

NVBG020N120SC1

MOSFET - SiC Power, Single N-Channel, D2PAK-7L 1200 V, 20 mΩ, 98 A

Features

- Typ. $R_{DS(on)} = 20 \text{ m}\Omega$
- Ultra Low Gate Charge (typ. $Q_{G(\text{tot})} = 220 \text{ nC}$)
- Low Effective Output Capacitance (typ. $C_{oss} = 258 \text{ pF}$)
- 100% Avalanche Tested
- Qualified According to AEC-Q101
- RoHS Compliant

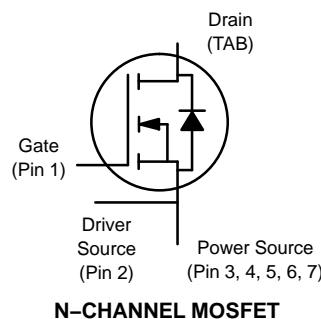
Typical Applications

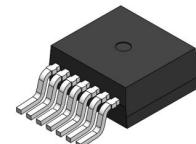
- Automotive On Board Charger
- Automotive DC/DC Converter for EV/HEV

MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V_{DSS}	1200	V
Gate-to-Source Voltage		V_{GS}	-15/+25	V
Recommended Operation Values of Gate-to-Source Voltage		V_{GSop}	-5/+20	V
Continuous Drain Current (Note 2)	Steady State	I_D	98	A
Power Dissipation (Note 2)		P_D	468	W
Continuous Drain Current (Notes 1, 2)	Steady State	I_D	8.6	A
Power Dissipation (Notes 1, 2)		P_D	3.7	W
Pulsed Drain Current (Note 3)	$T_A = 25^\circ\text{C}$	I_{DM}	392	A
Single Pulse Surge Drain Current Capability	$T_A = 25^\circ\text{C}$, $t_p = 10 \mu\text{s}$, $R_G = 4.7 \Omega$	I_{DSC}	807	A
Operating Junction and Storage Temperature Range	T_J , T_{stg}	-55 to +175		°C
Source Current (Body Diode)	I_S	46	A	
Single Pulse Drain-to-Source Avalanche Energy ($I_{L(pk)} = 23 \text{ A}$, $L = 1 \text{ mH}$) (Note 4)	E_{AS}	264	mJ	
Maximum Lead Temperature for Soldering (1/8" from case for 5 s)	T_L	300	°C	

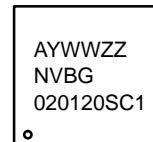
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Surface mounted on a FR-4 board using 1 in² pad of 2 oz copper.
2. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
3. Repetitive rating, limited by max junction temperature.
4. EAS of 264 mJ is based on starting $T_J = 25^\circ\text{C}$; $L = 1 \text{ mH}$, $I_{AS} = 23 \text{ A}$, $V_{DD} = 120 \text{ V}$, $V_{GS} = 18 \text{ V}$.


ON Semiconductor®

www.onsemi.com

$V_{(BR)DSS}$	$R_{DS(ON)} \text{ MAX}$	$I_D \text{ MAX}$
1200 V	28 mΩ @ 20 V	98 A



N-CHANNEL MOSFET

D2PAK-7L
CASE 418BJ

MARKING DIAGRAM

A = Assembly Location
Y = Year
WW = Work Week
ZZ = Lot Traceability
NVBG020120SC1 = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NVBG020N120SC1	D2PAK-7L	800 ea/ Tape&Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NVBG020N120SC1

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case – Steady State (Note 2)	$R_{\theta JC}$	0.32	°C/W
Junction-to-Ambient – Steady State (Notes 1, 2)	$R_{\theta JA}$	41	

ELECTRICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	$V_{(\text{BR})DSS}$	$V_{GS} = 0 \text{ V}$, $I_D = 1 \text{ mA}$	1200			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(\text{BR})DSS}/T_J$	$I_D = 1 \text{ mA}$, referenced to 25°C		0.5		$^\circ\text{C}/\text{V}$
Zero Gate Voltage Drain Current	I_{DSS}	$V_{GS} = 0 \text{ V}$, $V_{DS} = 1200 \text{ V}$	$T_J = 25^\circ\text{C}$		100	μA
			$T_J = 175^\circ\text{C}$		1	mA
Gate-to-Source Leakage Current	I_{GSS}	$V_{GS} = +25/-15 \text{ V}$, $V_{DS} = 0 \text{ V}$			± 1	μA

