
MIMAS-I WIRELESS M-BUS REFERENCE MANUAL

AMB3626-M / 260701111300X

VERSION 3.1

MARCH 7, 2019

Revision history

Manual version	FW version	HW version	Notes	Date
3.0	2.8.0	3.0	<ul style="list-style-type: none"> • New corporate design and structure • Added some new chapters and removed irrelevant and redundant information • Switched over to product specific manuals 	November 2018
3.1	2.8.0	3.0	<ul style="list-style-type: none"> • Added chapter Reference design • Added chapter Information for Ex Protection 	March 2019

* For Mimas-I firmware history see chapter [Firmware history](#)

Abbreviations

Abbreviation	Name	Description
ALA	Application Layer Address	Application layer meter addresses in the wM-BUS frame, optional
Block1	first block of EN 13757-4 frame	Is always 10 bytes long, contains L field, C field and 8 byte LLA address
CS	Checksum	XOR checksum to check the correct transmission of the previous Bytes of the UART communication protocoll
CRC16		EN 13757-4 compliant checksum (2 byte)
DC	Duty cycle	Transmission time in relation to one hour duration. 1% means, channel is occupied for 36 seconds per hour by the sending device
Downlink		Transmission direction, i.e. when direction "other to meter" is intended
FSE	Field Sales Engineer	Support and sales contact person responsible for limited sales area
HIGH	Logic High signal level	Signal level equals VCC
LLA	Link Layer Address	Link layer meter addresses in the wM-BUS frame, required
L field	EN13757-4 length field	first byte of block1
LOW	Logic Low signal level	Signal levels equals 0 Volts
LPM	Low power mode	Operation mode for reduced power consumption
LSB	Least significant byte	
MSB	Most significant byte	
RF	Radio frequency	Describes everything relating to the wireless transmission.

Abbreviation	Name	Description
SFD	Start frame delimiter	Start byte of a frame for the command interface.
SMGW	Smart meter gateway	Gateway receiving wM-BUS frames, wM-BUS role "other"
UART	Universal asynchronous receiver transmitter	The UART allows a communication of a host with the Mimas-I module using a communication protocol
T&R		Tape and reel packaging with a minimum order quantity
Uplink		Transmission direction, i.e. when direction "meter to other" is intended
US	UserSettings	Non-volatile but changeable module configuration parameters
wM-BUS	wireless M-BUS	EN 13757 -3 and -4 standards

Contents

1	Introduction	8
1.1	Operational description	8
1.2	Block diagram	9
1.3	Ordering information	9
2	Electrical specifications	10
2.1	Recommended operating conditions	10
2.2	Absolute maximum ratings	10
2.3	Power consumption	11
2.3.1	Static	11
2.4	Radio characteristics	11
2.5	Pin characteristics	12
2.6	Integrated flash characteristics	12
3	Pinout	13
4	Quickstart	15
4.1	Minimal pin configuration	15
4.2	Power up	15
4.3	Quickstart example	16
5	Functional description	19
5.1	System configuration parameters	19
5.2	Configuring the radio	19
5.2.1	Transmission of frames	20
5.2.2	Reception of frames	20
5.3	Recommended settings for data collectors 169 MHz	21
5.4	Recommended settings for meter emulation 169 MHz	22
6	Host connection	23
6.1	Serial interface: UART	23
6.2	Transparent Mode	24
7	The command interface	26
7.1	Overview	26
7.2	Message overview	26
7.3	Commands for sending and receiving wM-BUS radio data	28
7.3.1	CMD_DATA_REQ: Send data via wireless M-BUS radio	28
7.3.2	CMD_DATA_IND: Reception of wireless M-BUS frames	28
7.4	Commands for module configuration	30
7.4.1	CMD_SET_MODE_REQ: temporarily set a wM-BUS Mode	30
7.4.2	CMD_RESET_REQ: Reset the module	31
7.4.3	CMD_SET_REQ: Change non-volatile module settings	31
7.4.4	CMD_GET_REQ: Read out the non-volatile UserSettings	33
7.4.5	CMD_SERIALNO_REQ: Read out the module serial number	33
7.4.6	CMD_FWV_REQ: Read out the firmware version	34
7.4.7	CMD_RSSI_REQ: Read out the module rx level	34

7.4.8	CMD_SETUARTSPEED_REQ: Change the UART baudrate of the module	35
7.4.9	CMD_FACTORYRESET_REQ: Restore factory defaults	36
7.5	EN13757 compliant encryption	38
7.5.1	CMD_SET_AES_KEY_REQ: Register a pair of key and address in the module	39
7.5.2	CMD_CLR_AES_KEY_REQ: Clear AES key from list	40
7.5.3	CMD_GET_AES_DEV_REQ: Read Back registered addresses	40
8	UserSettings - Module configuration values	42
8.1	UART parameters	43
8.1.1	UART speed parameters	43
8.1.2	UART_CMD_OUT_ENABLE	44
8.2	Application and Radio Parameters	45
8.2.1	APP_MAXPacketLength	45
8.2.2	APP_AES_Enable	45
8.2.3	RF_Power	46
8.2.4	RSSI_Enable	47
8.2.5	Mode_Preselect	48
8.2.6	RF_AutoSleep	49
8.2.7	CFG_Flags	50
8.3	Obsolete configuration parameters	51
9	Timing parameters	52
9.1	Reset behavior	52
9.1.1	Reset via /RESET pin	52
10	Radio parameters	53
10.1	Wireless M-BUS radio parameters	53
10.2	EU Regulation	55
11	Battery powered operation	56
11.1	Mimas-I (AMB3626-M)	56
12	Custom firmware	58
12.1	Custom configuration of standard firmware	58
12.2	Customer specific firmware	58
12.3	Customer firmware	58
12.4	Contact for firmware requests	59
13	Firmware update	60
13.1	Update using the UART interface	60
13.1.1	ACC software	60
13.1.2	Generic UART solution	60
13.2	Update using JTAG or SPY-Bi-Wire	60
14	Firmware history	62
14.1	Mimas-I (AMB3626-M, AMB3665-M)	62

15 Design in guide	63
15.1 Advice for schematic and layout	63
15.2 Dimensioning of the micro strip antenna line	65
15.3 Antenna solutions	66
15.3.1 Wire antenna	66
15.3.2 Chip antenna	67
15.3.3 PCB antenna	67
15.3.4 Antennas provided by Würth Elektronik eiSos	68
15.3.4.1 2600130011 - Helike - 169 MHz dipole antenna	68
15.3.4.2 2600130041 - Herse - 434 MHz dipole antenna	69
15.3.4.3 2600130081 - Hyperion-I - 868 MHz dipole antenna	70
15.3.4.4 2600130082 - Hyperion-II - 868 MHz magnetic base antenna	71
15.3.4.5 2600130021 - Himalia - 2.4 GHz dipole antenna	72
16 Reference design	73
16.1 Schematic	74
16.2 Layout	76
17 Manufacturing information	78
17.1 Moisture sensitivity level	78
17.2 Soldering	78
17.2.1 Reflow soldering	78
17.2.2 Cleaning	80
17.2.3 Other notations	80
17.3 ESD handling	80
17.4 Safety recommendations	81
18 Physical dimensions	82
18.1 Dimensions	82
18.2 Weight	82
18.3 Module drawing	82
18.4 Footprint	83
18.5 Antenna free area	84
19 Marking	85
19.1 Lot number	85
19.2 General labeling information	86
19.2.1 Example labels of Würth Elektronik eiSos products	86
20 Information for Ex Protection	87
21 Regulatory compliance information	88
21.1 Important notice EU	88
21.2 Conformity assessment of the final product	88
21.3 Exemption clause	88
21.4 EU Declaration of conformity	89
22 Important information	90
22.1 General customer responsibility	90

22.2 Customer responsibility related to specific, in particular safety-relevant applications	90
22.3 Best care and attention	90
22.4 Customer support for product specifications	90
22.5 Product improvements	91
22.6 Product life cycle	91
22.7 Property rights	91
22.8 General terms and conditions	91
23 Legal notice	92
23.1 Exclusion of liability	92
23.2 Suitability in customer applications	92
23.3 Trademarks	92
23.4 Usage restriction	92
24 License agreement for Würth Elektronik eiSos GmbH & Co. KG connectivity product firmware and software	94
24.1 Limited license	94
24.2 Usage and obligations	94
24.3 Ownership	95
24.4 Firmware update(s)	95
24.5 Disclaimer of warranty	95
24.6 Limitation of liability	96
24.7 Applicable law and jurisdiction	96
24.8 Severability clause	96
24.9 Miscellaneous	96

1 Introduction

For being able to understand this manual, using wireless M-BUS modules and USB dongles it is highly recommended to read the EN13757-3 and -4 in their most recent released version. This knowledge is required for creating and understanding wireless M-BUS compliant data, frame structures, radio configuration and communication schemes.

