
MCU-SMHMI-SDUG
Smart HMI Software Development User Guide
Rev. 0 — 25 October 2022 User guide

Document information
Information Content

Keywords SLN-TLHMI-IOT, Human Machine Interface (HMI), IoT

Abstract The purpose of this guide is to help developers better understand the
software design and architecture of the applications in order to more easily
and efficiently implement applications using the SLN-TLHMI-IOT

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

1 Introduction

Welcome to the Developer Guide for the SLN-TLHMI-IOT!

The purpose of this guide is to help developers better understand the software design
and architecture of the applications in order to more easily and efficiently implement
applications using the SLN-TLHMI-IOT.

This guide covers such topics as the bootloader and the framework + HAL architecture
design, as well as other features that may be relevant to application development using
SLN-TLHMI-IOT.

Check out the Smart HMI Getting Started Guide for an overview of the out of box
features available in the SLN-TLHMI-IOT applications.

2 Setup and installation

This section is focused on the setup and installation of the tools necessary to begin
developing applications using NXP's framework architecture.

This guide focuses on MCUXpresso IDE for development.

2.1 MCUXpresso IDE
MCUXpresso IDE brings developers an easy-to-use Eclipse-based development
environment for NXP MCUs based on Arm Cortex-M cores, including its general-
purpose crossover and Bluetooth-enabled MCUs. MCUXpresso IDE offers advanced
editing, compiling, and debugging features with the addition of MCU-specific debugging
views, code trace and profiling, multicore debugging, and integrated configuration tools.
MCUXpresso IDE debug connections support Freedom, Tower system, LPCXpresso,
i.MX RT-based EVKs, and your custom development boards with industry-leading open-
source and commercial debug probes from NXP, P&E Micro, and SEGGER.

For more information, see the NXP website

2.2 Install the toolchain
MCUXpresso IDE can be downloaded from the NXP website by using the below link:

Get MCUXpresso IDE

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
2 / 190

http://www.nxp.com/mcu-smhmi
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=MCUXPRESSO

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 1. Download MCUXpresso IDE

To download the correct version of IDE, check out the Smart HMI Getting Started Guide.
Once the download has been completed, follow the instructions in the installer to get
started.

Note: There is a bug in version 11.5.1 of MCUXpresso IDE that prevents building
projects for SLN-TLHMI-IOT, so version 11.5.0, 11.6.0, or greater is required.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
3 / 190

http://www.nxp.com/mcu-smhmi

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 2. Check MCUXpresso IDE version with v11.5.0

2.3 Install the SDK
To build projects using MCUXpresso IDE, install an SDK for the platform you intend to
use. A compatible SDK has the required dependencies and platform-specific drivers
needed to compile projects.

A compatible SDK can be downloaded from the official NXP SDK builder

1. To build the SDK for your preferred setup, use MCUXpresso IDE to install the SDK.
2. To do this, open the application and clickDownload and Install SDKs on the

MCUXpresso IDE welcome screen as shown below:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
4 / 190

https://mcuxpresso.nxp.com/en/select

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 3. Download and Install SDKs
3. A catalog of all the SDKs that can be downloaded through MCUXpresso is available.

These SDKs provide device knowledge, drivers, middleware, and reference example
applications for your development board or MCU. Type evkmimxrt1170 in the filter
section and download evkmimxrt1170 SDK. The current applications were developed
and tested on SDK 2.11.1.

Figure 4. Download RT1170 SDK
4. A prompt displays the license agreement associated with the 1170 SDK.
5. Read and accept the license to automatically start the SDK installation.
6. MCUXpresso proceeds to download the SDK.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
5 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 5. Install RT1170 SDK

2.4 Import example projects
Note: To build example projects that you import regardless of how they are imported,
you must have a compatible MCUXpresso SDK package for SLN-TLHMI-IOT installed.

MCUXpresso IDE allows you open example projects from the source folder.

2.4.1 Import from Github

Note: Before you begin, make sure you have Git downloaded and installed on the
machine you intend to use.

The latest software updates for the SLN-TLHMI-IOT application can be downloaded from
our official Github repository. Here, you will find the most up-to-date version of the code
that contains the newest features available for the Smart TLHMI project.

To import the SLN-TLHMI-IOT Smart TLHMI application into MCUXpresso IDE using
Github, perform the following steps:

1. Clone the sln_tlhmi_iot repository.
• Cloning directly to your MCUXpresso workspace location is recommended, but not

required.
2. In MCUXpresso, navigate to the File from Toolbar.
3. Click Open Projects from File System....
4. Select Directory....
5. Navigate to the file path of the project cloned in the first step and click Select Folder.
6. Check the box next to each project (bootloader, coffee_machine\cm4,

coffee_machine\cm7, coffee_machine\lvgl_vglite_lib and elevator
\cm4, elevator\cm7, elevator\lvgl_vglite_lib) you wish to import.

7. Click Finish

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
6 / 190

https://git-scm.com/downloads
https://github.com/NXP/mcu-smhmi

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 6. Open SLN-TLHMI-IOT project

After following the above steps, confirm that the projects can be found in the Project
Explorer panel to ensure they were successfully imported.

Figure 7. Example projects

3 Ivaldi

3.1 Automated manufacturing tools
This section provides an overview of Ivaldi, prerequisites, platform configuration, and
open boot programming.

3.1.1 About Ivaldi

Ivaldi is a package that is responsible for manufacturing and reprogramming without J-
Link. It uses the serial downloader mode within the RT117H boot ROM to communicate
with an application called Flashloader that is programmed into RT117H. It then
communicates with a program called blhost that controls various parts of the chip and
flash. Ivaldi was created to focus on the build infrastructure of a customer’s development
and manufacturing cycle. Its primary focuses are:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
7 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Factory programming and setting up a new device/product
• Generating AWS IoT Devices
• Creating certificate/key pairs for devices
• Associating policies with devices
• Signing images for OTA and HAB
• Writing and Accessing OTP fuses

The following section gives information about the general flashing of a device without
debugging tools.

Note: ITo use Ivaldi, put the board in Serial Download Mode. For doing that, move
jumper J203 on the top of the board into position “0”. For more information, see Smart
HMI Hardware Development User Guide

3.1.2 Requirements

• Section 5.1.1 must be followed
• OpenSSL
• AWS CLI installed

– https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
– https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-

configuration
• Python 3.6.x
• Linux / Windows CMD / Ubuntu for Windows
• README.md from ivaldi root folder must be followed

3.1.3 Platform configuration

Ivaldi uses a platform configuration file Scripts/sln_platforms_config/sln_
tlhmi_iot_config/board_config.py. This file describes:

• The names of the binaries (from the Image_Binaries folder) which will be flashed:
– BOOTLOADER_NAME
– DEMO1_NAME
– DEMO1_NAME_RESOURCES
– DEMO2_NAME
– DEMO2_NAME_RESOURCES

• Flash configurations:
– FLASH_TYPE
– FLASH_START_ADDR
– FLASH_SIZE

• Flash Map
– Binaries’ images addresses
– Filesystem starting address and size
– FICA table addresses

To configure Ivaldi to use specific image binaries from Image_Binaries folder, update
Scripts/sln_platforms_config/sln_tlhmi_iot_config/board_config.py
file.

Note: Any changes in scripts/sln_platforms_config/sln_tlhmi_iot_
config/board_config.py (except binaries’ names) require updating the embedded
code and configurations.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
8 / 190

http://www.nxp.com/mcu-smhmi
http://www.nxp.com/mcu-smhmi
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

3.1.4 Open Boot Programming

The Open Boot Programming tool is responsible for creating a device and programming
it with the correct images, certificates, and artifacts. This method is a quick and easy
way of taking a device/product from the assembly line and getting it ready to ship. It
is also good practice to run the Open Boot Programming script before enabling the
security features to ensure that all images and artifacts are in the working order. The
Open Boot Programming script must only be run when all the images and artifacts are
obtained. Before running the script, ensure that the following files and folders exist
in the “Image_Binaries” directory of Ivaldi root and that all the files mentioned in the
board_config.py exist. After the script was executed, do not forget to exit the serial
downloader mode by moving back the J203 jumper.

A directory "Scripts/sln_tlhmi_iot_open_boot" within the Ivaldi package contains the
“open_prog_full.py” script and a README.

The README file contains build requirements for each image before running the script. If
the requirements are not fulfilled, it could cause the boot failure.

To program the firmware and artifacts, execute theopen_prog_full.py script that
performs the following actions:

• Communicate with the BootROM to program Flashloader
• Create a device with

– Certificate
– Private Key
– Policy Attached in the cloud

• Erase the flash
• Generate littlefs format filesystem, that contains files specified in the
littlefs_file_list.py

• Programming the images
– Bootloader
– demo1
– demo1_resources
– demo2
– demo2_resources
– Program the FICA
– Program the littlefs

In the current open_prog_full.py python script, the littlefs is being generated to
contain all the files mentioned in littlefs_file_list.py. Four files are expected:

• Root CA certificate
• AppA sign certificate - validated by the CA certificate and used to sign all the images

that are being written or send for update
• AWS certificate - used to validate connection with AWS server
• AWK public key - used to communicate with AWS MQTT server

One drawback of the current littlefs implementation is that it does not support the
attributes. It is used in the SLN_TLHMI_IOT project to generate encrypted files.

Note: Open programming script assumes that the policy is called tlhmi_deployment.
Update the script to use the correct policy name in the customers aws account..

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
9 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

4 Bootloader

4.1 Introduction
The Smart Lock project uses a "bootloader + main application" architecture to provide
additional security and update-related functionality to the main application. The
bootloader handles all boot-related tasks including, but not limited to:

• Launching the main application and, if necessary, initializing the peripherals
• Firmware updates using either the Mass Storage Device (MSD), Over-the-Air, or Over-

the-Wire update method
– Protects against update failures by using a primary and backup application "flash

bank"
• Image certification/verification

4.1.1 Why use a bootloader?

By separating the boot process from the main application, the main application can be
safely updated and verified without the risk of creating an irrecoverable state due to
a failed update, or running a malicious, unauthorized, and unsigned firmware binary
flashed by a bad actor. It is essential in any production application to take precautions to
ensure the integrity and stability of the firmware before, during, and after an update, and
the bootloader application is simply one measure to help provide this assurance.

The following sections describe how to use many of the bootloader's primary features to
assist developer interested in understanding, utilizing, and expanding them.

4.1.2 Application Banks

The bootloader file system uses dual application "banks" referred to as "Bank A" and
"Bank B" to provide a backup/redundancy "known good" application to prevent bricking
when flashing an update via either the MSD, OTA, or OTW update method. For example,
if an application update is being flashed via MSD to the Bank A application bank, even if
that update fails midway, Bank B still contains a fully operational backup.

In the SLN-TLHMI-IOT, Bank A is at 0x30100000 while Bank B is at 0x31500000.

Providing an application binary built for the proper application bank address is crucial
during MSD, OTA, and OTW updates, and the failure will result in a failure to flash the
binary.

Note: The bootloader does not automatically recover from a botched flashing procedure
but reverts to the alternate working application flash bank instead.

4.1.3 Logging

The bootloader supports debug logging over UART to help diagnose and debug issues
that may arise while using or modifying the bootloader. For example, the debug logger
can be helpful when trying to understand why an application update might have failed.

Logging is enabled by default in the Debug build mode configuration. The logging
functionality, however, comes with an increase in bootloader performance and can slow
down the boot process by as much as 200 ms. As a result, it may be desirable to disable
debug logging in production applications. To disable logging to the bootloader, simply
build and run the bootloader in the Release build mode configuration. It can be done by

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
10 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

right-clicking on the bootloader project in the Project Explorer view and navigating to
Build Configurations -> Set Active -> Release as shown in the figure below:

To make use of the debug logging feature, use a UART->USB converter to:

• Connect GND pin of converter to J202: Pin 8
• Connect TX pin of converter to J202: Pin 3
• Connect RX pin of converter to J202: Pin 4

Once the converter has been properly attached, connect to the board using a serial
terminal emulator, for example, PuTTY or Tera Term configured with the following serial
settings:

• Speed: 115200
• Data: 8 Bit
• Parity: None
• Stop Bits: 1 bit
• Flow Control: None

4.2 Overview
The bootloader employs several different boot-up methods to augment the boot-up
behavior. Currently, the bootloader supports two primary boot modes:

• Normal Mode
• Mass Storage Device (MSD) Update Mode

Normal mode, as the name would imply, is the default boot mode in which the bootloader
simply loads the main application.

Mass Storage Device Update mode is a special boot mode in which the board enters an
update state where the board appears as a mass storage device to a host PC device. In
this mode, the bootloader is capable of receiving and flashing a new binary by copying
that binary to the board as one would for a regular USB storage device.

More information on each of these modes can be found in the subsequent sections of
this document.

4.2.1 How is boot mode determined?

To determine the boot mode, the bootloader checks several different boot flags, which
are set based on various conditions.

For each different boot mode (excluding Normal boot, which is taken by default), there
is a different corresponding boot flag. Boot flag gets set depending on the boot mode in
question and the platform being used. On the SLN-TLHMI-IOT, for example, the MSD
boot flag is set when the SW0 button is held during bootup.

4.3 Normal boot
By default, if no other boot flags are set during the boot phase, the Normal boot mode
is used. During Normal boot, the Bootloader boots to the "main" application, which
is flashed at the current application bank flash address (for more information, see
Application Banks). For example, if the current flash bank is set to Bank A, then the
Bootloader jumps to the flash address associated with Bank A and begins running the
application at that address.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
11 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The OOBE has a set of three applications that can be booted into at startup. By default,
the application always boots in the Bank A, which corresponds to the coffee_machine
application. To change the boot application, use buttons labeled SW1-SW3 when
powering the board.

The following list shows the associations of boot application to switch.

• SW1 - Bank A - coffee_machine
• SW2 - Bank B - elevator
• SW3 - Bank C - TBD

The decision to what application to jump is handled inside the bootloader. To reach the
bootloader, a soft or hard reset is needed.

For example, to boot in elevator application:

1. Unplug the board
2. Press and hold the SW2 button
3. Plug the board in.

From the Bootloader's perspective, there is no information what application it is jumping
into, because it uses addresses and not names. After an update procedure, the
application that was written in an inactive bank is overwritten, so the links between banks
and demos are not valid anymore.

4.3.1 Turn on Image Verification

In the OOBE Bootloader demo, Image Verification is disabled to encourage developers
to play with the code. If Image Verification is enabled, Normal boot checks that the image
certificate for the firmware image to run has been signed by a trusted certificate authority
to ensure that the application comes from a trusted source. Should the signature check
fail, the Bootloader does not run the application to avoid executing untrusted, potentially
malicious firmware.

For more details regarding image verification, see Image Verification.

To enable the image verification, DISABLE_IMAGE_VERIFICATION must be set to 0
inside the Preprocessors sections:

1. Within the MCUXpresso Bootloader project, right-click the root project and navigate
to Properties > C/C++ Build > Settings > Preprocessor .

2. Inside the Preprocessors section, change the MACRO
DISABLE_IMAGE_VERIFICATION to “0” and click the Apply and Close button as
described in the figure below.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
12 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 8. Enable image verification
3. After that change, rebuild the Bootloader.
4. To flash the device with proper FICA and certificates, use Automated manufacturing

tools (Ivaldi).

4.3.2 Disable Debug Console

In the OOBE Bootloader demo, Debug Console is enabled to help developers test
and debug their code. This feature introduces unwanted message being displayed
and increases the boot-up time. To disable this, set ENABLE_LOGGING to 0 in
FreeRTOSConfig.h

Note: The current implementation of the debug console adds about 150 ms to the boot
time.

4.4 Mass Storage Device updates (MSD)
The MSD feature allows the device to be updated using USB instead of the Segger
tool. Only the main application or its resources (coffee_machine/elevator) can be
flashed in this manner. If the bootloader must be updated, the Segger tool or the Factory
Programming flow is necessary. The MSD feature, by default, bypasses the signature
verification to simplify the development flow, since signing images can be unsuitable for
quick debugging and validation.

4.4.1 Enabling MSD mode

To enable MSD mode on the SLN-TLHMI-IOT, press and hold the SW0 button while
powering on the board. If done correctly, the board's onboard LED changes to purple and
begins blinking at an interval of roughly 1 second.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
13 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Note: As mentioned in the Smart HMI Getting Started Guide, to properly use `SW0` as a
general-purpose switch the `SW8` dip switch must be set as 0001.

Additionally, if connected to a Windows PC, your computer must make a sound indicating
a new USB device has been connected. After observing the LED blinking behavior,
navigate to “My Computer”, and confirm that the SLN-TLHMI-IOT kit has mounted as a
Mass Storage Device as shown in the picture below.

Figure 9. Bootloader MSD file explorer

The size of the new storage device is equal to the Bank Size of the device from which
you subtract the file system metadata.

4.4.2 Flashing a new binary

The binary size increases exponentially when adding the GUI resources. Almost 70 % of
the total size is occupied by these sounds and images. To speed up the development and
to decrease the load on the updating mechanism, the large images have been split into
code and resources, both with fixed addresses in the flash. Update operations can be
done on individual components, or all together into a bundle.

Right now the MSD can be used to update:

• Main Application
• Resources
• Bundle update (Main Application + Resources)

4.4.2.1 Main application

To update the main application, a binary must be built for the address 0x30100000.
Because of the remap functionality enabled in the bootloader, this binary can be placed
in each of the three banks, and still work as it is running from the base address. The
bootloader checks for the current unused bank and tries to write the image in that specific
bank. When dragging and dropping a binary for the main application, the bootloader
checks if the reset handler of the new image is a flash address. No other verification is
done; the functionality's correctness must be handled by the developer. After the new
image has been written, a resource copy is done. This means that during the update
procedure, the resources will stay the same.

4.4.2.2 Resources

When updating the resources, the binary needs to be renamed into RES.bin. The
Bootloader contains a list of known files, res.bin is one of those files. No verification is
done on the resources binary.

In the same way as updating the main application, the bootloader checks for active bank
and writes the binary in the unused one. After the write is completed, the older firmware
is copied, and the new bank is activated.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
14 / 190

http://www.nxp.com/mcu-smhmi

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 10. Update resources

4.4.2.3 Bundle

To update using the bundle method, a python script is used to generate the bundle. The
script is part of the ivaldi suite of scripts that are delivered to the customer. The script is
called bundle_generate_tlhmi.py. When calling it, two parameters must be set,
both being the locations for two important files:

• bundle configuration file (-bf) - contains a list of files that are going to be fused to
generate the bundle.

• board configuration file (-cf) - position of the files in flash to build the metadata.

In the released version of ivaldi, both bundle config and board config are placed under
the platform config folder. A full linux bash command to call this script looks like:

python bundle_generate_tlhmi.py -bf ../../../Scripts/
sln_platforms_config/sln_tlhmi_iot_config/ -cf ../../../
Scripts/sln_platforms_config/sln_tlhmi_iot_config/

After this, in the Scripts\ota_signing\sign\output folder, four files are present.

Figure 11. Update bundle_generate script

For MSD only bundle.bin is of interest, the other three are relevant for Over-
The-Air (OTA) updates, where validation is an important feature. To update with the

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
15 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

bundle.bin, drag and drop the binary. The name must not be modified, as this name is
part of a hardcoded list of known files.

Figure 12. Update bundle

For the bootloader to parse and write all the modules to their designated addresses,
metadata must be added to the package. Two types of metadata exist:

• Bundle metadata is placed at the end of the bundle and contains:
– Bundle size
– Number of modules
– Signature of the whole bundle

• Module metadata is placed after every module and contains:
– Module type (Application or Resources)
– Module starting address
– Module length
– Module signature

Upon completion, the board automatically reboots itself into the new firmware, which was
flashed. . To verify this, open the serial CLI, type typing the version command, and
check that the application is running from the alternate flash bank.

4.5 Image Verification
Image Verification is a mechanism in which we validate that the image running has not
been altered either by internal or external factors.

4.5.1 Application chain of trust

The basis of the security architecture implemented in the SLN-TLHMI-IOT has signed
application images. Signing requires the use of a Certificate Authority (CA). NXP has its

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
16 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

own CA for signing applications at the factory, but the CA is not something that is shared
with customers.

The CA is used to create signing entities for applications as shown in the figure below. A
certificate from the CA is stored in the SLN-TLHMI-IOT’s filesystem and is used to verify
the signatures of the signing entity certificates. In addition, locally stored certificates from
the signing entities are used to verify the signature of firmware images coming in Over-
the-Air (OTA) updates.

Figure 13. Chain of trust

4.5.2 Flash Image Configuration Area (FICA) and Image Verification

The FICA table is a section inside the filesystem that is responsible for describing the
images that will be booted. It contains information about the image and signatures of
the applications that will be used to ensure that only verified firmware is executed. This
ensures malicious images cannot be executed without it being signed with the certificate
authority and certificate that is programmed into the filesystem. Before any image is
jumped to, it is first verified using the signature from its associated FICA entry.

• The bootloader uses the AppA FICA entry to validate the AppA image
• The bootloader uses the AppB FICA entry to validate the AppB image

Note: As mentioned when describing the application banks, `Bank C` is not used for
redundancy in the update mechanism, as such, it has no entry into the FICA table. The
purpose of the bank is only to showcase all 3 applications without the need of reflashing
the board.

Developers can turn on the image verification and reprogram the bootloader as shown in
the Turning on image verification section. To decrease the risks of an attack, have Image
Verification on.

4.6 Application banks
For this project, we enabled three application flash banks, Bank A, Bank B, and Bank
C. It is done to showcase in our OOBE all projects (coffee_machine, elevator)
simultaneously.

In a real-life scenario, only 2 banks are needed. In the updating mechanism that has
been implemented, we use 2 banks by doing a ping-pong between Bank A and Bank B.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
17 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The SLN-TLHMI-IOT utilizes a series of dual "application flash banks" used as a
redundancy mechanism when updating the firmware via one of the bootloader's update
mechanisms (see Section 4.4) or via the AWS OTA mechanism.

4.6.1 Banks

The application we developed for SLN-TLHMI has 2 inter-dependent parts:

• Application (code)
• Resources (icons, sounds, pictures)

So a bank is a reserved space in the flash that stores both of these components. The
application running tries to read resources from the same bank.

In the OOBE, the size of a bank is 20 MB (0x1400000), 6 MB (0x600000) for the code
area and 14 MB (0xE00000) for resources. If there is a need to increase or decrease this
value, check fica_definitions.h

Figure 14. Bank components

4.6.2 Addresses

The flash address for each of the application flash banks is as follows:

• Bank A - 0x30100000
– Bank A App - 0x30100000
– Bank A resources - 0x30700000

• Bank B - 0x31500000
– Bank B App - 0x31500000
– Bank B resources - 0x31B00000

• Bank C - 0x32900000
– Bank C App - 0x32900000
– Bank C resources - 0x32F00000

4.6.3 Remapping

The i.MXRT117H chip supports the flash remapping function, which allows users to
remap flash address to the FlexSPI interface. The flash remapping function is beneficial
in the following use-cases:

• To flash multiple firmware.
• To switch one of the firmware to run when the condition is met.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
18 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• To update the firmware in the wireless application (the usual process is to download the
firmware to flash, perform the validity check, and then switch to new firmware to run.
The flash remapping function helps to directly run the firmware wherever it locates to
XIP flash.)

For more information, check: How to Use Flash Remapping Function

In older Solution's projects like SLN-VIZN3D-IOT and SLN-VIZNAS-IOT, the images
were built for a specific bank. With the enablement of the remapping functionality, all
applications must be built having the Flash Starting Address set to 0x30100000.

The updating mechanisms implemented in the bootloader or the main application
leverage this feature. Because of this, the updating procedure does not have to keep
track of what bank the application is running from. The binary that is going to be used for
an update, is always going to be built with the Bank A memory settings and is going to
be placed in the non-active slot.

Note: The OOBE is meant to showcase all 3 applications. After an update procedure,
the application that was written in a non-active bank is going to be overwritten.

4.6.3.1 Convert .axf to .bin

When building a project in MCUXpresso IDE, the default behavior is to create an .axf
file. However, some of the bootloader update mechanisms including MSD updates
require the use of a .bin file.

Converting an .axf file to .bin can be done in MCUXpresso without any additional
setup.

To perform this conversion, navigate to the project directory that contains your compiled
project binary and right-click the .axf file in that directory.

Note: The binary for your project is located in either the **Debug** or **Release** folder
depending on your current build config.

In the context menu, select Binary Utilities->Create binary.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
19 / 190

https://www.nxp.com/docs/en/application-note/AN12255.pdf
https://www.nxp.com/design/designs/nxp-edgeready-mcu-based-solution-for-3d-face-recognition:VIZN3D
https://www.nxp.com/design/designs/nxp-edgeready-mcu-based-solution-for-face-recognition-with-liveness-detection:SLN-VIZNAS-IOT

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 15. Convert to binary

Verify that the binary has been successfully created.

5 Over the air update

5.1 OTA (Over-the-Air) updates
The following section gives instructions on how to generate, sign, deploy, and update the
firmware. It also describes all the tools provided with this solution to give context to what
is happening. This section assumes that the SLN-TLHMI-IOT kit has been migrated
to communicate with a non-NXP AWS IoT Cloud server and the reader has access
with the correct permissions. OTA (Over-the-Air) updates are the process of pushing
new firmware from a remote service down to a connected device. When it happens, the
device programs the new image into the flash and reboots into that image assuming all
necessary checks have passed. As shown in the architecture section of this document,
there are two application partitions. The application is always going to run into one of
these sections. It means that the second section is free to write into without affecting the
existing image. It also ensures that the device is safe to jump into the new image without
worrying about being compromised assuming the relevant checks have been made.
The SLN-TLHMI-IOT kit leverages the Amazon OTA service within AWS IoT. This also

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
20 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

leverages the Amazon FreeRTOS OTA client to check for updates and download the
image.

Figure 16. OTA high-level architecture

5.1.1 Migration guide

This section provides the steps to migrate the SLN-TLHMI-IOT kit to a developer's/
organization's own fully controlled AWS account. If the SLN-TLHMI-IOT kit is left
connected to the default server, it is managed by NXP and restricts the developer’s
access and control of certain features. The unavailable features are described in the
SLN-TLHMI-IOT-DG.

The advantages of doing migrating are:

• Full control of OTA jobs and deployment
• Customization of firmware/cloud control

To fully use the aws environment, create an AWS Account.

To communicate with AWS, the device must provide certain artifacts and securely
connect to AWS IoT. If the artifacts are provided on the cloud, the device cannot connect
successfully. For steps to create an Amazon “Thing”, see https://docs.aws.amazon.com/
iot/latest/developerguide/create-iot-resources.html The communication between the
device and the AWS IoT cloud is secured based on the private key and on the device
certificates created together with the Amazon “Thing”.

Note: These steps are not required, as our manufacturing tool scripts (Ivaldi) do all the
necessary setups, including “Thing” creation. For more details on Ivaldi, see Automated
manufacturing tools.

5.1.1.1 RT117H firmware changes

This section provides an overview of steps to make the necessary source code changes
to ensure that the firmware communicates with the correct AWS Account.

As prerequisites:

• an AWS Account is created.
• the Get Started with MCUXpresso Tool suite and Building and Programming sections in

the MCU-SMHMI-SDUG guide are read.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
21 / 190

https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html
https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• the projects are in your workspace and you are ready to make code changes

The change is required only in the coffee machine application. The changes are a must
to ensure that the device connects to the correct AWS Endpoint for OTA.

To get started:

1. Follow the IoT Console Sign-in online resource to log in to the desired account.
2. Navigate to the AWS IoT Core service which opens the console.
3. Within the AWS IoT Console, select the Settings button down toward the bottom left

section of the page as shown in Figure 17 below.

Figure 17. AWS IoT monitor console
Warning:
Ensure that the correct server location for the device that was created is used. If the
wrong server is used, it causes a connection issue.

4. It opens the Settings page that has controls for logging and events. At the top of
the page, there are Endpoint Settings. Copy the endpoint string, which has the
following structure "id".iot."server".amazon.com.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
22 / 190

https://docs.aws.amazon.com/iot/latest/developerguide/setting-up.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 18. AWS Custom endpoint URL
5. The endpoint is obtained and must be inserted into the firmware. Within the

bootloader application, navigate to the source > aws_clientcredential.h
file. Within the aws_clientcredential.h file, locate the array called
clientcredentialMQTT_BROKER_ENDPOINT and change the existing contents to
the endpoint obtained from AWS IoT Endpoint Settings.

Figure 19. AWS broker endpoint update in aws_clientcredential.h for coffee_machine

5.1.1.2 Ivaldi guide

The following section describes the steps to set up the Ivaldi environment. This
chapter assumes that the client has already downloaded and unzipped the
Ivaldi_sln_tlhmi_iot.zip package. For additional details, check Section 3.1.

Perform the following steps to configure the Ivaldi environment.

Note: These steps must be executed only once. Ensure that none of the commands
return errors. For additional details, check the Ivaldi_sln_tlhmi_iot/README.md
and Ivaldi_sln_tlhmi_iot/Scripts/ota_signing/README.md files. The Ivaldi
tool was tested on the below Operating Systems and the corresponding Command-Line
Interfaces:

• Linux – Bash CLI
• Windows – WSL (Windows Subsystem for Linux)
• CLI
• Windows – CMD (Command Prompt) CLI

1. Install the following tools.
• OpenSSL # to check if installed: openssl version
• AWS CLI # to check if installed: aws --version

– Must be configured according to your account # to configure: aws configure
– https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
– https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
23 / 190

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Python 3.6.x
2. Set up the environment and install the requirements. Open a CLI (from the list

mentioned above) and run the below commands.
• cd Ivaldi_sln_tlhmi_iot/
• pip install virtualenv # installs the virtual environment tool
• virtualenv env # generates a new virtual environment
• source env/bin/activate # activates the virtual environment (on Linux or

WSL)
• env\Scripts\activate # activates the virtual environment (on CMD)
• (env) pip install -r requirements.txt # installs the python

dependencies
• (env) python setup.py install # setups the environment.

3. Generate the certificates. Adjust the below command’s parameters according to your
needs (replace: [code], [country], [state], [org]) and run it within the same terminal
opened in the previous step. The script below asks for the password several times,
each time provide the same password. As a result, the Ivaldi_sln_tlhmi_iot/
Scripts/ ota_signing/ca/ folder containing all the required certificates is
created.
• cd Scripts/ota_signing/
• (env) python generate_signing_artifacts.py prod [code]
[country] [state] [org]

Example: (env) python generate_signing_artifacts.py prod FR France
Normandy NXP

4. Add the previously generated certificates in the filesystem that is going to be
deployed on the board. To do that, add the path for the file in Scripts/sln_
platforms_config/sln_tlhmi_iot_config/littlefs_file_list.py

5. Add the password provided in Step 3 to the ivaldi scripts. This approach of providing
the password is not recommended due to security reasons, but may be used for a
quick test of the setup.
• Open the Scripts/ota_signing/sign/sign_me.py file and add the

password on line 49 (example: PKEY_PASS = 'my_password').
• Open the Scripts/ota_signing/sign/bundle_generate_tlhmi.py file

and add the password on line 139 (PKEY_PASS = 'my_password').
6. Test the environment by flashing an open boot device. Connect the device to the PC

via USB. Make sure you have all the required demos inside the Image Binaries folder
and that the serial mode jumper is properly set. Within the same terminal as before,
run the below commands.
• (env) cd ../sln_tlhmi_iot_open_boot/
• (env) python open_prog_full.py

5.1.2 Preparing an OTA image

This section describes the steps to create a binary to update the demo app. When
building an OTA image, make sure to properly sign the image that will be sent. Image
authentication is a key factor in the AWS high-level architecture. As the SLN-TLHMI-
IOT kit is built to communicate with an NXP demonstration AWS IoT account, OTA
is managed by NXP. For OTA to be managed by the developer, the Migration Guide
must be executed to provide access to an AWS IoT Core implementation for OTA
management. Without this process, OTA is not manageable for the developer. Before
starting, check the Ivaldi tool

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
24 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

5.1.3 Building image

As mentioned before in Section 4.4 , the current bootloader enables the remapping
feature that helps customers easily deploy new images, without keeping track of
the currently active bank. All bootable images must be built with Flash address at
0x30100000. The current implementation supports update with the same image
version or an older version. Best practices dictate that the version must be always
higher. To re-enable this functionality set otaconfigAllowDowngrade to 0 inside the
ota_config.h file.

5.1.4 Sign Image

The following section describes what the NXP Application Image Signing Tool (Signing
Tool) is and how to use it. The Signing Tool is a python application that is responsible for
using a signed Certificate Signing Request (CSR) to sign the binaries and append the
certificate to the binary ready to be deployed to the AWS IoT OTA service. The Signing
Tool requires Python3 to run. The following instructions assume that the README file
in the Ivaldi root directory has been followed to set up the Python virtual environment.
If this is not done, the scripts fail. Navigate to the Scripts/ota_signing directory
inside Ivaldi. For more details, check the “QUICK SETUP” section from the Scripts/
ota_signing/README.md file.

5.1.4.1 Creating a root, intermediate pair with sign server, and certificates

A tool was created to generate all the artifacts needed for OTA signing. This
tool is called generate_signing_artifacts.py and was derived from
publicly available information for generating CA certificate artifacts. The
generate_signing_artifacts.py takes 5 parameters that are all used to create
the artifacts. The ca_name is the entity where all the file names are labeled and used as
the common name. It asks you to enter a “pass phrase” and enter the same each time.
Once generate_signing_artifacts.py succeeds, a “ca” folder inside Scripts/
ota_signing appears. Inside the “ca” folder you can find: “certs” and “private” folders.

Inside the “certs” folder there are 3 files:

• “<ca_name>.app.a.crt.pem”
• “<ca_name>.app.b.crt.pem”
• “<ca_name>.root.ca.crt.pem”.

Inside the “private” folder there are 3 files:

• “<ca_name>.app.a.key.pem”
• “<ca_name>.app.b.key.pem”
• “<ca_name>.root.ca.key.pem”

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
25 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 20. generate_signing_artifacts.py description, usage, and logs

The script has been run from the Windows Linux subsystem, but it can be run from any
terminal.

The Ivaldi tools should have access to the password used in the previous step for
running the generate_signing_artifacts.py script. To achieve this, two files must
be modified:

• Open the Scripts/ota_signing/sign/sign_me.py file and add the password on
line 49 (example: PKEY_PASS = 'my_password').

• Open the Scripts/ota_signing/sign/bundle_generate_tlhmi.py file and
add the password on line 139 (PKEY_PASS = 'my_password').

Note: This approach of providing the password is not recommended due to security
reasons, but may be used for a quick test of the setup.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
26 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Navigate into the Scripts/ota_signing/sign folder and run the sign_me.py
tool with the name of the binary to sign (for example ais_ffs_demo binary) and the
certificate name (for example, the prod.app.a that we have generated in the previous
step) for the entity.

5.1.4.2 Formatting the CA and the application certificate

For the device to be able to verify the image signature, it must have the
root CA certificate. (ca/certs/<cert_name>.root.ca.crt.pem) and
the application certificate derived from the signing entity (ca/ certs/
<cert_name>.app.a.crt.pem) .

The certificates do not have a specific address at which to be written, both need to
be included in the filesystem. The obtained filesystem is going to be transformed into
binary format and loaded with the rest of the images. It is done when running the
open_prog_full.py script. Generate all the needed certificates before running the
script.

5.1.5 OTA Workflow with AWS IoT Console

On the device side, if the filesystem has been properly loaded and the board is
connected to a WiFi network, the application creates a secure MQTT connection with the
AWS cloud. MQTT connection is used to receive push update requests from the AWS
cloud.

To use Amazon OTA, configure various roles to allow AWS IoT access to the S3 Bucket
(this is the server that holds your images). The following link was used by NXP to
configure their OTA service:https://docs.aws.amazon.com/freertos/latest/userguide/ota-
prereqs.html

To create an OTA Job, follow these steps:

1. Navigate to the following link: https://docs.aws.amazon.com/freertos/latest/userguide/
ota-console-workflow.html. Focus on the area named “Use my custom-signed
firmware image” as this is the process that focuses on custom-signed image creation.
No other way of deploying images is currently supported. Click the Create job button
inside the AWS IoT > Jobs tab.

2. A new window appears. Inside this window, select Create FreeRTOS OTA update job
as shown in Figure 21:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
27 / 190

https://docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-console-workflow.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-console-workflow.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 21. Create OTA job – Job types
3. The OTA Job Properties window appears. Provide a job name as shown Figure 22:

Figure 22. Create OTA job – Job name
4. The OTA File Configuration window appears. Specify the serial numbers of the

devices to be updated. Select the MQTT option as the protocol for file transfer as
shown in Figure 23 :

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
28 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 23. Create OTA job – Devices to update and protocol for file transfer
5. Select the image that is going to be delivered to the remote device. To

do this, select Use my custom signed file and copy in the Signature
textbox the content that has been obtained as the output of the Signing Tool
(sln_demo_new_img.bin.sha256.txt). The following fields must be properly
set:
• Original hash algorithm - SHA-256
• Original encryption algorithm - RSA
• Path name of code signing certificate on device - app_a_sign_cert.dat (check

littlefs_file_list.py for the name of the file)

Check the images below for more information.

If a new image is going to be loaded, check Upload a new file, click Choose file and
select the image. S3 storage address must be specified in the "S3 URL" field. If the
loaded binary image already exists in the location, the user can select the checkbox
corresponding to Select an existing file and use the existing image.