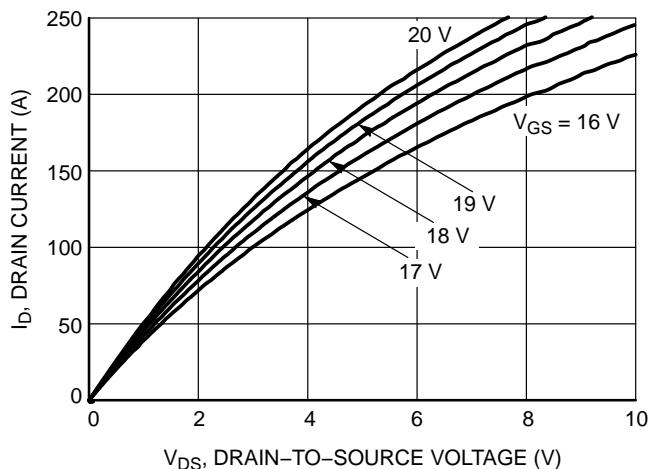
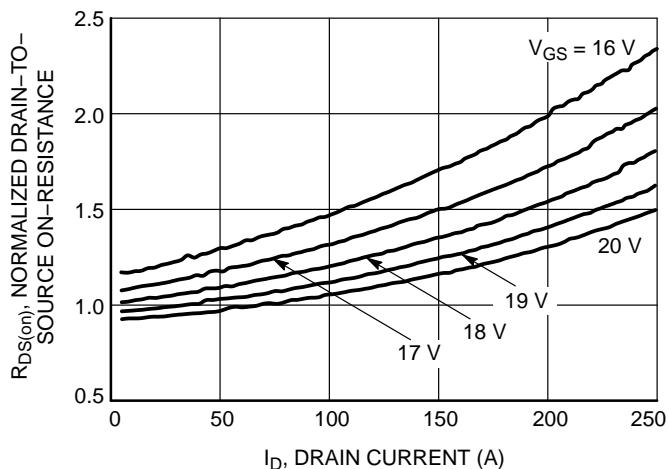
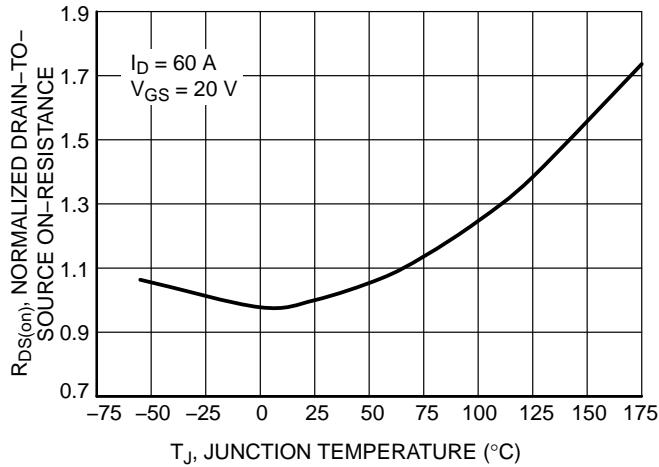
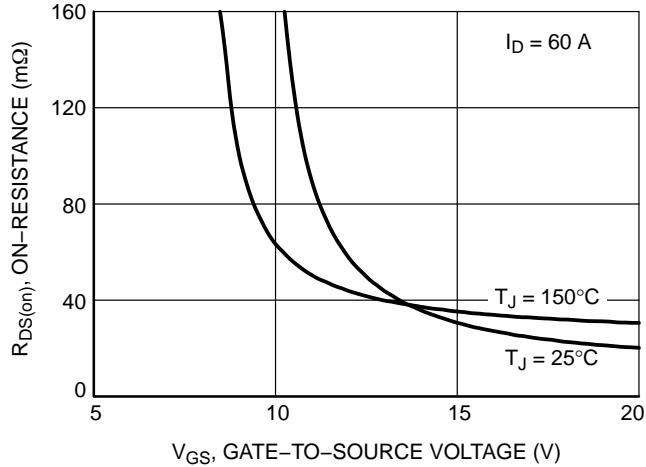
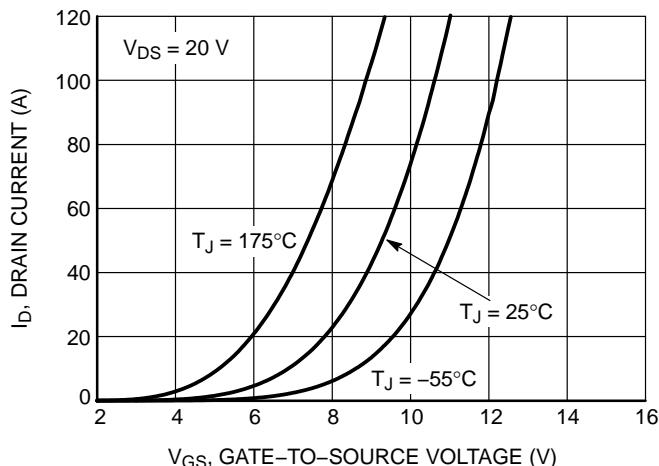
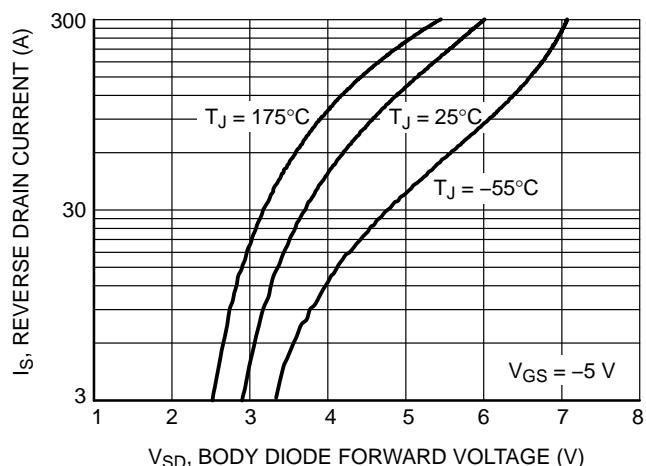
ON CHARACTERISTICS (Note 3)

