

UM11183

KITFS85SKTEVM evaluation board

Rev. 3 — 6 December 2019

User manual

aaa-032755

Figure 1. KITFS85SKTEVM

Important Notice

NXP provides the enclosed product(s) under the following conditions:

This evaluation kit is intended for use of ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY. It is provided as a sample IC pre-soldered to a printed circuit board to make it easier to access inputs, outputs, and supply terminals. This evaluation board may be used with any development system or other source of I/O signals by simply connecting it to the host MCU or computer board via off-the-shelf cables. This evaluation board is not a Reference Design and is not intended to represent a final design recommendation for any particular application. Final device in an application will be heavily dependent on proper printed circuit board layout and heat sinking design as well as attention to supply filtering, transient suppression, and I/O signal quality.

The goods provided may not be complete in terms of required design, marketing, and or manufacturing related protective considerations, including product safety measures typically found in the end product incorporating the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. In order to minimize risks associated with the customers applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. For any safety concerns, contact NXP sales and technical support services.

Should this evaluation kit not meet the specifications indicated in the kit, it may be returned within 30 days from the date of delivery and will be replaced by a new kit.

NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typical, must be validated for each customer application by customer's technical experts.

NXP does not convey any license under its patent rights nor the rights of others. NXP products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the NXP product could create a situation where personal injury or death may occur.

Should the Buyer purchase or use NXP products for any such unintended or unauthorized application, the Buyer shall indemnify and hold NXP and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges NXP was negligent regarding the design or manufacture of the part.

1 Introduction

This document is the user guide for the KITFS85SKTEVM evaluation board. This document is intended for the engineers involved in the evaluation, design, implementation, and validation of FS8500 Fail-safe system basis chip with multiple SMPS and LDO.

The scope of this document is to provide the user with information to evaluate the FS8500 Fail-safe system basis chip with multiple SMPS and LDO. This document covers connecting the hardware, installing the software and tools, configuring the environment and using the kit.

The KITFS85SKTEVM enables development on FS84/FS85 family of devices. The kit can be connected to the FlexGUI software which allows you to play with registers, try OTP configurations, and burn the part.

The devices can be placed and removed easily from the board by using the socket. **The device OTP can be burned three times, which provides a good flexibility.** This board supports FS84/FS85 family of devices.

2 Finding kit resources and information on the NXP web site

NXP Semiconductors provides online resources for this evaluation board and its supported device(s) on <http://www.nxp.com>.

The information page for KITFS85SKTEVM evaluation board is at <http://www.nxp.com/KITFS85SKTEVM>. The information page provides overview information, documentation, software and tools, parametrics, ordering information and a **Getting Started** tab. The **Getting Started** tab provides quick-reference information applicable to using the KITFS85SKTEVM evaluation board, including the downloadable assets referenced in this document.

2.1 Collaborate in the NXP community

The NXP community is for sharing ideas and tips, ask and answer technical questions, and receive input on just about any embedded design topic.

The NXP community is at <http://community.nxp.com>.

3 Getting ready

Working with the KITFS85SKTEVM requires the kit contents, additional hardware and a Windows PC workstation with installed software.

3.1 Kit contents

- Assembled and tested evaluation board in an anti-static bag
- 3.0 ft USB-STD A to USB-B-mini cable
- Two connectors, terminal block plug, 2 pos., str. 3.81 mm
- Three connectors, terminal block plug, 3 pos., str. 3.81 mm
- Jumpers mounted on board

3.2 Additional hardware

In addition to the kit contents, the following hardware is necessary or beneficial when working with this kit.

- Power supply with a range of 8.0 V to 60 V and a current limit set initially to 1.0 A

3.3 Windows PC workstation

This evaluation board requires a Windows PC workstation. Meeting these minimum specifications should produce great results when working with this evaluation board.

- USB-enabled computer with Windows 7 or Windows 10

3.4 Software

Installing software is necessary to work with this evaluation board. All listed software is available on the evaluation board's information page at <http://www.nxp.com/KITFS85SKTEVM> or from the provided link.

- FlexGUI latest version
- FS85_FS84 OTP Config.xlsx
- Java installation <https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html>

4 Getting to know the hardware

The KITFS85SKTEVM provides flexibility to play with all the features of the device and make measurements on the main part of the application. The KL25Z MCU installed on the board, combined with the FlexGUI software allows access to the registers in read and write mode. All regulators are accessible through connectors. Nonuser signal, like DC/DC switcher node is mapped on test points. Digital signals (SPI, I2C, RSTB, etc.) are accessible through connectors. Pin WAKE1 has a switch to control (Ignition) them. A VBAT switch is available to power On or Off the device.

The main purpose of this kit is to burn the OTP configuration. This kit can be operated in Emulation mode or in OTP mode. In Emulation mode, as long as the power is supplied, the board configuration stays valid. The OTP mode uses the fused configuration. The device can be fused three times. In OTP mode, the device always starts with the fused configuration, except if the user wants to overwrite OTP configuration using Emulation mode. This board is able to fuse the OTP without any extra tools or board.

Note: Due to the socket, this kit is not optimized for performance measurement or current higher than 1.0 A.

4.1 Kit overview

The KITFS85SKTEVM is a hardware evaluation tool that allows OTP burning. Due to the socket, the FS84/FS85 part can be configured without the need to solder it. Devices can be programmed three times (see [Section 7.3 "Programming the device with an OTP configuration"](#)).

An Emulation mode is possible to test as many configurations as needed.

An external LDO provides VDDI2C voltage with a choice of 1.8 V or 3.3 V (default). VDDIO is assigned by default to VDDI2C. From USB voltage, an external DC/DC

generates the OTP programming voltage (8.0 V) without any need for an external power supply.

4.1.1 KITFS85SKTEVM features

- VBAT power supply connectors (Jack and Phoenix)
- VPRE output capability up to 1.0 A (socket limit)
- VBUCK1/2 in Standalone (default) or Multiphase mode
- VBUCK3
- VBOOST 5.0 V or 5.74 V
- LDO1 and LDO2, from 1.1 V to 5.0 V
- Ignition key switch
- FS0B external safety pin
- Embedded USB connection for easy connection to software GUI (access to SPI/I2C bus, IOs, RSTB, FS0B, INTB, Debug, MUX_OUT, regulators)
- LEDs that indicate signal or regulator status
- Support OTP fuse capabilities
- USB connection for register access, OTP emulation and programming
- Voltage monitoring jumper setting

Note: Due to the socket, all current capabilities are limited to 1.0 A.

4.1.2 VMON board configuration

The VMONx configuration is highly dependent on the use case. This kit is delivered with a default configuration shown in [Figure 2](#).

This configuration supports the following mapping:

- VPRE, assigned to VMON1; Bridge resistor set for 3.3 V
- BUCK2, assigned to VMON2; Bridge resistor set for 1.8 V
- BUCK3, assigned to VMON3; Bridge resistor set for 3.3 V
- LDO1, assigned to VMON4; Bridge resistor set for 3.3 V
- LDO2, assigned to VMON4; Bridge resistor set for 5.0 V

LDO1 and LDO2 use the same VMON, a reassignment is necessary to monitor both.

Due to the jumpers, VMONx can be tied to a 0.8 V to force a good voltage at pin level. This behaves like hardware disabling and makes debug easy in some cases.

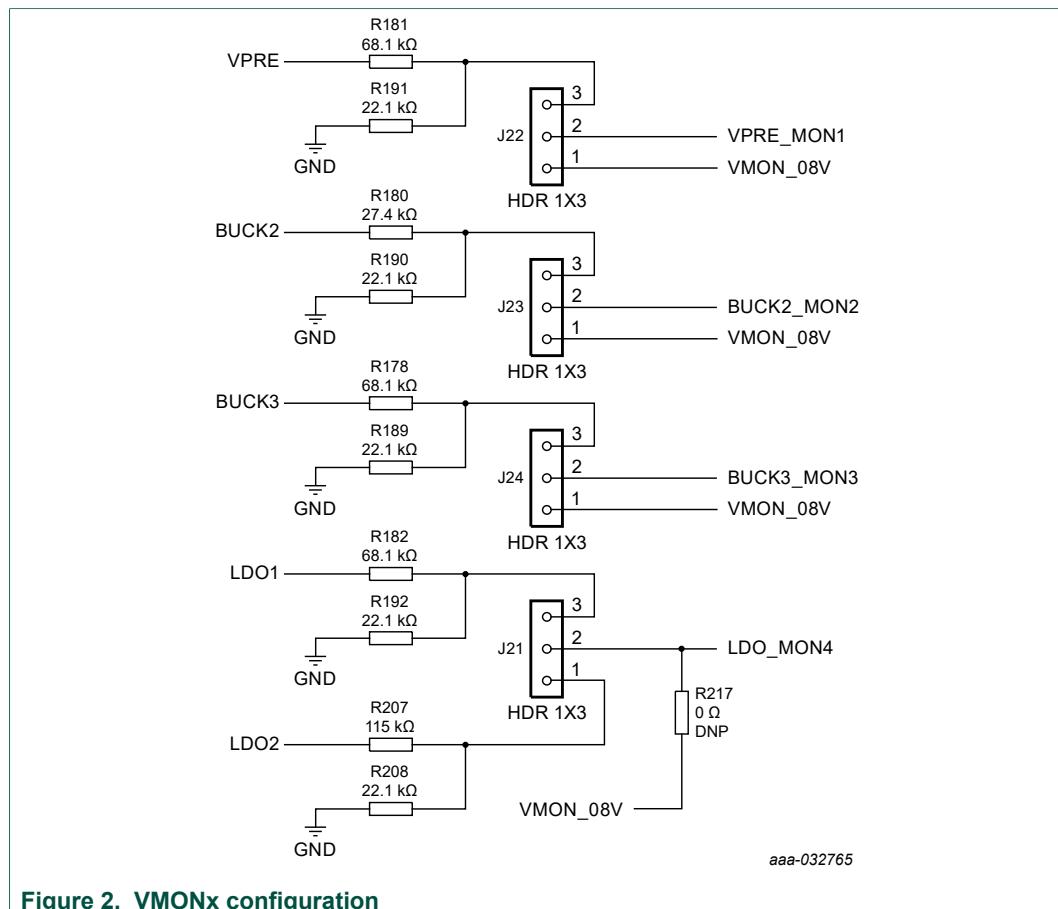


Figure 2. VMONx configuration

4.1.3 VPRE compensation network

This board is delivered with a VPRE compensation network defined for VPRE 4.1 V at 450 kHz. All other VPRE configurations require a new calculation for these components.

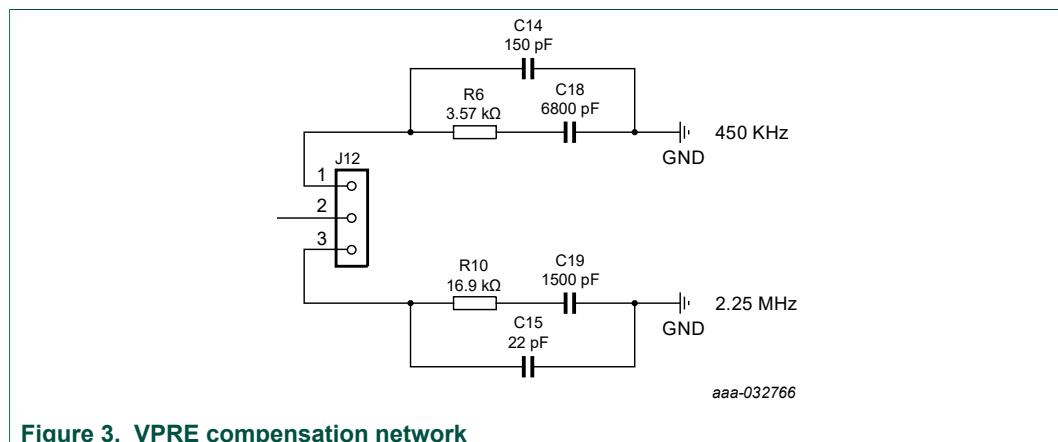



Figure 3. VPRE compensation network

Table 1. Compensation network

Components	VPRE 450 kHz	VPRE 2.2 MHz
C18/C19	6.8 nF	1.5 nF
C14/C15	150 pF	22 pF
R6/R10	3.57 kΩ	16.9 kΩ
LPRE	4.7 µH or 6.8 µH	1.5 µH , 2.2 µH or 4.7 µH

4.1.4 BUCK1 and BUCK2 multiphase configuration

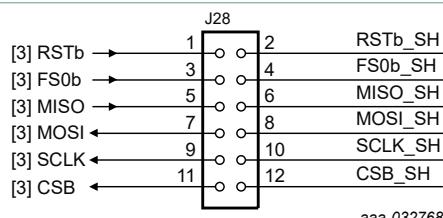

The board is designed to work independently with BUCK1 and BUCK2. Due to R11 and R145, it is possible to connect both connectors together and work in multiphase.

Figure 4. BUCK1 and BUCK2 multiphase configuration

4.1.5 SPI/I2C

The SPI and I2C buses are connected to KL25Z MCU. The user can use either one or the other. The choice can be done at start of the FlexGUI or at any time after launch (see [Section 8 "Using FlexGUI"](#)).

This kit uses a KL25Z MCU to communicate with FlexGUI. However, if the user wants to connect the SPI to another MCU, this is possible. In this case, remove J28 and appropriate jumpers to disconnect the KL25Z MCU (see [Figure 5](#)) and connect the external MCU on J30 connector as shown in [Figure 6](#). In addition to this change, make sure that the VDDIO voltage domain is the same on MCU side and SBC side.

Figure 5. SPI connection to KL25Z

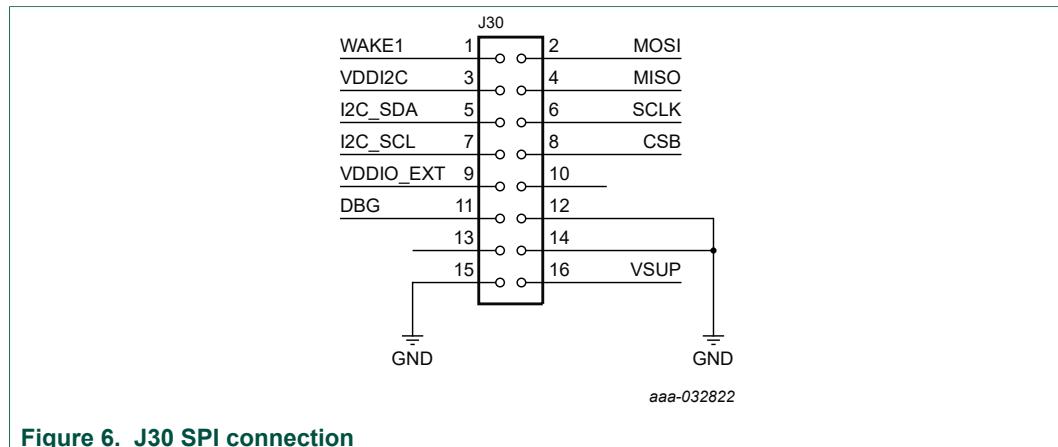


Figure 6. J30 SPI connection

4.1.6 VDDI2C

As an option, an external LDO is provided to feed VDDI2C. This LDO can also be used to feed VDDIO, which is the default implementation.

The I2C is compatible with 1.8 V or 3.3 V, while VDDIO is compatible with 3.3 V and 5.0 V. For this reason, the LDO default configuration is 3.3 V. The LDO is supplied by 5.0 V coming from the USB.

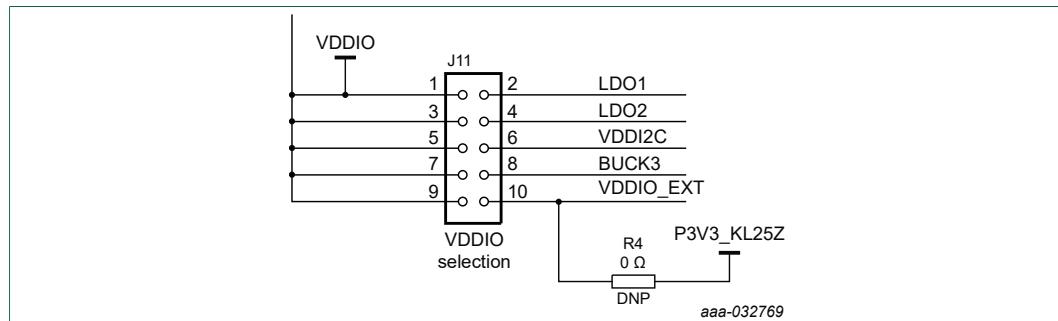


Figure 7. VDDIO selection

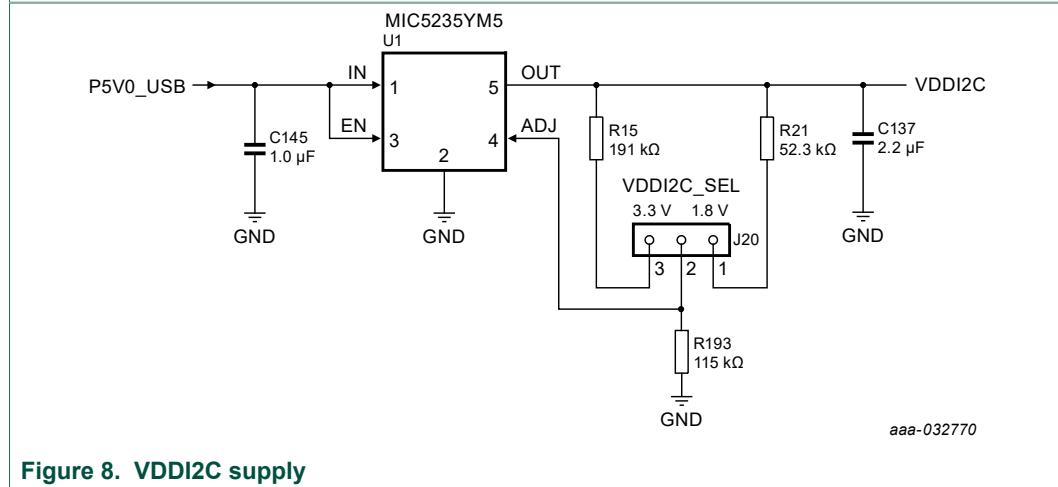
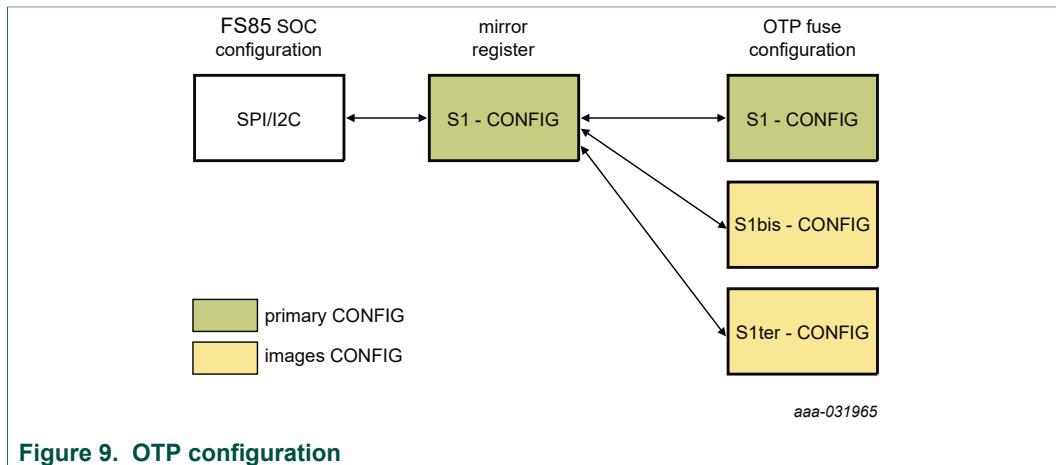


Figure 8. VDDI2C supply

4.2 Device OTP user configuration

It is recommended to learn about OTP before operating with the device. The device has a high level of flexibility due to parameter configuration available in the OTP. This impacts the functionality of the device. It is key to understand how OTP parameters can be programmed, the interaction with mirror registers and the FS85 SoC.

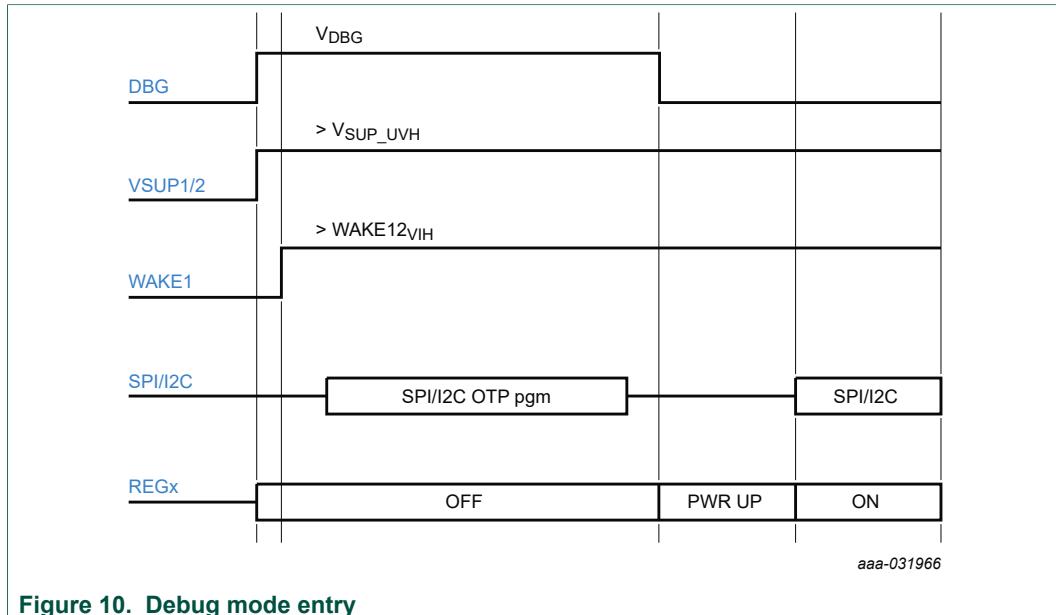

The OTP related operations can be performed either in Emulation mode, where the product uses a given configuration as long as power supply is not switched Off or from OTP fuse content that is valid even after a power down/power up sequence.

