.

6.4.5.3.9 Format

typedef enum pixel format

{
/* 2d frame format */
kPixelFormat RGB,
kPixelFormat RGB565,
kPixelFormat BGR,
kPixelFormat Gray888,
kPixelFormat Gray888X,
kPixelFormat Gray,
kPixelFormat Grayleé,

kPixelFormat YUV1P444 RGB, /* color display sensor */
kPixelFormat YUV1P444 Gray, /* ir display sensor */
kPixelFormat UYVY1P422 RGB, /* color display sensor */
kPixelFormat UYVY1P422 Gray, /* ir display sensor */

kPixelFormat VYUY1P422,
/* 3d frame format */
kPixelFormat Depthl6,
kPixelFormat Depth§,
kPixelFormat YUV420P,

kPixelFormat Invalid
} pixel format t;

The format of the display frame buffer.

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

85/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.5.3.10 srcFormat

6.4.5.3.11

The source format of the requested display frame buffer.

Because there may be multiple display devices operating at a time, the display checks
the srcFormat property of the frame to determine whether it is from the display device
it is expecting. It prevents the display from displaying a 3D depth image when the user
expects an RGB image, for example.

frameBuffer

Pointer to the display frame buffer.

6.4.5.3.12 callback

/**
* @brief callback function to notify Display Manager that an
async event took place
* (@param dev Device structure of the display device calling
this function
* @param event id of the event that took place
* (@param param Parameters
* (@param fromISR True if this operation takes place in an irq,
0 otherwise
* @return 0 if the operation was successfully
=/
typedef int (*display dev callback t) (const display dev t *dev,
display event t event,
void *param,
uint8 t fromISR);

display dev callback t callback;

Callback to the Display Manager. The HAL device invokes this callback to notify the
Display Manager of specific events.

Currently, only the "kDisplayEvent RequestFrame event callback
is implemented in the Display Manager.

The Display Manager provides this callback to the device when the init operator is
called. As a result, the HAL device must make sure to store the callback in the init
operator's implementation.

hal display status_t HAL DisplayDev ExampleDev Init (
display dev t *dev, int width, int height,
display dev callback t callback, void *param)
{
hal display status t ret = kStatus HAL DisplaySuccess;

/* PERFORM INIT FUNCTIONALITY HERE */

/* Installing callback function from manager... */
dev->cap.callback = callback;

return ret;

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
86 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The HAL device invokes this callback to notify the Display Manager of specific events.

6.4.5.3.13 param

void *param;

The parameter of the Display Manager callback.

The “param’ field is not currently used by the framework in any
way.

6.4.5.4 Example

The project has several display devices implemented for use as-is or as reference for
implementing new display devices. The source files for these display HAL devices can be
found under HAL/common/.

Below is an example of the "rk024hh298" display HAL device driver HAL/common/hal
display lcdif rk024hh298.c

hal display status t
HAL DisplayDev LcdifRk024hh2 Init(display dev t *dev,

int
width,
int
height,
display dev callback t callback,
- - void

*param) ;
hal display status_ t HAL DisplayDev LcdifRk024hh2 Uninit (const
display dev t *dev);
hal display status t HAL DisplayDev LcdifRk024hh2 Start (const
display dev t *dev) ;
hal_dlsplay_status_t HAL DisplayDev LcdifRk024hh2 Blit (const
display dev t *dev,

void
*frame,

int
width,

int
height) ;

static hal display status t
HAL DisplayDev LcdifRk024hh2 _InputNotify (const display dev t
*receiver,

void *data) ;

/* The operators of the rk024hh298 Display HAL Device */
const static dlsplay dev operator t s DisplayDev LcdifOps = ({

.init = HAL DisplayDev LcdifRk024hh2 Init,
.deinit = HAL DisplayDev LcdifRk024hh2 Unlnlt
.start = HAL DisplayDev LcdifRk024hh2 Start,
.blit = HAL DisplayDev_ LcdifRk024hh2 Bllt

.inputNotify = HAL DisplayDev LcdifRk024hh2 _InputNotify,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

87/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

1%

/* rk024hh298 Display HAL Device */
static display dev t s DisplayDev Lcdif = {

.id = 0,

.name = DISPLAY NAME,

.ops = &s_DisplayDev LcdifOps,

.cap = {
.width = DISPLAY WIDTH,
.height = DISPLAY HEIGHT,
.pitch = DISPLAY WIDTH * DISPLAY BYTES PER PIXEL,
.left =0,
.top = 0,
.right = DISPLAY WIDTH - 1,
.bottom = DISPLAY HEIGHT - 1,

.rotate = kCWRotateDegree 0,

.format = kPixelFormat RGB565,
.srcFormat = kPixelFormat UYVY1P422 RGB,
.frameBuffer = NULL,

.callback = NULL,

.param = NULL

bs

hal display status t
HAL DisplayDev LcdifRk024hh2 Init(display dev t *dev,

int
width,
int
height,
display dev callback t callback,
- N void

*param)
{
hal display status_t ret = kStatus HAL DisplaySuccess;

/* init the capability */

dev->cap.width = width;
dev->cap.height = height;
dev->cap.frameBuffer = (void *)&s FrameBuffers[l];

/* store the callback and param for late using */
dev->cap.callback = callback;

/* init the low level display panel and interface */

return ret;

}

hal display status t HAL DisplayDev LcdifRk024hh2 Uninit (const
display dev t *dev)
{
hal display status_t ret = kStatus HAL DisplaySuccess;
/* Currently do nothing for the Deinit as we didn't support
the runtime de-registraion of the device */
return ret;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

88/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

hal display status t HAL DisplayDev LcdifRk024hh2 Start (const
display dev t *dev)
{

hal display status t ret = kStatus HAL DisplaySuccess;

/* start the display pannel and the interface */

return ret;

}

hal display status_t HAL DisplayDev LcdifRk024hh2 Blit (const
display dev t *dev, void *frame, int width, int height)
{

hal display status t ret = kStatus HAL DisplayNonBlocking;

/* blit the frame to the real display pannel */

return ret;

}

static hal display status t
HAL DisplayDev LcdifRk024hh2 InputNotify (const display dev t
*receiver, void *data)
{
hal display status t error =
kStatus HAL DisplaySuccess;
event base t eventBase
*)data;
event status t event response status = kEventStatus Ok;

* (event base t

/* handle the events which are interested in */

if (eventBase.eventId == kEventID SetDisplayOutputSource)
{

}

return error;

6.4.6 Vision algorithm devices

The Vision Algorithm HAL device type represents an abstraction for computer vision
algorithms which are used for the analysis of digital images, videos, and other visual
inputs.

The crux of the design for Vision Algorithm devices is centered around the use of "infer
complete" events that communicate information about the results of inferencing that is
handled by the device. For example, in the current application, the Vision Algorithm may
receive a camera frame containing a recognized face, perform an inference on that data,
and communicate a "face recognized" message to other devices so that they may act
accordingly. For more information about events and event handling, see Events.

Currently, only one vision algorithm device can be registered to the Vision Manager at a
time per the design of the framework.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

89/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.6.1 Device definition

The HAL device definition for vision algorithm devices can be found under framework/
hal api/hal valgo dev.hand is reproduced below:

/*! @brief definition of a vision algo device */
typedef struct vision algo dev
{

/* unique id which is assigned by vision algorithm manager
during the registration */

int id;

/* name to identify */

char name [DEVICE NAME MAX LENGTH] ;

/* private capability */

valgo dev private capability t cap;

/* operations */

vision algo dev operator t *ops;

/* private data */

vision algo private data t data;
} vision_algo dev;

The operators associated with the vision algo HAL device are as shown below:

/*! @brief Operation that needs to be implemented by a vision
algorithm device */
typedef struct
{
/* initialize the dev */
hal valgo status_t (*init) (vision algo dev t *dev,
valgo dev callback t callback, void *param);
/* deinitialize the dev */
hal valgo status t (*deinit) (vision algo dev t *dev);
/* run the inference */
hal valgo status_t (*run) (const vision algo dev_t *dev,
void *data) ;
/* recv events */
hal valgo status t (*inputNotify) (const vision algo dev t
*receiver, void *data) ;

} vision algo dev operator t;

The capabilities associated with the vision algo HAL device are as shown below:

typedef struct valgo dev private capability
{

/* callback */

valgo dev callback t callback;

/* param for the callback */

void *param;
} valgo dev private capability t;

The private data fields associated with the vision algo HAL device are as shown below:

typedef struct
{
int autoStart;
/* frame type definition */
vision frame t frames[kVAlgoFrameID Count];

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

90 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.4.6.2

6.4.6.2.1

6.4.6.2.2

6.4.6.2.3

Smart HMI Software Development User Guide

} vision algo private data t;

Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to
"public methods" in object-oriented languages and are used by the Vision Algorithm
Manager to set up, start, and so on, its registered vision algo device.

For more information about operators, see Section 6.4.1.3.1.

Init

hal valgo status_t (*init) (vision algo dev t *dev,
valgo dev callback t callback, void *param);

Initialize the vision algo HAL device.

Init must initialize any hardware resources the device requires (I/O ports, IRQs, and so
on), turn on the hardware, and perform any other setup required by the device.

The callback function to the device's manager is typically installed as part of the Init
function as well.

This operator is called by the vision algorithm manager when the output manager task
first starts.

Deinit

hal valgo status t (*deinit) (vision algo dev t *dev);

The DeInit function is used to "deinitialize" the algorithm device. DeInit must release
any hardware resources the device uses (I/O ports, IRQs, and so on), turn off the
hardware, and perform any other shutdown required by the device.

This operator is called by the Vision Algorithm Manager when the Vision Algorithm
Manager task ends.

Note: The "Delnit’ function generally is not called under normal operation.

Run

hal valgo status_t (*run) (const voice algo dev t *dev, void
*data) ;

Begin running the vision algorithm.

The run operator is used to start running algorithm inference and processing camera
frame data.

This operator is called by the Vision Algorithm manager when a "camera frame ready"
message is received from the Camera Manager and forwarded to the algorithm device
via the Vision Algorithm Manager.

Once the Vision Algorithm device finishes processing the camera frame data, its
manager forwards this message to the Output Manager in the form of an "inference
complete" message.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
91/190

NXP Semiconductors MCU-SMHMI-SDUG

6.4.6.2.4

6.4.6.3

6.4.6.3.1

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

InputNotify

hal valgo status_t (*inputNotify) (const vision algo dev t
*receiver, void *data);

Handle input events.

The InputNotify operator is called by the Vision Algorithm Manager whenever a
kFWKMessageID InputNotify message is received and forwarded from the Vision
Algorithm Manager's message queue.

For more information regarding events and event handling, see Events.

Capabilities

The capabilities structis primarily used for storing a callback to communicate
information from the device back to the Vision Algorithm Manager. This callback function
is typically installed via a device's init operator.

Callback

7% 4

* @brief Callback function to notify managers the results of
inference

* valgo_dev* dev Pointer to an algorithm device

* valgo_event t event Event which took place

* void* param Pointer to a struct of data that needs to be
forwarded

* unsigned int size Size of the struct that needs to be

forwarded. If size = 0, param should be a pointer to a
* persistent memory area.
Y/

typedef int (*valgo dev callback t) (int devId, valgo event t
event, void *param, unsigned int size, uint8 t fromISR);

valgo dev callback t callback;

Callback to the Vision Algorithm Manager.

The Vision Algorithm manager provides the callback to the device when the init
operator is called. As a result, the HAL device should make sure to store the callback in
the init operator's implementation.

static hal valgo status t
HAL VisionAlgoDev ExampleDev Init(vision algo dev_t *dev,

valgo dev callback t callback,
void

*param)

{
hal valgo status t ret = kStatus HAL ValgoSuccess;

/* PERFORM INIT FUNCTIONALITY HERE */

/* Installing callback function from manager... */

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
92 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.4.6.3.2

6.4.6.4

6.4.6.4.1

6.4.6.4.2

Smart HMI Software Development User Guide
memset (&dev->cap, 0, sizeof (dev->cap)):;
dev->cap.callback = callback;

return ret;

}

The HAL device invokes this callback to notify the Vision Algorithm manager of specific
events.

Param

void *param;

The param for the callback (optional).
Private Data

AutoStart

int autoStart;

The flag for automatic start of the algorithm.

If autoStart is 1, the Vision Algorithm Manager automatically starts requesting camera
frames for this algorithm device after its init operator is executed.

Frames

vision frame t frames[kVAlgoFrameID Count];

The three kinds of frames that are currently supported by the vision framework are RGB,
IR, and Depth images.

The vision algorithm device must specify information for each kind of frame so that
the framework properly converts and passes only the frames which correspond to this
algorithm device's requirement.

For example, older Solution's projects like SLN-VIZN3D-IOT use both 3D Depth and

IR camera images to perform liveness detection and face recognition, while using RGB
frames solely for use as user feedback help with aligning a user's face, and so on.
Therefore, the algorithm device must ensure that it is receiving only the 3D and IR frames
and not any RGB frames.

The definition of vision frame t is as shown below:

typedef struct vision frame
{
/* 1s supported by the device for this type of frame */
/* Vision Algorithm Manager will only request the supported
frame for this device */
int is_ supported;

/* frame resolution */
int height;
int width;
int pitch;

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
93/190

https://www.nxp.com/design/designs/nxp-edgeready-mcu-based-solution-for-3d-face-recognition:VIZN3D

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

/* rotate degree */

cw_rotate degree t rotate;
fllp mode t flip;

/* swap byte per two bytes */
int swapByte;

/* pixel format */
pixel format t format;

/* the source pixel format of the requested frame */
pixel format t srcFormat;
void *data;

} vision frame t;

6.4.6.5 Example

As only one Vision Algorithm device can be registered at a time per the design of the
framework, the project has one Vision Algorithm device implemented.

Note: This example is implemented using NXP's OasisLite face recognition algorithm,
which is the core vision computing algorithm used in all projects.

This example is reproduced below:

static hal valgo status t
HAL VisionAlgoDev OasisLite Init(vision algo dev_t *dev,

valgo dev callback t callback,
void
*param) ;
static hal valgo status t
HAL VisionAlgoDev | OasisLite _Deinit(vision algo _dev_t *dev);
static hal valgo status_ t HAL VisionAlgoDev | OasisLite _Run (const
vision algo dev t *dev, void *data) ;
static hal valgo status t
HAL VisionAlgoDev | OasisLite _InputNotify (const
vision algo dev t *recelver, void *data) ;

/* vision algorithm device operators */
const static vision algo dev operator t
s _VisionAlgoDev OasisLiteOps = {

.init = HAL VisionAlgoDev OasisLite Init,
.deinit = HAL VisionAlgoDev | Oa51sL1te Deinit,
.run = HAL VisionAlgoDev OasisLite . _Run,

.inputNotify = HAL_Vl31onAlgoDev_Oas1sL1te_InputNotify,
i

/* vision algorithm device */

static vision algo dev t s VisionAlgoDev OasisLite3D = ({
.id =0,
.name = "OASIS 3D",
.0ops = (vision _algo _dev operator t

*) &s VisionAlgoDev OasisLiteOps,

.cap = {.param = NULL},

}i

/* vision algorithm device Init function*/

static hal valgo status t
HAL VisionAlgoDev | OasisLite _Init(vision algo dev_t *dev,

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
94 /190

NXP Semiconductors

MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

{

Smart HMI Software Development User Guide

valgo dev callback t callback,
*param)

LOGI ("++HAL VisionAlgoDev OasisLite Init");
hal valgo status t ret = kStatus HAL ValgoSuccess;

// init the device
memset (&dev->cap, 0, sizeof (dev->cap));
dev->cap.callback = callback;

void

/* set parameters of the requested frames that this vision

algorithm dev asks for*/

/* for example oasisLite algorithm asks for two kind
frames: one is IR, the other is Depth */

/* firstly set parameters of the requested IR frames

dev->data.autoStart =1;

dev->data.frames [kVAlgoFrameID IR].height
OASIS FRAME HEIGHT;

dev->data.frames [kVAlgoFrameID IR].width =
OASIS FRAME WIDTH;

dev->data.frames[kVAlgoFrameID IR].pitch =
OASIS FRAME WIDTH * 3;

dev->data.frames[kVAlgoFrameID IR].is supported = 1;

dev->data.frames [kVAlgoFrameID IR].rotate =
kCWRotateDegree 0;

dev->data.frames[kVAlgoFrameID IR].flip =
kFlipMode None;

dev->data.frames [kVAlgoFrameID IR].format
kPixelFormat BGR;

dev->data.frames[kVAlgoFrameID IR].srcFormat =
kPixelFormat Grayl6;

int ocasis lite rgb frame aligned size =

of

*/

SDK_SIZEALIGN (OASIS_FRAME HEIGHT * OASIS_FRAME WIDTH * 3, 64);

dev—>data.framesTkVAlggFrameID_IR].data =
pvPortMalloc (oasis lite rgb frame aligned size);

if (dev->data.frames[kVAlgoFrameID IR].data == NULL)
{

OASIS LOGE (" [ERROR]: Unable to allocate memory for

kVAlgoFrameID IR.");
ret = kStatus HAL ValgoMallocError;
return ret;

}

/* secondly set parameters of the requested Depth frames */

dev->data.frames[kVAlgoFrameID Depth].height =
OASIS FRAME HEIGHT;

dev->data.frames[kVAlgoFrameID Depth].width =
OASIS FRAME WIDTH;

dev->data.frames[kVAlgoFrameID Depth].pitch =
OASIS FRAME WIDTH * 2;

dev->data.frames [kVAlgoFrameID Depth].is supported =

dev->data.frames [kVAlgoFrameID Depth].rotate =
kCWRotateDegree O0;

dev->data.frames [kVAlgoFrameID Depth].flip =
kFlipMode None;

dev->data.frames [kVAlgoFrameID Depth].format =
kPixelFormat Depthl6;

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

95/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

dev->data.frames [kVAlgoFrameID Depth].srcFormat
kPixelFormat Depthl6;

int ocasis lite depth frame aligned size
SDK SIZEALIGN(OASIS FRAME HEIGHT * OASIS FRAME_WIDTH * 2, 64);

dev->data. frames[kVAlgoFrameID Depth] .data =
pvPortMalloc (oasis lite depth frame aligned size);

if (dev->data.frames[kVAlgoFrameID Depth].data == NULL)

{
OASIS LOGE ("Unable to allocate memory for

kVAlgoFrameIB_IR");
ret = kStatus HAL ValgoMallocError;

return ret;

}

/* do private Algorithm Init here */

LOGI ("--HAL VisionAlgoDev OasisLite Init");
return ret;

}

/* vision algorithm device DeInit function*/
static hal valgo status t
HAL VisionAlgoDev | OasisLite _Deinit(vision algo dev t *dev)

{
hal valgo status t ret = kStatus HAL ValgoSuccess;

LOGI ("++HAL VlSlonAlgoDev OasisLite _Deinit");

/* release resource here */

LOGI ("--HAL VisionAlgoDev OasisLite Deinit");
return ret;

}

/* vision algorithm device inference run function*/
static hal valgo status t HAL VisionAlgoDev OasisLite Run (const
vision algo dev t *dev, void *data)
{
hal valgo status t ret = kStatus HAL ValgoSuccess;
OASIS LOGI ("++HAL VisionAlgoDev OasisLite Run");

vision algo result t result;

/* do inference run, derive meaningful information from the
current frame data in dev private data */

/* for example, oasisLite will inference according to two

kinds of input frames:
void* framel = dev->data.frames[kVAlgoFrameID IR].data

void* frame2 = dev-
>data.frames [kVAlgoFrameID Depth].data
result = oasisLite run(framel, frame2,) 8

*/

/* execute algorithm manager callback to inform algorithm

manager the result */
if (dev != NULL && result != NULL && dev->cap.callback !=

NULL)
{

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

96 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

dev->cap.callback (dev->id,
kVAlgoEvent VisionResultUpdate, result,
sizeof (vision algo result t), 0);

}

OASIS LOGI ("--HAL VisionAlgoDev OasisLite Run");
return ret;

}

/* vision algorithm device InputNotify function*/
static hal valgo status t
HAL VisionAlgoDev OasisLite InputNotify (const
vision algo dev t *receiver, void *data)
{
hal valgo status t ret = kStatus HAL ValgoSuccess;
OASfS_LOGf("++HAE_VisionAlgoDev_6asi§Lite InputNotify") ;

event base t eventBase = *(event base t *)data;

/* do proess according to different input notify event */

LOGI ("--HAL VisionAlgoDev OasisLite InputNotify");
return ret;

}

/* register vision algorithm device to vision algorithm manager
*/

int HAL VisionAlgoDev OasisLite3D Register ()

{

int error = 0;
LOGD ("HAL VisionAlgoDev OasisLite3D Register");
error = FWK VisionAlgoManager DeviceRegister (

&s_VisionAlgoDev OasisLite3D);

return error;

6.4.7 Voice algorithm devices

6.4.7.1

The Voice Algorithm HAL device type represents an abstraction to do voice recognition
based on clean stream AFE generated.

After the Voice Algorithm manager receives the clean stream, the Voice Algorithm

Hal device run method is called. If a voice command is detected, the device

outputs the inference result and transfer result to the Output HAL device through
valgo dev callback t callback. For more information about events and event
handling, see Events.

Currently, only one voice algorithm device can be registered to the Voice Manager at a
time per the design of the framework.

Device definition

The HAL device definition for voice algorithm devices can be found under framework/
hal api/hal valgo dev.h and is reproduced below:

/*! @brief Attributes of a voice algo device */

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
97 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

struct voice algo dev

{

/* unique id which is assigned by algorithm manager during
the registration */

int 1id;

/* name to identify */

char name [DEVICE NAME MAX LENGTH];

/* private capability */

valgo dev private capability t cap;

/* operations */

voice algo dev operator t *ops;

/* private data */

voice algo private data t data;

I g

The operators associated with the voice algo HAL device are as shown below:

/*! Q@brief Operation that needs to be implemented by a voice
algorithm device */
typedef struct voice algo dev operator t
{
/* initialize the dev */
hal valgo status_t (*init) (voice algo dev_t *dev,
valgo dev callback t callback, void *param);
/* deinitialize the dev */
hal valgo status t (*deinit) (voice algo dev t *dev);
/* start the dev */
hal valgo status t (*run) (const voice algo dev t *dev, void
*data) ;
/* recv events */
hal valgo status_t (*inputNotify) (const voice algo dev t
*receiver, void *data);

} voice algo dev operator t;

The capabilities associated with the voice algo HAL device are as shown below:

typedef struct valgo dev private capability
{

/* callback */

valgo dev callback t callback;

/* param for the callback */

void *param;
} valgo dev private capability t;

The private data fields associated with the voice algo HAL device is as shown below:

typedef struct voice algo private data

{

} voice algo private data t;

6.4.7.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to
"public methods" in object-oriented languages, and are used by the Voice Algorithm
Manager to init, run, and so on its registered voice algo device.

For more information about operators, see Section 6.4.1.3.1.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

98/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.4.7.2.1

6.4.7.2.2

6.4.7.2.3

6.4.7.2.4

Smart HMI Software Development User Guide

Init

hal valgo status t (*init) (voice algo dev t *dev,
valgo dev callback t callback, void *param);

Init the voice algo HAL device.

Init performs all setups the device requires, such as preparing memory for voice
algorithm runtime consumption, loading Al models, running library initialization APl and
so on.

The callback function to the device's manager is typically installed as part of the Init
function as well.

This operator is called by the voice algorithm manager when the voice manager task first
starts.

Deinit

hal valgo status_t (*deinit) (voice algo dev_t *dev);

The DeInit function is used to "deinitialize" the algorithm device. DeInit must release
any hardware resources the device uses (heap memory, handles created by device, and
so on), turn off the hardware, and perform any other shutdown required by the device.

This method is not called in AFE Manager based on current framework version.

Note: The 'Delnit’ function generally is not called under normal operation.

Run

hal valgo status_t (*run) (const voice algo dev t *dev, void
*data) ;

Begin running the voice algorithm.

The run operator is used to start running algorithm inference and processing voice frame
data.

This operator is called by the Voice Algorithm manager when the
kFWKMessageID VAlgoASRInputProcess message is received from the AFE
Manager and forwarded to the algorithm device via the Voice Algorithm Manager.

Once the Voice Algorithm device finishes processing the voice frame data, its manager
forwards the inference result to the Output Manager. If Wake Word is detected, Voice
manager forwards a message indicating length of wake word to AFE manager.

InputNotify

hal valgo status t (*inputNotify) (const voice algo dev t
*receiver, void *data) ;

Handle input events.

The InputNotify operator is called by the Voice Algorithm Manager whenever the
kFWKMessageID InputNotify message is received and forwarded from the Voice
Algorithm Manager's message queue.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
99 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.4.7.3

6.4.7.3.1

6.4.7.3.2

6.4.7.4

Smart HMI Software Development User Guide

For more information regarding events and event handling, see Events.
Capabilities

The capabilities structis primarily used for storing a callback to communicate
information from the device back to the Voice Algorithm Manager. This callback function
is typically installed via a device's init operator.

Callback

7%

* @brief Callback function to notify managers the results of
inference

* valgo_dev* dev Pointer to an algorithm device

* valgo_event t event Event which took place

* void* param Pointer to a struct of data that needs to be
forwarded

* unsigned int size Size of the struct that needs to be

forwarded. If size = 0, param should be a pointer to a
* persistent memory area.
)

typedef int (*valgo dev callback t) (int devId, valgo event t
event, void *param, unsigned int size, uint8 t fromISR);

valgo dev callback t callback;

Callback to the Voice Algorithm Manager.

The Voice Algorithm manager provides the callback to the device when the init
operator is called. As a result, the HAL device must make sure to store the callback in the
init operator's implementation.

The HAL device invokes this callback to notify the Voice Algorithm manager of specific
events.

Param

void *param;

The param for the callback (optional).