The binary size increases exponentially when adding the GUI resources. Almost 70 %
of the total size is occupied by those. To speed up the development and to decrease the
load on the updating mechanism, the image has been split into code and resources,
both with the fixed address in the flash. Update operation can be done on components,
or all together into a bundle. Right now the OTA can be used to update:

• Main Application
• Resources
• Bundle update (Main App + Resources)

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
29 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 24. Create OTA job – File info

Until now the configuration for the update was the same. The difference, as was for the
MSD, is in the name of the file that must be updated in the Path name of the file on the
device. The files should be completed with:

• AppA , when updating the main application
• Resources, when updating only resources
• Bundle, update both at the same time

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
30 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

5.1.5.1 Update main application

Because of the remap functionality enabled in the bootloader, this binary can be placed
in each of the three banks and still work as it is running from the base address. When
receiving an OTA request, the OTA_Agent checks for the unused bank. The empty bank
is erased to prepare it for the update. All the erase is done before starting to receive
actual data. It is a measure to work around the not-in-order MQTT packets' arrival. After
the new image has been written, verification is done to check the signature. Using the
Signature field and Path name of the code signing certificate on device field, the
main application can start validating the new image. If everything is right, a resource copy
is done, and the empty bank is set as an active bank. It means that during the update
procedure the resources stay the same.

Figure 25. Update main application

5.1.5.2 Update resources

Similarly to updating the main application, the OTA_Agent on request checks for active
bank and writes the binary in the opposite one. A complete erase is done beforehand.
After the write is completed, the older firmware is copied, and the new bank is activated.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
31 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 26. Update resources

5.1.5.3 Update with Bundle

To update with a bundle, a python script is used to generate the bundle. The script is
part of the ivaldi suites of scripts that are delivered to the customer. The script is called
bundle_generate_tlhmi.py. When calling it, two parameters must be set, both
being the location of two important files:

• bundle configuration file (-bf) - contains a list of files that are going to be fused to
generate the bundle

• board configuration file (-cf) - position of the files in flash to build the metadata.

After running the script, there is no need to pass the binary through the singing process
as this script generates a signature used by the device to validate the new image.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
32 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 27. Update bundle

The current firmware sets all the images in the right positions based on the metadata.
After the parsing of the bundle is complete and all images are placed accordingly to the
fica_definitions.h file, the new bank is activated.

After completion, the application reboots in self-test mode. For now, nothing is done in
self-test mode except checking for the version of the new application. Reboot to make
sure self-test mode is not used.

6 Framework

6.1 Framework introduction
This section describes the architectural design of the framework. The application is
primarily designed around the use of a "framework" architecture that is composed of
several different parts.

The constituent parts include:

• Device Managers
• Hardware Abstraction Layer (HAL) Devices
• Messages/Events

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
33 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 28. Architecture Diagram

Each of these different components is discussed in detail in the following sections.

6.1.1 Design goals

The architectural design of the framework was centered around 3 primary goals:

1. Ease-of-use
2. Flexibility/Portability
3. Performance

In the course of project development, many problems can arise which hinder the speed
of that development. The framework architecture was designed to help combat those
problems.

The framework is designed with the goal of speeding up the time to market for vision
and other machine-learning applications. To ensure a speedy time to market, it is critical
that the software itself is easy to understand and modify. Keeping this goal in mind, the
architecture of the framework is easy to modify without being restrictive, and without
coming at the cost of performance.

6.1.2 Relevant files

The files which pertain to the framework architecture can primarily be found in the
framework/ folder of the specific application. Because the application is designed
around the use of the framework architecture, it is likely that the bulk of a developer's
efforts will be focused on the contents of these folders.

6.2 Naming conventions
The framework code adheres to a set of naming conventions for making the code easily
readable and searchable using modern code completion tools.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
34 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Note: The naming conventions described below apply *only* to framework-related code
that is primarily located in the framework folder and source folder of the application.

6.2.1 Functions

Functions names follow the format of {APP/FWK/HAL}_{DevType}_{DevName}_
{Action}.

For example:

hal_input_status_t HAL_InputDev_PushButtons_Start(const
 input_dev_t *dev);

To increase searchability using code completion tools, functions for each framework
component have their own prefix denoting the component they relate to:

• APP - app-specific function. Usually device registration or event handler-related.
• FWK - framework-specific function. Usually framework API function.
• HAL - HAL-specific function. Usually HAL device operators.

Additionally, an underscore _ may be placed in front of a function name to indicate that
the function is static/private.

Note: Static functions oftentimes exclude all but the underscore and the `Action` as the
component, devType, and devName are implicit.

For example:

static shell_status_t _VersionCommand(shell_handle_t
 shellContextHandle, int32_t argc, char **argv);
static shell_status_t _ResetCommand(shell_handle_t
 shellContextHandle, int32_t argc, char **argv);
static shell_status_t _SaveCommand(shell_handle_t
 shellContextHandle, int32_t argc, char **argv);
static shell_status_t _AddCommand(shell_handle_t
 shellContextHandle, int32_t argc, char **argv);
static shell_status_t _DelCommand(shell_handle_t
 shellContextHandle, int32_t argc, char **argv);

One of the above prefixes is the device type of the device defining the function.

• InputDev
• OutputDev
• CameraDev
• DisplayDev
• and so forth.

As the device type is the name of the device, the name must match the name of the
device specified in the filename.

For example:

hal_input_status_t HAL_InputDev_PushButtons_Start(const
 input_dev_t *dev);

The name of the device is the "action" performed on/by the device. It could be anything
including Start, Stop, Register, and so on.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
35 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Below are several examples of different function names:

void APP_InputDev_Shell_RegisterShellCommands(shell_handle_t
 shellContextHandle,
 input_dev_t
 *shellDev,

 input_dev_callback_t callback)
{
 s_InputCallback = callback;
 s_SourceShell = shellDev;
 s_ShellHandle = shellContextHandle;
 s_FrameworkRequest.respond = _FrameworkEventsHandler;
 SHELL_RegisterCommand(shellContextHandle,
 SHELL_COMMAND(version));
 SHELL_RegisterCommand(shellContextHandle,
 SHELL_COMMAND(reset));
 SHELL_RegisterCommand(shellContextHandle,
 SHELL_COMMAND(save));
 SHELL_RegisterCommand(shellContextHandle,
 SHELL_COMMAND(add));

int HAL_InputDev_PushButtons_Register()
{
 int error = 0;
 LOGD("input_dev_push_buttons_register");
 error =
 FWK_InputManager_DeviceRegister(&s_InputDev_PushButtons);
 return error;
}

hal_input_status_t HAL_InputDev_PushButtons_Init(input_dev_t
 *dev, input_dev_callback_t callback);
hal_input_status_t HAL_InputDev_PushButtons_Deinit(const
 input_dev_t *dev);
hal_input_status_t HAL_InputDev_PushButtons_Start(const
 input_dev_t *dev);
hal_input_status_t HAL_InputDev_PushButtons_Stop(const
 input_dev_t *dev);
hal_input_status_t HAL_InputDev_PushButtons_InputNotify(const
 input_dev_t *dev, void *param);

6.2.2 Variables

Local and global variables use camelCase.

static hal_output_status_t
 HAL_OutputDev_RgbLed_InferComplete(const output_dev_t *dev,

 output_algo_source_t source,

 void *inferResult)
{
 vision_algo_result_t *visionAlgoResult =
 (vision_algo_result_t *)inferResult;
 hal_output_status_t error =
 kStatus_HAL_OutputSuccess;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
36 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Static variables are prefixed with s_PascalCase

For example:

static event_common_t s_CommonEvent;
static event_face_rec_t s_FaceRecEvent;
static event_recording_t s_RecordingEvent;
static input_event_t s_InputEvent;
static framework_request_t s_FrameworkRequest;
static input_dev_callback_t s_InputCallback;
static input_dev_t *s_SourceShell; /* Shell device that
 commands are sent over */
static shell_handle_t s_ShellHandle;

6.2.3 Typedefs

Type definitions are written in snake_case and end in _t.

For example:

typedef struct
{
 fwk_task_t task;
 input_task_data_t inputData;
} input_task_t;

6.2.4 Enums

Enumerations are written in the the form kEventType_State.

For example:

typedef enum _rgb_led_color
{
 kRGBLedColor_Red, /*!< LED Red Color */
 kRGBLedColor_Orange, /*!< LED Orange Color */
 kRGBLedColor_Yellow, /*!< LED Yellow Color */
 kRGBLedColor_Green, /*!< LED Green Color */
 kRGBLedColor_Blue, /*!< LED Blue Color */
 kRGBLedColor_Purple, /*!< LED Purple Color */
 kRGBLedColor_Cyan, /*!< LED Cyan Color */
 kRGBLedColor_White, /*!< LED White Color */
 kRGBLedColor_Off, /*!< LED Off */
} rgbLedColor_t;

Enumerations for a status specifically must be written in the form
kStatus_{Component}_{State}.

For example:

/*! @brief Error codes for input hal devices */
typedef enum _hal_input_status
{
 kStatus_HAL_InputSuccess = 0,
 /*!< Successfully */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
37 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 kStatus_HAL_InputError =
 MAKE_FRAMEWORK_STATUS(kStatusFrameworkGroups_Input, 1), /*!<
 Error occurs */
} hal_input_status_t;

6.2.5 Macros and Defines

Defines are written in all caps.

For example:

#define INPUT_DEV_PB_WAKE_GPIO BOARD_USER_BUTTON_GPIO
#define INPUT_DEV_PB_WAKE_GPIO_PIN
 BOARD_USER_BUTTON_GPIO_PIN
#define INPUT_DEV_SW1_GPIO BOARD_BUTTON_SW1_GPIO
#define INPUT_DEV_SW1_GPIO_PIN BOARD_BUTTON_SW1_PIN
#define INPUT_DEV_SW2_GPIO BOARD_BUTTON_SW2_GPIO
#define INPUT_DEV_SW2_GPIO_PIN BOARD_BUTTON_SW2_PIN
#define INPUT_DEV_SW3_GPIO BOARD_BUTTON_SW3_GPIO
#define INPUT_DEV_SW3_GPIO_PIN BOARD_BUTTON_SW3_PIN
#define INPUT_DEV_PUSH_BUTTONS_IRQ GPIO13_Combined_0_31_IRQn
#define INPUT_DEV_PUSH_BUTTON_SW1_IRQ BOARD_BUTTON_SW1_IRQ
#define INPUT_DEV_PUSH_BUTTON_SW2_IRQ BOARD_BUTTON_SW2_IRQ
#define INPUT_DEV_PUSH_BUTTON_SW3_IRQ BOARD_BUTTON_SW3_IRQ

6.3 Device managers

6.3.1 Overview

As the name would imply, device managers are responsible for "managing" devices used
by the system. Each device type (input, output, and so on) has its own type-specific
device manager.

A device manager serves two primary purposes:

• Initializing and starting each device registered to that manager
• Sending data to and receiving data from each device registered to that manager

This section avoids low-level implementation details of the device managers and instead
focus on the device manager APIs and the startup flow for the device managers. The
device managers themselves are provided as a library binary file to, in part, help abstract
the underlying implementation details and encourage developers to focus on the HAL
devices being managed instead.

Note: The device managers themselves are provided as a library binary file in the
framework folder, while the APIs for each manager can be found in the framework/
inc folder.

6.3.1.1 Initialization flow

Before a device manager can properly manage devices, it must follow a specific startup
process. The startup process for device managers is summarized as follows:

1. Initialize managers
2. Register each device to their respective manager
3. Start managers

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
38 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

This process is clearly demonstrated in the main function found in source/main.cpp

/*
 * @brief Application entry point.
 */
int main(void)
{
 /* Init board hardware. */
 APP_BoardInit();
 LOGD("[MAIN]:Started");
 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 // start
 vTaskStartScheduler();

 while (1)
 {
 LOGD("#");
 }

 return 0;
}

As part of a manager's start routine, the manager calls the init and start functions
of each of its registered devices.

Note: In general, developers must only be concerned aout adding/removing devices
from the APP_RegisterHalDevices() function as the init and start functions for
each manager are already called by default inside the APP_InitFramework() and
APP_StartFramework() functions in main().

6.3.2 Vision input manager

The Vision input manager manages the input HAL devices that can be registered into the
system.

6.3.2.1 APIs

6.3.2.1.1 FWK_InputManager_Init

/**
 * @brief Init internal structures for input manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_InputManager_Init();

6.3.2.1.2 FWK_InputManager_DeviceRegister

/**

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
39 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 * @brief Register an input device. All input devices need to
 be registered before FWK_InputManager_Start is called.
 * @param dev Pointer to a display device structure
 * @return int Return 0 if registration was successful
 */
int FWK_InputManager_DeviceRegister(input_dev_t *dev);

6.3.2.1.3 FWK_InputManager_Start

/**
 * @brief Spawn Input manager task which will call init/start
 for all registered input devices
 * @return int Return 0 if the starting process was successful
 */
int FWK_InputManager_Start();

6.3.2.1.4 FWK_InputManager_Deinit

/**
 * @brief Denit internal structures for input manager.
 * @return int Return 0 if the deinit process was successful
 */
int FWK_InputManager_Deinit();

Note: Calling this function is unnecessary in most applications and must be used with
caution.

6.3.3 Output manager

The Output manager manages the output HAL devices that can be registered into the
system.

6.3.3.1 APIs

6.3.3.1.1 FWK_OutputManager_Init

/**
 * @brief Init internal structures for output manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_OutputManager_Init();

6.3.3.1.2 FWK_OutputManager_DeviceRegister

/**
 * @brief Register a display device. All display devices need
 to be registered before FWK_OutputManager_Start is called.
 * @param dev Pointer to an output device structure
 * @return int Return 0 if registration was successful
 */
int FWK_OutputManager_DeviceRegister(output_dev_t *dev);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
40 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.3.3.1.3 FWK_OutputManager_Start

/**
 * @brief Spawn output manager task which will call init/start
 for all registered output devices.
 * @return int Return 0 if starting was successful
 */
int FWK_OutputManager_Start();

6.3.3.1.4 FWK_OutputManager_Deinit

/**
 * @brief DeInit internal structures for output manager.
 * @return int Return 0 if the deinit process was successful
 */
int FWK_OutputManager_Deinit();

Calling this function is unnecessary in most applications and
 should be used with caution.

/**
 * @brief A registered output device doesn't need to be also
 active. After the start procedure, the output device
 * can register a handler of capabilities to receive
 events.
 * @param dev Device that register the handler
 * @param handler Pointer to a handler
 * @return int Return 0 if the registration of the event
 handler was successful
 */
int FWK_OutputManager_RegisterEventHandler(const output_dev_t
 *dev, const output_dev_event_handler_t *handler);

6.3.3.1.5 FWK_OutputManager_UnregisterEventHandler

/**
 * @brief A registered output device doesn't need to be also
 active. A device can call this function to unsubscribe
 * from receiving events
 * @param dev Device that unregister the handler
 * @return int Return 0 if the deregistration of the event
 handler was successful
 */
int FWK_OutputManager_UnregisterEventHandler(const output_dev_t
 *dev);

6.3.4 Camera manager

Camera manager manages the camera HAL devices that can be registered into the
system.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
41 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.3.4.1 APIs

6.3.4.1.1 FWK_CameraManager_Init

/**
 * @brief Init internal structures for Camera manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_CameraManager_Init();

6.3.4.1.2 FWK_CameraManager_DeviceRegister

/**
 * @brief Register a camera device. All camera devices need to
 be registered before FWK_CameraManager_Start is called
 * @param dev Pointer to a camera device structure
 * @return int Return 0 if registration was successful
 */
int FWK_CameraManager_DeviceRegister(camera_dev_t *dev);

6.3.4.1.3 FWK_CameraManager_Start

/**
 * @brief Spawn Camera manager task which will call init/start
 for all registered camera devices
 * @return int Return 0 if the starting process was successul
 */
int FWK_CameraManager_Start();

6.3.4.1.4 FWK_CameraManager_Deinit

/**
 * @brief Deinit CameraManager
 * @return int Return 0 if the deinit process was successful
 */
int FWK_CameraManager_Deinit();

Note: Calling this function is unnecessary in most applications and must be used with
caution.

6.3.5 Display manager

The Display manager manages the display HAL devices that can be registered into the
system.

6.3.5.1 APIs

6.3.5.1.1 FWK_DisplayManager_Init

/**
 * @brief Init internal structures for display manager.
 * @return int Return 0 if the init process was successful
 */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
42 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

int FWK_DisplayManager_Init();

6.3.5.1.2 FWK_DisplayManager_DeviceRegister

/**
 * @brief Register a display device. All display devices need
 to be registered before FWK_DisplayManager_Start is
 * called.
 * @param dev Pointer to a display device structure
 * @return int Return 0 if registration was successful
 */
int FWK_DisplayManager_DeviceRegister(display_dev_t *dev);

6.3.5.1.3 FWK_DisplayManager_Start

/**
 * @brief Spawn Display manager task which will call init/start
 for all registered display devices. Will start the flow
 * to recive frames from the camera.
 * @return int Return 0 if starting was successful
 */
int FWK_DisplayManager_Start();

6.3.5.1.4 FWK_DisplayManager_Deinit

/**
 * @brief Init internal structures for display manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_DisplayManager_Deinit();

Note: Calling this function is unnecessary in most applications and must be used with
caution.

6.3.6 Vision algorithm manager

The Vision algorithm manager manages the vision algorithm HAL devices that can be
registered into the system.

6.3.6.1 APIs

6.3.6.1.1 FWK_VisionAlgoManager_Init

/**
 * @brief Init internal structures for VisionAlgo manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_VisionAlgoManager_Init();

6.3.6.1.2 FWK_VisionAlgoManager_DeviceRegister

/**
 * @brief Register a vision algorithm device. All algorithm
 devices need to be registered before

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
43 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 * FWK_VisionAlgoManager_Start is called
 * @param dev Pointer to a vision algo device structure
 * @return int Return 0 if registration was successful
 */
int FWK_VisionAlgoManager_DeviceRegister(vision_algo_dev_t
 *dev);

6.3.6.1.3 FWK_VisionAlgoManager_Start

/**
 * @brief Spawn VisionAlgo manager task which will call init/
start for all registered VisionAlgo devices
 * @return int Return 0 if the starting process was successul
 */
int FWK_VisionAlgoManager_Start();

6.3.6.1.4 FWK_VisionAlgoManager_Deinit

/**
 * @brief Deinit VisionAlgoManager
 * @return int Return 0 if the deinit process was successful
 */
int FWK_VisionAlgoManager_Deinit();

Note: Calling this function is unnecessary in most applications and must be used with
caution.

6.3.7 Voice algorithm manager

The Voice algorithm manager manages the voice algorithm HAL devices that can be
registered into the system.

6.3.7.1 APIs

6.3.7.1.1 FWK_VoiceAlgoManager_Init

/**
 * @brief Init internal structures for VisionAlgo manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_VoiceAlgoManager_Init();

6.3.7.1.2 FWK_VoiceAlgoManager_DeviceRegister

/**
 * @brief Register a voice algorithm device. All algorithm
 devices need to be registered before
 * FWK_VoiceAlgoManager_Start is called
 * @param dev Pointer to a vision algo device structure
 * @return int Return 0 if registration was successful
 */
int FWK_VoiceAlgoManager_DeviceRegister(voice_algo_dev_t *dev);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
44 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.3.7.1.3 FWK_VoiceAlgoManager_Start

/**
 * @brief Spawn VisionAlgo manager task which will call init/
start for all registered VisionAlgo devices
 * @return int Return 0 if the starting process was successful
 */
int FWK_VoiceAlgoManager_Start();

6.3.7.1.4 FWK_VoiceAlgoManager_Deinit

/**
 * @brief Deinit VisionAlgoManager
 * @return int Return 0 if the deinit process was successful
 */
int FWK_VoiceAlgoManager_Deinit();

Note: Calling this function is unnecessary in most applications and must be used with
caution.

6.3.8 Low-Power device manager

The Low-Power device manager is unique among the managers because it does not
have the typical Init and Start functions that the other managers do. Instead, the
Low-Power Manager has APIs to register a device (only one at a time), configure how the
board should enter deep sleep, enable sleep mode, and more.

Note: Due to the unique nature of low-power devices being an abstract "virtual" device,
only one LPM device can be registered to the LPM manager at a time. However, there
must be no need for more than one LPM device because other devices can configure the
current low-power mode states by using the Low-Power Manager APIs.

6.3.8.1 APIs

6.3.8.1.1 FWK_LpmManager_DeviceRegister

/**
 * @brief Register a low power mode device. Currently, only one
 low power mode device can be registered at a time.
 * @param dev Pointer to a low power mode device structure
 * @return int Return 0 if registration was successful
 */
int FWK_LpmManager_DeviceRegister(lpm_dev_t *dev);

6.3.8.1.2 FWK_LpmManager_RegisterRequestHandler

int FWK_LpmManager_RegisterRequestHandler(hal_lpm_request_t
 *req);

6.3.8.1.3 FWK_LpmManager_UnregisterRequestHandler

int FWK_LpmManager_UnregisterRequestHandler(hal_lpm_request_t
 *req);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
45 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.3.8.1.4 FWK_LpmManager_RuntimeGet

int FWK_LpmManager_RuntimeGet(hal_lpm_request_t *req);

6.3.8.1.5 FWK_LpmManager_RuntimePut

int FWK_LpmManager_RuntimePut(hal_lpm_request_t *req);

6.3.8.1.6 FWK_LpmManager_RuntimeSet

int FWK_LpmManager_RuntimeSet(hal_lpm_request_t *req, int8_t
 count);

6.3.8.1.7 FWK_LpmManager_RequestStatus

int FWK_LpmManager_RequestStatus(unsigned int
 *totalUsageCount);

6.3.8.1.8 FWK_LpmManager_SetSleepMode

/**
 * @brief Configure the sleep mode to use when entering sleep
 * @param sleepMode sleep mode to use when entering sleep.
 Examples include SNVS and other "lighter" sleep modes
 * @return int Return 0 if successful
 */
int FWK_LpmManager_SetSleepMode(hal_lpm_mode_t sleepMode);

6.3.8.1.9 FWK_LpmManager_EnableSleepMode

/**
 * @brief Configure sleep mode on/off status
 * @param enable used to set sleep mode on/off; true is enable,
 false is disable
 * @return int Return 0 if successful
 */
int FWK_LpmManager_EnableSleepMode(hal_lpm_manager_status_t
 enable);

6.3.9 Audio processing manager

The Audio processing manager manages the audio processing HAL devices that can be
registered into the system.

6.3.9.1 APIs

6.3.9.1.1 FWK_AudioProcessing_Init

/**
 * @brief Init Audio Processing manager
 *
 * @return int Return 0 if the init process was successful

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
46 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 */
int FWK_AudioProcessing_Init(void);

6.3.9.1.2 FWK_AudioProcessing_DeviceRegister

/**
 * @brief Register an audio processing device
 *
 * @param dev Pointer to an Audio Processing device
 * @return int Return 0 if the register was successful
 */
int FWK_AudioProcessing_DeviceRegister(audio_processing_dev_t
 *dev);

6.3.9.1.3 FWK_AudioProcessing_Start

/**
 * @brief Start Audio Processing manager
 *
 * @return int Return 0 if the starting process was successful
 */
int FWK_AudioProcessing_Start(void);

6.3.9.1.4 FWK_AudioProcessing_Deinit

/**
 * @brief Deinit Audio Processing manager
 *
 * @return int Return 0 if the deit process was successful
 */
int FWK_AudioProcessing_Deinit(void);

Note: Calling this function is unnecessary in most applications and must be used with
caution.

6.3.10 Flash manager

The Flash manager is used to provide an abstraction for an underlying filesystem
implementation.

Due to the unique nature of the filesystem being an abstract "virtual" device, only one
flash device can be registered at a time. However, generally there should be no need to
have more than one filesystem. It means the Flash manager's API functions essentially
act as wrappers that call the operators of the underlying flash HAL device.

Warning: Flash access is exclusive, one request at a time.

Note: When working with the Flash Manager, unlike most other managers,
FWK_Flash_DeviceRegister must be called _before_ FWK_Flash_Init.

6.3.10.1 Device APIs

6.3.10.1.1 FWK_Flash_DeviceRegister

/**

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
47 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 * @brief Only one flash device is supported. Registered a
 flash filesystem device
 * @param dev Pointer to a flash device structure
 * @return int Return 0 if registration was successful
 */
int FWK_Flash_DeviceRegister(const flash_dev_t *dev);

Note: Unlike the flow for most other managers, this function must be called before
FWK_Flash_Init.

6.3.10.1.2 FWK_Flash_Init

/**
 * @brief Init internal structures for flash.
 * @return int Return 0 if the init process was successful
 */
sln_flash_status_t FWK_Flash_Init();

6.3.10.1.3 FWK_Flash_Deinit

/**
 * @brief Deinit internal structures for flash.
 * @return int Return 0 if the init process was successful
 */
sln_flash_status_t FWK_Flash_Deinit();

6.3.10.2 Operations APIs

The Flash Manager and underlying flash HAL device define only a few operations in
order to keep the API simple and easy to implement. These API functions include:

• Format
• Save
• Delete
• Read
• Make Directory
• Make File
• Append
• Rename
• Cleanup

While it might limit filesystem functionality, it also helps to keep the code readable,
portable, and maintainable.

Note: If the default list of APIs does not satisfy the requirements of a use-case, the API
can always be extended or bypassed in the code directly.

6.3.10.2.1 FWK_Flash_Format

/**
 * @brief Format the filesystem
 * @return the status of formatting operation
 */
sln_flash_status_t FWK_Flash_Format();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
48 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.3.10.2.2 FWK_Flash_Save

/**
 * @brief Save the data into a file from the file system
 * @param path Path of the file in the file system
 * @param buf Buffer which contains the data that is going to
 be saved
 * @param size Size of the buffer
 * @return the status of save operation
 */
sln_flash_status_t FWK_Flash_Save(const char *path, void *buf,
 unsigned int size);

6.3.10.2.3 FWK_Flash_Append

/**
 * @brief Append the data to an existing file.
 * @param path Path of the file in the file system
 * @param buf Buffer which contains the data that is going to
 be append
 * @param size Size of the buffer
 * @param overwrite Boolean parameter. If true the existing
 file will be truncated. Similar to SLN_flash_save
 * @return the status of append operation
 */
 sln_flash_status_t FWK_Flash_Append(const char *path, void
 *buf, unsigned int size, bool overwrite);

6.3.10.2.4 FWK_Flash_Read

/**
 * @brief Read from a file
 * @param path Path of the file in the file system
 * @param buf Buffer in which to store the read value
 * @param offset If reading in chunks, set offset to file
 current position
 * @param size Size that was read.
 * @return the status of read operation
 */
sln_flash_status_t FWK_Flash_Read(const char *path, void *buf,
 unsigned int offset, unsigned int *size);

6.3.10.2.5 FWK_Flash_Mkdir

/**
 * @brief Make directory operation
 * @param path Path of the directory in the file system
 * @return the status of mkdir operation
 */
sln_flash_status_t FWK_Flash_Mkdir(const char *path);

6.3.10.2.6 FWK_Flash_Mkfile

/**
 * @brief Make file with specific attributes

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
49 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 * @param path Path of the file in the file system
 * @param encrypt Specify if the files should be encrypted.
 Based on FS implementation
 * this param can be neglected
 * @return the status of mkfile operation
 */
sln_flash_status_t FWK_Flash_Mkfile(const char *path, bool
 encrypt);

6.3.10.2.7 FWK_Flash_Rm

/**
 * @brief Remove file
 * @param path Path of the file that shall be removed
 * @return the status of rm operation
 */
sln_flash_status_t FWK_Flash_Rm(const char *path);

6.3.10.2.8 FWK_Flash_Rename

/**
 * @brief Rename existing file
 * @param OldPath Path of the file that is renamed
 * @param NewPath New Path of the file
 * @return status of rename operation
 */
sln_flash_status_t FWK_Flash_Rename(const char *oldPath, const
 char *newPath);

6.3.10.2.9 FWK_Flash_Cleanup

/**
 * @brief Cleanup function. Might imply defragmentation, erased
 unused sectors etc.
 *
 * @param timeout Time consuming operation. Set a time
 constrain to be sure that is not disturbing the system.
 * Timeout = 0 means no timeout
 * @return status of cleanup operation
 */
sln_flash_status_t FWK_Flash_Cleanup(uint32_t timeout);

6.3.11 Multicore manager

The Multicore manager manages the multicore HAL device that can be registered into
the system. In the current framework implementation, there are two ways of making a
message multicore:

1. isMulticoreMessage flag set to 1
A message constructed with isMulticoreMessage set to 1, becomes automatically a
multicast message and is sent to both cores. The taskId field specifies the task that
must handle the message from the other core. The below code snip shows how the

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
50 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

message is sent to both CM4/CM7 with the Multicore manager as the man in the
middle.

pVAlgoResMsg->multicore.isMulticoreMessage = 1;
pVAlgoResMsg->multicore.taskId =
 kFWKTaskID_Output;
FWK_Message_Put(kFWKTaskID_VisionAlgo, &pVAlgoResMsg);

If the message has been sent by the CM7/Camera_Manager, the message is sent to
CM7/VisionAlgo and to CM4/Output via Multicore Manager

FWK_Message_Put(kFWKTaskID_VisionAlgo, &pVAlgoResMsg);
├── Message send to CM7/kFWKTaskID_VisionAlgo
└── Message send to CM7/Multicore Manager -> Deep Copy ->
 Message send to CM4/Multicore Manager -> Message send to
 CM4/pVAlgoResMsg.taskId

2. isMulticoreMessage field set to 0
A message constructed with isMulticoreMessage set to 0 is a unicast message sent
only to the task specified in the FWK_Message_Put. If the task is Multicore, an
additional taskId must be specified:

pAudioReqMsg->multicore.isMulticoreMessage = 0;
pAudioReqMsg->multicore.taskId =
 kFWKTaskID_Output;
FWK_Message_Put(kFWKTaskID_Multicore, &pAudioReqMsg);

If the message has been sent by the CM7/Camera_Manager, the message is sent
only to CM4/Output via Multicore Manager

FWK_Message_Put(kFWKTaskID_Multicore, &pAudioReqMsg);
└── Message send to CM7/Multicore Manager -> Deep Copy ->
 Message send to CM4/Multicore Manager -> Message send to
 CM4/pAudioReqMsg.taskId

When sending a message, a deep copy of the message is done by the Multicore
Manager. The purpose of the deep copy is to avoid sending references from untouchable
regions (for example, CM7 sending a reference that points to internal TCM memory that
cannot be seen by CM4). Deep copy ensures that the messages are stored in a shared
buffer, therefore the messages must be small.

If bigger buffers must be sent, they have to be in a shared memory area and passed by
reference (camera buffers).

6.3.11.1 APIs

6.3.11.1.1 FWK_MulticoreManager_Init

/**
 * @brief Init internal structures for Multicore Manager
 * @return int Return 0 if the init process was successful
 */
int FWK_MulticoreManager_Init();

6.3.11.1.2 FWK_MulticoreManager_DeviceRegister

/**
 * @brief Register a Multicore device. Only one multicore
 device is supported. The dev needs to be registered before

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
51 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 * FWK_MulticoreManager_Start is called
 * @param dev Pointer to a camera device structure
 * @return int Return 0 if registration was successful
 */
int FWK_MulticoreManager_DeviceRegister(multicore_dev_t *dev);

6.3.11.1.3 FWK_MulticoreManager_Start

/**
 * @brief Spawn Multicore manager task which will call init/
start for all registered multicore devices
 * @param taskPriority the priority of the Multicore manager
 task
 * @return int Return 0 if the starting process was successful
 */
int FWK_MulticoreManager_Start(int taskPriority);

6.3.11.1.4 FWK_MulticoreManager_Deinit

/**
 * @brief Deinit MulticoreManager
 * @return int Return 0 if the deinit process was successful
 */
int FWK_MulticoreManager_Deinit();

6.4 HAL devices

6.4.1 Overview

One of the most important steps in the creation of any embedded software project is
peripheral integration. This step can often be one of the most time-intensive steps of
the process. Additionally, peripheral drivers are often heavily tied to the specific platform
those drivers were originally written for. It makes upgrading/moving to another platform
difficult and costly.

The Hardware Abstraction Layer (HAL) component of the framework architecture was
designed in direct response to these issues.

HAL devices are designed to be written "on top of" lower-level driver code, helping to
increase code understandability by abstracting many of the underlying details. HAL
devices can be reused across different projects and NXP platforms, increasing code
reuse, which can help cut down on development time.

6.4.1.1 Device Registration

In order for a manager to communicate with a HAL device, that device must
first be registered with its respective manager. Registration of each HAL device
takes place at the beginning of application startup when main() calls the
APP_RegisterHalDevices() function as shown below:

int main(void)
{
 /* Init board hardware. */
 APP_BoardInit();
 LOGD("[MAIN]:Started");

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
52 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 // start
 vTaskStartScheduler();

 while (1)
 {
 LOGD("#");
 }

 return 0;
}

To register a device to its manager, each HAL device implements a registration function
that is called prior to starting the managers themselves. For example, the "register"
function for the push button input device looks as follows:

int HAL_InputDev_PushButtons_Register()
{
 int error = 0;
 LOGD("input_dev_push_buttons_register");
 error =
 FWK_InputManager_DeviceRegister(&s_InputDev_PushButtons);
 return error;
}

As HAL devices do not have header .h files associated with them, the registration
function for each device is exposed via the board_define.h file found inside the
boards folder. To be registered on startup, each HAL device must be added to the
APP_RegisterHalDevices function in the board_hal_registration.c file. The
board_hal_registration.c file is also found in the boards folder.

6.4.1.2 Device Types

There are several different device types to encapsulate the various peripherals that a
user may wish to incorporate into their project. These device types include:

• Input
• Output
• Camera
• Display
• VAlgo (Vision/Voice)

As well as a few others which are not listed here.

Each device type has specific methods and fields based on the unique characteristics of
that device type. For example, the camera HAL device definition looks as follows:

/**
 * @brief Callback function to notify camera manager that one
 frame is dequeued

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
53 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 * @param dev Device structure of the camera device calling
 this function
 * @param event id of the event that took place
 * @param param Parameters
 * @param fromISR True if this operation takes place in an irq,
 0 otherwise
 * @return 0 if the operation was successfully
 */
typedef int (*camera_dev_callback_t)(const camera_dev_t *dev,
 camera_event_t event, void *param, uint8_t fromISR);

/*! @brief Operation that needs to be implemented by a camera
 device */
typedef struct _camera_dev_operator
{
 /* initialize the dev */
 hal_camera_status_t (*init)(camera_dev_t *dev, int width,
 int height, camera_dev_callback_t callback, void *param);
 /* deinitialize the dev */
 hal_camera_status_t (*deinit)(camera_dev_t *dev);
 /* start the dev */
 hal_camera_status_t (*start)(const camera_dev_t *dev);
 /* enqueue a buffer to the dev */
 hal_camera_status_t (*enqueue)(const camera_dev_t *dev,
 void *data);
 /* dequeue a buffer from the dev */
 hal_camera_status_t (*dequeue)(const camera_dev_t *dev,
 void **data, pixel_format_t *format);
 /* postProcess a buffer from the dev */
 /*
 * Only do the minimum determination(data point and the
 format) of the frame in the dequeue.
 *
 * And split the CPU based post process(IR/Depth/...
 processing) to postProcess as they will eat CPU
 * which is critical for the whole system as camera manager
 is running with the highest priority.
 *
 * Camera manager will do the postProcess if there is a
 consumer of this frame.
 *
 * Note:
 * Camera manager will call multiple times of the
 posProcess of the same frame determinted by dequeue.
 * The HAL driver needs to guarantee the postProcess only
 do once for the first call.
 *
 */
 hal_camera_status_t (*postProcess)(const camera_dev_t *dev,
 void **data, pixel_format_t *format);
 /* input notify */
 hal_camera_status_t (*inputNotify)(const camera_dev_t *dev,
 void *data);
} camera_dev_operator_t;

/*! @brief Structure that characterize the camera device. */
typedef struct
{
 /* buffer resolution */
 int height;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
54 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 int width;
 int pitch;
 /* active rect */
 int left;
 int top;
 int right;
 int bottom;
 /* rotate degree */
 cw_rotate_degree_t rotate;
 /* flip */
 flip_mode_t flip;
 /* swap byte per two bytes */
 int swapByte;
} camera_dev_static_config_t;

In many ways, HAL devices can be thought of as similar to interfaces in C++ and other
object-oriented languages.

6.4.1.3 Anatomy of a HAL device

HAL devices are made up of several components which can vary by device type.
However, each HAL device regardless of type has at least 3 components:

• id
• name
• operators

The id field is a unique device identifier that is assigned by the device's manager when
the device is first registered.

The name field is used to help identify the device during various function calls and when
debugging.

The operators field is a struct that contains function pointers to each of the functions
that the HAL device is required to implement. The operators a device is required to
implement vary based on the device type.

A HAL device's definition is stored in a struct that gets passed to that device's respective
manager when the device is registered. It gives the manager information about the
device and allows the manager to call the device's operators when necessary.

6.4.1.3.1 Operators

Operators are functions that "operate" on the device itself and are used by the device's
manager to control the device and/or augment its behavior. Operators are used for
initializing, starting, and stopping devices, as well as serving many other functions
depending on the device.