Gate Threshold Voltage	$V_{GS(\text{TH})}$	$V_{GS} = V_{DS}$, $I_D = 20 \text{ mA}$	1.8	2.7	4.3	V
Recommended Gate Voltage	V_{GOP}		-5		+20	V
Drain-to-Source On Resistance	$R_{DS(\text{on})}$	$V_{GS} = 20 \text{ V}$, $I_D = 60 \text{ A}$, $T_J = 25^\circ\text{C}$		20	28	$\text{m}\Omega$
		$V_{GS} = 20 \text{ V}$, $I_D = 60 \text{ A}$, $T_J = 175^\circ\text{C}$		35	50	
Forward Transconductance	g_{FS}	$V_{DS} = 20 \text{ V}$, $I_D = 60 \text{ A}$		34		S

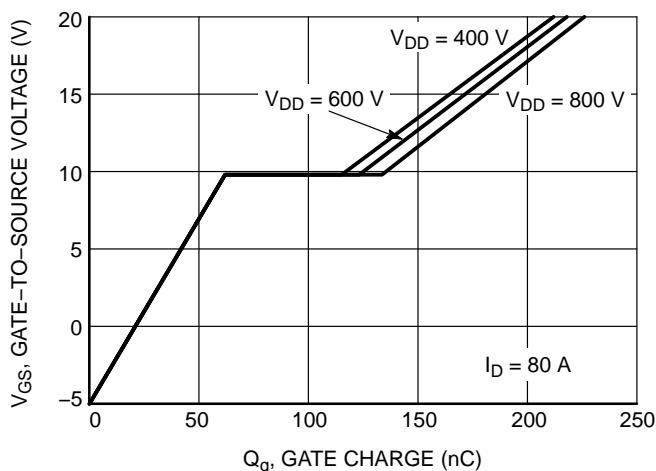
CHARGES, CAPACITANCES & GATE RESISTANCE

Input Capacitance	C_{ISS}	$V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$, $V_{DS} = 800 \text{ V}$	2943		pF
Output Capacitance	C_{OSS}		258		
Reverse Transfer Capacitance	C_{RSS}		24		
Total Gate Charge	$Q_{G(\text{TOT})}$	$V_{GS} = -5/20 \text{ V}$, $V_{DS} = 600 \text{ V}$, $I_D = 80 \text{ A}$	220		nC
Threshold Gate Charge	$Q_{G(\text{TH})}$		33		
Gate-to-Source Charge	Q_{GS}		66		
Gate-to-Drain Charge	Q_{GD}		63		
Gate-Resistance	R_G	$f = 1 \text{ MHz}$	1.6		Ω