Example

Because only one Voice Algorithm device can be registered at a time per the design of
the framework, the SLN-TLHMI-IOT project has two Voice Algorithm devices(DSMT/VIT)
implemented.

Note: This example is implemented using the DSMT algorithm

This example is reproduced below:

hal valgo status t voice algo dev_asr init(voice algo dev t
*dev, valgo dev callback t callback, void *param)
static hal valgo status t

HAL VisionAlgoDev OasisLite Deinit (vision algo dev t *dev);

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
100/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

hal valgo status t voice algo dev _asr run(const
voice algo dev t *dev, void *data)

hal valgo status t voice algo dev input notify(const
voice algo dev t *dev, void *data)

const static voice algo dev operator t voice algo dev _asr ops =

{

.init = voice algo dev_asr init,
.deinit = NULL,
.run = voice algo dev_asr_ run,

.inputNotify = voice algo dev_ input notify

b

static voice algo dev t voice algo dev _asr = {
.id = 0,
.ops = (voice algo dev operator t

*) &voice algo dev_asr ops,
.cap = {.param = NULL},
b

hal valgo status t voice algo dev_asr init(voice algo dev t
*dev, valgo dev callback t callback, void *param)

{

hal valgo status t ret kStatus HAL ValgoSuccess;
uint32 t timerId = (07

/* Set callback function */
dev->cap.callback = callback;

/* Initialize the ASR engine */
initialize asr();

return ret;

}

/* voice algorithm device inference run function*/
hal valgo status_t voice algo dev_asr run(const
voice algo dev t *dev, void *data)
{
hal valgo status t status = kStatus HAL ValgoSuccess;
static asr events t asrEvent = ASR SESSION ENDED;
struct asr inference engine *pInfWwW;
struct asr inference engine *pInfCMD;
char **cmdString;
intl6 t *pil6Sample;

audio msg payload t *audioIn = (audio msg payload t *)data;

/* Wake Word detection. Check all enabled languages, but
stop on first match. */

for (pInfWW = s AsrEngine.voiceControl.infEngineWw;
pInfWW != NULL; pInfWW = pInfWW->next)

{

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

101/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

if (asr process audio buffer (pInfWW->handler,
pil6Sample, NUM SAMPLES AFE OUTPUT, pInfWW->iWhoAmI inf) ==
kAsrLocalDetected)

{
LOGI ("Trust: %d, SGDiff: %d\r\n",
s AsrEngine.voiceControl.result.trustScore,

s _AsrEngine.voiceControl.result.SGDiffScore) ;
}
}

return status;

}

hal valgo status_t voice algo dev input notify(const

voice algo dev t *dev, void *data)

{
hal valgo status t error = kStatus HAL ValgoSuccess;
event voice t event * (event voice t *)data;
const char *language str = NULL;

return error;

}

int HAL VoiceAlgoDev Asr Register()
{

int error = 0;
LOGD ("HAL VoiceAlgoDev Asr Register");
error =

FWK VoiceAlgoManager DeviceRegister (&voice algo dev_asr) ;
return error;

6.4.8 Audio processing device

Audio Processing Device is used for Audio Front End (AFE) processing. In the following
sections, we abridge 'Audio Processing Device' as 'AFE device'. And also use 'AFE
manager' instead of 'audio_processing manager'.

The AFE HAL device provides an abstraction to represent audio front-end(AFE)handling.

AFE provides several subalgorithm modules, finally outputting a clean stream for the
ASR engine. AFE supports Beamformer, AEC, NS, and DOA. Beamformer eliminates
reverberation and background noise. AEC (Acoustic Echo Cancellation) can support
multi-channel systems, which is used for suppressing local speaker stream. DOA
(Direction Of Arrival) tracking has 1-degree resolution.

The AFE device receives microphone streams and reference streams (speaker streams)
and outputs a clean stream for the ASR engine.

As with other device types, the AFE device is controlled via the AFE manager. The AFE
manager is responsible for managing all registered AFE HAL devices, and invoking AFE
device operators (init, start, run, stop, and so on) as necessary. Additionally, the

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
102/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

AFE Manager allows for multiple AFE devices to be registered and operate at once.
Based on real project requirements, in most cases, only one AFE device is needed.

6.4.8.1 Device definition

The HAL device definition for AFE devices can be found under framework/hal api/
hal audio processing dev.h and is reproduced below:

typedef struct audio processing dev audio processing dev t;
/*! @brief Attributes of an audio processing device. */
struct audio processing dev
{

/* unique id which is assigned by audio processing manager
during registration */

int id;

/* name of the device */

char name [DEVICE NAME MAX LENGTH];

/* operations */

const audio processing dev operator t *ops;

/* private capability */

audio processing dev private capability t cap;

}i

The device operators associated with AFE HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by a audio
processing device */
typedef struct audio processing dev operator
{

/* initialize the dev */

hal audio processing status t (*init)
(audio processing dev_t *dev, audio processing dev callback t
callback) ;

/* deinitialize the dev */

hal audio processing status_t (*deinit) (const
audio processing dev_t *dev);

/* start the dev */

hal audio processing status t (*start) (const
audio processing dev_t *dev);

/* start the dev */

hal audio processing status_t (*stop) (const
audio processing dev_t *dev);

/* notify the audio processing dev t */

hal audio processing status t (*run) (const
audio processing dev_t *dev, void *param) ;

/* notify the audio processing dev t */

hal audio processing status_t (*inputNotify) (const
audio processing dev_t *dev, void *param) ;
} audio processing dev operator t;

The device capabilities associated with AFE HAL devices are as shown below:

/*! @brief Structure that capability of the AFE device. */
typedef struct audio processing dev private capability
{
/* callback */
audio processing dev callback t callback;
} audio processing dev private capability t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

103 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.4.8.2

6.4.8.2.1

6.4.8.2.2

6.4.8.2.3

6.4.8.2.4

Smart HMI Software Development User Guide

Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to
"public methods" in object-oriented languages, and are used by the AFE Manager to set
up, start, and so on, each of its registered AFE devices.

Init

hal audio processing status t (*init) (audio processing dev t
*dev, audio processing dev callback t callback);

Initialize the AFE device.

Init performs all setups that the device requires, such as preparing memory for AFE
runtime consumption, microphone number and position, and so on.

This operator is called by the AFE Manager when the AFE Manager task first starts.

Deinit

hal audio processing status t (*deinit) (const
audio processing dev_t *dev);

De-initialize the AFE device.

DeInit releases all memory resources allocated in initialization stage. Set all handles
created to NULL.

This operator is not called in AFE Manager based on current framework version.

Note: The "Delnit’ function is not called under normal operation.

Start

hal audio processing status t (*start) (const
audio processing dev_t *dev);

Start the AFE device.

The start operator is called in the initialization stage of the AFE Manager's task after
the call to the Init operator. Since AFE device is a pure software device, there is not
Clock/GPIO, or any peripheral bus depended. In most cases, the Start method can
return kStatus HAL AudioProcessingSuccess directly.

Stop

hal audio processing status t (*stop) (const
audio processing dev t *dev);

Stop is reverted operation compared to Start. Return
kStatus HAL AudioProcessingSuccess if there is nothing needed to be done to
device.

For the AFE device SDK implemented, this method returns
kStatus HAL AudioProcessingSuccess directly. And it is not called in AFE
Manager based on current framework version.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
104 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.8.2.5 Run

hal audio processing status t (*run) (const
audio processing dev_t *dev, void *param);

Execute AFE engine for handling microphone stream and outputting clean stream.

The Run operator will be called by the AFE Manager to handle audio frame with 160
samples.

6.4.8.2.6 InputNotify

hal audio processing status_ t (*inputNotify) (const
audio processing dev_t *dev, void *param) ;

Handle input events.

The InputNotify operator is called by the AFE Manager whenever a
kFWKMessageID InputNotify message is received by and forwarded from the AFE
Manager's message queue.

For more information regarding events and event handling, see Events.

6.4.8.3 Capabilities

typedef struct audio processing dev private capability
{

/* callback */

audio processing dev callback t callback;
} audio processing dev private capability t;

The capabilities structis primarily used for storing a callback to communicate
information from the device back to the AFE Manager. This callback function is typically
installed via a device's init operator.

6.4.8.3.1 Callback

/**

* @brief Callback function to notify audio processing manager
that an async event took place

* @param dev Device structure of the audio processing device
calling this function

* (@param event id of the event that took place

* (@param param Parameters
* @param fromISR True if this operation takes place in an irgq,
0 otherwise
* @return 0 if the operation was successfully
*
/

typedef int (*audio processing dev callback t) (
const audio processing dev_t *dev,
audio processing event t event,
void *param, unsigned int size,
uint8 t fromISR);

Callback to the AFE Manager.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

105/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.4.8.3.2

6.4.8.4

Smart HMI Software Development User Guide

The HAL device invokes this callback to notify the AFE Manager of specific events like
"audio processing done or audio dumping event."

The AFE Manager provides this callback to the device when the init operator is called.
As a result, the HAL device should make sure to store the callback in the init operator's
implementation.

hal audio processing status_t
audio processing afe init (audio processing dev t *dev,

audio processing dev callback t callback)

{
hal audio processing status t error =
kStatus HAL AudioProcessingSuccess;

sln afe status t afeStatus kAfeSuccess;
sln afe config t afeConfig = {0};

dev->cap.callback = callback;

afeConfig.numberOfMics = AUDIO PDM MIC COUNT;
afeConfig.afeMemBlock s afeExternalMemory;

return error;

Param

void *param;

The parameter of the callback points to audio data AFE outputting.

Example

The SLN-TLHMI-IOT project implements one AFE device for use as-is or for use as
reference for implementing new AFE devices. Source files for these AFE HAL devices
can be found under hal/voice/hal audio processing afe.c.

const static audio processing dev operator t

audio processing afe ops = {
.init = audio processing afe init,
.deinit = audio processing afe deinit,
.start = audio processing afe start,
.stop = audio processing afe stop,
.run = audio processing afe run,

.inputNotify = audio processing afe notify,

b

static audio processing dev_t audio processing afe = {
.id = 1, .name = "AFE", .ops =
&audio processing afe ops, .cap = {.callback = NULL}};

hal audio processing status t
audio processing afe init (audio processing dev t *dev,

audio processing dev callback t callback)

{

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
106 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

hal audio processing status t error =
kStatus _HAL AudloProce881ngSuccess,
/%
* Prepare AFE memory and configuration parameters needed,
* and then initialize AFE library.

*/

return error;

}

hal audio processing status t audio processing afe deinit (const
audio _processing dev_t *dev)
{
hal audio processing status t error =
kStatus HAL AudioProcessingSuccess;
return error;

}

hal audio processing status t audio processing afe start (const
audio _processing dev t *dev)
{
hal audio processing status t error =
kStatus HAL AudioProcessingSuccess;
return error;

}

hal audio processing status t audio processing afe stop(const
audio processing dev_t *dev)
{
hal audio processing status t error =
kStatus HAL AudioProcessingSuccess;
return error;

}

hal audio processing status t audio processing afe notify(const
audio _processing dev_t *dev, void *param)

{

hal audio processing status t error
kStatus HAL AudioProcessingSuccess;

event voice t event = *(event voice t
*)param;

/* Parse event structure and do further handling */

return error;

}

hal audio processing status t audio processing afe run(const
audio processing dev t *dev, void *param)

{

hal audio processing status t error
kStatus HAL AudloPr006551ngSuccess,
event_v01ce_t event
*)param;

* (event voice t

/* Parse event structure and execute AFE engine for
handling microphone streams */

return error;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

107 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.9 Flash devices

6.4.9.1

The flash HAL device represents an abstraction used to implement a device that handles
all operations dealing with flash (permanent) storage.

Note: Even though the word "flash" is used in the terminology of this device, the user

is technically capable of implementing an FS that uses a volatile memory instead. One
potential reason for doing so would be to run logic/sanity checks on the filesystem API's
before implementing them on a flash device. Ultimately, the flash HAL device is useful for
abstracting not only flash operations, but memory operations in general.

The flash HAL device is primarily used as a wrapper over an underlying filesystem, be it
LittleFS, FatFS, and so on. As a result, the Flash Manager only allows one flash device
to be registered because there is usually no need for multiple file systems operating at
the same time.

General information

Because only one flash device can be registered at a time, it means that API calls to the
Flash Manager essentially act as wrappers over the flash HAL device's operators.

In terms of functionality, the flash HAL device provides:

* Read/Write operations

¢ Cleanup methods to handle defragmentation and/or emptying flash sectors during idle
time

¢ Information about underlying flash mapping and flash type

Device definition

The HAL device definition for flash devices can be found under framework/hal api/
hal flash dev.h and is reproduced below:

/*! @brief Attributes of a flash device */
struct flash dev
{

/* unique id */

int id;

/* operations */

const flash dev operator t *ops;

b

The device operators associated with flash HAL devices are as shown below:

/*! @brief Callback function to timeout check requester list
busy status. */
typedef int (*lpm manager timer callback t) (1lpm dev_t *dev);

/*! @brief Operation that needs to be implemented by a flash
device */
typedef struct flash dev operator
{
sln flash status t
sln flash status t

*init) (const flash dev t *dev);
- - _ *deinit) (const flash dev t *dev);

sln flash status t (*format) (const flash dev t *dev);

sln flash status t (*save) (const flash dev t *dev, const
char *path, void *buf, unsigned int size);

sln flash status t (*append) (const flash dev t *dev, const
char *path, void *buf, unsigned int size, bool overwrite);

—~ o~~~

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
108 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

sln flash status t (*read) (const flash dev t *dev, const
char *path, void *buf, unsigned int offset, unsigned int
*size);

sln flash status t (*mkdir) (const flash dev t *dev, const
char *path);

sln flash status t (*mkfile) (const flash dev t *dev, const
char *path, bool encrypt):;

sln flash status t (*rm) (const flash dev t *dev, const char
*path) ;

sln flash status t (*rename) (const flash dev t *dev, const
char *oldPath, const char *newPath);

sln flash status t (*cleanup) (const flash dev t *dev,
unsigned int timeout ms);
} flash dev operator t;

6.4.9.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to
"public methods" in object oriented-languages.

For more information about operators, see Section 6.4.1.3.1 .

6.4.9.2.1 Init

sln flash status t (*init) (const flash dev t *dev);

Initialize the flash and filesystem.

Init must initialize any hardware resources required by the flash device (pins, ports,
clock, and so on) In addition to initializing the hardware, the init function should also
mount the filesystem.

Note: An application that runs from flash (does XiP) must not initialize/deinitialize any
hardware. If a hardware change is truly needed, the change must be performed with
caution.

Note: Some lightweight FS may not require mounting and can be prebuilt/preloaded on
the flash instead. Regardless, the “init’ function must result in the filesystem being in a
usable state.

6.4.9.2.2 Deinit

hal lpm status_t (*deinit) (const lpm dev t *dev);

"Deinitialize" the flash and filesystem.

DeInit must release any hardware resources a flash device might use (I/O ports, IRQs,
and so on), turn off the hardware, and perform any other shutdown the device requires.

6.4.9.2.3 Format

sln flash status t (*format) (const flash dev t *dev);

Clean and format the filesystem.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

109 /190

NXP Semiconductors MCU-SMHMI-SDUG

6.4.9.24

6.4.9.2.5

6.4.9.2.6

6.4.9.2.7

6.4.9.2.8

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Save

sln flash status t (*save) (const flash dev t *dev, const char
*path, void *buf, unsigned int size);

Save a file with the contents of buf to path in the filesystem.

Append

sln flash status t (*append) (const flash dev t *dev, const char
*path, void *buf, unsigned int size, bool overwrite);

Append the contents of buf to an existing file at path.

Setting overwrite equal to true causes append from the beginning of the file instead.
Note: ‘overwrite == true’ makes this function nearly equivalent to the save function, the
only difference is that this does not create a new file.

Read

sln flash status t (*read) (const flash dev t *dev, const char
*path, void *buf, unsigned int offset, unsigned int *size);

Read a file from the filesystem located at path and storing the contents in buf.

To find the needed space for the buf, call read with buf set to NULL. In case there is
not enough space in memory to read the whole file, read with offset can be use while
specifying the chunk size.

Note: It is up to the user to guarantee that the buffer supplied will fit the contents of the
file being read.

Make directory

sln flash status t (*mkdir) (const flash dev_t *dev, const char
* .
ph) ;

Create a directory at path.

If the filesystem in use does not support directories,
this operator can be set to "NULL .

Make file

sln flash status t (*mkfile) (const flash dev_t *dev, const char
*path, bool encrypt):;

Creates the file mentioned by the path. If the information needs to stored not in plain text,
encryption can be enabled.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
110/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.9.29 Remove

sln flash status t (*rm) (const flash dev t *dev, const char
*path) ;

Remove the file at path.

If the filesystem in use does not support directories,
this operator can be set to "NULL .

6.4.9.2.10 Rename

sln flash status t (*rename) (const flash dev t *dev, const char
*oldPath, const char *newPath) ;

Rename/move a file from o1dPath to newPath.

6.4.9.2.11 Cleanup

sln flash status t (*cleanup) (const flash dev t *dev, unsigned
int timeout ms);

Clean up the filesystem.

This function is used to help minimize delays introduced by things like fragmentation
caused during "erase sector" operations that can lead to unwanted delays when
searching for the next available sector.

timeout ms specifies how much time to wait while performing cleanup. This helps
prevent multiple HAL devices calling c1eanup and stalling the filesystem.

6.4.9.3 Example

As only one flash device can be registered at a time per the design of the framework, the
project has only one filesystem implemented.

The source file for this flash HAL device can be found at HAL /common/
hal flash littlefs.c

In this example, we demonstrate a way to integrate Littlefs in our framework.

Littlefs is a lightweight file-system that is designed to handle random power failures.
The architecture of the file-system allows having directories and files. As a result, this
example uses the following file layout:

root-directory

— cfg
Metadata
fwk cfg - stores framework related information.
app_cfg - stores app specific information.
— oasis
Metadata
faceFiles - the number of files that stores faces are
up to 100

|: app_specific
wifi info

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

111/190

https://github.com/littlefs-project/littlefs

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

L wifi info

6.4.9.3.1 Littlefs device

static sln flash status t 1fs init()

{
int res = kStatus HAL FlashSuccess;
if (s_LittlefsHandler.lfsMounted)
{

return kStatus HAL FlashSuccess;

_LittlefsHandler.lock = xSemaphoreCreateMutex() ;
if (s_LittlefsHandler.lock == NULL)

-0

—~

LOGE ("Littlefs create lock failed"):;
return kStatus HAL FlashFail;

1fs get default config(&s LittlefsHandler.cfq);

#if DEBUG

BOARD InitFlashResources () ;
#endif

SLN_ Flash Init():;

if (res)

{
LOGE ("Littlefs storage init failed: %i", res);
return kStatus HAL FlashFail;

res = 1fs mount (&s_LittlefsHandler.lfs,
&s_LittlefsHandler.cfq);
if (res == 0)
{
s LittlefsHandler.lfsMounted = 1;
LOGD ("Littlefs mount success");
}
else if (res == LFS_ERR CORRUPT)
{
LOGE ("Littlefs corrupt");
1fs format (&s LittlefsHandler.lfs,
&s_LittlefsHandler.cfq);
LOGD ("Littlefs attempting to mount after
reformatting...");
res = 1lfs mount (&s_LittlefsHandler.lfs,
&s_LittlefsHandler.cfq);
if (res == 0)
{
s _LittlefsHandler.lfsMounted = 1;
LOGD ("Littlefs mount success");
}
else
{
LOGE ("Littlefs mount failed again");
return kStatus HAL FlashFail;

}

else

{
LOGE ("Littlefs error while mounting");

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

1127190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

}

return res;

}

static sln flash status t 1fs cleanupHandler (const flash dev t
*dev,

unsigned int timeout ms)
{
sln flash status t status =
kStatus HAL FlashSuccess;
uint32 t usedBlocks[LFS SECTORS/32]
uint32 t emptyBlocks =
uint32 t startTime =
uint32 t currentTime =

OO O~
S (@]
—

~

~

if (_lock())
{
LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;
}

/* create used block list */
1fs fs traverse(&s_ LittlefsHandler.lfs,
_1fs traverse create used blocks,
&usedBlocks) ;

startTime = sln current time us();
/* find next block starting from free.i */

for (int i = 0; i1 < LFS_SECTORS; i++)
{

currentTime = sln current time us();
/* Check timeout */
if ((timeout ms) && (currentTime >= (startTime +

timeout ms * 1000)))
{
break;

}

1fs block t block = (s LittlefsHandler.lfs.free.i + 1)
% LFS_SECTORS;

/* take next unused marked block */
if (! is blockBitSet (usedBlocks, block))
{
/* If the block is marked as free but not yet
erased, try to erase it */
LOGD ("Block %i is unused, try to erase it", block);
_1fs gspiflash erase(&s LittlefsConfigDefault,
block) ;
emptyBlocks += 1;

}

LOGI ("%1i empty blocks starting from %i available in %ims",
emptyBlocks, s LittlefsHandler.lfs.free.i,
(sln_current time us() - startTime)/1000);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

1137190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

_unlock() ;
return status;

}

static sln flash status t 1fs formatHandler (const flash dev t
*dev)
{
if (_lock())
{
LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;
}
1fs format (&s LittlefsHandler.lfs, &s LittlefsHandler.cfq);
_unlock() ;
return kStatus HAL FlashSuccess;

}

static sln flash status t 1fs rmHandler (const flash dev t
*dev, const char *path)
{

int res;

if (_lock())
{
LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;
}

res = 1lfs remove (&s LittlefsHandler.lfs, path);
if (res)
{

LOGE ("Littlefs while removing: $%i", res);

_unlock();

if (res == LFS_ERR NOENT)

{

return kStatus HAL FlashFileNotExist;
}

return kStatus HAL FlashFail;
}
_unlock();
return kStatus HAL FlashSuccess;

}

*dev, const char *path)

{

static sln flash status t 1fs mkdirHandler (const flash dev t

int res;

if (_lock())

{
LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;

res = 1fs mkdir (&s_LittlefsHandler.lfs, path);
if (res == LFS ERR EXIST)
{

LOGD ("Littlefs directory exists: %$i", res);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

114 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

_unlock() ;

return kStatus HAL FlashDirExist;
}
else 1if (res)

{

n

LOGE ("Littlefs creating directory: %$i", res);
_unlock() ;
return kStatus HAL FlashFail;

}

_unlock();

return kStatus HAL FlashSuccess;

}

static sln flash status t 1fs writeHandler (const flash dev t
*dev, const char *path, void *buf, unsigned int size)
{
int res;
1fs file t file;

if (_lock())

{
LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;

res = 1fs file opencfg(&s LittlefsHandler.lfs, &file, path,
LFS O CREAT, &s FileDefault);
if (res)

{

n

LOGE ("Littlefs opening file: %i", res);
_unlock() ;
return kStatus HAL FlashFail;

}

res = 1fs file write(&s LittlefsHandler.lfs, &file, buf,
size) ;
if (res < 0)

{
LOGE ("Littlefs writing file: %i", res);

_unlock();
return kStatus HAL FlashFail;

res = 1fs file close(&s LittlefsHandler.lfs, &file);
if (res)

{
LOGE ("Littlefs closing file: %i", res);

_unlock();
return kStatus HAL FlashFail;

}

_unlock();
return kStatus HAL FlashSuccess;

}

static sln flash status t 1fs appendHandler (const flash dev t
*dev,

const char *path,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

115/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

void *buf,
unsigned int size,

bool overwrite)

{

int res;
1fs file t file;

if (_lock())
{
LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;
}

res = 1fs file opencfg(&s LittlefsHandler.lfs, &file, path,
LFS O APPEND, &s FileDefault);
if (res)
{
LOGE ("Littlefs opening file: %i", res);
_unlock();
if (res == LFS ERR NOENT)
{
return kStatus HAL FlashFileNotExist;
}
return kStatus HAL FlashFail;

if (overwrite == true)

res = 1fs file truncate(&s LittlefsHandler.lfs, &file,

if (res < 0)

{
LOGE ("Littlefs truncate file: %i", res);
_unlock() ;
return kStatus HAL FlashFail;

res = 1fs file write(&s LittlefsHandler.lfs, &file, buf,
size);
if (res < 0)
{
LOGE ("Littlefs writing file: %i", res);
_unlock();
return kStatus HAL FlashFail;

res = 1fs file close(&s LittlefsHandler.lfs, &file);
if (res)
{
LOGE ("Littlefs closing file: %i", res);
_unlock() ;
return kStatus HAL FlashFail;
}

_unlock();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

116 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

return kStatus HAL FlashSuccess;
}

static sln flash status t 1fs readHandler (const flash dev t
*dev, const char *path, void *buf, unsigned int size)
{

int res;

int offset = 0;

1fs file t file;

if (_lock())
{
LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;
}
res = 1fs file opencfg(&s LittlefsHandler.lfs, &file, path,
LFS O RDONLY, &s_ FileDefault);
if (res)
{
LOGE ("Littlefs opening file: %i", res);
_unlock();
if (res == LFS ERR NOENT)
{
return kStatus HAL FlashFileNotExist;
}
return kStatus HAL FlashFail;
}

do
{
res = 1lfs file read(&s LittlefsHandler.lfs, &file, (buf
+ offset), size);
if (res < 0)
{
LOGE ("Littlefs reading file: %i", res);
_unlock();
return kStatus HAL FlashFail;
}
else if (res == 0)
{
LOGD ("Littlefs reading file \"%s\": Read only %d.
%d bytes not found ", path, offset, size);
break;
}

offset += res;
size -= res;
} while (size > 0);

res = 1fs file close(&s LittlefsHandler.lfs, &file);
if (res)
{
LOGE ("Littlefs closing file: %i", res);
_unlock();
return kStatus HAL FlashFail;

_unlock();
return kStatus HAL FlashSuccess;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

11771190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

static sln flash status t 1fs renameHandler (const flash dev t
*dev, const char *0OldPath, const char *NewPath)
{

int res;

if (_lock())

{
LOGE ("Littlefs lock failed");
return kStatus HAL FlashFail;

res = 1fs rename(&s LittlefsHandler.lfs, OldPath, NewPath);

if (res)

{
LOGE ("Littlefs renaming file: %i", res);
unlock () ;

return kStatus HAL FlashFail;
}

_unlock() ;
return kStatus HAL FlashSuccess;

}

const static flash dev operator t s FlashDev LittlefsOps = {

.init = 1fs init,

.deinit = NULL,

.format = 1fs formatHandler,
.append = 1fs appendHandler,
.save = 1fs writeHandler,
.read = 1fs readHandler,
.mkdir = 1fs mkdirHandler,
.rm = 1fs rmHandler,
.rename = 1fs renameHandler,
.cleanup= 1fs cleanupHandler,

bs

static flash dev t s FlashDev Littlefs = {
.id = 0,
.0ops = &s FlashDev LittlefsOps,

bi

int HAL FlashDev Littlefs Init()

{
int error = 0;
LOGD ("++HAL FlashDev Littlefs Init");
_1fs init();

LOGD ("--HAL FlashDev Littlefs Init");
error = FWK Flash DeviceRegister (&s_FlashDev Littlefs);

FWK LpmManager RegisterRequestHandler (&s LpmReq) ;
return error;

Note: The information presented here shows only the operators described above. For
more information regarding Littlefs configuration, FlexSPI configuration, optimization
done, check the full code base.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

118 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.4.10 Multicore devices

The multicore HAL device represents an abstraction used to implement a device that
handles all multicore message passing.