As mentioned previously, the operators a HAL device must implement varies based on
device type. For example, input devices must implement an init, deinit, start,
stop, and inputNotify function.

typedef struct
{
 /* initialize the dev */
 hal_input_status_t (*init)(input_dev_t *dev,
 input_dev_callback_t callback);
 /* deinitialize the dev */
 hal_input_status_t (*deinit)(const input_dev_t *dev);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
55 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* start the dev */
 hal_input_status_t (*start)(const input_dev_t *dev);
 /* stop the dev */
 hal_input_status_t (*stop)(const input_dev_t *dev);
 /* notify the input_dev */
 hal_input_status_t (*inputNotify)(const input_dev_t *dev,
 void *param);
} input_dev_operator_t;

Generally, each device regardless of type has at least a start, stop, init, and
deinit function. Additionally, most devices also implement an inputNotify function
that is used for event handling.

Note: Failing to implement a function does not prevent the HAL device from being
registered, but is likely to prevent certain functionality from working. For example, failing
to provide an implementation for a HAL device's start function prevents its respective
manager from starting that device.

6.4.1.4 Configs

Note: This section describes a feature which is being developed.

Configs represent the individual, configurable attributes specific to a HAL device. The
configs available for a device varies from device to device, but can be altered during
runtime via user input or by other devices and can be saved to flash to retain the same
value through power cycles.

For example, the HAL device for the IR/White LEDs may only have a "brightness" config,
while a speaker device may have configs for "volume", "left/right balance", and so on.

Note: Each device can have a maximum of MAXIMUM_CONFIGS_PER_DEVICE configs
(see framework/inc/fwk_common.h).

Each device config regardless of device type has the same fields:

• name
• expectedValue
• description
• value
• get
• set

6.4.1.4.1 Name

A string containing the name of the config. The string length must be less than
DEVICE_CONFIG_NAME_MAX_LENGTH.

char name[DEVICE_CONFIG_NAME_MAX_LENGTH];

6.4.1.4.2 ExpectedValue

A string that provides a description of the valid values associated with the config. The
length of the string must be less than DEVICE_CONFIG_EXPECTED_VAL_MAX_LENGTH.

char expectedValue[DEVICE_CONFIG_EXPECTED_VAL_MAX_LENGTH];

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
56 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.1.4.3 Description

A string that provides a description of the config. The length of the string should be less
than DEVICE_CONFIG_DESCRIPTION_MAX_LENGTH.

char description[DEVICE_CONFIG_DESCRIPTION_MAX_LENGTH];

6.4.1.4.4 Value

An int that stores the internal value of the config. The value must be set using the set
function and retrieved using the get function.

uint32_t value;

6.4.1.4.5 Get

A function that returns the value of the config.

status_t (*get)(char *valueToString);

6.4.1.4.6 Set

A function that sets the value of the config.

status_t (*set)(char *configName, uint32_t value);

6.4.2 Input devices

The Input HAL device provides an abstraction to implement various devices that may
capture data in many different ways, and the data can represent many different things.
The Input HAL device definition is designed to encapsulate everything from physical
devices like push buttons, to "virtual" devices like a command-line interface using UART.

Input devices are used to acquire external input data and forward that data to other
HAL devices via the Input Manager so that those devices can respond to that data
accordingly. The Input Manager communicates to other devices within the framework
using inputNotify event messages. For more information about events and event
handling, see Events.

As with other device types, Input devices are controlled via their manager. The Input
Manager is responsible for managing all registered input HAL devices, and invoking input
device operators (init, start, dequeue, and so on) as necessary. Additionally, the
Input Manager allows for multiple input devices to be registered and operate at once.

6.4.2.1 Device definition

The HAL device definition for Input devices can be found under framework/
hal_api/hal_input_dev.h and is reproduced below:

/*! @brief Attributes of an input device */
typedef struct _input_dev
{
 /* unique id which is assigned by input manager during the
 registration */
 int id;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
57 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* name of the device */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* operations */
 const input_dev_operator_t *ops;
 /* private capability */
 input_dev_private_capability_t cap;
} input_dev_t;

The device operators associated with input HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by an input
 device */
typedef struct
{
 /* initialize the dev */
 hal_input_status_t (*init)(input_dev_t *dev,
 input_dev_callback_t callback);
 /* deinitialize the dev */
 hal_input_status_t (*deinit)(const input_dev_t *dev);
 /* start the dev */
 hal_input_status_t (*start)(const input_dev_t *dev);
 /* start the dev */
 hal_input_status_t (*stop)(const input_dev_t *dev);
 /* notify the input_dev */
 hal_input_status_t (*inputNotify)(const input_dev_t *dev,
 void *param);
} input_dev_operator_t;

The device capabilities associated with input HAL devices are as shown below:

typedef struct
{
 /* callback */
 input_dev_callback_t callback;
} input_dev_private_capability_t;

6.4.2.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to
"public methods" in object oriented-languages and are used by the Input Manager to set
up, start, and so on, each of its registered input devices.

For more information about operators, see Section 6.4.1.3.1.

6.4.2.2.1 Init

/* initialize the dev */
hal_input_status_t (*init)(input_dev_t *dev,
 input_dev_callback_t callback);

Initialize the input device.

Init should initialize any hardware resources the input device requires (I/O ports, IRQs,
and so on), turn on the hardware, and perform any other setup the device requires.

The callback function to the device's manager is typically installed as part of the Init
function as well.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
58 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

This operator will be called by the Input Manager when the Input Manager task first
starts.

6.4.2.2.2 Deinit

/* deinitialize the dev */
hal_input_status_t (*deinit)(const input_dev_t *dev);

"Deinitialize" the input device.

DeInit should release any hardware resources the input device uses (I/O ports, IRQs,
and so on), turn off the hardware, and perform any other shutdown the device requires.

This operator will be called by the Input Manager when the Input Manager task ends[1].

[1]The `DeInit` function generally will not be called under
 normal operation.

6.4.2.2.3 Start

/* start the dev */
hal_input_status_t (*start)(const input_dev_t *dev);

Start the input device.

The Start operator will be called in the initialization stage of the Input Manager's task
after the call to the Init operator. The startup of the display sensor and interface should
be implemented in this operator. This includes, for example, starting the interface and
enabling the IRQ of the DMA used by the interface.

6.4.2.2.4 Stop

/* start the dev */
hal_input_status_t (*stop)(const input_dev_t *dev);

Stop the input device.

The Stop operator functions as the inverse of the Start function and is not called under
normal operation.

6.4.2.2.5 InputNotify

/* notify the input_dev */
hal_input_status_t (*inputNotify)(const input_dev_t *dev, void
 *param);

Handle input events.

The InputNotify operator is called by the Input Manager whenever a
kFWKMessageID_InputNotify message received by and forwarded from the Input
Manager's message queue.

For more information regarding events and event handling, see Events.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
59 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.2.3 Capabilities

typedef struct
{
 /* callback */
 input_dev_callback_t callback;
} input_dev_private_capability_t;

The capabilities struct is primarily used for storing a callback to communicate
information from the device back to the Input Manager. This callback function is typically
installed via a device's init operator.

6.4.2.3.1 callback

/**
 * @brief callback function to notify input manager with an
 async event
 * @param dev Device structure
 * @param eventId Id of the event that took place
 * @param receiverList List with managers that should be notify
 * @param event Pointer to a event structure.
 * @param size If size is 0 event should be in a persistent
 memory zone else the framework will allocate memory for the
 * object Note the message delivery might go slow if the size
 is too much.
 * @param fromISR True if this operation takes place in an irq,
 0 otherwise
 * @return 0 if the operation was successfully
 */
typedef int (*input_dev_callback_t)(const input_dev_t *dev,
 input_event_id_t eventId,
 unsigned int receiverList,
 input_event_t *event,
 unsigned int size,
 uint8_t fromISR);

Callback to the Input Manager.

The capabilities struct is primarily used for storing a callback to communicate
information from the device back to the Input Manager.

The Vision Algorithm manager provides the callback to the device when the init
operator is called. As a result, the HAL device should make sure to store the callback in
the init operator's implementation.

static hal_input_status_t
 HAL_InputDev_PushButtons_Init(input_dev_t *dev,
 input_dev_callback_t callback)
{
 hal_input_status_t error = 0;

 /* PERFORM INIT FUNCTIONALITY HERE */

 /* Installing callback function from manager... */
 memset(&dev->cap, 0, sizeof(dev->cap));
 dev->cap.callback = callback;

 return ret;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
60 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

}

The HAL device invokes this callback to notify the vision algorithm manager of specific
events.

The definition for valgo_dev_callback_t is as shown below:

typedef int (*input_dev_callback_t)(const input_dev_t *dev,
 input_event_id_t eventId,
 unsigned int receiverList,
 input_event_t *event,
 unsigned int size,
 uint8_t fromISR);

The fields passed as part of the callback are described in more detail below.

6.4.2.3.2 EventId

typedef enum _input_event_id
{
 kInputEventID_Recv,
 kInputEventID_AudioRecv,
 kInputEventID_FrameworkRecv,
} input_event_id_t;

Describes the type of source event being sent/received.

6.4.2.3.3 ReceiverList

typedef enum _fwk_task_id
{
 kFWKTaskID_Camera = 0, /* This should always stay first */
 kFWKTaskID_Display,
 kFWKTaskID_VisionAlgo,
 kFWKTaskID_VoiceAlgo,
 kFWKTaskID_Output,
 kFWKTaskID_Input,
 kFWKTaskID_Audio,
 kFWKTaskID_APPStart, /* APP task ID should always start
 from here */
 kFWKTaskID_COUNT = (kFWKTaskID_APPStart + APP_TASK_COUNT)
} fwk_task_id_t;

List of device managers meant to receive the input event message.

6.4.2.3.4 Event

typedef struct _input_event
{
 union
 {
 /* Valid when message is kInputEventID_RECV */
 void *inputData;

 /* Valid when eventId is kInputEventID_AudioRECV */
 void *audioData;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
61 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* Valid when framework information is needed
 GET_FRAMEWORK_INFO*/
 framework_request_t *frameworkRequest;
 };
} input_event_t;

6.4.2.4 Example

The project has several input devices implemented for use as-is or for use as reference
for implementing new input devices. Source files for these input HAL devices can be
found under HAL/common/ and HAL/face_rec.

Below is an example of a push button input HAL device driver:

static input_event_t inputEvent;

const static input_dev_operator_t s_InputDev_ExampleDevOps = {
 .init = HAL_InputDev_ExampleDev_Init,
 .deinit = HAL_InputDev_ExampleDev_Deinit,
 .start = HAL_InputDev_ExampleDev_Start,
 .stop = HAL_InputDev_ExampleDev_Stop,
 .inputNotify = HAL_InputDev_ExampleDev_InputNotify,
};

static input_dev_t s_InputDev_ExampleDev = {
 .name = "buttons",
 .ops = &s_InputDev_ExampleDevOps,
 .cap = {
 .callback = NULL
 },
};

/* here assume buttons push event will call this handler */
void HAL_InputDev_ExampleDev_EvtHandler(void)
{
 /* Add manager task list need notify, the id is from
 fwk_task_id_t.
 * Note: here can set not only one task manager.
 */
 receiverList = 1 << kFWKTaskID_Display;

 /* load input data */
 inputEvent.inputData = NULL;

 /* callback inputmanager notify the corresponding manager
 from receiverList */
 inputDev.cap.callback(&inputDev, kInputEventID_Recv,
 receiverList, &inputEvent, 0, fromISR);
}

hal_input_status_t HAL_InputDev_ExampleDev_Init(input_dev_t
 *dev, input_dev_callback_t callback)
{
 hal_input_status_t ret = kStatus_HAL_InputSuccess;

 /* install manager callback for device */
 dev->cap.callback = callback;

 /* put hardware init here */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
62 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 return ret;
}

hal_input_status_t HAL_InputDev_ExampleDev_Deinit(const
 input_dev_t *dev)
{
 hal_input_status_t ret = kStatus_HAL_InputSuccess;

 /* put device deinit here */

 return ret;
}

hal_input_status_t HAL_InputDev_ExampleDev_Start(const
 input_dev_t *dev)
{
 hal_input_status_t ret = kStatus_HAL_InputSuccess;

 /* put device start here */

 return ret;
}

hal_input_status_t HAL_InputDev_ExampleDev_Stop(const
 input_dev_t *dev)
{
 hal_input_status_t ret = kStatus_HAL_InputSuccess;

 /* put device stop here */

 return ret;
}

hal_input_status_t HAL_InputDev_ExampleDev_InputNotify(const
 input_dev_t *dev, void *param)
{
 hal_input_status_t ret = kStatus_HAL_InputSuccess;

 /* add device notify handler here */

 return ret;
}

int HAL_InputDev_ExampleDev_Register(void)
{
 int ret = 0;
 ret =
 FWK_InputManager_DeviceRegister(&s_InputDev_ExampleDev);
 return ret;
}

6.4.3 Output devices

The Output HAL devices are used to represent any device that produces output
(excluding specific devices that have their own specific device types like cameras and
displays).

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
63 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The Output devices respond to events passed by other HAL devices and produce
corresponding output. It includes changing the UI overlay in response to a "face
recognized" event or changing the volume of the speaker in response to a specific shell
command.

Multiple output devices can be registered at a time per the design of the framework.

6.4.3.1 Subtypes

Currently, output devices can be divided into 3 "subtypes" to better represent the specific
nuances of a wider variety of output devices without creating entirely new HAL device
types:

• "General" output devices
• "Overlay/UI" output devices
• "Audio" output devices

6.4.3.1.1 General devices

"General"/generic output devices describe most output devices and include devices like
LEDs.

6.4.3.1.2 UI devices

Overlay/UI output devices are used for output devices that act as an overlay that sits on
top of a camera preview surface.

Overlay/UI devices require that a frame buffer be allocated when initializing a device of
this subtype.

6.4.3.1.3 Audio devices

Audio output HAL devices represent devices that act as recipients of audio data. Audio
output HAL devices typically process audio data so that they can play a sound in
response to an event like a face being registered, or sleep mode triggering.

6.4.3.2 Device definition

The HAL device definition for output devices can be found under framework/hal_api/
hal_output_dev.h and is reproduced below:

/*! @brief definition of an output device */
typedef struct _output_dev
{
 /* unique id and assigned by Output Manager when this
 device register */
 int id;
 /* device name */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* attributes */
 output_dev_attr_t attr;
 /* optional config for private configuration of special
 output device */
 hal_device_config configs[MAXIMUM_CONFIGS_PER_DEVICE];

 /* operations */
 const output_dev_operator_t *ops;
}output_dev_t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
64 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The operators associated with output HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by an output
 device */
typedef struct _output_dev_operator
{
 /* initialize the dev */
 hal_output_status_t (*init)(const output_dev_t *dev);
 /* deinitialize the dev */
 hal_output_status_t (*deinit)(const output_dev_t *dev);
 /* start the dev */
 hal_output_status_t (*start)(const output_dev_t *dev);
 /* stop the dev */
 hal_output_status_t (*stop)(const output_dev_t *dev);

} output_dev_operator_t;

The device attributes associated with output HAL devices are as shown below:

/*! @brief Attributes of an output device */
typedef struct _output_dev_attr_t
{
 /* the type of output device */
 output_dev_type_t type;
 union
 {
 /* if the type of output device is OverlayUI, it need
 to allocate overlay surface */
 gfx_surface_t *pSurface;
 /* reserve for other type of output device*/
 void *reserve;
 };
} output_dev_attr_t;

6.4.3.3 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to
"public methods" in object-oriented languages and are used by the Output Manager to
set up, start, and so on, each of its registered output devices.

For more information about operators, see Section 6.4.1.3.1.

6.4.3.3.1 Init

hal_output_status_t (*init)(const output_dev_t *dev);

The Init function is used to initialize the output device, Init should initialize any
hardware resources the output device requires (I/O ports, IRQs, and so on), turn on the
hardware, and perform any other setup the device requires.

This operator will be called by the Output Manager when the Output Manager task first
starts.

6.4.3.3.2 DeInit

hal_output_status_t (*deinit)(const output_dev_t *dev);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
65 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The DeInit function is used to initialize the output device, DeInit should release any
hardware resources the output device uses (I/O ports, IRQs, and so on), turn off the
hardware, and perform any other shutdown the device requires.

This operator will be called by the Output Manager when the Output Manager task
ends[1].

[1]The `DeInit` function generally will not be called under
 normal operation.

6.4.3.3.3 Start

hal_output_status_t (*start)(const output_dev_t *dev);

Starts the output device. The Start method will usually call FWK_OutputManager_
RegisterEventHandler to register event handlers with the Output Manager so that
when the Output Manager receives an output event (like an "inference complete" event
or an "input notify" event), the corresponding event handler function is executed.

This operator is called by the Output Manager when the Output Manager task first starts.

6.4.3.3.4 Stop

hal_output_status_t (*stop)(const output_dev_t *dev);

Stops the output device. The Stop method will usually call FWK_OutputManager_
UnRegisterEventHandler to unregister an event handler from the Output Manager. It
prevents the device's event handlers from executing when an event is triggered.

6.4.3.4 Attributes

6.4.3.4.1 Type

The type of output device. If the type is kOutputDevType_UI, the pSurface parameter
must be set. Otherwise, pSurface can safely be ignored.

output_dev_type_t type;

The type struct is shown below:

/*! @brief Types of output devices */
typedef enum _output_dev_type
{
 kOutputDevType_UI, /* for Overlay UI */
 kOutputDevType_Audio, /* for Audio output */
 kOutputDevType_Other, /* for other general output, like
 LED, Console, etc */
} output_dev_type_t;

6.4.3.4.2 pSurface

The pSurface variable is used by Overlay/UI output devices to hold a frame buffer.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
66 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

If the device type "subtype" is not a kOuptutDevType_UI device, then this parameter
can be safely ignored.

gfx_surface_t * pSurface;

The gfx_surface struct is shown below:

typedef struct _gfx_surface
{
 int height; /* the height of surface */
 int width; /* the width of surface */
 int pitch; /* the pitch of surface */
 int left; /* the left coordinate of surface */
 int top; /* the top coordinate of surface */
 int right; /* the right coordinate of surface */
 int bottom; /* the bottom coordinate of surface */
 int swapByte; /* For each 16 bit word of surface
 framebuffer, set true to swap the two bytes. */
 pixel_format_t format; /* the pixel format of surface, like
 kPixelFormat_RGB565 */
 void *buf; /* the pointer for the framebuffer */
 void *lock; /* the mutex lock for the surface, is
 determined by hal and set to null if not use in hal*/
} gfx_surface_t;

6.4.3.5 Example

The project has several output devices implemented for use as-is or for use as a
reference for implementing new output devices. Source files for these output HAL
devices can be found under HAL/common/.

Below is an example of the RGB LED HAL device driver HAL/common/
hal_output_rgb_led.c:

static hal_output_status_t
 HAL_OutputDev_RgbLed_Init(output_dev_t *dev);
static hal_output_status_t HAL_OutputDev_RgbLed_Start(const
 output_dev_t *dev);
static hal_output_status_t
 HAL_OutputDev_RgbLed_InferComplete(const output_dev_t *dev,

 output_algo_source_t source,

 void *inferResult);

const static output_dev_event_handler_t
 s_OutputDev_RgbLedHandler = {
 .inferenceComplete = HAL_OutputDev_RgbLed_InferComplete,
 .inputNotify = NULL,
};

/* output device operators*/
const static output_dev_operator_t s_OutputDev_RgbLedOps = {
 .init = HAL_OutputDev_RgbLed_Init,
 .deinit = NULL,
 .start = HAL_OutputDev_RgbLed_Start,
 .stop = NULL,
};

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
67 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

/* output device */
static output_dev_t s_OutputDev_RgbLed = {
 .name = "rgb_led",
 .attr.type = kOutputDevType_Other,
 .attr.reserve = NULL,
 .ops = &s_OutputDev_RgbLedOps,
};

/* RGB LED output device Init function*/
static hal_output_status_t
 HAL_OutputDev_RgbLed_Init(output_dev_t *dev)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* put RGB LED hardware initialization here*/
 ...
 return error;
}

/* RGB LED output device start function*/
static hal_output_status_t HAL_OutputDev_RgbLed_Start(const
 output_dev_t *dev)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* registered special event handler for this output device
 */
 if (FWK_OutputManager_RegisterEventHandler(dev,
 &s_OutputDev_RgbLedHandler) != 0)
 {
 error = kStatus_HAL_OutputError;
 }
 return error;
}

static hal_output_status_t
 HAL_OutputDev_RgbLed_InferComplete(const output_dev_t *dev,

 output_algo_source_t source,

 void *inferResult)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* algorithm_result_t is defined by special algorithm
 device registered into vision pipeline */
 algorithm_result_t *result = (algorithm_result_t
 *)inferResult;
 if (pResult != NULL)
 {
 /* do RGB LED hardware setting according to inference
 result from valgorithm manager*/
 ...
 }
 return error;
}

int HAL_OutputDev_RgbLed_Register()
{
 int error = 0;
 LOGD("output_dev_rgb_led_register");

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
68 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 error =
 FWK_OutputManager_DeviceRegister(&s_OutputDev_RgbLed);
 return error;
}

An example of an Overlay UI Output device can be found at HAL/face_rec/
hal_smart_lock_ui.c.

static hal_output_status_t HAL_OutputDev_OverlayUi_Init(const
 output_dev_t *dev);
static hal_output_status_t HAL_OutputDev_OverlayUi_Start(const
 output_dev_t *dev);
static hal_output_status_t
 HAL_OutputDev_OverlayUi_InferComplete(const output_dev_t *dev,

 output_algo_source_t source,

 void *infer_result);
static hal_output_status_t
 HAL_OutputDev_OverlayUi_InputNotify(const output_dev_t *dev,
 void *data);

/* Overlay UI surface */
static gfx_surface_t s_UiSurface;
/* the framebuffer for Overlay UI surface */
SDK_ALIGN(static char s_AsBuffer[UI_BUFFER_WIDTH *
 UI_BUFFER_HEIGHT * UI_BUFFER_BPP], 32);
/* event handler */
const static output_dev_event_handler_t s_OutputDev_UiHandler =
 {
 .inferenceComplete = HAL_OutputDev_OverlayUi_InferComplete,
 .inputNotify = HAL_OutputDev_OverlayUi_InputNotify,
};

/* output device operators */
const static output_dev_operator_t s_OutputDev_UiOps = {
 .init = HAL_OutputDev_OverlayUi_Init,
 .deinit = NULL,
 .start = HAL_OutputDev_OverlayUi_Start,
 .stop = NULL,
};

/* output device */
static output_dev_t s_OutputDev_Ui = {
 .name = "ui",
 .attr.type = kOutputDevType_UI,
 .attr.pSurface = &s_UiSurface,
 .ops = &s_OutputDev_UiOps,
};

/* Overlay UI output device Init function*/
static hal_output_status_t
 HAL_OutputDev_OverlayUi_Init(output_dev_t *dev)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* init overlay ui surface */
 s_UiSurface.left = 0;
 s_UiSurface.top = 0;
 s_UiSurface.right = UI_BUFFER_WIDTH - 1;
 s_UiSurface.bottom = UI_BUFFER_HEIGHT - 1;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
69 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 s_UiSurface.height = UI_BUFFER_HEIGHT;
 s_UiSurface.width = UI_BUFFER_WIDTH;
 s_UiSurface.pitch = UI_BUFFER_WIDTH * 2;
 s_UiSurface.format = kPixelFormat_RGB565;
 s_UiSurface.buf = s_AsBuffer;
 s_UiSurface.lock = xSemaphoreCreateMutex();

 return error;
}

/* Overlay UI output device start function*/
static hal_output_status_t HAL_OutputDev_OverlayUi_Start(const
 output_dev_t *dev)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* registered special event handler for this output device
 */
 if (FWK_OutputManager_RegisterEventHandler(dev,
 &s_OutputDev_UiHandler) != 0)
 error = kStatus_HAL_OutputError;
 return error;
}

/* Overlay UI inferenceComplete event handler function*/
static hal_output_status_t
 HAL_OutputDev_OverlayUi_InferComplete(const output_dev_t *dev,

 output_algo_source_t source,

 void *infer_result)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* algorithm_result_t is defined by special algorithm
 device registered into vision pipeline */
 algorithm_result_t *pResult = (algorithm_result_t
 *)infer_result;

 if (pResult != NULL)
 {
 /* lock overlay surface to avoid conflict with PXP
 composing overlay surface */
 if (s_UiSurface.lock)
 {
 xSemaphoreTake(s_UiSurface.lock, portMAX_DELAY);
 }

 /* draw overlay surface here according to inference
 result from valgorithm manager */
 ...

 /* unlock */
 if (s_UiSurface.lock)
 {
 xSemaphoreGive(s_UiSurface.lock);
 }
 }
 return error;
}

/* Overlay UI inputNotify event handler function*/

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
70 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

static hal_output_status_t
 HAL_OutputDev_OverlayUi_InputNotify(const output_dev_t *dev,
 void *data)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 event_base_t eventBase = *(event_base_t *)data;

 if (eventBase != NULL)
 {
 /* lock overlay surface to avoid conflict with PXP
 composing overlay surface */
 if (s_UiSurface.lock)
 {
 xSemaphoreTake(s_UiSurface.lock, portMAX_DELAY);
 }

 /* draw overlay surface here according to input notify
 event from input manager*/
 ...

 /* unlock */
 if (s_UiSurface.lock)
 {
 xSemaphoreGive(s_UiSurface.lock);
 }
 }
 return error;
}

int HAL_OutputDev_UiSmartlock_Register()
{
 int error = 0;
 LOGD("output_dev_ui_smartlock_register");
 error = FWK_OutputManager_DeviceRegister(&s_OutputDev_Ui);
 return error;
}

6.4.4 Camera devices

The Camera HAL device provides an abstraction to represent many different camera
devices which may have different resolutions, color formats, and even connection
interfaces.

For example, the same GC0308 RGB camera can connect with CSI or via a FlexIO
interface.

A camera HAL device represents a camera sensor + interface,
meaning a separate device driver is required for the same
 camera sensor using different interfaces.

As with other device types, camera devices are controlled via their manager. The
Camera Manager is responsible for managing all registered camera HAL devices, and
invoking camera device operators (init, start, dequeue, and so on) as necessary.
Additionally, the Camera Manager allows for multiple camera devices to be registered
and operated at once.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
71 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.4.1 Device definition

The HAL device definition for Camera devices can be found under framework/
hal_api/hal_camera_dev.h and is reproduced below:

typedef struct _camera_dev camera_dev_t;
/*! @brief Attributes of a camera device. */
struct _camera_dev
{
 /* unique id which is assigned by camera manager during
 registration */
 int id;
 /* state in which the device is found */
 hal_device_state_t state;
 /* name of the device */
 char name[DEVICE_NAME_MAX_LENGTH];

 /* operations */
 const camera_dev_operator_t *ops;
 /* static configs */
 camera_dev_static_config_t config;
 /* private capability */
 camera_dev_private_capability_t cap;
};

The device operators associated with camera HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by a camera
 device */
typedef struct _camera_dev_operator
{
 /* initialize the dev */
 hal_camera_status_t (*init)(camera_dev_t *dev, int width,
 int height, camera_dev_callback_t callback, void *param);
 /* deinitialize the dev */
 hal_camera_status_t (*deinit)(camera_dev_t *dev);
 /* start the dev */
 hal_camera_status_t (*start)(const camera_dev_t *dev);
 /* enqueue a buffer to the dev */
 hal_camera_status_t (*enqueue)(const camera_dev_t *dev,
 void *data);
 /* dequeue a buffer from the dev */
 hal_camera_status_t (*dequeue)(const camera_dev_t *dev,
 void **data, pixel_format_t *format);
 /* postProcess a buffer from the dev */
 /*
 * Only do the minimum determination(data point and the
 format) of the frame in the dequeue.
 *
 * And split the CPU based post process(IR/Depth/...
 processing) to postProcess as they will eat CPU
 * which is critical for the whole system as Camera Manager
 is running with the highest priority.
 *
 * Camera Manager will do the postProcess if there is a
 consumer of this frame.
 *
 * Note:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
72 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 * Camera Manager will call multiple times of the
 posProcess of the same frame determinted by dequeue.
 * The HAL driver needs to guarantee the postProcess only
 do once for the first call.
 *
 */
 hal_camera_status_t (*postProcess)(const camera_dev_t *dev,
 void **data, pixel_format_t *format);
 /* input notify */
 hal_camera_status_t (*inputNotify)(const camera_dev_t *dev,
 void *data);
} camera_dev_operator_t;

The static configs associated with camera HAL devices are as shown below:

/*! @brief Structure that characterize the camera device. */
typedef struct
{
 /* buffer resolution */
 int height;
 int width;
 int pitch;
 /* active rect */
 int left;
 int top;
 int right;
 int bottom;
 /* rotate degree */
 cw_rotate_degree_t rotate;
 /* flip */
 flip_mode_t flip;
 /* swap byte per two bytes */
 int swapByte;
} camera_dev_static_config_t;

The device capabilities associated with camera HAL devices are as shown below:

/*! @brief Structure that capability of the camera device. */
typedef struct
{
 /* callback */
 camera_dev_callback_t callback;
 /* param for the callback */
 void *param;
} camera_dev_private_capability_t;

6.4.4.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to
"public methods" in object-oriented languages, and are used by the Camera Manager to
set up, start, and so on, each of its registered camera devices.

For more information about operators, see Section 6.4.1.3.1.

6.4.4.2.1 Init

hal_camera_status_t (*init)(camera_dev_t *dev,
 int width,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
73 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 int height,
 camera_dev_callback_t callback,
 void *param);

Initialize the camera device.

Init should initialize any hardware resources the camera device requires (I/O ports,
IRQs, and so on), turn on the hardware, and perform any other setup the device requires.

This operator is called by the Camera Manager when the Camera Manager task first
starts.

6.4.4.2.2 Deinit

hal_camera_status_t (*deinit)(camera_dev_t *dev);

"Deinitialize" the camera device.

DeInit must release any hardware resources the camera device uses (I/O ports, IRQs,
and so on), turn off the hardware, and perform any other shutdown the device requires.

This operator will be called by the Camera Manager when the Camera Manager task
ends[1].

[1]The `DeInit` function generally will not be called under
 normal operation.

6.4.4.2.3 Start

hal_camera_status_t (*start)(const camera_dev_t *dev);

Start the camera device.

The Start operator will be called in the initialization stage of the Camera Manager's
task after the call to the Init operator. The startup of the camera sensor and interface
should be implemented in this operator. It includes, for example, starting the interface
and enabling the IRQ of the DMA used by the interface.

6.4.4.2.4 Enqueue

hal_camera_status_t (*enqueue)(const camera_dev_t *dev,
 void *data);

Enqueue a single frame.

The Enqueue operator is called by the Camera Manager to submit an empty buffer into
the camera device's buffer queue. Once the submitted buffer is filled by the camera
device, the camera device should call the Camera Manager's callback function and pass
a kCameraEvent_SendFrame event.

6.4.4.2.5 Dequeue

hal_camera_status_t (*enqueue)(const camera_dev_t *dev,
 void *data);

Dequeue a single frame.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
74 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The Dequeue operator will be called by the Camera Manager to get a camera frame from
the device. The frame address and the format will be determined by this operator.

6.4.4.2.6 PostProcess

hal_camera_status_t (*postProcess)(const camera_dev_t *dev,
 void **data,
 pixel_format_t *format);

Handles the post-processing of the camera frame.

The PostProcess operator is called by the Camera Manager to perform any required
post-processing of the camera frame. For example, if a frame must be converted from
one format to another in some way before it is useable by the display and/or a vision algo
device, it would take place in the PostProcess operator.

6.4.4.2.7 InputNotify

hal_camera_status_t (*inputNotify)(const camera_dev_t *dev,
 void *data);

Handle input events.

The InputNotify operator is called by the Camera Manager whenever a
kFWKMessageID_InputNotify message is received by and forwarded from the
Camera Manager's message queue.

For more information regarding events and event handling, see Events.

6.4.4.3 Static configs

Static configs, unlike regular, dynamic configs, are set at compile time and cannot be
changed on-the-fly.

6.4.4.3.1 Height

int height;

The height of the camera buffer.

6.4.4.3.2 Width

int width;

The width of the camera buffer.

6.4.4.3.3 Pitch

int pitch;

The total number of bytes in a single row of a camera frame.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
75 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.4.3.4 Left

int left;

The left edge of the active area in a camera buffer.

6.4.4.3.5 Top

int top;

The top edge of the active area in a camera buffer.

6.4.4.3.6 Right

int right;

The right edge of the active area in a camera buffer.

6.4.4.3.7 Bottom

int bottom;

The bottom edge of the active area in a camera buffer.

6.4.4.3.8 Rotate

typedef enum _cw_rotate_degree
{
 kCWRotateDegree_0 = 0,
 kCWRotateDegree_90,
 kCWRotateDegree_180,
 kCWRotateDegree_270
} cw_rotate_degree_t;

cw_rotate_degree_t rotate;

The rotate degree of the camera sensor.

6.4.4.3.9 Flip

typedef enum _flip_mode
{
 kFlipMode_None = 0,
 kFlipMode_Horizontal,
 kFlipMode_Vertical,
 kFlipMode_Both
} flip_mode_t;

flip_mode_t flip;

Determines whether to flip the frame while processing the frame for the algorithm and
display.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
76 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.4.3.10 SwapByte

int swapByte;

Determines whether to enable swapping bytes while processing a frame for algorithm
and display devices.

6.4.4.4 Capabilities

typedef struct
{
 /* callback */
 camera_dev_callback_t callback;
 /* param for the callback */
 void *param;
} camera_dev_private_capability_t;

The capabilities struct is primarily used for storing a callback to communicate
information from the device back to the Camera Manager. This callback function is
typically installed via a device's init operator.

6.4.4.4.1 Callback

/**
* @brief Callback function to notify Camera Manager that one
 frame is dequeued
* @param dev Device structure of the camera device calling this
 function
* @param event id of the event that took place
* @param param Parameters
* @param fromISR True if this operation takes place in an irq,
 0 otherwise
* @return 0 if the operation was successfully
*/
typedef int (*camera_dev_callback_t)(const camera_dev_t *dev,
 camera_event_t event,
 void *param,
 uint8_t fromISR);

camera_dev_callback_t callback;

Callback to the Camera Manager.

The HAL device invokes this callback to notify the Camera Manager of specific events
like "frame dequeued."

The Camera Manager provides this callback to the device when the init operator is
called. As a result, the HAL device should make sure to store the callback in the init
operator's implementation.

static hal_camera_status_t HAL_CameraDev_ExampleDev_Init(
 camera_dev_t *dev, int width, int height,
 camera_dev_callback_t callback, void *param)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
77 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* PERFORM INIT FUNCTIONALITY HERE */

 ...

 /* Installing callback function from manager... */
 dev->cap.callback = callback;

 return ret;
}

6.4.4.4.2 Param

void *param;

The parameter of the callback for kCameraEvent_SendFrame event. The Camera
Manager provides the parameter while calling the Init operator, so this param should
be stored in the HAL device's struct as part of the implementation of the Init operator.

This param should be provided when calling the [`Callback`]
(#callback) function.

6.4.4.5 Example

The project has several camera devices implemented for use as-is or for use as
reference for implementing new camera devices. Source files for these camera HAL
devices can be found under HAL/common/.

Below is an example of the GC0308 RGB FlexIO camera HAL device driver HAL/
common/hal_camera_flexio_gc0308.c.

hal_camera_status_t HAL_CameraDev_FlexioGc0308_Init(
 camera_dev_t *dev, int width, int height,
 camera_dev_callback_t callback, void *param);
static hal_camera_status_t
 HAL_CameraDev_FlexioGc0308_Deinit(camera_dev_t *dev);
static hal_camera_status_t
 HAL_CameraDev_FlexioGc0308_Start(const camera_dev_t *dev);
static hal_camera_status_t
 HAL_CameraDev_FlexioGc0308_Enqueue(const camera_dev_t *dev,
 void *data);
static hal_camera_status_t
 HAL_CameraDev_FlexioGc0308_Dequeue(const camera_dev_t *dev,

 void **data,

 pixel_format_t *format);
static int HAL_CameraDev_FlexioGc0308_Notify(const camera_dev_t
 *dev, void *data);

/* The operators of the FlexioGc0308 Camera HAL Device */
const static camera_dev_operator_t s_CameraDev_FlexioGc0308Ops
 = {
 .init = HAL_CameraDev_FlexioGc0308_Init,
 .deinit = HAL_CameraDev_FlexioGc0308_Deinit,
 .start = HAL_CameraDev_FlexioGc0308_Start,
 .enqueue = HAL_CameraDev_FlexioGc0308_Enqueue,
 .dequeue = HAL_CameraDev_FlexioGc0308_Dequeue,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
78 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 .inputNotify = HAL_CameraDev_FlexioGc0308_Notify,
};

/* FlexioGc0308 Camera HAL Device */
static camera_dev_t s_CameraDev_FlexioGc0308 = {
 .id = 0,
 .name = CAMERA_NAME,
 .ops = &s_CameraDev_FlexioGc0308Ops,
 .cap =
 {
 .callback = NULL,
 .param = NULL,
 },
};

hal_camera_status_t HAL_CameraDev_FlexioGc0308_Init(
 camera_dev_t *dev, int width, int height,
 camera_dev_callback_t callback, void *param)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;
 LOGD("camera_dev_flexio_gc0308_init");

 /* store the callback and param for late using*/
 dev->cap.callback = callback;
 dev->cap.param = param;

 /* init the low level camera sensor and interface */

 return ret;
}

static hal_camera_status_t
 HAL_CameraDev_FlexioGc0308_Deinit(camera_dev_t *dev)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;
 /* Currently do nothing for the Deinit as we didn't support
 the runtime de-registraion of the device */
 return ret;
}

static hal_camera_status_t
 HAL_CameraDev_FlexioGc0308_Start(const camera_dev_t *dev)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;

 /* start the low level camera sensor and interface */

 return ret;
}

static hal_camera_status_t
 HAL_CameraDev_FlexioGc0308_Enqueue(const camera_dev_t *dev,
 void *data)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;

 /* submit one free buffer into the camera's buffer queue */

 return ret;
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
79 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

static hal_camera_status_t
 HAL_CameraDev_FlexioGc0308_Dequeue(const camera_dev_t *dev,

 void **data,

 pixel_format_t *format)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;

 /* get the buffer from camera's buffer queue and determine
 the format of the frame */

 return ret;
}

static int HAL_CameraDev_FlexioGc0308_Notify(const camera_dev_t
 *dev, void *data)
{
 int error = 0;
 event_base_t eventBase = *(event_base_t *)data;

 /* handle the events which are interested in */
 switch (eventBase.eventId)
 {
 default:
 break;
 }

 return error;
}

6.4.5 Display devices

The Display HAL device provides an abstraction to represent many different display
panels which may have different controllers, resolutions, color formats, and event
connection interfaces.