4.2.1 OTP and mirrors registers

There are two OTP blocks in the device. One is for the main section, and the other for the fail-safe. During configuration, each of them are using dedicated sectors. The OTP configuration scheme is shown in [Figure 9](#) (same implementation for main and fail-safe).

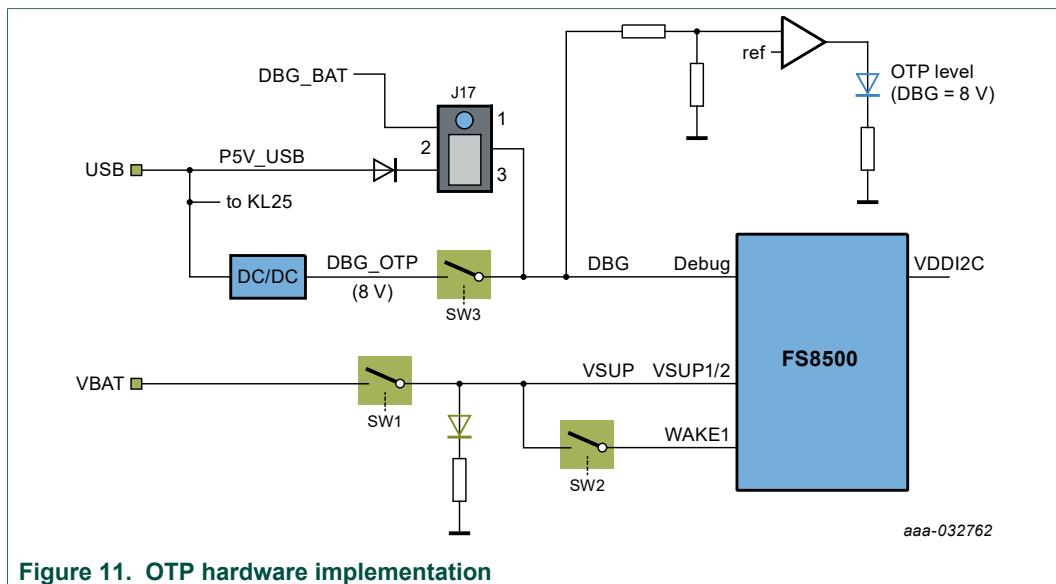
The device can be fused three times using mirror registers. The user can first load the mirror register content with the desired contents, then decide either to use the device in Emulation mode or to burn the next sector. The first sector to be burned is S1, the second S1bis and the third S1ter. FlexGUI automatically manages the next sector to be burned. It is not possible to revert back to the previous sector. When the user reaches the sector S1ter, there is no other possibility for burn, however emulation mode is still available.

Note: When device is operating in Emulation mode using configuration from mirror registers, few parameters must be overwritten by SPI/I2C. This concerns regulator TSD behaviors; VPREG slew rate high-side and low-side VBOOST slew rate. See [Section 8.4.10 "TestMode:Mirrors_Main and TestMode:Mirrors_Failsafe"](#) for additional details.


Figure 9. OTP configuration

At boot, the content of the valid sector is loaded into the Mirror Register Sector 1. The mirror register content is accessible from FlexGUI by using specific SPI/I2C commands. The mirror configuration is managed by the FlexGUI, which eases the access.

4.2.2 OTP hardware implementation


To work in OTP emulation or OTP programming, it is required to start the device in Debug mode.

[Figure 10](#) shows the sequence to be followed to enter in Debug mode. The voltage sequence on the kit is done using switches installed on the board, while the OTP registers configuration is managed by the FlexGUI GUI. This is described in detail in the following sections.

Figure 10. Debug mode entry

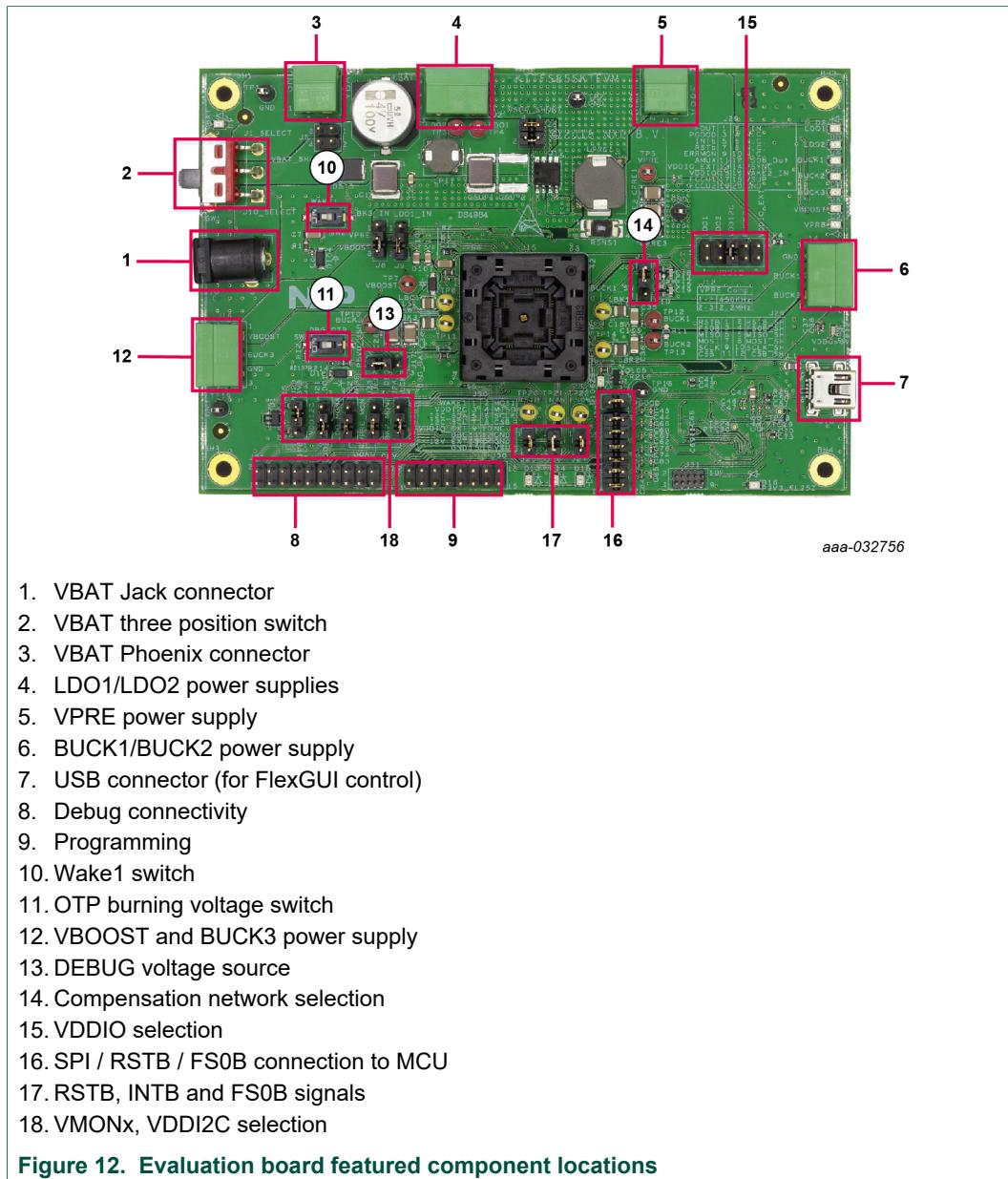

[Figure 11](#) shows the hardware kit implementation.

Figure 11. OTP hardware implementation

4.3 Kit featured components

[Figure 12](#) identifies important components on the board and [Table 2](#) provides additional details on these components.

Table 2. Evaluation board board component descriptions

Number	Description
1	VBAT Jack connector
2	VBAT three position switch <ul style="list-style-type: none"> • Left position: board supplied by Jack connector • Middle position: board not supplied • Right position: board supplied by Phoenix connector
3	VBAT Phoenix connector
4	LDO1/LDO2 power supply
5	VPRE power supply
6	BUCK1/BUCK2 power supply
7	USB connector (for FlexGUI control)

Number	Description
8	Debug connectivity. Access to: <ul style="list-style-type: none"> VSUP, GND FOUT/FIN PGOOD/RSTB/FS0B FCCUX WAKE2 PSYNC, ERRMON, AMUX VMONx
9	Programming <ul style="list-style-type: none"> SPI bus I2C bus Debug pin VPRE, VSUP, GND
10	Wake1 switch
11	OTP burning voltage switch
12	VBOOST and BUCK3 power supply
13	DEBUG voltage source either from USB (recommended) or from VSUP
14	VPRE compensation network selection, either 2.2 MHz or 450 kHz
15	VDDIO source from device regulators or external sources
16	SPI, RSTB or FS0B can be disconnected between device and MCU
17	RSTB, INTB and FS0B signals available here (device pin level)
18	Allows to select VMON from regulators or a fix 0.8 V VDDI2C can be selected either 1.8 V or 3.3 V

4.3.1 FS8500/FS8400: Fail-safe system basis chip with multiple SMPS and LDO

4.3.1.1 General description

This device family is part of a global platform FS84 (fit for ASIL B) and FS85 (fit for ASIL D), pin to pin and software compatible. The FS85/FS84 is an automotive functionally safe multi-output power supply integrated circuit, with focus on Radar, Vision, ADAS domain controller, Radio and Infotainment applications. It includes multiple switch mode and linear voltage regulators. It offers external frequency synchronization input and output, for optimized system EMC performance.

The FS85/FS84 includes enhanced safety features, with fail-safe output, becoming a full part of a safety-oriented system partitioning, covering both ASIL B and ASIL D safety integrity level. It is developed in compliance with ISO 26262 standard. Several device versions are available, offering choice in number of output rails, output voltage setting, operating frequency and power up sequencing, to address multiple applications.

4.3.1.2 Features

- 60 V DC maximum input voltage for 12 V and 24 V applications
- VPRE synchronous buck controller with external MOSFETs. Configurable output voltage, switching frequency, and current capability up to 10 A peak.
- Low voltage integrated synchronous BUCK1 converter, dedicated to MCU core supply with SVS capability. Configurable output voltage and current capability up to 3.6 A peak.

- **Based on part number:** low voltage integrated synchronous BUCK2 converter. Configurable output voltage and current capability up to 3.6 A peak. Multi-phase capability with BUCK1 to extend the current capability up to 7.2 A peak on a single rail. Static voltage scaling capability.
- **Based on part number:** low voltage integrated synchronous BUCK3 converter. Configurable output voltage and current capability up to 2.5 A typical peak.
- BOOST converter with integrated low-side switch. Configurable output voltage and max input current up to 1.5 A peak.
- EMC optimization techniques including SMPS frequency synchronization, spread spectrum, slew rate control, manual frequency tuning
- 2x linear voltage regulators for MCU IOs and ADC supply, external physical layer. Configurable output voltage and current capability up to 400 mA DC.
- Standby OFF mode with very low sleep current (10 μ A typ)
- 2x input pins for wake-up detection and battery voltage sensing
- Device control via 32 bits SPI or I2C interface with CRC
- Power synchronization pin to operate 2x FS85 devices or FS85 plus an external PMIC
- Scalable portfolio from ASIL B to ASIL D with independent monitoring circuitry, dedicated interface for MCU monitoring, simple and challenger watchdog function, power good, reset and interrupt, built-in self-test, fail-safe output
- Configuration by OTP programming. Prototype enablement to support custom setting during project development in engineering mode.

4.3.2 Indicators

The following LEDs are provided as visual output devices for the evaluation board:

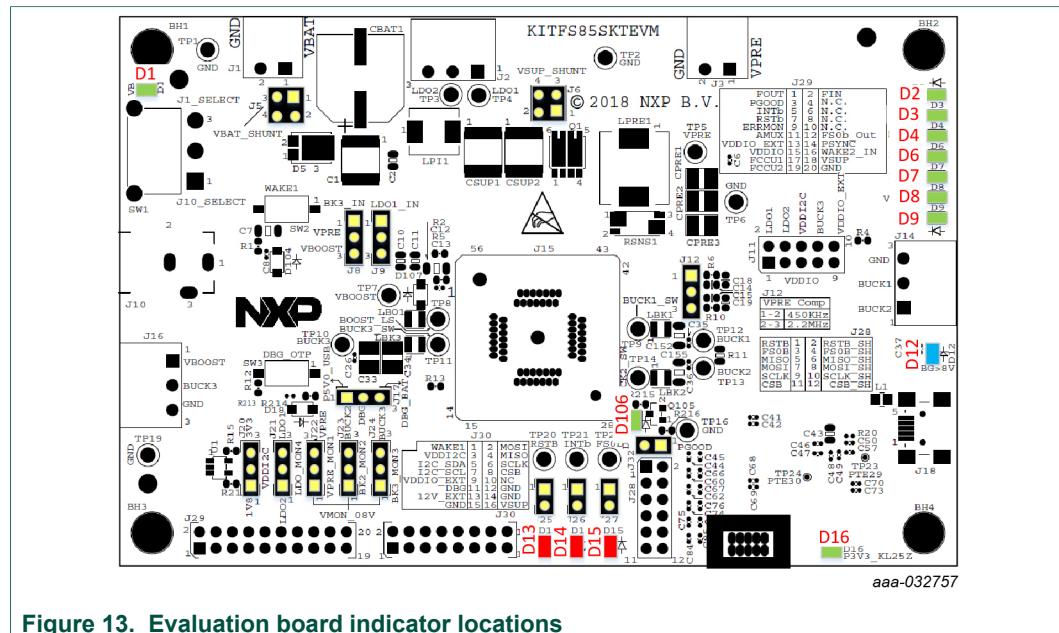


Figure 13. Evaluation board indicator locations

Table 3. Evaluation board indicator descriptions

Label	Name	Color	Description
D1	VBAT	Green	VBAT On
D2	LDO1	Green	LDO1 On
D3	LDO2	Green	LDO2 On

Label	Name	Color	Description
D4	BUCK1	Green	BUCK1 On
D6	BUCK2	Green	BUCK2 On
D7	BUCK3	Green	BUCK3 On
D8	VBOOST	Green	VBOOST On
D9	VPRE	Green	VPRE On
D12	DBG > 8.0 V	Blue	DBG pin voltage > 8.0 V (OTP programming)
D13	RSTB	Red	RSTB asserted (logic level = 0)
D14	INTB	Red	INTB asserted (logic level = 0)
D15	FS0B	Red	FS0B asserted (logic level = 0)
D16	P3V3_KL25	Green	P3V3_KL25 On
D106	PGOOD	Green	PGOOD released

4.3.3 Connectors

Figure 14 shows the location of connectors on the board.

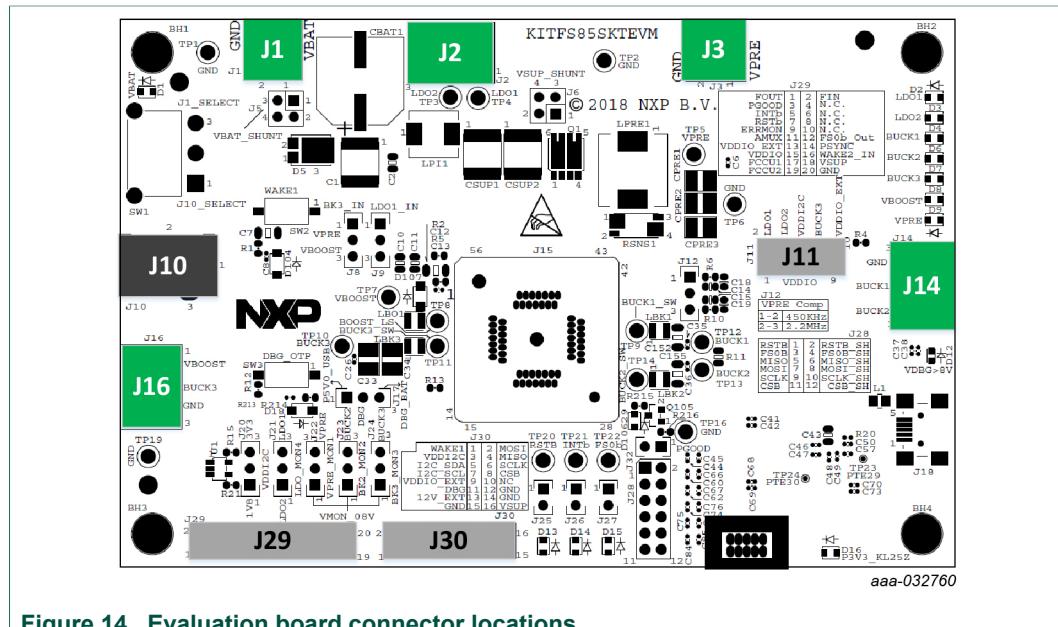


Figure 14. Evaluation board connector locations

4.3.3.1 VBAT connector (J1)

VBAT connects to the board through Phoenix connector (J1).

Table 4. V_{BAT} Phoenix connector (J1)

Schematic label	Signal name	Description
J1-1	VBAT	Battery voltage supply input
J1-2	GND	Ground

4.3.3.2 Output power supply connectors

Table 5. BUCK1/BUCK2 connector (J14)

Schematic label	Signal name	Description
J14-1	BUCK2	BUCK2 power supply output
J14-2	BUCK1	BUCK1 power supply output
J14-3	GND	Ground

Table 6. VBOOST/BUCK3 connector (J16)

Schematic label	Signal name	Description
J16-1	VBOOST	VBOOST output
J16-2	BUCK3	BUCK3 power supply output
J16-3	GND	Ground

Table 7. LDO1/LDO2 connector (J2)

Schematic label	Signal name	Description
J2-1	LDO1	LDO1 power supply output
J2-2	LDO2	LDO2 power supply output
J2-3	GND	Ground

Table 8. VPRE connector (J3)

Schematic label	Signal name	Description
J3-1	VPRE	VPRE power supply output
J3-2	GND	Ground

4.3.3.3 Debug connector (J29)

Table 9. Debug connector (J29)

Schematic label	Signal name	Description
J29-1	FOUT	Frequency synchronization output
J29-2	FIN	Frequency synchronization input
J29-3	PGOOD	Power GOOD
J29-4	n.c.	not connected
J29-5	INTB	Interrupt, active low
J29-6	n.c.	not connected
J29-7	RSTB	Reset, active low
J29-8	n.c.	not connected
J29-9	ERRMON	Error monitoring
J29-10	n.c.	not connected
J29-11	AMUX	Analog multiplexer
J29-12	FS0B_Out	Fail-safe, active low
J29-13	VDDIO_EXT	VDDIO external reference

Schematic label	Signal name	Description
J29-14	PSYNC	Power synchronization
J29-15	VDDIO	VDDIO used by FS85
J29-16	WAKE2_IN	Wake2 input
J29-17	FCCU1	Fault collector control unit 1
J29-18	VSUP	VSUP power supply
J29-19	FCCU2	Fault collector control unit 2
J29-20	GND	Ground

4.3.3.4 Program connector (J30)

Table 10. Program connector (J30)

Schematic label	Signal name	Description
J30-1	WAKE1	WAKE1 input
J30-2	MOSI	SPI master output slave input
J30-3	VDDI2C	VDDI2C voltage
J30-4	MISO	SPI master input slave output
J30-5	I2C_SDA	I2C serial data
J30-6	SCLK	SPI clock
J30-7	I2C_SCL	I2C serial clock
J30-8	CSB	SPI chip select
J30-9	n.c.	not connected
J30-10	VPRE	VPRE output
J30-11	DBG	Connected to Debug pin
J30-12	GND	Ground
J30-13	n.c.	not connected
J30-14	VSUP	Connected to VSUP pin
J30-15	GND	Ground
J30-16	GND	Ground

4.3.4 Test points

The following test points provide access to various signals to and from the board.