The Multicore HAL device is primarily used as a wrapper over known multicore message
libraries, be it MU/Mailbox peripheral registers, rpmsg_lite, eRPC, and so on.

In terms of functionality, the multicore HAL device provides:
* Send operation
* Receive operation

6.4.10.1 Device definition

The HAL device definition for multicore devices can be found under framework/hal
api/hal multicore dev.h and is reproduced below:

/*! @brief Attributes of a multicore device. */
struct multicore dev
{

/* unique id which is assigned by multicore manager during
the registration */

int id;

/* name of the device */

char name [DEVICE NAME MAX LENGTH];

/* operations */

const multicore dev operator t *ops;

/* private capability */

multicore dev private capability t cap;

15

The device operators associated with multicore HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by a
multicore device */
typedef struct multicore dev operator
{
/* initialize the dev */
hal multicore status_t (*init) (multicore dev t *dev,
multicore dev callback t callback, void *param) ;
/* deinitialize the dev */
hal multicore status t (*deinit) (const multicore dev t
*dev) ;
/* start the dev */
hal multicore status_ t (*start) (const multicore dev t
*dev) ;
/* Multicore Send the message */
hal multicore status t (*send) (const multicore dev t *dev,
void *data, unsigned int size);
/* input notify */
hal multicore status t (*inputNotify) (const multicore dev t
*dev, void *data):;
} multicore dev operator t;

In order to achieve a two-way communication between cores, hal devices need to
implement both send and receive operations. The send is triggered by the multicore

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

119/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

manager, while receive is async, the other core being able to send at any moment. All
async operations are handled within Multicore manager callback.

/**
* @brief callback function to notify multicore manager that an
async event took place
* (@param dev Device structure of the multicore device calling
this function
* (@param event the event that took place
* (@param fromISR True if this operation takes place in an irq,
0 otherwise
* @return 0 if the operation was successfully
*
/
typedef int (*multicore dev callback t) (const multicore dev t
*dev, multicore event t event, uint8 t fromISR);

/*! @brief Structure that characterizes the multicore device.
=/
typedef struct multicore dev private capability

{
/* callback */
multicore dev callback t callback;

} multicore dev private capability t;

6.4.10.2 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to
"public methods" in object oriented-languages.

For more information about operators, see Section 6.4.1.3.1.

6.4.10.2.1 Init

/* initialize the dev */
hal multicore status t (*init) (multicore dev t *dev,
multicore dev callback t callback, void *param) ;

Init should initialize any hardware resources required by the multicore device (pins,
ports, clock, and so on).

6.4.10.2.2 Deinit

/* deinitialize the dev */
hal multicore status t (*deinit) (const multicore dev_t *dev);

"Deinitialize" the multicore device.

DeInit should release any hardware resources a multicore device might use (/O ports,
IRQs, and so on), turn off the hardware, and perform any other shutdown the device
requires.

6.4.10.2.3 Start

/* start the dev */
hal multicore status t (*start) (const multicore dev t *dev);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

120/190

NXP Semiconductors MCU-SMHMI-SDUG

6.4.10.2.4

MCU-SMHMI-SDUG

6.4.10.3

Smart HMI Software Development User Guide

Start should start the flow. Handshake protocol can be implemented. The purpose of a
handshake protocol is to verify that both cores initialized properly the multicore unit.

Send

/* Multicore Send the message */
hal multicore status t (*send) (const multicore dev_t *dev, void
*data, unsigned int size);

Multicore manager passes a buffer to the underlying level. The multicore device must
send the message, characterized by the size, to the counterpart device from the other
core. On the other side, after receiving the message, the hal device is responsible to call
the callback, to make the multicore manager aware of the new message.

FreeRTOS message buffer device

Message buffers from FreeRTOS are used for one-way communication between two
threads. In order to create a two-way communication, a send task and receive task must
be created on both cores. Multicore Manager acts as a send task, while the receive
task is created within the Hal device init. The receive task also inherits the priority of
the send task. The send and receive task should be built having a non-blocking design
pattern in mind and they should be initialized with highest priority in order to have the
best response time.

The number of shared buffers that must be allocated is two, one for each one way
communication. The size is at least the maximum message size, after a deep copy
has been performed. They should be allocated statically at compile or a procedure to
advertise between cores the address should be implemented.

e CM7/ Write Buffer = CM4/ Read Buffer
¢ CM4/ Write Buffer = CM7/ Read Buffer

For more information about RTOS Message Buffers API, check FreeRTOS
documentation

void vGenerateMulticoreInterrupt (void *xUpdatedMessageBuffer)

{
/* Trigger the inter-core interrupt using the MCMGR
component.
Pass the APP MESSAGE BUFFER EVENT DATA as data that
accompany
the kMCMGR FreeRtosMessageBuffersEvent event. */

(void) MCMGR TriggerEventForce (kMCMGR FreeRsMessageBuffersEvent,
kMulticore DataEvent);

}

static void RemoteAppReadyEventHandler (uintl6 t eventData, void
*context)

{

* (bool *)context = (bool)eventData;

}

static void FreeRtosMessageBuffersEventHandler (uintl6 t
eventData, void *context)

{
BaseType t xHigherPriorityTaskWoken = pdFALSE;

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
121 /190

https://www.freertos.org/RTOS-message-buffer-API.html

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

/* Make sure the message has been addressed to us. Using
eventData that accompany
the event of the kMCMGR FreeRtosMessageBuffersEvent
type, we can distinguish
different consumers. */
if (kMulticore DataEvent == eventData)
{
/* Call the API function that sends a notification to
any task that is
blocked on the xUpdatedMessageBuffer message buffer waiting
for data to
arrive. */

(void) xMessageBufferSendCompletedFromISR (xReadMessageBuffer,
&xHigherPriorityTaskWoken) ;
}

/* Normal FreeRTOS "yield from interrupt" semantics, where

HigherPriorityTaskWoken is initialzed to pdFALSE and will
then get set to

PdTRUE if the interrupt unblocks a task that has a priority
above that of

the currently executing task. */

POrtYIELD FROM ISR (xHigherPriorityTaskWoken) ;

/* No need to clear the interrupt flag here, it is handled
by the mcmgr. */
}

static void HAL MulticoreDev MessageBuffer RcvMsgHandler (void
*param)
{
/* Size to cover on MAX message. Can be lowered if we know
what we send */
static uint8 t pMessageBufferRcv[MB STORAGE BUFFER SIZE];

while (1)
{
size t xReceivedBytes =
xMessageBufferReceive (xReadMessageBuffer, (void
*)pMessageBufferRcv,

sizeof (pMessageBufferRcv), portMAX DELAY) ;

LOGI ("Remote Message receive, size = %d",
xReceivedBytes) ;

if ((xReceivedBytes != 0) && (
s _MulticoreDev MessageBuffer.cap.callback != NULL))

{
multicore event t multicore event;
multicore event.eventId =
kMulticoreEvent MsgReceive;
multicore event.data = pMessageBufferRcv;
multicore event.size xReceivedBytes;
s MulticoreDev MessageBuffer.cap.callback(
&s_MulticoreDev MessageBuffer,

multicore event, false);
}
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

122/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

}

static hal multicore status t
HAL MulticoreDev MessageBuffer Deinit (const multicore dev t
*dev)
{
hal multicore status t status =
kStatus _HAL MultlcoreSuccess,

return status;

}

static hal multicore status t
HAL MulticoreDev MessageBuffer Send (const multicore dev t
*dev, void *data, uint32 t size)
{
hal multicore status t status =
kStatus _HAL MultlcoreSuccess,

if ((data != NULL) && (size != 0))
{
uint32 t streamFreeSpace =
xStreamBufferSpacesAvailable (xWriteMessageBuffer) ;
if (streamFreeSpace < size)

{
status = kStatus HAL MulticoreError;

LOGE ("Not enough_spage, free %$x needed %x",
streamFreeSpace, size);

}

if (status == kStatus HAL MulticoreSuccess)
{
(void) xMessageBufferSend (xWriteMessageBuffer, data,
size, 0);
LOGI ("MulticoreDev_send: Send %d bytes", size);
}
}
else
{
LOGD ("MulticoreDev_send: Nothing to send");

}

return status;

}

static hal multicore status t
HAL MulticoreDev MessageBuffer InputNotify (const
multicore _dev_t *dev, void *data)
{
hal multicore status t status =
kStatus _HAL MultlcoreSuccess,

return status;

}

static hal multicore status t
HAL MulticoreDev MessageBuffer Start (const multicore dev t
*dev)

{

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

123 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

hal multicore status t status =
kStatus HAL MulticoreSuccess;

/* Wait until the secondary core application signals it is
ready to communicate. */
while (true != s SecondCoreReady)
{
(void) MCMGR TriggerEvent (kMCMGR RemoteApplicationEvent,
true) ;
vTaskDelay (pdMS TO TICKS (10)) ;
}i

/* Send one more event to be sure the other core got it */
(void) MCMGR TriggerEvent (kMCMGR RemoteApplicationEvent,
true) ;

if
(xTaskCreate (HAL MulticoreDev MessageBuffer RcvMsgHandler,
MULTICORE RCV_ TASK NAME, MULTICORE RCV_ TASK STACK,
NULL, uxTaskPriorityGet (NULL), NULL) !=
PdPASS)
{
LOGE (" [MessageBuffer] Task creation failed!.");
while (1)

’

}

return status;

}

static hal multicore status t
HAL MulticoreDev MessageBuffer Init(multicore dev t *dev,

multicore dev callback t callback,
void *param)

hal multicore status t status =
kStatus HAL MulticoreSuccess;
LOGD ("Start Multicore MessageBuffer INIT");

s _MulticoreDev MessageBuffer.cap.callback = callback;

xWriteMessageBuffer = xMessageBufferCreateStatic(
/* The buffer size in bytes. */
MB_STORAGE BUFFER SIZE,
/* Statically allocated buffer storage area. */
&ucWriteMessageBufferStorage,
/* Message buffer handle. */
&xWriteMessageBufferStruct) ;

(void) MCMGR RegisterEvent (kMCMGR FreeRtosMessageBuffersEvent,
FreeRtosMessageBuffersEventHandler, ((void *)0));

(void) MCMGR RegisterEvent (kMCMGR RemoteApplicationEvent,
RemoteAppReadyEventHandler, (void *)&s SecondCoreReady) ;

/* We initied we are ready to rcv messages */
LOGD ("Exit Multicore MessageBuffer INIT");
return status;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

124 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.5 Events

6.5.1

6.5.1.1

Overview

Events are a means by which information is communicated between different devices via
their managers.

Event triggers

Events can correspond to many different happenings during the runtime of the
application, and can include things like:

¢ Button pressed
¢ Face detected
¢ Shell command received

When an event is triggered, the device that first received the event communicates that
event to its manager, that in turn notifies other managers designated to receive the event.

For example, when a button is pressed, a flow similar to the following takes place:

1. The "Push Button" HAL device receives an interrupt corresponding to the button that
was pressed.

2. Inside the HAL device's interrupt handler, the device associates an event with the
button that was pressed.

3. The HAL device specifies which managers should receive the event.

4. The HAL device forwards the event to its manager.

The code that corresponds to this scenario can be seen in the below excerpts from HAL/
common/hal input push buttons.c"and source/event handlers/smart
lock input push buttons.c, respectively.

void HAL InputDev IrgHandler (button data t *button,
switch press type t pressType)
{
if (s_InputDev PushButtons.cap.callback != NULL)
{
uint32 t receiverlist;
if (APP InputDev PushButtons SetEvent (button->buttonlId,
pressType, &s _pEvent, &receiverList) == kStatus Success)

{

s_inputEvent.inputData s_pEvent;
uint8 t fromISR = _get IPSR();

s InputDev PushButtons.cap.callback(&s InputDev PushButtons,
kInputEventID Recv, receiverList,
&s_inputEvent,

0, fromISR);

}

else

{

LOGE ("No valid event associated with SW%d button %s
press", button->buttonId,
pressType == kSwitchPressType Short ?

"short" : "long"):;

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
1257190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

The "callback" function in the above code refers to an
internal callback function inside the [Input Manager] (../

device managers/input manager.md)

which relays input events to each of the managers specified in
an event's ‘receiverList'.

switch (button)
{
case kSwitchID 1:
if (pressType == kSwitchPressType Long)
{
LOGD ("Long PRESS Detected."):;
unsigned int totalUsageCount;
FWK LpmManager RequestStatus (&totalUsageCount) ;

FWK LpmManager EnableSleepMode (kLPMManagerStatus SleepEnable) ;
}
break;

case kSwitchID 2:

if ((pressType == kSwitchPressType Short) ||
(pressType == kSwitchPressType Long))
{
*receiverList =1 <<

kFWKTaskID VisionAlgo;
s _FaceRecEvent.eventBase.eventId
kEventFaceRecID DelUser;

s_FaceRecEvent.delFace.hasName = false;
s_FaceRecEvent.delFace.hasID = false;
*event =

&s FaceRecEvent;

}

break;

case kSwitchID 3:

if ((pressType == kSwitchPressType Short) ||
(pressType == kSwitchPressType Long))
{
*receiverList = 1 <<

kFWKTaskID VisionAlgo;
s _FaceRecEvent.eventBase.eventId
kEventFaceRecID AddUser;
s _FaceRecEvent.addFace.hasName
*event
&s FaceRecEvent;
}

break;

false;

default:
ret = kStatus Fail;
break;

}

return ret;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

126 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

6.5.1.2 Types of events

6.5.1.2.1

Events can be used to communicate all sorts of information, but the two types of events
defined by default are InferComplete events and InputNotify events.

Both types of events represent different information being communicated to and by the
HAL devices.

InferComplete events

Inference events are used to indicate that a vision/voice algorithm HAL device has
completed a stage in its inference pipeline.

Note: Only output HAL devices can respond to “InferComplete” events. This is not true
of “InputNotify" events.

In the current application, it can refer to several things, including:

¢ Face detected
* Face recognized
¢ Fake face detected

Output HAL devices can respond to inference events by implementing an
inferComplete method. When an "InferComplete" event is triggered, the output
manager attempts to call the inferComplete event handler of each of its devices,
(assuming the device has implemented an inferComplete function).

As part of the inferComplete function call, the output manager also communicates the
HAL device from which the event originated, the ID of the event received, as well as any
additional information related to the event that was generated.

For example, a "Face Recognized" event also includes the ID of the face being
recognized. Below is an example of how the RGB LED HAL device responds to several
different events.

static hal output status t
HAL OutputDev RgbLed InferComplete (const output dev t *dev,

output algo source t source,

void *inferResult)
{
vision algo result t *visionAlgoResult =
(vision algo result t *)inferResult;
hal output status t error =
kStatus HAL OutputSuccess;

if (visionAlgoResult != NULL)
{
if (visionAlgoResult->id == kVisionAlgoID OasisLite)
{
oasis lite result t *result = &(visionAlgoResult-
>oasislLite) ;
if (source == kOutputAlgoSource Vision)
{
if ((result->face recognized) && (result-

>face id >= 0))
{
RGB LED SET COLOR (kRGBLedColor Green) ;

}

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
127 /1190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.5.1.2.2

Smart HMI Software Development User Guide

else if (result->face count)
{

RGB_LED_ SET COLOR (kRGBLedColor Red);
}
else
{

RGB_LED SET COLOR (kRGBLedColor Off);
}

For more information about handling events, see Event handlers.

InputNotify events

Input events are events that indicate that input has been received by an input HAL
device.

Only input HAL devices can generate an "InputNotify" event.
However, all HAL devices

(with the exception of LPM, Flash, and Graphics devices)
are able to respond to an "InputNotify" event.

Examples of input events include:

¢ Button pressed
* Shell command received
* Wi-Fi/BLE input received

The event to generate for a given input is decided by the device which receives the input.

For example, the Push-Button device associates different events based on the different
button presses and the duration of those button presses, either long or short presses.

switch (button)

{
case kSwitchID 1:
if (pressType == kSwitchPressType Long)
{
LOGD ("Long PRESS Detected."):;
unsigned int totalUsageCount;
FWK LpmManager RequestStatus (&totalUsageCount) ;

FWK LpmManager EnableSleepMode (kLPMManagerStatus SleepEnable) ;
}

break;

case kSwitchID 2:

if ((pressType == kSwitchPressType Short) ||
(pressType == kSwitchPressType Long))
{
*receiverList =1 <<

kFWKTaskID VisionAlgo;
s _FaceRecEvent.eventBase.eventId
kEventFaceRecID DelUser;

s_FaceRecEvent.delFace.hasName = false;
s _FaceRecEvent.delFace.hasID = false;
*event =

&s FaceRecEvent;

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
128 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

6.5.2

Smart HMI Software Development User Guide

}

break;

case kSwitchID 3:

if ((pressType == kSwitchPressType Short) ||
(pressType == kSwitchPressType Long))
{
*receiverList =1 <<

kFWKTaskID VisionAlgo;
s _FaceRecEvent.eventBase.eventlId =
kEventFaceRecID AddUser;
s_FaceRecEvent.addFace.hasName = false;
*event =
&s FaceRecEvent;

}

break;

default:
ret = kStatus Fail;
break;

Alongside an input event, the HAL device from which the event originated may also relay
additional information . Depending on the event, this may correspond to the button that
was pressed, the shell command and args that were received, and so on.

In the above example, we can see that pressing the SW3 push-button generates a
kEventFaceRecID AddUser event, specifying that there is no name for the face to
add.

A list of general events can be found in
"hal event descriptor common.h’, while a list of
face recognition-specific events can be found in
"hal event descriptor face rec.h'.

It is recommended that new events be added to the
"hal event descriptor common.h” file.

To respond to an "InputNotify" event, a HAL device must implement an inputNotify
handler function. When an "InputNotify" event is triggered, each manager which
receives the event attempts to call the inputNotify method of every one of its devices
(assuming the device has implemented an inputNotify method).

For more information regarding event handlers, see Event handlers.

Event handlers

Because events are the primary means by which the framework communicates between
devices, a mechanism to respond to those events is necessary for them to be useful.
Event handlers were created for this explicit purpose.

There are two kinds of event handler:

¢ Default Handlers
¢ App-specific Handlers

Event handlers, like other device operators, are passed via the device's operator struct to
its manager.

const static display dev operator t s DisplayDev LcdifOps = {

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
129 /190

NXP Semiconductors MCU-SMHMI-SDUG

6.5.2.1

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

.init = HAL DisplayDev LcdifRk024hh2 Init,
.deinit = HAL DisplayDev LcdifRk024hh2 Uninit,
.start = HAL DisplayDev LcdifRk024hh2 Start,
.blit = HAL DisplayDev_ LcdifRk024hh2 BIlit,

.inputNotify = HAL DisplayDev LcdifRk024hh2 InputNotify,

b

Each HAL device may define its own handlers for any given event. For example, a
developer may want the RGB LEDs to turn green when a face is recognized, but have
the Ul display a specific overlay for that same event. To do it, the RGB Output HAL
device and the Ul Output HAL device can each implement an InferComplete handler
which will be called by their manager when an "InferComplete" event is received.

A HAL device does NOT have to implement an event handler for
any specific event,

nor does it have to implement an "~InputNotify handler
(applicable for most device types)

or an InferComplete’ handler (applicable only for output
devices) .

Default handlers

Default event handlers are exactly what their name would suggest -- the default
means by which a device handles events. A HAL device's default event handlers
(InputNotify, InferComplete, and so on) can be found in the HAL device driver
itself.

Nearly every device has a default handler implemented, although most devices will only
actually handle a few types of events.

Note: Devices that do not have a handler implemented can be extended to have one by
using a similar device as an example.

static hal display status t
HAL DisplayDev LcdifRk024hh2 InputNotify(const display dev t
*receiver, void *data)
{
hal display status t error =
kStatus HAL DisplaySuccess;

event base t eventBase = *(event base t
*)data;
event status t event response status = kEventStatus Ok;
if (eventBase.eventId == kEventID SetDisplayOutputSource)
{
event common t event = *(event common t
*)data;

s DisplayDev Lcdif.cap.srcFormat
event.displayOutput.displayOutputSource;

s NewBufferSet = true;

if (eventBase.respond != NULL)

{

eventBase.respond (eventBase.eventld,

&event.displayOutput, event response status, true);

}

LOGI (" [display dev inputNotify]:
kEventID SetDisplayOutputSource devID %d, srcFormat %d",
receiver->id,

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
130/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

event.displayOutput.displayOutputSource) ;
}
else if (eventBase.eventId ==
kEventID GetDisplayOutputSource)
{
display output event t display;
display.displayOutputSource =
s DisplayDev Lcdif.cap.srcFormat;
if (eventBase.respond != NULL)
{
eventBase.respond (eventBase.eventId, &display,
event response status, true);
}
LOGI (" [display dev inputNotify]:
kEventID GetDisplayOutputSource devID %d, srcFormat %d",
receiver->id,
display.displayOutputSource) ;
}

return error;

Some devices will not handle any events at all and will instead return 0 after performing
no action.

hal camera status t HAL CameraDev CsiGc0308 InputNotify (const
camera dev t *dev, void *data)
{

hal camera status t ret = kStatus HAL CameraSuccess;

return ret;

Alternatively, some devices which do not require an event handler may simply return a
NULL pointer instead.

const static display dev operator t s DisplayDev LcdifOps = {

.init = HAL DisplayDev_Lcdifv2Rk055ah_Init,
.deinit = HAL DisplayDev Lcdifv2Rk055ah Deinit,
.start = HAL DisplayDev Lcdifv2Rk055ah Start,
.blit = HAL DisplayDev Lcdifv2Rk055ah Blit,

.inputNotify = NULL,
}i

Managers will not call the InputNoti fy or other handler if that handler points to NULL.
A device's default handler whether for InputNotify events or InferComplete or
otherwise can be overridden by an "app-specific" handler.

6.5.2.2 App-specific handlers

App-specific handlers are device handlers which are defined for a specific "app".

Not every device must implement an app-specific handler, but because default handlers
are implemented using WEAK functions, any device which has a default event handler can
have that handler overridden.

Note: Some devices may not have implemented their default handlers using "WEAK"
functions, but may be updated to do so in the future.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

131/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

For example, the IR + White LEDs may not require project-

specific handlers because they will always react the same way to a

kEventID SetConfig/kEventID GetConfig command. Alternatively, an application
may wish to override and/or extend that default event handling behavior so that, for
example, the LEDs increase in brightness when an "Add Face" event is received.

To help denote an app-specific handler, App-specific handlers start with the APP prefix.
If an app-specific handler for a device exists, it can be found in source/event
handlers/{APP NAME} {DEV TYPE} {DEV NAME}.c

7 Coffee machine

7.1 Introduction

This Coffee Machine application demonstrates the Coffee machine use-case with the
following core functionalities:

» Coffee machine GUI with touch support
* Local voice command to control the use cases of Coffee machine
» Face recognition to store user's coffee preferences automatically

For leveraging the full computational power of the RT107H, the image has been split into
two images that are running in parallel on the CM7 and CM4 cores. The Coffee Machine
CMT7 acts as an Al block, handling all the machine learning operations, such as face
recognition and voice command. The operation has been optimized to obtain the best
performance on this type of MCU. The Coffee Machine CM4 holds the user interaction
(display, shell, buttons). The CM4 image is loaded into the memory by the CM7 core.

By default, i.MX RT117H boot from CM7. By fusing BT _CORE_SEL (Bit 12 in 0x960), the
chip switches to CM4 as the main core. For more info on this topic, check AN13264.

The Coffee Machine uses the following HW components and peripherals:

* 2 x PDM MIC - configured to work with 16 kHz sampling. The conversion to PCM is
done in hardware using the PDM microphone interface.

* 16 KHz raw data to RT117x MQS HW peripheral that generates PWM data output.
External filtering and coupling.

¢ Analog audio amplifier

MIP1 GC2145 Camera - configured to work with 600x800 resolution.