Note: A display HAL device represents a display panel + interface. For example,
the hal_display_lcdif_rk024hh298.c is the display HAL device driver for the
rk024hh298 panel with eLCDIF interface. It means a separate device driver is required
for the same display using different interfaces.

As with other device types, display devices are controlled via their manager. The Display
Manager is responsible for managing all registered display HAL devices, and invoking
display device operators (init, start, and so on) as necessary.

6.4.5.1 Device definition

The HAL device definition for display devices can be found under framework/
hal_api/hal_display_dev.h and is reproduced below:

typedef struct _display_dev display_dev_t;
/*! @brief Attributes of a display device. */
struct _display_dev
{
 /* unique id which is assigned by Display Manager during
 the registration */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
80 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 int id;
 /* name of the device */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* operations */
 const display_dev_operator_t *ops;
 /* private capability */
 display_dev_private_capability_t cap;
};

The operators associated with display HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by a display
 device */
typedef struct _display_dev_operator
{
 /* initialize the dev */
 hal_display_status_t (*init)(
 display_dev_t *dev,
 int width, int height,
 display_dev_callback_t callback,
 void *param);
 /* deinitialize the dev */
 hal_display_status_t (*deinit)(const display_dev_t *dev);
 /* start the dev */
 hal_display_status_t (*start)(const display_dev_t *dev);
 /* blit a buffer to the dev */
 hal_display_status_t (*blit)(const display_dev_t *dev,
 void *frame,
 int width,
 int height);
 /* input notify */
 hal_display_status_t (*inputNotify)(const display_dev_t
 *dev, void *data);
} display_dev_operator_t;

The capabilities associated with display HAL devices are as shown below:

/*! @brief Structure that characterize the display device. */
typedef struct _display_dev_private_capability
{
 /* buffer resolution */
 int height;
 int width;
 int pitch;
 /* active rect */
 int left;
 int top;
 int right;
 int bottom;
 /* rotate degree */
 cw_rotate_degree_t rotate;
 /* pixel format */
 pixel_format_t format;
 /* the source pixel format of the requested frame */
 pixel_format_t srcFormat;
 void *frameBuffer;
 /* callback */
 display_dev_callback_t callback;
 /* param for the callback */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
81 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 void *param;
} display_dev_private_capability_t;

6.4.5.2 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to
"public methods" in object oriented-languages, and are used by the Display Manager to
set up, start, and so on, each of its registered display devices.

For more information about operators, see Section 6.4.1.3.1.

6.4.5.2.1 Init

hal_display_status_t (*init)(display_dev_t *dev,
 int width,
 int height,
 display_dev_callback_t callback,
 void *param);

Initialize the display device.

Init should initialize any hardware resources the display device requires (I/O ports,
IRQs, and so on), turn on the hardware, and perform any other setup the device requires.

The callback function to the device's manager is typically installed as part of the Init
function as well.

This operator will be called by the Display Manager when the Display Manager task first
starts.

6.4.5.2.2 Deinit

hal_display_status_t (*deinit)(const display_dev_t *dev);

"Deinitialize" the display device.

DeInit should release any hardware resources the display device uses (I/O ports,
IRQs, and so on), turn off the hardware, and perform any other shutdown the device
requires.

This operator will be called by the Display Manager when the Display Manager task
ends.

Note: The `DeInit` function generally will not be called under normal operation.

6.4.5.2.3 Start

hal_display_status_t (*start)(const display_dev_t *dev);

Start the display device.

The Start operator is called in the initialization stage of the Display Manager's task after
the call to the Init operator. The startup of the display sensor and interface should be
implemented in this operator. It includes, for example, starting the interface and enabling
the IRQ of the DMA used by the interface.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
82 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.5.2.4 Blit

hal_display_status_t (*blit)(const display_dev_t *dev,
 void *frame,
 int width,
 int height);

Sends a frame to the display panel and "blits" the frame with any additional required
components (UI overlay, and so on).

Blit is called by the Display Manager once a previously requested frame of the
matching srcFormat has been sent by a camera device. The sending of the frame from
the Display Manager to the display panel should be take place in this operator.

kStatus_HAL_DisplaySuccess must be returned if the frame was successfully sent
to the display panel. After calling this operator, the Display Manager will request a new
frame.

If the `Blit` operator is working in asynchronous mode, the
 hardware will continue sending the frame buffer even after the
 return of the `Blit` function call.
In this case, `kStatus_HAL_DisplayNonBlocking` should be
 returned instead,
and the Display Manager will not issue a new display frame
 request after this `Blit` call.

To request a new frame, the device should invoke the Display
 Manager's callback using a `kDisplayEvent_RequestFrame` event
 to notify the completion of the sending of the previous frame.
Once the Display Manager sees this new request, it will
 requesting a new frame.

6.4.5.2.5 InputNotify

 hal_display_status_t (*inputNotify)(const display_dev_t
 *dev, void *data);

Handle input events.

The InputNotify operator is called by the Display Manager whenever a
kFWKMessageID_InputNotify message is received by and forwarded from the
Display Manager's message queue.

For more information regarding events and event handling, see Events.

6.4.5.3 Capabilities

/*! @brief Structure that characterizes the display device. */
typedef struct _display_dev_private_capability
{
 /* buffer resolution */
 int height;
 int width;
 int pitch;
 /* active rect */
 int left;
 int top;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
83 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 int right;
 int bottom;
 /* rotate degree */
 cw_rotate_degree_t rotate;
 /* pixel format */
 pixel_format_t format;
 /* the source pixel format of the requested frame */
 pixel_format_t srcFormat;
 void *frameBuffer;
 /* callback */
 display_dev_callback_t callback;
 /* param for the callback */
 void *param;
} display_dev_private_capability_t;

The capabilities struct is primarily used for storing a callback to communicate
information from the device back to the Display Manager. This callback function is
typically installed via a device's init operator.

Display devices also maintain information regarding the size of the display, pixel format,
and other information pertinent to the display.

6.4.5.3.1 Height

int height;

The height of the display buffer.

6.4.5.3.2 Width

int width;

The width of the display buffer.

6.4.5.3.3 Pitch

int pitch;

The total number of bytes in one row of the display buffer.

6.4.5.3.4 Left

int left;

The left edge of the active areain the display frame buffer.

Note: The active area indicates the area of the display frame buffer that will be utilized.

6.4.5.3.5 Top

int top;

The top edge of the active area in the display frame buffer.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
84 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.5.3.6 Right

int right;

The right edge of the active area in the display frame buffer.

6.4.5.3.7 Bottom

int bottom;

The bottom edge of the active area in the display frame buffer.

6.4.5.3.8 Rotate

typedef enum _cw_rotate_degree
{
 kCWRotateDegree_0 = 0,
 kCWRotateDegree_90,
 kCWRotateDegree_180,
 kCWRotateDegree_270
} cw_rotate_degree_t;

cw_rotate_degree_t rotate;

The rotate degree of the display frame buffer.

6.4.5.3.9 Format

typedef enum _pixel_format
{
 /* 2d frame format */
 kPixelFormat_RGB,
 kPixelFormat_RGB565,
 kPixelFormat_BGR,
 kPixelFormat_Gray888,
 kPixelFormat_Gray888X,
 kPixelFormat_Gray,
 kPixelFormat_Gray16,
 kPixelFormat_YUV1P444_RGB, /* color display sensor */
 kPixelFormat_YUV1P444_Gray, /* ir display sensor */
 kPixelFormat_UYVY1P422_RGB, /* color display sensor */
 kPixelFormat_UYVY1P422_Gray, /* ir display sensor */
 kPixelFormat_VYUY1P422,

 /* 3d frame format */
 kPixelFormat_Depth16,
 kPixelFormat_Depth8,

 kPixelFormat_YUV420P,

 kPixelFormat_Invalid
} pixel_format_t;

The format of the display frame buffer.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
85 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.5.3.10 srcFormat

The source format of the requested display frame buffer.

Because there may be multiple display devices operating at a time, the display checks
the srcFormat property of the frame to determine whether it is from the display device
it is expecting. It prevents the display from displaying a 3D depth image when the user
expects an RGB image, for example.

6.4.5.3.11 frameBuffer

Pointer to the display frame buffer.

6.4.5.3.12 callback

/**
 * @brief callback function to notify Display Manager that an
 async event took place
 * @param dev Device structure of the display device calling
 this function
 * @param event id of the event that took place
 * @param param Parameters
 * @param fromISR True if this operation takes place in an irq,
 0 otherwise
 * @return 0 if the operation was successfully
 */
typedef int (*display_dev_callback_t)(const display_dev_t *dev,
 display_event_t event,
 void *param,
 uint8_t fromISR);

display_dev_callback_t callback;

Callback to the Display Manager. The HAL device invokes this callback to notify the
Display Manager of specific events.

Currently, only the `kDisplayEvent_RequestFrame` event callback
 is implemented in the Display Manager.

The Display Manager provides this callback to the device when the init operator is
called. As a result, the HAL device must make sure to store the callback in the init
operator's implementation.

hal_display_status_t HAL_DisplayDev_ExampleDev_Init(
 display_dev_t *dev, int width, int height,
 display_dev_callback_t callback, void *param)
{
 hal_display_status_t ret = kStatus_HAL_DisplaySuccess;

 /* PERFORM INIT FUNCTIONALITY HERE */

 ...

 /* Installing callback function from manager... */
 dev->cap.callback = callback;

 return ret;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
86 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

}

The HAL device invokes this callback to notify the Display Manager of specific events.

6.4.5.3.13 param

void *param;

The parameter of the Display Manager callback.

The `param` field is not currently used by the framework in any
 way.

6.4.5.4 Example

The project has several display devices implemented for use as-is or as reference for
implementing new display devices. The source files for these display HAL devices can be
found under HAL/common/.

Below is an example of the "rk024hh298" display HAL device driver HAL/common/hal_
display_lcdif_rk024hh298.c.

hal_display_status_t
 HAL_DisplayDev_LcdifRk024hh2_Init(display_dev_t *dev,
 int
 width,
 int
 height,

 display_dev_callback_t callback,
 void
 *param);
hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Uninit(const
 display_dev_t *dev);
hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Start(const
 display_dev_t *dev);
hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Blit(const
 display_dev_t *dev,
 void
 *frame,
 int
 width,
 int
 height);
static hal_display_status_t
 HAL_DisplayDev_LcdifRk024hh2_InputNotify(const display_dev_t
 *receiver,

 void *data);

/* The operators of the rk024hh298 Display HAL Device */
const static display_dev_operator_t s_DisplayDev_LcdifOps = {
 .init = HAL_DisplayDev_LcdifRk024hh2_Init,
 .deinit = HAL_DisplayDev_LcdifRk024hh2_Uninit,
 .start = HAL_DisplayDev_LcdifRk024hh2_Start,
 .blit = HAL_DisplayDev_LcdifRk024hh2_Blit,
 .inputNotify = HAL_DisplayDev_LcdifRk024hh2_InputNotify,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
87 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

};

/* rk024hh298 Display HAL Device */
static display_dev_t s_DisplayDev_Lcdif = {
 .id = 0,
 .name = DISPLAY_NAME,
 .ops = &s_DisplayDev_LcdifOps,
 .cap = {
 .width = DISPLAY_WIDTH,
 .height = DISPLAY_HEIGHT,
 .pitch = DISPLAY_WIDTH * DISPLAY_BYTES_PER_PIXEL,
 .left = 0,
 .top = 0,
 .right = DISPLAY_WIDTH - 1,
 .bottom = DISPLAY_HEIGHT - 1,
 .rotate = kCWRotateDegree_0,
 .format = kPixelFormat_RGB565,
 .srcFormat = kPixelFormat_UYVY1P422_RGB,
 .frameBuffer = NULL,
 .callback = NULL,
 .param = NULL
 }
 };

hal_display_status_t
 HAL_DisplayDev_LcdifRk024hh2_Init(display_dev_t *dev,
 int
 width,
 int
 height,

 display_dev_callback_t callback,
 void
 *param)
{
 hal_display_status_t ret = kStatus_HAL_DisplaySuccess;

 /* init the capability */
 dev->cap.width = width;
 dev->cap.height = height;
 dev->cap.frameBuffer = (void *)&s_FrameBuffers[1];

 /* store the callback and param for late using */
 dev->cap.callback = callback;

 /* init the low level display panel and interface */

 return ret;
}

hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Uninit(const
 display_dev_t *dev)
{
 hal_display_status_t ret = kStatus_HAL_DisplaySuccess;
 /* Currently do nothing for the Deinit as we didn't support
 the runtime de-registraion of the device */
 return ret;
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
88 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Start(const
 display_dev_t *dev)
{
 hal_display_status_t ret = kStatus_HAL_DisplaySuccess;

 /* start the display pannel and the interface */

 return ret;
}

hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Blit(const
 display_dev_t *dev, void *frame, int width, int height)
{
 hal_display_status_t ret = kStatus_HAL_DisplayNonBlocking;

 /* blit the frame to the real display pannel */

 return ret;
}

static hal_display_status_t
 HAL_DisplayDev_LcdifRk024hh2_InputNotify(const display_dev_t
 *receiver, void *data)
{
 hal_display_status_t error =
 kStatus_HAL_DisplaySuccess;
 event_base_t eventBase = *(event_base_t
 *)data;
 event_status_t event_response_status = kEventStatus_Ok;

 /* handle the events which are interested in */
 if (eventBase.eventId == kEventID_SetDisplayOutputSource)
 {

 }

 return error;
}

6.4.6 Vision algorithm devices

The Vision Algorithm HAL device type represents an abstraction for computer vision
algorithms which are used for the analysis of digital images, videos, and other visual
inputs.

The crux of the design for Vision Algorithm devices is centered around the use of "infer
complete" events that communicate information about the results of inferencing that is
handled by the device. For example, in the current application, the Vision Algorithm may
receive a camera frame containing a recognized face, perform an inference on that data,
and communicate a "face recognized" message to other devices so that they may act
accordingly. For more information about events and event handling, see Events.

Currently, only one vision algorithm device can be registered to the Vision Manager at a
time per the design of the framework.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
89 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.6.1 Device definition

The HAL device definition for vision algorithm devices can be found under framework/
hal_api/hal_valgo_dev.h and is reproduced below:

/*! @brief definition of a vision algo device */
typedef struct _vision_algo_dev
{
 /* unique id which is assigned by vision algorithm manager
 during the registration */
 int id;
 /* name to identify */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* private capability */
 valgo_dev_private_capability_t cap;
 /* operations */
 vision_algo_dev_operator_t *ops;
 /* private data */
 vision_algo_private_data_t data;
} vision_algo_dev;

The operators associated with the vision algo HAL device are as shown below:

/*! @brief Operation that needs to be implemented by a vision
 algorithm device */
typedef struct
{
 /* initialize the dev */
 hal_valgo_status_t (*init)(vision_algo_dev_t *dev,
 valgo_dev_callback_t callback, void *param);
 /* deinitialize the dev */
 hal_valgo_status_t (*deinit)(vision_algo_dev_t *dev);
 /* run the inference */
 hal_valgo_status_t (*run)(const vision_algo_dev_t *dev,
 void *data);
 /* recv events */
 hal_valgo_status_t (*inputNotify)(const vision_algo_dev_t
 *receiver, void *data);

} vision_algo_dev_operator_t;

The capabilities associated with the vision algo HAL device are as shown below:

typedef struct _valgo_dev_private_capability
{
 /* callback */
 valgo_dev_callback_t callback;
 /* param for the callback */
 void *param;
} valgo_dev_private_capability_t;

The private data fields associated with the vision algo HAL device are as shown below:

typedef struct
{
 int autoStart;
 /* frame type definition */
 vision_frame_t frames[kVAlgoFrameID_Count];

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
90 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

} vision_algo_private_data_t;

6.4.6.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to
"public methods" in object-oriented languages and are used by the Vision Algorithm
Manager to set up, start, and so on, its registered vision algo device.

For more information about operators, see Section 6.4.1.3.1.

6.4.6.2.1 Init

hal_valgo_status_t (*init)(vision_algo_dev_t *dev,
 valgo_dev_callback_t callback, void *param);

Initialize the vision algo HAL device.

Init must initialize any hardware resources the device requires (I/O ports, IRQs, and so
on), turn on the hardware, and perform any other setup required by the device.

The callback function to the device's manager is typically installed as part of the Init
function as well.

This operator is called by the vision algorithm manager when the output manager task
first starts.

6.4.6.2.2 Deinit

hal_valgo_status_t (*deinit)(vision_algo_dev_t *dev);

The DeInit function is used to "deinitialize" the algorithm device. DeInit must release
any hardware resources the device uses (I/O ports, IRQs, and so on), turn off the
hardware, and perform any other shutdown required by the device.

This operator is called by the Vision Algorithm Manager when the Vision Algorithm
Manager task ends.

Note: The `DeInit` function generally is not called under normal operation.

6.4.6.2.3 Run

hal_valgo_status_t (*run)(const voice_algo_dev_t *dev, void
 *data);

Begin running the vision algorithm.

The run operator is used to start running algorithm inference and processing camera
frame data.

This operator is called by the Vision Algorithm manager when a "camera frame ready"
message is received from the Camera Manager and forwarded to the algorithm device
via the Vision Algorithm Manager.

Once the Vision Algorithm device finishes processing the camera frame data, its
manager forwards this message to the Output Manager in the form of an "inference
complete" message.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
91 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.6.2.4 InputNotify

hal_valgo_status_t (*inputNotify)(const vision_algo_dev_t
 *receiver, void *data);

Handle input events.

The InputNotify operator is called by the Vision Algorithm Manager whenever a
kFWKMessageID_InputNotify message is received and forwarded from the Vision
Algorithm Manager's message queue.

For more information regarding events and event handling, see Events.

6.4.6.3 Capabilities

The capabilities struct is primarily used for storing a callback to communicate
information from the device back to the Vision Algorithm Manager. This callback function
is typically installed via a device's init operator.

6.4.6.3.1 Callback

/*!
 * @brief Callback function to notify managers the results of
 inference
 * valgo_dev* dev Pointer to an algorithm device
 * valgo_event_t event Event which took place
 * void* param Pointer to a struct of data that needs to be
 forwarded
 * unsigned int size Size of the struct that needs to be
 forwarded. If size = 0, param should be a pointer to a
 * persistent memory area.
 */

typedef int (*valgo_dev_callback_t)(int devId, valgo_event_t
 event, void *param, unsigned int size, uint8_t fromISR);

valgo_dev_callback_t callback;

Callback to the Vision Algorithm Manager.

The Vision Algorithm manager provides the callback to the device when the init
operator is called. As a result, the HAL device should make sure to store the callback in
the init operator's implementation.

static hal_valgo_status_t
 HAL_VisionAlgoDev_ExampleDev_Init(vision_algo_dev_t *dev,

 valgo_dev_callback_t callback,
 void
 *param)
{
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;

 /* PERFORM INIT FUNCTIONALITY HERE */

 ...

 /* Installing callback function from manager... */
MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
92 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 memset(&dev->cap, 0, sizeof(dev->cap));
 dev->cap.callback = callback;

 return ret;
}

The HAL device invokes this callback to notify the Vision Algorithm manager of specific
events.

6.4.6.3.2 Param

void *param;

The param for the callback (optional).

6.4.6.4 Private Data

6.4.6.4.1 AutoStart

int autoStart;

The flag for automatic start of the algorithm.

If autoStart is 1, the Vision Algorithm Manager automatically starts requesting camera
frames for this algorithm device after its init operator is executed.

6.4.6.4.2 Frames

vision_frame_t frames[kVAlgoFrameID_Count];

The three kinds of frames that are currently supported by the vision framework are RGB,
IR, and Depth images.

The vision algorithm device must specify information for each kind of frame so that
the framework properly converts and passes only the frames which correspond to this
algorithm device's requirement.

For example, older Solution's projects like SLN-VIZN3D-IOT use both 3D Depth and
IR camera images to perform liveness detection and face recognition, while using RGB
frames solely for use as user feedback help with aligning a user's face, and so on.
Therefore, the algorithm device must ensure that it is receiving only the 3D and IR frames
and not any RGB frames.

The definition of vision_frame_t is as shown below:

typedef struct _vision_frame
{
 /* is supported by the device for this type of frame */
 /* Vision Algorithm Manager will only request the supported
 frame for this device */
 int is_supported;

 /* frame resolution */
 int height;
 int width;
 int pitch;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
93 / 190

https://www.nxp.com/design/designs/nxp-edgeready-mcu-based-solution-for-3d-face-recognition:VIZN3D

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* rotate degree */
 cw_rotate_degree_t rotate;
 flip_mode_t flip;
 /* swap byte per two bytes */
 int swapByte;

 /* pixel format */
 pixel_format_t format;

 /* the source pixel format of the requested frame */
 pixel_format_t srcFormat;
 void *data;
} vision_frame_t;

6.4.6.5 Example

As only one Vision Algorithm device can be registered at a time per the design of the
framework, the project has one Vision Algorithm device implemented.

Note: This example is implemented using NXP's OasisLite face recognition algorithm,
which is the core vision computing algorithm used in all projects.

This example is reproduced below:

static hal_valgo_status_t
 HAL_VisionAlgoDev_OasisLite_Init(vision_algo_dev_t *dev,

 valgo_dev_callback_t callback,
 void
 *param);
static hal_valgo_status_t
 HAL_VisionAlgoDev_OasisLite_Deinit(vision_algo_dev_t *dev);
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_Run(const
 vision_algo_dev_t *dev, void *data);
static hal_valgo_status_t
 HAL_VisionAlgoDev_OasisLite_InputNotify(const
 vision_algo_dev_t *receiver, void *data);

/* vision algorithm device operators */
const static vision_algo_dev_operator_t
 s_VisionAlgoDev_OasisLiteOps = {
 .init = HAL_VisionAlgoDev_OasisLite_Init,
 .deinit = HAL_VisionAlgoDev_OasisLite_Deinit,
 .run = HAL_VisionAlgoDev_OasisLite_Run,
 .inputNotify = HAL_VisionAlgoDev_OasisLite_InputNotify,
};

/* vision algorithm device */
static vision_algo_dev_t s_VisionAlgoDev_OasisLite3D = {
 .id = 0,
 .name = "OASIS_3D",
 .ops = (vision_algo_dev_operator_t
 *)&s_VisionAlgoDev_OasisLiteOps,
 .cap = {.param = NULL},
};

/* vision algorithm device Init function*/
static hal_valgo_status_t
 HAL_VisionAlgoDev_OasisLite_Init(vision_algo_dev_t *dev,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
94 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 valgo_dev_callback_t callback,
 void
 *param)
{
 LOGI("++HAL_VisionAlgoDev_OasisLite_Init");
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;

 // init the device
 memset(&dev->cap, 0, sizeof(dev->cap));
 dev->cap.callback = callback;

 /* set parameters of the requested frames that this vision
 algorithm dev asks for*/
 /* for example oasisLite algorithm asks for two kind of
 frames: one is IR, the other is Depth */
 /* firstly set parameters of the requested IR frames */
 dev->data.autoStart = 1;
 dev->data.frames[kVAlgoFrameID_IR].height =
 OASIS_FRAME_HEIGHT;
 dev->data.frames[kVAlgoFrameID_IR].width =
 OASIS_FRAME_WIDTH;
 dev->data.frames[kVAlgoFrameID_IR].pitch =
 OASIS_FRAME_WIDTH * 3;
 dev->data.frames[kVAlgoFrameID_IR].is_supported = 1;
 dev->data.frames[kVAlgoFrameID_IR].rotate =
 kCWRotateDegree_0;
 dev->data.frames[kVAlgoFrameID_IR].flip =
 kFlipMode_None;
 dev->data.frames[kVAlgoFrameID_IR].format =
 kPixelFormat_BGR;
 dev->data.frames[kVAlgoFrameID_IR].srcFormat =
 kPixelFormat_Gray16;
 int oasis_lite_rgb_frame_aligned_size =
 SDK_SIZEALIGN(OASIS_FRAME_HEIGHT * OASIS_FRAME_WIDTH * 3, 64);
 dev->data.frames[kVAlgoFrameID_IR].data =
 pvPortMalloc(oasis_lite_rgb_frame_aligned_size);

 if (dev->data.frames[kVAlgoFrameID_IR].data == NULL)
 {
 OASIS_LOGE("[ERROR]: Unable to allocate memory for
 kVAlgoFrameID_IR.");
 ret = kStatus_HAL_ValgoMallocError;
 return ret;
 }
 /* secondly set parameters of the requested Depth frames */
 dev->data.frames[kVAlgoFrameID_Depth].height =
 OASIS_FRAME_HEIGHT;
 dev->data.frames[kVAlgoFrameID_Depth].width =
 OASIS_FRAME_WIDTH;
 dev->data.frames[kVAlgoFrameID_Depth].pitch =
 OASIS_FRAME_WIDTH * 2;
 dev->data.frames[kVAlgoFrameID_Depth].is_supported = 1;
 dev->data.frames[kVAlgoFrameID_Depth].rotate =
 kCWRotateDegree_0;
 dev->data.frames[kVAlgoFrameID_Depth].flip =
 kFlipMode_None;

 dev->data.frames[kVAlgoFrameID_Depth].format =
 kPixelFormat_Depth16;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
95 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 dev->data.frames[kVAlgoFrameID_Depth].srcFormat =
 kPixelFormat_Depth16;
 int oasis_lite_depth_frame_aligned_size =
 SDK_SIZEALIGN(OASIS_FRAME_HEIGHT * OASIS_FRAME_WIDTH * 2, 64);
 dev->data.frames[kVAlgoFrameID_Depth].data =
 pvPortMalloc(oasis_lite_depth_frame_aligned_size);

 if (dev->data.frames[kVAlgoFrameID_Depth].data == NULL)
 {
 OASIS_LOGE("Unable to allocate memory for
 kVAlgoFrameID_IR");
 ret = kStatus_HAL_ValgoMallocError;
 return ret;
 }

 /* do private Algorithm Init here */
 ...

 LOGI("--HAL_VisionAlgoDev_OasisLite_Init");
 return ret;
}

/* vision algorithm device DeInit function*/
static hal_valgo_status_t
 HAL_VisionAlgoDev_OasisLite_Deinit(vision_algo_dev_t *dev)
{
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;
 LOGI("++HAL_VisionAlgoDev_OasisLite_Deinit");

 /* release resource here */
 ...

 LOGI("--HAL_VisionAlgoDev_OasisLite_Deinit");
 return ret;
}

/* vision algorithm device inference run function*/
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_Run(const
 vision_algo_dev_t *dev, void *data)
{
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;
 OASIS_LOGI("++HAL_VisionAlgoDev_OasisLite_Run");

 vision_algo_result_t result;
 /* do inference run, derive meaningful information from the
 current frame data in dev private data */
 /* for example, oasisLite will inference according to two
 kinds of input frames:
 void* frame1 = dev->data.frames[kVAlgoFrameID_IR].data
 void* frame2 = dev-
>data.frames[kVAlgoFrameID_Depth].data
 result = oasisLite_run(frame1, frame2,);
 */
 ...

 /* execute algorithm manager callback to inform algorithm
 manager the result */
 if (dev != NULL && result != NULL && dev->cap.callback !=
 NULL)
 {

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
96 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 dev->cap.callback(dev->id,
 kVAlgoEvent_VisionResultUpdate, result,
 sizeof(vision_algo_result_t), 0);
 }

 OASIS_LOGI("--HAL_VisionAlgoDev_OasisLite_Run");
 return ret;
}

/* vision algorithm device InputNotify function*/
static hal_valgo_status_t
 HAL_VisionAlgoDev_OasisLite_InputNotify(const
 vision_algo_dev_t *receiver, void *data)
{
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;
 OASIS_LOGI("++HAL_VisionAlgoDev_OasisLite_InputNotify");
 event_base_t eventBase = *(event_base_t *)data;

 /* do proess according to different input notify event */
 ...

 LOGI("--HAL_VisionAlgoDev_OasisLite_InputNotify");
 return ret;
}

/* register vision algorithm device to vision algorithm manager
 */
int HAL_VisionAlgoDev_OasisLite3D_Register()
{
 int error = 0;
 LOGD("HAL_VisionAlgoDev_OasisLite3D_Register");
 error = FWK_VisionAlgoManager_DeviceRegister(

 &s_VisionAlgoDev_OasisLite3D);

 return error;
}

6.4.7 Voice algorithm devices

The Voice Algorithm HAL device type represents an abstraction to do voice recognition
based on clean stream AFE generated.

After the Voice Algorithm manager receives the clean stream, the Voice Algorithm
Hal device run method is called. If a voice command is detected, the device
outputs the inference result and transfer result to the Output HAL device through
valgo_dev_callback_t callback. For more information about events and event
handling, see Events.

Currently, only one voice algorithm device can be registered to the Voice Manager at a
time per the design of the framework.

6.4.7.1 Device definition

The HAL device definition for voice algorithm devices can be found under framework/
hal_api/hal_valgo_dev.h and is reproduced below:

/*! @brief Attributes of a voice algo device */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
97 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

struct _voice_algo_dev
{
 /* unique id which is assigned by algorithm manager during
 the registration */
 int id;
 /* name to identify */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* private capability */
 valgo_dev_private_capability_t cap;
 /* operations */
 voice_algo_dev_operator_t *ops;
 /* private data */
 voice_algo_private_data_t data;
};

The operators associated with the voice algo HAL device are as shown below:

/*! @brief Operation that needs to be implemented by a voice
 algorithm device */
typedef struct voice_algo_dev_operator_t
{
 /* initialize the dev */
 hal_valgo_status_t (*init)(voice_algo_dev_t *dev,
 valgo_dev_callback_t callback, void *param);
 /* deinitialize the dev */
 hal_valgo_status_t (*deinit)(voice_algo_dev_t *dev);
 /* start the dev */
 hal_valgo_status_t (*run)(const voice_algo_dev_t *dev, void
 *data);
 /* recv events */
 hal_valgo_status_t (*inputNotify)(const voice_algo_dev_t
 *receiver, void *data);

} voice_algo_dev_operator_t;

The capabilities associated with the voice algo HAL device are as shown below:

typedef struct _valgo_dev_private_capability
{
 /* callback */
 valgo_dev_callback_t callback;
 /* param for the callback */
 void *param;
} valgo_dev_private_capability_t;

The private data fields associated with the voice algo HAL device is as shown below:

typedef struct _voice_algo_private_data
{
} voice_algo_private_data_t;

6.4.7.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to
"public methods" in object-oriented languages, and are used by the Voice Algorithm
Manager to init, run, and so on its registered voice algo device.

For more information about operators, see Section 6.4.1.3.1.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
98 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.7.2.1 Init

hal_valgo_status_t (*init)(voice_algo_dev_t *dev,
 valgo_dev_callback_t callback, void *param);

Init the voice algo HAL device.

Init performs all setups the device requires, such as preparing memory for voice
algorithm runtime consumption, loading AI models, running library initialization API and
so on.

The callback function to the device's manager is typically installed as part of the Init
function as well.

This operator is called by the voice algorithm manager when the voice manager task first
starts.

6.4.7.2.2 Deinit

hal_valgo_status_t (*deinit)(voice_algo_dev_t *dev);

The DeInit function is used to "deinitialize" the algorithm device. DeInit must release
any hardware resources the device uses (heap memory, handles created by device, and
so on), turn off the hardware, and perform any other shutdown required by the device.

This method is not called in AFE Manager based on current framework version.

Note: The `DeInit` function generally is not called under normal operation.

6.4.7.2.3 Run

hal_valgo_status_t (*run)(const voice_algo_dev_t *dev, void
 *data);

Begin running the voice algorithm.

The run operator is used to start running algorithm inference and processing voice frame
data.

This operator is called by the Voice Algorithm manager when the
kFWKMessageID_VAlgoASRInputProcess message is received from the AFE
Manager and forwarded to the algorithm device via the Voice Algorithm Manager.

Once the Voice Algorithm device finishes processing the voice frame data, its manager
forwards the inference result to the Output Manager. If Wake Word is detected, Voice
manager forwards a message indicating length of wake word to AFE manager.

6.4.7.2.4 InputNotify

hal_valgo_status_t (*inputNotify)(const voice_algo_dev_t
 *receiver, void *data);

Handle input events.

The InputNotify operator is called by the Voice Algorithm Manager whenever the
kFWKMessageID_InputNotify message is received and forwarded from the Voice
Algorithm Manager's message queue.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
99 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

For more information regarding events and event handling, see Events.

6.4.7.3 Capabilities

The capabilities struct is primarily used for storing a callback to communicate
information from the device back to the Voice Algorithm Manager. This callback function
is typically installed via a device's init operator.

6.4.7.3.1 Callback

/*!
 * @brief Callback function to notify managers the results of
 inference
 * valgo_dev* dev Pointer to an algorithm device
 * valgo_event_t event Event which took place
 * void* param Pointer to a struct of data that needs to be
 forwarded
 * unsigned int size Size of the struct that needs to be
 forwarded. If size = 0, param should be a pointer to a
 * persistent memory area.
 */

typedef int (*valgo_dev_callback_t)(int devId, valgo_event_t
 event, void *param, unsigned int size, uint8_t fromISR);

valgo_dev_callback_t callback;

Callback to the Voice Algorithm Manager.

The Voice Algorithm manager provides the callback to the device when the init
operator is called. As a result, the HAL device must make sure to store the callback in the
init operator's implementation.

The HAL device invokes this callback to notify the Voice Algorithm manager of specific
events.

6.4.7.3.2 Param

void *param;

The param for the callback (optional).

6.4.7.4 Example

Because only one Voice Algorithm device can be registered at a time per the design of
the framework, the SLN-TLHMI-IOT project has two Voice Algorithm devices(DSMT/VIT)
implemented.

Note: This example is implemented using the DSMT algorithm

This example is reproduced below:

hal_valgo_status_t voice_algo_dev_asr_init(voice_algo_dev_t
 *dev, valgo_dev_callback_t callback, void *param)
static hal_valgo_status_t
 HAL_VisionAlgoDev_OasisLite_Deinit(vision_algo_dev_t *dev);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
100 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

hal_valgo_status_t voice_algo_dev_asr_run(const
 voice_algo_dev_t *dev, void *data)
hal_valgo_status_t voice_algo_dev_input_notify(const
 voice_algo_dev_t *dev, void *data)

const static voice_algo_dev_operator_t voice_algo_dev_asr_ops =
 {
 .init = voice_algo_dev_asr_init,
 .deinit = NULL,
 .run = voice_algo_dev_asr_run,
 .inputNotify = voice_algo_dev_input_notify
};

static voice_algo_dev_t voice_algo_dev_asr = {
 .id = 0,
 .ops = (voice_algo_dev_operator_t
 *)&voice_algo_dev_asr_ops,
 .cap = {.param = NULL},
};

hal_valgo_status_t voice_algo_dev_asr_init(voice_algo_dev_t
 *dev, valgo_dev_callback_t callback, void *param)
{
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;
 uint32_t timerId = 0;

 /* Set callback function */
 dev->cap.callback = callback;

 ...

 /* Initialize the ASR engine */
 initialize_asr();

 ...

 return ret;
}

/* voice algorithm device inference run function*/
hal_valgo_status_t voice_algo_dev_asr_run(const
 voice_algo_dev_t *dev, void *data)
{
 hal_valgo_status_t status = kStatus_HAL_ValgoSuccess;
 static asr_events_t asrEvent = ASR_SESSION_ENDED;
 struct asr_inference_engine *pInfWW;
 struct asr_inference_engine *pInfCMD;
 char **cmdString;
 int16_t *pi16Sample;

 audio_msg_payload_t *audioIn = (audio_msg_payload_t *)data;

 ...

 /* Wake Word detection. Check all enabled languages, but
 stop on first match. */
 for (pInfWW = s_AsrEngine.voiceControl.infEngineWW;
 pInfWW != NULL; pInfWW = pInfWW->next)
 {

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
101 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 if (asr_process_audio_buffer(pInfWW->handler,
 pi16Sample, NUM_SAMPLES_AFE_OUTPUT, pInfWW->iWhoAmI_inf) ==
 kAsrLocalDetected)

 {
 LOGI("Trust: %d, SGDiff: %d\r\n",
 s_AsrEngine.voiceControl.result.trustScore,

 s_AsrEngine.voiceControl.result.SGDiffScore);
 }
 }

 ...

 return status;
}

hal_valgo_status_t voice_algo_dev_input_notify(const
 voice_algo_dev_t *dev, void *data)
{
 hal_valgo_status_t error = kStatus_HAL_ValgoSuccess;
 event_voice_t event = *(event_voice_t *)data;
 const char *language_str = NULL;

 ...

 return error;
}

int HAL_VoiceAlgoDev_Asr_Register()
{
 int error = 0;
 LOGD("HAL_VoiceAlgoDev_Asr_Register");
 error =
 FWK_VoiceAlgoManager_DeviceRegister(&voice_algo_dev_asr);
 return error;
}

6.4.8 Audio processing device

Audio Processing Device is used for Audio Front End (AFE) processing. In the following
sections, we abridge 'Audio Processing Device' as 'AFE device'. And also use 'AFE
manager' instead of 'audio_processing manager'.