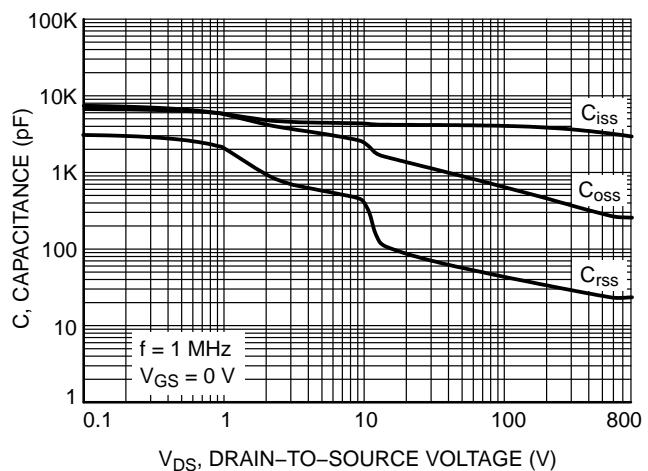
SWITCHING CHARACTERISTICS, $V_{GS} = 10 \text{ V}$ (Note 5)







Turn-On Delay Time	$t_{d(\text{ON})}$	$V_{GS} = -5/20 \text{ V}$, $V_{DS} = 800 \text{ V}$, $I_D = 80 \text{ A}$, $R_G = 2 \Omega$ inductive load	25	40	ns
Rise Time	t_r		41	66	
Turn-Off Delay Time	$t_{d(\text{OFF})}$		46	74	
Fall Time	t_f		11	20	
Turn-On Switching Loss	E_{ON}		1670		
Turn-Off Switching Loss	E_{OFF}		261		μJ
Total Switching Loss	E_{tot}		1931		

DRAIN-SOURCE DIODE CHARACTERISTICS


Continuous Drain-Source Diode Forward Current	I_{SD}	$V_{GS} = -5 \text{ V}$, $T_J = 25^\circ\text{C}$		46	A
Pulsed Drain-Source Diode Forward Current (Note 3)	I_{SDM}			392	
Forward Diode Voltage	V_{SD}	$V_{GS} = -5 \text{ V}$, $I_{SD} = 30 \text{ A}$, $T_J = 25^\circ\text{C}$	3.7		V
Reverse Recovery Time	t_{RR}		31		
Reverse Recovery Charge	Q_{RR}	$V_{GS} = -5/20 \text{ V}$, $I_{SD} = 80 \text{ A}$, $dI_{SD}/dt = 1000 \text{ A}/\mu\text{s}$	228		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


5. Switching characteristics are independent of operating junction temperature

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

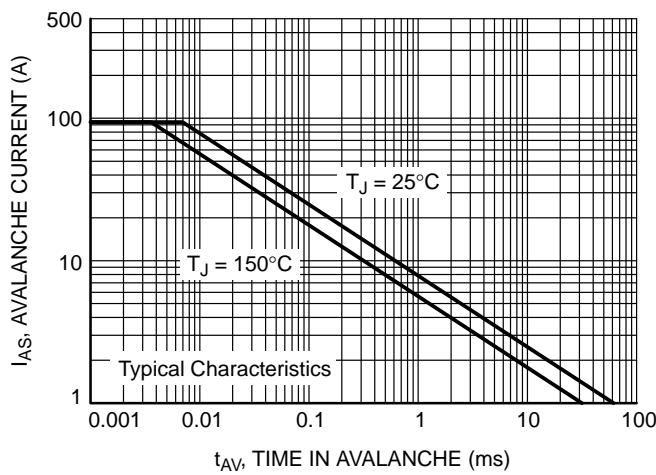
Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

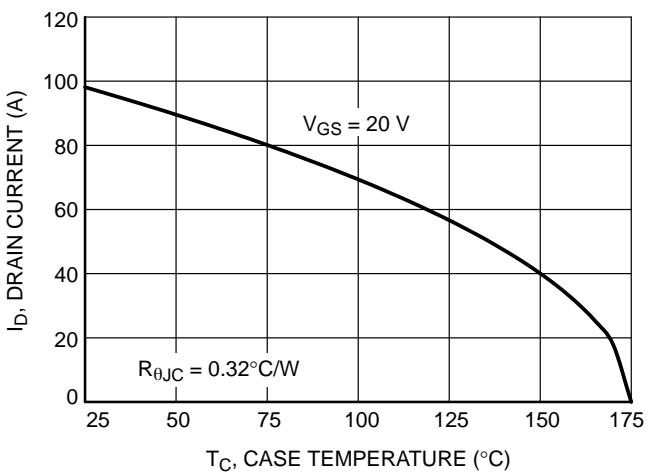
Figure 3. On-Resistance Variation with Temperature