LCDIFV2 Rocktech RKO55MHD091 - configured to work at the HD resolution of
1280x720

To change this configuration, check HAL code and Section 9.1

It uses NXP's below core technologies:

* LVGL-based GUI

* Local voice command algorithm

* Face recognition algorithm

» Dual core architecture based on multicore manager (mcmgr) middleware component.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

132/190

https://www.nxp.com/docs/en/application-note/AN13264.pdf

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

7.2 Architecture

7.3

7.4

Camera HAL
Display HAL

Vision Algo HAI
Graphics HAL

LVGL & VGLite HAL

Voice Algo HAL

Peripherals cmMm7 IPC with Shared Memory cMm4 Peripherals

CM4 (Ul & System control unit):
» Framework

CM?7 (Vision & Voice algorithm accelerator):
« Framework

- Vision algorithm with VGA input frames * CSIMIPI Camera preview @VGA

- Voice algorithm (AFE + ASR) with mic input + LVGL GUI @720p with VGLite 2D GPU acceleration

- MQS audio playback * Vision algorithm input frames color space conversion with PxP
» IPC communication with shared memory + Touch panel input

« IPC communication with shared memory

Figure 29. Architecture diagram

Software block diagram

OTA FW Update | sl

4P AWS loT

Beamforming

Echo
Automatic Speech Recognition

Wake Words & Commands Multicore Camera Manager Display Manager
Manager HAL HAL HAL
Input Manager ‘Output Manager Power Manager
HAL HAL HAL

Figure 30. Software diagram

It includes two projects as below:
-Host CM7 project
-Slave CM4 project

Each project uses a two layer architecture containing the Framework + HAL layer, and
the Application layer. For the details, refer to the documentation on each project.

Coffee machine CM7
This Coffee Machine CM7 host project runs on the CM7 core.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. Al rights reserved.

User guide

Rev. 0 — 25 October 2022
133/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

It is linked to flash with the combination of the CM4 project.

The CM7 was designed to focus on the vision and voice algorithms' processing to get the
best performance.

7.5 Main functionalities

* Vision algorithm
* Voice algorithm
Audio playback
* Microphone stream input
* Multicore communication
Littlefs format filesystem

7.6 Boot sequence

The "main" entry of this project is located in the . . /coffee machine/cm7/source/
sln smart tlhmi cm7.cpp file. The basic boot-up flow is:

¢ Initialize board level

¢ |nitialize framework

* Register HAL devices

Start the framework

Start the freeRTOS scheduler

int main (void)

{
/* init the board */
APP BoardInit();

/* init the framework*/
APP InitFramework();

/* register the hal devices*/
APP RegisterHalDevices() ;

/* start the framework*/
APP StartFramework () ;

vTaskStartScheduler () ;
for (;;)

{
}

7.7 Board level initialization

The board-level initialization is implemented in the APP BoardInit () entry which
is located in . ./coffee machine/cm7/source/sln smart tlhmi cm7.cpp.
Below is the main flow:

¢ Relocate vector table into RAM

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

1347190

NXP Semiconductors

MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Configure MPU, Clock, and Pins

Debug console with hardware semaphore initialization
System time stamp start

Load resources from flash into the share memory region
Multicore manager init and boot slave core

void APP BoardInit (void)

{

#if

BOARD RelocateVectorTableToRam() ;

BOARD_ConfigMPU ()
BOARD InitBootPins();
BOARD InitBootClocks () ;

BOARD InitDebugConsole () ;
Time Init(1l);

APP LoadResource () ;

/* Initialize the HW Semaphore */
SEMA4 Init (BOARD SEM4 BASE) ;

defined (ENABLE MASTER) && ENABLE MASTER
/* Initialize MCMGR before calling its API */
(void)MCMGR Init () ;

/* Boot Secondary core application */
(void) MCMGR StartCore (kMCMGR Corel, (void *) (char

*)COREl_BOOT_ABDRESS, 0, kMCMGR:Start_Synchronous);
#endif /* defined(ENABLE_MASTER) & & ENABLE_MASTER *x/

}

7.8 Framework managers

The below framework managers are enabled on the cm7 side with the following priorities:

* Vision algorithm manager - P3
Voice algorithm manager - P3
Audio processing manager - P2
Input manager - P1

Output manager - P4

Multicore manager - PO

Flash device manager

Where PO is the highest priority and P4 is the least prioritized.

Note: Choosing the right priority for the manager is something that must be addressed
based on the requirements. Our recommendation is to keep Vision manager equal to or
less than Voice manager, or the audio sample can be lost.

Refer to the framework documentation (. . /framework/docs) for a detailed description
of these framework managers.

Note: To prepare the environment for other framework managers, initialize the file
system and application configuration first.

int APP InitFramework (void)

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
135/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

int ret = 0;

HAL FLASH DEV REGISTER(thtlefS, ret) ;
HAL OutputDev SmartTlhmiConfig Init ();

FWK MANAGER INIT (VisionAlgoManager, ret);
FWK MANAGER INIT (VoiceAlgoManager, ret):;
FWK_MANAGER INIT (AudioProcessing, ret);
FWK MANAGER INIT (OutputManager, ret);
FWK MANAGER INIT (InputManager, ret);
#if defined(ENABLE_MASTER) && ENABLE MASTER
FWK MANAGER INIT (MulticoreManager, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE MASTER x/

return ret;

}

int APP StartFramework (void)
{

int ret = 0;

FWK_MANAGER START (VisionAlgoManager,
VISION ALGO MANAGER TASK PRIORITY, ret);
FWK MANAGER START (OutputManager,
OUTPUT MANAGER TASK PRIORITY, ret);
FWK MANAGER START (AudioProcessing,
AUDIO PROCESSING TASK PRIORITY, ret);
FWK MANAGER START (InputManager,
INPUT MANAGER TASK PRIORITY, ret);
FWK_MANAGER START (VoiceAlgoManager,
VOICE ALGO MANAGER TASK PRIORITY, ret);
#if defined (ENABLE MASTER) && ENABLE MASTER
FWK MANAGER START(MultlcoreManager,
MULTICORE MANAGER TASK PRIORITY, ret);
#endif /* defined (ENABLE MASTER) && ENABLE MASTER */

return ret;

7.9 Framework HAL devices

The enabled HAL devices are configured in the . ./coffee machine/cm7/board/
board define.h file as shown below:

#define ENABLE INPUT DEV PdmMic

#define ENABLE AUDIO PROCESSING DEV Afe

#define ENABLE DSMT ASR

#define ENABLE OUTPUT DEV quAudlo

#define ENABLE OUTPUT DEV ~ SmartTlhmiConfig
#define ENABLE VISIONALGO DEV Oasis CoffeeMachine
#define ENABLE _FLASH DEV Littlefs

#define ENABLE FACEDB

#define USE CAMERA MipiGc2145

#if deflned(ENABLE ~MASTER) && ENABLE MASTER
#define ENABLE MULTICORE DEV MessageBuffer

fendif /* deflned(ENABLE MASTER) && ENABLE MASTER x/

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

136 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

7.10

7101

7.10.2

Smart HMI Software Development User Guide

The registration of the enabled HAL devices is implemented in the
APP RegisterHalDevices (...) function which islocated in ../coffee machine/
cm7/source/sln smart tlhmi cm7.cpp:

Note: APP RegisterHalDevices(...) mustbe called after the framework
initialization APP_InitFramework (...) and before framework startup
APP StartFramework(...).

int APP RegisterHalDevices (void)

{

int ret = 0;

HAL_OUTPUT_DEV_REGISTER(MqSAudiO, ret) ;

HAL AUDIO PROCESSING DEV REGISTER (Afe, ret);

HAL_INPUT_DEV_REGISTER(PdeiC, ret) ;

HAL7VOICEALG07DEV7REGISTER(Asr, ret);

HAL VALGO DEV_REGISTER (OasisCoffeeMachine, ret);
#if defined(ENABLE_MASTER) && ENABLE_MASTER

HAL_MULTICORE_DEV_REGISTER(MessageBuffer, ret) ;
#endif /* defined (ENABLE MASTER) && ENABLE MASTER */

HAL_INPUT_DEV_REGISTER(WiFiAWAMSlO, ret) ;

return ret;

Logging
Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find
the detailed document located in . . /coffee machine/cm7/freertos/libraries/
logging/README . md.

The CM7 and CM4 share the low-level LPUART12 peripheral for the logging output. The
hardware semaphore mechanism is used to guarantee the concurrence access of the
LPUART12 peripheral. They share a low-level timer to get the unified timestamp of the
logging information.

Log Task Init

The application calls the xLoggingTaskInitialize (...) API to create the logging
task in the main () entry of this project and is located in . . /coffee machine/cm7/
source/sln smart tlhmi cm7.cpp:

xLoggingTaskInitialize (LOGGING TASK STACK SIZE,
LOGGING TASK PRIORITY, LOGGING QUEUE LENGTH) ;

Log Macros

There are four kinds of logging that can be used in both cm7 and cm4, which you can
findin ../framework/inc/fwk log.h

#ifndef LOGV
#define LOGV (fmt, args...) {implement...}

#endif

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
137 /190

https://www.freertos.org/logging.html

NXP Semiconductors

MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

7.1

7111

Smart HMI Software Development User Guide

#ifndef
#define
#endif

LOGD

LOGD (fmt, args...) {implement...}

#ifndef
#define
#endif

LOGI

LOGI (fmt, args...) {implement...}

#ifndef
#define
#endif

LOGE

LOGE (fmt, args...) {implement...}

Coffee Machine database

The Coffee Machine application uses framework flash operations with the low-level littlefs
file system to store the recognized user-faces database and user coffee information.

The detailed usage APl is located in files . . /framework/hal/vision/hal sln
facedb.hand ../coffee machine/cm7/source/hal sln coffeedb.h.The
face database and user coffee information database entry are bound together using the
user id. The user id is a unique identifier on one device.

To make it easier for users to add their database with personal attributes, we split the
face database from user database. The user should create something similar with
hal sln coffeedb.h and add attributes like in the coffee attribute t structure.

Face recognition database usage

g facedb ops handles all kinds of face database operations.

typedef struct facedb ops
{
facedb status t (*init) (uintlé6_t featureSize);
facedb status t (*saveFace) (void);
facedb status t (*addFace) (uintl6 _t id, char *name, void
*face, int size);
facedb status t (*delFaceWithId) (uintl6 t id);
facedb status t (*delFaceWithName) (char *name) ;
facedb status t (*updNameWithId) (uintl6é t id, char *name);
facedb status t (*updFaceWithId) (uintl6é t id, char *name,
void *face, int size);
facedb status t (*getFaceWithId) (uintl6 t id, void
**pFace) ;
facedb status t
**pFace) ;
facedb status t (*getIdWithName) (char *name, uintl6 t *id);
facedb status t (*genId) (uintl6 t *new id);
facedb status t (*getIds) (uintlé6 t *face ids);
bool (*getSaveStatus) (uintle t id);
int (*getFaceCount) (void) ;
char *(*getNameWithId) (uintl6 t id);
} facedb ops t;

(*getIdsAndFaces) (uintl6_t *face ids, void

extern const facedb ops t g facedb ops;

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
138/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

7.11.2 User coffee information database usage

g _coffedb ops handles all kinds of user information database operations.

ypedef enum coffee type

{
Coffee Espresso,
Coffee Americano,
Coffee Cappuccino,
Caffee Latte,

} coffee type t;

typedef enum coffee size
{

Coffee Small,

Coffee Medium,

Coffee Large,
} coffee size t;

typedef enum coffee strength
{

Coffee Soft,

Coffee Mild,

Coffee Strong,
} coffee strength t;

typedef struct coffee attribute
{

uintl6 t id;

uint8 t type;

uint8 t size;

uint8 t strength;

uint8 t reserved[1l6];
} coffee attribute t;

typedef struct coffeedb ops
{

coffeedb status t (*init) (void);

coffeedb status t (*deinit) (void):;

coffeedb status t (*addWwithId) (uintlé6 t id,
coffee attribute t *attr);

coffeedb status t (*delWithId) (uintlé6 t id);

coffeedb status t (*updWithId) (uintlé t id,
coffee attribute t *attr);

coffeedb status t (*getWithId) (uintlé6 t id,
coffee attribute t *attr);
} coffeedb ops t;

extern const coffeedb ops t g coffedb ops;

7.12 Coffee machine CM4

This Coffee Machine CM4 slave project runs on the CM4 core.
Itis linked to SDRAM and is embedded into the CM7 project.
The CM7 project handles the loading of this CM4 project into SDRAM and launching it.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

139/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

713

714

715

7.16

Smart HMI Software Development User Guide

Main functionalities

* Main GUI based on LVGL with Vglite graphics acceleration

e Camera with 2D PxP graphics acceleration

* Display for the camera preview and LVGL GUI

USB shell

e LED indicator

* Multicore with messaging and shared memory communication

LVGL GUI screens and widgets
All the LVGL GUI screens and widgets are generated with NXP's GUI Guider tools.

Refer the GUI Guider home page for more information.

LVGL and Vglite library

The LVGL and Vglite components are directly ported from RT1170 SDK and we did not
modify them in our solution.

Also the code for the LVGL GUI screens and widgets, which are generated by NXP's GUI
guider, is not frequently changed.

To speed up the building of the whole project, we moved these components into one
static library and linked the library into the CM4 application project.

This LVGL and Vdlite library project is located in the coffee machine/
lvgl vglite 1lib folder.

Boot sequence

Below is the core boot up flow:

¢ Board level initialization

* Framework initialization

* HAL devices registration

* Framework startup

* FreeRTOS scheduler startup

The main () entry of this project is located in . . /coffee machine/cm4/source/
sln smart tlhmi cmdé.cpp file:

int main (void)

{
/* init the board */
APP BoardInit();

/* init the framework*/
APP InitFramework();

/* register the hal devices*/
APP RegisterHalDevices();

/* start the framework*/
APP StartFramework () ;

vTaskStartScheduler () ;

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
140 /190

https://www.nxp.com/design/software/development-software/gui-guider

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

for (;7)

{

} /* should never get here */
return 0;

7.17 Board level initialization

The board level initialization is implemented in the APP BoardInit () entry which is
located inthe . ./coffee machine/cm4/source/sln smart tlhmi cm4.cpp file.

Below is the main flow:

* MPU, Clock, and Pins configuration
* Multicore manager init and slave startup
 Peripherals initialization

void APP BoardInit ()

{
BOARD ConfigMPU () ;
BOARD BootClockRUN () ;
BOARD InitBootPins();

#1if defined(ENABLE_SLAVE) && ENABLE SLAVE
uint32 t startupData, i;
mcmgr status t status;
(void)MCMGR Init () ;
/* Get the startup data */
do
{
status = MCMGR GetStartupData (&startupData) ;
} while (status != kStatus MCMGR Success) ;

#endif /* defined (ENABLE SLAVE) && ENABLE SLAVE */

BOARD MIPIPanelTouch I2C Init();
BOARD_InitEDMA (),
Time Init (1);

7.18 LVGL image resource and icon resource loading

All the LVGL images, data, and icon data are merged into one continuous binary block
with the 64 Bytes aligned of each image/icon.

The cm7 loads this resource binary block into the dedicated memory region
res sh mem.

The following two functions load each of these LVGL images and icons from this region
during the boot.

Setup the LVGL images is implemented in . . /coffee machine/cm4/generated/
gui guider.c:

void setup imgs (unsigned char *base)

{

brewing animimg brewingf0Ol.data (base + 0);
brewing animimg brewingf02.data = (base + 120000);
brewing animimg brewingf03.data = (base + 240000);

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
141/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Load the icons (. . /framework/hal/output/hal output ui coffee
machine.c):

void LoadIcons (void *base)

{

s_Icons[ICON PROGRESS BAR] = (base + 0);
s _Icons[ICON VIRTUAL FACE BLUE] = (base + 6720);
s _Icons[ICON VIRTUAL FACE GREEN] = (base + 364608);

s_Icons[ICON VIRTUAL FACE RED] = (base + 722496);
// Icons Total: 0x00107c40 1080384

7.19 Framework managers

The below framework managers are enabled on the cm4 side with the following priorities:

* Low-power manager

* Camera manager - P2
* Display manager - P2

* Multicore manager - PO
e Output manager - P1

* Input manager - P2

Where PO is the highest priority and P3 is the least prioritized.

For a more detailed description of these framework managers, refer to the framework
documentation (. . /framework/docs/introduction.md).

Framework initialization (. . /coffee machine/cm4/source/sln smart tlhmi
cmé . cpp):

int APP InitFramework (void)

{

int ret = 0;

FWK MANAGER INIT (LpmManager, ret);
FWK MANAGER INIT (CameraManager, ret);
FWK_MANAGER INIT (DisplayManager, ret):;
#if defined(ENABLE_SLAVE) && ENABLE SLAVE
FWK MANAGER INIT (MulticoreManager, ret);
#endif /* defined(ENABLE SLAVE) && ENABLE SLAVE */
FWK MANAGER INIT (OutputManager, ret):;
FWK MANAGER INIT (InputManager, ret);

return ret;

Framework startup (. . /coffee machine/cm4/source/sln smart tlhmi
cmé . cpp):

int APP StartFramework (void)
{

int ret = 0;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

142/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

FWK MANAGER START (LpmManager, 0, ret);
FWK MANAGER _START (CameraManager,

CAMERA_MANAGER_TASK_PRIORITY ret) ;
FWK_MANAGER START (DisplayManager,

DISPLAY MANAGER TASK PRIORITY, ret);

#if defined (ENABLE SLAVE) && ENABLE SLAVE
FWK MANAGER START(MultlcoreManager,

MULTICORE_MANAGER_TASK_PRIORITY ret);

#endif /* defined(ENABLE SLAVE) && ENABLE SLAVE */
FWK MANAGER START(OutputManager,

OUTPUT MANAGER TASK PRIORITY, ret);
FWKiMANAGERisTART(InputManager,

INPUT MANAGER TASK PRIORITY, ret);

return ret;

7.20 Framework HAL devices

The enabled HAL devices are configured in the . . /coffee machine/cm4/board/
board define.h file as shown below:

#define ENABLE GFX DEV Pxp

#define ENABLE DISPLAY DEV LVGLCoffeeMachine
#define ENABLE CAMERA DEV Mlpch2145

#define ENABLE OUTPUT DEV ~ RgbLed

#if deflned(ENABLE SLAVE) && ENABLE SLAVE

#define ENABLE MULTICORE DEV MessageBuffer

#endif /* deflned(ENABLE SLAVE) && ENABLE SLAVE @/
#define ENABLE INPUT DEV ShellUsb

#define ENABLE OUTPUT DEV UiCoffeeMachine

#define ENABLE LPM DEV_ Standby

The registration of the enabled HAL devices is implemented in the
APP RegisterHalDevices (...) function whichislocatedin ../coffee machine/
cm4/source/sln smart tlhmi cmé.cpp:

Note: APP RegisterHalDevices (...) mustbe called after the framework
initialization APP_InitFramework (...) and before framework startup
APP StartFramework(...).

int APP RegisterHalDevices (void)

{

int ret = 0;

HAL GFX DEV_REGISTER (Pxp, ret);
HAL DISPLAY DEV ~ REGISTER (LVGLCoffeeMachine, ret);
HAL_CAMERA DEV REGISTER(MlplGC2145 ret);
#if defined (ENABLE SLAVE) && ENABLE SLAVE
HAL MULTICORE DEV REGISTER(MessageBuffer, relE)y;
#endif /* deflned(ENABLE SLAVE) && ENABLE SLAVE */
HAL OUTPUT DEV REGISTER(RgbLed ret);
HAL INPUT DEV _REGISTER (ShellUsb, ret);
HAL OUTPUT DEV REGISTER (UiCoffeeMachine, ret);
HAL LPM DEV REGISTER (Standby, ret);
#ifdef ENABLE OUTPUT DEV _AudioDump
HAL OUTPUT DEV REGISTER(AudloDump, ret);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

143 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

7.20.1

7.20.2

7.20.3

Smart HMI Software Development User Guide

#endif /* ENABLE OUTPUT DEV AudioDump */
/* Add new HAL device registrations here */

return ret;

MipiGc2145 camera HAL device

This HAL device driver is located in . . /framework/hal/camera/hal camera
mipi gc2145.c.

Below is the configuration of this camera device located in . . /coffee machine/cm4/
board/board define.h.

#ifdef ENABLE CAMERA DEV MipiGc2145
#define CAMERA DEV MlplGC2145 BUFFER COUNT 2

#define CAMERA DEV MipiGc2145 HEIGHT 600 // 720
#define CAMERA DEV MipiGc2145 WIDTH 800 // 1280
#define CAMERA DEV MipiGc2145 LEFT 0

#define CAMERA DEV MipiGc2145 TOP 0

#define CAMERA DEV MipiGc2145 RIGHT 799 // 1279
#define CAMERA DEV MipiGc2145 BOTTOM 599 // 719
#define CAMERA DEV MipiGc2145 ROTATE kCWRotateDegree 0
#define CAMERA DEV MipiGc2145 FLIP kFlipMode None
#define CAMERA DEV MipiGc2145 SWAPBYTE 0

#define CAMERA DEV MipiGc2145 FORMAT
kPixelFormat YUV1P444 RGB

#define CAMERA DEV MipiGc2145 BPP 4
#endif /* ENABLE CAMERA DEV MipiGc2145 */

PxP graphics HAL device

This HAL device driver is located in . . /framework/hal/misc/hal graphics_
pxXp.cC.

It represents the 2D graphics device to handle the 2D graphics operations.

LVGLCoffeeMachine display HAL device

This HAL device driver is located in . . /framework/hal/display/hal display
lvgl coffeemachine.c

Below is the configuration of this display device located in . ./coffee machine/cm4/
board/board define.h.

#ifdef ENABLE DISPLAY DEV LVGLCoffeeMachine
#define DISPLAY DEV LVGLCoffeeMachine _BUFFER COUNT 1

#define DISPLAY DEV LVGLCoffeeMachine HEIGHT 640
#define DISPLAY DEV LVGLCoffeeMachine WIDTH 480
#define DISPLAY DEV LVGLCoffeeMachine StartX 80
#define DISPLAY DEV LVGLCoffeeMachine StartyY 50
#define DISPLAY DEV LVGLCoffeeMachine LEFT 0
#define DISPLAY DEV LVGLCoffeeMachine TOP 0
#define DISPLAY DEV LVGLCoffeeMachine _RIGHT 479
#define DISPLAY DEV LVGLCoffeeMachine ~BOTTOM 639

#define DISPLAY DEV LVGLCoffeeMachine | ~ROTATE
kCWRotateDegree 270

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
144 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

#define DISPLAYiDEviLVGLCoffeeMachineiFORMAT
kPixelFormat RGB565

#ifdef ENABLE " CAMERA DEV Mlpch2l45

#define DISPLAY DEV LVGLCoffeeMachlne SRCFORMAT
kPixelFormat YUV1P444 _RGB

#else

#define DISPLAY DEV LVGLCoffeeMachlne SRCFORMAT
kPixelFormat UYVY1P422 RGB

#endif /* ENABLE CAMERA DEV MlplGC2l45 %/
#define DISPLAY DEV LVGLCoffeeMachine BPP 2
#endif /* ENABLE DlsplayDev LVGLCoffeeMachine */

This LVGLCoffeeMachine-display-HAL-device launches the main LVGL task loop for the
Ul flashing.

static void LvglTask(void *param)
{
#if LV USE LOG
lv_log register print cb(PrintCb);
#endif /* LV _USE LOG */

lv port pre init();

lv _init();

lv_port disp init();
lv_port indev _init();

g _ nglInltlallzed = true;

setup imgs ((unsigned char *)APP LVGL IMGS BASE) ;

setup ui (&guider ui);

events init (&guider ui);

custom init (&guider ui);

while (1)

{
lv_task handler();
vTaskDelay (pdMS TO TICKS(5)) ;

It also handles the camera preview request from the framework in HAL DisplayDev
LVGLCoffeeMachine Blit function:

hal display status t
HAL DisplayDev LVGLCoffeeMachine _Blit (const display dev t
*dev, void *frame, int width, int height)
{
hal display status_t ret = kStatus HAL DisplaySuccess;
LOGI ("++HAL DlsplayDev LVGLCoffeeMachine _Blit");

// Show the new frame.
void *lcdFrameAddr = s _LcdBuffer[0];
static int camerPreviewLayerOn 0;

// enable camera preview layer in screen with camera
preview.
if (lv_scr act() == guider ui.home && g PreviewMode ==
PREVI EW_MODE_CAMERA)
{
if (camerPreviewLayerOn == 0)

{

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
1457190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

lv _enable camera preview (lcdFrameAddr, true);
camerPreviewlLayerOn = 1;

}
else
{
// disable camera preview layer in screen without
camera preview.
if (camerPreviewLayerOn == 1)
{
camerPreviewLayerOn = 0;
lv enable camera preview (lcdFrameAddr, false);

}

LOGI ("--HAL DisplayDev LVGLCoffeeMachine Blit");
return ret;

7.20.4 UiCoffeeMachine Ul output HAL device

This HAL device driver is located in . . /framework/hal/output/hal output ui
coffee machine.c.

The whole Ul state machine is driven by this output HAL device with the below event
sources:

7.20.4.1 LVGL touch events

All the event callbacks of the LVGL widget are implemented in . . /coffee machine/
cmé/generated/events init.c.

7.20.4.2 Vision and Voice algorithm inference result

The vision and voice inference result is notified by the output manager with below HAL
OutputDev UiCoffeeMachine InferComplete operator:

static hal output status t
HAL OutputDev UiCoffeeMachine InferComplete (const output dev t
*dev,output algo source t source,void *inferResult)

{
hal output status t error = kStatus HAL OutputSuccess;

if (inferResult == NULL)
{

return error;

}

coffee machine screen id t currentScreenld =
get current screen();

if (currentScreenId == SCR_INVALID)
{

return error;

}

if (source == kOutputAlgoSource Vision)

{

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

146 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

_InferComplete Vision(dev, inferResult,
currentScreenlId) ;

}

else if (source == kOutputAlgoSource Voice)

{

_InferComplete Voice (dev, inferResult,
currentScreenlId) ;

}

return error;

7.20.5 RgbLed output HAL device

This HAL device driver is located in . . /framework/hal/output/hal output rgb
led.c.