The AFE HAL device provides an abstraction to represent audio front-end(AFE)handling.

AFE provides several subalgorithm modules, finally outputting a clean stream for the
ASR engine. AFE supports Beamformer, AEC, NS, and DOA. Beamformer eliminates
reverberation and background noise. AEC (Acoustic Echo Cancellation) can support
multi-channel systems, which is used for suppressing local speaker stream. DOA
(Direction Of Arrival) tracking has 1-degree resolution.

The AFE device receives microphone streams and reference streams (speaker streams)
and outputs a clean stream for the ASR engine.

As with other device types, the AFE device is controlled via the AFE manager. The AFE
manager is responsible for managing all registered AFE HAL devices, and invoking AFE
device operators (init, start, run, stop, and so on) as necessary. Additionally, the

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
102 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

AFE Manager allows for multiple AFE devices to be registered and operate at once.
Based on real project requirements, in most cases, only one AFE device is needed.

6.4.8.1 Device definition

The HAL device definition for AFE devices can be found under framework/hal_api/
hal_audio_processing_dev.h and is reproduced below:

typedef struct _audio_processing_dev audio_processing_dev_t;
/*! @brief Attributes of an audio processing device. */
struct _audio_processing_dev
{
 /* unique id which is assigned by audio processing manager
 during registration */
 int id;
 /* name of the device */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* operations */
 const audio_processing_dev_operator_t *ops;
 /* private capability */
 audio_processing_dev_private_capability_t cap;
};

The device operators associated with AFE HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by a audio
 processing device */
typedef struct _audio_processing_dev_operator
{
 /* initialize the dev */
 hal_audio_processing_status_t (*init)
(audio_processing_dev_t *dev, audio_processing_dev_callback_t
 callback);
 /* deinitialize the dev */
 hal_audio_processing_status_t (*deinit)(const
 audio_processing_dev_t *dev);
 /* start the dev */
 hal_audio_processing_status_t (*start)(const
 audio_processing_dev_t *dev);
 /* start the dev */
 hal_audio_processing_status_t (*stop)(const
 audio_processing_dev_t *dev);
 /* notify the audio_processing_dev_t */
 hal_audio_processing_status_t (*run)(const
 audio_processing_dev_t *dev, void *param);
 /* notify the audio_processing_dev_t */
 hal_audio_processing_status_t (*inputNotify)(const
 audio_processing_dev_t *dev, void *param);
} audio_processing_dev_operator_t;

The device capabilities associated with AFE HAL devices are as shown below:

/*! @brief Structure that capability of the AFE device. */
typedef struct _audio_processing_dev_private_capability
{
 /* callback */
 audio_processing_dev_callback_t callback;
} audio_processing_dev_private_capability_t;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
103 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.8.2 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to
"public methods" in object-oriented languages, and are used by the AFE Manager to set
up, start, and so on, each of its registered AFE devices.

6.4.8.2.1 Init

hal_audio_processing_status_t (*init)(audio_processing_dev_t
 *dev, audio_processing_dev_callback_t callback);

Initialize the AFE device.

Init performs all setups that the device requires, such as preparing memory for AFE
runtime consumption, microphone number and position, and so on.

This operator is called by the AFE Manager when the AFE Manager task first starts.

6.4.8.2.2 Deinit

hal_audio_processing_status_t (*deinit)(const
 audio_processing_dev_t *dev);

De-initialize the AFE device.

DeInit releases all memory resources allocated in initialization stage. Set all handles
created to NULL.

This operator is not called in AFE Manager based on current framework version.

Note: The `DeInit` function is not called under normal operation.

6.4.8.2.3 Start

hal_audio_processing_status_t (*start)(const
 audio_processing_dev_t *dev);

Start the AFE device.

The Start operator is called in the initialization stage of the AFE Manager's task after
the call to the Init operator. Since AFE device is a pure software device, there is not
Clock/GPIO, or any peripheral bus depended. In most cases, the Start method can
return kStatus_HAL_AudioProcessingSuccess directly.

6.4.8.2.4 Stop

hal_audio_processing_status_t (*stop)(const
 audio_processing_dev_t *dev);

Stop is reverted operation compared to Start. Return
kStatus_HAL_AudioProcessingSuccess if there is nothing needed to be done to
device.

For the AFE device SDK implemented, this method returns
kStatus_HAL_AudioProcessingSuccess directly. And it is not called in AFE
Manager based on current framework version.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
104 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.8.2.5 Run

hal_audio_processing_status_t (*run)(const
 audio_processing_dev_t *dev, void *param);

Execute AFE engine for handling microphone stream and outputting clean stream.

The Run operator will be called by the AFE Manager to handle audio frame with 160
samples.

6.4.8.2.6 InputNotify

 hal_audio_processing_status_t (*inputNotify)(const
 audio_processing_dev_t *dev, void *param);

Handle input events.

The InputNotify operator is called by the AFE Manager whenever a
kFWKMessageID_InputNotify message is received by and forwarded from the AFE
Manager's message queue.

For more information regarding events and event handling, see Events.

6.4.8.3 Capabilities

typedef struct _audio_processing_dev_private_capability
{
 /* callback */
 audio_processing_dev_callback_t callback;
} audio_processing_dev_private_capability_t;

The capabilities struct is primarily used for storing a callback to communicate
information from the device back to the AFE Manager. This callback function is typically
installed via a device's init operator.

6.4.8.3.1 Callback

/**
 * @brief Callback function to notify audio processing manager
 that an async event took place
 * @param dev Device structure of the audio processing device
 calling this function
 * @param event id of the event that took place
 * @param param Parameters
 * @param fromISR True if this operation takes place in an irq,
 0 otherwise
 * @return 0 if the operation was successfully
 */
typedef int (*audio_processing_dev_callback_t)(
 const audio_processing_dev_t *dev,
 audio_processing_event_t event,
 void *param, unsigned int size,
 uint8_t fromISR);

Callback to the AFE Manager.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
105 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The HAL device invokes this callback to notify the AFE Manager of specific events like
"audio processing done or audio dumping event."

The AFE Manager provides this callback to the device when the init operator is called.
As a result, the HAL device should make sure to store the callback in the init operator's
implementation.

hal_audio_processing_status_t
 audio_processing_afe_init(audio_processing_dev_t *dev,

 audio_processing_dev_callback_t callback)
{
 hal_audio_processing_status_t error =
 kStatus_HAL_AudioProcessingSuccess;

 sln_afe_status_t afeStatus = kAfeSuccess;
 sln_afe_config_t afeConfig = {0};

 dev->cap.callback = callback;

 afeConfig.numberOfMics = AUDIO_PDM_MIC_COUNT;
 afeConfig.afeMemBlock = s_afeExternalMemory;

 return error;
}

6.4.8.3.2 Param

void *param;

The parameter of the callback points to audio data AFE outputting.

6.4.8.4 Example

The SLN-TLHMI-IOT project implements one AFE device for use as-is or for use as
reference for implementing new AFE devices. Source files for these AFE HAL devices
can be found under hal/voice/hal_audio_processing_afe.c.

const static audio_processing_dev_operator_t
 audio_processing_afe_ops = {
 .init = audio_processing_afe_init,
 .deinit = audio_processing_afe_deinit,
 .start = audio_processing_afe_start,
 .stop = audio_processing_afe_stop,
 .run = audio_processing_afe_run,
 .inputNotify = audio_processing_afe_notify,
};

static audio_processing_dev_t audio_processing_afe = {
 .id = 1, .name = "AFE", .ops =
 &audio_processing_afe_ops, .cap = {.callback = NULL}};

hal_audio_processing_status_t
 audio_processing_afe_init(audio_processing_dev_t *dev,

 audio_processing_dev_callback_t callback)
{

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
106 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 hal_audio_processing_status_t error =
 kStatus_HAL_AudioProcessingSuccess;
 /*
 * Prepare AFE memory and configuration parameters needed,
 * and then initialize AFE library.
 */

 return error;
}

hal_audio_processing_status_t audio_processing_afe_deinit(const
 audio_processing_dev_t *dev)
{
 hal_audio_processing_status_t error =
 kStatus_HAL_AudioProcessingSuccess;
 return error;
}

hal_audio_processing_status_t audio_processing_afe_start(const
 audio_processing_dev_t *dev)
{
 hal_audio_processing_status_t error =
 kStatus_HAL_AudioProcessingSuccess;
 return error;
}

hal_audio_processing_status_t audio_processing_afe_stop(const
 audio_processing_dev_t *dev)
{
 hal_audio_processing_status_t error =
 kStatus_HAL_AudioProcessingSuccess;
 return error;
}

hal_audio_processing_status_t audio_processing_afe_notify(const
 audio_processing_dev_t *dev, void *param)
{
 hal_audio_processing_status_t error =
 kStatus_HAL_AudioProcessingSuccess;
 event_voice_t event = *(event_voice_t
 *)param;

 /* Parse event structure and do further handling */

 return error;
}

hal_audio_processing_status_t audio_processing_afe_run(const
 audio_processing_dev_t *dev, void *param)
{
 hal_audio_processing_status_t error =
 kStatus_HAL_AudioProcessingSuccess;
 event_voice_t event = *(event_voice_t
 *)param;

 /* Parse event structure and execute AFE engine for
 handling microphone streams */

 return error;
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
107 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.9 Flash devices

The flash HAL device represents an abstraction used to implement a device that handles
all operations dealing with flash (permanent) storage.

Note: Even though the word "flash" is used in the terminology of this device, the user
is technically capable of implementing an FS that uses a volatile memory instead. One
potential reason for doing so would be to run logic/sanity checks on the filesystem API's
before implementing them on a flash device. Ultimately, the flash HAL device is useful for
abstracting not only flash operations, but memory operations in general.

The flash HAL device is primarily used as a wrapper over an underlying filesystem, be it
LittleFS, FatFS, and so on. As a result, the Flash Manager only allows one flash device
to be registered because there is usually no need for multiple file systems operating at
the same time.

General information

Because only one flash device can be registered at a time, it means that API calls to the
Flash Manager essentially act as wrappers over the flash HAL device's operators.

In terms of functionality, the flash HAL device provides:

• Read/Write operations
• Cleanup methods to handle defragmentation and/or emptying flash sectors during idle

time
• Information about underlying flash mapping and flash type

6.4.9.1 Device definition

The HAL device definition for flash devices can be found under framework/hal_api/
hal_flash_dev.h and is reproduced below:

/*! @brief Attributes of a flash device */
struct _flash_dev
{
 /* unique id */
 int id;
 /* operations */
 const flash_dev_operator_t *ops;
};

The device operators associated with flash HAL devices are as shown below:

/*! @brief Callback function to timeout check requester list
 busy status. */
typedef int (*lpm_manager_timer_callback_t)(lpm_dev_t *dev);

/*! @brief Operation that needs to be implemented by a flash
 device */
typedef struct _flash_dev_operator
{
 sln_flash_status_t (*init)(const flash_dev_t *dev);
 sln_flash_status_t (*deinit)(const flash_dev_t *dev);
 sln_flash_status_t (*format)(const flash_dev_t *dev);
 sln_flash_status_t (*save)(const flash_dev_t *dev, const
 char *path, void *buf, unsigned int size);
 sln_flash_status_t (*append)(const flash_dev_t *dev, const
 char *path, void *buf, unsigned int size, bool overwrite);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
108 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 sln_flash_status_t (*read)(const flash_dev_t *dev, const
 char *path, void *buf, unsigned int offset, unsigned int
 *size);
 sln_flash_status_t (*mkdir)(const flash_dev_t *dev, const
 char *path);
 sln_flash_status_t (*mkfile)(const flash_dev_t *dev, const
 char *path, bool encrypt);
 sln_flash_status_t (*rm)(const flash_dev_t *dev, const char
 *path);
 sln_flash_status_t (*rename)(const flash_dev_t *dev, const
 char *oldPath, const char *newPath);
 sln_flash_status_t (*cleanup)(const flash_dev_t *dev,
 unsigned int timeout_ms);
} flash_dev_operator_t;

6.4.9.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to
"public methods" in object oriented-languages.

For more information about operators, see Section 6.4.1.3.1 .

6.4.9.2.1 Init

sln_flash_status_t (*init)(const flash_dev_t *dev);

Initialize the flash and filesystem.

Init must initialize any hardware resources required by the flash device (pins, ports,
clock, and so on) In addition to initializing the hardware, the init function should also
mount the filesystem.

Note: An application that runs from flash (does XiP) must not initialize/deinitialize any
hardware. If a hardware change is truly needed, the change must be performed with
caution.

Note: Some lightweight FS may not require mounting and can be prebuilt/preloaded on
the flash instead. Regardless, the `init` function must result in the filesystem being in a
usable state.

6.4.9.2.2 Deinit

hal_lpm_status_t (*deinit)(const lpm_dev_t *dev);

"Deinitialize" the flash and filesystem.

DeInit must release any hardware resources a flash device might use (I/O ports, IRQs,
and so on), turn off the hardware, and perform any other shutdown the device requires.

6.4.9.2.3 Format

sln_flash_status_t (*format)(const flash_dev_t *dev);

Clean and format the filesystem.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
109 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.9.2.4 Save

sln_flash_status_t (*save)(const flash_dev_t *dev, const char
 *path, void *buf, unsigned int size);

Save a file with the contents of buf to path in the filesystem.

6.4.9.2.5 Append

sln_flash_status_t (*append)(const flash_dev_t *dev, const char
 *path, void *buf, unsigned int size, bool overwrite);

Append the contents of buf to an existing file at path.

Setting overwrite equal to true causes append from the beginning of the file instead.

Note: `overwrite == true` makes this function nearly equivalent to the save function, the
only difference is that this does not create a new file.

6.4.9.2.6 Read

sln_flash_status_t (*read)(const flash_dev_t *dev, const char
 *path, void *buf, unsigned int offset, unsigned int *size);

Read a file from the filesystem located at path and storing the contents in buf.

To find the needed space for the buf, call read with buf set to NULL. In case there is
not enough space in memory to read the whole file, read with offset can be use while
specifying the chunk size.

Note: It is up to the user to guarantee that the buffer supplied will fit the contents of the
file being read.

6.4.9.2.7 Make directory

sln_flash_status_t (*mkdir)(const flash_dev_t *dev, const char
 *ph);

Create a directory at path.

If the filesystem in use does not support directories,
this operator can be set to `NULL`.

6.4.9.2.8 Make file

sln_flash_status_t (*mkfile)(const flash_dev_t *dev, const char
 *path, bool encrypt);

Creates the file mentioned by the path. If the information needs to stored not in plain text,
encryption can be enabled.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
110 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.9.2.9 Remove

sln_flash_status_t (*rm)(const flash_dev_t *dev, const char
 *path);

Remove the file at path.

If the filesystem in use does not support directories,
this operator can be set to `NULL`.

6.4.9.2.10 Rename

sln_flash_status_t (*rename)(const flash_dev_t *dev, const char
 *oldPath, const char *newPath);

Rename/move a file from oldPath to newPath.

6.4.9.2.11 Cleanup

sln_flash_status_t (*cleanup)(const flash_dev_t *dev, unsigned
 int timeout_ms);

Clean up the filesystem.

This function is used to help minimize delays introduced by things like fragmentation
caused during "erase sector" operations that can lead to unwanted delays when
searching for the next available sector.

timeout_ms specifies how much time to wait while performing cleanup. This helps
prevent multiple HAL devices calling cleanup and stalling the filesystem.

6.4.9.3 Example

As only one flash device can be registered at a time per the design of the framework, the
project has only one filesystem implemented.

The source file for this flash HAL device can be found at HAL/common/
hal_flash_littlefs.c.

In this example, we demonstrate a way to integrate Littlefs in our framework.

Littlefs is a lightweight file-system that is designed to handle random power failures.
The architecture of the file-system allows having directories and files. As a result, this
example uses the following file layout:

root-directory
├── cfg
│ ├── Metadata
│ ├── fwk_cfg - stores framework related information.
│ └── app_cfg - stores app specific information.
├── oasis
│ ├── Metadata
│ └── faceFiles - the number of files that stores faces are
 up to 100
├── app_specific
└── wifi_info

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
111 / 190

https://github.com/littlefs-project/littlefs

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 └── wifi_info

6.4.9.3.1 Littlefs device

static sln_flash_status_t _lfs_init()
{
 int res = kStatus_HAL_FlashSuccess;
 if (s_LittlefsHandler.lfsMounted)
 {
 return kStatus_HAL_FlashSuccess;
 }
 s_LittlefsHandler.lock = xSemaphoreCreateMutex();
 if (s_LittlefsHandler.lock == NULL)
 {
 LOGE("Littlefs create lock failed");
 return kStatus_HAL_FlashFail;
 }

 _lfs_get_default_config(&s_LittlefsHandler.cfg);
#if DEBUG
 BOARD_InitFlashResources();
#endif
 SLN_Flash_Init();
 if (res)
 {
 LOGE("Littlefs storage init failed: %i", res);
 return kStatus_HAL_FlashFail;
 }

 res = lfs_mount(&s_LittlefsHandler.lfs,
 &s_LittlefsHandler.cfg);
 if (res == 0)
 {
 s_LittlefsHandler.lfsMounted = 1;
 LOGD("Littlefs mount success");
 }
 else if (res == LFS_ERR_CORRUPT)
 {
 LOGE("Littlefs corrupt");
 lfs_format(&s_LittlefsHandler.lfs,
 &s_LittlefsHandler.cfg);
 LOGD("Littlefs attempting to mount after
 reformatting...");
 res = lfs_mount(&s_LittlefsHandler.lfs,
 &s_LittlefsHandler.cfg);
 if (res == 0)
 {
 s_LittlefsHandler.lfsMounted = 1;
 LOGD("Littlefs mount success");
 }
 else
 {
 LOGE("Littlefs mount failed again");
 return kStatus_HAL_FlashFail;
 }
 }
 else
 {
 LOGE("Littlefs error while mounting");

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
112 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 }

 return res;
}

static sln_flash_status_t _lfs_cleanupHandler(const flash_dev_t
 *dev,

 unsigned int timeout_ms)
{
 sln_flash_status_t status =
 kStatus_HAL_FlashSuccess;
 uint32_t usedBlocks[LFS_SECTORS/32] = {0};
 uint32_t emptyBlocks = 0;
 uint32_t startTime = 0;
 uint32_t currentTime = 0;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 /* create used block list */
 lfs_fs_traverse(&s_LittlefsHandler.lfs,
 _lfs_traverse_create_used_blocks,
 &usedBlocks);

 startTime = sln_current_time_us();

 /* find next block starting from free.i */
 for (int i = 0; i < LFS_SECTORS; i++)
 {
 currentTime = sln_current_time_us();
 /* Check timeout */
 if ((timeout_ms) && (currentTime >= (startTime +
 timeout_ms * 1000)))
 {
 break;
 }

 lfs_block_t block = (s_LittlefsHandler.lfs.free.i + i)
 % LFS_SECTORS;

 /* take next unused marked block */
 if (!_is_blockBitSet(usedBlocks, block))
 {
 /* If the block is marked as free but not yet
 erased, try to erase it */
 LOGD("Block %i is unused, try to erase it", block);
 _lfs_qspiflash_erase(&s_LittlefsConfigDefault,
 block);
 emptyBlocks += 1;
 }
 }

 LOGI("%i empty_blocks starting from %i available in %ims",
 emptyBlocks, s_LittlefsHandler.lfs.free.i,
 (sln_current_time_us() - startTime)/1000);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
113 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 _unlock();
 return status;
}

static sln_flash_status_t _lfs_formatHandler(const flash_dev_t
 *dev)
{
 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }
 lfs_format(&s_LittlefsHandler.lfs, &s_LittlefsHandler.cfg);
 _unlock();
 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_rmHandler(const flash_dev_t
 *dev, const char *path)
{
 int res;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 res = lfs_remove(&s_LittlefsHandler.lfs, path);
 if (res)
 {
 LOGE("Littlefs while removing: %i", res);
 _unlock();
 if (res == LFS_ERR_NOENT)
 {
 return kStatus_HAL_FlashFileNotExist;
 }

 return kStatus_HAL_FlashFail;
 }
 _unlock();
 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_mkdirHandler(const flash_dev_t
 *dev, const char *path)
{
 int res;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 res = lfs_mkdir(&s_LittlefsHandler.lfs, path);

 if (res == LFS_ERR_EXIST)
 {
 LOGD("Littlefs directory exists: %i", res);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
114 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 _unlock();
 return kStatus_HAL_FlashDirExist;
 }
 else if (res)
 {
 LOGE("Littlefs creating directory: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }
 _unlock();
 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_writeHandler(const flash_dev_t
 *dev, const char *path, void *buf, unsigned int size)
{
 int res;
 lfs_file_t file;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 res = lfs_file_opencfg(&s_LittlefsHandler.lfs, &file, path,
 LFS_O_CREAT, &s_FileDefault);
 if (res)
 {
 LOGE("Littlefs opening file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 res = lfs_file_write(&s_LittlefsHandler.lfs, &file, buf,
 size);
 if (res < 0)
 {
 LOGE("Littlefs writing file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 res = lfs_file_close(&s_LittlefsHandler.lfs, &file);
 if (res)
 {
 LOGE("Littlefs closing file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 _unlock();
 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_appendHandler(const flash_dev_t
 *dev,

 const char *path,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
115 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 void *buf,

 unsigned int size,

 bool overwrite)
{
 int res;
 lfs_file_t file;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 res = lfs_file_opencfg(&s_LittlefsHandler.lfs, &file, path,
 LFS_O_APPEND, &s_FileDefault);
 if (res)
 {
 LOGE("Littlefs opening file: %i", res);
 _unlock();
 if (res == LFS_ERR_NOENT)
 {
 return kStatus_HAL_FlashFileNotExist;
 }
 return kStatus_HAL_FlashFail;
 }

 if (overwrite == true)
 {
 res = lfs_file_truncate(&s_LittlefsHandler.lfs, &file,
 0);

 if (res < 0)
 {
 LOGE("Littlefs truncate file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }
 }

 res = lfs_file_write(&s_LittlefsHandler.lfs, &file, buf,
 size);
 if (res < 0)
 {
 LOGE("Littlefs writing file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 res = lfs_file_close(&s_LittlefsHandler.lfs, &file);
 if (res)
 {
 LOGE("Littlefs closing file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 _unlock();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
116 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_readHandler(const flash_dev_t
 *dev, const char *path, void *buf, unsigned int size)
{
 int res;
 int offset = 0;
 lfs_file_t file;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }
 res = lfs_file_opencfg(&s_LittlefsHandler.lfs, &file, path,
 LFS_O_RDONLY, &s_FileDefault);
 if (res)
 {
 LOGE("Littlefs opening file: %i", res);
 _unlock();
 if (res == LFS_ERR_NOENT)
 {
 return kStatus_HAL_FlashFileNotExist;
 }
 return kStatus_HAL_FlashFail;
 }

 do
 {
 res = lfs_file_read(&s_LittlefsHandler.lfs, &file, (buf
 + offset), size);
 if (res < 0)
 {
 LOGE("Littlefs reading file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }
 else if (res == 0)
 {
 LOGD("Littlefs reading file \"%s\": Read only %d.
 %d bytes not found ", path, offset, size);
 break;
 }

 offset += res;
 size -= res;
 } while (size > 0);

 res = lfs_file_close(&s_LittlefsHandler.lfs, &file);
 if (res)
 {
 LOGE("Littlefs closing file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 _unlock();
 return kStatus_HAL_FlashSuccess;
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
117 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

static sln_flash_status_t _lfs_renameHandler(const flash_dev_t
 *dev, const char *OldPath, const char *NewPath)
{
 int res;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 res = lfs_rename(&s_LittlefsHandler.lfs, OldPath, NewPath);
 if (res)
 {
 LOGE("Littlefs renaming file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }
 _unlock();
 return kStatus_HAL_FlashSuccess;
}

const static flash_dev_operator_t s_FlashDev_LittlefsOps = {
 .init = _lfs_init,
 .deinit = NULL,
 .format = _lfs_formatHandler,
 .append = _lfs_appendHandler,
 .save = _lfs_writeHandler,
 .read = _lfs_readHandler,
 .mkdir = _lfs_mkdirHandler,
 .rm = _lfs_rmHandler,
 .rename = _lfs_renameHandler,
 .cleanup= _lfs_cleanupHandler,
};

static flash_dev_t s_FlashDev_Littlefs = {
 .id = 0,
 .ops = &s_FlashDev_LittlefsOps,
};

int HAL_FlashDev_Littlefs_Init()
{
 int error = 0;
 LOGD("++HAL_FlashDev_Littlefs_Init");
 _lfs_init();

 LOGD("--HAL_FlashDev_Littlefs_Init");
 error = FWK_Flash_DeviceRegister(&s_FlashDev_Littlefs);

 FWK_LpmManager_RegisterRequestHandler(&s_LpmReq);
 return error;
}

Note: The information presented here shows only the operators described above. For
more information regarding Littlefs configuration, FlexSPI configuration, optimization
done, check the full code base.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
118 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.10 Multicore devices

The multicore HAL device represents an abstraction used to implement a device that
handles all multicore message passing.

The Multicore HAL device is primarily used as a wrapper over known multicore message
libraries, be it MU/Mailbox peripheral registers, rpmsg_lite, eRPC, and so on.

In terms of functionality, the multicore HAL device provides:

• Send operation
• Receive operation

6.4.10.1 Device definition

The HAL device definition for multicore devices can be found under framework/hal_
api/hal_multicore_dev.h and is reproduced below:

/*! @brief Attributes of a multicore device. */
struct _multicore_dev
{
 /* unique id which is assigned by multicore manager during
 the registration */
 int id;
 /* name of the device */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* operations */
 const multicore_dev_operator_t *ops;
 /* private capability */
 multicore_dev_private_capability_t cap;
};

The device operators associated with multicore HAL devices are as shown below:

/*! @brief Operation that needs to be implemented by a
 multicore device */
typedef struct _multicore_dev_operator
{
 /* initialize the dev */
 hal_multicore_status_t (*init)(multicore_dev_t *dev,
 multicore_dev_callback_t callback, void *param);
 /* deinitialize the dev */
 hal_multicore_status_t (*deinit)(const multicore_dev_t
 *dev);
 /* start the dev */
 hal_multicore_status_t (*start)(const multicore_dev_t
 *dev);
 /* Multicore Send the message */
 hal_multicore_status_t (*send)(const multicore_dev_t *dev,
 void *data, unsigned int size);
 /* input notify */
 hal_multicore_status_t (*inputNotify)(const multicore_dev_t
 *dev, void *data);
} multicore_dev_operator_t;

In order to achieve a two-way communication between cores, hal devices need to
implement both send and receive operations. The send is triggered by the multicore

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
119 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

manager, while receive is async, the other core being able to send at any moment. All
async operations are handled within Multicore manager callback.

/**
 * @brief callback function to notify multicore manager that an
 async event took place
 * @param dev Device structure of the multicore device calling
 this function
 * @param event the event that took place
 * @param fromISR True if this operation takes place in an irq,
 0 otherwise
 * @return 0 if the operation was successfully
 */
typedef int (*multicore_dev_callback_t)(const multicore_dev_t
 *dev, multicore_event_t event, uint8_t fromISR);

/*! @brief Structure that characterizes the multicore device.
 */
typedef struct _multicore_dev_private_capability
{
 /* callback */
 multicore_dev_callback_t callback;

} multicore_dev_private_capability_t;

6.4.10.2 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to
"public methods" in object oriented-languages.

For more information about operators, see Section 6.4.1.3.1.

6.4.10.2.1 Init

/* initialize the dev */
hal_multicore_status_t (*init)(multicore_dev_t *dev,
 multicore_dev_callback_t callback, void *param);

Init should initialize any hardware resources required by the multicore device (pins,
ports, clock, and so on).

6.4.10.2.2 Deinit

/* deinitialize the dev */
hal_multicore_status_t (*deinit)(const multicore_dev_t *dev);

"Deinitialize" the multicore device.

DeInit should release any hardware resources a multicore device might use (I/O ports,
IRQs, and so on), turn off the hardware, and perform any other shutdown the device
requires.

6.4.10.2.3 Start

/* start the dev */
hal_multicore_status_t (*start)(const multicore_dev_t *dev);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
120 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Start should start the flow. Handshake protocol can be implemented. The purpose of a
handshake protocol is to verify that both cores initialized properly the multicore unit.

6.4.10.2.4 Send

/* Multicore Send the message */
hal_multicore_status_t (*send)(const multicore_dev_t *dev, void
 *data, unsigned int size);

Multicore manager passes a buffer to the underlying level. The multicore device must
send the message, characterized by the size, to the counterpart device from the other
core. On the other side, after receiving the message, the hal device is responsible to call
the callback, to make the multicore manager aware of the new message.

6.4.10.3 FreeRTOS message buffer device

Message buffers from FreeRTOS are used for one-way communication between two
threads. In order to create a two-way communication, a send task and receive task must
be created on both cores. Multicore Manager acts as a send task, while the receive
task is created within the Hal device init. The receive task also inherits the priority of
the send task. The send and receive task should be built having a non-blocking design
pattern in mind and they should be initialized with highest priority in order to have the
best response time.

The number of shared buffers that must be allocated is two, one for each one way
communication. The size is at least the maximum message size, after a deep copy
has been performed. They should be allocated statically at compile or a procedure to
advertise between cores the address should be implemented.

• CM7/ Write Buffer = CM4/ Read Buffer
• CM4/ Write Buffer = CM7/ Read Buffer

For more information about RTOS Message Buffers API, check FreeRTOS
documentation

void vGenerateMulticoreInterrupt(void *xUpdatedMessageBuffer)
{
 /* Trigger the inter-core interrupt using the MCMGR
 component.
 Pass the APP_MESSAGE_BUFFER_EVENT_DATA as data that
 accompany
 the kMCMGR_FreeRtosMessageBuffersEvent event. */

 (void)MCMGR_TriggerEventForce(kMCMGR_FreeRsMessageBuffersEvent,
 kMulticore_DataEvent);
}

static void RemoteAppReadyEventHandler(uint16_t eventData, void
 *context)
{
 *(bool *)context = (bool)eventData;
}

static void FreeRtosMessageBuffersEventHandler(uint16_t
 eventData, void *context)
{
 BaseType_t xHigherPriorityTaskWoken = pdFALSE;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
121 / 190

https://www.freertos.org/RTOS-message-buffer-API.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* Make sure the message has been addressed to us. Using
 eventData that accompany
 the event of the kMCMGR_FreeRtosMessageBuffersEvent
 type, we can distinguish
 different consumers. */
 if (kMulticore_DataEvent == eventData)
 {
 /* Call the API function that sends a notification to
 any task that is
 blocked on the xUpdatedMessageBuffer message buffer waiting
 for data to
 arrive. */

 (void)xMessageBufferSendCompletedFromISR(xReadMessageBuffer,
 &xHigherPriorityTaskWoken);
 }

 /* Normal FreeRTOS "yield from interrupt" semantics, where
 HigherPriorityTaskWoken is initialzed to pdFALSE and will
 then get set to
 pdTRUE if the interrupt unblocks a task that has a priority
 above that of
 the currently executing task. */
 portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

 /* No need to clear the interrupt flag here, it is handled
 by the mcmgr. */
}

static void _HAL_MulticoreDev_MessageBuffer_RcvMsgHandler(void
 *param)
{
 /* Size to cover on MAX message. Can be lowered if we know
 what we send */
 static uint8_t pMessageBufferRcv[MB_STORAGE_BUFFER_SIZE];

 while (1)
 {
 size_t xReceivedBytes =
 xMessageBufferReceive(xReadMessageBuffer, (void
 *)pMessageBufferRcv,

 sizeof(pMessageBufferRcv), portMAX_DELAY);

 LOGI("Remote Message receive, size = %d",
 xReceivedBytes);
 if ((xReceivedBytes != 0) && (

 s_MulticoreDev_MessageBuffer.cap.callback != NULL))
 {
 multicore_event_t multicore_event;
 multicore_event.eventId =
 kMulticoreEvent_MsgReceive;
 multicore_event.data = pMessageBufferRcv;
 multicore_event.size = xReceivedBytes;
 s_MulticoreDev_MessageBuffer.cap.callback(
 &s_MulticoreDev_MessageBuffer,
 multicore_event, false);
 }
 }

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
122 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

}

static hal_multicore_status_t
 HAL_MulticoreDev_MessageBuffer_Deinit(const multicore_dev_t
 *dev)
{
 hal_multicore_status_t status =
 kStatus_HAL_MulticoreSuccess;

 return status;
}

static hal_multicore_status_t
 HAL_MulticoreDev_MessageBuffer_Send(const multicore_dev_t
 *dev, void *data, uint32_t size)
{
 hal_multicore_status_t status =
 kStatus_HAL_MulticoreSuccess;

 if ((data != NULL) && (size != 0))
 {
 uint32_t streamFreeSpace =
 xStreamBufferSpacesAvailable(xWriteMessageBuffer);
 if (streamFreeSpace < size)
 {
 status = kStatus_HAL_MulticoreError;
 LOGE("Not enough space, free %x needed %x",
 streamFreeSpace, size);
 }

 if (status == kStatus_HAL_MulticoreSuccess)
 {
 (void)xMessageBufferSend(xWriteMessageBuffer, data,
 size, 0);
 LOGI("MulticoreDev_send: Send %d bytes", size);
 }
 }
 else
 {
 LOGD("MulticoreDev_send: Nothing to send");
 }

 return status;
}

static hal_multicore_status_t
 HAL_MulticoreDev_MessageBuffer_InputNotify(const
 multicore_dev_t *dev, void *data)
{
 hal_multicore_status_t status =
 kStatus_HAL_MulticoreSuccess;

 return status;
}

static hal_multicore_status_t
 HAL_MulticoreDev_MessageBuffer_Start(const multicore_dev_t
 *dev)
{

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
123 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 hal_multicore_status_t status =
 kStatus_HAL_MulticoreSuccess;

 /* Wait until the secondary core application signals it is
 ready to communicate. */
 while (true != s_SecondCoreReady)
 {
 (void)MCMGR_TriggerEvent(kMCMGR_RemoteApplicationEvent,
 true);
 vTaskDelay(pdMS_TO_TICKS(10));
 };

 /* Send one more event to be sure the other core got it */
 (void)MCMGR_TriggerEvent(kMCMGR_RemoteApplicationEvent,
 true);

 if
 (xTaskCreate(_HAL_MulticoreDev_MessageBuffer_RcvMsgHandler,
 MULTICORE_RCV_TASK_NAME, MULTICORE_RCV_TASK_STACK,
 NULL, uxTaskPriorityGet(NULL), NULL) !=
 pdPASS)
 {
 LOGE("[MessageBuffer] Task creation failed!.");
 while (1)
 ;
 }

 return status;
}

static hal_multicore_status_t
 HAL_MulticoreDev_MessageBuffer_Init(multicore_dev_t *dev,

 multicore_dev_callback_t callback,

 void *param)
{
 hal_multicore_status_t status =
 kStatus_HAL_MulticoreSuccess;
 LOGD("Start Multicore MessageBuffer INIT");

 s_MulticoreDev_MessageBuffer.cap.callback = callback;

 xWriteMessageBuffer = xMessageBufferCreateStatic(
 /* The buffer size in bytes. */
 MB_STORAGE_BUFFER_SIZE,
 /* Statically allocated buffer storage area. */
 &ucWriteMessageBufferStorage,
 /* Message buffer handle. */
 &xWriteMessageBufferStruct);

 (void)MCMGR_RegisterEvent(kMCMGR_FreeRtosMessageBuffersEvent,
 FreeRtosMessageBuffersEventHandler, ((void *)0));
 (void)MCMGR_RegisterEvent(kMCMGR_RemoteApplicationEvent,
 RemoteAppReadyEventHandler, (void *)&s_SecondCoreReady);

 /* We initied we are ready to rcv messages */
 LOGD("Exit Multicore MessageBuffer INIT");
 return status;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
124 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

}

6.5 Events

6.5.1 Overview

Events are a means by which information is communicated between different devices via
their managers.

6.5.1.1 Event triggers

Events can correspond to many different happenings during the runtime of the
application, and can include things like:

• Button pressed
• Face detected
• Shell command received

When an event is triggered, the device that first received the event communicates that
event to its manager, that in turn notifies other managers designated to receive the event.

For example, when a button is pressed, a flow similar to the following takes place:

1. The "Push Button" HAL device receives an interrupt corresponding to the button that
was pressed.

2. Inside the HAL device's interrupt handler, the device associates an event with the
button that was pressed.

3. The HAL device specifies which managers should receive the event.
4. The HAL device forwards the event to its manager.