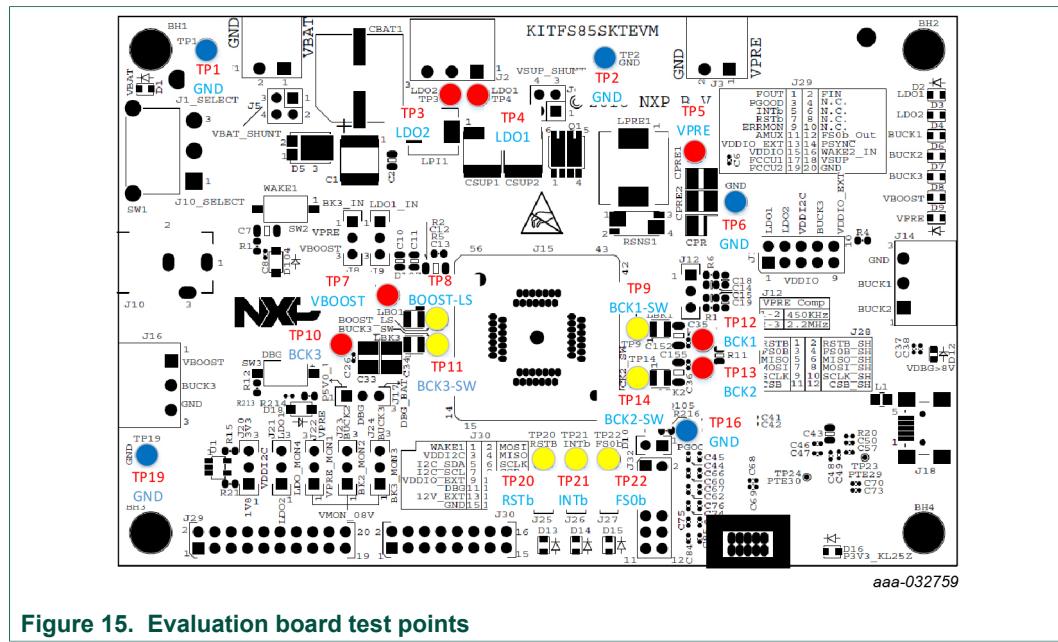


Figure 15. Evaluation board test points

Table 11. Evaluation board test point descriptions

Test point name	Signal name	Description
TP1	GND	Ground
TP2	GND	Ground
TP3	LDO2	LDO2 regulator output
TP4	LDO1	LDO1 regulator output
TP5	VPRE	VPRE DC/DC regulator output
TP6	GND	Ground
TP7	VBOOST	VBOOST DC/DC output
TP8	BOOST_LS	VBOOST low-side switcher
TP9	BUCK1_SW	BUCK1 switcher
TP10	BUCK3	BUCK3 DC/DC regulator output
TP11	BUCK3_SW	BUCK3 switcher
TP12	BUCK1	BUCK1 DC/DC regulator output
TP13	BUCK2	BUCK2 DC/DC regulator output
TP14	BUCK2_SW	BUCK2 switcher
TP16	GND	Ground
TP19	GND	Ground
TP20	RSTB	Reset
TP21	INTB	Interruption
TP22	FS0B	Fail-safe output

4.3.5 Jumpers

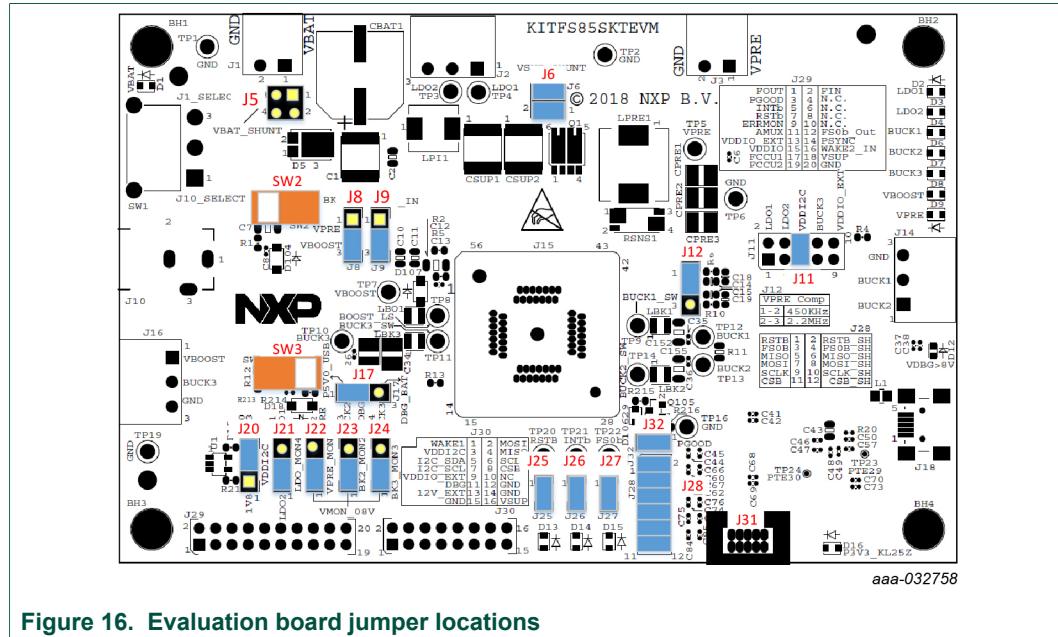


Figure 16. Evaluation board jumper locations

Table 12. Evaluation board jumper descriptions

Name	Function	Pin number	Jumper/pin function
J5	VBAT shunt	1-2	Shunt switch SW1 for current > 5.0 A
		3-4	Shunt switch SW1 for current > 5.0 A
J6	VSUP shunt	1-2	For current measurement (insert amperemeter)
		3-4	For current measurement (insert amperemeter)
J8	BUCK3 input	1-2	BUCK_INQ tied to VPRE
		2-3	BUCK_INQ tied to VBOOST
J9	LDO1 input	1-2	LDO1_IN connected to V _{PRE}
		2-3	LDO1_IN connected to VBOOST
J10	VBAT jack	Jack	Used for VBAT supply using jack connector
J11	VDDIO selection	1-2	VDDIO tied to LDO1
		3-4	VDDIO tied to LDO2
		5-6	VDDIO tied to VDDI2C (provided by external regulators)
		7-8	VDDIO tied to BUCK3
		9-10	VDDIO tied to VDDIO external
J17	Debug	1-2	Debug pin tied to P5V0_USB (5.0 V provided by USB connector)
		2-3	Debug pin tied to V _{BAT} (through external protection) Do not use for OTP burning
J20	VMON4	1-2	VMON4 tied to LDO2
		2-3	VMON4 tied to LDO1
J22	VMON1	1-2	VMON1 tied to 0.8 V
		2-3	VMON1 tied to VPRE

Name	Function	Pin number	Jumper/pin function
J23	VMON2	1-2	VMON2 tied to 0.8 V
		2-3	VMON2 tied to BUCK2
J24	VMON3	1-2	VMON3 tied to 0.8 V
		2-3	VMON3 tied to BUCK3
J25	RSTB	1-2	Reset LED Enabled when jumper is plugged
J26	INTB	1-2	Interrupt LED Enabled when jumper is plugged
J27	FS0B	1-2	FS0B LED Enabled when jumper is plugged
J29	—	—	—
J30	—	—	—
J31	—	—	Use only during board manufacturing
J32	PGOOD	1-2	PGOOD LED Enabled when jumper is plugged

4.3.6 Switches

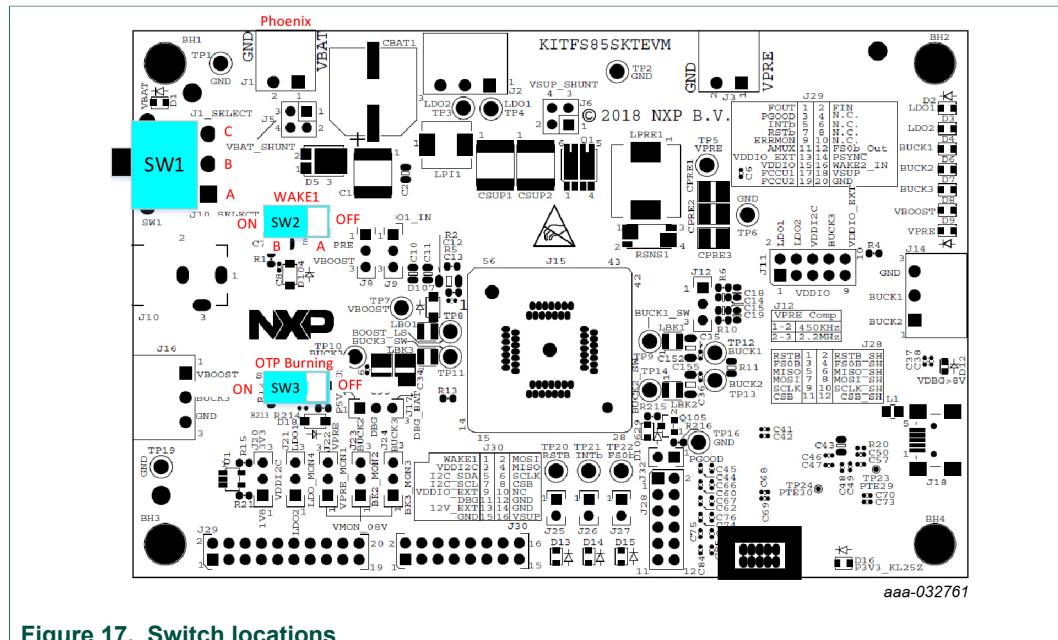


Figure 17. Switch locations

Table 13. SW3

Position	Function	Description
RIGHT	OTP programming Off	OTP burning not possible
LEFT	OTP programming On	8.0 V on DBG pin allows OTP burning (blue LED turns On to indicate this state)

Table 14. SW2

Position	Function	Description
OFF	WAKE1 open	Wake1 pin not connected to V _{SUP}
ON	WAKE1 closed	Wake1 pin connected to V _{SUP}

Table 15. SW1

Position	Function	Description
TOP	VBAT On	VBAT from J1
MIDDLE	VBAT Off	Board not supplied
BOTTOM	VBAT On	VBAT from J10

4.4 Schematic, board layout and bill of materials

The schematic, board layout and bill of materials for the KITFS85SKTEVM evaluation board are available at <http://www.nxp.com/KITFS85SKTEVM>.

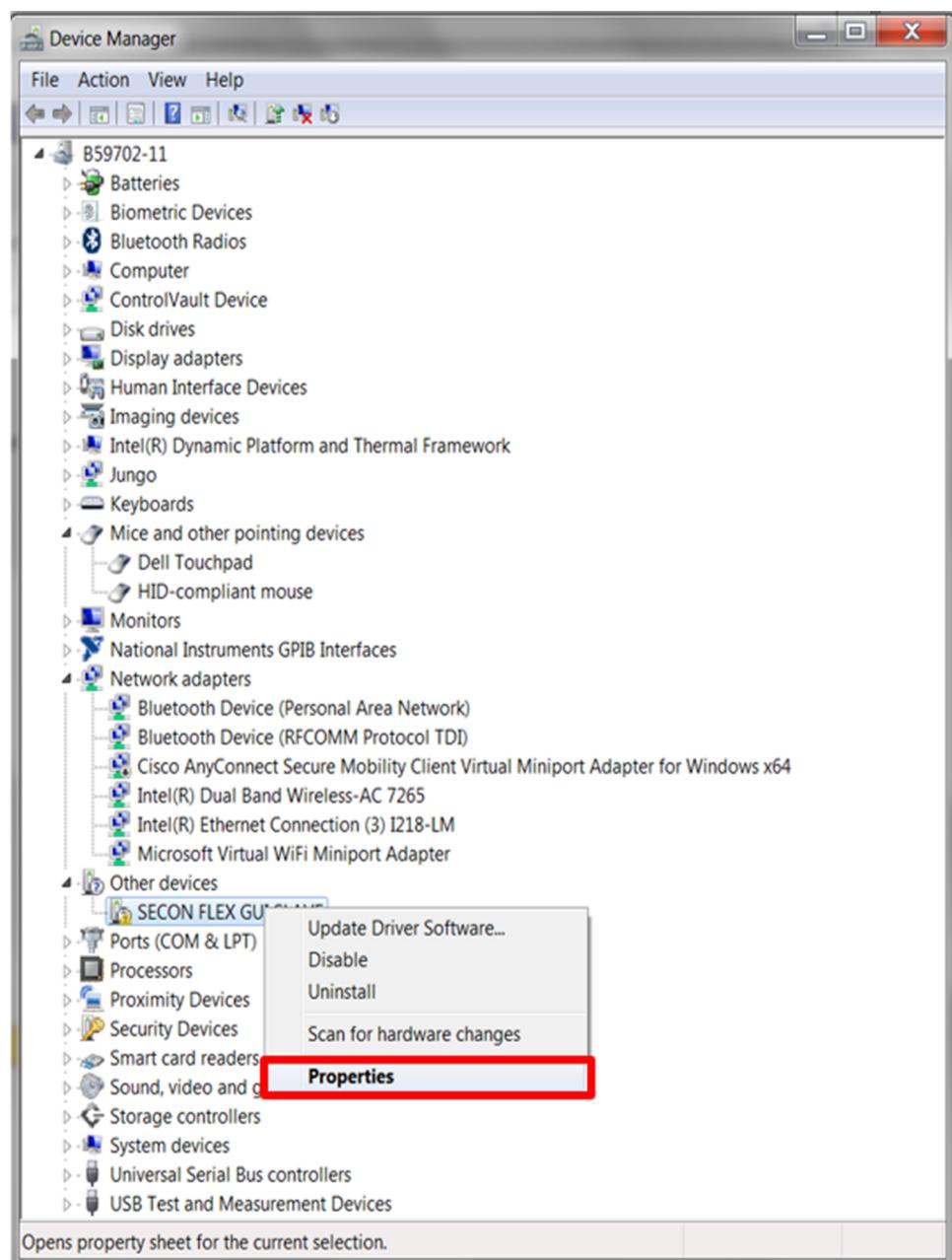
5 Installing and configuring software and tools

This development kit uses FlexGUI software. FlexGUI software is based on Java JRE.

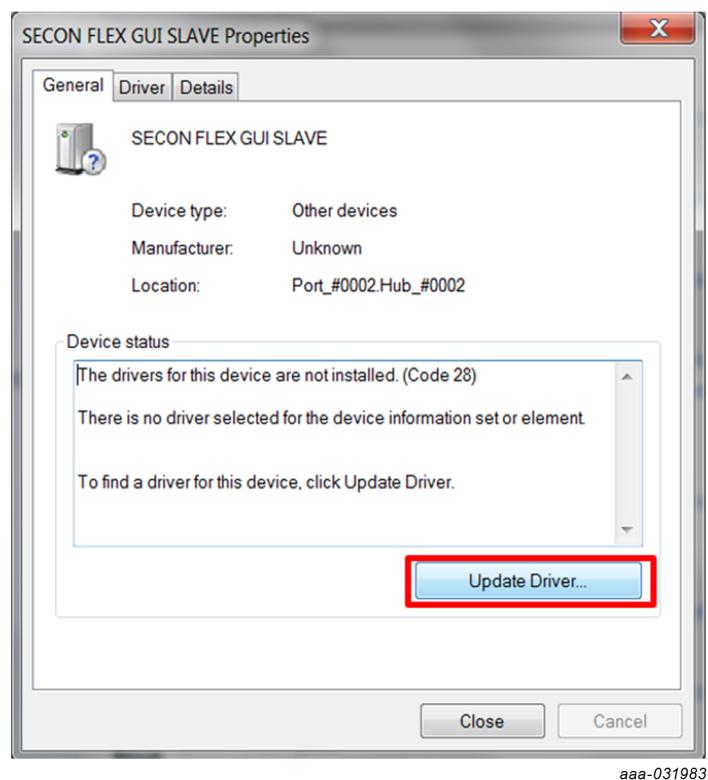
Preparing the Windows PC workstation consists of three steps.

1. Install the appropriate Java SE Runtime Environment (JRE).
2. Install Windows 7 FlexGUI driver.
3. Install FlexGUI software package.

5.1 Installing the Java JRE

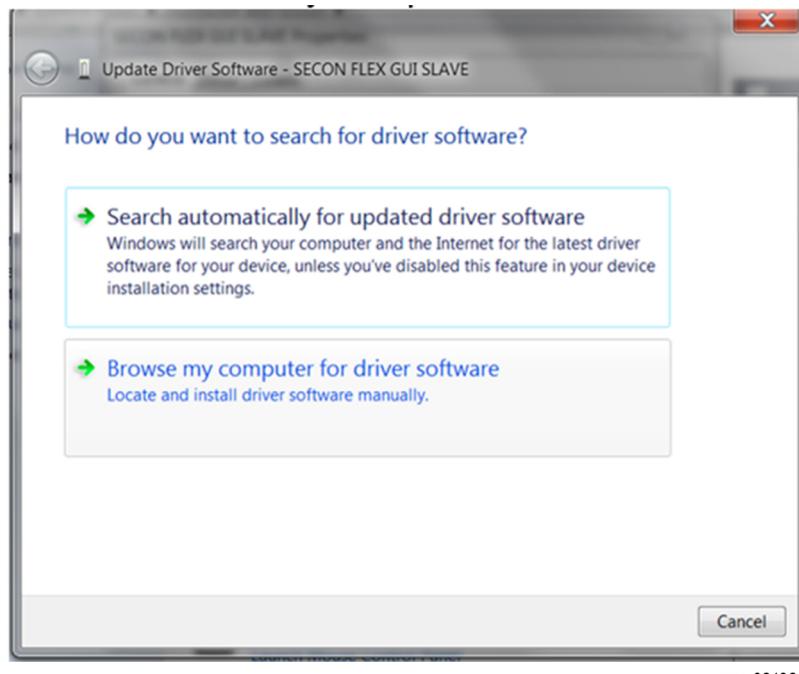

1. Download Java JRE (Java SE Runtime Environment), available at <http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html> (8u162 or newer).
2. Open the installer and follow the installation instructions.
3. Following the successful installation, restart the computer.

5.2 Installing Windows 7 FlexGUI driver

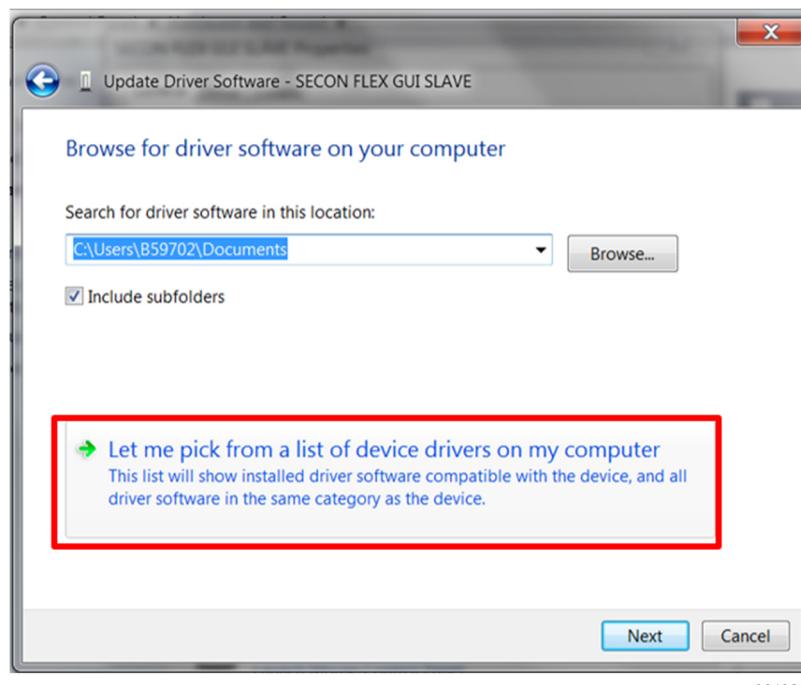

On Windows 7 PCs, a virtual COM port installation is required. Install the Windows 7 FlexGUI driver using the following procedure.

Note: On Windows 10, it is not necessary to install virtual com port as Windows 10 uses a generic COM port driver.

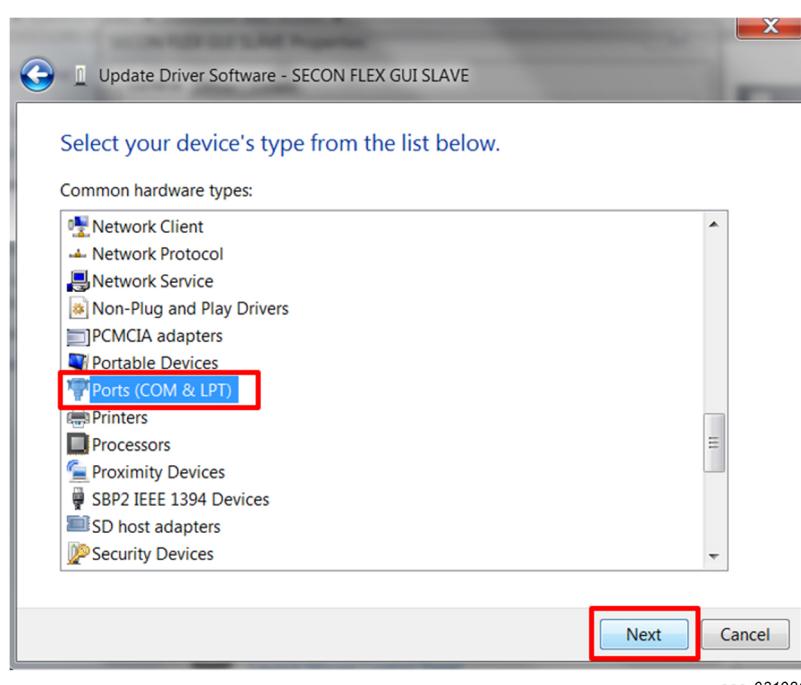
1. Connect the kit to the computer as described in [Section 6 "Configuring the hardware for startup"](#).
2. On the Windows PC, open the **Device Manager**.
3. In the **Device Manager** window, right-click on **SECON FLEX GUI SLAVE**, and then select **Properties**.