It flashes the RGB led with different pattern according
to the HAL OutputDev RgbLed InferComplete or
HAL OutputDev RgbLed InputNotify operators below:

static hal output status t
HAL OutputDev RgbLed InferComplete (const output dev t *dev,
output algo source t source, void *inferResult)

{
hal output status t error = kStatus HAL OutputSuccess;

uint32 t timerOn = 0g

_SetLedColor (APP OutputDev RgbLed InferCompleteDecode (source,
inferResult, &timerOn)):;

if (timerOn != 0)
{
xTimerChangePeriod (OutputRgbTimer,
pdMS TO TICKS (timerOn), O0);
}

return error;

static hal output status t

HAL OutputDev RgbLed InputNotify(const output dev t *dev, void
*data)

{

hal output status t error = kStatus HAL OutputSuccess;
_SetLedColor (APP OutputDev RgbLed InputNotifyDecode (data)) ;

return error;

7.20.6 MessageBuffer multicore HAL device
This HAL device driver is located in. . /framework/hal/misc/hal multicore
messageBuffer.c.

It handles the multicore messaging based on the multicore manager message buffer
mechanism.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

147 /1190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Refer the . ./framework/docs/hal devices/multicore.md file in the framework
documentation for the detailed description of this HAL device.

7.20.7 ShellUsb input HAL device

This HAL device driver is located in . . /framework/hal/input/hal input shell
cdc.c.

It populates one USB CDC device and generates the shell.

This driver only includes one weak shell command registration function as below:

__attribute ((weak)) void
APP InputDev Shell RegisterShellCommands (shell handle t
shellContextHandle, input dev_t shellDev,
input dev callback t callback)
{
}

The application must overwrite this function to register the exactly shell commands.

The implementation of this overwritten function for the Coffee Machine application is
in ../coffee machine/cm4/source/event handlers/smart tlhmi input
shell commands.c:

void APP InputDev Shell RegisterShellCommands (shell handle t
shellContextHandle, input dev_t *shellDev,

input dev callback t callback)

{

s_InputCallback = callback;

s_SourceShell = shellDev;

s_ShellHandle = shellContextHandle;

s _FrameworkRequest.respond = FrameworkEventsHandler;

if (s_ThingName == NULL)
{

APP GetHexUniquelID (&s_ ThingName) ;
}

SHELL RegisterCommand (shellContextHandle,
SHELL COMMAND (version)) ;

7.20.8 Standby LPM HAL device

This HAL device driver is located in . . /framework/hal/misc/hal lpm
standby.c.

Referto . ./framework/docs/hal devices/low power.md in the framework
documentation for the detailed description of this LPM device.

This standby HAL device implements the standby mode of this application. The backlight
is turned off and the main display layer is disabled.

static void EnterStandbyMode (void)

{
LOGD (" [Standby] Enter standby mode") ;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

148 /190

NXP Semiconductors MCU-SMHMI-SDUG

7.21

7.21.1

7.21.2

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

BOARD BacklightControl (0) ;
lv _enable ui preview(0);

Logging
Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find
the detailed document . . /coffee machine/cm4/freertos/libraries/logging/
README.md.

The CM7 and CM4 share the low-level LPUART12 peripheral for the logging output.
The hardware semaphore mechanism is used to guarantee the concurrence access of
theLPUART12 peripheral.

They share a low-level timer to get the unified timestamp of the logging information.

Logging Task Init

Application calls xL.oggingTaskInitialize (...) API to create the logging task in
the main () entry of this project is located inthe .. /coffee machine/cm4/source/
sln smart tlhmi cmdé.cpp file:

xLoggingTaskInitialize (LOGGING TASK STACK SIZE,
LOGGING TASK PRIORITY, LOGGING QUEUE LENGTH) ;

Logging Macros

The logging Macros are defined in . . /framework/inc/fwk log.h.

All the modules must use these unified logging Macros for logging.

#ifndef LOGV
#define LOGV (fmt, args...) {implement...}

#endif
#ifndef LOGD

#define LOGD (fmt, args...) {implement...}
fendif

#ifndef LOGI
#define LOGI (fmt, args...) {implement...}
#endif

#ifndef LOGE
#define LOGE (fmt, args...) {implement...}
#endif

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
149 /190

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG

8 Elevator

Smart HMI Software Development User Guide

MCU-SMHMI-SDUG

8.1

Introduction

This Elevator application demonstrates the elevator use-case with the core
functionalities:

* Elevator GUI with touch support
* Local voice command to control the use cases of the elevator
* Face recognition to store user's floor information automatically

For leveraging the full computational power of the RT107H, the image has been split

into two images that are running in parallel on the CM7 and CM4 cores. The Elevator
CM7 acts as an Al block, handling all the machine learning operations, such as face
recognition and voice command. The operation has been optimized to obtain the best
performance on this type of MCU. Elevator CM4 holds the user interaction (display, shell,
buttons). The CM4 image is loaded into memory by the CM7 core.

By default, i.MX RT117H is boot from CM7. By fusing BT_CORE_SEL (Bit 12 in 0x960),
the chip switches to CM4 as the main core. For more information on this topic, check
AN13264.

The Elevator Application uses the following HW components and peripherals:

e 2 x PDM MIC - configured to work with 16 kHz sampling. The conversion to PCM is
done in hardware using the PDM microphone interface.

* 16 KHz raw data to RT117x MQS HW peripheral that generates PWM data output.
External filtering and coupling.

Analog audio amplifier.

MIPI GC2145 Camera - configured to work at 600x800 resolution.

* LCDIFV2 Rocktech RKO55MHD091 - configured to work at HD resolution of 1280x720.

To change this configuration, check HAL code and Section 9.1

8.2 Architecture

IR & RGB Framework

Framework Frames - -
Camera HAL Display
MQS HAL " Vision Algo y Camera
Speaker A o 4 Result = Display HAL
Ll Vision Algo HAL Voice Algo Touch
: : Result Graphics HAL EIE
licy Voice Algo HAL Notification .
Message LVGL & VGLite HAL GPU2D
Peripherals cmMm7 IPC with Shared Memory cMm4 Peripherals

CM7 (Vision & Voice algorithm accelerator): CM4 (U1 & System control unit):

- Framework » Framework

+ Vision algorithm with VGA input frames + CSIMIPI Camera preview @VGA

- Voice algorithm (AFE + ASR) with mic input -+ LVGL GUI @720p with VGLite 2D GPU acceleration

- MQS audio playback « Vision algorithm input frames color space conversion with PxP
- IPC communication with shared memory = Touch panel input

« |PC communication with shared memory

Figure 31. Architecture diagram

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
150 /190

https://www.nxp.com/docs/en/application-note/AN13264.pdf

NXP Semiconductors

MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

8.3 Software block diagram

Smart HMI Software Development User Guide

Manager

—

| OTA FW Update

Framework

Multicore
Manager HAL

- =
QOutput Manager Algorithm Manager
HAL HAL

Serial-manager

Wake Words & Commands

Middleware ML Speech Engine Runtime Library Audio Front End Runtime Libp!'ﬂry
Multi-Core VIT (Voice | yigiceSeeker~ Conversa
e Cyberon O ntsligent e
g s e
» = R Echo Full duplex
File-system Automatic Speech Recognition Cancellation speaker phone

and Barge-in

Figure 32. Software diagram

MQTT
. = NXP MCU inference engine
! mBedTLS 9 Face Detection Face Alignment
é Face Quality 2D Liveness Algorithm
o IwiP. Face Recognition Gesture Recognition
LVGL Memory Management
CM7 Driver Layer
VGLite Speaker DMA FLASH Dual Core
H.264 e 2 2
(%) == o =] g zQ
g <=
Opus decode = B8 8 = B B

Application Control

GUI Shell Wi-Fi/BLE Voice Input
Framework
Multicore Camera ey
Manager Manager Manager
Input ~ output Power Manager
Manager Manager Manager

Hardware Abstraction Layer

Multicore
Manager HAL

Input Manager
AL

csi
12C

Wi-Fi Bl

=
m

SDIO
UART

Camera Manager Display Manager
HAL

Output Manager Power Manager
HAL AL
CM4 Driver Layer
Display GPU LED
s 8 =
8 2 #z &
= = & o
Dual Core Touch
>
o ¥ B8
= o =z Q
@ n=

It includes two projects as below:

-Host CM7 project

-Slave CM4 project

Each project uses two-layer architecture containing the Framework + HAL layer, and the
Application layer. For more information, refer to the documentation on each project..

8.4 Elevator CM7

This Elevator CM7 host project runs on the CM7 core. It is linked to flash with the
combination of the CM4 project. CM7 was designed to focus on the vision and voice
algorithms' processing to get the best performance.

8.5 Main functionalities

* Vision algorithm

* Voice algorithm

¢ Audio playback

* Microphone stream input
¢ Multicore communication
Elevator database

8.6 Boot sequence

The "main" entry of this projectis in the . ./elevator/CM7/source/sln smart
tlhmi CM7.cpp file. The basic boot up flow is:

* |nitialize board level
¢ |nitialize framework
* Register HAL devices
Start the framework

All information provided in this

document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

151/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

¢ Start the freeRTOS scheduler

int main (void)

{
/* init the board */
APP BoardInit();

/* init the framework*/
APP InitFramework();

/* register the hal devices*/
APP RegisterHalDevices() ;

/* start the framework*/
APP StartFramework () ;

vTaskStartScheduler () ;
for (;;)

{
}

8.7 Board level initialization

The board-level initialization is implemented in the APP_BoardInit () entry which is
located in . ./elevator/CM7/source/sln smart tlhmi CM7.cpp. Below is the
main flow:

* Relocate vector table into RAM

¢ Configure MPU, Clock, and Pins

* Debug console with hardware semaphore initialization
* System time stamp start

* Load resource from flash into share memory region
Multicore manager init and boot slave core

void APP BoardInit (void)

{
BOARD RelocateVectorTableToRam() ;

BOARD7ConfigMPU () s
BOARD_InitBootPins (),
BOARD InitBootClocks () ;

BOARD InitDebugConsole () ;
Time Init(1);

APP LoadResource () ;

/* Initialize the HW Semaphore */
SEMA4 Init (BOARD SEM4 BASE) ;

#if defined (ENABLE MASTER) && ENABLE MASTER
/* Initialize MCMGR before calling its API */
(void)MCMGR Init () ;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

152/190

NXP Semiconductors

MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

8.8

Smart HMI Software Development User Guide

/* Boot Secondary core application */
(void) MCMGR StartCore (kKMCMGR Corel, (void *) (char

*) CORE1 _BOOT ADDRESS, 0, kMCMGR Start Synchronous) ;
#endif /* defined(ENABLE MASTER) && ENABLE MASTER */

}

Framework managers

The below framework managers are enabled in the CM7 side with the following priorities:

* Vision algorithm manager - P3
* Voice algorithm manager - P3

¢ Audio processing manager - P2
* Input manager - P1

¢ Output manager - P4

* Multicore manager - PO

Refer to the framework documentation (. . /framework/docs) for a detailed description
of these framework managers.

Note:

To prepare the environment for other framework managers, initialize the file

system and application configuration first.

int APP InitFramework (void)

{

#if

int ret = 0;

HAL_FLASH_DEV_REGISTER(Littlefs, ret);
HAL OutputDev SmartTlhmiConfig Init();

FWK MANAGER INIT
FWK MANAGER INIT

VisionAlgoManager, ret);
VoiceAlgoManager, ret);
FWK_MANAGER INIT (AudioProcessing, ret);
FWK MANAGER INIT (OutputManager, ret) ;

FWK MANAGER INIT (InputManager, ret);
defined(ENABLE_MASTER) && ENABLE MASTER
FWK MANAGER INIT (MulticoreManager, ret);

—~ o~~~

#endif /* defined (ENABLE MASTER) && ENABLE MASTER */

}

return ret;

int APP RegisterHalDevices (void)

{

#if

int ret = 0;

HAL OUTPUT DEV_REGISTER (MgsAudio, ret);

HAL AUDIO PROCESSING DEV_REGISTER (Afe, ret);
HAL INPUT DEV REGISTER (PdmMic, ret);

HAL VOICEALGO DEV_REGISTER (Asr, ret);

HAL VALGO DEV_REGISTER (OasisElevator, ret);
defined (ENABLE MASTER) && ENABLE MASTER

HAL MULTICORE DEV_REGISTER (MessageBuffer, ret);

#endif /* defined (ENABLE MASTER) && ENABLE MASTER */

return ret;

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
153/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

int APP StartFramework (void)
{

int ret = 0;

FWK MANAGER START (VisionAlgoManager,
VISION ALGO MANAGER TASK PRIORITY, ret);

FWK MANAGER START (OutputManager,
OUTPUT MANAGER TASK PRIORITY, ret);

FWK MANAGER START(AudloPr006551ng,
AUDIO PROCESSING TASK PRIORITY, ret);

FWK MANAGER START(InputManager,
INPUT MANAGER TASK PRIORITY, ret);

FWK MANAGER START(V01ceAlgoManager,
VOICE ALGO MANAGER TASK PRIORITY, ret);

// EWK MANAGER START(CameraManager,
CAMERA MANAGER TASK PRIORITY, ret);
#if defined (ENABLE MASTER) && ENABLE MASTER

FWK MANAGER START(MultlcoreManager,
MULTICORE MANAGER TASK PRIORITY, ret);
fendif /* deflned(ENABLE_MASTER) && ENABLE MASTER */

return ret;

8.9 Framework HAL devices

The enabled HAL devices are configured in the . . /elevator/CM7/board/board
define.h file as shown below:

#define ENABLE INPUT DEV_ PdmMic

#define ENABLE AUDIO PROCESSING DEV Afe

#define ENABLE DSMT ASR

#define ENABLE OUTPUT DEV_MgsAudio

#define ENABLE OUTPUT DEV _SmartTlhmiConfig

#if deflned(ENABLE MASTER) && ENABLE MASTER

#define ENABLE MULTICORE DEV MessageBuffer

#endif /* defined (ENABLE MASTER) && ENABLE MASTER */

8.10 Logging
Both CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find
the detailed document . . /coffee machine/cm7/freertos/libraries/logging/
README . md.

The CM7 and CM4 share low-level LPUART12 peripheral for the logging output. The
hardware semaphore mechanism is used to guarantee the concurrence access of
LPUART12 peripheral. And they also share low-level timer to get the unified timestamp of
the logging information.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

154 /190

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

8.10.1 Log task init

The application calls the xLoggingTaskInitialize (...) API to create the logging
task in the main () entry of this project and is located in elevator/cm7/source/sln_
smart tlhmi cm7.cpp:

xLoggingTaskInitialize (LOGGING TASK STACK SIZE,
LOGGING TASK PRIORITY, LOGGING QUEUE LENGTH) ;

8.10.2 Log usage

There are four kinds of logging that can use both CM7 and CM4, that you can findin . ./
framework/inc/fwk log.h.

#ifndef LOGV
#define LOGV (fmt, args...) {implement...}

#endif
#ifndef LOGD

#define LOGD (fmt, args...) {implement...}
#endif

#ifndef LOGI
#define LOGI (fmt, args...) {implement...}
fendif

#ifndef LOGE
#define LOGE (fmt, args...) {implement...}
#endif

8.11 Elevator database

The Elevator application uses framework flash operation with low-level littlefs file system
to store the recognized user-faces database and user elevator information. The detailed
usage APl is located in files . . /framework/vision/hal sln facedb.hand ../
source/hal sln elevatordb.h. The face database and elevator user information
database entry are bound together using user id. The user id is a unique identifier on one
device.

To make it easier for users to add their own database with personal attributes, we split
the face database from user database. The user must create something similar with
hal sln elevator.h and add attributes like in the elevator attr_t structure.
If the purpose is to extend the current elevator database, use a reserved field from the
structure below.

8.11.1 Face recognize database usage

g facedb_ ops handles all kinds of face database operation.

typedef struct facedb ops
{

facedb _status_ t (*init) (uintlé6_t featureSize);
facedb status t (*saveFace) (void);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

155/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

facedb status t (*addFace) (uintl6 t id, char *name, void

*face, int size);
facedb status t

*delFaceWithId) (uintl6o t id);

_ _t _
facedb status t (*delFaceWithName) (char *name) ;
(

facedb status t

*updNameWithId) (uintl6_t id, char *name);

facedb status t (*updFaceWithId) (uintl6é t id, char *name,

void *face, int size);

facedb status t (*getFaceWithId) (uintlé6 t id, void

**pFace) ;

facedb _status_t (*getIdsAndFaces) (uintl6 t *face ids, void

**pFace) ;

facedb status t (*getIdWithName) (char *name, uintl6 t *id);
facedb status t (*genId) (uintl6é t *new id);
facedb status t (*getIds) (uintl6 t *face ids);

bool (igetSaveStatus)(uintl6_t id) ;

int (*getFaceCount) (void) ;

char *(*getNameWithId) (uintl6 t id);
} facedb ops t;

extern const facedb ops t g facedb ops;

8.11.2 Elevator user information database usage

g elevatordb ops handles all kinds of user information database operation.

typedef struct elevator attribute
{

uintlé t id;

uint32 t floor;

uint8 t reserved[1l6];
} elevator attr t;

typedef struct elevatordb ops
{
elevatordb status t (*init) (void):;
elevatordb status t (*deinit) (void);
elevatordb status t (*addWithId) (uintl6 t
elevator attr t *attr);
elevatordb status t (*delWithId) (uintlé6 t
elevatordb status t (*updWithId) (uintlé t
elevator attr t *attr);
elevatordb status t (*getWithId) (uintlé6 t
elevator attr t *attr);
} elevatordb ops t;

id,

id);
id,

id,

extern const elevatordb ops t g elevatordb ops;

8.12 Elevator CM4

This Elevator CM4 slave project runs on the CM4 core.

Itis linked to SDRAM and will be embedded into the CM7 project.
The CM7 project handles the loading of this CM4 project into SDRAM and launching it.

8.13 Main functionalities

* Main GUI based on LVGL with Vglite graphics acceleration

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

156 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

8.14

8.15

8.16

Smart HMI Software Development User Guide

e Camera with 2D PxP graphics acceleration

* Display for the camera preview and LVGL GUI

USB shell

LED indicator

* Multicore with messaging and shared memory communication

LVGL GUI screens and widgets
All the LVGL GUI screens and widgets are generated with NXP's GUI Guider tools.

Refer to the GUI Guider home page for more detailed information.

LVGL and Vglite library

LVGL and Vglite components are directly ported from RT1170 SDK where we did not
modify them in our solution.

The code for LVGL GUI screens and widgets, which are generated by NXP's GUI guider,
is not frequently changed.

To speed up the building of the whole project, we moved these components into one
static library and linked the library to the CM4 application project.

This LVGL and Vglite library project is located in the . . /elevator/lvgl vglite 1lib
folder.

Boot sequence

Below is the core boot-up flow:

¢ Board level initialization

* Framework initialization

* HAL devices registration

¢ Framework startup

* FreeRTOS scheduler startup

The main () entry of this project is located in the . . /elevator/cmé4/source/sln_
smart tlhmi cmé.cpp file:

int main (void)

{
/* init the board */
APP BoardInit();

/* init the framework*/
APP InitFramework();

/* register the hal devices*/
APP RegisterHalDevices() ;

/* start the framework*/
APP StartFramework() ;

vTaskStartScheduler () ;
for (;;)
{

} /* should never get here */

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
157 /1190

https://www.nxp.com/design/software/development-software/gui-guider

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

return 0;

8.17 Board level initialization

The board level initialization is implemented in the APP BoardInit () entry which is
located inthe . ./elevator/cm4/source/sln smart tlhmi cm4.cpp file.

Below is the main flow:

* MPU, Clock, and Pins configuration
* Multicore manager init and slave startup
* Peripherals initialization

void APP BoardInit ()

{
BOARD ConfigMPU () ;
BOARD_BootClOCkRUN (),
BOARD InitBootPins();

#if defined (ENABLE SLAVE) && ENABLE SLAVE

uint32 t startupData, i;

mcmgr status t status;

(void)MCMGR Init () ;

/* Get the startup data */

do

{

status = MCMGR GetStartupData (&startupData) ;

} while (status != kStatus MCMGR Success) ;

#endif /* defined (ENABLE SLAVE) && ENABLE SLAVE */

BOARD MIPIPanelTouch I2C Init();
BOARD_InitEDMA ()
Time Init(1l);

8.18 LVGL image resource loading

All the LVGL images, data, and icon data are merged into one continuous binary block
with the 64 Bytes aligned of each imagef/icon.

The cm7 loads this resource binary block into the dedicated memory region
res_sh mem.

The below two function loads each of these LVGL images and icons from this region
during the boot.

Setup the LVGL images is implemented in . . /elevator/cm4/generated/gui
guider.c:

void setup imgs(void *base)
{
_TLHMI Elevator Main Screen 1280x720.data
= (base + 0);
_TLHMI Elevator Virtual Face Blue 180x180.data
= (base + 2764800) ;
_TLHMI Elevator Button Call alpha 90x90.data
(base + 2862016) ;

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
158 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

8.19 Framework managers

The below framework managers are enabled on the cm4 side:

* Low-power manager
e Camera manager

* Display manager

* Multicore manager

¢ Output manager

* Input manager

Refer to framework/docs/introduction.md for a more detailed description of these
framework managers.

Framework initialization (. . /elevator/cm4/source/sln smart tlhmi
cmé . cpp) :

int APP InitFramework (void)

{

int ret = 0;

FWK MANAGER INIT (LpmManager, ret);
FWK MANAGER INIT (CameraManager, ret);
FWK_MANAGER_INIT(DisplayManager, ret) ;
#1if defined(ENABLE_SLAVE) && ENABLE SLAVE
FWK MANAGER INIT (MulticoreManager, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE SLAVE %y
FWK MANAGER INIT (OutputManager, ret);
FWK MANAGER INIT (InputManager, ret);

return ret;

Framework startup (. . /elevator/cm4/source/sln smart tlhmi cm4.cpp):

int APP StartFramework (void)
{

int ret = 0;

FWK MANAGER START (LpmManager, 0, ret);
FWKiMANAGERisTART(CameraManager,
CAMERA MANAGER TASK PRIORITY, ret);
FWK_MANAGER START (DisplayManager,
DISPLAY MANAGER TASK PRIORITY, ret);
#if defined (ENABLE SLAVE) && ENABLE SLAVE
FWK_MANAGER START (MulticoreManager,
MULTICORE MANAGER TASK PRIORITY, ret);
fendif /* defined (ENABLE SLAVE) && ENABLE SLAVE x/
FWK MANAGER START (OutputManager,
OUTPUT MANAGER TASK PRIORITY, ret);
FWK MANAGER START (InputManager,
INPUT MANAGER TASK PRIORITY, ret);

return ret;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

159 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

8.20 Framework HAL devices

The enabled HAL devices are configured in the . . /elevator/cm4/board/board
define.h file as below:

#define ENABLE GFX DEV Pxp

#define ENABLE DISPLAY DEV LVGLElevator

#define ENABLE CAMERA DEV Mlpch2145

#define ENABLE OUTPUT DEV ~ RgbLed

#if deflned(ENABLE SLAVE) && ENABLE SLAVE

#define ENABLE MULTICORE DEV MessageBuffer

fendif /* deflned(ENABLE SLAVE) && ENABLE SLAVE */
#define ENABLE INPUT DEV ShellUsb

#define ENABLE OUTPUT DEV UiElevator

#define ENABLE LPM DEV Standby

The registration of the enabled HAL devices is implemented in the
APP RegisterHalDevices (...) function, which is located in ../elevator/cm4/
source/sln smart tlhmi cm4.cpp

Note: The APP RegisterHalDevices (...) mustbe called after the framework
initialization APP_InitFramework (...) and before framework startup
APP StartFramework (...)

int APP RegisterHalDevices (void)
{

int ret = 0;

HAL GFX DEV REGISTER (Pxp, ret);
HAL DISPLAY DEV REGISTER (LVGLElevator, ret);
HAL CAMERA DEV REGISTER (MipiGc2145, ret):;
#1f defined (ENABLE SLAVE) && ENABLE SLAVE
HAL MULTICORE DEV_ REGISTER (MessageBuffer, ret);
fendif /* defined (ENABLE SLAVE) && ENABLE SLAVE %/
HAL OUTPUT DEV REGISTER(RgbLed ret) ;
HAL INPUT DEV ~ REGISTER (ShellUsb, ret);
HAL OUTPUT DEV _REGISTER (UiElevator, ret);
HAL LPM DEV REGISTER (Standby, ret);
/* Add new HAL device registrations here */

return ret;

8.20.1 MipiGc2145 camera HAL device

This HAL device driver is located in . . /framework/hal/camera/hal camera
mipi gc2l45.c

Below is the configuration of this camera device, which is located in . . /elevator/
cmé /board/board define.h

#ifdef ENABLE CAMERA DEV MipiGc2145

#define CAMERA DEV MipiGc2145 BUFFER COUNT 2

#define CAMERA DEV MipiGc2145 HEIGHT 600 // 720
#define CAMERA DEV MipiGc2145 WIDTH 800 // 1280

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
160 /190

NXP Semiconductors MCU-SMHMI-SDUG

8.20.2

8.20.3

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

#define CAMERA DEV MipiGc2145 LEFT 0

#define CAMERA DEV MipiGc2145 TOP 0

#define CAMERA DEV MipiGc2145 RIGHT 799 // 1279
#define CAMERA DEV MipiGc2145 BOTTOM 599 // 719
#define CAMERA DEV MipiGc2145 ROTATE kCWRotateDegree 0
#define CAMERA DEV MipiGc2145 FLIP kFlipMode None
#define CAMERA DEV MipiGc2145 SWAPBYTE 0

#define CAMERA DEV MipiGc2145 FORMAT
kPixelFormat YUV1P444 RGB

#define CAMERA DEV MipiGc2145 BPP 4
#endif /* ENABLE CAMERA DEV MipiGc2145 */

PxP graphics HAL device

This HAL device driver is located in . . /framework/hal/misc/hal graphics_
pPxXp.cC

It represents the 2D graphics device to handle the 2D graphics operations.