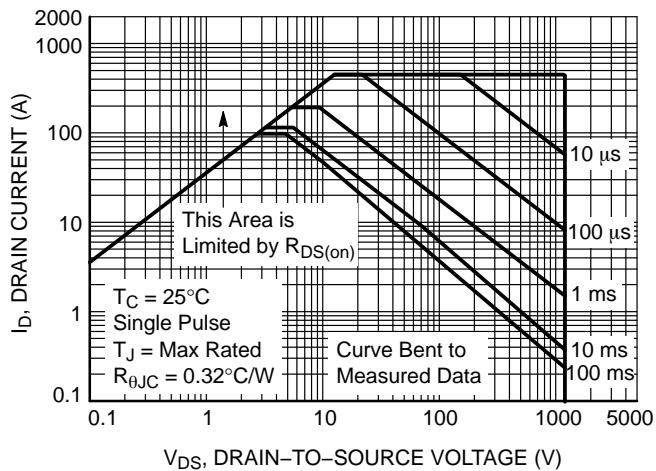
Figure 4. On-Resistance vs. Gate-to-Source Voltage

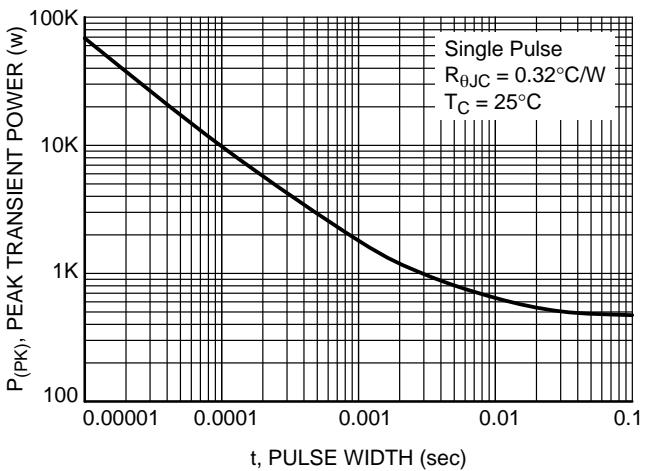
Figure 5. Transfer Characteristics

Figure 6. Diode Forward Voltage vs. Current


TYPICAL CHARACTERISTICS


Figure 7. Gate-to-Source Voltage vs. Total Charge


Figure 8. Capacitance vs. Drain-to-Source Voltage


Figure 9. Unclamped Inductive Switching Capability

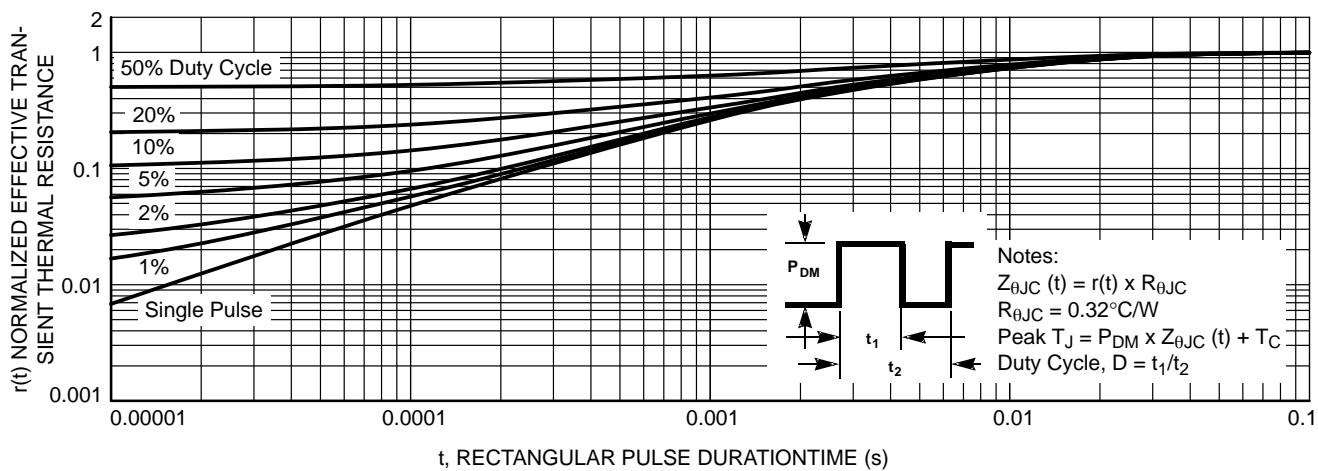

Figure 10. Maximum Continuous Drain Current vs. Case Temperature

Figure 11. Maximum Rated Forward Biased Safe Operating Area

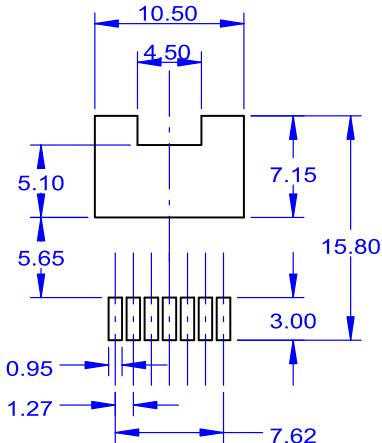
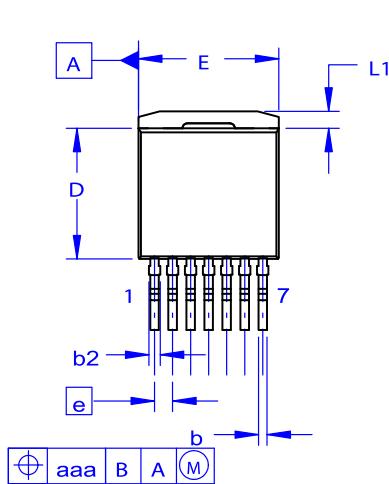
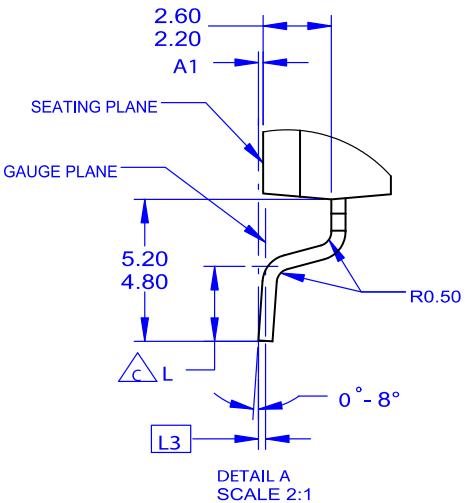
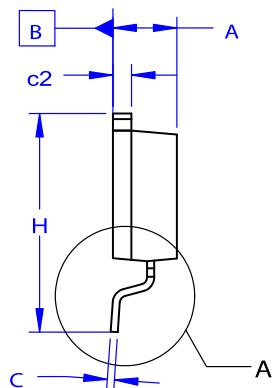
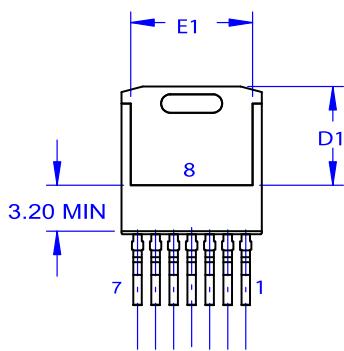



Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS**Figure 13. Junction-to-Case Transient Thermal Response Curve**

PACKAGE DIMENSIONS

D²PAK7 (TO-263-7L HV) CASE 418BJ ISSUE A

NOTES:

- A. PACKAGE CONFORMS TO JEDEC TO-263 VARIATION CB EXCEPT WHERE NOTED.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. OUT OF JEDEC STANDARD VALUE.
- D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009.
- E. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.

DIM	MILLIMETERS		
	MIN	NOM	MAX
A	4.30	4.50	4.70
A1	0.00	0.10	0.20
b2	0.60	0.70	0.80
b	0.51	0.60	0.70
c	0.40	0.50	0.60
c2	1.20	1.30	1.40
D	9.00	9.20	9.40
D1	6.75	6.95	7.15
E	9.70	9.90	10.20
E1	7.70	7.90	8.10
e	~	1.27	~
H	15.10	15.40	15.70
L	2.44	2.64	2.84
L1	1.00	1.20	1.40
L3	~	0.25	~
aaa	~	~	0.25

LAND PATTERN RECOMMENDATION

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION**LITERATURE FULFILLMENT:**

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[ON Semiconductor](#):

[NVBG020N120SC1](#)