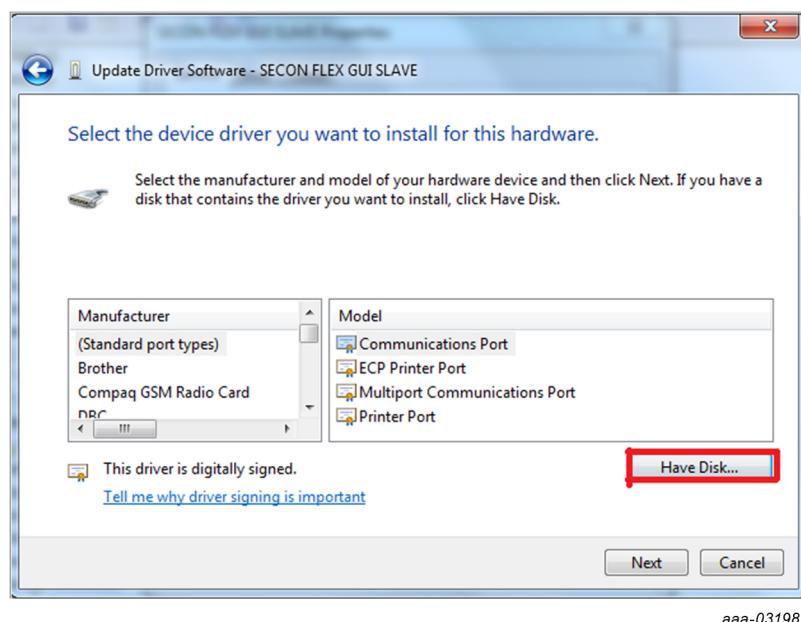
4. In the **SECON FLEX GUI SLAVE Properties** window, click **Update Driver**.

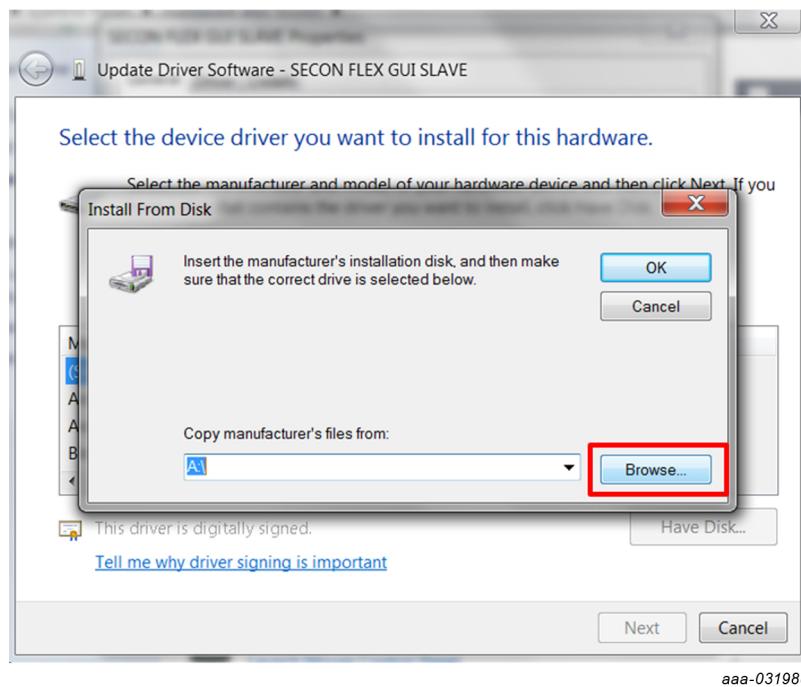

aaa-031983

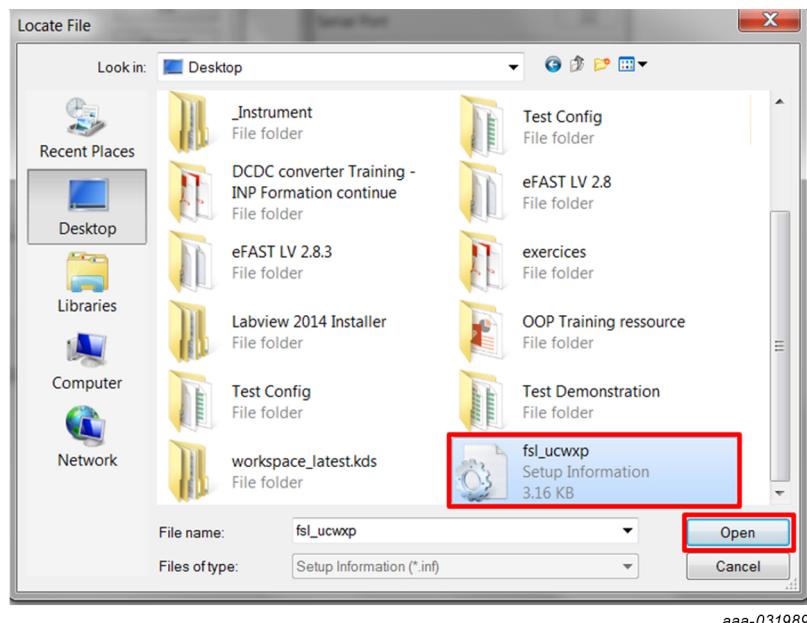
5. in the **Update Software Driver** window, select **Browse my computer for driver software**.

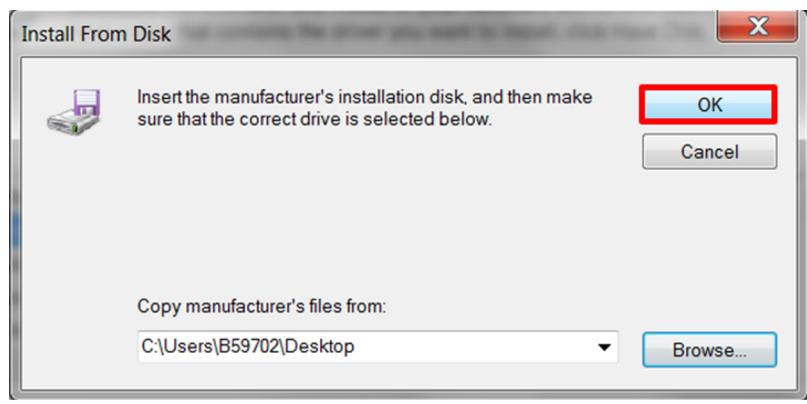


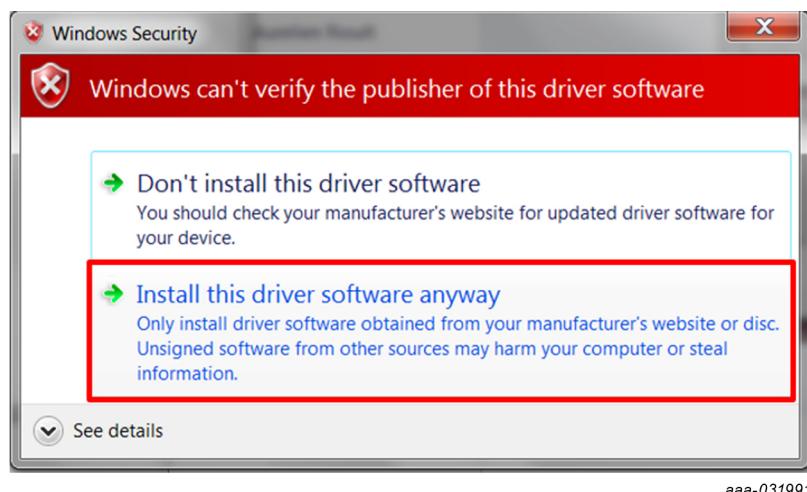
aaa-031984

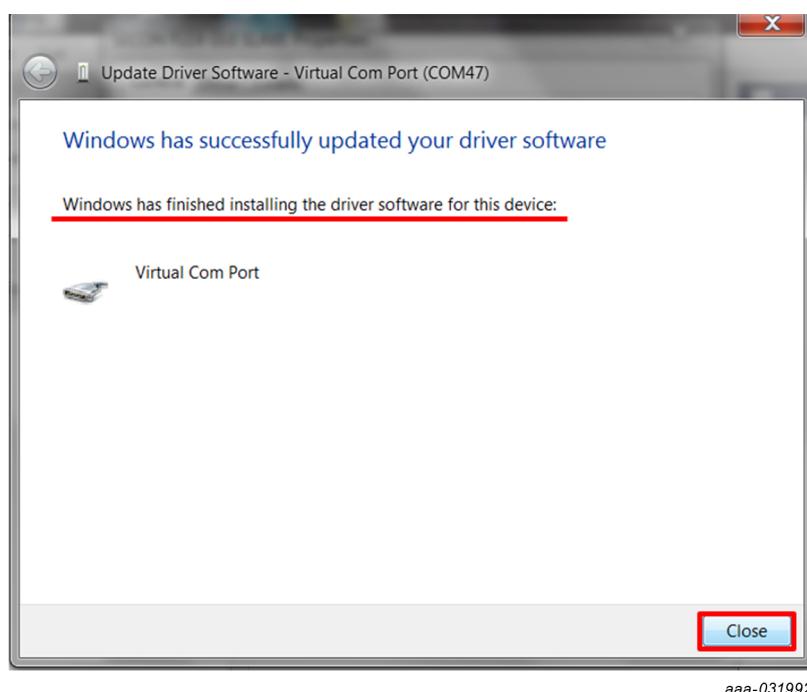

6. Select **Let me pick from a list of device drivers on my computer**, and then click **Next**.

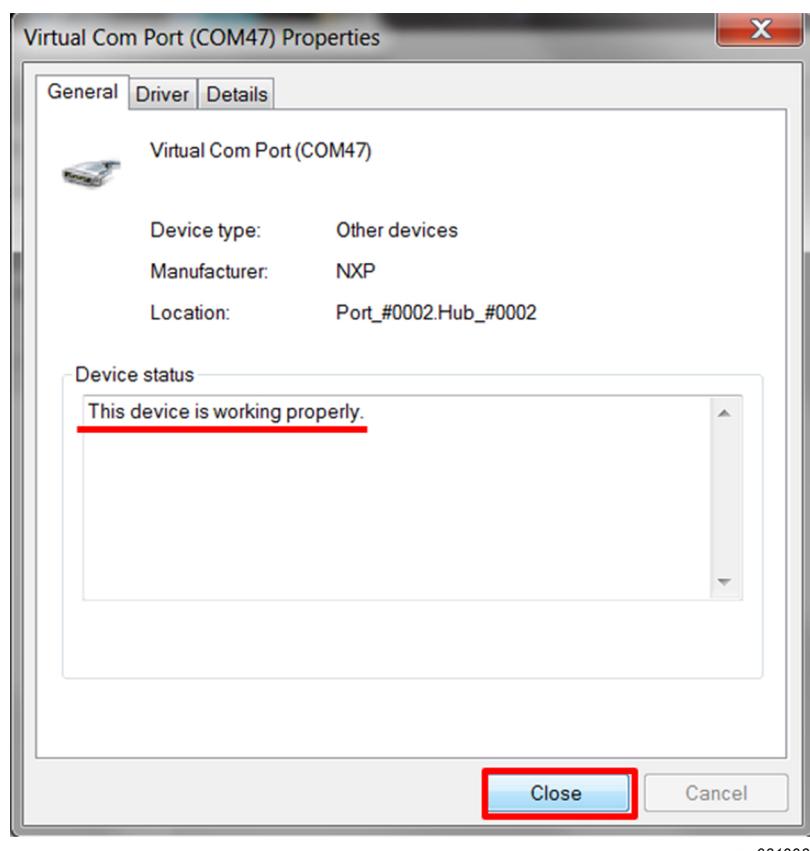

7. Select **Ports (COM & LPT)** from the list, and then click **Next**.

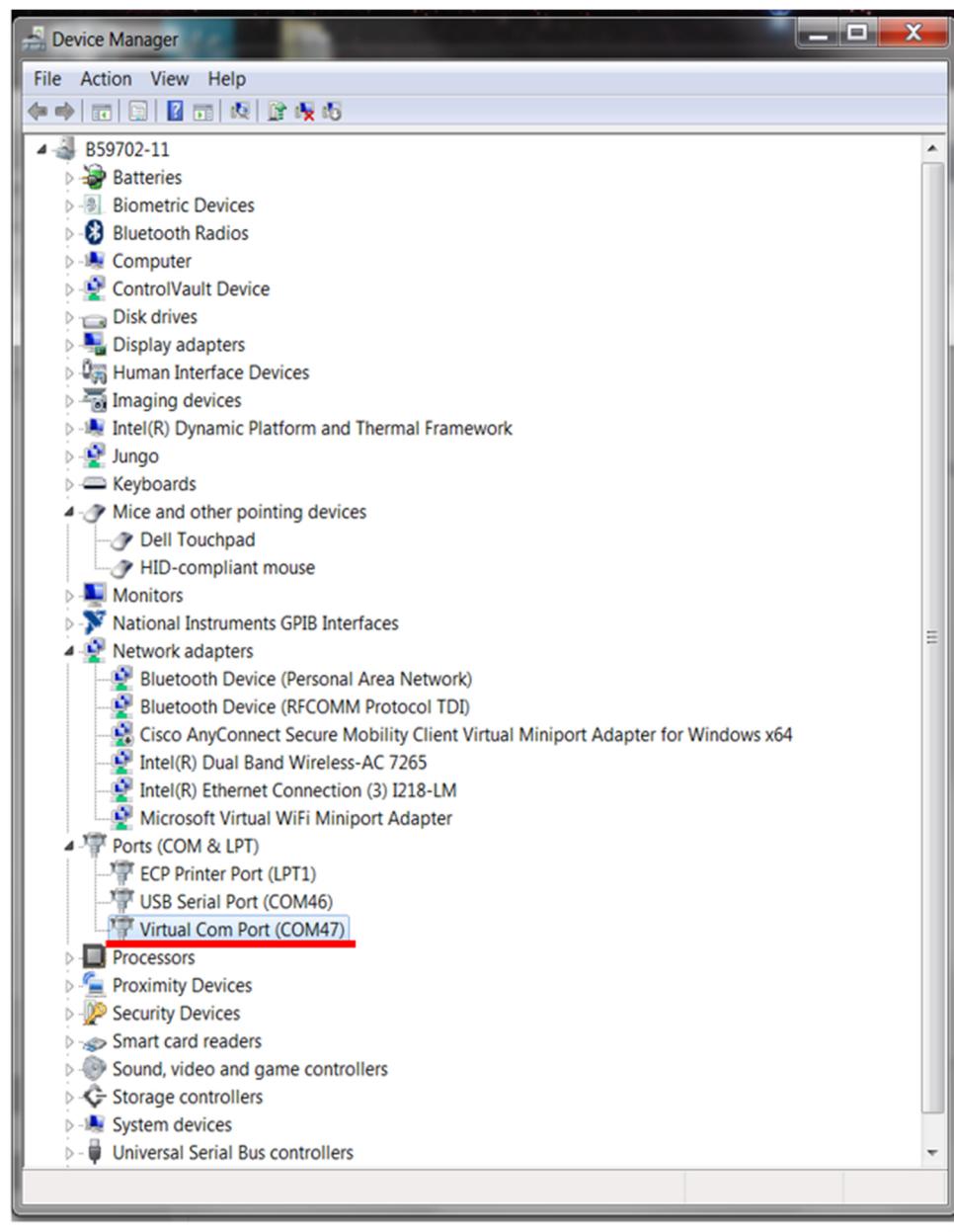

8. Click **Have Disk**.


9. Click **Browse**.


10. In the **Locate File** window, locate and select **fsl_ucwxp**, and then click **Open**.


11. In the **Install from Disk** window, click **OK**.


12. If prompted, in the **Windows Security** window, click **Select this driver software anyway**.


13.Close the window when the installation is complete.

14.In the **Virtual Com Port Properties** window, verify that the device is working properly, and then click **Close**.

The Virtual Com Port appears in the Device Manager window.

aaa-031994

5.3 Installing FlexGUI software package

The FlexGUI software installation requires only extracting the zip file in a desired location.

1. If necessary, install the Java JRE and Windows 7 FlexGUI driver.
2. Download the latest FlexGUI (32-bit or 64-bit) version, available at <http://www.nxp.com/KITFS85SKTEVM>.
3. Extract all the files to a desired location on your PC.
FlexGUI is started by running the batch file, `\bin\flexgui-app-fs85.bat`.

6 Configuring the hardware for startup

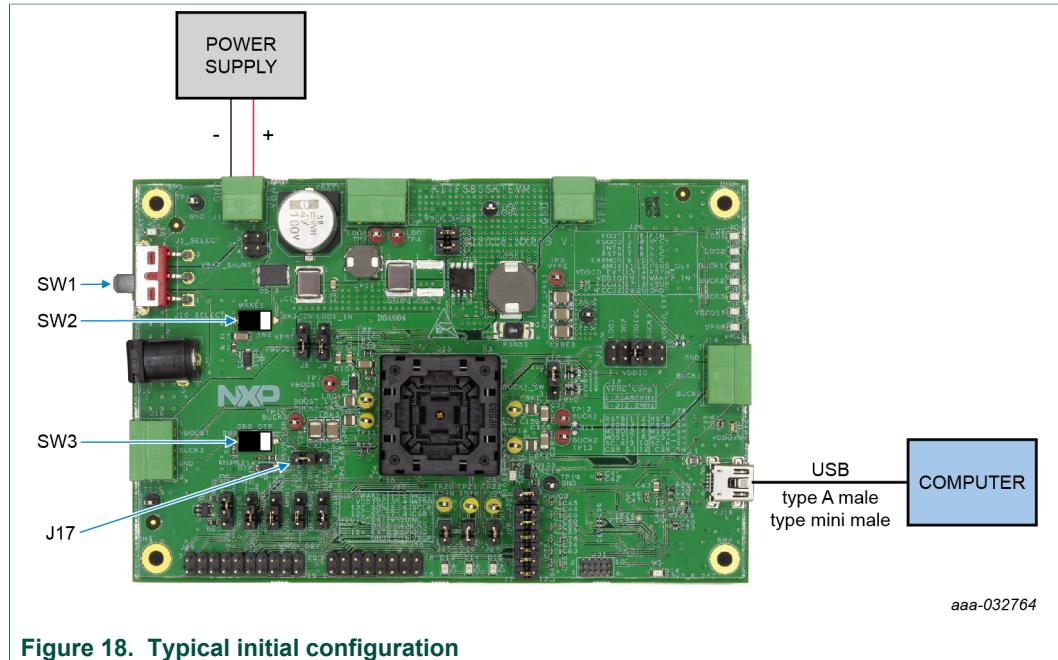


Figure 18. Typical initial configuration

Figure 18 presents a typical hardware configuration incorporating the development board, power supply and Windows PC workstation.

To configure the hardware and workstation as illustrated in Figure 18, complete the following procedure:

1. Install jumpers for the configuration.

Table 16. Jumper configuration

Jumper	Configuration
J17	connect 1-2 (connect 5.0 V on DBG pin from the USB)

2. Configure switches for the configuration

Table 17. Switch configuration

Switch	Configuration
SW1	middle position (VBAT off)
SW2	open (WAKE1)
SW3	open (OTP programming off)

3. Connect the Windows PC USB port to the KITFS85SKTEVM development board using the provided USB 2.0 cable.
- Set the DC power supply to 12 V and current limit to 1.0 A. With power turned off, attach the DC power supply positive and negative output to KITFS85SKTEVM V_{BAT} Phoenix connector (J1).
4. Turn on the power supply.
5. Close SW2.

Note: At this step, the product is in debug mode and all regulators are turned off. The user can then power up with OTP configuration or configure the mirror registers before power up. Power up is effective as soon as J17 jumper is removed.

7 Using the KITFS85SKTEVM evaluation board

This section summarizes the overall setup. Detailed description is provided in the following sections.

Before starting the process, choose the mode you want to run the device.

- In Normal mode, the configuration comes from OTP fuses.
- In Debug mode, you can either use the current configuration from OTP fuse, if any, or use the OTP emulation mode to write in the mirror register.

The Normal mode or Debug mode is defined at startup depending on the DBG pin level.

- Normal mode is set by tying DBG to ground.
- Debug mode is set by setting DBG voltage to 5.0 V.

In OTP emulation, you can overwrite the mirror registers from a given OTP fuse configuration. See [Section 4.2.1 "OTP and mirrors registers"](#) and [Section 8.3 "Working with the Script editor"](#) to define your configuration.

In OTP fuse configuration, use the configuration fused in the OTP. So, if a valid OTP fuse configuration exists, then it is copied to the mirror registers at startup.

7.1 Generating the OTP configuration file

Define and generate your OTP configuration using the excel file *FS85_F84 OTP Config.xlsx*. This file allows configuring the device for parameters controlled by the the main state machine and the fail-safe state machine.