LVGLEIlevator display HAL device

This HAL device driver is located in . . /framework/hal/display/hal display
lvgl elevator.c

Below is the configuration of this display device, which is located in the .. /elevator/
cmé /board/board define.h

#ifdef ENABLE DISPLAY DEV LVGLElevator
#define DISPLAY DEV LVGLElevator BUFFER COUNT 1

#define DISPLAY DEV LVGLElevator HEIGHT 640
#define DISPLAY DEV LVGLElevator WIDTH 480
#define DISPLAY DEV LVGLElevator StartX 80
#define DISPLAY DEV LVGLElevator StartY 50
#define DISPLAY DEV LVGLElevator LEFT 0
#define DISPLAY DEV LVGLElevator TOP 0
#define DISPLAY DEV LVGLElevator RIGHT 479
#define DISPLAY DEV _ LVGLElevator BOTTOM 639

#define DISPLAY DEV LVGLElevator ROTATE
kCWRotateDegree 270

#define DISPLAY DEV LVGLElevator FORMAT
kPixelFormat RGB565

#ifdef ENABLE CAMERA DEV MlplGC2145

#define DISPLAY DEV LVGLElevator SRCFORMAT
kPixelFormat YUV1P444 _RGB

#else

#define DISPLAY DEV LVGLElevator SRCFORMAT
kPixelFormat UYVY1P422 _RGB

#endif

#define DISPLAY DEV LVGLElevator BPP 2
#endif /* ENABLE DisplayDev LVGLElevator */

This LVGLElevator display HAL device launches the main LVGL task loop for the Ul
flashing.

static void LvglTask(void *param)

{
#if LV _USE LOG
lv_log register print cb(PrintCb);

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
161 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

8.20.4

8.20.4.1

8.20.4.2

Smart HMI Software Development User Guide

#endif /* LV _USE LOG */

lv _port pre init();
lv_init();
lv_port disp init();

lv port indev init();

g LvglInitialized = true;

setup imgs ((unsigned char *)APP LVGL IMGS BASE) ;

setup ui (&guider ui);

events init (&guider ui);

custom init (&guider ui);

while (1)

{
lv_task handler () ;
vTaskDelay (pdMS TO TICKS(5)) ;

UiElevator Ul output HAL device

This HAL device driver is located in . . /framework/hal/output/hal output ui
elevator.c

The whole Ul state machine is driven by this output HAL device with the below event
sources:

LVGL touch events

All the event callbacks of the LVGL widget are implemented in . . /elevator/cm4/
generated/events init.c

Vision and Voice algorithm inference result

The vision and voice inference result is notified by the output manager with below HAL
OutputDev UiElevator InferComplete operator:

static hal output status t
HAL OutputDev UiElevator InferComplete (const output dev t
*dev,output algo source t source,void *inferResult)

{
hal output status t error = kStatus HAL OutputSuccess;

if (inferResult == NULL)
{

return error;

}

if (source == kOutputAlgoSource Vision)

{

_InferComplete Vision (dev, inferResult):;

}

else if (source == kOutputAlgoSource Voice)

{

_InferComplete Voice (dev, inferResult);

}

return error;

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
162 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

8.20.5 RgbLed output HAL device

This HAL device driver is located in . . /framework/hal/output/hal output rgb
led.c

It flashes the RGB led with different pattern according
to the HAL OutputDev RgbLed InferComplete Or
HAL OutputDev RgbLed InputNotify operators below:

static hal output status t
HAL OutputDev RgbLed InferComplete (const output dev t *dev,

output algo source t source, void *inferResult)

{
hal output status t error = kStatus HAL OutputSuccess;

uint32 t timerOn 0

_SetLedColor (APP_OutputDev RgbLed InferCompleteDecode (source,
inferResult, &timerOn)) ;

if (timerOn != 0)
{
xTimerChangePeriod (OutputRgbTimer,
pdMS TO TICKS (timerOn), O0);
}

return error;

static hal output status t

HAL OutputDev RgbLed InputNotify(const output dev t *dev, void
*data)

{

hal output status t error = kStatus HAL OutputSuccess;
_SetLedColor (APP_OutputDev RgbLed InputNotifyDecode (data)):;

return error;

8.20.6 MessageBuffer multicore HAL device

This HAL device driver is located in . . /framework/hal/misc/hal multicore
messageBuffer.c

It handles multicore messaging based on the multicore manager message buffer
mechanism.

For the detailed description of this HAL device, referto . ./framework/docs/hal
devices/multicore.md in the framework documentation.

8.20.7 ShellUsb input HAL device

This HAL device driver is located in . . /framework/hal/input/hal input shell
cdc.c

It populates one USB CDC device and generates the shell.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

163 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

This driver only includes one weak shell command registration function as below:

__attribute ((weak)) void
APP InputDev Shell RegisterShellCommands (shell handle t
shellContextHandle, input dev t shellDev,
input dev callback t callback)
{
}

The application must overwrite this function to register the exactly shell commands.

You can find the implementation of this overwritten function for the Elevator application
from ../elevator/cm4/source/event handlers/smart tlhmi input shell
commands.c:

void APP InputDev Shell RegisterShellCommands (shell handle t
shellContextHandle, input dev t *shellDev,

input dev callback t callback)

{

s_InputCallback callback;

s _SourceShell = shellDev;

s_ShellHandle shellContextHandle;

s _FrameworkRequest.respond = FrameworkEventsHandler;

if (s_ThingName == NULL)
{

APP GetHexUniquelID (&s_ ThingName) ;
}

SHELL RegisterCommand (shellContextHandle,
SHELL COMMAND (version)) ;

8.20.8 Standby LPM HAL device

This HAL device driver is located in . . /framework/hal/misc/hal lpm
standby.c.

For the detailed description of this LPM device, refer to . . /framework/docs/hal
devices/low power.md in the framework documentation.

This standby HAL device implements the standby mode of this application. The backlight
is turned off and the main display layer is disabled.

static void EnterStandbyMode (void)

{
LOGD (" [Standby] Enter standby mode") ;
BOARD BacklightControl (0) ;
lv_enable ui preview(0);

8.21 Logging

Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

164/190

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG

8.21.1

8.21.2

Smart HMI Software Development User Guide

The FreeRTOS logging library code is located in the logging folder where you can
find the detailed document . . /elevator/cm4/freertos/libraries/logging/
README . md

The CM7 and CM4 share low-level LPUART12 peripheral for the logging output. The
hardware semaphore mechanism is used to guarantee the concurrence access of
LPUART12 peripheral.

They share a low-level timer to get the unified timestamp of the logging information.

Logging task init

Application calls xLoggingTaskInitialize (...) API to create the logging task in
the main () entry of this project is located in the . . /elevator/cm4/source/sln
smart tlhmi cmé.cpp:

xLoggingTaskInitialize (LOGGING TASK STACK SIZE,
LOGGING TASK PRIORITY, LOGGING QUEUE LENGTH) ;

Logging macros

The logging Macros are defined in . . /framework/inc/fwk log.h.

All the modules must use these unified logging Macros for logging.

#ifndef LOGV
#define LOGV (fmt, args...) {implement...}

#endif
#ifndef LOGD

#define LOGD (fmt, args...) {implement...}
#endif

#ifndef LOGI
#define LOGI (fmt, args...) {implement...}
fendif

#ifndef LOGE
#define LOGE (fmt, args...) {implement...}
#endif

9 Customization

MCU-SMHMI-SDUG

9.1

9.1.1

How to develop a user application

Introduction

We created a template to demonstrate the Smart HMI application with LVGL GUI, Face
Recognition, and Far-Field Voice Recognition Al/ML algorithms integrated.

You can leverage this template to quickly build your own applications:
-- Create your fancy GUI with an open-source LVGL library

-- Use Face Recognition as the user identity

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
165/190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

9.1.2

9.1.21

9.1.2.2

Smart HMI Software Development User Guide

-- Use Far-Field Voice Recognition as touchless interface

Build the LVGL GUI

LVGL is a free and open-source embedded graphic library with features that enable you
to create embedded GUIs with intuitive graphical elements, beautiful visual effects, and
a low memory footprint. The complete graphic framework includes various widgets for
you to use in the creation of your GUI, and supports more advanced functions such as
animations and anti-aliasing.

To learn more about LVGL, visit https://lvgl.io/

Design and create the GUI with NXP's free GUI Guider tool

GUI Guider is a user-friendly graphical user interface development tool from NXP that
enables rapid development of high quality displays with the open-source LVGL graphics
library. GUI Guider's drag-and-drop editor makes it easy to utilize the many features of
LVGL such as widgets, animations, and styles to create a GUI with minimal or no coding
at all.

To learn more about GUI Guider, visit https://www.nxp.com/design/software/development-
software/gui-guider:GUI-GUIDER

Refer to our full GUI Guider project for Coffee Machine and Elevator demo below:

-- Coffee Machine coffee machine/gui guider/coffee machine.guiguider

-- Elevator elevator/gui guider/elevator.guiguider

Integrate your generated LVGL GUI code
The whole GUI code is running in the CM4 core and is built into the CM4 project.

By default, the function below is the main entry of the whole LVGL GUI that is located in
your generated GUI code . . /coffee machine/cm4/generated/gui guider.c

void setup ui(lv_ui *ui)
{
setup scr standby (ui);
1lv_scr load(ui->standby) ;
}

We created the LVGL Display HAL device to handle the LVGL initialization and the GUI
launch. The void setup ui(1v_ui *ui) is called in this HAL device, therefore
you must replace the "generated" folder with your GUI code in the CM4 project, and the
whole Ul be launched during the start-up.

Refer LVGL Display HAL device implementation for the Coffee Machine demo and
Elevator demo as below:

-- Coffee Machine . ./framework/hal/display/hal display lvgl
coffeemachine.c

-- Elevator . ./framework/hal/display/hal display lvgl elevator.c

To learn more about Display HAL device, refer to . . /framework/docs/hal
devices/display.md

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
166 / 190

https://lvgl.io/
https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER
https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

9.1.3

9.14

9.1.5

Smart HMI Software Development User Guide

Build the phoneme-based voice recognition model

We enabled Far-Field Voice Recognition by phoneme-based Automatic Speech
Recognition (ASR) engine. NXP partners with Cyberon for generating phoneme-based
voice engines. For more information on how to build your phoneme-based voice engine,
referto ../voice/dsmt instructions.md.

We created the Voice Algorithm HAL device to handle the whole voice recognition.

Refer the Voice algorithm HAL device implementation for the Coffee Machine demo and
Elevator demo as below:

-- Coffee Machine and Elevator Voice Algorithm HAL . . /framework/hal/voice/ha
1 voice algo dsmt asr.c

-- Coffee Machine voice recognition models . ./coffee machine/cm7/local
voice/>local voice folder

-- Elevator voice recognition models . ./elevator/cm7/local voice>local
voice folder

The voice recognition is running in CM7 and the whole Voice algorithm HAL device and
voice models are built into CM7 project.

Bind the user's profile data with face recognition

The face recognition algorithm and face feature database have been implemented. You
can use them as the user identity for your application.

They are all running on CM7 and are built into the CM7 project.

You can refer the implementation for the Coffee Machine demo and Elevator demo as
below:

-- Face recognition algorithm for Coffee Machine . . /framework/hal/vision/hal
vision algo oasis coffeemachine.c

-- Face recognition algorithm for Elevator . . /framework/hal/vision/hal vision
algo oasis elevator.c

-- Face feature database . ./framework/hal/vision/hal sln facedb.c

We have implemented the framework flash APIs based on the little fs. You can define
the user's profile data structure and implement the user's profile database base on these
well-defined APls.

You can refer the user's profile database implementation for the Coffee Machine demo
and Elevator demo as below:

-- User's profile data base for Coffee Machine . ./coffee machine/cm7/source/
hal sln coffeedb.c

-- User's profile data base for Elevator . . /elevator/cm7/source/hal sln
elevatordb.c

Implement the use case flow for your application

We created the Ul Output HAL device to handle the APP use case flow. It controls

the face recognition HAL device, voice recognition HAL device and the LVGL Ul. The
inference results from face recognition HAL device and voice recognition HAL device are
posted into this output device.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
167 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

9.2

9.2.1

9.2.2

9.2.2.1

9.2.2.2

Smart HMI Software Development User Guide

To learn more about Output HAL device, referto . . /framework/docs/hal
devices/output.md

You can refer the Ul Output HAL device implementation for the Coffee Machine demo
and Elevator demo as below:

-- Coffee Machine . ./framework/hal/output/hal output ui coffee
machine.c

-- Elevator . ./framework/hal/output/hal output ui elevator.c
Application resource build

Introduction

This section is focused on the use of the resource build tool, which can easily generate
the required binary file from the user's source and description file.

Source files

The source files are placed in the resource folder of each project. The files generally
contain three types of images, icons, and sounds, placed in the corresponding folders
respectively. The build tool has certain requirements on the code format of the source
files, as shown below.

Format of Image file

The image files are generated by GUI-Guide and automatically saved in the
gui guide/generated/images folder. The installation package for GUI-Guide V1.3.0
can be found at this address: GUI-Guide Tool.

There are two types of image files, one is big-endian and the other is little-endian, so only
data of the required image type must be generated.

const uint8 t Americano 250x250 map[] = {

#if LV _COLOR DEPTH == 16 && LV_COLOR 16 SWAP ==
Oxff, Oxff, 0x00, Oxff, Oxff, 0x00, Oxff, Oxff, 0x00, Oxff,
Oxff,
fendif
#if LV _COLOR DEPTH == 16 && LV _COLOR 16 SWAP != 0
Oxff, Oxff, 0x00, Oxff, Oxff, 0x00, Oxff, Oxff, 0x00, Oxff,
Oxff,
#endif

b

Format of Icon file

The format of the icon file must be consistent with the following.

#ifndef NXP_LOGO H
#define NXP_LOGO H_

#define NXP LOGO W 240
#define NXP LOGO H 86

static const unsigned short nxp logo 240x86[] = {

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
168 /190

https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

OxFDA4, 0OxFD83, OxFD83, O0xFD83, 0xFD83, 0xFD83, 0xFD83,
0xFD83,

bi

#endif /* NXP LOGO H */

9.2.2.3 Format of Sound file

The format of the sound file must be consistent with the following.

/************************************

* Written by WAVToCode

* FileName: Can I help.h
* Signed: Yes

* No. of channels: 1

* No. of samples: 14211

* Bits/Sample: 16

*

************************************/

#define WW DETECT EN LEN sizeof (ww_detect en)
short ww_detect en[14211] = {
0, 0, 0, 1, -2, 2, -1, 0, /% 0=7 */
b il &2 2, -1, 0, 1, /* 8-15 */

2 0, -1}; /* 14208-14210 */

Note: The sound files can be generated using open-source Audacity and WavToCode,
and the sampling rate is set to 16,000 hz, with 16 bits per channel.

9.2.3 Description file

Each application has a description file to contain all the resources to be built. The
resource build tool reads this description file to build the final resource binary file.

Here is the basic design for the description file. Each line represents a source file to
build, and the format is <Type File Name>.

¢ Type: image/icon/sound
¢ File_Name: the path of source files is relative to the build tool.

// resource build coffee machine resource.txt

/*

image ../../coffee machine/resource/images/

brewing animimg brewingfOl.c

icon ../../coffee machine/resource/icons/process bar 240x14.h
sound ../../coffee machine/resource/sounds/common/

confirm tone.h

</

9.2.4 Resource build tool

Provide bat for Windows and bash for Linux to invoke the corresponding build tools to
generate resource binary file and offset table file from the source files and the description
file.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

169 /190

NXP Semiconductors MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

9.3

9.3.1

9.3.2

Smart HMI Software Development User Guide

The build tools are placed in the tools/resource build folder. The bat and bash
tools are placed in the resource folder of each project.

Modify the description file, binary file name, and image file format in bat and bash tools to
generate the required binary file.

« description file: the name of the description file;
* binary file name (optional): the name of the generated binary file, default is
"resources.bin";

* image file format (optional): 0/1, default is 0 (LV_COLOR_16_SWAP == 0);

<build tool path> <description file> <binary file name> <image
file format>

Generate the binary file by running project.bat as administrator in Windows or
executing bash project.sh in Linux command shell.

Cyberon DSMT speech model instructions

Getting started with phoneme-based voice engine tool

NXP partners with Cyberon for generating phoneme-based voice engines. The voice
engine supports speaker-independent recognition and there is no need to collect speech
data for training specific commands in advance. With the generation tool, you can create
your own custom voice engine by simply typing text.

The TLHMI solution supports Far-Field voice recognition enabled by phoneme-based
Automatic Speech Recognition (ASR) engine, digital signal processing (DSP), and audio
front end (AFE). This chapter describes:

1. How to create or modify phoneme-based voice engine in various languages
2. How to integrate a generated voice engine into TLHMI solution software

3. Guide for voice recognition improvement

4. Technical specification information of the voice engine

Installation

The generation tool requires you to log in. To get access to the tool, contact NXP (local-
commands@nxp.com) with the following information.

1. Company name

2. User’s name

3. User’s e-mail address

4. Physical address (MAC address) of PC’s network interface.

We reach out to let you know when the account is created. The installation package for
Cyberon DSpotter Modeling Tool (DSMT) V2 can be found at this address: DSpotter

Modeling Tool
The installation package contains the following items.
1. Cyberon DSpotter Modeling Tool (DSMT) V2

2. DSpotter Offline Test Tool V2

3. DSpotter Online Test Tool V2 You are required to install all of them. While installing
the modeling tool, you are prompted to install the offline / online test tools.

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
170/190

mailto:local-commands@nxp.com
mailto:local-commands@nxp.com
https://tool.cyberon.com.tw/DSMT_V2/index.php?lang=en
https://tool.cyberon.com.tw/DSMT_V2/index.php?lang=en

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Install the Cyberon DSpotter GarbGen Tool from this address: DSpotter GarbGen Tool

9.3.3 Load the project template

Note: This guide focuses on exemplifying how DSMT tool works by using the Coffee
Machine demo template for English language.

First, copy the coffee machine/oob demo en.dsnt file in the MCUXpresso project
at the location below.

| |

a

i Project Explorer % iili Registers § Faults 2, Peripherals+
S-Sl |-

= sln_smart_tlhmi_coffee_machine_cmd (in cmd) <5Slaves [sln_smart_tlhmim s

QoD

=
w TL-_i?- = sln_smart_tlhmi_coffee_machine_cm7 (in cm7) = Master= [sln_smart_tlhmi
= Project References

& Project Settings

i@? Binaries

[l Includes

3 CMSIS

3 audio

&3 board

3 component

3 device

(3 drivers

B = framework
[freertos

52 libs
3 littlefs

~ [= local_veice
[oob_demo_cn
[y oob_demo_de
~ 5% = oob_demo_en

5 » CMD_COFFEE_MACHIME tet
E’Tg = opob_demo_en_pack_WithMapl|D.bin
ﬁ oob_demo_en.dsmt

(=9 uu.:unl::l_d Em u:-_.i.:r <

£ >

Figure 33. Coffee Machine DSMT en template

Ensure that the DSpotter Modeling Tool (DSMT) is installed. To load the project template:

1. Launch the application.
2. A window prompts you to enter your credentials. Log in with your credentials.
3. Click File > Load Project

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

1717190

https://tool.cyberon.com.tw/DSpotterGarbGenTool/index.php?lang=en

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

0 Cyberon DSpotter Modeling Tool V2

File

Group

Language

Help

New Project...

Load Project...

Save Project

Modify Project Settings...

Exit

Figure 34. Load DSMT template

Ctrl+S

4. Open the DSMT project previously copied into the workspace.

File Group Language Help

{WW | CMD_COFFEE_MACHINE

Commands

Input Command

0 Cyberon DSpotter Modeling Tool V2

Add
Batch Add
Command List
up
No. Command Reward CmdMapl®
0 Hey 1XP 0 1 o
1 Hey NXP ~1 0 1
2 Hey NXP ~2 0 1
3 Hey P ~3 0 1 Tz
4 Hey NXP ~4 0 1
5 Garb-Hey -100 0 Edit
6 Garb-HXP -100 0
7 Garb-Hey NX -100 0 153
8 Garb-Hey NP -100 0
il Garb-Hi NXP -100 0
10 Garb-Helo HXP -100 0 Phoneme Table
11 Garb-Hello MXP ~1 -100 0
12 Garb-Hallo MXP -100 0 v
< >
Command Phoneme Play
-US>=hh-eyl <en-US>eh1.n-eh-kcl.s-p-iyl
<en-Us=hh-eyl<en-US>ehl.n-eh-kcl.s-p-iy. Update
Defauft

Command
Confi. Reward ljl -] +
Global
Speaker Independent
Energy Threshold ol -| ¥ +
Confi. Reward o -] +
SG Diff. Reward o -] +
Ending Silence (sec.) 0.24 | -] +
Reset
Extra Output
Pack Model With: [1 Big Endian
[Command Text
[Trimap bin
MapID
Online Test Offline Test Save Project

Platform: 32 Bit

Language: English(Worldwide) Base Model Release: 202009281300

Sample Rate: 16000 Hz

| Frame Rate: 100 (frame/sec)

Feature: 23D Level: 1

Figure 35. Coffee Machine DSMT en template

9.3.4 Add a new command into the Coffee Machine demo

Note: For an easier demonstration, we remove the garbage words here. Delete all
entries after "Deregister” command.

To add a new command into the Coffee Machine demo:

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

1727190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

1. Click CMD_COFFEE_MACHINE tab on the DSMT tool.

2. Type a new command, then press on "Add". For example, "Mochaccino". This
command is inserted at the end, as shown below (this is the reason for which we
have deleted the garbage words, we would have needed to press the "Up" button
for more than 300 times to bring the new command on the position from the image

below.)
@ Cyberon DSpotter Modeling Tool V2 ------ Current modification is Mot saved - X
Group Language Help
ww CMD_COFFEE_MACHINE
Commands Command
Input Command Confl. Reward El -] i+
Add
Batch Add wrE
Speaker Independent
Command List
Up
HMo. Cormmand Reward ~ CmdMap! * Energy Threshold ol-| +
11 Americano 0 2 Down
12 Cappuccino 0 2 Confi. Reward 0|- [] =
13 Cafe fatte 0 2
14 Cafe e 1 0 2 Dekete SG Dff. Reward 0-) +
15 Small 0 2
16 Medium 0 2 Edit Ending Silence (sec.) 0.24 |-] =
17 Large a 2
18 Soft i} 2 24124
19 Soft ~1 i} 2 Reset
20 Mild 0 2
21 strong] 2 Phoneme Table
22 Deregister 0 2
23 Mochaccing 0 -1 Bxtra Output
< Y Pack Model With: [Big Endian
[1 Command Text
Command Phoneme Play [] Trimap bin
<en-US=m-ow0.k-aed.ch-iyl.n-ow0 Update MapID
Default Online Test Offline Test Save Project
Platform: 32 Bit Language: English{Worldwide} Base Model Release: 202009281300
Sample Rate: 16000 Hz | Frame Rate: 100 (framefsec) Feature: 23D Level: 1
Figure 36. Mochaccino at the end

3. Edit CmdMap1d from -1 to the one used for the other commands of this command
group, which is 2. To do this, double-click the command.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

1737190

NXP Semiconductors

MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

9.3.4.1

Smart HMI Software Development User Guide

@ Cyberon DSpotter Modeling Tool V2

File Group Language Help
Wy CMD_COFFEE_MACHINE
Commands

Input Command

Command List
Ho. Command Reward ~ CmdMap! ™
11 Americano 0 2
12 Cappuccino] 2
13 Cafe fatte 0 2
14 Cafe Btte ~1 0 2
15 Small 0 2
16 Medium 0 2
17 Large 0 2
18 Soft i} 2
19 Soft ~1 i} 2
20 Mild 0 2
21 Strong 0 2
22 Deregister 0 2
23 Mochaccing 0 2
<

Command Phoneme
<en-US=m-owD.k-ael.ch-ivl.n-ow0

Add

Batch Add

Up

Down

Delete

Edit

24/24

Phoneme Table

Play
Update

Default

Command
Confi. Reward El =] +
Global
Speaker Independent
Energy Threshold ol-| =
Confi. Reward 0|-] +
SG Diff. Reward 0-] +
Ending Silence (sec.) 0.24 |-] =
Reset
Extra Output
Pack Model With: [Big Endian
[1 Command Text
[1 Trimap bin
MapID
Online Test Offline Test Save Project

Platform: 32 Bit

Language: English{Worldwide)

Base Model Release: 202009281300

Sample Rate: 16000 Hz [

Frame Rate: 100 (framefsec)

Feature: 23D

Levek 1

Figure 37. Mochaccino at the end good cmdMapld

4. Save the project (by pressing Ctrl + S or clicking the Save Project button.)

Integrate the voice engine in MCUXpresso project

If the DSMT template was copied into the folder mentioned above, the binary containing
the speech model is automatically updated when you save the DSMT project.