1.1 Operational description

The Mimas-I is a radio module for wireless communication using the wM-Bus standard between devices such as meters and smart meter gateways. It complies with the requirements of EN13757 and can be used where ever radio communication in a metering background following the wireless M-BUS standard is required.

All Mimas modules support the 169 MHz Band used in wM-BUS. That means N mode is supported with their corresponding sub-modes a to f.

Wireless M-BUS is a quite complex standard which is not suitable to be used without understanding the standard itself. EN13757-3 and EN13757-4 are essential to be read and understood by users of wireless M-BUS modules in order to be able to operate these modules in the compliant way.

The module performs checks on wM-BUS compliance (after EN13757-3:2013) and discards non compliant frames without any notification towards the host.

This wireless M-BUS modules and USB dongles will enable you to read the raw radio data. This data does usually contain an encrypted payload which itself contains one or multiple coded meter reading values. Further steps are required to parse this raw data and gain human readable values out of a decrypted payload.

1.2 Block diagram

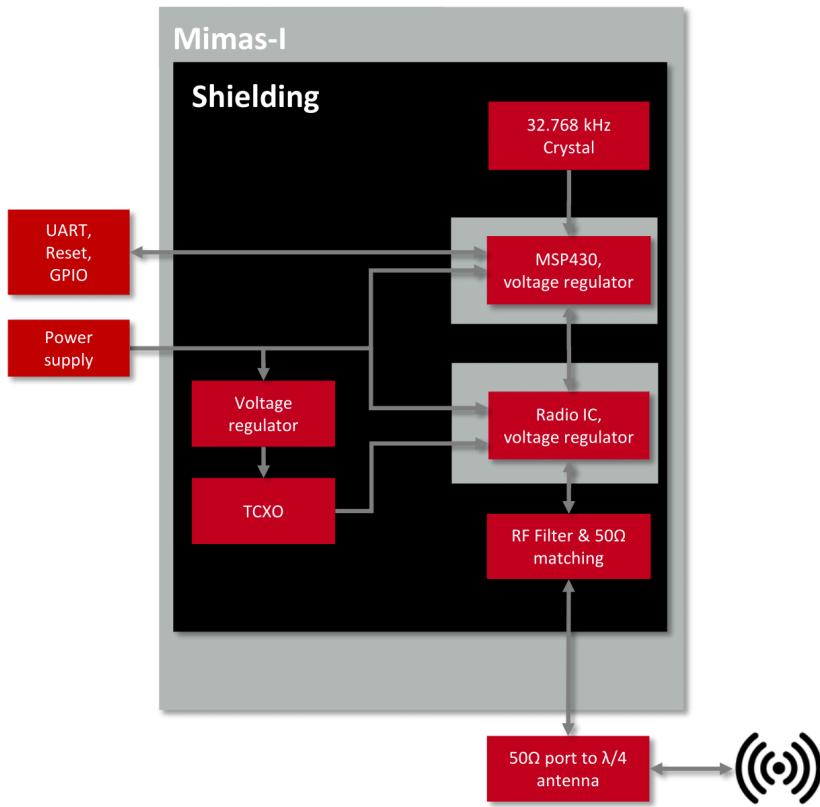


Figure 1: Block diagram of the Mimas-I module

1.3 Ordering information

WE order code	Former order code	Description
2607011113000	AMB3626-M-TR	169 MHz wM-BUS module 15dBm, T&R
2607011113009	AMB3626-M-DEV	Development kit, 3 modules Mimas-I
2607046213001	AMB3665-M	169 MHz wM-BUS USB stick, SMA antenna connector
2607019213001	AMB3626-M-EV	Evaluation kit for Mimas-I module

Table 1: Ordering information

2 Electrical specifications

As not otherwise stated measured on the evaluation board Mimas-I -EV terminated unused module pads and 50 Ω conducted.

2.1 Recommended operating conditions

Description	Min.	Typ.	Max.	Unit
Ambient temperature	-40	25	85	°C
Supply voltage (VDDS)	2.0	3.0	3.6	V

Table 2: Recommended operating conditions, Mimas-I

2.2 Absolute maximum ratings

Description	Min.	Typ.	Max.	Unit
VCC	-0.3		3.9	V
Output RF level		15		dBm
Input RF level			10	dBm

Table 3: Absolute maximum ratings, Mimas-I

2.3 Power consumption

The transmit and receive currents are depending on the impedance matching, and therefore may vary depending on antenna selection and matching.

A stable power supply is indispensable to ensure valid operating conditions for the module. Releasing the */RESET* pin before the VCC is stable may damage the module permanently.

A stable power supply and proper antenna design and matching is indispensable to achieve the stated radio characteristics.

2.3.1 Static

The stated current consumption is the sum of the CPU current and the radio current, depending on the active radio mode.

Conditions: Mimas-I -EV with $T = 25^\circ\text{C}$, $\text{VCC} = 3.3\text{V}$, terminated unused module pads and 50Ω conducted.

Description	Typ.	Unit
TX current, 15 dBm output power	59	mA
RX current	28	mA
Low power (LPM3), radio off, UART via ACLK	10	μA

Table 4: Power consumption, Mimas-I

2.4 Radio characteristics

The radio characteristics of wireless M-BUS products are specified by EN13757-4:2013 and were implemented in a standard compliant way into the Mimas-I firmware.

Conditions: Mimas-I -EV, $T=25^\circ\text{C}$, $\text{VCC}=3.0\text{V}$, terminated unused module pads, 50Ω conducted

The stated best RX sensitivity is linked to the stated "Min" data rate.

Description	Min	Typ.	Max	Unit
Frequency band	169.40625		169.46875	MHz
Data rate	2.4		4.8	kbps
Best RX sensitivity (N2c,N2d)		-115		dBm
Best RX sensitivity (N2a,N2b,N2e,N2f)		-113		dBm
TX power	-5	14	14	dBm

Table 5: Radio characteristics, Mimas-I

2.5 Pin characteristics

Conditions: T=25 °C, VCC=3.0V

Property	Min	Typ.	Max	Unit
GPIO maximum current per pin		2		mA
GPIO maximum current over all		48		mA
Internal pull-up resistor	20	35	50	kΩ
Internal Pull-down resistor	20	35	50	kΩ

Table 6: Pin characteristics, Mimas-I

2.6 Integrated flash characteristics

The integrated flash memory has only a limited number cycles. This number of flash cycles has a guaranteed min. value of 10000 and a typical value of 100000.

Hosts shall implement methods to prevent their applications from excessively using flash cycles. This can be achieved by always performing a CMD_GET_REQ before any CMD_SET_REQ and other command that uses flash cycles.

3 Pinout

For the footprint information needed for the design-in please refer to chapter 18.4.