To generate the script:

1. Fill data in the **OTP_conf_main_reg** sheet.

MAIN OTP_REGISTERS											
Register Name	DDRES	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	Data_Bin	Data_Hex
OTP_CFG_VPRE	14	0	-	-	-	-	VPREV[5:0]	-	-	00100000	0x20
OTP_CFG_VPRE_3	15	0	-	-	-	-	VPRESC[5:0]	-	-	00000111	0x07
OTP_CFG_VPRE_2	16	0	0	0	VPREIULM[10]	VPRETOFF[10]	VPRESLULM[10]	VPRESHSI[10]	-	10101000	0xAC
OTP_CFG_BOOST	17	0	0	0	VPRE_MODE	Reserved	11 - PU/PD/900mA	00 - PU/PD/30mA	VBSTV[3:0]	00000101	0x03
OTP_CFG_BOOST	18	0	0	0	BOOSTEN	VBSTONTIME[10]	VBSTSC4[0]	VBSTSR[10]	1011 - 5.74V	10001100	0x8C
OTP_CFG_BOOST	19	1-Enabled	00 - 80ns	00 - 125mV	VBSTCCOMP[10]	VBSTLULM[10]	VBSTLULM[10]	VBSTSR[10]	11 - 500V/ μ s	00000111	0x07
OTP_CFG_BUCK1	1A	00 - 750mohms	-	-	VB1V[2:0]	-	-	-	-	10001000	0x88
OTP_CFG_BUCK1	1B	000	-	-	VB2INDOPT[2:0]	VB2INDOPT[10]	VB2SVLULM[10]	VB2MULTIPH	-	00000110	0x06
OTP_CFG_BUCK2	1C	-	-	-	00 - 1 μ H	-	11 - 4.5A	0 - Disabled	-	10110001	0x01
OTP_CFG_BUCK2	1D	0	-	-	VB2INDOPT[10]	BUCK2EN	VB2SVLULM[10]	VB3_CTRL_RC	VB3_CTRL_GM	00001100	0x1C
OTP_CFG_BUCK3	1E	BUCKEN	-	-	00 - 1 μ H	-	VB3V[4:0]	0 - Default	0 - Default	10010101	0x95
OTP_CFG_BUCK3	1F	1-Enabled	-	-	00 - 1 μ H	-	101001 - 1.5V	-	-	10001001	0x93
OTP_CFG_LDO	20	100 - 65 GM	-	-	VB2GMCOMP[2:0]	VB2GMCOMP[2:0]	VB3SVLULM[10]	VB3SVLULM[10]	LDIV[2:0]	01111111	0x7F
OTP_CFG_SEQ_1	21	0 - 400mA	LDQ2LIM	LDQ2V[2:0]	LDQ2V[2:0]	VB2SVLULM[10]	VB2SVLULM[10]	11 - 5.0V	1 - 150mA	00000000	0x00
OTP_CFG_SEQ_2	22	0	0	-	000 - Regulator Start and Stop in Slot 0	-	000 - Regulator Start and Stop in Slot 0	000 - Regulator Start and Stop in Slot 0	LDQ2S[2:0]	00110000	0x38
OTP_CFG_SEQ_3	23	0	0	-	III - Regulator does not Start Enabled by SPI[2:0]	-	000 - Regulator Start and Stop in Slot 0	000 - Regulator Start and Stop in Slot 0	LDQ2S[2:0]	00110000	0x00
OTP_CFG_CLOCK	24	-	-	-	00 - 7.8mV/ μ s	00 - 10.4mV/ μ s	0 - 250ns	0 - 250ns	CLK_DIV[2:0]	00001000	0x04
OTP_CFG_CLOCK	25	0	0	-	VPRE_ph[2:0]	000 - delay 0	100 - divide by 44 - CLKx4595Hz	100 - divide by 44 - CLKx4595Hz	00001000	0x30	
OTP_CFG_CLOCK	26	-	-	-	BUCK2_ph[2:0]	BUCK2_ph[2:0]	BUCK3_ph[2:0]	BUCK3_ph[2:0]	00001000	0x18	
OTP_CFG_CLOCK	27	0	0	-	BUCK3_ph[2:0]	000 - delay 3	000 - delay 0	000 - delay 0	00001000	0x0A	
OTP_CFG_SM_1	28	0	0	0	0 - CLK1	0 - CLK1	1 - CLK1	0 - Disabled	1 - CLK1	00001010	0x14
OTP_CFG_SM_2	29	0	0	0	0 - BOOST Shutdown	1 - BUCK1 Shutdown	0 - BUCK2 Shutdown	0 - BUCK3 Shutdown	0 - LDO1 Shutdown	00000100	0x00
OTP_CFG_VSUP_U	2A	000	-	-	000 - VPRE off_dly	000 - VPRE off_dly	000 - VPRE off_dly	000 - VPRE off_dly	000 - VPRE off_dly	00000000	0x00
OTP_CFG_I2C	2B	-	-	-	-	-	-	-	M_I2CDEVADDR[8:0]	00000001	0x01
OTP_CFG_OV	2C	0	0	-	-	-	-	-	0001 - Address D7	00000000	0x00
OTP_CFG_DEVID	2D	0	0	-	0	0	0	0	00000000	00000000	0x00
JTF_M_S1_CRC_LS	2E	-	-	-	-	-	-	-	00000000	00000001	0x01
JTF_M_S1_CRC_MS	2F	-	-	-	-	-	-	-	00000000	00000000	0x00

Figure 19. **OTP_conf_main_reg** spreadsheet example

2. Fill data in the **OTP_conf_failsafe_reg** sheet.

FAIL-SAFE OTP_REGSISTERS											
Register Name	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Data_Bin	Data_Hex
OTP_CFG_UVUV_1	0A				VCORE_V[7:0]					10001000	0x88
OTP_CFG_UVUV_2	0B			VDDIOUVTH[3:0]		10001000 - 1.25V		VCOREOVTH[3:0]			
OTP_CFG_UVUV_3	0C	-	-	VDDIO_V		1111 - 112%		VCORE_SVS_CLAMP[4:0]		11111111	0xFF
OTP_CFG_UVUV_4	0D	0	0	VMON2OVTH[3:0]		0 - 3.3V		VMON2OVTH[3:0]		00000000	0x00
OTP_CFG_UVUV_5	0E			VMON4OVTH[3:0]		1111 - 112%		VMON3OVTH[3:0]			
OTP_CFG_UVUV_6	0F			VDDIOUVTH[3:0]		1111 - 88%		VCOREUVTH[3:0]			
OTP_CFG_UVUV_7	10			VMON2UVTH[3:0]		1111 - 88%		VMON3UVTH[3:0]		11111111	0xFF
OTP_CFG_UVUV_8	11			VMON4UVTH[3:0]		1111 - 88%		VMON3UVTH[3:0]		11111111	0xFF
OTP_CFG_PGOOD	12	-	PGOOD_RSTB	PGOOD_VMON4	PGOOD_VMON3	PGOOD_VMON2	PGOOD_VMON1	PGOOD_VDDIO	PGOOD_VCORE	00000000	0x00
OTP_CFG_AB1ST	13	0	-	-	0 - Not assigned	0 - Not assigned	0 - Not assigned	0 - Not assigned	0 - Not assigned		
OTP_CFG_ASIL	14	WD_Dis	WD_Selection	ERRM0N_EN	FCCU_EN	VMON4_EN	VMON3_EN	VMON2_EN	VMON1_EN	00000000	0x00
OTP_CFG_I2C	15		ctp_spare1[2:0]		000	FLT_RECOVERY_EN		F5_I2CDEVADDR[3:0]		00000000	0x00
OTP_CFG_DGLT_DUR_1	16		ctp_spare1[1:0]		00		0 - Disabled		0000 - Address 00		
OTP_CFG_DGLT_DUR_2	17				00	VCORE_OV_DGLT[1:0]	VCORE_OV_DGLT[1:0]	VDDIO_OV_DGLT[1:0]	VDDIO_OV_DGLT[1:0]	00101101	0x2D
OTP_FS_S1_CRC_LSB	18				00000	10 - 25us	1 - 45us	10 - 25us	1 - 45us	00000010	0x05
OTP_FS_S1_CRC_MSB	19					0TP_FS_S1_CRC_LSB[7:0]				00000000	0x00
						Automatically filled by Sibidne IP					
						OTP_FS_S1_CRC_MSB[7:0]					
						Automatically filled by Sibidne IP				00000000	0x00

Figure 20. OTP_conf_failsafe_reg spreadsheet example

3. See the **OTP_conf_summary** sheet to review the complete configuration (main and fail-safe).

MAIN		FAIL SAFE		Power sequencing																		
VPRE		VCOREMON		VCoremon					VDDIO					Power sequencing								
Output voltage	3.3V	Monitoring Voltage	1.25V	VBUCK1	1.8V	Slot 2	ABISTL_No	Notes	VBUCK2	1.8V	Slot 1	ABISTL_No	Notes	- VDDIO is set @ 5.5V and RSTB @ 3.3V to								
Step-up compensation	140mV/s	OVTH	112%	VBUCK3	1.8V	Slot 1	ABISTL_No	differential from regulators on the graph					- Timing representation may not be 100% accurate									
Current limitation	150mA	UVTH	88%	VBUCK4	1.8V	Slot 0	ABISTL_No															
High Side slew rate	PUPIO/150mA	OV_DGLT	45us	VBUCK1	2.3V	Slot 0	ABISTL_No															
Low Side slew rate	PUPIO/300mA	UV_DGLT	25us	VBUCK2	2.3V	Slot 0	ABISTL_No															
Switching frequency	455kHz	SVS_CLAMP	No SVS	VBUCK3	3.3V	Slot 3	ABISTL_No															
Phase shifting	delay 0	VDDIO MON		VBUCK4	5.0V	by SPI	ABISTL_No															
Turn OFF delay	250us	VDDIO MON		Time																		
VBOOST		VDDIO MON		YSUP	YSUP	YBOS	VPRE	YBOS	BUCK1	BUCK2	BUCK3	LD01	LD02	LBIST	RSTB	ABIST						
Enabled	Yes	Monitoring Voltage	3.3V	Power sequencing																		
Output voltage	5.14V	OVTH	112%	Time (ms)																		
Step-up compensation	150mV/s	UVTH	88%	VSUP	4.0V	4.5V	5.5V	5.5V	BUCK1	1.8V	2.3V	3.3V	5.0V	5.5V	5.5V	5.5V	5.5V					
Current limitation	500mA	OV_DGLT	45us	YBOS	1.0V	1.0V	1.0V	1.0V	BUCK2	1.8V	2.3V	3.3V	5.0V	5.5V	5.5V	5.5V	5.5V					
Compensation resistor	750kohms	UV_DGLT	25us	VPRE	1.0V	1.0V	1.0V	1.0V	BUCK3	1.8V	2.3V	3.3V	5.0V	5.5V	5.5V	5.5V	5.5V					
Compensation capacitor	125pF	VMON1		YDIO1	1.0V	1.0V	1.0V	1.0V	BUCK4	1.8V	2.3V	3.3V	5.0V	5.5V	5.5V	5.5V	5.5V					
Switching frequency	2.23MHz	VMON1	112%	VMON2	1.0V	1.0V	1.0V	1.0V	YDIO2	1.0V	1.0V	1.0V	1.0V	1.0V	1.0V	1.0V	1.0V					
Phase shifting	no delay	UV_DGLT	45us	VMON2	1.0V	1.0V	1.0V	1.0V	YDIO3	1.0V	1.0V	1.0V	1.0V	1.0V	1.0V	1.0V	1.0V					
Behavior in case of TSD	Regulator Start and Stop in Slot	VMON3	112%	VMON3	1.0V	1.0V	1.0V	1.0V	YDIO4	1.0V	1.0V	1.0V	1.0V	1.0V	1.0V	1.0V	1.0V					
Power sequencing plot		VMON4	112%	VMON4	1.0V	1.0V	1.0V	1.0V	Voltage (V)													
BUCK1		BUCK2		BUCK3		BUCK4		YDIO1		YDIO2		YDIO3		YDIO4		Time (ms)						
Enabled	Yes	OVTH	112%	OVTH	112%	OVTH	112%	YDIO1	1.0V	YDIO1	1.0V	YDIO1	1.0V	YDIO1	1.0V	0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00						
Output voltage	1.25V	UVTH	88%	UVTH	88%	UVTH	88%	YDIO2	1.0V	YDIO2	1.0V	YDIO2	1.0V	YDIO2	1.0V	Time (ms)						
Inductor	1uH	OV_DGLT	45us	OV_DGLT	45us	UV_DGLT	25us	YDIO3	1.0V	YDIO3	1.0V	YDIO3	1.0V	YDIO3	1.0V	Time (ms)						
Current limitation	4.5A	UV_DGLT	25us	UV_DGLT	25us	UV_DGLT	25us	YDIO4	1.0V	YDIO4	1.0V	YDIO4	1.0V	YDIO4	1.0V	Time (ms)						
Compensation network	65 GM	VMON1		VMON2		VMON3		VMON4		YMON1		YMON2		YMON3		Time (ms)						
Switching frequency	2.23MHz	VMON1	112%	VMON2	112%	VMON3	112%	VMON4	112%	YMON1	1.0V	YMON2	1.0V	YMON3	1.0V	Time (ms)						
Phase shifting	delay 0	UV_DGLT	45us	UV_DGLT	45us	UV_DGLT	45us	UV_DGLT	45us	YMON1	1.0V	YMON2	1.0V	YMON3	1.0V	Time (ms)						
Behavior in case of TSD	Regulator Start and Stop in Slot	VMON4	112%	YMON4		YMON5		YMON6		YMON7		YMON8		YMON9		Time (ms)						
Power sequencing plot		YMON4	112%	YMON5	1.0V	YMON6	1.0V	YMON7	1.0V	YMON8	1.0V	YMON9	1.0V	Time (ms)		Time (ms)						
BUCK2		YMON10		YMON11		YMON12		YMON13		YMON14		YMON15		YMON16		Time (ms)						
Enabled	Yes	OVTH	112%	YMON10	1.0V	YMON11	1.0V	YMON12	1.0V	YMON13	1.0V	YMON14	1.0V	YMON15	1.0V	Time (ms)						
Output voltage	1.8V	UVTH	88%	YMON10	1.0V	YMON11	1.0V	YMON12	1.0V	YMON13	1.0V	YMON14	1.0V	YMON15	1.0V	Time (ms)						
Inductor	1uH	OV_DGLT	45us	YMON10	1.0V	YMON11	1.0V	YMON12	1.0V	YMON13	1.0V	YMON14	1.0V	YMON15	1.0V	Time (ms)						
Current limitation	2.5A	UV_DGLT	25us	YMON10	1.0V	YMON11	1.0V	YMON12	1.0V	YMON13	1.0V	YMON14	1.0V	YMON15	1.0V	Time (ms)						
Compensation network	32.5 GM	VMON1		VMON2		VMON3		VMON4		YMON1		YMON2		YMON3		Time (ms)						
Switching frequency	2.23MHz	VMON1	112%	VMON2	112%	VMON3	112%	VMON4	112%	YMON1	1.0V	YMON2	1.0V	YMON3	1.0V	Time (ms)						
Phase shifting	delay 3	UV_DGLT	45us	UV_DGLT	45us	UV_DGLT	45us	UV_DGLT	45us	YMON1	1.0V	YMON2	1.0V	YMON3	1.0V	Time (ms)						
Behavior in case of TSD	Regulator Start and Stop in Slot	VMON4	112%	VMON5	1.0V	VMON6	1.0V	VMON7	1.0V	VMON8	1.0V	VMON9	1.0V	VMON10	1.0V	Time (ms)						
Power sequencing plot		VMON4	112%	VMON5	1.0V	VMON6	1.0V	VMON7	1.0V	VMON8	1.0V	VMON9	1.0V	VMON10	1.0V	Time (ms)						
BUCK3		YMON11		YMON12		YMON13		YMON14		YMON15		YMON16		YMON17		Time (ms)						
Enabled	Yes	OVTH	112%	YMON11	1.0V	YMON12	1.0V	YMON13	1.0V	YMON14	1.0V	YMON15	1.0V	YMON16	1.0V	Time (ms)						
Output voltage	3.3V	UVTH	88%	YMON11	1.0V	YMON12	1.0V	YMON13	1.0V	YMON14	1.0V	YMON15	1.0V	YMON16	1.0V	Time (ms)						
Current limitation	400mA	OV_DGLT	45us	YMON11	1.0V	YMON12	1.0V	YMON13	1.0V	YMON14	1.0V	YMON15	1.0V	YMON16	1.0V	Time (ms)						
Behavior in case of TSD	Regulator Start and Stop in Slot	YMON11	1.0V	YMON12	1.0V	YMON13	1.0V	YMON14	1.0V	YMON15	1.0V	YMON16	1.0V	YMON17	1.0V	Time (ms)						
Power sequencing plot		YMON11	1.0V	YMON12	1.0V	YMON13	1.0V	YMON14	1.0V	YMON15	1.0V	YMON16	1.0V	YMON17	1.0V	Time (ms)						
BUCK4		YMON18		YMON19		YMON20		YMON21		YMON22		YMON23		YMON24		Time (ms)						
Enabled	Yes	OVTH	112%	YMON18	1.0V	YMON19	1.0V	YMON20	1.0V	YMON21	1.0V	YMON22	1.0V	YMON23	1.0V	Time (ms)						
Output voltage	5.0V	UVTH	88%	YMON18	1.0V	YMON19	1.0V	YMON20	1.0V	YMON21	1.0V	YMON22	1.0V	YMON23	1.0V	Time (ms)						
Current limitation	400mA	OV_DGLT	45us	YMON18	1.0V	YMON19	1.0V	YMON20	1.0V	YMON21	1.0V	YMON22	1.0V	YMON23	1.0V	Time (ms)						
Behavior in case of TSD	Regulator Does not Start (Enabled by SPI)	YMON18	1.0V	YMON19	1.0V	YMON20	1.0V	YMON21	1.0V	YMON22	1.0V	YMON23	1.0V	YMON24	1.0V	Time (ms)						
Other		FUT_RECOVERY		Other		ISc address		0x21		0x21		0x21		0x21		Time (ms)						

Figure 21. OTP_conf_summary example

4. Generate script in the **OTP_conf_file_generation** sheet.
Once the configuration is ready, the user can generate the script file. Go to **OTP_conf_file_generation**, enter the path in the **File repository**, and then click **Write OTP File GUI**.

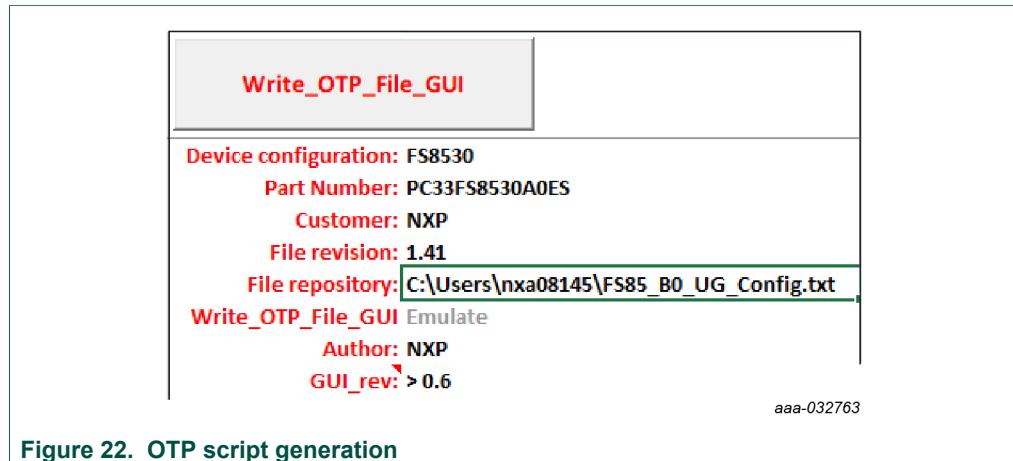


Figure 22. OTP script generation

7.2 Working in OTP emulation mode

At startup, the device always uses the content from the mirror register. This content can come from OTP fuse or from configuration written directly in the mirror register. OTP emulation means that the user can emulate the OTP writing in the mirror register. This allows trials before burning the OTP.

1. Configure the hardware. See [Section 6 "Configuring the hardware for startup"](#).
2. Launch the FlexGUI software.
3. Switch to Debug mode:
 - a. Place SW1 in TOP direction (VBAT switched On).
 - b. Close SW2 (WAKE1).

While in Debug mode, all regulators are turned Off.
4. Load the mirror registers to work in OTP emulation mode. See [Section 8.3 "Working with the Script editor"](#).
5. Unplug jumper J17 1-2 to start the device with the mirror configuration setting.
 - a. If the mirror registers are filled (with a configuration using the Script editor), that configuration is used in the emulation session.
 - b. If the mirror registers are not filled (with a configuration using the Script editor), the currently-programmed OTP fuse configuration is used, if it exists.
 - c. Otherwise, the mirror registers are not filled and the OTP fuse is not burned, and the device does not start up.

As long as initialization phase is not closed by a first good WD_Answer, the WD does not start and regulators do not stay alive. Also, as long as Debug mode is not exited by writing FS_STATES:[DBG_EXIT] bit to 1, the FS0B pin cannot be released.
6. Use the FlexGUI software to evaluate the device configured. See [Section 8 "Using FlexGUI"](#).

7.2.1 Example script: Closing initialization phase, disabling FCCU monitoring and releasing FS0B

The following script can be used to:

- Disable the WD (simple WD configuration is used here).
- Disable the FCCU monitoring.

On the hardware kit, the FCCU1 is pulled to GND and FCCU2 is pulled to VDDIO, which is detected as error phase by default. Disabling the FCCU by SPI/I2C avoids safety issue at startup.

- Close the initialization phase.
- Exit the Debug mode.
- Release FS0B pin. This is valid only if WD is activated in OTP.

Seven good consecutive WD answers are required to have the FLT_ERR_CNTR back to 0. This is one of the conditions to allow FS0B release.

Table 18. FS85 starting sequence example

Step	Register name	Value	Description
1	FS_WD_WINDOW	0x0200	WDW_WINDOWS[3:0] = 0x0 => Watchdog disabled
2	FS_NOT_WD_WINDOW	0xF50F	NOT of FS_WD_WINDOW
3	FS_I_SAFE_INPUTS	0x51C6	FCCU_CFG[1:0] = 0x0 => 0x1 => Monitoring by pair FCCU12_FLT_POL[0] = 1 => FCCU1 or 2 = 0 is a fault
4	FS_I_NOT_SAFE_INPUTS	0xAC18	NOT of FS_I_SAFE_INPUTS
5	FS_WD_ANSWER	0x5AB2	1st good WD answer (for simple WD selection in OTP) Close the initialization phase
6	FS_STATES	0x4000	DBG_EXIT[0]=1 => Exit Debug mode
7	FS_WD_ANSWER	0x5AB2	2nd good WD answer
8	FS_WD_ANSWER	0x5AB2	3rd good WD answer
9	FS_WD_ANSWER	0x5AB2	4th good WD answer
10	FS_WD_ANSWER	0x5AB2	5th good WD answer
11	FS_WD_ANSWER	0x5AB2	6th good WD answer
12	FS_WD_ANSWER	0x5AB2	7th good WD answer
13	FS_RELEASE_FS0B	0xB2A5	FS0B pin released (pulled to high level)
14	MFLAG2	0x40F1	Clear flags VSUPUV7; VPREUVL, VSUPUVL, WAKE1FLG
15	FS_OUVRREG_STATUS	0x4550	Clear UV status flags

This sequence can be sent using a script built with FlexGUI. See [Section 8.3.2 "Script sequence files"](#).