All information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

1747190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

| |

a

&5 Project Explorer 52 ifli Registers 3§ Faults 'Z, Peripherals+
S-Sl LA

T_,-_i:- = sln_smart_tlhmi_coffee_machine_cmd (in crmd) <5Slaves [sln_smart_tlhmi s
e L-_i?- = sln_smart_tlhmi_coffee_rmachine_cm7 (in cm7) <Master> <Debug> [sln_sn

= Project References

& Project Settings

1@? Binaries

it Includes

3 CMSI5

3 audio

3 board

3 component

3 device

(3 drivers

B = framework
3 freertos

73 libs
3 littlefs

v 23 > local_veice
[y oob_demo_cn
% cob_demo_de

v

Qo0

> oob_demo_en
52 AllGroup_MaplD_pack.bin
os CMD_COFFEE_MACHIME_MaplD.bin
[C} CMD_COFFEE_MACHIME.mod
5 » CMD_COFFEE_MACHIME.tet
[6y CYBase.mod
[B CYTrimap.mod
o > oob_demo_en_pack WithMaplD.bin
oy och_demo_en_pack.bin
@ oob_demo_en.dsmt
| i} cob_demo_en.zip
E7 WW_MaplD.bin
[y WW.mod
> WWixt
[y oob_demo_fr
[scripts 9

[vl mmmn mm e At b
< >

Figure 38. Updated dsmt binary

We now must update a few things in the firmware to add support for the new command.
For the sake of the example, we do the same action on the GUI for Mochaccino as we

are doing for Cappuccino.

1. Update IndexCommands dsmt.h. Increase the total number of commands by 1
and also add an action in action coffee machine en, specifying that we have
the same action as for Cappuccino.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

175/190

NXP Semiconductors

MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

18 /=
19 #de
28 #de
21 #de
22 #de
23
24
25
26
27
28
29
38
31
32
33
34
35
36
37
38
39
48
a1
42
43
44
45
45
a7
43
49 I

[h] IndexCommands_dsmth 3 [h] IndexToCommand_en.h

These-detines-are- currently-used-only ftor-displaying-in

fine
fine
fine
fine

kloffeeMachineActionStart,
kCoffeeMachineActionCancel ,
kCoffeeMachineActionConfirm,
kCoffeeMachinedctionConfirm,
kCoffeeMachinedctionConfirm,
kCoffeeMachinedctionConfirm,
kCoffeeMachinedctionConfirm,
kCoffeeMachinedctionConfirm,
kCoffeeMachineActionConfirm,
kloffeeMachineActionConfirm,
kloffeeMachineActionEspresso,
kCoffeetachineActiondmericano,

kCoffeeMachinedctionCappuccing, -,

kCoffeeMachinedctionlatte,
kCoffeeMachinedctionlatte,
kCoffeeMachinedctionsmall ,
kCoffeeMachineActionMedium,
kloffeeMachineActionlarge,
kCoffeeMachineActionSoft,
kCoffeeMachineActionSoft,
kCoffeeMachinedctionMild,
kCoffeeMachinedctionstrong,

kCoffeeMachinedctionDeregister, //

kCoffeeMachinedctionCappuccing,

Figure 39. Update IndexCommands_dsmt

unsigned- int action_coffee_machine_en[]

.'.. .'l-
.'.. .'l-
.'.. .'l-
.'.. .'I-
.'.. .'I-
.'.. .'I-
.'.. .'I-

.'.. .'I-

il

NUMBER_OF COFFEE_MACHINE CMDS_EN 24
NUMBER_OF COFFEE_MACHINE_CMDS CN 2@
NUMBER_OF COFFEE_MACHINE_CMDS_FR- 16
NUMBER_OF COFFEE_MACHINE_CMDS_DE- 15

=1

"Start"
"Cancel"
"Confirm"
"Confirm"
"Confirm"
"Confirm"
"Confirm"
"Confirm"

- "Confirm"
- "Confirm"

Espresso

" A

"Cafe- latte"
"Cafe- latte"

- "Small”
" "Medium”
- "Large"
M- "soft™

- "soft™

- "Mild™

- "Strong”

- star"

" L

2. Update IndexToCommand en.h. Add a string representation of the new

command.

[H] IndexCommands_dsmth

1
2
3
4
5

11

char *cmd_coffee_machine_en[] = {"Start",

[A] IndexToCommand_en.h 5%

#ifndef INDEXCOMMANDS_EN_H_
#define INDEXCOMMANDS_EN_H_

12 #endif- /* INDEXCOMMANDS_EN_H_-*/

Figure 40. Update IndexToCommand_en

char- *ww_en[] = {"Hey NXP", "Hey NXP", "Hey NXP", "Hey NXP", "Hey NXP"};
"Cancel™, "Confirm", "Confirm", "Confirm",
"Confirm", "Confirm"”, "Confirm"”, "Confirm", "Confirm",
"Espresso”, "Americanc”, "Capuccing”, "Cafe latte”,
"Cafe latte", "Ssmall", "Medium”, "Large", "soft”,
"soft"”, "Mild", “Strong”, "Deregister”, - "Mochaccino”};

3. Build and flash the project. You must now be able to see the command "Mochaccino”
being detected and also triggering the same action as the "Cappuccino” command.

9.3.5 Add a new language into the Coffee Machine demo

1. Open DSMT

All

and login

information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

176 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

beeren
E-mail: |user@nxp| |
Password: [esessencs |

[] show Password

Laogin Forget Password Guest Mode
Version 2.2.14.7 (Buid 202205061800}

Figure 41. Dsmt login

2. File -> New Project. Use the name oob demo_it, choose the ltalian language.
Click OK.

. Cyberon DSpotter Medeling Tool V2 - *

File Group Language Help

Select Language

Project Name: |ooh_demo_rt

Language: | Italian

[oc]

Figure 42. New dsmt project
3. Use the default settings. Click OK.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. Al rights reserved.

User guide Rev. 0 — 25 October 2022

1771190

NXP Semiconductors

MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

. Cyberon DSpotter Modeling Tool V2

File Group Language Help

Sample Rate

Feature Dimension

Frame Rate (frame/sec)

Model Size Level

Lo

Figure 43. New dsmt project settings

4. When asked about the Folder where the project should be saved, go to the
workspace location of the cm7 Coffee Machine demo project -> local_voice

folder.

@ select Folder X
L D, <« sln_smart_tlhmi » coffee_machine » cm7 » local_voice w 2 Search local_voice
Organize « Mew folder == - e
)
Name Date modified Type Size
Quick access
. |]| ocob_demo_cn 6/6/2022 1:19 PM File folder
Documents -)
D, oob_demo_de 6/29/2022 3:00 PM File folder
¥ Downloads || oob_demo_en £/29/2022 11:20 PM File folder
Pictures # || oob_demo_fr £/29/2022 3:00 PM File folder
|]| Documents D, scripts 4/14/2022 2:05 PM File folder
B EBV_tarining
[} img
B Maggie_1
@ OneDrive - NXP
[This PC
_‘ Metwork
Folder: | | |
SelectFolder | | Cancel |
Figure 44. New dsmt project folder

Al information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

178 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

5. Rename Group_1 to WW by selecting Group -> Rename.

@ Cyberon DSpotter Modeling Tool V2 ------ Current modification is Not saved - X
File Group Language Help
Group_1
Commands Command
Input Comrmand Confi. Reward EI - [] &
Add
Batch Add Global
Speaker Independent
Command List
Up
No. Command Reward ~ CmdMapID ‘ Eneray Threshold ol-| @ +
Rename X ol- [] +
0ld Name: ‘Gmup_l | 0|-] +
Mew Name: ‘WWT | 024 | -] .
oK Cancel
Phoneme Table
Extra Qutput
Pack Model With: [] Big Endian
[] Command Text
Command Phoneme Play O Trimap bin
Update L1 mapD
Default Online Test Offline Test Save Project
Platform: 32 Bit Language: Italan Base Model Release: 202105061200
Sample Rate: 16000 Hz | Frame Rate: 100 (frame/sec) Feature: 23D Level: 1
Figure 45. Rename group1

6. Add a simple wake word - let us use "Ciao NXP". By default CmdMapld has value -1.
Change that to value 1 by double-clicking the wake word.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

179/190

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Input Command

File Group Language Help
ww
Commands

Add

Batch Add

Comrmand

Confi. Reward

Global

Speaker Independent

Command List
No. Command Reward CmdMapID
0 Ciao NXP 0 =1

Edit command

Rename Ciao NXP to :

ey

Reward

cao nxp

. Reward

CmdMaplID(-1~32767, Default -1)

Command Phoneme

<ft-IT>t5-al.00<it-IT>e-n1.n-e0.-k-51.p-I1

\ll ||
Reset
0K Cancel
Pack Model With:
[Command Text
Play [Trimap bin
Update L1 mapm
Default Online Test

Threshold

Silence (sec.)

Platform: 32 Bit

Language: Italian

Sample Rate: 16000 Hz |

Frame Rate: 100 (frame/sec)

Feature: 23D

mo B EE

o [] +

0] +

1] ' +

0.24 | -] +

[1 Big Endian
Offline Test Save Project
Base Model Release: 202105061200
Level: 1

Figure 46. Add it wake word

7. Add a new group by selecting Group -> Insert. Change the group name to

CMD_COFFEE_MACHINE.

Add the commands below and change CmdMapld value to 2 for all of them.
Inizia, Annulla, Confermare, Caffé espresso, Caffé americano, Cappuccino, Caffé
Latte, Piccolo, Medio, Grande, Leggero, Mite, Forte, Annullare la registrazione.

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

180/190

NXP Semiconductors

MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

0 Cyberon DSpotter Medeling Tool ¥2 ------ Current medification is Mot saved - s
File Group Language Help
Wi CMD_COFFEE_MACHIMNE
Commands Command
Input Command Confi. Reward ljl - [] &
Add
Batch Add ot
Speaker Independent
Command List
Up
No. Command Reward CmdMapID Energy Threshold ol-| @ +
0 Inizia 0 H Down
1 Annulia 0 2 Confi. Reward o -] +
2 Confermare 0 2
3 Caffé esprasso 0 2 PeeiE SG Diff. Reward o|-] +
4 Caffé americano] 2
5 Cappucdno 0 2 Edit Ending Silence (sec.) 0.24 | -] +
[Caffé Latte 0 2
7 Piccolo 1] 2 114
8 Medio 0 2 Reset
a9 Grande 0 2
10 Leggero 0 2 Phoneme Table
11 Mite 0 2
12 Forte 0 2 Extra Qutput
13 Annuliare & regist... 0 2 Pack Model With: [Big Endian
[] Command Text
Command Phoneme Play [Trimap bin
it-1T=i0.n--t-ts1.j-a0
<it-IT=>i0.n--t-ts1 j-al Update [] MapID
Default Online Test Offline Test Save Project
Platform: 32 Bit Language: Italian Base Model Release: 202105061200
Sample Rate: 16000 Hz | Frame Rate: 100 (frame/sec) Feature: 23D Level: 1

Figure 47. Add it commands

into our project will not be generated.

All information provided in this document is subject to legal disclaimers.

8. Very important: Check the MapID checkbox, otherwise the binary we must integrate

© 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

181/190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Command
Confi. Reward Ijl - [| +
Global
Speaker Independent
Energy Threshold o/ -(+
Confi. Reward |- [| +
5G Diff. Reward 11 | - [| +
Ending Silence (sec.) 0.48 | - P -
Reset
Extra Output
Pack Model With: [] Big Endian
[] Command Text
[] Trimap bin
MapID
Online Test Offline Test Save Project
Figure 48. Add it commands

9. Save the DSMT project (Ctrl + S or File -> Save project).
10. Now we modify the source code to use the newly generated Italian speech model. It
is easier to replace one of the existing models, like French.
* create IndexToCommand it.h

#ifndef INDEXCOMMANDS_IT H_
#define INDEXCOMMANDS IT H_

char *ww_it[] = {"Ciaoc NXP"};

char *cmd coffee machine it[] = {"Inizia", "Annulla”, "Confermare™, "Caffi~ espresso",
nCaffd- americano™, "Cappuccino™, nCaffh Latte™,
"Piccolo™, "Medio™, "Grande", "Leggero™, "Mite™,
"Forte™, "annullare la regiscrazione™};

#endif /* INDEXCOMMANDS IT H */

Figure 49. Index to cmd it
Replace the following symbols in your workspace:
* ASR FRENCH with ASR ITALIAN

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Rev. 0 — 25 October 2022
182/190

NXP Semiconductors

MCU-SMHMI-SDUG

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

NUMBER OF COFFEE_MACHINE CMDS_FR with
NUMBER OF COFFEE_MACHINE CMDS IT (mustadd thatin
IndexCommands_dsmt.h). NUMBER OF COFFEE_MACHINE_ CMDS_IT should be

14.

action coffee machine fr with the equivalent
action:coffee:machine:it
action coffee machine fr can beremoved from IndexCommands dsmt.h
In IndexCommands_ dsmt.h include IndexToCommand it.h instead of

IndexToCommand;Er.h a
action coffee machine it must be defined, as shown below

92
93
94
95
96
a7
98
99
1ea
181
1@2
183
14
185
186
1a7
1esg

unsigned- int action_coffee_machine it[] = {

1i

kCoffeeMachinedctionstart,
kCoffeetachinedctionCancel ,
kCoffeeMachinedctionConfirm,
kCoffeeMachinedctionEspresso,
kCoffeetachinedctiondmericanc,

kCoffeetachinedctionCappuccing, - //

kCoffeeMachinedctionlatte,
kCoffeeMachinedctionsmall ,
kCoffeetachinedctionMedium,
kCoffeeMachinedctionlarge,
kCoffeeMachinedctionsoft,

kCoffeeMachinedctiontild,

kCoffeetachinedctionstrong,

kCoffeeMachinedctionDeregister, //

Figure 50. Coffee machine it commands

"Inizia"

g o "

AN

* replace oob_demo fr begin with cob_demo it begin everywhere in the
workspace

* use oob _demo it pack WithMapID.binin local voice model.s

All information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

183 /190

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Modified, not staged File: coffee machine/cmi/local voiceflocal voice medel.s

@ -11,11 +11,11 @@
.align 4

.glokal ook demo en begin
.global oob_demo cn begin
.global oob demo de begin
—.global ook demo fr begin

+.global oob _demo it begin

ook demo en _begin:

.incbin "../local voice/oob_demo_en/oob_demo_en pack WithMapID.bin"
oob demo en end:
@@ -26,9 +26,9 EE oob demo cn end:

oob_demo de_begin:
.inckin "../local voice/ocb demo de/foob demo de pack WithMapID.kin"

ook demo de end:

—oob_demo fr begin:

—.inchin "../local woice/oob demo fr/oob demo fr pack WithMapID.bin"
—ook_demo_ fr end:
+oob_demo it begin:

m
()
o
&)
o,
m
]
(&)
F
it
[a]
[=]
[&]
!_'I.
i
=]
[u]
I
ot
L]
]
%]
"
-t
F
it
B
o
La]
L)
=
k]
1

+oob demo it end:

Figure 51. Index to cmd it
11. Replace s memPoolWLangFr with s memPoolWLangIt.

12. Delete the cm7 debug folder and rebuild afterwards. Flash the project. You must now
be able to interact with the dev kit through voice.

9.3.6 Cyberon tools

Check the video tutorials: Cyberon demos

10 VIT speech model instructions

MCU-SMHMI-SDUG

10.1 Getting started with VIT

Smart HMI demos use DSMT as Audio Speech Recognition technology by default. To
enable VIT ASR in Smart HMI SDK demos, do the following code modifications:

1. Incm7 board define.h comment ENABLE DSMT ASR and uncomment
ENABLE VIT ASR (path toward header: coffee_machine ../coffee machine/
cm7/board/board define.h and elevator ../elevator/cm7/board/board
define.h

2. At the moment of this release, French is not supported on VIT. Hiding it from the
available languages menu is done putting FRENCH LANG SUPPORTED define on 0 in
this file from both coffee_machine . ./coffee machine/cm4/custom/custom.h
and elevator . . /elevator/cm4/custom/custom.h.

3. After modifying the files, build the Ivgl library, then build the cm7 project and flash it

All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022
184 /190

https://www.youtube.com/playlist?list=PLTEknqO5GAbrDX5NMs-P6b9THWwamgVBo

NXP Semiconductors MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

10.2 Barge-in support when VIT is enabled

At the moment of this release, VIT is not compatible with the AFE which is integrated into
the Smart HMI SDK. As a consequence, barge-in is not available when VIT is enabled. It
should change in the future, as compatibility between VIT and Voice Seeker is planned.

10.3 Obtaining a new VIT model

To obtain a new model, submit a request at this address: https://vit.nxp.com/#/

Note: To do this, you need an nxp.com account.

10.4 Integrating a new VIT model

Place the newly obtained model in the same folder as the currently existing models, as
shown in Figure 52.

W T_,-_i3- = gln_smart_tlhmi_coffee_machine_cm7 (in cm)
=i\ Project References
& Project Settings
q:;? Binaries
[t Includes
3 CMSIS
3 audic
3 = board
3 component
3 device
3 drivers

5 > framework
(53 freertos
v 33 = libs
w £k local_voice
v S vit
~ 2y RTT0_Cortex M7
v 2y Lib
=% Inc
[k} VIT_Model_cn.h
@1 VIT_Model_de.h
@1 VIT_Model_en.h
@, VITh
@ librnaestro_utils.a
@ libYIT_CM7_w05_06_00.a
5 metadata_en.bet
|5, metadata.tet

Figure 52. VIT models

Other files that must be updated for VIT integration are the ones highlighted below.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022

185/190

https://vit.nxp.com/#/

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Figure 53. VIT files

v [local_voice

[oob_demo_cn
£ cob_demo_de
[oob_demo_en
[y oob_demo_fr
(£ scripts
@, IndexCommands_dsmt.h

> @, Index Commands_vit.h
[F, IndexCommands.h
[k, IndexTeCommand_cn.h
@, IndexToCommand_de.h
@, IndexToCommand_en.h
[k, IndexToCommand_fr.h
@, local_voice_model_vit.h
@, local_wvoice_model.h

E‘,}, local_voice_model.s
= = [-

10.5 Multilanguage support

VIT does not support listening for multiple wake words from different languages at the
same time, as it is the case with DSMT. Hence, you will be able to say only one wake

word at a time. To change to a different language, use the language menu from the

display.

10.6 Additional info and resources

For documentation and other resources, see: VIT page

11 Revision history

Table 1. Revision history

Revision number

Date

Substantive changes

0

25 October 2022

Initial release

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

https://www.nxp.com/design/software/embedded-software/voice-intelligent-technology:VOICE-INTELLIGENT-TECHNOLOGY

NXP Semiconductors

MCU-SMHMI-SDUG

12 Legal information

Smart HMI Software Development User Guide

12.1 Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

12.2 Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

12.3 Trademarks

Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

© 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

187 /190

mailto:PSIRT@nxp.com

NXP Semiconductors

MCU-SMHMI-SDUG

Smart HMI Software Development User Guide

Contents
1 Introduction ... 2 6.1.1 Design goalscceoeviiiiiiiiiee e 34
2 Setup and installationccccceerriiiiiicccccciieeee 2 6.1.2 Relevant filescccooooiciiiiie e, 34
21 MCUXpresso IDE ... 2 6.2 Naming conventionscccccciiiiniiiee e, 34
2.2 Install the toolchaincccoceviiiiie 2 6.2.1 FUuNnctionscoeiiiiiin 35
23 Install the SDKcccoiiiiiiiiee e, 4 6.2.2 Variables ... 36
2.4 Import example projectsccccceeviiieieeiiiieenn. 6 6.2.3 Typedefs ... 37
2.4.1 Import from Github ..., 6 6.2.4 ENUMS oo 37
3 IValdi e —————— 7 6.2.5 Macros and Definescccocveiniiiiieiiiieens 38
3.1 Automated manufacturing tools 7 6.3 Device managerscccoocooeeeeeiiiieee e 38
3.1.1 About Ivaldiccoovieiiiiii 7 6.3.1 OVEIVIEW ...ooiiiiiiiiic et 38
3.1.2 Requirementsccccceveeieiiiiiiiiieee e, 8 6.3.1.1 Initialization floWcccooiiiiiiiiiee 38
3.1.3 Platform configurationcccccciiiiiiiinnie. 8 6.3.2 Vision input managercccccoeeiiieeeeeiiieennn. 39
3.1.4 Open Boot Programmingccccceeviiiereennines 9 6.3.2.1 APIS e 39
4 Bootloader ... 10 6.3.3 Output managercccceeeiiiiee e 40
41 Introduction ..o 10 6.3.3.17 APIS o 40
411 Why use a bootloader?ccccoiiiiiiiininnen. 10 6.3.4 Camera Managercccceeeecueeeeeeeeieea e 41
4.1.2 Application Bankscccccccoeeiiiiiiiiiiiiiiieeeee, 10 B6.3.4.1 APIS (o ———— 42
41.3 LOGGING i 10 6.3.5 Display managercccoooooeeiiiiiiee e 42
4.2 OVEIVIEW ..ottt 11 6.3.5.1 APIS oo 42
421 How is boot mode determined? 11 6.3.6 Vision algorithm managerccccoccoiieenniie 43
4.3 Normal bootcccoeeeiiiiee e 11 6.3.6.1 APIS oo 43
4.31 Turn on Image Verificationc.ccocccoceeiiiie 12 6.3.7 Voice algorithm managerccccceeviieeenn. 44
43.2 Disable Debug Consoleccccceeiiiiiiiennnie 13 6.3.7.1 APIS e 44
4.4 Mass Storage Device updates (MSD) 13 6.3.8 Low-Power device managerccccceeenne 45
441 Enabling MSD modeccoceiiiiiiieiieiieeenne 13 B.3.8.1 APIS ot 45
442 Flashing a new binarycccoociiiiiiiiiine. 14 6.3.9 Audio processing managerccccceeeeeieeennn. 46
4421 Main applicationccccoiiiiiiii 14 6.3.9.1 APIS (e ——— 46
4422 Resources 6.3.10 Flash managercccccoiiiiiiiiiiiieeee 47
4423 BUNAIE ..ooiiii 6.3.10.1 Device APIS ...occeeiiiiieiiiciec e 47
4.5 Image Verificationcccoiiiiiiiiii 16 6.3.10.2 Operations APISccooiiiiiiiie e 48
451 Application chain of trustccccevveee. 16 6.3.11 Multicore managercccooeeeeeieiiiiieee e 50
452 Flash Image Configuration Area (FICA) and 6.3.11.1 APIS Lo 51
Image Verificationcccoiiiiiiiiii 17 6.4 HAL deVIiCeS ...ooiiiiiiiiieiiee e 52
4.6 Application banksccooiiiiiiee, 17 6.4.1 OVEIVIEW ...t 52
461 BanKS ... 18 6.4.1.1 Device Registrationccoccooiiiiiiiiinnie. 52
46.2 AdAreSSesueiiiiiiie e 18 6.4.1.2 Device TYPES ..eeerieiiiiiiaeeiieiee e 53
46.3 Remappingcccceeeeiiiiiee e 18 6.4.1.3 Anatomy of a HAL devicec.ccoocierirnneenn. 55
4.6.3.1 Convert .axf to .bincccooiiiiii 19 6.4.1.4 CONFigS .eeeiiiiiiiiiee e 56
5 Over the air updateccccoeimmrmrerrrerneeeeeee, 20 6.4.2 INput dEVICESuvvviiiiiiiiiiieeeee e 57
51 OTA (Over-the-Air) updatesccccoecieennnne 20 6.4.2.1 Device definitioncccccooiiiiiiiiiiiie, 57
51.1 Migration guidecccooiiiiiiii e 21 6.4.2.2 Operatorsccccceeeeiiiiee e 58
5.1.1.1 RT117H firmware changesccccocceeeennnen. 21 6.4.2.3 Capabilitiescccoeriiiiiiii e 60
51.1.2 Ivaldi guide ...ccooriiiiiie e 23 6.4.2.4 EXAMPIE ...ooiiiiiiiieie e 62
51.2 Preparing an OTA imageccccevcieeeenineeen. 24 6.4.3 Output deviCesoooioeiiiiiiiee e 63
51.3 Building imagecccoo i 25 6.4.3.1 Subtypesooooiiiii e 64
51.4 Sign IMagecoovieiie e 25 6.4.3.2 Device definitioncccccoiiiiiiiiiiii e, 64
5.1.4.1 Creating a root, intermediate pair with sign 6.4.3.3 Operatorsccccceeeiiiiiii e 65
server, and certificatescccooovviiieiiiiiiieeeeee, 25 6.4.3.4 AHrbUES ...ocoeeeee 66
5.1.4.2 Formatting the CA and the application 6.4.3.5 EXample ... 67
certificateocoveiiiie 27 6.4.4 Camera devViCescccovveerriiiiiieeeieee e 71
5.1.5 OTA Workflow with AWS loT Console 27 6.4.4.1 Device definitioncccccoeeriiiiiiini 72
5.1.5.1 Update main applicationccccccceeeeeeiiiiinnnnn, 31 6.4.4.2 Operatorsccccccviriiiiiiieieee e 73
5.1.5.2 Update resourcesccccoeeueeeeeiiiiieeeeeniinennn. 31 6.4.4.3 Static configsccceieiiiiiii 75
5.1.5.3 Update with Bundlecccccceeeeiiiiiiiiiiiiinnes 32 6.4.4.4 Capabilitiescccoeveeeieeeeeeeeeieeeee 77
6 Frameworkccccovovmmmrermrieir s s emssnnenenes 33 6.4.45 EXample ... 78
6.1 Framework introductioncccccccieiiine.. 33 6.4.5 Display devicesccccooeiiiiiiiiiiiiieee e 80

MCU-SMHMI-SDUG

All information provided in this document is subject to legal disclaimers.