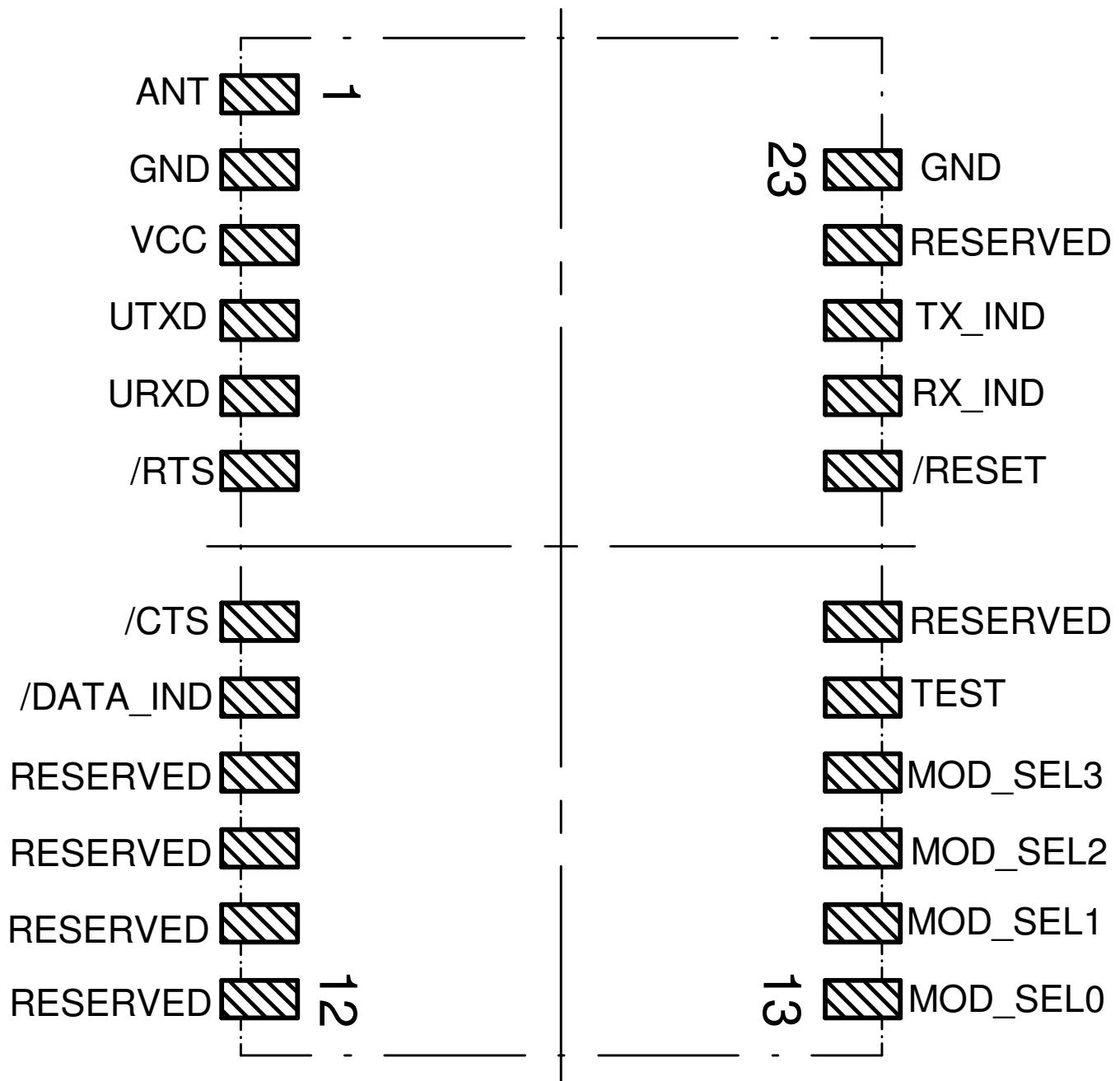


Figure 2: Pinout (top view)

No	Designation	I/O	Description
1	<i>ANT</i>		Antenna connector 50Ω
2	<i>GND</i>	Supply	Ground
3	<i>VCC</i>	Supply	Supply voltage
4	<i>UTXD</i>	Output	UART (module transmit)
5	<i>URXD</i>	Input	UART (module receive)
6	<i>/RTS</i>	Output	Indicates that the module is busy when HIGH.
7	<i>/CTS</i>	Input	<i>/CTS</i> flow control pin. Can be enabled in UserSettings. Connect to <i>GND</i> disabled.
8	<i>/Data_IND</i>	Output	Data indication towards host. Do not connect if not needed.
9	Reserved	I/O	Reserved. Internal pull-down. Do not connect.
10	Reserved	I/O	Reserved. Internal pull-down. Do not connect.
11	Reserved	I/O	Reserved. Internal pull-down. Do not connect.
12	Reserved	I/O	Reserved. Internal pull-down. Do not connect.

No	Designation	I/O	Description
13	<i>MOD_SEL0</i>	Input	Obsolete. Internal pull-down. Do not connect.
14	<i>MOD_SEL1</i>	Input	Obsolete. Internal pull-down. Do not connect.
15	<i>MOD_SEL2</i>	Input	Obsolete. Internal pull-down. Do not connect.
16	<i>MOD_SEL3</i>	Input	Obsolete. Internal pull-down. Do not connect.
17	<i>TEST</i>	Debug	Debug pin. Do not connect.
18	Reserved	I/O	Reserved. Internal pull-down. Do not connect.
19	<i>/RESET</i>	Input	See chapter 9.1.1). Uses internal pull-up. LOW level holds module in reset state.
20	<i>RX_IND</i>	Output	Indicates RF data reception signaled by HIGH.
21	<i>TX_IND</i>	Output	Indicates RF data transmission signaled by HIGH.
22	Reserved	I/O	Reserved. Internal pull-down. Do not connect.
23	<i>GND</i>	Supply	Ground

Table 7: Pinout

4 Quickstart

4.1 Minimal pin configuration

In factory state the module is immediately ready for operation. The following pins are required in the minimal configuration:

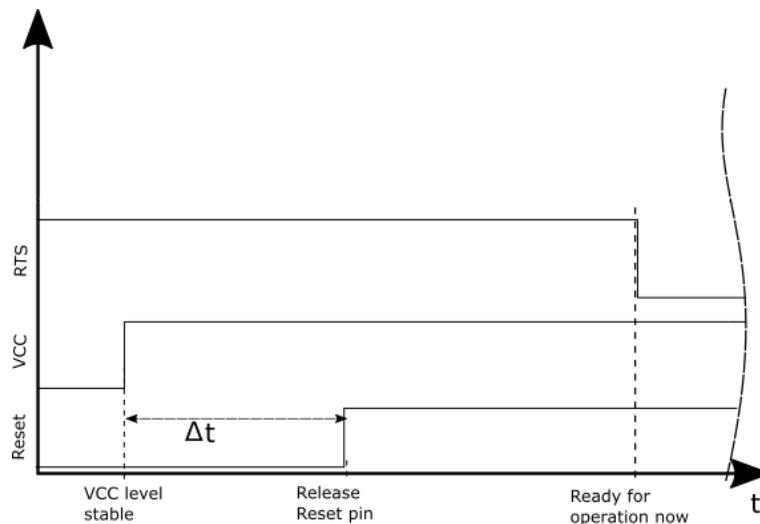
/RESET, VCC, GND, UTXD, URXD, /RTS and ANT.

If the module is to be connected to a PC a converter cable or IC (e.g. 3.3V TTL to USB) is necessary to achieve interface compatibility. The Mimas-I -EV already implements such a USB converter to be directly connected to a PC.

Not interpreting the */RTS* line of the module as described in this manual may cause undefined behavior and data loss.

4.2 Power up

Recommended procedure for starting the module into normal operation:


After supply voltage is applied to the module, the */RESET* pin shall be held to LOW level for another Δt of at least 1ms after the *VCC* is stable to ensure a safe start-up.

Due to DCO calibration a startup may require a duration of up to 1000ms.

If the module is used on a battery-powered system, using a matching reset-IC (or a discrete block for an according delay) it is highly recommended to ensure a stable module power up and ensures a safe behavior towards a battery getting empty.

Applying a reset (e.g. a host temporarily pulling the */RESET* pin down for at least 1ms and releasing it again) after the *VCC* is stable is also sufficient.

4.3 Quickstart example

Connect the two devices (modules, EV-boards or USB dongles) to a PC. You may need to install *FTDI* VCP drivers manually or by using windows update. A minimum distance of 2 meters between the two devices shall be kept at all time to avoid overmodulation of the receiver.

A terminal program, for example *hterm*, is used to perform the communication via COM ports. The two corresponding COM ports have to be selected and opened with a default configuration of 9600 baud, 8 data bits, 1 stop bit and parity set to none (8n1).

Make sure the received data is shown also as "hex" by enabling the corresponding checkbox:

By default, the wireless M-BUS mode is N2a mode (Mode_Preset=0x02), which means that N1a and N2a mode frames can be received and N2a mode frames can be send.

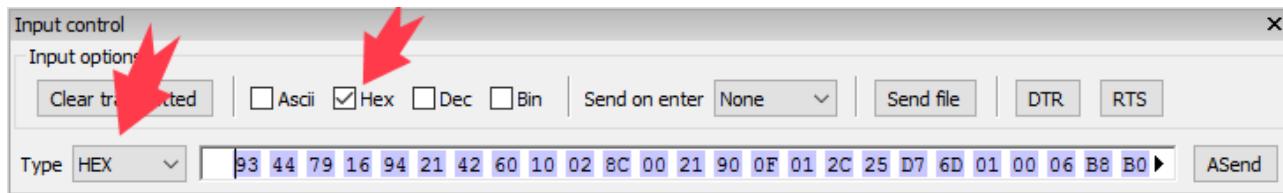
Sending and receiving a wM-BUS frame

To send a wM-BUS frame the so called transparent mode can be used. To do so, simply enter the frame into the input line of hterm. The "Type" field under input control in hterm needs to be changed from "ASC" to "HEX" before entering the first byte.

For advanced applications we encourage the user to prefer using `CMD_DATA_REQ` to request the module sending data as this command will provide a status "frame send" or "frame not send" with the `CMD_DATA_CNF` confirm message.

It is mandatory that for entering hex data the "Type: HEX" is selected in the hterm input control block.

The default state of this field is "Type: ASC" indicated by a torque color background of the characters that are entered in the input line.



The user must make sure that the frame content is wireless M-BUS compliant. See EN13757-3 and EN13757-4 for details.