7.3 Programming the device with an OTP configuration

The device configuration can be changed three times (see [Section 4.2.1 "OTP and mirrors registers"](#)). The programming steps are exactly the same as the OTP emulation mode up to step 6.

Then, the user has to burn the part with FlexGUI. See [Section 8.4.8 "OTP programming"](#). Follow the instructions on the screen to proceed.

8 Using FlexGUI

To follow the steps in this section, make sure that the board is connected using the appropriate hardware configuration (see [Section 7.2 "Working in OTP emulation mode"](#)).

Note: It is recommended to use the latest version of FlexGUI.

8.1 Starting the FlexGUI application

After FlexGUI is launched with the *flexgui-app.bat* file, the FlexGUI launcher displays available kits.

Communication bus, SPI or I²C can be selected at this level. It is also possible to switch from one to the other using the communication tab from the main panel (see [Section 8.2 "Establishing the connection between FlexGUI and the hardware"](#)).

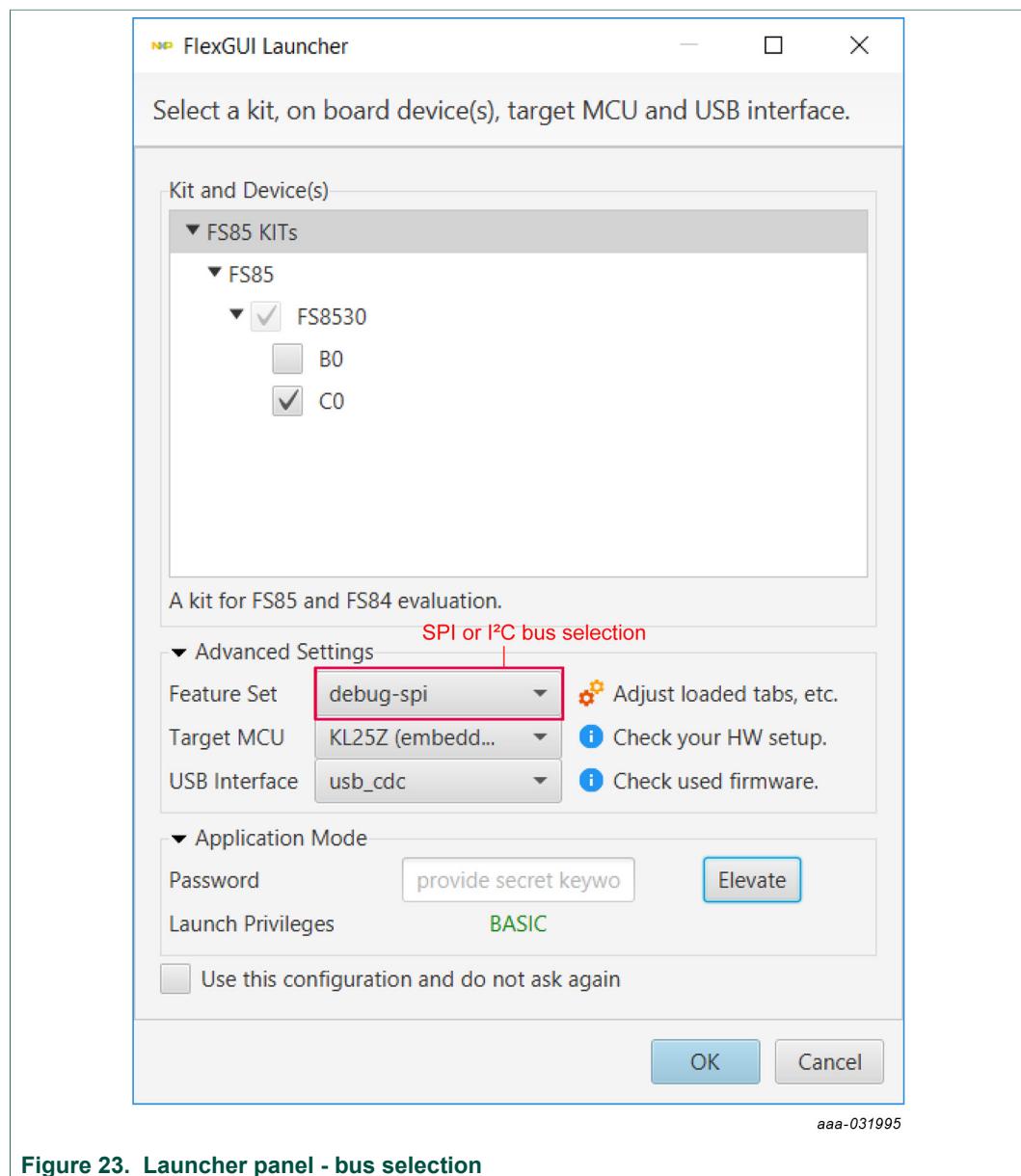


Figure 23. Launcher panel - bus selection

When the configuration is selected, click **OK**.

8.2 Establishing the connection between FlexGUI and the hardware

The board must be connected to the USB before establishing a connection.

- Click **Search** to detect the COM port of the board.
- Click **Start** to enable the connection.

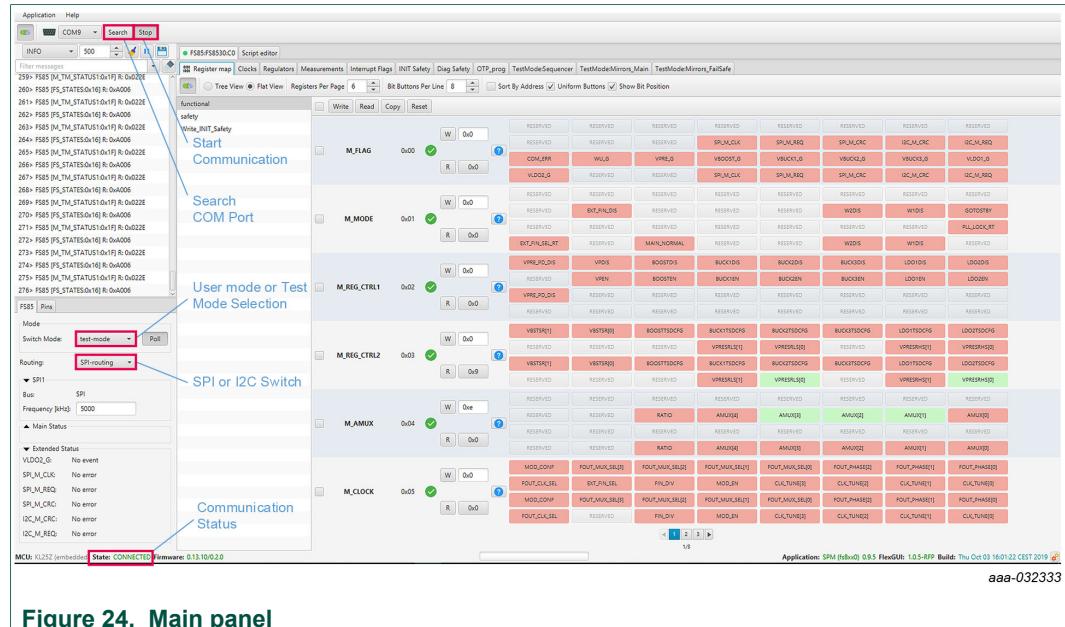


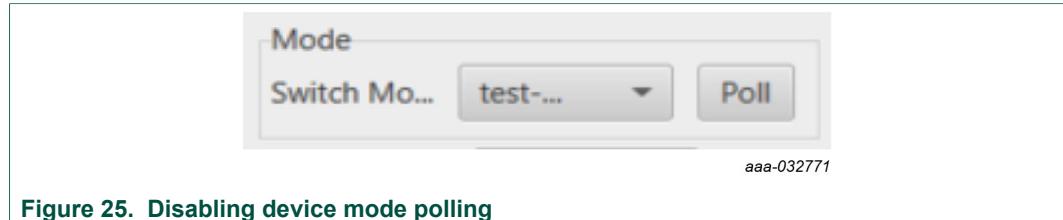
Figure 24. Main panel

Figure 24 shows the mode selection. At first launch, the FlexGUI starts in User mode. The user can then decide to switch to Test mode using the Switch mode drop-down list followed by clicking **Apply**.

The **GUI-Device Status** field checks the connection from MCU to the device. The **ONLINE** status indicates a good connection, while **ERROR** status indicates an issue (e.g. V_{SUP} is not provided to the device).

The SPI/I2C communication bus can be changed at any time using the drop-down list. This change is managed by the onboard MCU to communicate with the desired bus.

It is also possible to change the clock frequency using this panel.


Note that in the case of I2C, most of the time, the default address used by the device are 0x20 for main and 0x21 for the fail-safe.

The I2C address is managed differently in Debug and Normal mode

- Debug mode :
 - I2C address when debug mode pin is set to 5.0 V are 0x20 for main and 0x21 for fail-safe.
 - The user can change this address in the mirror register. The new address is taken into account only after debug pin is released to 0 V.
- Normal mode:
 - The address is burned in the OTP.

The user can read in which mode the device is operating. It is also possible to switch from user mode to test mode (and vice-versa).

The current mode is refreshed only when Poll button is activated. If required, this has to be done at start up (Poll button is disabled by default). See [Figure 25](#).

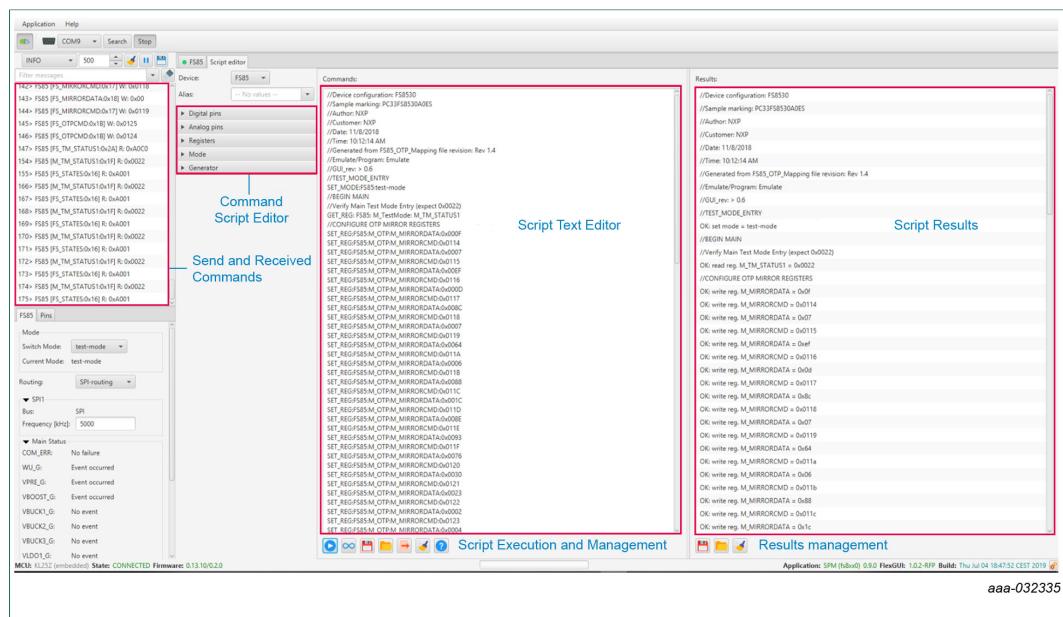


Figure 25. Disabling device mode polling

To move from one mode to the other, select the mode with switch mode drop-down button. If the requested mode is not confirmed by the device (if debug pin is not set, for instance), the drop-down menu switches back to the previous mode.

8.3 Working with the Script editor

The register and OTP emulation can be configured with the script editor. This is particularly useful to try various OTP configurations in Emulation mode.

Figure 26. Script Editor

The main subareas of this panel are:

- **Send and receive command:** displays a summary of commands sent and received from the device
- **Command script editor:** builds commands to be sent to the device
- **Script text editor:** sends a sequence of register configurations from a text file or from command edited directly in this area
- **Script results:** displays result status of each command sent to the device

8.3.1 Script text editor

Using Script editor, you can execute any command either directly or from a file. It is also possible to save and modify a script. Using the brush symbol, it is possible to clean windows if needed.

All commands have to follow a specific syntax. The Help menu describes commands available in the script editor and their syntax.

This help page describes commands available in the script editor and their format.

List of commands

- **SET_REG**: sets value of a selected register.
- **READ_REG**: reads value of a selected register.
- **SET_DPIN**: sets value of a selected digital pin.
- **GET_DPIN**: gets value of a selected digital pin.
- **GET_APIN**: gets value of a selected analog pin. Returned value is in mV.
- **PAUSE**: shows a dialog with user defined message. The script is paused until the user confirms the dialog.
- **EXIT**: stops execution of the script.
- **SET_MODE**: sets device mode. List of modes depends on a device.

Command format

The following table describes command parameters. All parameters are mandatory.

	1st parameter	2nd parameter	3rd parameter	4th parameter	5th parameter
SET_REG	Device	Reg. set	Reg. name / Reg. address	Reg. value	-
GET_REG	Device	Reg. set	Reg. name / Reg. address	-	-
SET_DPIN	Device	Pin name	Dig. pin value	-	-
GET_DPIN	Device	Pin name	-	-	-
GET_APIN	Device	Pin name	-	-	-
PAUSE	Message	-	-	-	-
EXIT	-	-	-	-	-

Description of command parameters mentioned in the table above:

- **Device**: device name (alias used in application).
- **Reg. set**: register set name. Register sets allows to associate registers which have similar function.
- **Reg. name**: register name as defined in datasheet.
- **Reg. address**: register address in decimal or hexadecimal (with 0x prefix) format.
- **Reg. value**: register value in decimal or hexadecimal (with 0x prefix) format.
- **Pin name**: name of digital or analog pin as defined in device datasheet.
- **Dig. pin value**: value of digital pin. Allowed strings are 'low' and 'high'.
- **Message**: a message to be displayed in a dialog. It cannot contain ';' character, which is used as delimiter of parameters.
- **Mode**: name of a device mode.

[Figure 27](#) shows an example to build a command from the panel.

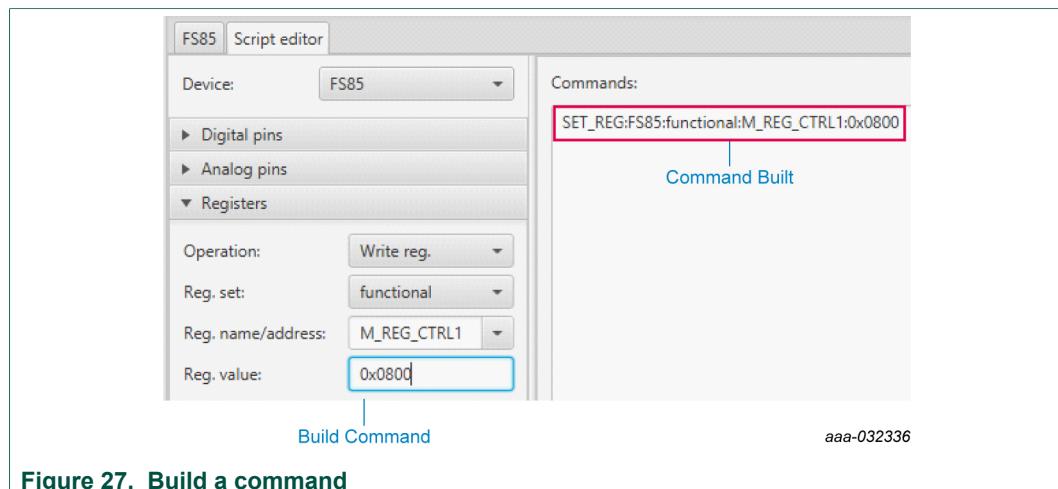


Figure 27. Build a command

The value 0x0800 is sent to the register M_REG_CTRL1 (BUCK2DIS). The user can then send it to the device by clicking the arrow (see [Figure 28](#)).

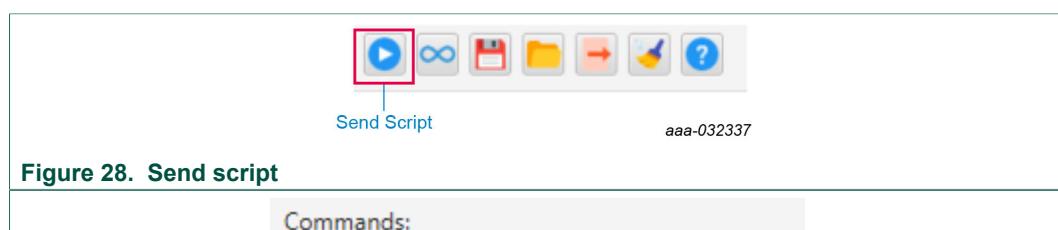


Figure 28. Send script

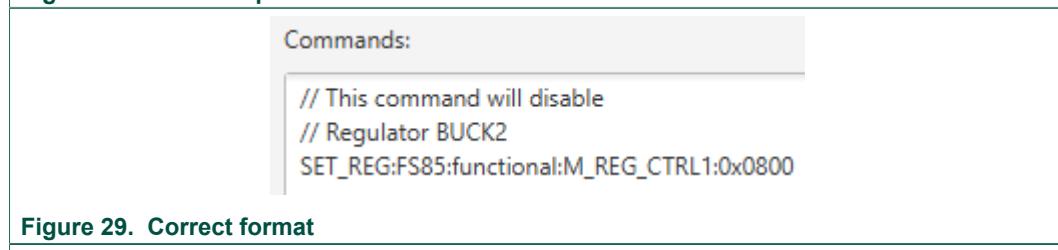


Figure 29. Correct format

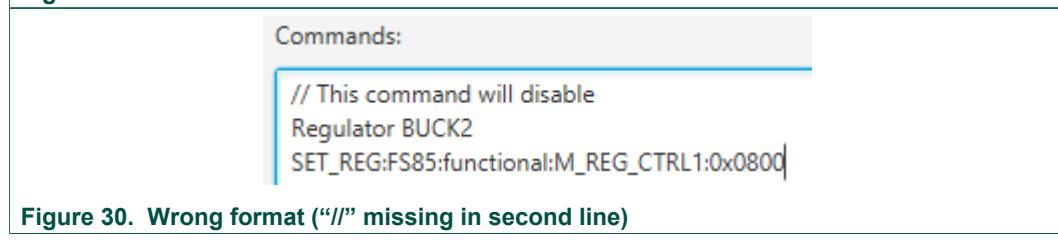


Figure 30. Wrong format ("// missing in second line)

8.3.2 Script sequence files

The Script editor allows the user to save script sequence files. A script sequence file is text file that contains a set of commands sent to the device in the order they are written, as shown in the following example.

```
// FS85_Release_FS0b
SET_REG:FS85:safety:FS_WD_WINDOW:0x0200
SET_REG:FS85:safety:FS_NOT_WD_WINDOW:0xF50F
SET_REG:FS85:Write_INIT_Safety:FS_I_SAFE_INPUTS:0x51C6
SET_REG:FS85:Write_INIT_Safety:FS_I_NOT_SAFE_INPUTS:AC18
SET_REG:FS85:safety:FS_WD_ANSWER:0x5AB2
SET_REG:FS85:safety:FS_STATES:0x4000
SET_REG:FS85:safety:FS_WD_ANSWER:0x5AB2
SET_REG:FS85:safety:FS_WD_ANSWER:0x5AB2
SET_REG:FS85:safety:FS_WD_ANSWER:0x5AB2
SET_REG:FS85:safety:FS_WD_ANSWER:0x5AB2
SET_REG:FS85:safety:FS_WD_ANSWER:0x5AB2
SET_REG:FS85:safety:FS_WD_ANSWER:0x5AB2
SET_REG:FS85:safety:FS_RELEASE_FS0B:0xB2A5
```

Note: Comments can be added with a // prefix.

8.4 Understanding the FS85 workspace

The FS85 workspace consists of several tabs, each dedicated to a specific aspect of device functionality or configuration.

- Register map
- Clocks
- Regulators
- Measurements
- Interrupt flags
- INIT safety
- Diag safety
- OTP programming
- TestMode:Sequencer
- TestMode:Mirrors_Main and TestMode:Mirrors_Failsafe

8.4.1 Register map

All SPI/I2C registers can be accessed in write and read mode using this tab.