The code that corresponds to this scenario can be seen in the below excerpts from HAL/
common/hal_input_push_buttons.c" and source/event_handlers/smart_
lock_input_push_buttons.c, respectively.

void _HAL_InputDev_IrqHandler(button_data_t *button,
 switch_press_type_t pressType)
{
 if (s_InputDev_PushButtons.cap.callback != NULL)
 {
 uint32_t receiverList;
 if (APP_InputDev_PushButtons_SetEvent(button->buttonId,
 pressType, &s_pEvent, &receiverList) == kStatus_Success)
 {
 s_inputEvent.inputData = s_pEvent;
 uint8_t fromISR = __get_IPSR();

 s_InputDev_PushButtons.cap.callback(&s_InputDev_PushButtons,
 kInputEventID_Recv, receiverList,
 &s_inputEvent,
 0, fromISR);
 }
 else
 {
 LOGE("No valid event associated with SW%d button %s
 press", button->buttonId,
 pressType == kSwitchPressType_Short ?
 "short" : "long");

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
125 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 }
 }
}

The "callback" function in the above code refers to an
 internal callback function inside the [Input Manager](../
device_managers/input_manager.md)
which relays input events to each of the managers specified in
 an event's `receiverList`.

 switch (button)
 {
 case kSwitchID_1:
 if (pressType == kSwitchPressType_Long)
 {
 LOGD("Long PRESS Detected.");
 unsigned int totalUsageCount;
 FWK_LpmManager_RequestStatus(&totalUsageCount);

 FWK_LpmManager_EnableSleepMode(kLPMManagerStatus_SleepEnable);
 }
 break;

 case kSwitchID_2:
 if ((pressType == kSwitchPressType_Short) ||
 (pressType == kSwitchPressType_Long))
 {
 *receiverList = 1 <<
 kFWKTaskID_VisionAlgo;
 s_FaceRecEvent.eventBase.eventId =
 kEventFaceRecID_DelUser;
 s_FaceRecEvent.delFace.hasName = false;
 s_FaceRecEvent.delFace.hasID = false;
 *event =
 &s_FaceRecEvent;
 }
 break;

 case kSwitchID_3:
 if ((pressType == kSwitchPressType_Short) ||
 (pressType == kSwitchPressType_Long))
 {
 *receiverList = 1 <<
 kFWKTaskID_VisionAlgo;
 s_FaceRecEvent.eventBase.eventId =
 kEventFaceRecID_AddUser;
 s_FaceRecEvent.addFace.hasName = false;
 *event =
 &s_FaceRecEvent;
 }
 break;

 default:
 ret = kStatus_Fail;
 break;
 }

 return ret;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
126 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.5.1.2 Types of events

Events can be used to communicate all sorts of information, but the two types of events
defined by default are InferComplete events and InputNotify events.

Both types of events represent different information being communicated to and by the
HAL devices.

6.5.1.2.1 InferComplete events

Inference events are used to indicate that a vision/voice algorithm HAL device has
completed a stage in its inference pipeline.

Note: Only output HAL devices can respond to `InferComplete` events. This is not true
of `InputNotify` events.

In the current application, it can refer to several things, including:

• Face detected
• Face recognized
• Fake face detected

Output HAL devices can respond to inference events by implementing an
inferComplete method. When an "InferComplete" event is triggered, the output
manager attempts to call the inferComplete event handler of each of its devices,
(assuming the device has implemented an inferComplete function).

As part of the inferComplete function call, the output manager also communicates the
HAL device from which the event originated, the ID of the event received, as well as any
additional information related to the event that was generated.

For example, a "Face Recognized" event also includes the ID of the face being
recognized. Below is an example of how the RGB LED HAL device responds to several
different events.

static hal_output_status_t
 HAL_OutputDev_RgbLed_InferComplete(const output_dev_t *dev,

 output_algo_source_t source,

 void *inferResult)
{
 vision_algo_result_t *visionAlgoResult =
 (vision_algo_result_t *)inferResult;
 hal_output_status_t error =
 kStatus_HAL_OutputSuccess;

 if (visionAlgoResult != NULL)
 {
 if (visionAlgoResult->id == kVisionAlgoID_OasisLite)
 {
 oasis_lite_result_t *result = &(visionAlgoResult-
>oasisLite);
 if (source == kOutputAlgoSource_Vision)
 {
 if ((result->face_recognized) && (result-
>face_id >= 0))
 {
 RGB_LED_SET_COLOR(kRGBLedColor_Green);
 }

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
127 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 else if (result->face_count)
 {
 RGB_LED_SET_COLOR(kRGBLedColor_Red);
 }
 else
 {
 RGB_LED_SET_COLOR(kRGBLedColor_Off);
 }
 }
 }

For more information about handling events, see Event handlers.

6.5.1.2.2 InputNotify events

Input events are events that indicate that input has been received by an input HAL
device.

Only input HAL devices can generate an "InputNotify" event.
However, all HAL devices
(with the exception of LPM, Flash, and Graphics devices)
are able to respond to an "InputNotify" event.

Examples of input events include:

• Button pressed
• Shell command received
• Wi-Fi/BLE input received

The event to generate for a given input is decided by the device which receives the input.

For example, the Push-Button device associates different events based on the different
button presses and the duration of those button presses, either long or short presses.

 switch (button)
 {
 case kSwitchID_1:
 if (pressType == kSwitchPressType_Long)
 {
 LOGD("Long PRESS Detected.");
 unsigned int totalUsageCount;
 FWK_LpmManager_RequestStatus(&totalUsageCount);

 FWK_LpmManager_EnableSleepMode(kLPMManagerStatus_SleepEnable);
 }
 break;

 case kSwitchID_2:
 if ((pressType == kSwitchPressType_Short) ||
 (pressType == kSwitchPressType_Long))
 {
 *receiverList = 1 <<
 kFWKTaskID_VisionAlgo;
 s_FaceRecEvent.eventBase.eventId =
 kEventFaceRecID_DelUser;
 s_FaceRecEvent.delFace.hasName = false;
 s_FaceRecEvent.delFace.hasID = false;
 *event =
 &s_FaceRecEvent;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
128 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 }
 break;

 case kSwitchID_3:
 if ((pressType == kSwitchPressType_Short) ||
 (pressType == kSwitchPressType_Long))
 {
 *receiverList = 1 <<
 kFWKTaskID_VisionAlgo;
 s_FaceRecEvent.eventBase.eventId =
 kEventFaceRecID_AddUser;
 s_FaceRecEvent.addFace.hasName = false;
 *event =
 &s_FaceRecEvent;
 }
 break;

 default:
 ret = kStatus_Fail;
 break;
 }

Alongside an input event, the HAL device from which the event originated may also relay
additional information . Depending on the event, this may correspond to the button that
was pressed, the shell command and args that were received, and so on.

In the above example, we can see that pressing the SW3 push-button generates a
kEventFaceRecID_AddUser event, specifying that there is no name for the face to
add.

A list of general events can be found in
 `hal_event_descriptor_common.h`, while a list of
 face recognition-specific events can be found in
 `hal_event_descriptor_face_rec.h`.
It is recommended that new events be added to the
 `hal_event_descriptor_common.h` file.

To respond to an "InputNotify" event, a HAL device must implement an inputNotify
handler function. When an "InputNotify" event is triggered, each manager which
receives the event attempts to call the inputNotify method of every one of its devices
(assuming the device has implemented an inputNotify method).

For more information regarding event handlers, see Event handlers.

6.5.2 Event handlers

Because events are the primary means by which the framework communicates between
devices, a mechanism to respond to those events is necessary for them to be useful.
Event handlers were created for this explicit purpose.

There are two kinds of event handler:

• Default Handlers
• App-specific Handlers

Event handlers, like other device operators, are passed via the device's operator struct to
its manager.

const static display_dev_operator_t s_DisplayDev_LcdifOps = {

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
129 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 .init = HAL_DisplayDev_LcdifRk024hh2_Init,
 .deinit = HAL_DisplayDev_LcdifRk024hh2_Uninit,
 .start = HAL_DisplayDev_LcdifRk024hh2_Start,
 .blit = HAL_DisplayDev_LcdifRk024hh2_Blit,
 .inputNotify = HAL_DisplayDev_LcdifRk024hh2_InputNotify,
};

Each HAL device may define its own handlers for any given event. For example, a
developer may want the RGB LEDs to turn green when a face is recognized, but have
the UI display a specific overlay for that same event. To do it, the RGB Output HAL
device and the UI Output HAL device can each implement an InferComplete handler
which will be called by their manager when an "InferComplete" event is received.

A HAL device does NOT have to implement an event handler for
 any specific event,
nor does it have to implement an `InputNotify` handler
 (applicable for most device types)
or an `InferComplete` handler (applicable only for output
 devices).

6.5.2.1 Default handlers

Default event handlers are exactly what their name would suggest -- the default
means by which a device handles events. A HAL device's default event handlers
(InputNotify, InferComplete, and so on) can be found in the HAL device driver
itself.

Nearly every device has a default handler implemented, although most devices will only
actually handle a few types of events.

Note: Devices that do not have a handler implemented can be extended to have one by
using a similar device as an example.

static hal_display_status_t
 HAL_DisplayDev_LcdifRk024hh2_InputNotify(const display_dev_t
 *receiver, void *data)
{
 hal_display_status_t error =
 kStatus_HAL_DisplaySuccess;
 event_base_t eventBase = *(event_base_t
 *)data;
 event_status_t event_response_status = kEventStatus_Ok;

 if (eventBase.eventId == kEventID_SetDisplayOutputSource)
 {
 event_common_t event = *(event_common_t
 *)data;
 s_DisplayDev_Lcdif.cap.srcFormat =
 event.displayOutput.displayOutputSource;
 s_NewBufferSet = true;
 if (eventBase.respond != NULL)
 {
 eventBase.respond(eventBase.eventId,
 &event.displayOutput, event_response_status, true);
 }
 LOGI("[display_dev_inputNotify]:
 kEventID_SetDisplayOutputSource devID %d, srcFormat %d",
 receiver->id,

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
130 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 event.displayOutput.displayOutputSource);
 }
 else if (eventBase.eventId ==
 kEventID_GetDisplayOutputSource)
 {
 display_output_event_t display;
 display.displayOutputSource =
 s_DisplayDev_Lcdif.cap.srcFormat;
 if (eventBase.respond != NULL)
 {
 eventBase.respond(eventBase.eventId, &display,
 event_response_status, true);
 }
 LOGI("[display_dev_inputNotify]:
 kEventID_GetDisplayOutputSource devID %d, srcFormat %d",
 receiver->id,
 display.displayOutputSource);
 }

 return error;
}

Some devices will not handle any events at all and will instead return 0 after performing
no action.

hal_camera_status_t HAL_CameraDev_CsiGc0308_InputNotify(const
 camera_dev_t *dev, void *data)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;

 return ret;
}

Alternatively, some devices which do not require an event handler may simply return a
NULL pointer instead.

const static display_dev_operator_t s_DisplayDev_LcdifOps = {
 .init = HAL_DisplayDev_Lcdifv2Rk055ah_Init,
 .deinit = HAL_DisplayDev_Lcdifv2Rk055ah_Deinit,
 .start = HAL_DisplayDev_Lcdifv2Rk055ah_Start,
 .blit = HAL_DisplayDev_Lcdifv2Rk055ah_Blit,
 .inputNotify = NULL,
};

Managers will not call the InputNotify or other handler if that handler points to NULL.

A device's default handler whether for InputNotify events or InferComplete or
otherwise can be overridden by an "app-specific" handler.

6.5.2.2 App-specific handlers

App-specific handlers are device handlers which are defined for a specific "app".

Not every device must implement an app-specific handler, but because default handlers
are implemented using WEAK functions, any device which has a default event handler can
have that handler overridden.

Note: Some devices may not have implemented their default handlers using `WEAK`
functions, but may be updated to do so in the future.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
131 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

For example, the IR + White LEDs may not require project-
specific handlers because they will always react the same way to a
kEventID_SetConfig/kEventID_GetConfig command. Alternatively, an application
may wish to override and/or extend that default event handling behavior so that, for
example, the LEDs increase in brightness when an "Add Face" event is received.

To help denote an app-specific handler, App-specific handlers start with the APP prefix.
If an app-specific handler for a device exists, it can be found in source/event_
handlers/{APP_NAME}_{DEV_TYPE}_{DEV_NAME}.c

7 Coffee machine

7.1 Introduction
This Coffee Machine application demonstrates the Coffee machine use-case with the
following core functionalities:

• Coffee machine GUI with touch support
• Local voice command to control the use cases of Coffee machine
• Face recognition to store user's coffee preferences automatically

For leveraging the full computational power of the RT107H, the image has been split into
two images that are running in parallel on the CM7 and CM4 cores. The Coffee Machine
CM7 acts as an AI block, handling all the machine learning operations, such as face
recognition and voice command. The operation has been optimized to obtain the best
performance on this type of MCU. The Coffee Machine CM4 holds the user interaction
(display, shell, buttons). The CM4 image is loaded into the memory by the CM7 core.

By default, i.MX RT117H boot from CM7. By fusing BT_CORE_SEL (Bit 12 in 0x960), the
chip switches to CM4 as the main core. For more info on this topic, check AN13264.

The Coffee Machine uses the following HW components and peripherals:

• 2 x PDM MIC - configured to work with 16 kHz sampling. The conversion to PCM is
done in hardware using the PDM microphone interface.

• 16 KHz raw data to RT117x MQS HW peripheral that generates PWM data output.
• External filtering and coupling.
• Analog audio amplifier
• MIPI GC2145 Camera - configured to work with 600x800 resolution.
• LCDIFV2 Rocktech RK055MHD091 - configured to work at the HD resolution of

1280x720

To change this configuration, check HAL code and Section 9.1

It uses NXP's below core technologies:

• LVGL-based GUI
• Local voice command algorithm
• Face recognition algorithm
• Dual core architecture based on multicore manager (mcmgr) middleware component.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
132 / 190

https://www.nxp.com/docs/en/application-note/AN13264.pdf

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

7.2 Architecture

Figure 29. Architecture diagram

7.3 Software block diagram

Figure 30. Software diagram

It includes two projects as below:

-Host CM7 project

-Slave CM4 project

Each project uses a two layer architecture containing the Framework + HAL layer, and
the Application layer. For the details, refer to the documentation on each project.

7.4 Coffee machine CM7
This Coffee Machine CM7 host project runs on the CM7 core.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
133 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

It is linked to flash with the combination of the CM4 project.

The CM7 was designed to focus on the vision and voice algorithms' processing to get the
best performance.

7.5 Main functionalities
• Vision algorithm
• Voice algorithm
• Audio playback
• Microphone stream input
• Multicore communication
• Littlefs format filesystem

7.6 Boot sequence
The "main" entry of this project is located in the ../coffee_machine/cm7/source/
sln_smart_tlhmi_cm7.cpp file. The basic boot-up flow is:

• Initialize board level
• Initialize framework
• Register HAL devices
• Start the framework
• Start the freeRTOS scheduler

int main(void)
{
 /* init the board */
 APP_BoardInit();

 ...

 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 vTaskStartScheduler();

 for (;;)
 {
 }
}

7.7 Board level initialization
The board-level initialization is implemented in the APP_BoardInit() entry which
is located in ../coffee_machine/cm7/source/sln_smart_tlhmi_cm7.cpp.
Below is the main flow:

• Relocate vector table into RAM

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
134 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Configure MPU, Clock, and Pins
• Debug console with hardware semaphore initialization
• System time stamp start
• Load resources from flash into the share memory region
• Multicore manager init and boot slave core

void APP_BoardInit(void)
{
 BOARD_RelocateVectorTableToRam();

 BOARD_ConfigMPU();
 BOARD_InitBootPins();
 BOARD_InitBootClocks();

 BOARD_InitDebugConsole();
 Time_Init(1);

 APP_LoadResource();

 /* Initialize the HW Semaphore */
 SEMA4_Init(BOARD_SEM4_BASE);

#if defined(ENABLE_MASTER) && ENABLE_MASTER
 /* Initialize MCMGR before calling its API */
 (void)MCMGR_Init();

 /* Boot Secondary core application */
 (void)MCMGR_StartCore(kMCMGR_Core1, (void *)(char
 *)CORE1_BOOT_ADDRESS, 0, kMCMGR_Start_Synchronous);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */
}

7.8 Framework managers
The below framework managers are enabled on the cm7 side with the following priorities:

• Vision algorithm manager - P3
• Voice algorithm manager - P3
• Audio processing manager - P2
• Input manager - P1
• Output manager - P4
• Multicore manager - P0
• Flash device manager

Where P0 is the highest priority and P4 is the least prioritized.

Note: Choosing the right priority for the manager is something that must be addressed
based on the requirements. Our recommendation is to keep Vision manager equal to or
less than Voice manager, or the audio sample can be lost.

Refer to the framework documentation (../framework/docs) for a detailed description
of these framework managers.

Note: To prepare the environment for other framework managers, initialize the file
system and application configuration first.

int APP_InitFramework(void)

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
135 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

{
 int ret = 0;

 HAL_FLASH_DEV_REGISTER(Littlefs, ret);
 HAL_OutputDev_SmartTlhmiConfig_Init();

 FWK_MANAGER_INIT(VisionAlgoManager, ret);
 FWK_MANAGER_INIT(VoiceAlgoManager, ret);
 FWK_MANAGER_INIT(AudioProcessing, ret);
 FWK_MANAGER_INIT(OutputManager, ret);
 FWK_MANAGER_INIT(InputManager, ret);
#if defined(ENABLE_MASTER) && ENABLE_MASTER
 FWK_MANAGER_INIT(MulticoreManager, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

 return ret;
}

int APP_StartFramework(void)
{
 int ret = 0;

 FWK_MANAGER_START(VisionAlgoManager,
 VISION_ALGO_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(OutputManager,
 OUTPUT_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(AudioProcessing,
 AUDIO_PROCESSING_TASK_PRIORITY, ret);
 FWK_MANAGER_START(InputManager,
 INPUT_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(VoiceAlgoManager,
 VOICE_ALGO_MANAGER_TASK_PRIORITY, ret);
#if defined(ENABLE_MASTER) && ENABLE_MASTER
 FWK_MANAGER_START(MulticoreManager,
 MULTICORE_MANAGER_TASK_PRIORITY, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

 return ret;
}

7.9 Framework HAL devices
The enabled HAL devices are configured in the ../coffee_machine/cm7/board/
board_define.h file as shown below:

#define ENABLE_INPUT_DEV_PdmMic
#define ENABLE_AUDIO_PROCESSING_DEV_Afe
#define ENABLE_DSMT_ASR
#define ENABLE_OUTPUT_DEV_MqsAudio
#define ENABLE_OUTPUT_DEV_SmartTlhmiConfig
#define ENABLE_VISIONALGO_DEV_Oasis_CoffeeMachine
#define ENABLE_FLASH_DEV_Littlefs
#define ENABLE_FACEDB
#define USE_CAMERA_MipiGc2145
#if defined(ENABLE_MASTER) && ENABLE_MASTER
#define ENABLE_MULTICORE_DEV_MessageBuffer
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
136 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The registration of the enabled HAL devices is implemented in the
APP_RegisterHalDevices(...) function which is located in ../coffee_machine/
cm7/source/sln_smart_tlhmi_cm7.cpp:

Note: APP_RegisterHalDevices(...) must be called after the framework
initialization APP_InitFramework(...) and before framework startup
APP_StartFramework(...).

int APP_RegisterHalDevices(void)
{
 int ret = 0;

 HAL_OUTPUT_DEV_REGISTER(MqsAudio, ret);
 HAL_AUDIO_PROCESSING_DEV_REGISTER(Afe, ret);
 HAL_INPUT_DEV_REGISTER(PdmMic, ret);
 HAL_VOICEALGO_DEV_REGISTER(Asr, ret);
 HAL_VALGO_DEV_REGISTER(OasisCoffeeMachine, ret);
#if defined(ENABLE_MASTER) && ENABLE_MASTER
 HAL_MULTICORE_DEV_REGISTER(MessageBuffer, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */
 HAL_INPUT_DEV_REGISTER(WiFiAWAM510, ret);

 return ret;
}

7.10 Logging
Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find
the detailed document located in ../coffee_machine/cm7/freertos/libraries/
logging/README.md.

The CM7 and CM4 share the low-level LPUART12 peripheral for the logging output. The
hardware semaphore mechanism is used to guarantee the concurrence access of the
LPUART12 peripheral. They share a low-level timer to get the unified timestamp of the
logging information.

7.10.1 Log Task Init

The application calls the xLoggingTaskInitialize(...) API to create the logging
task in the main() entry of this project and is located in ../coffee_machine/cm7/
source/sln_smart_tlhmi_cm7.cpp:

xLoggingTaskInitialize(LOGGING_TASK_STACK_SIZE,
 LOGGING_TASK_PRIORITY, LOGGING_QUEUE_LENGTH);

7.10.2 Log Macros

There are four kinds of logging that can be used in both cm7 and cm4, which you can
find in ../framework/inc/fwk_log.h

#ifndef LOGV
#define LOGV(fmt, args...) {implement...}
...
#endif

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
137 / 190

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

#ifndef LOGD
#define LOGD(fmt, args...) {implement...}
#endif

#ifndef LOGI
#define LOGI(fmt, args...) {implement...}
#endif

#ifndef LOGE
#define LOGE(fmt, args...) {implement...}
#endif

7.11 Coffee Machine database
The Coffee Machine application uses framework flash operations with the low-level littlefs
file system to store the recognized user-faces database and user coffee information.
The detailed usage API is located in files ../framework/hal/vision/hal_sln_
facedb.h and ../coffee_machine/cm7/source/hal_sln_coffeedb.h. The
face database and user coffee information database entry are bound together using the
user id. The user id is a unique identifier on one device.

To make it easier for users to add their database with personal attributes, we split the
face database from user database. The user should create something similar with
hal_sln_coffeedb.h and add attributes like in the coffee_attribute_t structure.

7.11.1 Face recognition database usage

g_facedb_ops handles all kinds of face database operations.

typedef struct _facedb_ops
{
 facedb_status_t (*init)(uint16_t featureSize);
 facedb_status_t (*saveFace)(void);
 facedb_status_t (*addFace)(uint16_t id, char *name, void
 *face, int size);
 facedb_status_t (*delFaceWithId)(uint16_t id);
 facedb_status_t (*delFaceWithName)(char *name);
 facedb_status_t (*updNameWithId)(uint16_t id, char *name);
 facedb_status_t (*updFaceWithId)(uint16_t id, char *name,
 void *face, int size);
 facedb_status_t (*getFaceWithId)(uint16_t id, void
 **pFace);
 facedb_status_t (*getIdsAndFaces)(uint16_t *face_ids, void
 **pFace);
 facedb_status_t (*getIdWithName)(char *name, uint16_t *id);
 facedb_status_t (*genId)(uint16_t *new_id);
 facedb_status_t (*getIds)(uint16_t *face_ids);
 bool (*getSaveStatus)(uint16_t id);
 int (*getFaceCount)(void);
 char *(*getNameWithId)(uint16_t id);
} facedb_ops_t;

extern const facedb_ops_t g_facedb_ops;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
138 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

7.11.2 User coffee information database usage

g_coffedb_ops handles all kinds of user information database operations.

ypedef enum _coffee_type
{
 Coffee_Espresso,
 Coffee_Americano,
 Coffee_Cappuccino,
 Caffee_Latte,
} coffee_type_t;

typedef enum _coffee_size
{
 Coffee_Small,
 Coffee_Medium,
 Coffee_Large,
} coffee_size_t;

typedef enum _coffee_strength
{
 Coffee_Soft,
 Coffee_Mild,
 Coffee_Strong,
} coffee_strength_t;

typedef struct _coffee_attribute
{
 uint16_t id;
 uint8_t type;
 uint8_t size;
 uint8_t strength;
 uint8_t reserved[16];
} coffee_attribute_t;

typedef struct _coffeedb_ops
{
 coffeedb_status_t (*init)(void);
 coffeedb_status_t (*deinit)(void);
 coffeedb_status_t (*addWithId)(uint16_t id,
 coffee_attribute_t *attr);
 coffeedb_status_t (*delWithId)(uint16_t id);
 coffeedb_status_t (*updWithId)(uint16_t id,
 coffee_attribute_t *attr);
 coffeedb_status_t (*getWithId)(uint16_t id,
 coffee_attribute_t *attr);
} coffeedb_ops_t;

extern const coffeedb_ops_t g_coffedb_ops;

7.12 Coffee machine CM4
This Coffee Machine CM4 slave project runs on the CM4 core.

It is linked to SDRAM and is embedded into the CM7 project.

The CM7 project handles the loading of this CM4 project into SDRAM and launching it.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
139 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

7.13 Main functionalities
• Main GUI based on LVGL with Vglite graphics acceleration
• Camera with 2D PxP graphics acceleration
• Display for the camera preview and LVGL GUI
• USB shell
• LED indicator
• Multicore with messaging and shared memory communication

7.14 LVGL GUI screens and widgets
All the LVGL GUI screens and widgets are generated with NXP's GUI Guider tools.

Refer the GUI Guider home page for more information.

7.15 LVGL and Vglite library
The LVGL and Vglite components are directly ported from RT1170 SDK and we did not
modify them in our solution.

Also the code for the LVGL GUI screens and widgets, which are generated by NXP's GUI
guider, is not frequently changed.

To speed up the building of the whole project, we moved these components into one
static library and linked the library into the CM4 application project.

This LVGL and Vglite library project is located in the coffee_machine/
lvgl_vglite_lib folder.

7.16 Boot sequence
Below is the core boot up flow:

• Board level initialization
• Framework initialization
• HAL devices registration
• Framework startup
• FreeRTOS scheduler startup

The main() entry of this project is located in ../coffee_machine/cm4/source/
sln_smart_tlhmi_cm4.cpp file:

int main(void)
{
 /* init the board */
 APP_BoardInit();
 ...
 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 vTaskStartScheduler();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
140 / 190

https://www.nxp.com/design/software/development-software/gui-guider

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 for (;;)
 {
 } /* should never get here */
 return 0;
}

7.17 Board level initialization
The board level initialization is implemented in the APP_BoardInit() entry which is
located in the ../coffee_machine/cm4/source/sln_smart_tlhmi_cm4.cpp file.

Below is the main flow:

• MPU, Clock, and Pins configuration
• Multicore manager init and slave startup
• Peripherals initialization

void APP_BoardInit()
{
 BOARD_ConfigMPU();
 BOARD_BootClockRUN();
 BOARD_InitBootPins();

#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 uint32_t startupData, i;
 mcmgr_status_t status;
 (void)MCMGR_Init();
 /* Get the startup data */
 do
 {
 status = MCMGR_GetStartupData(&startupData);
 } while (status != kStatus_MCMGR_Success);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 ...
 BOARD_MIPIPanelTouch_I2C_Init();
 BOARD_InitEDMA();
 Time_Init(1);
}

7.18 LVGL image resource and icon resource loading
All the LVGL images, data, and icon data are merged into one continuous binary block
with the 64 Bytes aligned of each image/icon.

The cm7 loads this resource binary block into the dedicated memory region
res_sh_mem.

The following two functions load each of these LVGL images and icons from this region
during the boot.

Setup the LVGL images is implemented in ../coffee_machine/cm4/generated/
gui_guider.c:

void setup_imgs(unsigned char *base)
{
 brewing_animimg_brewingf01.data = (base + 0);
 brewing_animimg_brewingf02.data = (base + 120000);
 brewing_animimg_brewingf03.data = (base + 240000);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
141 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

}

Load the icons (../framework/hal/output/hal_output_ui_coffee_
machine.c):

void LoadIcons(void *base)
{
 s_Icons[ICON_PROGRESS_BAR] = (base + 0);

 s_Icons[ICON_VIRTUAL_FACE_BLUE] = (base + 6720);
 s_Icons[ICON_VIRTUAL_FACE_GREEN] = (base + 364608);
 s_Icons[ICON_VIRTUAL_FACE_RED] = (base + 722496);
 // Icons Total: 0x00107c40 1080384
}

7.19 Framework managers
The below framework managers are enabled on the cm4 side with the following priorities:

• Low-power manager
• Camera manager - P2
• Display manager - P2
• Multicore manager - P0
• Output manager - P1
• Input manager - P2

Where P0 is the highest priority and P3 is the least prioritized.

For a more detailed description of these framework managers, refer to the framework
documentation (../framework/docs/introduction.md).

Framework initialization (../coffee_machine/cm4/source/sln_smart_tlhmi_
cm4.cpp):

int APP_InitFramework(void)
{
 int ret = 0;

 FWK_MANAGER_INIT(LpmManager, ret);
 FWK_MANAGER_INIT(CameraManager, ret);
 FWK_MANAGER_INIT(DisplayManager, ret);
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 FWK_MANAGER_INIT(MulticoreManager, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 FWK_MANAGER_INIT(OutputManager, ret);
 FWK_MANAGER_INIT(InputManager, ret);

 return ret;
}

Framework startup (../coffee_machine/cm4/source/sln_smart_tlhmi_
cm4.cpp):

int APP_StartFramework(void)
{
 int ret = 0;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
142 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 FWK_MANAGER_START(LpmManager, 0, ret);
 FWK_MANAGER_START(CameraManager,
 CAMERA_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(DisplayManager,
 DISPLAY_MANAGER_TASK_PRIORITY, ret);
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 FWK_MANAGER_START(MulticoreManager,
 MULTICORE_MANAGER_TASK_PRIORITY, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 FWK_MANAGER_START(OutputManager,
 OUTPUT_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(InputManager,
 INPUT_MANAGER_TASK_PRIORITY, ret);

 return ret;
}

7.20 Framework HAL devices
The enabled HAL devices are configured in the ../coffee_machine/cm4/board/
board_define.h file as shown below:

#define ENABLE_GFX_DEV_Pxp
#define ENABLE_DISPLAY_DEV_LVGLCoffeeMachine
#define ENABLE_CAMERA_DEV_MipiGc2145
#define ENABLE_OUTPUT_DEV_RgbLed
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
#define ENABLE_MULTICORE_DEV_MessageBuffer
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
#define ENABLE_INPUT_DEV_ShellUsb
#define ENABLE_OUTPUT_DEV_UiCoffeeMachine
#define ENABLE_LPM_DEV_Standby

The registration of the enabled HAL devices is implemented in the
APP_RegisterHalDevices(...) function which is located in ../coffee_machine/
cm4/source/sln_smart_tlhmi_cm4.cpp:

Note: APP_RegisterHalDevices(...) must be called after the framework
initialization APP_InitFramework(...) and before framework startup
APP_StartFramework(...).

int APP_RegisterHalDevices(void)
{
 int ret = 0;

 HAL_GFX_DEV_REGISTER(Pxp, ret);
 HAL_DISPLAY_DEV_REGISTER(LVGLCoffeeMachine, ret);
 HAL_CAMERA_DEV_REGISTER(MipiGc2145, ret);
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 HAL_MULTICORE_DEV_REGISTER(MessageBuffer, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 HAL_OUTPUT_DEV_REGISTER(RgbLed, ret);
 HAL_INPUT_DEV_REGISTER(ShellUsb, ret);
 HAL_OUTPUT_DEV_REGISTER(UiCoffeeMachine, ret);
 HAL_LPM_DEV_REGISTER(Standby, ret);
#ifdef ENABLE_OUTPUT_DEV_AudioDump
 HAL_OUTPUT_DEV_REGISTER(AudioDump, ret);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
143 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

#endif /* ENABLE_OUTPUT_DEV_AudioDump */
 /* Add new HAL device registrations here */

 return ret;
}

7.20.1 MipiGc2145 camera HAL device

This HAL device driver is located in ../framework/hal/camera/hal_camera_
mipi_gc2145.c.

Below is the configuration of this camera device located in ../coffee_machine/cm4/
board/board_define.h.

#ifdef ENABLE_CAMERA_DEV_MipiGc2145
#define CAMERA_DEV_MipiGc2145_BUFFER_COUNT 2
#define CAMERA_DEV_MipiGc2145_HEIGHT 600 // 720
#define CAMERA_DEV_MipiGc2145_WIDTH 800 // 1280
#define CAMERA_DEV_MipiGc2145_LEFT 0
#define CAMERA_DEV_MipiGc2145_TOP 0
#define CAMERA_DEV_MipiGc2145_RIGHT 799 // 1279
#define CAMERA_DEV_MipiGc2145_BOTTOM 599 // 719
#define CAMERA_DEV_MipiGc2145_ROTATE kCWRotateDegree_0
#define CAMERA_DEV_MipiGc2145_FLIP kFlipMode_None
#define CAMERA_DEV_MipiGc2145_SWAPBYTE 0
#define CAMERA_DEV_MipiGc2145_FORMAT
 kPixelFormat_YUV1P444_RGB
#define CAMERA_DEV_MipiGc2145_BPP 4
#endif /* ENABLE_CAMERA_DEV_MipiGc2145 */

7.20.2 PxP graphics HAL device

This HAL device driver is located in ../framework/hal/misc/hal_graphics_
pxp.c.

It represents the 2D graphics device to handle the 2D graphics operations.

7.20.3 LVGLCoffeeMachine display HAL device

This HAL device driver is located in ../framework/hal/display/hal_display_
lvgl_coffeemachine.c.

Below is the configuration of this display device located in ../coffee_machine/cm4/
board/board_define.h.

#ifdef ENABLE_DISPLAY_DEV_LVGLCoffeeMachine
#define DISPLAY_DEV_LVGLCoffeeMachine_BUFFER_COUNT 1
#define DISPLAY_DEV_LVGLCoffeeMachine_HEIGHT 640
#define DISPLAY_DEV_LVGLCoffeeMachine_WIDTH 480
#define DISPLAY_DEV_LVGLCoffeeMachine_StartX 80
#define DISPLAY_DEV_LVGLCoffeeMachine_StartY 50
#define DISPLAY_DEV_LVGLCoffeeMachine_LEFT 0
#define DISPLAY_DEV_LVGLCoffeeMachine_TOP 0
#define DISPLAY_DEV_LVGLCoffeeMachine_RIGHT 479
#define DISPLAY_DEV_LVGLCoffeeMachine_BOTTOM 639
#define DISPLAY_DEV_LVGLCoffeeMachine_ROTATE
 kCWRotateDegree_270

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
144 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

#define DISPLAY_DEV_LVGLCoffeeMachine_FORMAT
 kPixelFormat_RGB565
#ifdef ENABLE_CAMERA_DEV_MipiGc2145
#define DISPLAY_DEV_LVGLCoffeeMachine_SRCFORMAT
 kPixelFormat_YUV1P444_RGB
#else
#define DISPLAY_DEV_LVGLCoffeeMachine_SRCFORMAT
 kPixelFormat_UYVY1P422_RGB
#endif /* ENABLE_CAMERA_DEV_MipiGc2145 */
#define DISPLAY_DEV_LVGLCoffeeMachine_BPP 2
#endif /* ENABLE_DisplayDev_LVGLCoffeeMachine */

This LVGLCoffeeMachine-display-HAL-device launches the main LVGL task loop for the
UI flashing.

static void _LvglTask(void *param)
{
#if LV_USE_LOG
 lv_log_register_print_cb(_PrintCb);
#endif /* LV_USE_LOG */

 lv_port_pre_init();
 lv_init();
 lv_port_disp_init();
 lv_port_indev_init();
 g_LvglInitialized = true;

 setup_imgs((unsigned char *)APP_LVGL_IMGS_BASE);
 setup_ui(&guider_ui);
 events_init(&guider_ui);
 custom_init(&guider_ui);
 while (1)
 {
 lv_task_handler();
 vTaskDelay(pdMS_TO_TICKS(5));
 }
}

It also handles the camera preview request from the framework in HAL_DisplayDev_
LVGLCoffeeMachine_Blit function:

hal_display_status_t
 HAL_DisplayDev_LVGLCoffeeMachine_Blit(const display_dev_t
 *dev, void *frame, int width, int height)
{
 hal_display_status_t ret = kStatus_HAL_DisplaySuccess;
 LOGI("++HAL_DisplayDev_LVGLCoffeeMachine_Blit");

 // Show the new frame.
 void *lcdFrameAddr = s_LcdBuffer[0];
 static int camerPreviewLayerOn = 0;

 // enable camera preview layer in screen with camera
 preview.
 if (lv_scr_act() == guider_ui.home && g_PreviewMode ==
 PREVIEW_MODE_CAMERA)
 {
 if (camerPreviewLayerOn == 0)
 {

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
145 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 lv_enable_camera_preview(lcdFrameAddr, true);
 camerPreviewLayerOn = 1;
 }
 }
 else
 {
 // disable camera preview layer in screen without
 camera preview.
 if (camerPreviewLayerOn == 1)
 {
 camerPreviewLayerOn = 0;
 lv_enable_camera_preview(lcdFrameAddr, false);
 }
 }

 LOGI("--HAL_DisplayDev_LVGLCoffeeMachine_Blit");
 return ret;
}

7.20.4 UiCoffeeMachine UI output HAL device

This HAL device driver is located in ../framework/hal/output/hal_output_ui_
coffee_machine.c.

The whole UI state machine is driven by this output HAL device with the below event
sources:

7.20.4.1 LVGL touch events

All the event callbacks of the LVGL widget are implemented in ../coffee_machine/
cm4/generated/events_init.c.

7.20.4.2 Vision and Voice algorithm inference result

The vision and voice inference result is notified by the output manager with below HAL_
OutputDev_UiCoffeeMachine_InferComplete operator:

static hal_output_status_t
 HAL_OutputDev_UiCoffeeMachine_InferComplete(const output_dev_t
 *dev,output_algo_source_t source,void *inferResult)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;

 if (inferResult == NULL)
 {
 return error;
 }

 coffee_machine_screen_id_t currentScreenId =
 get_current_screen();

 if (currentScreenId == SCR_INVALID)
 {
 return error;
 }

 if (source == kOutputAlgoSource_Vision)
 {

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
146 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 _InferComplete_Vision(dev, inferResult,
 currentScreenId);
 }
 else if (source == kOutputAlgoSource_Voice)
 {
 _InferComplete_Voice(dev, inferResult,
 currentScreenId);
 }

 return error;
}

7.20.5 RgbLed output HAL device

This HAL device driver is located in ../framework/hal/output/hal_output_rgb_
led.c.