In case the frame is:

0x93, 0x44, 0x79, 0x16, 0x94, 0x21, 0x42, 0x60, 0x10, 0x02, 0x8C, 0x00, 0x21, 0x90, 0x0F, 0x01, 0x2C, 0x25, 0xD7, 0x6D, 0x01, 0x00, 0x06, 0xB8, 0xB0, 0xDB, 0x18, 0x43, 0xBA, 0xD4, 0x7A, 0x21, 0x00, 0x70, 0x47, 0x10, 0xE9, 0x8A, 0x22, 0x7C, 0x34, 0x98, 0x56, 0x9F, 0x4D, 0xA1, 0xB1, 0xD8, 0x5C, 0x62, 0x56, 0xC4, 0x66, 0xC5, 0xB3, 0x6E, 0xA0, 0x2C, 0x04, 0x7E, 0x95, 0xFE, 0x47, 0x58, 0xBC, 0xFD, 0xA3, 0xBF, 0x7F, 0x9F, 0xB8, 0x50, 0x65, 0x0C, 0x95, 0x00, 0x37, 0xBC, 0xB3, 0x8A, 0x53, 0x92, 0x4E, 0x2B, 0x3D, 0x8D, 0x62, 0x9C, 0x33, 0xC6, 0x6F, 0xB5, 0xE6, 0xF6, 0x63, 0x3A, 0xC9, 0xF9, 0x39, 0x1C, 0x89, 0xE1, 0x8D, 0x80, 0x5F, 0x1A, 0x10, 0x0A, 0xC4, 0x78, 0xC2, 0x0B, 0xCB, 0x74, 0xB4, 0xBD, 0xB5, 0x27, 0x1A, 0xA9, 0x8C

It will look in hterm like this:

Using the "ASend" button followed by pushing the "Start" button sends the data once. The second module receiving this packet outputs the transmitted payload data.

Received Data																											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	
93	44	79	16	94	21	42	60	10	02	8C	00	21	90	0F	01	2C	25	D7	6D	01	00	06	B8	B0	DB	18	
43	BA	D4	7A	21	00	70	47	10	E9	8A	22	7C	34	98	56	9F	4D	A1	B1	D8	5C	62	56	C4	66	C5	
B3	6E	6A	B4	30	41	B6	9F	A8	23	5C	B3	47	21	42	F0	99	6C	01	93	83	95	02	27	A0	5E	8E	
84	D4	A0	2C	04	7E	95	FE	47	58	BC	FD	A3	BF	7F	9F	B8	50	65	0C	95	00	37	BC	B3	8A	53	
92	4E	2B	3D	8D	62	9C	33	C6	6F	B5	E6	F6	63	3A	C9	F9	39	1C	89	E1	8D	80	5F	1A	10	0A	
C4	78	C2	0B	CB	74	B4	BD	B5	27	1A	A9	8C															

In N2a-mode the uplink and downlink radio settings are symmetrical. In case another wM-BUS-mode is intended to be used, suiting wM-BUS-modes must be selected on both communication partners (see table 24).

5 Functional description

5.1 System configuration parameters

The parameters that determine the functionality of the module can be organized into two categories: The non-volatile UserSettings parameters (see chapter 8) that can be modified using the `CMD_SET_REQ` command and retain their values after a power reset.

On the other hand, the volatile settings (called "RuntimeSettings") can be accessed by explicit commands and used to quickly (but temporarily) modify specific parameters without using flash cycles. These settings are only valid until a reset is performed and shall be used when frequent updates of settings are necessary.

Please note that each `CMD_SET_REQ` will consume one flash cycle, which are limited due to the hardware.

After modifying a UserSettings via `CMD_SET_REQ` a restart of the module must be performed so that the new parameter values are initialized correctly.

Not performing a restart after changing any UserSetting may cause malfunctions of the module.

5.2 Configuring the radio

The Mimas-I can be configured to use one of the following EN13757-4 wM-BUS modes. Please note that the chip rate of some modes is not equal to the data rate (bit rate) because of the coding.

Manchester will introduce a factor 1/2, resulting in: chip rate / 2 = data rate. 3 out of 6 coding will introduce a factor 2/3, resulting in: chip rate * (2 / 3) = data rate. In case of NRZ coding the factor is 1, resulting in chip rate = data rate.

In all N modes both roles, meter and other (uplink and downlink), are symmetric. Therefore no special attention regarding role specific behavior is required.

wM-BUS Mode	Direction	Frequency [MHz]	Chiprate [kcps]	Coding
N1a	TX only	169.406250	4.8	NRZ
N2a	RX + TX	169.406250	4.8	NRZ
N1b	TX only	169.418750	4.8	NRZ
N2b	RX + TX	169.418750	4.8	NRZ
N1c	TX only	169.431250	2.4	NRZ
N2c	RX + TX	169.431250	2.4	NRZ
N1d	TX only	169.443750	2.4	NRZ
N2d	RX + TX	169.443750	2.4	NRZ
N1e	TX only	169.456250	4.8	NRZ
N2e	RX + TX	169.456250	4.8	NRZ
N1f	TX only	169.468750	4.8	NRZ
N2f	RX + TX	169.468750	4.8	NRZ

Table 8: wM-BUS mode radio settings for 169 MHz

5.2.1 Transmission of frames

The following parameter(s) needs to be checked or adopted in case of sending frames to a meter or as a meter. This can be done by means of a `CMD_SET_REQ` or the configuration software ACC:

- Mode_Preset: This parameter defines the mode to be used. It is sufficient to be able to communicate to any meter or SMGW. For corresponding wM-BUS mode selection see table 24.
- Perform a reset of the module using the `/RESET` pin or by sending the command `CMD_RESET_REQ` to apply changes to UserSetting parameter(s).
- After updating these parameters, frames can be transmitted using the a `CMD_DATA_REQ` or the transparent mode. The minimum allowed packet length is a L field of 0x09 which represents a minimum frame containing only Block1.

5.2.2 Reception of frames

The following parameter(s) need to be checked or adopted in case of receiving frames from a meter or as a meter. For corresponding wM-BUS mode selection see table 24.

Receiving is only possible in the modes containing a "2" in their name e.g. S2, T2_other, C2_other, C2_T2_other, F2, N2a, N2f

This can be done by means of a `CMD_SET_REQ` or the configuration software ACC:

- First, you need to look up the role (meter or other) and wM-BUS mode of the device you want to receive data from. Then take the corresponding wM-BUS mode value and role from table 24 and proceed by writing it into the Mode_Preselect parameter by using a CMD_SET_REQ.
- Perform a reset of the module using the /RESET pin or by sending the command CMD_RESET_REQ to apply changes to UserSetting parameter(s).

Please have in mind that meters are using a periodic interval to send frames, so you need to wait at least this period in order to receive a meter that is in range.

In heavy duty environments with multiple meters, it is possible that packet collisions may happen. In this case you have to spend multiple periods to receive the expected meter.

The module will perform some checks on wM-BUS compliance (EN13757-3:2013 & -4:2013) and will discard non compliant frames without notification to the host.

5.3 Recommended settings for data collectors 169 MHz

Besides the setting of the UserSetting Mode_Preselect, we highly recommend to perform the following steps if you desire to set up a data collector or receiver device. This settings assume unidirectional communication only (in this case: receiver function only).

For bidirectional communication a custom firmware is required.

- Perform a CMD_FACTORYRESET_REQ: 0xFF1100EE
- Perform a CMD_RESET_REQ: 0xFF0500FA
- Your host UART needs to use 9600 Baud 8n1 UART
- Set the UART_CMD_Out_Enable = 1, using CMD_SET_REQ: 0xFF0903050101F0
- Set the RSSI_Enable = 1, using CMD_SET_REQ: 0xFF0903450101B0
- Set the UART baud rate to 115200 baud, using CMD_SETUARTSPEED_REQ: 0xFF100107E9
- Set Mode_Preselect to the default receive mode you want to achieve.
For NSa mode no change is required,
all other modes must be configured by CMD_SET_REQ
- Perform a CMD_RESET_REQ: 0xFF0500FA
- Now your host UART needs to use the configured UART baudrate (115200 baud)
- The host shall not send CMD_DATA_REQ or transparent data to the module

A reset e.g. by means of a `CMD_RESET_REQ` (0xFF0500FA) is required to get the modified non-volatile UserSettings applied.
After the reset the UART baud rate of the host must be set accordingly (in this example to 115200 Baud).

5.4 Recommended settings for meter emulation 169 MHz

Besides the setting of the UserSetting `Mode_Preset`, we highly recommend to perform the following steps if you desire to set up a meter or emulate a meter. This settings assumes unidirectional communication only (in this case: transmitter function only).

For bidirectional communication a custom firmware is required.

If the meter requires battery powered operation, refer to chapter 11 and use the special UART settings listed there.