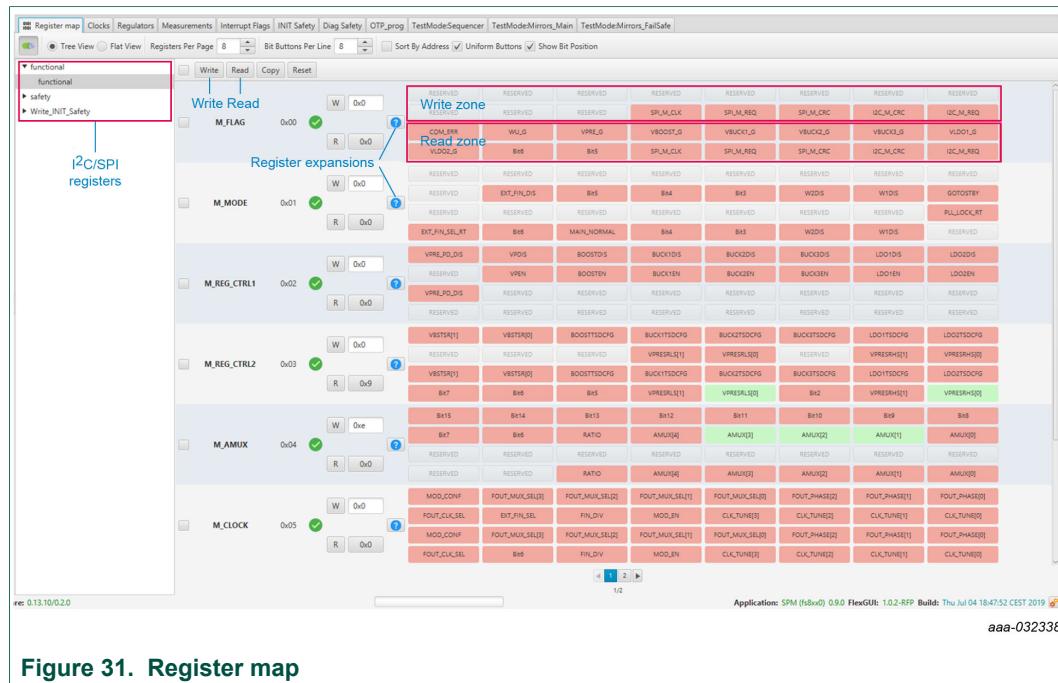
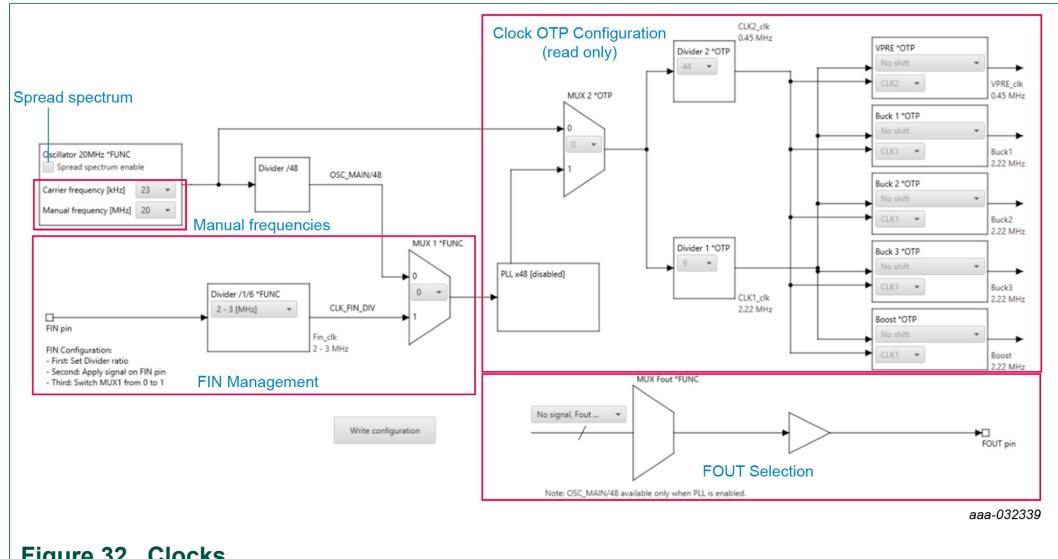



Figure 31. Register map

- **Register map:** allows access to functional register, safety register and write init register which are accessible only during initialization phase
- **Read:** allows you to read any register either individually or by bank
- **Write:** allows you to write any register either individually or by bank
- **Register expansion:** displays the value of each device parameter

8.4.2 Clocks

SPI/I2C:

- Configure the device to work with FIN input
- Select the signal to apply on FOUT pin
- Play with manual frequencies and spread spectrum

8.4.3 Regulators

The regulator has two main areas:

- Low voltage (LV) regulators configuration
- VPRE compensation network calculation

Each regulator can either be enabled or disabled by SPI/I2C. The thermal shutdown behavior can be configured to either shutdown the regulator, or shutdown the regulator and transition to deep fail-safe. The write button applies to the entire table. The VPRE compensation network calculator helps to define the value for VPRE external compensation network.

Low Voltage Regulators

LV Buck1	LV Buck2
State in normal mode	Disable
Behavior in case of TSD	Regulator_Shutdown
LV Buck3	LDO1
State in normal mode	Disable
Behavior in case of TSD	Regulator_Shutdown
LDO2	VBOOST
State in normal mode	Disable
Behavior in case of TSD	Regulator_Shutdown

Write

VPRE compensation network calculation

VPRE [V]	
VPRE ILIM [mV]	
Switching Frequency [KHz]	
Rshunt [mOhm]	
Cout [uF]	
Lvpres [uH]	
Rcomp [KOhm]	N/A
Ccomp [nF]	N/A
Chf [pF]	N/A
Current limit [A]	N/A
Slope compensation [mV/us]	N/A

Calculate

aaa-032340

Figure 33. Regulators

8.4.4 Measurements

This tab enables two features:

- Read any of the AMUX signals over time
- Display regulator voltage summary



Figure 34. Measurements

8.4.5 Interrupt flags

This tab allows you to set or clear flags. It is also possible to mask the interruption.

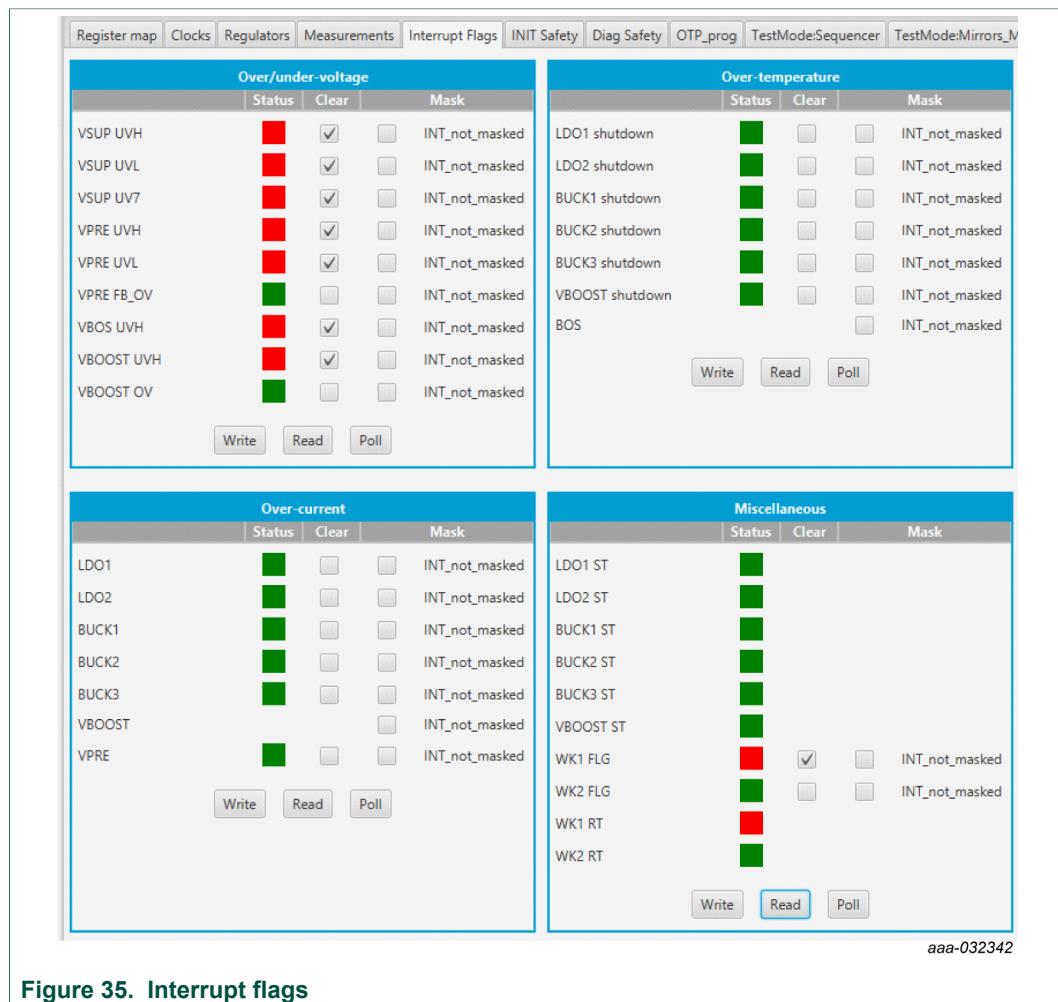


Figure 35. Interrupt flags

8.4.6 INIT safety

This tab allows you to manage all registers that can be configured to close the initialization phase. Note that the initialization phase is closed by the first good watchdog refresh before 256 ms timeout.

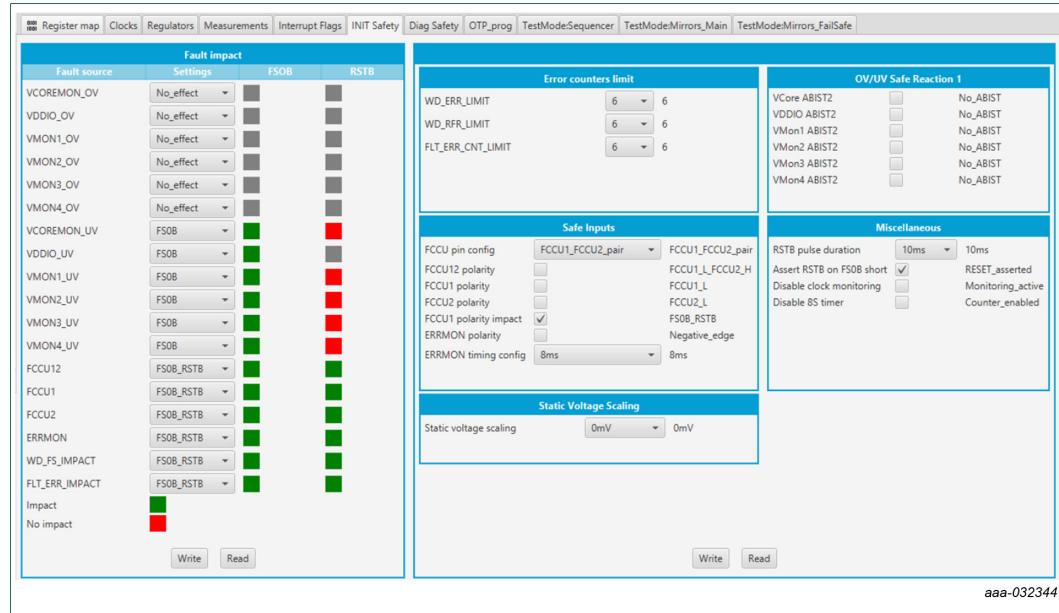
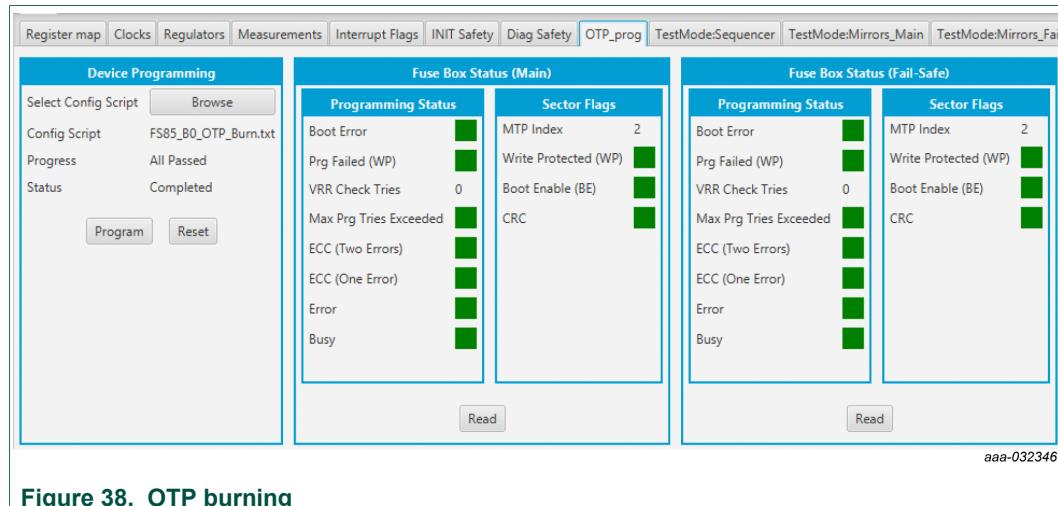


Figure 36. INIT safety

8.4.7 Diag safety

The watchdog type configured in the OTP has to be manually selected in the drop-down list to play with the watchdog features. If the user is not aware about the type of watchdog configured in the OTP, it can be found in TestMode:Mirrors_Failsafe and Miscellaneous tabs.


Figure 37. Diag safety

The FS_Release_FS0B command calculates and sends the right secure16-bit word to release FS0B.

A simplified way to release FS0B after power up is to, first, select the right type of watchdog configured in the OTP, then, hit FS0B Release script button. This sends the right sequence to close the initialization sequence, sets the error counter back to 0, then releases FS0B.

8.4.8 OTP programming

This tab allows you to burn the OTP using a script generated by the excel file OTP configuration (see [Section 7.1 "Generating the OTP configuration file "](#)).

Figure 38. OTP burning

To set up the hardware before OTP burning, see [Section 7.3 "Programming the device with an OTP configuration"](#).

See [Figure 38](#) and follow the steps:

- Browse and load the script file you want to burn. The program button is then available.
- Click **Program**.

FlexGUI pops up to turn the 8.0 V On, and then turns Off. Note that the blue LED on the board indicates that an 8.0 V voltage is available on the Debug pin. This voltage is used only during the burning process, and should not be applied in any other configuration. At the end of the first OTP programming, the MTP index = 1, WP, BE and CRC flags are green.

The Sector Flags area provides status [Table 19](#) provides the state of main flags after a read. This helps to determine how many times the part was burned.

Table 19. OTP burning flag status

OTP burning step	BE	WP	CRC	MTP Index
OTP not burn Mirrors Empty	Red	Red	Red	1
OTP not Burn Mirrors Filled	Red	Red	Green	1
1	Green	Green	Green	1
2	Green	Green	Green	2
3	Green	Green	Green	3

Example shown in [Figure 38](#) corresponds to the OTP burning step 2 from [Table 19](#).

To check if a valid OTP configuration is already burned, switch V_{BAT} Off, then On, and start the device. The device starts with the OTP configuration.

8.4.9 TestMode:Sequencer

The sequencer allows you to display the slot configuration for the device. To be able to access this tab, the device has to be in Test mode. The configuration is read from mirror register. It is possible to modify it and update the mirror register.

As an example, the slot sequence is filled at start up with the content of OTP fuses. Then the user can decide to modify any of the configurations coming from the OTP fuse. Note that all these actions are done with Debug pin at 5.0 V and in test mode.

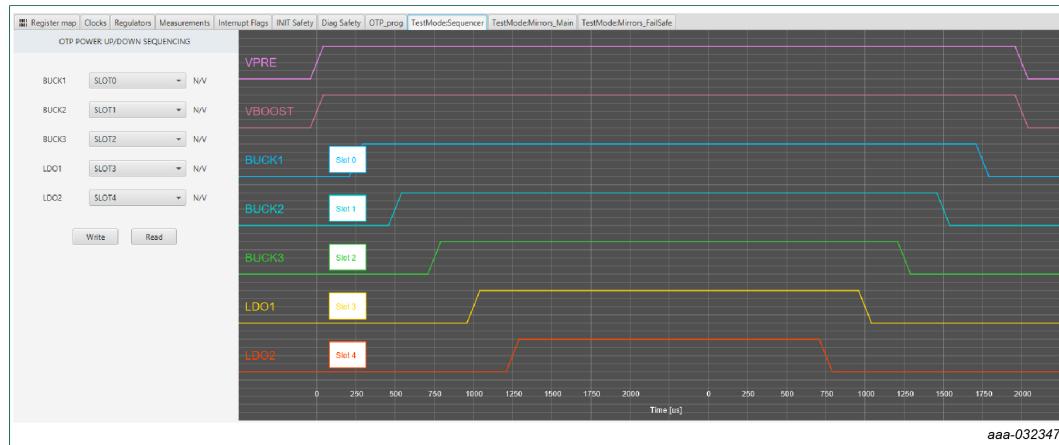


Figure 39. TestMode:Sequencer

Use the drop-down button (see Figure 40) to select the appropriate slot. The selection configuration can be sent to the device by clicking Write button. The current status can be read by using Read button.

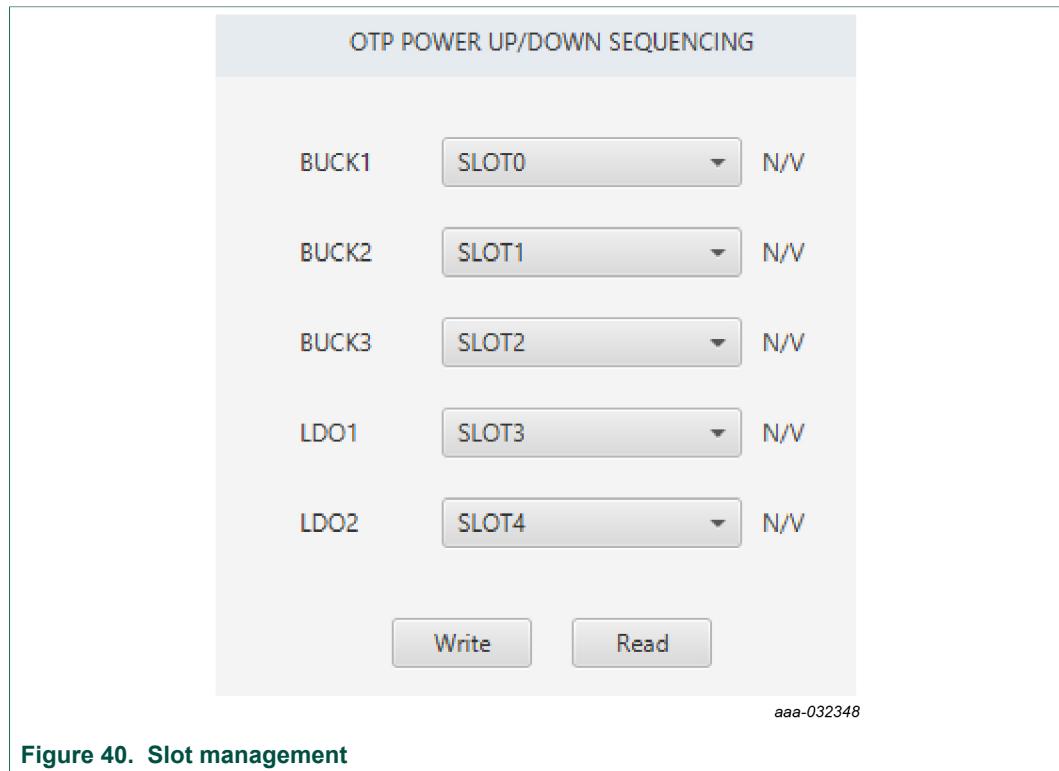


Figure 40. Slot management

8.4.10 TestMode:Mirrors_Main and TestMode:Mirrors_Failsafe

The TestModeMirrors_Main and TestModeMirrors_FailSafe tabs allow access to the OTP main mirrors and fail-safe registers. These tabs are available in Test mode.