It flashes the RGB led with different pattern according
to the HAL_OutputDev_RgbLed_InferComplete or
HAL_OutputDev_RgbLed_InputNotify operators below:

static hal_output_status_t
 HAL_OutputDev_RgbLed_InferComplete(const output_dev_t *dev,
 output_algo_source_t source, void *inferResult)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 uint32_t timerOn = 0;

 _SetLedColor(APP_OutputDev_RgbLed_InferCompleteDecode(source,
 inferResult, &timerOn));

 if (timerOn != 0)
 {
 xTimerChangePeriod(OutputRgbTimer,
 pdMS_TO_TICKS(timerOn), 0);
 }
 return error;
}

static hal_output_status_t
 HAL_OutputDev_RgbLed_InputNotify(const output_dev_t *dev, void
 *data)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;

 _SetLedColor(APP_OutputDev_RgbLed_InputNotifyDecode(data));

 return error;
}

7.20.6 MessageBuffer multicore HAL device

This HAL device driver is located in../framework/hal/misc/hal_multicore_
messageBuffer.c.

It handles the multicore messaging based on the multicore manager message buffer
mechanism.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
147 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Refer the ../framework/docs/hal_devices/multicore.md file in the framework
documentation for the detailed description of this HAL device.

7.20.7 ShellUsb input HAL device

This HAL device driver is located in ../framework/hal/input/hal_input_shell_
cdc.c.

It populates one USB CDC device and generates the shell.

This driver only includes one weak shell command registration function as below:

__attribute__((weak)) void
 APP_InputDev_Shell_RegisterShellCommands(shell_handle_t
 shellContextHandle, input_dev_t shellDev,
 input_dev_callback_t callback)
{
}

The application must overwrite this function to register the exactly shell commands.

The implementation of this overwritten function for the Coffee Machine application is
in ../coffee_machine/cm4/source/event_handlers/smart_tlhmi_input_
shell_commands.c:

void APP_InputDev_Shell_RegisterShellCommands(shell_handle_t
 shellContextHandle, input_dev_t *shellDev,
 input_dev_callback_t callback)
{
 s_InputCallback = callback;
 s_SourceShell = shellDev;
 s_ShellHandle = shellContextHandle;
 s_FrameworkRequest.respond = _FrameworkEventsHandler;

 if (s_ThingName == NULL)
 {
 APP_GetHexUniqueID(&s_ThingName);
 }

 SHELL_RegisterCommand(shellContextHandle,
 SHELL_COMMAND(version));
 ...
}

7.20.8 Standby LPM HAL device

This HAL device driver is located in ../framework/hal/misc/hal_lpm_
standby.c.

Refer to ../framework/docs/hal_devices/low_power.md in the framework
documentation for the detailed description of this LPM device.

This standby HAL device implements the standby mode of this application. The backlight
is turned off and the main display layer is disabled.

static void _EnterStandbyMode(void)
{
 LOGD("[Standby] Enter standby mode");

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
148 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 BOARD_BacklightControl(0);
 lv_enable_ui_preview(0);
}

7.21 Logging
Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find
the detailed document ../coffee_machine/cm4/freertos/libraries/logging/
README.md.

The CM7 and CM4 share the low-level LPUART12 peripheral for the logging output.
The hardware semaphore mechanism is used to guarantee the concurrence access of
theLPUART12 peripheral.

They share a low-level timer to get the unified timestamp of the logging information.

7.21.1 Logging Task Init

Application calls xLoggingTaskInitialize(...) API to create the logging task in
the main() entry of this project is located in the ../coffee_machine/cm4/source/
sln_smart_tlhmi_cm4.cpp file:

xLoggingTaskInitialize(LOGGING_TASK_STACK_SIZE,
 LOGGING_TASK_PRIORITY, LOGGING_QUEUE_LENGTH);

7.21.2 Logging Macros

The logging Macros are defined in ../framework/inc/fwk_log.h.

All the modules must use these unified logging Macros for logging.

#ifndef LOGV
#define LOGV(fmt, args...) {implement...}
...
#endif

#ifndef LOGD
#define LOGD(fmt, args...) {implement...}
#endif

#ifndef LOGI
#define LOGI(fmt, args...) {implement...}
#endif

#ifndef LOGE
#define LOGE(fmt, args...) {implement...}
#endif

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
149 / 190

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

8 Elevator

8.1 Introduction
This Elevator application demonstrates the elevator use-case with the core
functionalities:

• Elevator GUI with touch support
• Local voice command to control the use cases of the elevator
• Face recognition to store user's floor information automatically

For leveraging the full computational power of the RT107H, the image has been split
into two images that are running in parallel on the CM7 and CM4 cores. The Elevator
CM7 acts as an AI block, handling all the machine learning operations, such as face
recognition and voice command. The operation has been optimized to obtain the best
performance on this type of MCU. Elevator CM4 holds the user interaction (display, shell,
buttons). The CM4 image is loaded into memory by the CM7 core.

By default, i.MX RT117H is boot from CM7. By fusing BT_CORE_SEL (Bit 12 in 0x960),
the chip switches to CM4 as the main core. For more information on this topic, check
AN13264.

The Elevator Application uses the following HW components and peripherals:

• 2 x PDM MIC - configured to work with 16 kHz sampling. The conversion to PCM is
done in hardware using the PDM microphone interface.

• 16 KHz raw data to RT117x MQS HW peripheral that generates PWM data output.
• External filtering and coupling.
• Analog audio amplifier.
• MIPI GC2145 Camera - configured to work at 600x800 resolution.
• LCDIFV2 Rocktech RK055MHD091 - configured to work at HD resolution of 1280x720.

To change this configuration, check HAL code and Section 9.1

8.2 Architecture

Figure 31. Architecture diagram

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
150 / 190

https://www.nxp.com/docs/en/application-note/AN13264.pdf

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

8.3 Software block diagram

Figure 32. Software diagram

It includes two projects as below:

-Host CM7 project

-Slave CM4 project

Each project uses two-layer architecture containing the Framework + HAL layer, and the
Application layer. For more information, refer to the documentation on each project..

8.4 Elevator CM7
This Elevator CM7 host project runs on the CM7 core. It is linked to flash with the
combination of the CM4 project. CM7 was designed to focus on the vision and voice
algorithms' processing to get the best performance.

8.5 Main functionalities
• Vision algorithm
• Voice algorithm
• Audio playback
• Microphone stream input
• Multicore communication
• Elevator database

8.6 Boot sequence
The "main" entry of this project is in the ../elevator/CM7/source/sln_smart_
tlhmi_CM7.cpp file. The basic boot up flow is:

• Initialize board level
• Initialize framework
• Register HAL devices
• Start the framework

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
151 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Start the freeRTOS scheduler

int main(void)
{
 /* init the board */
 APP_BoardInit();

 ...

 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 vTaskStartScheduler();

 for (;;)
 {
 }
}

8.7 Board level initialization
The board-level initialization is implemented in the APP_BoardInit() entry which is
located in ../elevator/CM7/source/sln_smart_tlhmi_CM7.cpp. Below is the
main flow:

• Relocate vector table into RAM
• Configure MPU, Clock, and Pins
• Debug console with hardware semaphore initialization
• System time stamp start
• Load resource from flash into share memory region
• Multicore manager init and boot slave core

void APP_BoardInit(void)
{
 BOARD_RelocateVectorTableToRam();

 BOARD_ConfigMPU();
 BOARD_InitBootPins();
 BOARD_InitBootClocks();

 BOARD_InitDebugConsole();
 Time_Init(1);

 APP_LoadResource();

 /* Initialize the HW Semaphore */
 SEMA4_Init(BOARD_SEM4_BASE);

#if defined(ENABLE_MASTER) && ENABLE_MASTER
 /* Initialize MCMGR before calling its API */
 (void)MCMGR_Init();

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
152 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 /* Boot Secondary core application */
 (void)MCMGR_StartCore(kMCMGR_Core1, (void *)(char
 *)CORE1_BOOT_ADDRESS, 0, kMCMGR_Start_Synchronous);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */
}

8.8 Framework managers
The below framework managers are enabled in the CM7 side with the following priorities:

• Vision algorithm manager - P3
• Voice algorithm manager - P3
• Audio processing manager - P2
• Input manager - P1
• Output manager - P4
• Multicore manager - P0

Refer to the framework documentation (../framework/docs) for a detailed description
of these framework managers.

Note: To prepare the environment for other framework managers, initialize the file
system and application configuration first.

int APP_InitFramework(void)
{
 int ret = 0;

 HAL_FLASH_DEV_REGISTER(Littlefs, ret);
 HAL_OutputDev_SmartTlhmiConfig_Init();

 FWK_MANAGER_INIT(VisionAlgoManager, ret);
 FWK_MANAGER_INIT(VoiceAlgoManager, ret);
 FWK_MANAGER_INIT(AudioProcessing, ret);
 FWK_MANAGER_INIT(OutputManager, ret);
 FWK_MANAGER_INIT(InputManager, ret);
#if defined(ENABLE_MASTER) && ENABLE_MASTER
 FWK_MANAGER_INIT(MulticoreManager, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

 return ret;
}

int APP_RegisterHalDevices(void)
{
 int ret = 0;

 HAL_OUTPUT_DEV_REGISTER(MqsAudio, ret);
 HAL_AUDIO_PROCESSING_DEV_REGISTER(Afe, ret);
 HAL_INPUT_DEV_REGISTER(PdmMic, ret);
 HAL_VOICEALGO_DEV_REGISTER(Asr, ret);
 HAL_VALGO_DEV_REGISTER(OasisElevator, ret);
#if defined(ENABLE_MASTER) && ENABLE_MASTER
 HAL_MULTICORE_DEV_REGISTER(MessageBuffer, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

 return ret;
}

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
153 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

int APP_StartFramework(void)
{
 int ret = 0;

 FWK_MANAGER_START(VisionAlgoManager,
 VISION_ALGO_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(OutputManager,
 OUTPUT_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(AudioProcessing,
 AUDIO_PROCESSING_TASK_PRIORITY, ret);
 FWK_MANAGER_START(InputManager,
 INPUT_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(VoiceAlgoManager,
 VOICE_ALGO_MANAGER_TASK_PRIORITY, ret);
 // FWK_MANAGER_START(CameraManager,
 CAMERA_MANAGER_TASK_PRIORITY, ret);
#if defined(ENABLE_MASTER) && ENABLE_MASTER
 FWK_MANAGER_START(MulticoreManager,
 MULTICORE_MANAGER_TASK_PRIORITY, ret);
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

 return ret;
}

8.9 Framework HAL devices
The enabled HAL devices are configured in the ../elevator/CM7/board/board_
define.h file as shown below:

#define ENABLE_INPUT_DEV_PdmMic
#define ENABLE_AUDIO_PROCESSING_DEV_Afe
#define ENABLE_DSMT_ASR
#define ENABLE_OUTPUT_DEV_MqsAudio
#define ENABLE_OUTPUT_DEV_SmartTlhmiConfig
#if defined(ENABLE_MASTER) && ENABLE_MASTER
#define ENABLE_MULTICORE_DEV_MessageBuffer
#endif /* defined(ENABLE_MASTER) && ENABLE_MASTER */

8.10 Logging
Both CM7 and CM4 projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find
the detailed document ../coffee_machine/cm7/freertos/libraries/logging/
README.md.

The CM7 and CM4 share low-level LPUART12 peripheral for the logging output. The
hardware semaphore mechanism is used to guarantee the concurrence access of
LPUART12 peripheral. And they also share low-level timer to get the unified timestamp of
the logging information.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
154 / 190

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

8.10.1 Log task init

The application calls the xLoggingTaskInitialize(...) API to create the logging
task in the main() entry of this project and is located in elevator/cm7/source/sln_
smart_tlhmi_cm7.cpp:

xLoggingTaskInitialize(LOGGING_TASK_STACK_SIZE,
 LOGGING_TASK_PRIORITY, LOGGING_QUEUE_LENGTH);

8.10.2 Log usage

There are four kinds of logging that can use both CM7 and CM4, that you can find in ../
framework/inc/fwk_log.h.

#ifndef LOGV
#define LOGV(fmt, args...) {implement...}
...
#endif

#ifndef LOGD
#define LOGD(fmt, args...) {implement...}
#endif

#ifndef LOGI
#define LOGI(fmt, args...) {implement...}
#endif

#ifndef LOGE
#define LOGE(fmt, args...) {implement...}
#endif

8.11 Elevator database
The Elevator application uses framework flash operation with low-level littlefs file system
to store the recognized user-faces database and user elevator information. The detailed
usage API is located in files ../framework/vision/hal_sln_facedb.h and ../
source/hal_sln_elevatordb.h. The face database and elevator user information
database entry are bound together using user id. The user id is a unique identifier on one
device.

To make it easier for users to add their own database with personal attributes, we split
the face database from user database. The user must create something similar with
hal_sln_elevator.h and add attributes like in the elevator_attr_t structure.
If the purpose is to extend the current elevator database, use a reserved field from the
structure below.

8.11.1 Face recognize database usage

g_facedb_ops handles all kinds of face database operation.

typedef struct _facedb_ops
{
 facedb_status_t (*init)(uint16_t featureSize);
 facedb_status_t (*saveFace)(void);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
155 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 facedb_status_t (*addFace)(uint16_t id, char *name, void
 *face, int size);
 facedb_status_t (*delFaceWithId)(uint16_t id);
 facedb_status_t (*delFaceWithName)(char *name);
 facedb_status_t (*updNameWithId)(uint16_t id, char *name);
 facedb_status_t (*updFaceWithId)(uint16_t id, char *name,
 void *face, int size);
 facedb_status_t (*getFaceWithId)(uint16_t id, void
 **pFace);
 facedb_status_t (*getIdsAndFaces)(uint16_t *face_ids, void
 **pFace);
 facedb_status_t (*getIdWithName)(char *name, uint16_t *id);
 facedb_status_t (*genId)(uint16_t *new_id);
 facedb_status_t (*getIds)(uint16_t *face_ids);
 bool (*getSaveStatus)(uint16_t id);
 int (*getFaceCount)(void);
 char *(*getNameWithId)(uint16_t id);
} facedb_ops_t;

extern const facedb_ops_t g_facedb_ops;

8.11.2 Elevator user information database usage

g_elevatordb_ops handles all kinds of user information database operation.

typedef struct _elevator_attribute
{
 uint16_t id;
 uint32_t floor;
 uint8_t reserved[16];
} elevator_attr_t;

typedef struct _elevatordb_ops
{
 elevatordb_status_t (*init)(void);
 elevatordb_status_t (*deinit)(void);
 elevatordb_status_t (*addWithId)(uint16_t id,
 elevator_attr_t *attr);
 elevatordb_status_t (*delWithId)(uint16_t id);
 elevatordb_status_t (*updWithId)(uint16_t id,
 elevator_attr_t *attr);
 elevatordb_status_t (*getWithId)(uint16_t id,
 elevator_attr_t *attr);
} elevatordb_ops_t;

extern const elevatordb_ops_t g_elevatordb_ops;

8.12 Elevator CM4
This Elevator CM4 slave project runs on the CM4 core.

It is linked to SDRAM and will be embedded into the CM7 project.

The CM7 project handles the loading of this CM4 project into SDRAM and launching it.

8.13 Main functionalities
• Main GUI based on LVGL with Vglite graphics acceleration

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
156 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• Camera with 2D PxP graphics acceleration
• Display for the camera preview and LVGL GUI
• USB shell
• LED indicator
• Multicore with messaging and shared memory communication

8.14 LVGL GUI screens and widgets
All the LVGL GUI screens and widgets are generated with NXP's GUI Guider tools.

Refer to the GUI Guider home page for more detailed information.

8.15 LVGL and Vglite library
LVGL and Vglite components are directly ported from RT1170 SDK where we did not
modify them in our solution.

The code for LVGL GUI screens and widgets, which are generated by NXP's GUI guider,
is not frequently changed.

To speed up the building of the whole project, we moved these components into one
static library and linked the library to the CM4 application project.

This LVGL and Vglite library project is located in the ../elevator/lvgl_vglite_lib
folder.

8.16 Boot sequence
Below is the core boot-up flow:

• Board level initialization
• Framework initialization
• HAL devices registration
• Framework startup
• FreeRTOS scheduler startup

The main() entry of this project is located in the ../elevator/cm4/source/sln_
smart_tlhmi_cm4.cpp file:

int main(void)
{
 /* init the board */
 APP_BoardInit();
 ...
 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 vTaskStartScheduler();
 for (;;)
 {
 } /* should never get here */

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
157 / 190

https://www.nxp.com/design/software/development-software/gui-guider

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 return 0;
}

8.17 Board level initialization
The board level initialization is implemented in the APP_BoardInit() entry which is
located in the ../elevator/cm4/source/sln_smart_tlhmi_cm4.cpp file.

Below is the main flow:

• MPU, Clock, and Pins configuration
• Multicore manager init and slave startup
• Peripherals initialization

void APP_BoardInit()
{
 BOARD_ConfigMPU();
 BOARD_BootClockRUN();
 BOARD_InitBootPins();

#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 uint32_t startupData, i;
 mcmgr_status_t status;
 (void)MCMGR_Init();
 /* Get the startup data */
 do
 {
 status = MCMGR_GetStartupData(&startupData);
 } while (status != kStatus_MCMGR_Success);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 ...
 BOARD_MIPIPanelTouch_I2C_Init();
 BOARD_InitEDMA();
 Time_Init(1);
}

8.18 LVGL image resource loading
All the LVGL images, data, and icon data are merged into one continuous binary block
with the 64 Bytes aligned of each image/icon.

The cm7 loads this resource binary block into the dedicated memory region
res_sh_mem.

The below two function loads each of these LVGL images and icons from this region
during the boot.

Setup the LVGL images is implemented in ../elevator/cm4/generated/gui_
guider.c:

void setup_imgs(void *base)
{
 _TLHMI_Elevator_Main_Screen_1280x720.data
 = (base + 0);
 _TLHMI_Elevator_Virtual_Face_Blue_180x180.data
 = (base + 2764800);
 _TLHMI_Elevator_Button_Call_alpha_90x90.data
 = (base + 2862016);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
158 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

}

8.19 Framework managers
The below framework managers are enabled on the cm4 side:

• Low-power manager
• Camera manager
• Display manager
• Multicore manager
• Output manager
• Input manager

Refer to framework/docs/introduction.md for a more detailed description of these
framework managers.

Framework initialization (../elevator/cm4/source/sln_smart_tlhmi_
cm4.cpp) :

int APP_InitFramework(void)
{
 int ret = 0;

 FWK_MANAGER_INIT(LpmManager, ret);
 FWK_MANAGER_INIT(CameraManager, ret);
 FWK_MANAGER_INIT(DisplayManager, ret);
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 FWK_MANAGER_INIT(MulticoreManager, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 FWK_MANAGER_INIT(OutputManager, ret);
 FWK_MANAGER_INIT(InputManager, ret);

 return ret;
}

Framework startup (../elevator/cm4/source/sln_smart_tlhmi_cm4.cpp):

int APP_StartFramework(void)
{
 int ret = 0;

 FWK_MANAGER_START(LpmManager, 0, ret);
 FWK_MANAGER_START(CameraManager,
 CAMERA_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(DisplayManager,
 DISPLAY_MANAGER_TASK_PRIORITY, ret);
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 FWK_MANAGER_START(MulticoreManager,
 MULTICORE_MANAGER_TASK_PRIORITY, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 FWK_MANAGER_START(OutputManager,
 OUTPUT_MANAGER_TASK_PRIORITY, ret);
 FWK_MANAGER_START(InputManager,
 INPUT_MANAGER_TASK_PRIORITY, ret);

 return ret;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
159 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

}

8.20 Framework HAL devices
The enabled HAL devices are configured in the ../elevator/cm4/board/board_
define.h file as below:

#define ENABLE_GFX_DEV_Pxp
#define ENABLE_DISPLAY_DEV_LVGLElevator
#define ENABLE_CAMERA_DEV_MipiGc2145
#define ENABLE_OUTPUT_DEV_RgbLed
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
#define ENABLE_MULTICORE_DEV_MessageBuffer
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
#define ENABLE_INPUT_DEV_ShellUsb
#define ENABLE_OUTPUT_DEV_UiElevator
#define ENABLE_LPM_DEV_Standby

The registration of the enabled HAL devices is implemented in the
APP_RegisterHalDevices(...) function, which is located in ../elevator/cm4/
source/sln_smart_tlhmi_cm4.cpp

Note: The APP_RegisterHalDevices(...) must be called after the framework
initialization APP_InitFramework(...) and before framework startup
APP_StartFramework(...).

int APP_RegisterHalDevices(void)
{
 int ret = 0;

 HAL_GFX_DEV_REGISTER(Pxp, ret);
 HAL_DISPLAY_DEV_REGISTER(LVGLElevator, ret);
 HAL_CAMERA_DEV_REGISTER(MipiGc2145, ret);
#if defined(ENABLE_SLAVE) && ENABLE_SLAVE
 HAL_MULTICORE_DEV_REGISTER(MessageBuffer, ret);
#endif /* defined(ENABLE_SLAVE) && ENABLE_SLAVE */
 HAL_OUTPUT_DEV_REGISTER(RgbLed, ret);
 HAL_INPUT_DEV_REGISTER(ShellUsb, ret);
 HAL_OUTPUT_DEV_REGISTER(UiElevator, ret);
 HAL_LPM_DEV_REGISTER(Standby, ret);
 /* Add new HAL device registrations here */

 return ret;
}

8.20.1 MipiGc2145 camera HAL device

This HAL device driver is located in ../framework/hal/camera/hal_camera_
mipi_gc2145.c

Below is the configuration of this camera device, which is located in ../elevator/
cm4/board/board_define.h

#ifdef ENABLE_CAMERA_DEV_MipiGc2145
#define CAMERA_DEV_MipiGc2145_BUFFER_COUNT 2
#define CAMERA_DEV_MipiGc2145_HEIGHT 600 // 720
#define CAMERA_DEV_MipiGc2145_WIDTH 800 // 1280

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
160 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

#define CAMERA_DEV_MipiGc2145_LEFT 0
#define CAMERA_DEV_MipiGc2145_TOP 0
#define CAMERA_DEV_MipiGc2145_RIGHT 799 // 1279
#define CAMERA_DEV_MipiGc2145_BOTTOM 599 // 719
#define CAMERA_DEV_MipiGc2145_ROTATE kCWRotateDegree_0
#define CAMERA_DEV_MipiGc2145_FLIP kFlipMode_None
#define CAMERA_DEV_MipiGc2145_SWAPBYTE 0
#define CAMERA_DEV_MipiGc2145_FORMAT
 kPixelFormat_YUV1P444_RGB
#define CAMERA_DEV_MipiGc2145_BPP 4
#endif /* ENABLE_CAMERA_DEV_MipiGc2145 */

8.20.2 PxP graphics HAL device

This HAL device driver is located in ../framework/hal/misc/hal_graphics_
pxp.c

It represents the 2D graphics device to handle the 2D graphics operations.

8.20.3 LVGLElevator display HAL device

This HAL device driver is located in ../framework/hal/display/hal_display_
lvgl_elevator.c

Below is the configuration of this display device, which is located in the ../elevator/
cm4/board/board_define.h

#ifdef ENABLE_DISPLAY_DEV_LVGLElevator
#define DISPLAY_DEV_LVGLElevator_BUFFER_COUNT 1
#define DISPLAY_DEV_LVGLElevator_HEIGHT 640
#define DISPLAY_DEV_LVGLElevator_WIDTH 480
#define DISPLAY_DEV_LVGLElevator_StartX 80
#define DISPLAY_DEV_LVGLElevator_StartY 50
#define DISPLAY_DEV_LVGLElevator_LEFT 0
#define DISPLAY_DEV_LVGLElevator_TOP 0
#define DISPLAY_DEV_LVGLElevator_RIGHT 479
#define DISPLAY_DEV_LVGLElevator_BOTTOM 639
#define DISPLAY_DEV_LVGLElevator_ROTATE
 kCWRotateDegree_270
#define DISPLAY_DEV_LVGLElevator_FORMAT
 kPixelFormat_RGB565
#ifdef ENABLE_CAMERA_DEV_MipiGc2145
#define DISPLAY_DEV_LVGLElevator_SRCFORMAT
 kPixelFormat_YUV1P444_RGB
#else
#define DISPLAY_DEV_LVGLElevator_SRCFORMAT
 kPixelFormat_UYVY1P422_RGB
#endif
#define DISPLAY_DEV_LVGLElevator_BPP 2
#endif /* ENABLE_DisplayDev_LVGLElevator */

This LVGLElevator display HAL device launches the main LVGL task loop for the UI
flashing.

static void _LvglTask(void *param)
{
#if LV_USE_LOG
 lv_log_register_print_cb(_PrintCb);

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
161 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

#endif /* LV_USE_LOG */

 lv_port_pre_init();
 lv_init();
 lv_port_disp_init();
 lv_port_indev_init();
 g_LvglInitialized = true;

 setup_imgs((unsigned char *)APP_LVGL_IMGS_BASE);
 setup_ui(&guider_ui);
 events_init(&guider_ui);
 custom_init(&guider_ui);
 while (1)
 {
 lv_task_handler();
 vTaskDelay(pdMS_TO_TICKS(5));
 }
}

8.20.4 UiElevator UI output HAL device

This HAL device driver is located in ../framework/hal/output/hal_output_ui_
elevator.c

The whole UI state machine is driven by this output HAL device with the below event
sources:

8.20.4.1 LVGL touch events

All the event callbacks of the LVGL widget are implemented in ../elevator/cm4/
generated/events_init.c

8.20.4.2 Vision and Voice algorithm inference result

The vision and voice inference result is notified by the output manager with below HAL_
OutputDev_UiElevator_InferComplete operator:

static hal_output_status_t
 HAL_OutputDev_UiElevator_InferComplete(const output_dev_t
 *dev,output_algo_source_t source,void *inferResult)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;

 if (inferResult == NULL)
 {
 return error;
 }

 if (source == kOutputAlgoSource_Vision)
 {
 _InferComplete_Vision(dev, inferResult);
 }
 else if (source == kOutputAlgoSource_Voice)
 {
 _InferComplete_Voice(dev, inferResult);
 }

 return error;

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
162 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

}

8.20.5 RgbLed output HAL device

This HAL device driver is located in ../framework/hal/output/hal_output_rgb_
led.c

It flashes the RGB led with different pattern according
to the HAL_OutputDev_RgbLed_InferComplete or
HAL_OutputDev_RgbLed_InputNotify operators below:

static hal_output_status_t
 HAL_OutputDev_RgbLed_InferComplete(const output_dev_t *dev,
 output_algo_source_t source, void *inferResult)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 uint32_t timerOn = 0;

 _SetLedColor(APP_OutputDev_RgbLed_InferCompleteDecode(source,
 inferResult, &timerOn));

 if (timerOn != 0)
 {
 xTimerChangePeriod(OutputRgbTimer,
 pdMS_TO_TICKS(timerOn), 0);
 }
 return error;
}

static hal_output_status_t
 HAL_OutputDev_RgbLed_InputNotify(const output_dev_t *dev, void
 *data)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;

 _SetLedColor(APP_OutputDev_RgbLed_InputNotifyDecode(data));

 return error;
}

8.20.6 MessageBuffer multicore HAL device

This HAL device driver is located in ../framework/hal/misc/hal_multicore_
messageBuffer.c

It handles multicore messaging based on the multicore manager message buffer
mechanism.

For the detailed description of this HAL device, refer to ../framework/docs/hal_
devices/multicore.md in the framework documentation.

8.20.7 ShellUsb input HAL device

This HAL device driver is located in ../framework/hal/input/hal_input_shell_
cdc.c

It populates one USB CDC device and generates the shell.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
163 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

This driver only includes one weak shell command registration function as below:

__attribute__((weak)) void
 APP_InputDev_Shell_RegisterShellCommands(shell_handle_t
 shellContextHandle, input_dev_t shellDev,
 input_dev_callback_t callback)
{
}

The application must overwrite this function to register the exactly shell commands.

You can find the implementation of this overwritten function for the Elevator application
from ../elevator/cm4/source/event_handlers/smart_tlhmi_input_shell_
commands.c:

void APP_InputDev_Shell_RegisterShellCommands(shell_handle_t
 shellContextHandle, input_dev_t *shellDev,
 input_dev_callback_t callback)
{
 s_InputCallback = callback;
 s_SourceShell = shellDev;
 s_ShellHandle = shellContextHandle;
 s_FrameworkRequest.respond = _FrameworkEventsHandler;

 if (s_ThingName == NULL)
 {
 APP_GetHexUniqueID(&s_ThingName);
 }

 SHELL_RegisterCommand(shellContextHandle,
 SHELL_COMMAND(version));
 ...
}

8.20.8 Standby LPM HAL device

This HAL device driver is located in ../framework/hal/misc/hal_lpm_
standby.c.

For the detailed description of this LPM device, refer to ../framework/docs/hal_
devices/low_power.md in the framework documentation.

This standby HAL device implements the standby mode of this application. The backlight
is turned off and the main display layer is disabled.

static void _EnterStandbyMode(void)
{
 LOGD("[Standby] Enter standby mode");
 BOARD_BacklightControl(0);
 lv_enable_ui_preview(0);
}

8.21 Logging
Both the CM7 and CM4 projects are leveraging the FreeRTOS logging library.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
164 / 190

https://www.freertos.org/logging.html

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The FreeRTOS logging library code is located in the logging folder where you can
find the detailed document ../elevator/cm4/freertos/libraries/logging/
README.md

The CM7 and CM4 share low-level LPUART12 peripheral for the logging output. The
hardware semaphore mechanism is used to guarantee the concurrence access of
LPUART12 peripheral.

They share a low-level timer to get the unified timestamp of the logging information.

8.21.1 Logging task init

Application calls xLoggingTaskInitialize(...) API to create the logging task in
the main() entry of this project is located in the ../elevator/cm4/source/sln_
smart_tlhmi_cm4.cpp:

xLoggingTaskInitialize(LOGGING_TASK_STACK_SIZE,
 LOGGING_TASK_PRIORITY, LOGGING_QUEUE_LENGTH);

8.21.2 Logging macros

The logging Macros are defined in ../framework/inc/fwk_log.h.

All the modules must use these unified logging Macros for logging.

#ifndef LOGV
#define LOGV(fmt, args...) {implement...}
...
#endif

#ifndef LOGD
#define LOGD(fmt, args...) {implement...}
#endif

#ifndef LOGI
#define LOGI(fmt, args...) {implement...}
#endif

#ifndef LOGE
#define LOGE(fmt, args...) {implement...}
#endif

9 Customization

9.1 How to develop a user application

9.1.1 Introduction

We created a template to demonstrate the Smart HMI application with LVGL GUI, Face
Recognition, and Far-Field Voice Recognition AI/ML algorithms integrated.

You can leverage this template to quickly build your own applications:

-- Create your fancy GUI with an open-source LVGL library

-- Use Face Recognition as the user identity

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
165 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

-- Use Far-Field Voice Recognition as touchless interface

9.1.2 Build the LVGL GUI

LVGL is a free and open-source embedded graphic library with features that enable you
to create embedded GUIs with intuitive graphical elements, beautiful visual effects, and
a low memory footprint. The complete graphic framework includes various widgets for
you to use in the creation of your GUI, and supports more advanced functions such as
animations and anti-aliasing.

To learn more about LVGL, visit https://lvgl.io/

9.1.2.1 Design and create the GUI with NXP's free GUI Guider tool

GUI Guider is a user-friendly graphical user interface development tool from NXP that
enables rapid development of high quality displays with the open-source LVGL graphics
library. GUI Guider's drag-and-drop editor makes it easy to utilize the many features of
LVGL such as widgets, animations, and styles to create a GUI with minimal or no coding
at all.

To learn more about GUI Guider, visit https://www.nxp.com/design/software/development-
software/gui-guider:GUI-GUIDER

Refer to our full GUI Guider project for Coffee Machine and Elevator demo below:

-- Coffee Machine coffee_machine/gui_guider/coffee_machine.guiguider

-- Elevator elevator/gui_guider/elevator.guiguider

9.1.2.2 Integrate your generated LVGL GUI code

The whole GUI code is running in the CM4 core and is built into the CM4 project.

By default, the function below is the main entry of the whole LVGL GUI that is located in
your generated GUI code ../coffee_machine/cm4/generated/gui_guider.c

void setup_ui(lv_ui *ui)
{
 setup_scr_standby(ui);
 lv_scr_load(ui->standby);
}

We created the LVGL Display HAL device to handle the LVGL initialization and the GUI
launch. The void setup_ui(lv_ui *ui) is called in this HAL device, therefore
you must replace the "generated" folder with your GUI code in the CM4 project, and the
whole UI be launched during the start-up.

Refer LVGL Display HAL device implementation for the Coffee Machine demo and
Elevator demo as below:

-- Coffee Machine ../framework/hal/display/hal_display_lvgl_
coffeemachine.c

-- Elevator ../framework/hal/display/hal_display_lvgl_elevator.c

To learn more about Display HAL device, refer to ../framework/docs/hal_
devices/display.md

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
166 / 190

https://lvgl.io/
https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER
https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

9.1.3 Build the phoneme-based voice recognition model

We enabled Far-Field Voice Recognition by phoneme-based Automatic Speech
Recognition (ASR) engine. NXP partners with Cyberon for generating phoneme-based
voice engines. For more information on how to build your phoneme-based voice engine,
refer to ../voice/dsmt_instructions.md.

We created the Voice Algorithm HAL device to handle the whole voice recognition.

Refer the Voice algorithm HAL device implementation for the Coffee Machine demo and
Elevator demo as below:

-- Coffee Machine and Elevator Voice Algorithm HAL ../framework/hal/voice/ha
l_voice_algo_dsmt_asr.c

-- Coffee Machine voice recognition models ../coffee_machine/cm7/local_
voice/>local_voice folder

-- Elevator voice recognition models ../elevator/cm7/local_voice>local_
voice folder

The voice recognition is running in CM7 and the whole Voice algorithm HAL device and
voice models are built into CM7 project.

9.1.4 Bind the user's profile data with face recognition

The face recognition algorithm and face feature database have been implemented. You
can use them as the user identity for your application.

They are all running on CM7 and are built into the CM7 project.

You can refer the implementation for the Coffee Machine demo and Elevator demo as
below:

-- Face recognition algorithm for Coffee Machine ../framework/hal/vision/hal_
vision_algo_oasis_coffeemachine.c

-- Face recognition algorithm for Elevator ../framework/hal/vision/hal_vision_
algo_oasis_elevator.c

-- Face feature database ../framework/hal/vision/hal_sln_facedb.c

We have implemented the framework flash APIs based on the little fs. You can define
the user's profile data structure and implement the user's profile database base on these
well-defined APIs.

You can refer the user's profile database implementation for the Coffee Machine demo
and Elevator demo as below:

-- User's profile data base for Coffee Machine ../coffee_machine/cm7/source/
hal_sln_coffeedb.c

-- User's profile data base for Elevator ../elevator/cm7/source/hal_sln_
elevatordb.c

9.1.5 Implement the use case flow for your application

We created the UI Output HAL device to handle the APP use case flow. It controls
the face recognition HAL device, voice recognition HAL device and the LVGL UI. The
inference results from face recognition HAL device and voice recognition HAL device are
posted into this output device.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
167 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

To learn more about Output HAL device, refer to ../framework/docs/hal_
devices/output.md

You can refer the UI Output HAL device implementation for the Coffee Machine demo
and Elevator demo as below:

-- Coffee Machine ../framework/hal/output/hal_output_ui_coffee_
machine.c

-- Elevator ../framework/hal/output/hal_output_ui_elevator.c

9.2 Application resource build

9.2.1 Introduction

This section is focused on the use of the resource build tool, which can easily generate
the required binary file from the user's source and description file.

9.2.2 Source files

The source files are placed in the resource folder of each project. The files generally
contain three types of images, icons, and sounds, placed in the corresponding folders
respectively. The build tool has certain requirements on the code format of the source
files, as shown below.

9.2.2.1 Format of Image file

The image files are generated by GUI-Guide and automatically saved in the
gui_guide/generated/images folder. The installation package for GUI-Guide V1.3.0
can be found at this address: GUI-Guide Tool.

There are two types of image files, one is big-endian and the other is little-endian, so only
data of the required image type must be generated.

const uint8_t _Americano_250x250_map[] = {
#if LV_COLOR_DEPTH == 16 && LV_COLOR_16_SWAP == 0
 0xff, 0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0xff, 0x00, 0xff,
 0xff, ...
#endif
#if LV_COLOR_DEPTH == 16 && LV_COLOR_16_SWAP != 0
 0xff, 0xff, 0x00, 0xff, 0xff, 0x00, 0xff, 0xff, 0x00, 0xff,
 0xff, ...
#endif
};

9.2.2.2 Format of Icon file

The format of the icon file must be consistent with the following.

#ifndef _NXP_LOGO_H_
#define _NXP_LOGO_H_

#define NXP_LOGO_W 240
#define NXP_LOGO_H 86

static const unsigned short nxp_logo_240x86[] = {

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
168 / 190

https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

 0xFDA4, 0xFD83, 0xFD83, 0xFD83, 0xFD83, 0xFD83, 0xFD83,
 0xFD83, ...
};
#endif /* _NXP_LOGO_H_ */

9.2.2.3 Format of Sound file

The format of the sound file must be consistent with the following.