- Perform a `CMD_FACTORYRESET_REQ`: 0xFF1100EE
- Perform a `CMD_RESET_REQ`: 0xFF0500FA
- Your host UART needs to use 9600 Baud 8n1 UART
- Set `Mode_Preset` to the default receive mode you want to achieve.
For N1a mode use `CMD_SET_REQ`: 0xFF0903460101B3,
for any other mode N1b .. N1f use the according `CMD_SET_REQ` command
- Set the UART baud rate to 115200 baud, using `CMD_SETUARTSPEED_REQ`: 0xFF100107E9
- Perform a `CMD_RESET_REQ`: 0xFF0500FA
- Now your host UART needs to use the configured UART baudrate (e.g. 115200 baud)
- Use `CMD_DATA_REQ` and provide a wM-BUS compliant frame to the module in case your host wants to send data

6 Host connection

6.1 Serial interface: UART

The configuration in factory state of the UART is 9600 baud with data format of 8 data bits, no parity and 1 stop bit ("8n1"). The baud rate of the UART can be configured by means of the command `CMD_SETUARTSPEED_REQ`.

The output of characters on the serial interface runs with low priority. For this reason, short interruptions may occur between the outputs of individual successive bytes of the same frame. The host must not implement too strict timeouts between two Bytes to be able to receive packets that have delays in between bytes.

The UART interface is low priority in comparison to the radio interface. Thus due to shared buffers the incoming radio frames will discard any UART command that is not yet completely received when a radio frame start is detected.

For the direction "host to module" the host must respect the line `/RTS`, which will indicate that the next byte of the packet can be received by the module. If the line shows busy state during a UART frame the byte cannot be received and the complete UART rx buffer is discarded.

The module will automatically fill in the wireless M-BUS checksums, accordingly to the selected wM-BUS mode and frame format. A received frame will be checked for correct checksum and only be forwarded to the host if the checksums of the entire packet are correct. The checksums will be removed from the UART frame before it is send to the host.

6.2 Transparent Mode

It is not recommended to use the transparent mode for transmission in productive systems. The command mode should be used instead.

The transparent mode can be used to send radio frames according to the current runtime settings of the module (i.e. wireless M-BUS Mode). Per default all received frames are also put out as transparent frames.

These wM-BUS frames will start, as described in EN13757-4, with the L field giving the number of bytes to follow in the UART frame.

The transparent output will remove the wM-BUS link layer CRC from the radio packet and in case of a frame format B frame will correct its L field accordingly.

The disadvantage of this mode is that a distinct trigger byte for a new frame is not possible as it can be any valid L field (0x0A till APP_MAXPacketLength). So we recommend using the Command Mode for any operation towards the radio module and use 0xFF plus a timeout of at least one byte duration since the last received byte as a trigger for indications and confirms.

The module will not accept a pause in the order of a byte duration in between two bytes of a single frame, in this case all previous bytes will be discarded.

The user must make sure that the frame content is wireless M-BUS compliant. See EN13757-3 and -4 for details and frame requirements. The module does not perform checks on the whole frame content for compliance.

One requirement is that any frame must start with "Block1" (in total 10 bytes) which consist of L field, C field and ALA address resulting in a minimum L field value of 0x09. As the 0xFF is reserved as commands start frame indicator the maximum L field supported is the lower value of 0xFE and APP_MAXPacketLength minus an overhead depending on the configured parameters of the UserSettings.

L field	Payload
[0x09.. APP_MAXPacketLength]	Payload value
1 byte	L field value bytes

Table 9: Transparent mode frame structure

When RSSI output is enabled (RSSI_Enable = 0x01) a 1 byte overhead is added and the structure changes to:

L field	Payload	RSSI
[0x09.. (APP_MAXPacketLength - 1)]	Payload value	RSSI value
1 byte	(L field value - 1) bytes	1 byte

7 The command interface

7.1 Overview

In this operating mode, the communication with the module is achieved by predefined command requests, responses and indications. These commands can be used to configure and operate the module as well as to execute special functions, trigger the transmission of frames and indicate received frames.

In this case, contrary to the transparent mode (where each telegram starts with a length byte), the telegram starts with the start frame identifier 0xFF as the first byte. This SFD is followed by the command identifier CMD, the length and the payload. The last byte transmitted in a command frame is the checksum byte. It is calculated using a XOR of all preceding bytes of this command including the SFD byte 0xFF.

Each command of type "REQ" (request) is followed by a confirmation of the module of type "CNF" (confirmation). In doing so, the respective command byte is complimented by bit 7 (mask 0x80) and returned by the module together with the respective data or status information.

Example:

The request "0x0D" produces a confirmation "0x8D" and a request "0x11" produces a confirmation "0x91".

While you did not receive a confirmation, hit a timeout of 1000 ms or got a "module busy" indicated by the */RTS* pin you shall not send any further command or transparent message towards the module and expect that all received bytes were discarded. In this case you need to resend the entire command to the module.

The module also may send indication messages at any time, also in between a received command request and its confirmation message.

SFD	CMD	Lenth	Payload	CS
0xFF	CMD value	n	Payload value(s)	CS value
1 byte	1 byte	1 byte	n bytes	1 byte

Table 10: Command interface generic frame structure

7.2 Message overview

The following table lists the most commonly used commands followed by a second table completing the list with the less often used commands.

Command	Value [hex]	Description
CMD_DATA_REQ	0x00	Transmission of wM-BUS data
CMD_DATA_IND	0x03	Output of received Data
CMD_SET_MODE_REQ	0x04	Set the wM-Bus mode of operation in the volatile settings (RuntimeSettings). Shall be used when the wM-BUS mode must be changed frequently.
CMD_RESET_REQ	0x05	Reset of the module
CMD_SET_REQ	0x09	Write parameters (UserSettings) to the non-volatile memory
CMD_SETUARTSPEED_REQ	0x10	Set the UART baud rate to a dedicated speed
CMD_GET_REQ	0x0A	Read parameters (UserSettings) from the non-volatile memory
CMD_SERIALNO_REQ	0x0B	Request serial number from module
CMD_FWV_REQ	0x0C	Request firmware version from module

Table 11: Frequently used commands

Command	Value [hex]	Description
CMD_DATARETRY_REQ	0x02	Obsolete command. Do not use
CMD_SET_CHANNEL_REQ	0x06	Obsolete command. Do not use
CMD_RSSI_REQ	0x0D	Read current RSSI value from the radio
CMD_DATA_PRELOAD_REQ	0x30	Obsolete command. Do not use
CMD_DATA_CLR_PRELOAD_REQ	0x31	Obsolete command. Do not use
CMD_SET_AES_KEY_REQ	0x50	Register AES key and primary address
CMD_CLR_AES_KEY_REQ	0x51	Unregister AES key and primary address
CMD_GET_AES_DEV_REQ	0x52	Read back registered AES keys and primary addresses
CMD_RESERVED	all other	reserved, do not use

Table 12: Further commands

7.3 Commands for sending and receiving wM-BUS radio data

7.3.1 CMD_DATA_REQ: Send data via wireless M-BUS radio

This radio transmission command serves to perform a data transfer similar to the transparent mode. The wireless M-BUS mode currently set up in the RuntimeSettings of the module will be used as mode for transmission. Only the start byte, the command and the checksum must be added around the payload which is in this case the wM-BUS frame starting with its L field.

The L field value needs to be in the range of 0x09 up to APP_MAXPacketLength.

In any RX only mode the user shall not call CMD_DATA_REQ or use transparent data transmission.

Request:

SFD	CMD	wM-BUS Frame	CS
0xFF	0x00	(L field + 1) byte	CS value

Response (CMD_DATA_CNF):

SFD	CMD	Length	Status	CS
0xFF	0x80	0x01	1 byte	1 byte

Status:

0x00: Frame was sent successfully

Any other value: Command failed, e.g. transmission error or invalid wireless M-BUS frame

7.3.2 CMD_DATA_IND: Reception of wireless M-BUS frames

The output in a command is enabled by changing the UserSettings parameter UART_CMD_OUT_ENABLE to 0x01.

This telegram indicates the reception of data bytes and represents the counterpart to the command CMD_DATA_REQ.

The output is similar as in transparent mode, only the start byte, the command and the checksum are added by the module. In addition the output of the RSSI value can be activated (see RSSI_Enable). In this case the L field is increased by one byte by the module.

The command will remove the wM-BUS link layer CRC from the radio packet and in case of a Frameformat B frame will correct it's L field accordingly.

Indication, with RSSI appending disabled (default):

SFD	CMD	Length	Payload	CS
0xFF	0x03	L field value	Payload value	CS value
1 byte	1 byte	1 byte	L field value bytes	1 byte

Where the L field value minus plus the payload values are the wM-BUS frame.