© 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

188 /190

NXP Semiconductors

MCU-SMHMI-SDUG

6.4.5.1
6.4.5.2
6.4.5.3
6.4.54
6.4.6
6.4.6.1
6.4.6.2
6.4.6.3
6.4.6.4
6.4.6.5
6.4.7
6.4.7.1
6.4.7.2
6.4.7.3
6.4.7.4
6.4.8
6.4.8.1
6.4.8.2
6.4.8.3
6.4.8.4
6.4.9
6.4.9.1
6.4.9.2
6.4.9.3
6.4.10
6.4.10.1
6.4.10.2
6.4.10.3
6.5
6.5.1
6.5.1.1
6.5.1.2
6.5.2
6.5.2.1
6.5.2.2
7

71

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9
7.10
7.10.1
7.10.2
7.1
7111
7.11.2
7.12
7.13
7.14
7.15
7.16
7.7
7.18

MCU-SMHMI-SDUG

Device definitioncccooeiiiiiiiiiieeeee 80
OPEratorscoovueiiiieieriee e 82
Capabilitiesccccovieeiiiiii 83
EXampPleccoviiiiie 87
Vision algorithm devicesccccoviviiiiirinnenn. 89
Device definitionccccooiiiiiiiiiieeeee 90
OPEratorscooveeiiiieeeriee e 91
Capabilitiesccccovieeiiiiii 92
Private Dataccccoeiiiiiiiie 93
EXampleccoviiiiii 94
Voice algorithm devicescccceviiieriiiennn. 97
Device definitionccccooeiiiiiiiiiiieeee 97
OPEratorscoovceeviiieeeriee e 98
Capabilitiesccoeeuviiiiiieiiie e 100
EXamplecoooviiiiii 100
Audio processing deviceccocevirieeennenn. 102
Device definitioncccoeviiiiiiniiiieee. 103
OPEratorsooeviiiiiieeeiiee e 104
Capabilitiesccoeeuviiiiiieiiie e 105
EXamplecoooviiiii 106
Flash devicescccovvieiiiiiiiiiceee e 108
Device definitioncccoeviiiiiiiiiiieee. 108
OPEratorscoevviiiiieeeiiee e 109
EXamplecoooviiiii 111
Multicore devicesccceviiiiiiinieeeniieee 119
Device definitioncccoeviiiiiiiiiiee. 119
OPEratorscoevviiiiieeeiiee e 120
FreeRTOS message buffer device 121
EVENES ..o 125
OVEIVIEW ...oiiiiiiiiiee e 125
Event triggerscccooviiiiiee i 125
Types of eventscccovvviiiiiieiiiiec e 127
Event handlersccccoooeiiiiiiiiiece 129
Default handlers ... 130
App-specific handlersccccociinieineen. 131
Coffee machinecccocceiniinininnsie s 132
Introductioncccooeiiiiiiii 132
Architectureccccooiviiiii 133
Software block diagramcccccoiiiiiinenne 133
Coffee machine CM7cccociiiiiiiiciieene 133
Main functionalitiesccccoceeviiiniiiiiinns 134
BOOt SEQUENCEeeeviiiiiiiicieee e 134
Board level initializationccccceeiieennnen. 134
Framework managersccccvcevinieeenneenne 135
Framework HAL devicescccccveriverinnnenn. 136
LOGQING ueveiiiiieiiiee et 137
Log Task INitoooeeeiiiiiie e 137
Log MaCIOSoovviiiiiiiciieeece e 137
Coffee Machine databasec...ccccocveernen. 138
Face recognition database usage 138
User coffee information database usage 139
Coffee machine CM4cccoiiiiiiiiiieee 139
Main functionalitiesccccocvriiiniiininns 140
LVGL GUI screens and widgetscc.cc.c..... 140
LVGL and Vglite librarycccccvviiininiennnn. 140
BOOt SEQUENCEeeeviiiiiiiceee e 140
Board level initializationccccceeiieeennnen. 141
LVGL image resource and icon resource
10adING .oviiiiee 141

Smart HMI Software Development User Guide

7.19
7.20
7.20.1
7.20.2
7.20.3
7.20.4
7.20.4.1
7.20.4.2
7.20.5
7.20.6
7.20.7
7.20.8
7.21
7.21.1
7.21.2
8

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.10.1
8.10.2
8.11
8.11.1
8.11.2
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.20.1
8.20.2
8.20.3
8.20.4
8.20.4.1
8.20.4.2
8.20.5
8.20.6
8.20.7
8.20.8
8.21
8.21.1
8.21.2
9

9.1
9.1.1
9.1.2
9.1.21

All information provided in this document is subject to legal disclaimers.

Framework managersccccevviiiieninnenns 142
Framework HAL devicescccocovinieeennenn. 143
MipiGc2145 camera HAL device 144
PxP graphics HAL devicecccccceennee. 144
LVGLCoffeeMachine display HAL device 144
UiCoffeeMachine Ul output HAL device 146
LVGL touch eventsccccoevieiiiiiiiiieciiiees 146
Vision and Voice algorithm inference result ... 146
RgbLed output HAL devicecccceeeeennneenn. 147
MessageBuffer multicore HAL device 147
ShellUsb input HAL deviceccccovvevenneenne 148
Standby LPM HAL devicecccccvvenieiennenn. 148
LOGQING coveeeiieierieee e 149
Logging Task Initcccoovviiiiiiie, 149
Logging Macrosccccevveiinieeiiiieeniec e 149
Elevatorccccvvminienininn s 150
INtroductioncooviiiiiiii 150
Architecture ... 150
Software block diagramcccccviiiiiinnne 151
Elevator CM7coooviiiiiieeieeee e 151
Main functionalitiescccooeviiiiiiiiiiines 151
BoOt SEqQUENCEc.eeeviiiiiiiii 151
Board level initializationccccoeeviiiinnn. 152
Framework managersccccevvviiieeeinnenn. 153
Framework HAL devicescccocovireiennenn. 154
LOGQING oveeiiiieeiieee e 154
Log task initoovieeiiiii e, 155
LOQ USAQE ..eiiiiiiiiiieiiie et 155
Elevator databaseccccccooviiiiiiiiiiines 155
Face recognize database usage 155
Elevator user information database usage156
Elevator CM4oooiiiiiiiiieee e 156
Main functionalitiescccooeviiiiiiiiiiines 156
LVGL GUI screens and widgetsc.c....... 157
LVGL and Vglite librarycccccoviiiiiinnnnn. 157
BoOt SEqQUENCEeeviiiiiiiii e 157
Board level initializationcccoeeiiiiinnn. 158
LVGL image resource loadingccceeneee. 158
Framework managersccccevvviiieeeinnenn. 159
Framework HAL devicescccocovevieeennenn. 160
MipiGc2145 camera HAL device 160
PxP graphics HAL devicecccccceennee. 161
LVGLElevator display HAL device 161
UiElevator Ul output HAL device 162
LVGL touch eventsccccovieeiiiiiiniciiiiees 162
Vision and Voice algorithm inference result ... 162
RgbLed output HAL devicec..ccceeeennn. 163
MessageBuffer multicore HAL device 163
ShellUsb input HAL deviceccccovceeennenne 163
Standby LPM HAL devicecccccevevieeennenn. 164
LOGQING cooveeeiiieeiieeeeie e 164
Logging task initccccoeviiiiiiiii e 165
LOgging MacroScccccvverieiiiiieeiiie e 165
Customizationccccccevriininiininiennnee, 165
How to develop a user application 165
INtroductioncooviiiiiiii 165
Build the LVGL GUIcoviiiiiiiiiiceeeeeeen 166
Design and create the GUI with NXP's free
GUI Guider toolcovcueviiiiiiiiicrieeeecee 166

© 2022 NXP B.V. All rights reserved.

User guide

Rev. 0 — 25 October 2022

189 /190

NXP Semiconductors

MCU-SMHMI-SDUG

9.1.22 Integrate your generated LVGL GUI code 166
9.1.3 Build the phoneme-based voice recognition

MOAEI ..eiiiiiiiiie e 167
9.1.4 Bind the user's profile data with face

reCOgNItioNcoiiiiiiiiiiiiiie e 167
9.1.5 Implement the use case flow for your

application ..o 167
9.2 Application resource build ... 168
9.2.1 Introductioncccoooiiiiiiii 168
9.2.2 Source fileSoooiiiiiiiiiei e 168
9.2.21 Format of Image fileccccooveiiniiiniinnn. 168
9.2.2.2 Format of lcon fileoocoeeviiiiiiiiii 168
9.2.2.3 Format of Sound filec..cccoieiiiiiiii, 169
9.2.3 Description filecccccooiiiiiniiee 169
9.24 Resource build toolcccccoeeviiiiieiiiiieee. 169
9.3 Cyberon DSMT speech model instructions170
9.3.1 Getting started with phoneme-based voice

enginge 100lccovciiiiiiiiie e 170
9.3.2 Installationcccoeeeiiiiie e 170
9.3.3 Load the project templatecccccoovveiiieenne 171
9.34 Add a new command into the Coffee

Machine democccoeiiiiiiiiiiiee e 172
9.3.4.1 Integrate the voice engine in MCUXpresso

PrOJECE ..ot 174
9.3.5 Add a new language into the Coffee

Machine democccoeiiiiiiiiiiiee e 176
9.3.6 Cyberon toolsccceviiiiiiiiieee 184
10 VIT speech model instructions 184
10.1 Getting started with VIT ..., 184
10.2 Barge-in support when VIT is enabled 185
10.3 Obtaining a new VIT modelcccceeevieennnee 185
10.4 Integrating a new VIT modelccccceeneee. 185
10.5 Multilanguage supportcccceeevieiiiieeinnnen. 186
10.6 Additional info and resourcescc.cco..... 186
1" Revision historyccccvcminiiinssnicieninineens 186
12 Legal informationcccecciiiieniiinnnciinieene 187

Smart HMI Software Development User Guide

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2022 NXP B.V.

All rights reserved.

For more information, please visit: http://www.nxp.com

Date of release: 25 October 2022
Document identifier: MCU-SMHMI-SDUG

	1 Introduction
	2 Setup and installation
	2.1 MCUXpresso IDE
	2.2 Install the toolchain
	2.3 Install the SDK
	2.4 Import example projects
	2.4.1 Import from Github

	3 Ivaldi
	3.1 Automated manufacturing tools
	3.1.1 About Ivaldi
	3.1.2 Requirements
	3.1.3 Platform configuration
	3.1.4 Open Boot Programming

	4 Bootloader
	4.1 Introduction
	4.1.1 Why use a bootloader?
	4.1.2 Application Banks
	4.1.3 Logging

	4.2 Overview
	4.2.1 How is boot mode determined?

	4.3 Normal boot
	4.3.1 Turn on Image Verification
	4.3.2 Disable Debug Console

	4.4 Mass Storage Device updates (MSD)
	4.4.1 Enabling MSD mode
	4.4.2 Flashing a new binary
	4.4.2.1 Main application
	4.4.2.2 Resources
	4.4.2.3 Bundle

	4.5 Image Verification
	4.5.1 Application chain of trust
	4.5.2 Flash Image Configuration Area (FICA) and Image Verification

	4.6 Application banks
	4.6.1 Banks
	4.6.2 Addresses
	4.6.3 Remapping
	4.6.3.1 Convert .axf to .bin

	5 Over the air update
	5.1 OTA (Over-the-Air) updates
	5.1.1 Migration guide
	5.1.1.1 RT117H firmware changes
	5.1.1.2 Ivaldi guide

	5.1.2 Preparing an OTA image
	5.1.3 Building image
	5.1.4 Sign Image
	5.1.4.1 Creating a root, intermediate pair with sign server, and certificates
	5.1.4.2 Formatting the CA and the application certificate

	5.1.5 OTA Workflow with AWS IoT Console
	5.1.5.1 Update main application
	5.1.5.2 Update resources
	5.1.5.3 Update with Bundle

	6 Framework
	6.1 Framework introduction
	6.1.1 Design goals
	6.1.2 Relevant files

	6.2 Naming conventions
	6.2.1 Functions
	6.2.2 Variables
	6.2.3 Typedefs
	6.2.4 Enums
	6.2.5 Macros and Defines

	6.3 Device managers
	6.3.1 Overview
	6.3.1.1 Initialization flow

	6.3.2 Vision input manager
	6.3.2.1 APIs
	6.3.2.1.1 FWK_InputManager_Init
	6.3.2.1.2 FWK_InputManager_DeviceRegister
	6.3.2.1.3 FWK_InputManager_Start
	6.3.2.1.4 FWK_InputManager_Deinit

	6.3.3 Output manager
	6.3.3.1 APIs
	6.3.3.1.1 FWK_OutputManager_Init
	6.3.3.1.2 FWK_OutputManager_DeviceRegister
	6.3.3.1.3 FWK_OutputManager_Start
	6.3.3.1.4 FWK_OutputManager_Deinit
	6.3.3.1.5 FWK_​OutputManager_​UnregisterEventHandler

	6.3.4 Camera manager
	6.3.4.1 APIs
	6.3.4.1.1 FWK_CameraManager_Init
	6.3.4.1.2 FWK_CameraManager_DeviceRegister
	6.3.4.1.3 FWK_CameraManager_Start
	6.3.4.1.4 FWK_CameraManager_Deinit

	6.3.5 Display manager
	6.3.5.1 APIs
	6.3.5.1.1 FWK_DisplayManager_Init
	6.3.5.1.2 FWK_DisplayManager_DeviceRegister
	6.3.5.1.3 FWK_DisplayManager_Start
	6.3.5.1.4 FWK_DisplayManager_Deinit

	6.3.6 Vision algorithm manager
	6.3.6.1 APIs
	6.3.6.1.1 FWK_VisionAlgoManager_Init
	6.3.6.1.2 FWK_​VisionAlgoManager_​DeviceRegister
	6.3.6.1.3 FWK_VisionAlgoManager_Start
	6.3.6.1.4 FWK_VisionAlgoManager_Deinit

	6.3.7 Voice algorithm manager
	6.3.7.1 APIs
	6.3.7.1.1 FWK_VoiceAlgoManager_Init
	6.3.7.1.2 FWK_VoiceAlgoManager_DeviceRegister
	6.3.7.1.3 FWK_VoiceAlgoManager_Start
	6.3.7.1.4 FWK_VoiceAlgoManager_Deinit

	6.3.8 Low-Power device manager
	6.3.8.1 APIs
	6.3.8.1.1 FWK_LpmManager_DeviceRegister
	6.3.8.1.2 FWK_​LpmManager_​RegisterRequestHandler
	6.3.8.1.3 FWK_​LpmManager_​UnregisterRequestHandler
	6.3.8.1.4 FWK_LpmManager_RuntimeGet
	6.3.8.1.5 FWK_LpmManager_RuntimePut
	6.3.8.1.6 FWK_LpmManager_RuntimeSet
	6.3.8.1.7 FWK_LpmManager_RequestStatus
	6.3.8.1.8 FWK_LpmManager_SetSleepMode
	6.3.8.1.9 FWK_LpmManager_EnableSleepMode

	6.3.9 Audio processing manager
	6.3.9.1 APIs
	6.3.9.1.1 FWK_AudioProcessing_Init
	6.3.9.1.2 FWK_AudioProcessing_DeviceRegister
	6.3.9.1.3 FWK_AudioProcessing_Start
	6.3.9.1.4 FWK_AudioProcessing_Deinit

	6.3.10 Flash manager
	6.3.10.1 Device APIs
	6.3.10.1.1 FWK_Flash_DeviceRegister
	6.3.10.1.2 FWK_Flash_Init
	6.3.10.1.3 FWK_Flash_Deinit

	6.3.10.2 Operations APIs
	6.3.10.2.1 FWK_Flash_Format
	6.3.10.2.2 FWK_Flash_Save
	6.3.10.2.3 FWK_Flash_Append
	6.3.10.2.4 FWK_Flash_Read
	6.3.10.2.5 FWK_Flash_Mkdir
	6.3.10.2.6 FWK_Flash_Mkfile
	6.3.10.2.7 FWK_Flash_Rm
	6.3.10.2.8 FWK_Flash_Rename
	6.3.10.2.9 FWK_Flash_Cleanup

	6.3.11 Multicore manager
	6.3.11.1 APIs
	6.3.11.1.1 FWK_MulticoreManager_Init
	6.3.11.1.2 FWK_MulticoreManager_DeviceRegister
	6.3.11.1.3 FWK_MulticoreManager_Start
	6.3.11.1.4 FWK_MulticoreManager_Deinit

	6.4 HAL devices
	6.4.1 Overview
	6.4.1.1 Device Registration
	6.4.1.2 Device Types
	6.4.1.3 Anatomy of a HAL device
	6.4.1.3.1 Operators

	6.4.1.4 Configs
	6.4.1.4.1 Name
	6.4.1.4.2 ExpectedValue
	6.4.1.4.3 Description
	6.4.1.4.4 Value
	6.4.1.4.5 Get
	6.4.1.4.6 Set

	6.4.2 Input devices
	6.4.2.1 Device definition
	6.4.2.2 Operators
	6.4.2.2.1 Init
	6.4.2.2.2 Deinit
	6.4.2.2.3 Start
	6.4.2.2.4 Stop
	6.4.2.2.5 InputNotify

	6.4.2.3 Capabilities
	6.4.2.3.1 callback
	6.4.2.3.2 EventId
	6.4.2.3.3 ReceiverList
	6.4.2.3.4 Event

	6.4.2.4 Example

	6.4.3 Output devices
	6.4.3.1 Subtypes
	6.4.3.1.1 General devices
	6.4.3.1.2 UI devices
	6.4.3.1.3 Audio devices

	6.4.3.2 Device definition
	6.4.3.3 Operators
	6.4.3.3.1 Init
	6.4.3.3.2 DeInit
	6.4.3.3.3 Start
	6.4.3.3.4 Stop

	6.4.3.4 Attributes
	6.4.3.4.1 Type
	6.4.3.4.2 pSurface

	6.4.3.5 Example

	6.4.4 Camera devices
	6.4.4.1 Device definition
	6.4.4.2 Operators
	6.4.4.2.1 Init
	6.4.4.2.2 Deinit
	6.4.4.2.3 Start
	6.4.4.2.4 Enqueue
	6.4.4.2.5 Dequeue
	6.4.4.2.6 PostProcess
	6.4.4.2.7 InputNotify

	6.4.4.3 Static configs
	6.4.4.3.1 Height
	6.4.4.3.2 Width
	6.4.4.3.3 Pitch
	6.4.4.3.4 Left
	6.4.4.3.5 Top
	6.4.4.3.6 Right
	6.4.4.3.7 Bottom
	6.4.4.3.8 Rotate
	6.4.4.3.9 Flip
	6.4.4.3.10 SwapByte

	6.4.4.4 Capabilities
	6.4.4.4.1 Callback
	6.4.4.4.2 Param

	6.4.4.5 Example

	6.4.5 Display devices
	6.4.5.1 Device definition
	6.4.5.2 Operators
	6.4.5.2.1 Init
	6.4.5.2.2 Deinit
	6.4.5.2.3 Start
	6.4.5.2.4 Blit
	6.4.5.2.5 InputNotify

	6.4.5.3 Capabilities
	6.4.5.3.1 Height
	6.4.5.3.2 Width
	6.4.5.3.3 Pitch
	6.4.5.3.4 Left
	6.4.5.3.5 Top
	6.4.5.3.6 Right
	6.4.5.3.7 Bottom
	6.4.5.3.8 Rotate
	6.4.5.3.9 Format
	6.4.5.3.10 srcFormat
	6.4.5.3.11 frameBuffer
	6.4.5.3.12 callback
	6.4.5.3.13 param

	6.4.5.4 Example

	6.4.6 Vision algorithm devices
	6.4.6.1 Device definition
	6.4.6.2 Operators
	6.4.6.2.1 Init
	6.4.6.2.2 Deinit
	6.4.6.2.3 Run
	6.4.6.2.4 InputNotify

	6.4.6.3 Capabilities
	6.4.6.3.1 Callback
	6.4.6.3.2 Param

	6.4.6.4 Private Data
	6.4.6.4.1 AutoStart
	6.4.6.4.2 Frames

	6.4.6.5 Example

	6.4.7 Voice algorithm devices
	6.4.7.1 Device definition
	6.4.7.2 Operators
	6.4.7.2.1 Init
	6.4.7.2.2 Deinit
	6.4.7.2.3 Run
	6.4.7.2.4 InputNotify

	6.4.7.3 Capabilities
	6.4.7.3.1 Callback
	6.4.7.3.2 Param

	6.4.7.4 Example

	6.4.8 Audio processing device
	6.4.8.1 Device definition
	6.4.8.2 Operators
	6.4.8.2.1 Init
	6.4.8.2.2 Deinit
	6.4.8.2.3 Start
	6.4.8.2.4 Stop
	6.4.8.2.5 Run
	6.4.8.2.6 InputNotify

	6.4.8.3 Capabilities
	6.4.8.3.1 Callback
	6.4.8.3.2 Param

	6.4.8.4 Example

	6.4.9 Flash devices
	6.4.9.1 Device definition
	6.4.9.2 Operators
	6.4.9.2.1 Init
	6.4.9.2.2 Deinit
	6.4.9.2.3 Format
	6.4.9.2.4 Save
	6.4.9.2.5 Append
	6.4.9.2.6 Read
	6.4.9.2.7 Make directory
	6.4.9.2.8 Make file
	6.4.9.2.9 Remove
	6.4.9.2.10 Rename
	6.4.9.2.11 Cleanup

	6.4.9.3 Example
	6.4.9.3.1 Littlefs device

	6.4.10 Multicore devices
	6.4.10.1 Device definition
	6.4.10.2 Operators
	6.4.10.2.1 Init
	6.4.10.2.2 Deinit
	6.4.10.2.3 Start
	6.4.10.2.4 Send

	6.4.10.3 FreeRTOS message buffer device

	6.5 Events
	6.5.1 Overview
	6.5.1.1 Event triggers
	6.5.1.2 Types of events
	6.5.1.2.1 InferComplete events
	6.5.1.2.2 InputNotify events

	6.5.2 Event handlers
	6.5.2.1 Default handlers
	6.5.2.2 App-specific handlers

	7 Coffee machine
	7.1 Introduction
	7.2 Architecture
	7.3 Software block diagram
	7.4 Coffee machine CM7
	7.5 Main functionalities
	7.6 Boot sequence
	7.7 Board level initialization
	7.8 Framework managers
	7.9 Framework HAL devices
	7.10 Logging
	7.10.1 Log Task Init
	7.10.2 Log Macros

	7.11 Coffee Machine database
	7.11.1 Face recognition database usage
	7.11.2 User coffee information database usage

	7.12 Coffee machine CM4
	7.13 Main functionalities
	7.14 LVGL GUI screens and widgets
	7.15 LVGL and Vglite library
	7.16 Boot sequence
	7.17 Board level initialization
	7.18 LVGL image resource and icon resource loading
	7.19 Framework managers
	7.20 Framework HAL devices
	7.20.1 MipiGc2145 camera HAL device
	7.20.2 PxP graphics HAL device
	7.20.3 LVGLCoffeeMachine display HAL device
	7.20.4 UiCoffeeMachine UI output HAL device
	7.20.4.1 LVGL touch events
	7.20.4.2 Vision and Voice algorithm inference result

	7.20.5 RgbLed output HAL device
	7.20.6 MessageBuffer multicore HAL device
	7.20.7 ShellUsb input HAL device
	7.20.8 Standby LPM HAL device

	7.21 Logging
	7.21.1 Logging Task Init
	7.21.2 Logging Macros

	8 Elevator
	8.1 Introduction
	8.2 Architecture
	8.3 Software block diagram
	8.4 Elevator CM7
	8.5 Main functionalities
	8.6 Boot sequence
	8.7 Board level initialization
	8.8 Framework managers
	8.9 Framework HAL devices
	8.10 Logging
	8.10.1 Log task init
	8.10.2 Log usage

	8.11 Elevator database
	8.11.1 Face recognize database usage
	8.11.2 Elevator user information database usage

	8.12 Elevator CM4
	8.13 Main functionalities
	8.14 LVGL GUI screens and widgets
	8.15 LVGL and Vglite library
	8.16 Boot sequence
	8.17 Board level initialization
	8.18 LVGL image resource loading
	8.19 Framework managers
	8.20 Framework HAL devices
	8.20.1 MipiGc2145 camera HAL device
	8.20.2 PxP graphics HAL device
	8.20.3 LVGLElevator display HAL device
	8.20.4 UiElevator UI output HAL device
	8.20.4.1 LVGL touch events
	8.20.4.2 Vision and Voice algorithm inference result

	8.20.5 RgbLed output HAL device
	8.20.6 MessageBuffer multicore HAL device
	8.20.7 ShellUsb input HAL device
	8.20.8 Standby LPM HAL device

	8.21 Logging
	8.21.1 Logging task init
	8.21.2 Logging macros

	9 Customization
	9.1 How to develop a user application
	9.1.1 Introduction
	9.1.2 Build the LVGL GUI
	9.1.2.1 Design and create the GUI with NXP's free GUI Guider tool
	9.1.2.2 Integrate your generated LVGL GUI code

	9.1.3 Build the phoneme-based voice recognition model
	9.1.4 Bind the user's profile data with face recognition
	9.1.5 Implement the use case flow for your application

	9.2 Application resource build
	9.2.1 Introduction
	9.2.2 Source files
	9.2.2.1 Format of Image file
	9.2.2.2 Format of Icon file
	9.2.2.3 Format of Sound file

	9.2.3 Description file
	9.2.4 Resource build tool

	9.3 Cyberon DSMT speech model instructions
	9.3.1 Getting started with phoneme-based voice engine tool
	9.3.2 Installation
	9.3.3 Load the project template
	9.3.4 Add a new command into the Coffee Machine demo
	9.3.4.1 Integrate the voice engine in MCUXpresso project

	9.3.5 Add a new language into the Coffee Machine demo
	9.3.6 Cyberon tools

	10 VIT speech model instructions
	10.1 Getting started with VIT
	10.2 Barge-in support when VIT is enabled
	10.3 Obtaining a new VIT model
	10.4 Integrating a new VIT model
	10.5 Multilanguage support
	10.6 Additional info and resources

	11 Revision history
	12 Legal information
	Contents