/************************************
* Written by WAVToCode
* FileName: Can_I_help.h
* Signed: Yes
* No. of channels: 1
* No. of samples: 14211
* Bits/Sample: 16
*************************************/

#define WW_DETECT_EN_LEN sizeof(ww_detect_en)

short ww_detect_en[14211] = {
 0, 0, 0, 1, -2, 2, -1, 0, /* 0-7 */
 1, -1, 1, -2, 2, -1, 0, 1, /* 8-15 */
 ...
 2, 0, -1}; /* 14208-14210 */

Note: The sound files can be generated using open-source Audacity and WavToCode,
and the sampling rate is set to 16,000 hz, with 16 bits per channel.

9.2.3 Description file

Each application has a description file to contain all the resources to be built. The
resource build tool reads this description file to build the final resource binary file.

Here is the basic design for the description file. Each line represents a source file to
build, and the format is <Type File_Name>.

• Type: image/icon/sound
• File_Name: the path of source files is relative to the build tool.

// resource_build coffee_machine_resource.txt
/*
image ../../coffee_machine/resource/images/
brewing_animimg_brewingf01.c
icon ../../coffee_machine/resource/icons/process_bar_240x14.h
sound ../../coffee_machine/resource/sounds/common/
confirm_tone.h
...
*/

9.2.4 Resource build tool

Provide bat for Windows and bash for Linux to invoke the corresponding build tools to
generate resource binary file and offset table file from the source files and the description
file.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
169 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

The build tools are placed in the tools/resource_build folder. The bat and bash
tools are placed in the resource folder of each project.

Modify the description file, binary file name, and image file format in bat and bash tools to
generate the required binary file.

• description file: the name of the description file;
• binary file name (optional): the name of the generated binary file, default is

"resources.bin";
• image file format (optional): 0/1, default is 0 (LV_COLOR_16_SWAP == 0);

<build tool path> <description file> <binary file name> <image
 file format>

Generate the binary file by running project.bat as administrator in Windows or
executing bash project.sh in Linux command shell.

9.3 Cyberon DSMT speech model instructions

9.3.1 Getting started with phoneme-based voice engine tool

NXP partners with Cyberon for generating phoneme-based voice engines. The voice
engine supports speaker-independent recognition and there is no need to collect speech
data for training specific commands in advance. With the generation tool, you can create
your own custom voice engine by simply typing text.

The TLHMI solution supports Far-Field voice recognition enabled by phoneme-based
Automatic Speech Recognition (ASR) engine, digital signal processing (DSP), and audio
front end (AFE). This chapter describes:

1. How to create or modify phoneme-based voice engine in various languages
2. How to integrate a generated voice engine into TLHMI solution software
3. Guide for voice recognition improvement
4. Technical specification information of the voice engine

9.3.2 Installation

The generation tool requires you to log in. To get access to the tool, contact NXP (local-
commands@nxp.com) with the following information.

1. Company name
2. User’s name
3. User’s e-mail address
4. Physical address (MAC address) of PC’s network interface.

We reach out to let you know when the account is created. The installation package for
Cyberon DSpotter Modeling Tool (DSMT) V2 can be found at this address: DSpotter
Modeling Tool

The installation package contains the following items.

1. Cyberon DSpotter Modeling Tool (DSMT) V2
2. DSpotter Offline Test Tool V2
3. DSpotter Online Test Tool V2 You are required to install all of them. While installing

the modeling tool, you are prompted to install the offline / online test tools.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
170 / 190

mailto:local-commands@nxp.com
mailto:local-commands@nxp.com
https://tool.cyberon.com.tw/DSMT_V2/index.php?lang=en
https://tool.cyberon.com.tw/DSMT_V2/index.php?lang=en

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Install the Cyberon DSpotter GarbGen Tool from this address: DSpotter GarbGen Tool

9.3.3 Load the project template

Note: This guide focuses on exemplifying how DSMT tool works by using the Coffee
Machine demo template for English language.

First, copy the coffee_machine/oob_demo_en.dsmt file in the MCUXpresso project
at the location below.

Figure 33.  Coffee Machine DSMT en template

Ensure that the DSpotter Modeling Tool (DSMT) is installed. To load the project template:

1. Launch the application.
2. A window prompts you to enter your credentials. Log in with your credentials.
3. Click File > Load Project

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
171 / 190

https://tool.cyberon.com.tw/DSpotterGarbGenTool/index.php?lang=en

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 34. Load DSMT template
4. Open the DSMT project previously copied into the workspace.

Figure 35. Coffee Machine DSMT en template

9.3.4 Add a new command into the Coffee Machine demo

Note: For an easier demonstration, we remove the garbage words here. Delete all
entries after "Deregister" command.

To add a new command into the Coffee Machine demo:

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
172 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

1. Click CMD_COFFEE_MACHINE tab on the DSMT tool.
2. Type a new command, then press on "Add". For example, "Mochaccino". This

command is inserted at the end, as shown below (this is the reason for which we
have deleted the garbage words, we would have needed to press the "Up" button
for more than 300 times to bring the new command on the position from the image
below.)

Figure 36. Mochaccino at the end
3. Edit CmdMapId from -1 to the one used for the other commands of this command

group, which is 2. To do this, double-click the command.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
173 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 37. Mochaccino at the end good cmdMapId
4. Save the project (by pressing Ctrl + S or clicking the Save Project button.)

9.3.4.1 Integrate the voice engine in MCUXpresso project

If the DSMT template was copied into the folder mentioned above, the binary containing
the speech model is automatically updated when you save the DSMT project.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
174 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 38. Updated dsmt binary

We now must update a few things in the firmware to add support for the new command.
For the sake of the example, we do the same action on the GUI for Mochaccino as we
are doing for Cappuccino.

1. Update IndexCommands_dsmt.h. Increase the total number of commands by 1
and also add an action in action_coffee_machine_en, specifying that we have
the same action as for Cappuccino.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
175 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 39. Update IndexCommands_dsmt
2. Update IndexToCommand_en.h. Add a string representation of the new

command.

Figure 40. Update IndexToCommand_en
3. Build and flash the project. You must now be able to see the command "Mochaccino"

being detected and also triggering the same action as the "Cappuccino" command.

9.3.5 Add a new language into the Coffee Machine demo

1. Open DSMT and login

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
176 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 41. Dsmt login
2. File -> New Project. Use the name oob_demo_it, choose the Italian language.

Click OK.

Figure 42. New dsmt project
3. Use the default settings. Click OK.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
177 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 43. New dsmt project settings
4. When asked about the Folder where the project should be saved, go to the

workspace location of the cm7 Coffee Machine demo project -> local_voice
folder.

Figure 44. New dsmt project folder

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
178 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

5. Rename Group_1 to WW by selecting Group -> Rename.

Figure 45. Rename group1
6. Add a simple wake word - let us use "Ciao NXP". By default CmdMapId has value -1.

Change that to value 1 by double-clicking the wake word.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
179 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 46. Add it wake word
7. Add a new group by selecting Group -> Insert. Change the group name to

CMD_COFFEE_MACHINE.
Add the commands below and change CmdMapId value to 2 for all of them.
Inizia, Annulla, Confermare, Caffè espresso, Caffè americano, Cappuccino, Caffè
Latte, Piccolo, Medio, Grande, Leggero, Mite, Forte, Annullare la registrazione.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
180 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 47. Add it commands
8. Very important: Check the MapID checkbox, otherwise the binary we must integrate

into our project will not be generated.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
181 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 48. Add it commands
9. Save the DSMT project (Ctrl + S or File -> Save project).

10. Now we modify the source code to use the newly generated Italian speech model. It
is easier to replace one of the existing models, like French.
• create IndexToCommand_it.h

Figure 49. Index to cmd it
Replace the following symbols in your workspace:
• ASR_FRENCH with ASR_ITALIAN

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
182 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

• NUMBER_OF_COFFEE_MACHINE_CMDS_FR with
NUMBER_OF_COFFEE_MACHINE_CMDS_IT (must add that in
IndexCommands_dsmt.h). NUMBER_OF_COFFEE_MACHINE_CMDS_IT should be
14.

• action_coffee_machine_fr with the equivalent
action_coffee_machine_it

• action_coffee_machine_fr can be removed from IndexCommands_dsmt.h
• In IndexCommands_dsmt.h include IndexToCommand_it.h instead of
IndexToCommand_fr.h

• action_coffee_machine_it must be defined, as shown below

Figure 50. Coffee machine it commands
• replace oob_demo_fr_begin with oob_demo_it_begin everywhere in the

workspace
• use oob_demo_it_pack_WithMapID.bin in local_voice_model.s

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
183 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 51. Index to cmd it
11. Replace s_memPoolWLangFr with s_memPoolWLangIt.
12. Delete the cm7 debug folder and rebuild afterwards. Flash the project. You must now

be able to interact with the dev kit through voice.

9.3.6 Cyberon tools

Check the video tutorials: Cyberon demos

10 VIT speech model instructions

10.1 Getting started with VIT
Smart HMI demos use DSMT as Audio Speech Recognition technology by default. To
enable VIT ASR in Smart HMI SDK demos, do the following code modifications:

1. In cm7 board_define.h comment ENABLE_DSMT_ASR and uncomment
ENABLE_VIT_ASR (path toward header: coffee_machine ../coffee_machine/
cm7/board/board_define.h and elevator ../elevator/cm7/board/board_
define.h

2. At the moment of this release, French is not supported on VIT. Hiding it from the
available languages menu is done putting FRENCH_LANG_SUPPORTED define on 0 in
this file from both coffee_machine ../coffee_machine/cm4/custom/custom.h
and elevator ../elevator/cm4/custom/custom.h.

3. After modifying the files, build the lvgl library, then build the cm7 project and flash it

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
184 / 190

https://www.youtube.com/playlist?list=PLTEknqO5GAbrDX5NMs-P6b9THWwamgVBo

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

10.2 Barge-in support when VIT is enabled
At the moment of this release, VIT is not compatible with the AFE which is integrated into
the Smart HMI SDK. As a consequence, barge-in is not available when VIT is enabled. It
should change in the future, as compatibility between VIT and Voice Seeker is planned.

10.3 Obtaining a new VIT model
To obtain a new model, submit a request at this address: https://vit.nxp.com/#/

Note: To do this, you need an nxp.com account.

10.4 Integrating a new VIT model
Place the newly obtained model in the same folder as the currently existing models, as
shown in Figure 52.

Figure 52. VIT models

Other files that must be updated for VIT integration are the ones highlighted below.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
185 / 190

https://vit.nxp.com/#/

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Figure 53. VIT files

10.5 Multilanguage support
VIT does not support listening for multiple wake words from different languages at the
same time, as it is the case with DSMT. Hence, you will be able to say only one wake
word at a time. To change to a different language, use the language menu from the
display.

10.6 Additional info and resources
For documentation and other resources, see: VIT page

11 Revision history

Revision number Date Substantive changes

0 25 October 2022 Initial release

Table 1. Revision history

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
186 / 190

https://www.nxp.com/design/software/embedded-software/voice-intelligent-technology:VOICE-INTELLIGENT-TECHNOLOGY

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

12 Legal information

12.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

12.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

12.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
187 / 190

mailto:PSIRT@nxp.com

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

Contents
1 Introduction ... 2
2 Setup and installation ...2
2.1 MCUXpresso IDE .. 2
2.2 Install the toolchain ..2
2.3 Install the SDK .. 4
2.4 Import example projects 6
2.4.1 Import from Github .. 6
3 Ivaldi ... 7
3.1 Automated manufacturing tools 7
3.1.1 About Ivaldi ..7
3.1.2 Requirements ...8
3.1.3 Platform configuration ..8
3.1.4 Open Boot Programming9
4 Bootloader ... 10
4.1 Introduction .. 10
4.1.1 Why use a bootloader? 10
4.1.2 Application Banks .. 10
4.1.3 Logging .. 10
4.2 Overview ..11
4.2.1 How is boot mode determined?11
4.3 Normal boot ... 11
4.3.1 Turn on Image Verification12
4.3.2 Disable Debug Console13
4.4 Mass Storage Device updates (MSD) 13
4.4.1 Enabling MSD mode 13
4.4.2 Flashing a new binary 14
4.4.2.1 Main application ...14
4.4.2.2 Resources ..14
4.4.2.3 Bundle ..15
4.5 Image Verification .. 16
4.5.1 Application chain of trust 16
4.5.2 Flash Image Configuration Area (FICA) and

Image Verification .. 17
4.6 Application banks .. 17
4.6.1 Banks ...18
4.6.2 Addresses ..18
4.6.3 Remapping ...18
4.6.3.1 Convert .axf to .bin ...19
5 Over the air update ...20
5.1 OTA (Over-the-Air) updates20
5.1.1 Migration guide .. 21
5.1.1.1 RT117H firmware changes 21
5.1.1.2 Ivaldi guide .. 23
5.1.2 Preparing an OTA image24
5.1.3 Building image ... 25
5.1.4 Sign Image .. 25
5.1.4.1 Creating a root, intermediate pair with sign

server, and certificates25
5.1.4.2 Formatting the CA and the application

certificate ..27
5.1.5 OTA Workflow with AWS IoT Console 27
5.1.5.1 Update main application 31
5.1.5.2 Update resources .. 31
5.1.5.3 Update with Bundle ... 32
6 Framework ... 33
6.1 Framework introduction 33

6.1.1 Design goals ..34
6.1.2 Relevant files ... 34
6.2 Naming conventions .. 34
6.2.1 Functions ... 35
6.2.2 Variables .. 36
6.2.3 Typedefs .. 37
6.2.4 Enums ..37
6.2.5 Macros and Defines .. 38
6.3 Device managers ...38
6.3.1 Overview ..38
6.3.1.1 Initialization flow .. 38
6.3.2 Vision input manager39
6.3.2.1 APIs ... 39
6.3.3 Output manager ...40
6.3.3.1 APIs ... 40
6.3.4 Camera manager ...41
6.3.4.1 APIs ... 42
6.3.5 Display manager ..42
6.3.5.1 APIs ... 42
6.3.6 Vision algorithm manager43
6.3.6.1 APIs ... 43
6.3.7 Voice algorithm manager44
6.3.7.1 APIs ... 44
6.3.8 Low-Power device manager 45
6.3.8.1 APIs ... 45
6.3.9 Audio processing manager46
6.3.9.1 APIs ... 46
6.3.10 Flash manager ...47
6.3.10.1 Device APIs ... 47
6.3.10.2 Operations APIs .. 48
6.3.11 Multicore manager ...50
6.3.11.1 APIs ... 51
6.4 HAL devices .. 52
6.4.1 Overview ..52
6.4.1.1 Device Registration ..52
6.4.1.2 Device Types ... 53
6.4.1.3 Anatomy of a HAL device55
6.4.1.4 Configs ...56
6.4.2 Input devices ... 57
6.4.2.1 Device definition .. 57
6.4.2.2 Operators ...58
6.4.2.3 Capabilities .. 60
6.4.2.4 Example ...62
6.4.3 Output devices ...63
6.4.3.1 Subtypes ..64
6.4.3.2 Device definition .. 64
6.4.3.3 Operators ...65
6.4.3.4 Attributes ..66
6.4.3.5 Example ...67
6.4.4 Camera devices ...71
6.4.4.1 Device definition .. 72
6.4.4.2 Operators ...73
6.4.4.3 Static configs ... 75
6.4.4.4 Capabilities .. 77
6.4.4.5 Example ...78
6.4.5 Display devices ..80

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
188 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

6.4.5.1 Device definition .. 80
6.4.5.2 Operators ...82
6.4.5.3 Capabilities .. 83
6.4.5.4 Example ...87
6.4.6 Vision algorithm devices89
6.4.6.1 Device definition .. 90
6.4.6.2 Operators ...91
6.4.6.3 Capabilities .. 92
6.4.6.4 Private Data ...93
6.4.6.5 Example ...94
6.4.7 Voice algorithm devices97
6.4.7.1 Device definition .. 97
6.4.7.2 Operators ...98
6.4.7.3 Capabilities .. 100
6.4.7.4 Example ...100
6.4.8 Audio processing device102
6.4.8.1 Device definition .. 103
6.4.8.2 Operators ... 104
6.4.8.3 Capabilities .. 105
6.4.8.4 Example ...106
6.4.9 Flash devices ...108
6.4.9.1 Device definition .. 108
6.4.9.2 Operators ... 109
6.4.9.3 Example ...111
6.4.10 Multicore devices ...119
6.4.10.1 Device definition .. 119
6.4.10.2 Operators ... 120
6.4.10.3 FreeRTOS message buffer device 121
6.5 Events ..125
6.5.1 Overview .. 125
6.5.1.1 Event triggers .. 125
6.5.1.2 Types of events ... 127
6.5.2 Event handlers ...129
6.5.2.1 Default handlers .. 130
6.5.2.2 App-specific handlers 131
7 Coffee machine ... 132
7.1 Introduction .. 132
7.2 Architecture ..133
7.3 Software block diagram 133
7.4 Coffee machine CM7133
7.5 Main functionalities .. 134
7.6 Boot sequence ...134
7.7 Board level initialization 134
7.8 Framework managers135
7.9 Framework HAL devices 136
7.10 Logging .. 137
7.10.1 Log Task Init .. 137
7.10.2 Log Macros ..137
7.11 Coffee Machine database138
7.11.1 Face recognition database usage138
7.11.2 User coffee information database usage 139
7.12 Coffee machine CM4139
7.13 Main functionalities .. 140
7.14 LVGL GUI screens and widgets140
7.15 LVGL and Vglite library140
7.16 Boot sequence ...140
7.17 Board level initialization 141
7.18 LVGL image resource and icon resource

loading ... 141

7.19 Framework managers142
7.20 Framework HAL devices 143
7.20.1 MipiGc2145 camera HAL device 144
7.20.2 PxP graphics HAL device144
7.20.3 LVGLCoffeeMachine display HAL device 144
7.20.4 UiCoffeeMachine UI output HAL device146
7.20.4.1 LVGL touch events .. 146
7.20.4.2 Vision and Voice algorithm inference result ... 146
7.20.5 RgbLed output HAL device147
7.20.6 MessageBuffer multicore HAL device147
7.20.7 ShellUsb input HAL device148
7.20.8 Standby LPM HAL device148
7.21 Logging .. 149
7.21.1 Logging Task Init ... 149
7.21.2 Logging Macros ... 149
8 Elevator .. 150
8.1 Introduction .. 150
8.2 Architecture ..150
8.3 Software block diagram 151
8.4 Elevator CM7 ...151
8.5 Main functionalities .. 151
8.6 Boot sequence ...151
8.7 Board level initialization 152
8.8 Framework managers153
8.9 Framework HAL devices 154
8.10 Logging .. 154
8.10.1 Log task init ... 155
8.10.2 Log usage ..155
8.11 Elevator database ..155
8.11.1 Face recognize database usage155
8.11.2 Elevator user information database usage156
8.12 Elevator CM4 ...156
8.13 Main functionalities .. 156
8.14 LVGL GUI screens and widgets157
8.15 LVGL and Vglite library157
8.16 Boot sequence ...157
8.17 Board level initialization 158
8.18 LVGL image resource loading 158
8.19 Framework managers159
8.20 Framework HAL devices 160
8.20.1 MipiGc2145 camera HAL device 160
8.20.2 PxP graphics HAL device161
8.20.3 LVGLElevator display HAL device 161
8.20.4 UiElevator UI output HAL device 162
8.20.4.1 LVGL touch events .. 162
8.20.4.2 Vision and Voice algorithm inference result ... 162
8.20.5 RgbLed output HAL device163
8.20.6 MessageBuffer multicore HAL device163
8.20.7 ShellUsb input HAL device163
8.20.8 Standby LPM HAL device164
8.21 Logging .. 164
8.21.1 Logging task init .. 165
8.21.2 Logging macros ... 165
9 Customization ..165
9.1 How to develop a user application165
9.1.1 Introduction .. 165
9.1.2 Build the LVGL GUI166
9.1.2.1 Design and create the GUI with NXP's free

GUI Guider tool ... 166

MCU-SMHMI-SDUG All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User guide Rev. 0 — 25 October 2022
189 / 190

NXP Semiconductors MCU-SMHMI-SDUG
Smart HMI Software Development User Guide

9.1.2.2 Integrate your generated LVGL GUI code166
9.1.3 Build the phoneme-based voice recognition

model ... 167
9.1.4 Bind the user's profile data with face

recognition ... 167
9.1.5 Implement the use case flow for your

application ..167
9.2 Application resource build 168
9.2.1 Introduction .. 168
9.2.2 Source files ..168
9.2.2.1 Format of Image file 168
9.2.2.2 Format of Icon file ... 168
9.2.2.3 Format of Sound file169
9.2.3 Description file ... 169
9.2.4 Resource build tool ..169
9.3 Cyberon DSMT speech model instructions170
9.3.1 Getting started with phoneme-based voice

engine tool ... 170
9.3.2 Installation ..170
9.3.3 Load the project template171
9.3.4 Add a new command into the Coffee

Machine demo ... 172
9.3.4.1 Integrate the voice engine in MCUXpresso

project .. 174
9.3.5 Add a new language into the Coffee

Machine demo ... 176
9.3.6 Cyberon tools .. 184
10 VIT speech model instructions 184
10.1 Getting started with VIT184
10.2 Barge-in support when VIT is enabled185
10.3 Obtaining a new VIT model 185
10.4 Integrating a new VIT model 185
10.5 Multilanguage support 186
10.6 Additional info and resources 186
11 Revision history .. 186
12 Legal information .. 187

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2022 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 25 October 2022
Document identifier: MCU-SMHMI-SDUG

	1 Introduction
	2 Setup and installation
	2.1 MCUXpresso IDE
	2.2 Install the toolchain
	2.3 Install the SDK
	2.4 Import example projects
	2.4.1 Import from Github

	3 Ivaldi
	3.1 Automated manufacturing tools
	3.1.1 About Ivaldi
	3.1.2 Requirements
	3.1.3 Platform configuration
	3.1.4 Open Boot Programming

	4 Bootloader
	4.1 Introduction
	4.1.1 Why use a bootloader?
	4.1.2 Application Banks
	4.1.3 Logging

	4.2 Overview
	4.2.1 How is boot mode determined?

	4.3 Normal boot
	4.3.1 Turn on Image Verification
	4.3.2 Disable Debug Console

	4.4 Mass Storage Device updates (MSD)
	4.4.1 Enabling MSD mode
	4.4.2 Flashing a new binary
	4.4.2.1 Main application
	4.4.2.2 Resources
	4.4.2.3 Bundle

	4.5 Image Verification
	4.5.1 Application chain of trust
	4.5.2 Flash Image Configuration Area (FICA) and Image Verification

	4.6 Application banks
	4.6.1 Banks
	4.6.2 Addresses
	4.6.3 Remapping
	4.6.3.1 Convert .axf to .bin

	5 Over the air update
	5.1 OTA (Over-the-Air) updates
	5.1.1 Migration guide
	5.1.1.1 RT117H firmware changes
	5.1.1.2 Ivaldi guide

	5.1.2 Preparing an OTA image
	5.1.3 Building image
	5.1.4 Sign Image
	5.1.4.1 Creating a root, intermediate pair with sign server, and certificates
	5.1.4.2 Formatting the CA and the application certificate

	5.1.5 OTA Workflow with AWS IoT Console
	5.1.5.1 Update main application
	5.1.5.2 Update resources
	5.1.5.3 Update with Bundle

	6 Framework
	6.1 Framework introduction
	6.1.1 Design goals
	6.1.2 Relevant files

	6.2 Naming conventions
	6.2.1 Functions
	6.2.2 Variables
	6.2.3 Typedefs
	6.2.4 Enums
	6.2.5 Macros and Defines

	6.3 Device managers
	6.3.1 Overview
	6.3.1.1 Initialization flow

	6.3.2 Vision input manager
	6.3.2.1 APIs
	6.3.2.1.1 FWK_InputManager_Init
	6.3.2.1.2 FWK_InputManager_DeviceRegister
	6.3.2.1.3 FWK_InputManager_Start
	6.3.2.1.4 FWK_InputManager_Deinit

	6.3.3 Output manager
	6.3.3.1 APIs
	6.3.3.1.1 FWK_OutputManager_Init
	6.3.3.1.2 FWK_OutputManager_DeviceRegister
	6.3.3.1.3 FWK_OutputManager_Start
	6.3.3.1.4 FWK_OutputManager_Deinit
	6.3.3.1.5 FWK_​OutputManager_​UnregisterEventHandler

	6.3.4 Camera manager
	6.3.4.1 APIs
	6.3.4.1.1 FWK_CameraManager_Init
	6.3.4.1.2 FWK_CameraManager_DeviceRegister
	6.3.4.1.3 FWK_CameraManager_Start
	6.3.4.1.4 FWK_CameraManager_Deinit

	6.3.5 Display manager
	6.3.5.1 APIs
	6.3.5.1.1 FWK_DisplayManager_Init
	6.3.5.1.2 FWK_DisplayManager_DeviceRegister
	6.3.5.1.3 FWK_DisplayManager_Start
	6.3.5.1.4 FWK_DisplayManager_Deinit

	6.3.6 Vision algorithm manager
	6.3.6.1 APIs
	6.3.6.1.1 FWK_VisionAlgoManager_Init
	6.3.6.1.2 FWK_​VisionAlgoManager_​DeviceRegister
	6.3.6.1.3 FWK_VisionAlgoManager_Start
	6.3.6.1.4 FWK_VisionAlgoManager_Deinit

	6.3.7 Voice algorithm manager
	6.3.7.1 APIs
	6.3.7.1.1 FWK_VoiceAlgoManager_Init
	6.3.7.1.2 FWK_VoiceAlgoManager_DeviceRegister
	6.3.7.1.3 FWK_VoiceAlgoManager_Start
	6.3.7.1.4 FWK_VoiceAlgoManager_Deinit

	6.3.8 Low-Power device manager
	6.3.8.1 APIs
	6.3.8.1.1 FWK_LpmManager_DeviceRegister
	6.3.8.1.2 FWK_​LpmManager_​RegisterRequestHandler
	6.3.8.1.3 FWK_​LpmManager_​UnregisterRequestHandler
	6.3.8.1.4 FWK_LpmManager_RuntimeGet
	6.3.8.1.5 FWK_LpmManager_RuntimePut
	6.3.8.1.6 FWK_LpmManager_RuntimeSet
	6.3.8.1.7 FWK_LpmManager_RequestStatus
	6.3.8.1.8 FWK_LpmManager_SetSleepMode
	6.3.8.1.9 FWK_LpmManager_EnableSleepMode

	6.3.9 Audio processing manager
	6.3.9.1 APIs
	6.3.9.1.1 FWK_AudioProcessing_Init
	6.3.9.1.2 FWK_AudioProcessing_DeviceRegister
	6.3.9.1.3 FWK_AudioProcessing_Start
	6.3.9.1.4 FWK_AudioProcessing_Deinit

	6.3.10 Flash manager
	6.3.10.1 Device APIs
	6.3.10.1.1 FWK_Flash_DeviceRegister
	6.3.10.1.2 FWK_Flash_Init
	6.3.10.1.3 FWK_Flash_Deinit

	6.3.10.2 Operations APIs
	6.3.10.2.1 FWK_Flash_Format
	6.3.10.2.2 FWK_Flash_Save
	6.3.10.2.3 FWK_Flash_Append
	6.3.10.2.4 FWK_Flash_Read
	6.3.10.2.5 FWK_Flash_Mkdir
	6.3.10.2.6 FWK_Flash_Mkfile
	6.3.10.2.7 FWK_Flash_Rm
	6.3.10.2.8 FWK_Flash_Rename
	6.3.10.2.9 FWK_Flash_Cleanup

	6.3.11 Multicore manager
	6.3.11.1 APIs
	6.3.11.1.1 FWK_MulticoreManager_Init
	6.3.11.1.2 FWK_MulticoreManager_DeviceRegister
	6.3.11.1.3 FWK_MulticoreManager_Start
	6.3.11.1.4 FWK_MulticoreManager_Deinit

	6.4 HAL devices
	6.4.1 Overview
	6.4.1.1 Device Registration
	6.4.1.2 Device Types
	6.4.1.3 Anatomy of a HAL device
	6.4.1.3.1 Operators

	6.4.1.4 Configs
	6.4.1.4.1 Name
	6.4.1.4.2 ExpectedValue
	6.4.1.4.3 Description
	6.4.1.4.4 Value
	6.4.1.4.5 Get
	6.4.1.4.6 Set

	6.4.2 Input devices
	6.4.2.1 Device definition
	6.4.2.2 Operators
	6.4.2.2.1 Init
	6.4.2.2.2 Deinit
	6.4.2.2.3 Start
	6.4.2.2.4 Stop
	6.4.2.2.5 InputNotify

	6.4.2.3 Capabilities
	6.4.2.3.1 callback
	6.4.2.3.2 EventId
	6.4.2.3.3 ReceiverList
	6.4.2.3.4 Event

	6.4.2.4 Example

	6.4.3 Output devices
	6.4.3.1 Subtypes
	6.4.3.1.1 General devices
	6.4.3.1.2 UI devices
	6.4.3.1.3 Audio devices

	6.4.3.2 Device definition
	6.4.3.3 Operators
	6.4.3.3.1 Init
	6.4.3.3.2 DeInit
	6.4.3.3.3 Start
	6.4.3.3.4 Stop

	6.4.3.4 Attributes
	6.4.3.4.1 Type
	6.4.3.4.2 pSurface

	6.4.3.5 Example

	6.4.4 Camera devices
	6.4.4.1 Device definition
	6.4.4.2 Operators
	6.4.4.2.1 Init
	6.4.4.2.2 Deinit
	6.4.4.2.3 Start
	6.4.4.2.4 Enqueue
	6.4.4.2.5 Dequeue
	6.4.4.2.6 PostProcess
	6.4.4.2.7 InputNotify

	6.4.4.3 Static configs
	6.4.4.3.1 Height
	6.4.4.3.2 Width
	6.4.4.3.3 Pitch
	6.4.4.3.4 Left
	6.4.4.3.5 Top
	6.4.4.3.6 Right
	6.4.4.3.7 Bottom
	6.4.4.3.8 Rotate
	6.4.4.3.9 Flip
	6.4.4.3.10 SwapByte

	6.4.4.4 Capabilities
	6.4.4.4.1 Callback
	6.4.4.4.2 Param

	6.4.4.5 Example

	6.4.5 Display devices
	6.4.5.1 Device definition
	6.4.5.2 Operators
	6.4.5.2.1 Init
	6.4.5.2.2 Deinit
	6.4.5.2.3 Start
	6.4.5.2.4 Blit
	6.4.5.2.5 InputNotify

	6.4.5.3 Capabilities
	6.4.5.3.1 Height
	6.4.5.3.2 Width
	6.4.5.3.3 Pitch
	6.4.5.3.4 Left
	6.4.5.3.5 Top
	6.4.5.3.6 Right
	6.4.5.3.7 Bottom
	6.4.5.3.8 Rotate
	6.4.5.3.9 Format
	6.4.5.3.10 srcFormat
	6.4.5.3.11 frameBuffer
	6.4.5.3.12 callback
	6.4.5.3.13 param

	6.4.5.4 Example

	6.4.6 Vision algorithm devices
	6.4.6.1 Device definition
	6.4.6.2 Operators
	6.4.6.2.1 Init
	6.4.6.2.2 Deinit
	6.4.6.2.3 Run
	6.4.6.2.4 InputNotify

	6.4.6.3 Capabilities
	6.4.6.3.1 Callback
	6.4.6.3.2 Param

	6.4.6.4 Private Data
	6.4.6.4.1 AutoStart
	6.4.6.4.2 Frames

	6.4.6.5 Example

	6.4.7 Voice algorithm devices
	6.4.7.1 Device definition
	6.4.7.2 Operators
	6.4.7.2.1 Init
	6.4.7.2.2 Deinit
	6.4.7.2.3 Run
	6.4.7.2.4 InputNotify

	6.4.7.3 Capabilities
	6.4.7.3.1 Callback
	6.4.7.3.2 Param

	6.4.7.4 Example

	6.4.8 Audio processing device
	6.4.8.1 Device definition
	6.4.8.2 Operators
	6.4.8.2.1 Init
	6.4.8.2.2 Deinit
	6.4.8.2.3 Start
	6.4.8.2.4 Stop
	6.4.8.2.5 Run
	6.4.8.2.6 InputNotify

	6.4.8.3 Capabilities
	6.4.8.3.1 Callback
	6.4.8.3.2 Param

	6.4.8.4 Example

	6.4.9 Flash devices
	6.4.9.1 Device definition
	6.4.9.2 Operators
	6.4.9.2.1 Init
	6.4.9.2.2 Deinit
	6.4.9.2.3 Format
	6.4.9.2.4 Save
	6.4.9.2.5 Append
	6.4.9.2.6 Read
	6.4.9.2.7 Make directory
	6.4.9.2.8 Make file
	6.4.9.2.9 Remove
	6.4.9.2.10 Rename
	6.4.9.2.11 Cleanup

	6.4.9.3 Example
	6.4.9.3.1 Littlefs device

	6.4.10 Multicore devices
	6.4.10.1 Device definition
	6.4.10.2 Operators
	6.4.10.2.1 Init
	6.4.10.2.2 Deinit
	6.4.10.2.3 Start
	6.4.10.2.4 Send

	6.4.10.3 FreeRTOS message buffer device

	6.5 Events
	6.5.1 Overview
	6.5.1.1 Event triggers
	6.5.1.2 Types of events
	6.5.1.2.1 InferComplete events
	6.5.1.2.2 InputNotify events

	6.5.2 Event handlers
	6.5.2.1 Default handlers
	6.5.2.2 App-specific handlers

	7 Coffee machine
	7.1 Introduction
	7.2 Architecture
	7.3 Software block diagram
	7.4 Coffee machine CM7
	7.5 Main functionalities
	7.6 Boot sequence
	7.7 Board level initialization
	7.8 Framework managers
	7.9 Framework HAL devices
	7.10 Logging
	7.10.1 Log Task Init
	7.10.2 Log Macros

	7.11 Coffee Machine database
	7.11.1 Face recognition database usage
	7.11.2 User coffee information database usage

	7.12 Coffee machine CM4
	7.13 Main functionalities
	7.14 LVGL GUI screens and widgets
	7.15 LVGL and Vglite library
	7.16 Boot sequence
	7.17 Board level initialization
	7.18 LVGL image resource and icon resource loading
	7.19 Framework managers
	7.20 Framework HAL devices
	7.20.1 MipiGc2145 camera HAL device
	7.20.2 PxP graphics HAL device
	7.20.3 LVGLCoffeeMachine display HAL device
	7.20.4 UiCoffeeMachine UI output HAL device
	7.20.4.1 LVGL touch events
	7.20.4.2 Vision and Voice algorithm inference result

	7.20.5 RgbLed output HAL device
	7.20.6 MessageBuffer multicore HAL device
	7.20.7 ShellUsb input HAL device
	7.20.8 Standby LPM HAL device

	7.21 Logging
	7.21.1 Logging Task Init
	7.21.2 Logging Macros

	8 Elevator
	8.1 Introduction
	8.2 Architecture
	8.3 Software block diagram
	8.4 Elevator CM7
	8.5 Main functionalities
	8.6 Boot sequence
	8.7 Board level initialization
	8.8 Framework managers
	8.9 Framework HAL devices
	8.10 Logging
	8.10.1 Log task init
	8.10.2 Log usage

	8.11 Elevator database
	8.11.1 Face recognize database usage
	8.11.2 Elevator user information database usage

	8.12 Elevator CM4
	8.13 Main functionalities
	8.14 LVGL GUI screens and widgets
	8.15 LVGL and Vglite library
	8.16 Boot sequence
	8.17 Board level initialization
	8.18 LVGL image resource loading
	8.19 Framework managers
	8.20 Framework HAL devices
	8.20.1 MipiGc2145 camera HAL device
	8.20.2 PxP graphics HAL device
	8.20.3 LVGLElevator display HAL device
	8.20.4 UiElevator UI output HAL device
	8.20.4.1 LVGL touch events
	8.20.4.2 Vision and Voice algorithm inference result

	8.20.5 RgbLed output HAL device
	8.20.6 MessageBuffer multicore HAL device
	8.20.7 ShellUsb input HAL device
	8.20.8 Standby LPM HAL device

	8.21 Logging
	8.21.1 Logging task init
	8.21.2 Logging macros

	9 Customization
	9.1 How to develop a user application
	9.1.1 Introduction
	9.1.2 Build the LVGL GUI
	9.1.2.1 Design and create the GUI with NXP's free GUI Guider tool
	9.1.2.2 Integrate your generated LVGL GUI code

	9.1.3 Build the phoneme-based voice recognition model
	9.1.4 Bind the user's profile data with face recognition
	9.1.5 Implement the use case flow for your application

	9.2 Application resource build
	9.2.1 Introduction
	9.2.2 Source files
	9.2.2.1 Format of Image file
	9.2.2.2 Format of Icon file
	9.2.2.3 Format of Sound file

	9.2.3 Description file
	9.2.4 Resource build tool

	9.3 Cyberon DSMT speech model instructions
	9.3.1 Getting started with phoneme-based voice engine tool
	9.3.2 Installation
	9.3.3 Load the project template
	9.3.4 Add a new command into the Coffee Machine demo
	9.3.4.1 Integrate the voice engine in MCUXpresso project

	9.3.5 Add a new language into the Coffee Machine demo
	9.3.6 Cyberon tools

	10 VIT speech model instructions
	10.1 Getting started with VIT
	10.2 Barge-in support when VIT is enabled
	10.3 Obtaining a new VIT model
	10.4 Integrating a new VIT model
	10.5 Multilanguage support
	10.6 Additional info and resources

	11 Revision history
	12 Legal information
	Contents