Indication, with RSSI appending enabled:

SFD	CMD	Length	Payload	RSSI	CS
0xFF	0x03	L field value + 1	Payload value	RSSI value	CS value
1 byte	1 byte	1 byte	L field value bytes	1 byte	1 byte

Where the L field value (i.e. Length - 1) with the payload values bytes are the actual wM-BUS frame.

7.4 Commands for module configuration

The configuration commands differ in their type of access. Some commands access RuntimeSettings which are volatile parameters, some access UserSettings which are non-volatile parameters and some commands access read-only parameters or simply perform certain actions.

7.4.1 CMD_SET_MODE_REQ: temporarily set a wM-BUS Mode

This command changes the wM-Bus mode in the volatile memory of the module, and temporarily overrides the parameter in the RuntimeSettings. After reboot this parameter is initialized by using the value of the non-volatile UserSettings parameter of Mode_Preset.

This command is suitable when the wM-BUS mode is changed frequently.

Table 19 lists the supported wM-BUS modes.

Request:

SFD	CMD	Length	Mode	CS
0xFF	0x04	0x01	1 byte	1 byte

Response (CMD_SET_MODE_CNF):

SFD	CMD	Length	Status	CS
0xFF	0x84	0x01	1 byte	1 byte

Status:

0x00: Mode was set successfully

Any other value: Command failed

In any TX only modes the module will go into sleep until the user provides a frame to be send via CMD_DATA_REQ or via transparent transmission. Please refer to chapter 11 for details towards current optimization.

The host shall not select any wireless M-BUS Mode values not listed in the following table. Selecting those unsupported values may set the module into a non operable state and may even prevent module access through the UART interface.

The following table lists all supported wireless M-BUS modes available for the use with CMD_SET_MODE_REQ command.

wM-BUS Mode	Mode value	Direction(s)	Role
N1a	0x01	TX only	meter or gateway
N2a	0x02	TX and RX	meter or gateway
N1b	0x03	TX only	meter or gateway
N2b	0x04	RX and TX	meter or gateway
N1c	0x05	TX only	meter or gateway
N2c	0x06	RX and TX	meter or gateway
N1d	0x07	TX only	meter or gateway
N2d	0x08	RX and TX	meter or gateway
N1e	0x09	TX only	meter or gateway
N2e	0x0A	RX and TX	meter or gateway
N1f	0x0B	TX only	meter or gateway
N2f	0x0C	RX and TX	meter or gateway

Table 13: wM-BUS Modes for CMD_SET_MODE_REQ command at 169 MHz

7.4.2 CMD_RESET_REQ: Reset the module

This command triggers a software reset of the module. The reset is performed after the confirmation message has been issued. When restarting the module all volatile Runtime-Settings are reset to default and any temporary changes are discarded.

Request:

SFD	CMD	Length	CS
0xFF	0x05	0x00	0xFA

Response (CMD_RESET_CNF):

SFD	CMD	Length	Status	CS
0xFF	0x85	0x01	1 byte	1 byte

Status:

0x00: Module will be reset

Any other value: Command failed

7.4.3 CMD_SET_REQ: Change non-volatile module settings

This command enables the direct manipulation of the parameters in the non-volatile memory of the module. The respective parameters (UserSettings, see table 16) are accessed via the memory position. Individual or multiple consecutive parameters in the memory can be modified concurrently.

Please check the supported range before modifying a parameter. The validity of the values themselves is not verified. Incorrect values can result in serious device malfunction!

To make sure the updated parameter(s) are adopted, a reset shall be applied after using one or multiple CMD_SET_REQ operations.

To save the parameters in the flash memory of the module, the particular memory segment is erased entirely and then restored from the RAM.

If a reset or supply current drop occurs during this procedure, the entire memory area may be destroyed. In this case, the module may no longer be operable.

Recommendation: First read the current configuration of the module with CMD_GET_REQ; and only modify and write if necessary. For frequently changes (e.g. of wM-BUS mode) use the command modifying the volatile parameter.

Request:

SFD	CMD	Length	Memory position	Param. length	Parameter(s)	CS
0xFF	0x09	(Parameter length + 2) bytes	1 byte	1 byte	(Param. length) bytes	1 byte

Response (CMD_SET_CNF):

SFD	CMD	Length	Status	CS
0xFF	0x89	0x01	1 byte	1 byte

Status:

0x00: Parameter(s) set successfully

0x02: Command invalid, e.g. invalid memory position, invalid parameter length

Any other value: Command failed

Any sequence of CMD_SET_REQ commands must be followed by a CMD_RESET_REQ to apply the changed values.

7.4.4 CMD_GET_REQ: Read out the non-volatile UserSettings

This command can be used to query individual or multiple non-volatile user parameters (UserSettings, see table 16). The requested number of bytes starting at the the specified memory position are returned.

Individual or multiple consecutive parameters in the memory can be queried concurrently. The sum of the values of memory position and parameter length must be chosen to be smaller than 128.

Request:

SFD	CMD	Length	Memory position	Param. length	CS
0xFF	0x0A	0x02	1 byte	1 byte	1 byte

Response (CMD_GET_CNF):

SFD	CMD	Length	Memory position	Parameter length	Parameter(s)	CS
0xFF	0x8A	(Parameter length + 2) bytes	1 byte	1 byte	(Parameter length) bytes	1 byte

7.4.5 CMD_SERIALNO_REQ: Read out the module serial number

This command requests the serial number of the module.

Request:

SFD	CMD	Length	CS
0xFF	0x0B	0x00	0xF4

Response (CMD_SERIALNO_CNF):

SFD	CMD	Length	PID & Serial number	CS
0xFF	0x8B	0x03	4 bytes	1 byte

The most significant byte is returned first (MSB first). This byte identifies the product ("PID") and is followed by a 3 bytes serial number.

7.4.6 CMD_FWV_REQ: Read out the firmware version

This command serves to requests the firmware version. Herewith the major, minor and patch fields of the firmware version are returned.

Request:

SFD	CMD	Length	CS
0xFF	0x0C	0x00	0xF3

Response (CMD_FWV_CNF):

SFD	CMD	Length	Parameter(s)	CS
0xFF	0x8C	0x03	0x02 0x00 0x06	0x74

Where the Parameter 0x020006 is to be translated as firmware version 2.0.6.

7.4.7 CMD_RSSI_REQ: Read out the module rx level

This command returns the RX level as determined by the transceiver IC. Whenever a radio mode with reception is enabled this is a live value (i.e. noise floor level). If you want to have the receive strength of the last received packet you need to enable the RSSI output option in the UserSettings.

Request:

SFD	CMD	Length	CS
0xFF	0x0D	0x00	0xF2

Response (CMD_RSSI_CNF):

SFD	CMD	Length	RX level	CS
0xFF	0x8D	0x01	1 byte	1 byte

The command CMD_RSSI_REQ returns the current live RSSI value of the RF chip. The obtained value "RX level" can be used to calculate $RSSI_{dBm}$ as follows:

- Convert the hexadecimal value "RX level" as type unsigned character to a decimal $RSSI_{dec}$ value.
- if ($RSSI_{dec} \geq 128$) : $RSSI_{dBm} = (RSSI_{dec} - 256)/2 - 74$
- else ($RSSI_{dec} < 128$) : $RSSI_{dBm} = RSSI_{dec}/2 - 74$

The relation between the calculated value and the physical RX level in dBm is not linear across the entire operating range but can be assumed linear in a range from -107 dBm till -30 dBm.

Due to saturation effects the radio IC in Mimas-I module, corresponding USB stick and EV board only displays RSSI values from -110 dBm up to -65 dBm. Stronger signals will appear as -65 dBm.

7.4.8 CMD_SETUARTSPEED_REQ: Change the UART baudrate of the module

This command changes the non-volatile parameters of the serial user interface (UART_CTL0, UART_CTL1, UART_BR0, UART_BR1, UART_MCTL) to preset values for fixed transfer rates within one command.

The index of the transfer rate is listed in table 14. Internally this command is handled like a CMD_SET_REQ using a hard coded table for abstraction of the UART baud rate to CPU register values.

The change of the baud rate takes effect after a restart of the module. The host must also be toggled to the new UART baud rate.

Index	UART baud rate
0x00	1200
0x01	2400
0x02	4800
0x03	9600
0x04	19200
0x05	38400
0x06	56000
0x07	115200
0x08 ¹	9600, ACLK

Table 14: Preconfigured baud rates of the UART interface

Request:

¹Only available for Mimas-I with firmware 2.8.0 and newer. Be aware that the jitter of UART baud rate in this mode is up to $\pm 47\%$ and may cause problems with hosts not supporting this variation.