<table border="1"> <thead> <tr> <th colspan="2">VPRE</th> </tr> </thead> <tbody> <tr> <td>VPRE mode</td> <td>Force PWM</td> </tr> <tr> <td>Output voltage</td> <td>17</td> </tr> <tr> <td>Slope compensation</td> <td>170mV/us</td> </tr> <tr> <td>Current limitation threshold</td> <td>50mV</td> </tr> <tr> <td>Low Side slew rate control</td> <td>130mA</td> </tr> <tr> <td>High Side slew rate control</td> <td>260mA</td> </tr> <tr> <td>VPRE phase (delay) selection</td> <td>Delay2</td> </tr> <tr> <td>Delay to turn OFF VPRE at device power down</td> <td>32ms</td> </tr> <tr> <td>VPRE clock selection</td> <td>CLK_DIV1</td> </tr> </tbody> </table>	VPRE		VPRE mode	Force PWM	Output voltage	17	Slope compensation	170mV/us	Current limitation threshold	50mV	Low Side slew rate control	130mA	High Side slew rate control	260mA	VPRE phase (delay) selection	Delay2	Delay to turn OFF VPRE at device power down	32ms	VPRE clock selection	CLK_DIV1	<table border="1"> <thead> <tr> <th colspan="2">BOOST</th> </tr> </thead> <tbody> <tr> <td>Output voltage</td> <td>1</td> </tr> <tr> <td>BOOST enable</td> <td>Disabled</td> </tr> <tr> <td>BOOST minimum ON time</td> <td>60ns</td> </tr> <tr> <td>VBOOST slope compensation</td> <td>17</td> </tr> <tr> <td>Compensation Network Resistor R...</td> <td>750Kohms</td> </tr> <tr> <td>Compensation Network Capacitor C...</td> <td>1</td> </tr> <tr> <td>VBOOST current limitation</td> <td>0</td> </tr> <tr> <td>VBOOST Low Side slew rate control</td> <td>1</td> </tr> <tr> <td>BOOST phase (delay) selection</td> <td>Delay1</td> </tr> <tr> <td>BOOST clock selection</td> <td>CLK_DIV2</td> </tr> <tr> <td>Regulator behavior in case of TSD</td> <td>BOOST shutdown</td> </tr> </tbody> </table>	BOOST		Output voltage	1	BOOST enable	Disabled	BOOST minimum ON time	60ns	VBOOST slope compensation	17	Compensation Network Resistor R...	750Kohms	Compensation Network Capacitor C...	1	VBOOST current limitation	0	VBOOST Low Side slew rate control	1	BOOST phase (delay) selection	Delay1	BOOST clock selection	CLK_DIV2	Regulator behavior in case of TSD	BOOST shutdown	<table border="1"> <thead> <tr> <th colspan="2">LDOs</th> </tr> </thead> <tbody> <tr> <td>VLDO2 current limitation</td> <td>400mA</td> </tr> <tr> <td>VLDO2 output voltage</td> <td>1.2V</td> </tr> <tr> <td>LDO2 sequencing slot</td> <td>Slot2</td> </tr> <tr> <td>Regulator behavior in case o...</td> <td>LD02 shutdown + ...</td> </tr> <tr> <td>VLDO1 current limitation</td> <td>400mA</td> </tr> <tr> <td>VLDO1 output voltage</td> <td>1.2V</td> </tr> <tr> <td>LDO1 sequencing slot</td> <td>Slot1</td> </tr> <tr> <td>Regulator behavior in case o...</td> <td>LD01 shutdown</td> </tr> </tbody> </table>	LDOs		VLDO2 current limitation	400mA	VLDO2 output voltage	1.2V	LDO2 sequencing slot	Slot2	Regulator behavior in case o...	LD02 shutdown + ...	VLDO1 current limitation	400mA	VLDO1 output voltage	1.2V	LDO1 sequencing slot	Slot1	Regulator behavior in case o...	LD01 shutdown				
VPRE																																																																				
VPRE mode	Force PWM																																																																			
Output voltage	17																																																																			
Slope compensation	170mV/us																																																																			
Current limitation threshold	50mV																																																																			
Low Side slew rate control	130mA																																																																			
High Side slew rate control	260mA																																																																			
VPRE phase (delay) selection	Delay2																																																																			
Delay to turn OFF VPRE at device power down	32ms																																																																			
VPRE clock selection	CLK_DIV1																																																																			
BOOST																																																																				
Output voltage	1																																																																			
BOOST enable	Disabled																																																																			
BOOST minimum ON time	60ns																																																																			
VBOOST slope compensation	17																																																																			
Compensation Network Resistor R...	750Kohms																																																																			
Compensation Network Capacitor C...	1																																																																			
VBOOST current limitation	0																																																																			
VBOOST Low Side slew rate control	1																																																																			
BOOST phase (delay) selection	Delay1																																																																			
BOOST clock selection	CLK_DIV2																																																																			
Regulator behavior in case of TSD	BOOST shutdown																																																																			
LDOs																																																																				
VLDO2 current limitation	400mA																																																																			
VLDO2 output voltage	1.2V																																																																			
LDO2 sequencing slot	Slot2																																																																			
Regulator behavior in case o...	LD02 shutdown + ...																																																																			
VLDO1 current limitation	400mA																																																																			
VLDO1 output voltage	1.2V																																																																			
LDO1 sequencing slot	Slot1																																																																			
Regulator behavior in case o...	LD01 shutdown																																																																			
<table border="1"> <thead> <tr> <th colspan="2">BUCK1</th> </tr> </thead> <tbody> <tr> <td>VBUCK1 output voltage</td> <td>17</td> </tr> <tr> <td>BUCK1 inductor selection</td> <td>1.5uH</td> </tr> <tr> <td>VBUCK1 current limitation</td> <td>0</td> </tr> <tr> <td>VBUCK1 & VBUCK2 multiphase operation</td> <td>Enabled</td> </tr> <tr> <td>BUCK1 Compensation Network</td> <td>65GM</td> </tr> <tr> <td>BUCK1 sequencing slot</td> <td>Slot1</td> </tr> <tr> <td>BUCK1 phase (delay) selection</td> <td>Delay2</td> </tr> <tr> <td>BUCK1 clock selection</td> <td>CLK_DIV1</td> </tr> <tr> <td>Regulator behavior in case of TSD</td> <td>BUCK1 shutdown + ...</td> </tr> <tr> <td>BUCK1 and BUCK2 Soft start/stop configura...</td> <td>7.81mV/us</td> </tr> </tbody> </table>	BUCK1		VBUCK1 output voltage	17	BUCK1 inductor selection	1.5uH	VBUCK1 current limitation	0	VBUCK1 & VBUCK2 multiphase operation	Enabled	BUCK1 Compensation Network	65GM	BUCK1 sequencing slot	Slot1	BUCK1 phase (delay) selection	Delay2	BUCK1 clock selection	CLK_DIV1	Regulator behavior in case of TSD	BUCK1 shutdown + ...	BUCK1 and BUCK2 Soft start/stop configura...	7.81mV/us	<table border="1"> <thead> <tr> <th colspan="2">BUCK2</th> </tr> </thead> <tbody> <tr> <td>VBUCK2 output voltage</td> <td>17</td> </tr> <tr> <td>BUCK2 inductor selection</td> <td>1uH</td> </tr> <tr> <td>BUCK2 enable</td> <td>Enabled</td> </tr> <tr> <td>VBUCK2 current limitation</td> <td>0</td> </tr> <tr> <td>BUCK2 compensation network</td> <td>0</td> </tr> <tr> <td>BUCK2 sequencing slot</td> <td>Slot2</td> </tr> <tr> <td>BUCK2 phase (delay) selection</td> <td>Delay1</td> </tr> <tr> <td>BUCK2 clock selection</td> <td>CLK_DIV1</td> </tr> <tr> <td>Regulator behavior in case of TSD</td> <td>BUCK2 shutdown</td> </tr> </tbody> </table>	BUCK2		VBUCK2 output voltage	17	BUCK2 inductor selection	1uH	BUCK2 enable	Enabled	VBUCK2 current limitation	0	BUCK2 compensation network	0	BUCK2 sequencing slot	Slot2	BUCK2 phase (delay) selection	Delay1	BUCK2 clock selection	CLK_DIV1	Regulator behavior in case of TSD	BUCK2 shutdown	<table border="1"> <thead> <tr> <th colspan="2">BUCK3</th> </tr> </thead> <tbody> <tr> <td>VBUCK3 output voltage</td> <td>2.8V</td> </tr> <tr> <td>VBUCK3 enable</td> <td>Disabled</td> </tr> <tr> <td>BUCK3 inductor selection</td> <td>1uH</td> </tr> <tr> <td>VBUCK3 current limitation</td> <td>2.6A</td> </tr> <tr> <td>BUCK3 compensation resistor</td> <td>Default</td> </tr> <tr> <td>BUCK3 gain control</td> <td>1</td> </tr> <tr> <td>BUCK3 sequencing slot</td> <td>Slot1</td> </tr> <tr> <td>BUCK3 phase (delay) selection</td> <td>Delay2</td> </tr> <tr> <td>BUCK3 clock selection</td> <td>CLK_DIV1</td> </tr> <tr> <td>Regulator behavior in case of ...</td> <td>BUCK3 shutdown</td> </tr> <tr> <td>Soft start/stop configurability</td> <td>3.47mV/us</td> </tr> </tbody> </table>	BUCK3		VBUCK3 output voltage	2.8V	VBUCK3 enable	Disabled	BUCK3 inductor selection	1uH	VBUCK3 current limitation	2.6A	BUCK3 compensation resistor	Default	BUCK3 gain control	1	BUCK3 sequencing slot	Slot1	BUCK3 phase (delay) selection	Delay2	BUCK3 clock selection	CLK_DIV1	Regulator behavior in case of ...	BUCK3 shutdown	Soft start/stop configurability	3.47mV/us
BUCK1																																																																				
VBUCK1 output voltage	17																																																																			
BUCK1 inductor selection	1.5uH																																																																			
VBUCK1 current limitation	0																																																																			
VBUCK1 & VBUCK2 multiphase operation	Enabled																																																																			
BUCK1 Compensation Network	65GM																																																																			
BUCK1 sequencing slot	Slot1																																																																			
BUCK1 phase (delay) selection	Delay2																																																																			
BUCK1 clock selection	CLK_DIV1																																																																			
Regulator behavior in case of TSD	BUCK1 shutdown + ...																																																																			
BUCK1 and BUCK2 Soft start/stop configura...	7.81mV/us																																																																			
BUCK2																																																																				
VBUCK2 output voltage	17																																																																			
BUCK2 inductor selection	1uH																																																																			
BUCK2 enable	Enabled																																																																			
VBUCK2 current limitation	0																																																																			
BUCK2 compensation network	0																																																																			
BUCK2 sequencing slot	Slot2																																																																			
BUCK2 phase (delay) selection	Delay1																																																																			
BUCK2 clock selection	CLK_DIV1																																																																			
Regulator behavior in case of TSD	BUCK2 shutdown																																																																			
BUCK3																																																																				
VBUCK3 output voltage	2.8V																																																																			
VBUCK3 enable	Disabled																																																																			
BUCK3 inductor selection	1uH																																																																			
VBUCK3 current limitation	2.6A																																																																			
BUCK3 compensation resistor	Default																																																																			
BUCK3 gain control	1																																																																			
BUCK3 sequencing slot	Slot1																																																																			
BUCK3 phase (delay) selection	Delay2																																																																			
BUCK3 clock selection	CLK_DIV1																																																																			
Regulator behavior in case of ...	BUCK3 shutdown																																																																			
Soft start/stop configurability	3.47mV/us																																																																			
<table border="1"> <thead> <tr> <th colspan="2">CLOCK</th> </tr> </thead> <tbody> <tr> <td>PLL enable</td> <td>Disabled</td> </tr> <tr> <td>Divider 1 setting</td> <td>Divide8</td> </tr> <tr> <td>Divider 2 setting</td> <td>Divide10</td> </tr> </tbody> </table>	CLOCK		PLL enable	Disabled	Divider 1 setting	Divide8	Divider 2 setting	Divide10	<table border="1"> <thead> <tr> <th colspan="2">SM</th> </tr> </thead> <tbody> <tr> <td>Deep Fail-safe infinite autoretry enable</td> <td>Disabled</td> </tr> <tr> <td>Deep Fail-safe autoretry enable</td> <td>Disabled</td> </tr> <tr> <td>Synchronization with 1x F585 or 1x PF82</td> <td>2xF585</td> </tr> <tr> <td>Synchronization with 2 devices</td> <td>Enabled</td> </tr> <tr> <td>Device I2C address</td> <td>D1</td> </tr> </tbody> </table>	SM		Deep Fail-safe infinite autoretry enable	Disabled	Deep Fail-safe autoretry enable	Disabled	Synchronization with 1x F585 or 1x PF82	2xF585	Synchronization with 2 devices	Enabled	Device I2C address	D1	<table border="1"> <thead> <tr> <th colspan="2">VSUP UV/OV</th> </tr> </thead> <tbody> <tr> <td>VSUP Under Voltage Threshold Configuration</td> <td>6.2V</td> </tr> <tr> <td>Regulator assigned to VDDIO (OV)</td> <td>VPRE</td> </tr> </tbody> </table>	VSUP UV/OV		VSUP Under Voltage Threshold Configuration	6.2V	Regulator assigned to VDDIO (OV)	VPRE																																								
CLOCK																																																																				
PLL enable	Disabled																																																																			
Divider 1 setting	Divide8																																																																			
Divider 2 setting	Divide10																																																																			
SM																																																																				
Deep Fail-safe infinite autoretry enable	Disabled																																																																			
Deep Fail-safe autoretry enable	Disabled																																																																			
Synchronization with 1x F585 or 1x PF82	2xF585																																																																			
Synchronization with 2 devices	Enabled																																																																			
Device I2C address	D1																																																																			
VSUP UV/OV																																																																				
VSUP Under Voltage Threshold Configuration	6.2V																																																																			
Regulator assigned to VDDIO (OV)	VPRE																																																																			

aaa-032350

Figure 41. TestMode: Mirrors_Main

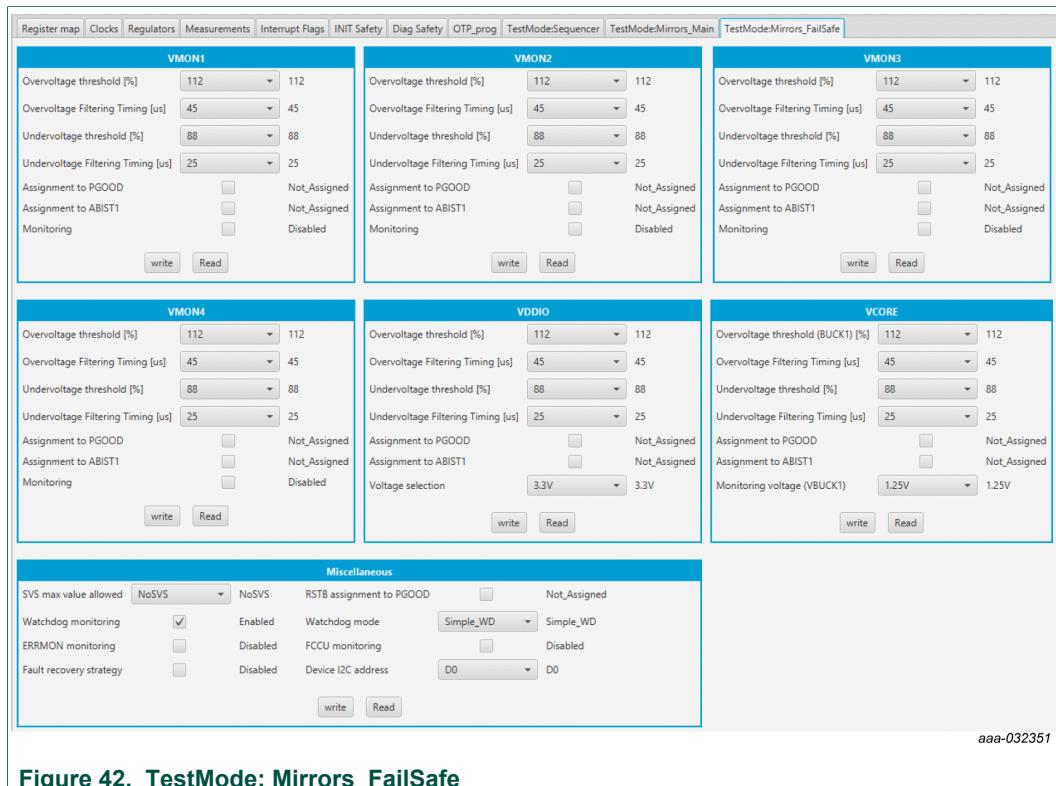


Figure 42. TestMode: Mirrors_FailSafe

The Read button provides the current status. The Write button changes the configuration in mirror register. This can be useful, for example, to modify few parameters from OTP fuse to start up the board.

9 References

- [1] **KITFS85SKTEVM** — detailed information on this board, including documentation, downloads, and software and tools
<http://www.nxp.com/KITFS85SKTEVM>
- [2] **FS8500** — product information on FS8500, Safety system basis chip for S32 microcontrollers, fit for ASIL D
<http://www.nxp.com/FS8500>
- [3] **FS8400** — product information on FS8400, Safety system basis chip for S32 microcontroller, fit for ASIL B
<http://www.nxp.com/FS8400>
- [4] **FS85_F84 OTP_Config.xlsx** — OTP configuration file

10 Revision history

Revision history

Rev	Date	Description
v.3	20191206	<ul style="list-style-type: none">• Section 8.1: updated Figure 23• Section 8.2: updated description and Figure 24• Section 8.3: updated Figure 26• Section 8.3.1: updated Figure 28• Section 8.4.1: updated Figure 31• Section 8.4.2: updated Figure 32• Section 8.4.6: updated Figure 36• Section 8.4.3: updated Figure 33• Section 8.4.10: updated Figure 41
v.2	20190220	<ul style="list-style-type: none">• Global: reorganized content to match latest template• Section 4.3.5: updated Table 12• Section 6: updated the configuration procedure• Section 8.4.7: updated Figure 37• Section 8.4.9: updated Figure 39 and Figure 40• Section 8.4.10: updated Figure 41
v.1	20190118	<ul style="list-style-type: none">• Initial version

11 Legal information

11.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

11.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a

default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer. In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages. Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

11.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP — is a trademark of NXP B.V.

SMARTMOS — is a trademark of NXP B.V.

Tables

Tab. 1.	Compensation network	6	Tab. 10.	Program connector (J30)	15
Tab. 2.	Evaluation board component descriptions	10	Tab. 11.	Evaluation board test point descriptions	16
Tab. 3.	Evaluation board indicator descriptions	12	Tab. 12.	Evaluation board jumper descriptions	17
Tab. 4.	VBAT Phoenix connector (J1)	13	Tab. 13.	SW3	18
Tab. 5.	BUCK1/BUCK2 connector (J14)	14	Tab. 14.	SW2	19
Tab. 6.	VBOOST/BUCK3 connector (J16)	14	Tab. 15.	SW1	19
Tab. 7.	LDO1/LDO2 connector (J2)	14	Tab. 16.	Jumper configuration	28
Tab. 8.	VPRE connector (J3)	14	Tab. 17.	Switch configuration	28
Tab. 9.	Debug connector (J29)	14	Tab. 18.	FS85 starting sequence example	32
			Tab. 19.	OTP burning flag status	44

Figures

Fig. 1.	KITFS85SKTEVM	1	Fig. 21.	OTP_conf_summary example	30
Fig. 2.	VMONx configuration	5	Fig. 22.	OTP script generation	31
Fig. 3.	VPRE compensation network	5	Fig. 23.	Launcher panel - bus selection	33
Fig. 4.	BUCK1 and BUCK2 multiphase configuration	6	Fig. 24.	Main panel	34
Fig. 5.	SPI connection to KL25Z	6	Fig. 25.	Disabling device mode polling	35
Fig. 6.	J30 SPI connection	7	Fig. 26.	Script Editor	35
Fig. 7.	VDDIO selection	7	Fig. 27.	Build a command	37
Fig. 8.	VDDI2C supply	7	Fig. 28.	Send script	37
Fig. 9.	OTP configuration	8	Fig. 29.	Correct format	37
Fig. 10.	Debug mode entry	9	Fig. 30.	Wrong format ("// missing in second line)	37
Fig. 11.	OTP hardware implementation	9	Fig. 31.	Register map	39
Fig. 12.	Evaluation board featured component locations	10	Fig. 32.	Clocks	39
Fig. 13.	Evaluation board indicator locations	12	Fig. 33.	Regulators	40
Fig. 14.	Evaluation board connector locations	13	Fig. 34.	Measurements	41
Fig. 15.	Evaluation board test points	16	Fig. 35.	Interrupt flags	41
Fig. 16.	Evaluation board jumper locations	17	Fig. 36.	INIT safety	42
Fig. 17.	Switch locations	18	Fig. 37.	Diag safety	43
Fig. 18.	Typical initial configuration	28	Fig. 38.	OTP burning	44
Fig. 19.	OTP_conf_main_reg spreadsheet example	29	Fig. 39.	TestMode:Sequencer	45
Fig. 20.	OTP_conf_failsafe_reg spreadsheet example	30	Fig. 40.	Slot management	45
			Fig. 41.	TestMode: Mirrors_Main	46
			Fig. 42.	TestMode: Mirrors_FailSafe	47

Contents

1	Introduction	2	8.2	Establishing the connection between FlexGUI and the hardware	34
2	Finding kit resources and information on the NXP web site	2	8.3	Working with the Script editor	35
2.1	Collaborate in the NXP community	2	8.3.1	Script text editor	35
3	Getting ready	2	8.3.2	Script sequence files	38
3.1	Kit contents	2	8.4	Understanding the FS85 workspace	38
3.2	Additional hardware	3	8.4.1	Register map	38
3.3	Windows PC workstation	3	8.4.2	Clocks	39
3.4	Software	3	8.4.3	Regulators	40
4	Getting to know the hardware	3	8.4.4	Measurements	40
4.1	Kit overview	3	8.4.5	Interrupt flags	41
4.1.1	KITFS85SKTEVM features	4	8.4.6	INIT safety	42
4.1.2	VMON board configuration	4	8.4.7	Diag safety	42
4.1.3	VPRE compensation network	5	8.4.8	OTP programming	44
4.1.4	BUCK1 and BUCK2 multiphase configuration	6	8.4.9	TestMode:Sequencer	45
4.1.5	SPI/I2C	6	8.4.10	TestMode:Mirrors_Main and TestMode:Mirrors_Failsafe	46
4.1.6	VDDI2C	7	9	References	47
4.2	Device OTP user configuration	8	10	Revision history	48
4.2.1	OTP and mirrors registers	8	11	Legal information	49
4.2.2	OTP hardware implementation	8			
4.3	Kit featured components	9			
4.3.1	FS8500/FS8400: Fail-safe system basis chip with multiple SMPS and LDO	11			
4.3.1.1	General description	11			
4.3.1.2	Features	11			
4.3.2	Indicators	12			
4.3.3	Connectors	13			
4.3.3.1	VBAT connector (J1)	13			
4.3.3.2	Output power supply connectors	14			
4.3.3.3	Debug connector (J29)	14			
4.3.3.4	Program connector (J30)	15			
4.3.4	Test points	15			
4.3.5	Jumpers	17			
4.3.6	Switches	18			
4.4	Schematic, board layout and bill of materials ...	19			
5	Installing and configuring software and tools	19			
5.1	Installing the Java JRE	19			
5.2	Installing Windows 7 FlexGUI driver	19			
5.3	Installing FlexGUI software package	27			
6	Configuring the hardware for startup	28			
7	Using the KITFS85SKTEVM evaluation board	29			
7.1	Generating the OTP configuration file	29			
7.2	Working in OTP emulation mode	31			
7.2.1	Example script: Closing initialization phase, disabling FCCU monitoring and releasing FS0B	32			
7.3	Programming the device with an OTP configuration	32			
8	Using FlexGUI	33			
8.1	Starting the FlexGUI application	33			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.