SFD	CMD	Length	Index	CS
0xFF	0x10	0x01	1 byte	1 byte

Response (CMD_SETUARTSPEED_CNF):

SFD	CMD	Length	Status	CS
0xFF	0x90	0x01	1 byte	1 byte

Status:

0x00: UART baud rate set successfully

0x02: Command invalid, e.g. invalid baudrate

Any other value: Command failed

7.4.9 CMD_FACTORYRESET_REQ: Restore factory defaults

This command resets all parameters to their factory settings. This command must be followed by a reset to apply the changes.

Request:

SFD	CMD	Length	CS
0xFF	0x11	0x01	0xEF

Response (CMD_FACTORYRESET_CNF):

SFD	CMD	Length	Status	CS
0xFF	0x91	0x01	1 byte	1 byte

Status:

0x00: Factory reset successfully

Any other value: Command failed

The UART baud rate will be reset to 9600 Baud. So the host must also switch back to this baud rate.

Registered AES keys with their relating addresses are retained.

7.5 EN13757 compliant encryption

It is not recommended to use module internal encryption functionality in a system which has a host µC available. Using integrated AES128 encryption will block the radio and UART receive path of the Mimas-I module thus meaning that frames cannot be received while any AES128 operation is processed.

The following functions will allow decrypting received frames. As part of the wireless M-BUS standard some encryption modes (also called Security profiles) are introduced. The module implements means to support encryption modes 0 and 5 using AES128 (AES128 CBC) encryption. Inside the module each 16 byte key must be assigned to a wireless M-BUS address of size 8 byte.

As a wireless M-BUS frame can contain more than one address the priority of addresses when available is as follows: ALA (application layer address) then LLA (link layer address). From hereon we will call this applicable address for encryption "primary address".

The AES128 decryption is supported by the module in cases when the wM-BUS compliant frame only contains one single Ci field after Block1 introducing a short or long header (e.g. 0x5A or 0x7A as Ci field value). Frames containing more than one Ci field are not supported for en- or decryption. The encryption modes 7 and 13 as well as any encryption requiring more than one Ci field per wM-BUS frame are not supported in this Mimas-I firmware. This is especially valid for not released encryption modes or encryption modes that will be introduced once the release of EN13757-7 took place.

The module has reserved storage area for up to 64 keys with their corresponding addresses.

For the management of the AES keys the command interface offers the following commands `CMD_SET_AES_KEY_REQ`, `CMD_CLR_AES_KEY_REQ` and `CMD_GET_AES_DEV_REQ`.

The following steps must be performed to decrypt a received frame, this scheme assumes that you are already receiving the encrypted frames of the meter you want to decrypt (i.e. the wireless M-BUS receive mode is already selected correctly). It is also assumed that you have the symmetric AES key of your meter as 16 byte hex and are able to perform a EN13757 compliant parsing of the raw meter data. Further the frame is assumed to have the recommended AES encryption verification bytes as the very first bytes of the first encrypted block. This bytes shall be 0x2F2F.

- perceive the "primary address" of the meter you want to receive.
- bring the meter's "primary address" into a format of an LLA (i.e. 2 bytes M field followed by 6 bytes A field, see table 15).
- locate the wM-BUS "configuration field" in a received (encrypted) frame of your meter.
- in this "configuration field": make sure that it is indicating encryption mode 5 and at least 1 block of encrypted data (i.e. sub-field "number of encrypted blocks" > 0).

- if required convert the meter's AES key into 16 bytes of hex coded values and order it as LSB first.
- register the key and primary address to the module using the CMD_SET_AES_KEY_REQ command.
- enable the global AES encryption support by setting APP_AES_Enable to 0x01.
- reboot the module by CMD_RESET_REQ or by using the /RESET pin.
- upon a received frame of your meter:
 - if it shows "number of encrypted blocks" = 0 you have a decrypted frame which you now need to parse according to EN13757 to gain readable data.
 - the first decrypted data shall be 0x2f2F (two times idle filler) the so called AES encryption verification. This allows you to detect if the decryption was successful.
 - if it shows "number of encrypted blocks" > 0 you have either entered a wrong key, meter address or the wM-BUS frame does not match the requirements (described above) to be decrypted by the module.

7.5.1 CMD_SET_AES_KEY_REQ: Register a pair of key and address in the module

With this command an AES key (in hex notation) and a device address (in hex notation) can be stored in the non-volatile memory. The AES key is then used for encryption and decryption. The address fields of a device are to be transmitted exactly as shown below (i.e. in the LLA format). The AES key shall be transmitted LSB first.

Request:

SFD	CMD	Length	Primary address	Key	CS
0xFF	0x50	0x18	Address value	AES Key value	CS value
1 byte	1 byte	1 byte	8 byte	16 byte	1 byte

Response (CMD_SET_AES_KEY_CNF):

SFD	CMD	Length	Status	CS
0xFF	0xD0	0x01	1 byte	1 byte

Status:

0x00: Key and address set successfully

0x02: All 64 storage locations are already in use

Any other value: Command failed

The fields of the primary address in LLA format are composed as follows.

Primary address							
M field LSB	M field MSB	ID LSB	ID (LSB+1)	ID (LSB+2)	ID (MSB)	Version	Device type
1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte

Table 15: Content and order of primary address

7.5.2 CMD_CLR_AES_KEY_REQ: Clear AES key from list

This command can be used to delete a specific AES key and address pair from the list.

Using this command will consume one flash cycle. Therefore unnecessary use of this command shall be avoided.

Request:

SFD	CMD	Length	Primary address	CS
0xFF	0x51	0x09	9 byte	1 byte

Please refer to table 15 for primary address order and content.

Response (CMD_CLR_AES_KEY_CNF):

SFD	CMD	Length	Status	CS
0xFF	0xD1	0x01	1 byte	1 byte

Status:

0x00: Key and address deleted successfully

0x02: Address or key not found

Any other value: Command failed

7.5.3 CMD_GET_AES_DEV_REQ: Read Back registered addresses

With this command the addresses of registered devices can be requested. The addresses are saved in 4 banks (0x00 - 0x03). Only one bank (containing up to 16 registered addresses) at a time can be requested to be read with this command. For security reasons the AES keys cannot be read back. Unused or uninitialized addresses can have either all 8 bytes 0x00 or all 8 bytes 0xFF.

Request:

SFD	CMD	Length	Bank index	CS
0xFF	0x52	0x01	1 byte	1 byte

Response (CMD_GET_AES_KEY_CNF):

SFD	CMD	Length	16 × Primary address	CS
0xFF	0xD2	0x80	Primary address values	1 byte

8 UserSettings - Module configuration values

The application's non-volatile parameters are listed in the following tables. They can be written by means of a CMD_SET_REQ and read back by a CMD_GET_REQ by any suitable terminal program or any host µC.

The Windows software "ACC" offers a GUI to conveniently modify these settings.

Only the parameters described in tables 16 and 17 shall be adopted if required. Not described or obsolete parameters shall not be changed by the user.

These parameters are permanently (non-volatile) stored in the flash memory of the module. To apply these parameters after modification, a module restart is required. To avoid frequent writes a user shall first perform a CMD_GET_REQ and check if the value needs to be changed before sending a CMD_SET_REQ.

If not notified otherwise any multi byte field with size > 1 shall be transmitted LSB first to the module

The WOR function for a cyclic "wakeup - listen - sleep" applications shall not be used anymore as it will be removed in future firmware releases. For a standalone functionality feel free to request a custom firmware through our sales channels.

Parameter	Description	Address offset (dec)	Size (bytes)	Value range (dec)	Default value (dec)
UART_CMD_OUT_ENABLE	Enable CMD_DATA_IND output format	5	1	0, 1	0
RF_Power	Radio output power index	61	1	0 - 6	6
RSSI_Enable	Enable RSSI output	69	1	0, 1	0
Mode_Preselect	Default wM-BUS mode	70	1	1 - 15	2

Table 16: Table of UserSettings

In any normal application the following settings shall not be used or changed.

For changing the UART baudrate the dedicated command CMD_SETUARTSPEED_REQ or the ACC PC tool shall be used.

Parameter	Description	Address offset (dec)	Size (bytes)	Value range (dec)	Default value (dec)
UART_CTL0	UART register	0	1	use ACC	use ACC
UART_CTL1	UART register	1	1	use ACC	use ACC
UART_BR0	UART register	2	1	use ACC	use ACC
UART_BR1	UART register	3	1	use ACC	use ACC
UART_MCTL	UART register	4	1	use ACC	use ACC
APP_MAXPacketLength	Maximum UART packet length	10	1	10 - 254	250
APP_AES_Enable	Enable encryption	11	1	0, 1	0
RF_AutoSleep	Sleep mode	63	1	0, 2	0
CFG_Flags	Configuration flags	73	2	0 - 65535	0

Table 17: Further UserSettings

8.1 UART parameters

The following sections describe the host communication interface specific settings of the wM-BUS module.

8.1.1 UART speed parameters

For changing the UART speed settings please only use either the dedicated `CMD_SET_REQ` shown here, the special command `CMD_SETUARTSPEED_REQ` or the ACC PC tool.

For enabling the full low power optimization of the wM-BUS radio modules a special host interface speed and setting must be configured. The UART needs to run at 9600 Baud 8n1 using ACLK. This can be achieved using the following command `CMD_SET_REQ` or if available for Mimas-I the `CMD_SETUARTSPEED_REQ` with parameter 0x08 (see chapter 14).

`CMD_SET_REQ` with memory index 0x00, parameter length 0x05 and parameter value 0x0040030006:

SFD	CMD	Length	Memory index	Param. length	Parameter(s)	CS
0xFF	0x09	0x07	0x00	0x05	0x0040030006	0xB1

`CMD_SETUARTSPEED_REQ` with parameter 0x08 (see chapter 14):

SFD	CMD	Length	Parameter(s)	CS
0xFF	0x10	0x01	0x08	0xE6

A CMD_RESET_REQ or pin reset is required to apply the changed settings. Your host must be also configured to 9600 baud and allow up to 47% deviation in RX and TX directions.

8.1.2 UART_CMD_OUT_ENABLE

If this parameter is set to 0x01, all received radio frames will be transmitted by the UART as CMD_DATA_IND. The default value for this parameter is 0x00.

A CMD_RESET_REQ or pin reset is required to apply the changed settings.

Request, enable command output for received radio frames:

SFD	CMD	Length	Memory index	Param. length	Parameter(s)	CS
0xFF	0x09	0x03	0x05	0x01	0x01	0xF0

Request, disable command output for received radio frames:

SFD	CMD	Length	Memory index	Param. length	Parameter(s)	CS
0xFF	0x09	0x03	0x05	0x01	0x00	0xF1

Response, with status "success":

SFD	CMD	Length	Status	CS
0xFF	0x89	0x01	0x00	1 byte

8.2 Application and Radio Parameters

8.2.1 APP_MAXPacketLength

The maximum radio packet length can be set by means of this parameter. It limits the number of bytes usable for transparent communication and CMD_DATA_REQ as well as CMD_DATA_IND. The default value for this parameter equals 250 (0xFA).

Frames exceeding this value are discarded without notification.

A CMD_RESET_REQ or pin reset is required to apply the changed settings.

Request, set max. L field to size 250:

SFD	CMD	Length	Memory index	Param. length	Parameter(s)	CS
0xFF	0x09	0x03	0x0A	0x01	0xFA	0x04

Response, with status "success":

SFD	CMD	Length	Status	CS
0xFF	0x89	0x01	0x00	1 byte

8.2.2 APP_AES_Enable

This parameter enables or disables the integrated encryption function of the module. Additional to this parameter, a suitable 16 byte AES key with its primary address has to be registered in the module to run the frame decryption. Please also refer to chapter 7.5 for further commands needed for encryption.

A CMD_RESET_REQ or pin reset is required to apply the changed settings.

Request, AES enabled:

SFD	CMD	Length	Memory index	Param. length	Parameter(s)	CS
0xFF	0x09	0x03	0x0B	0x01	0x01	0xFE

Request, AES disabled:

SFD	CMD	Length	Memory index	Param. length	Parameter(s)	CS
0xFF	0x09	0x03	0x0B	0x01	0x00	0xFF

Response, with status "success":

SFD	CMD	Length	Status	CS
0xFF	0x89	0x01	0x00	1 byte

To avoid additional latency this option shall stay disabled. Decryption of longer frames may take several milliseconds. During this time radio reception cannot be active due to hardware restrictions.

8.2.3 RF_Power

Sets the level of the transmission power in the radio IC.

The user shall adopt this value for his or her design in such a way that the statutory regulations (e.g. in Europe the RED) is adhered to. The provided default values were verified on Mimas-I -EV 50 Ω conducted. In customer hardware the behavior of the module will be different and therefore it is mandatory to adopt this setting.

Value	radio IC Power in dBm
1	-5
2	0
3	+5
4	+7
5	+10
6	+14

Table 18: Parameter RF_Power of wM-BUS modules with up to 25mW output power

A CMD_RESET_REQ or pin reset is required to apply the changed settings.

Request minimum RF_Power:

SFD	CMD	Length	Memory index	Param. length	Parameter(s)	CS
0xFF	0x09	0x03	0x3D	0x01	0x01	0xC8

Request maximum RF_Power:

SFD	CMD	Length	Memory index	Param. length	Parameter(s)	CS
0xFF	0x09	0x03	0x3D	0x01	0x06	0xCF

Response, with status "success":

SFD	CMD	Length	Status	CS
0xFF	0x89	0x01	0x00	1 byte

8.2.4 RSSI_Enable

This parameter determines whether the RSSI value will be appended to the payload data or not (last byte before CS in a CMD_DATA_IND or very last byte in transparent output). The L field on the UART output will be increased by +1 when RSSI output is enabled. If enabled the wM-BUS frame itself is limited to a size of APP_MAXPacketLength -1.

A CMD_RESET_REQ or pin reset is required to apply the changed settings.

Request, RSSI output enabled:

SFD	CMD	Length	Memory index	Param. length	Parameter(s)	CS
0xFF	0x09	0x03	0x45	0x01	0x01	0xB0

Request, RSSI output disabled:

SFD	CMD	Length	Memory index	Param. length	Parameter(s)	CS
0xFF	0x09	0x03	0x45	0x01	0x00	0xB1

Response, with status "success":

SFD	CMD	Length	Status	CS
0xFF	0x89	0x01	0x00	1 byte

8.2.5 Mode_Preselect

Default settings of the operating modes specified in wM-BUS Standard can be selected by means of this parameter. The value can be modified using the `CMD_SET_REQ` command.

The wM-BUS standard only allows frame format A for S, F and T mode in order to be compliant. The C and N modes support both frame format A and B reception and will automatically use the frame format of the last received frame for sending, which may be frame format A or B. The initial value is frame format A in case no frame was received yet.

Selecting wM-BUS modes not listed in the following table shall not be used in this command.

Selecting those invalid values may set the module into a non operable state and prevent module access through the UART interface.

wM-BUS mode	Mode value	Direction(s)	Role
N1a	0x01	TX only	meter or gateway
N2a	0x02	TX and RX	meter or gateway
N1b	0x03	TX only	meter or gateway
N2b	0x04	RX and TX	meter or gateway
N1c	0x05	TX only	meter or gateway
N2c	0x06	RX and TX	meter or gateway
N1d	0x07	TX only	meter or gateway
N2d	0x08	RX and TX	meter or gateway
N1e	0x09	TX only	meter or gateway
N2e	0x0A	RX and TX	meter or gateway
N1f	0x0B	TX only	meter or gateway
N2f	0x0C	RX and TX	meter or gateway

Table 19: wM-BUS modes for `Mode_Preselect` in the 169 MHz band

A CMD_RESET_REQ or pin reset is required to apply the changed settings.

Request, select N1b TX only mode:

SFD	CMD	Length	Memory index	Param. length	Parameter(s)	CS
0xFF	0x09	0x03	0x46	0x01	0x03	0xB1

Request, select N2e mode:

SFD	CMD	Length	Memory index	Param.) length	Parameter(s)	CS
0xFF	0x09	0x03	0x46	0x01	0x0A	0xB8

Response, with status "success":

SFD	CMD	Length	Status	CS
0xFF	0x89	0x01	0x00	1 byte

8.2.6 RF_AutoSleep

The parameter RF_AutoSleep supports 2 different settings.

The WOR (periodic wakeup) function is obsolete and shall not be used anymore. We can offer this function in a customer specific firmware that can be requested through our sales team.

Value		Description
0x00	RX	The auto sleep function can be disabled. The module is permanently in RX mode unless the selected Mode_Preselect has an RX mode. Data can be received at all times.
0x01	WOR	Obsolete. Do not use.
0x02	Sleep	Between the transmissions, the module is always in the sleep mode (no reception at all). In this mode, the module has the lowest power consumption, since the radio chip and μ C are in the low-power state. This lowest current consumption can only be achieved when the UART Baud rate is 9600 or below and the UART clock is set to use the watch crystal. Higher baud rates require faster reaction thus leading to less efficient sleep modes resulting in higher current consumption. Consider using the settings described in chapter 11. By communication on the UART the module can be contacted at all times for transmitting data or for configuration purposes.

Table 20: Values for RF_AutoSleep parameter

8.2.7 CFG_Flags

This 2 byte parameter provides the ability to run different module configurations. It serves to activate various pin functions.

All pin functions are disabled in the factory state, so that the normal pin configuration is compatible with previous modules. For a description of the flags, see table 21.

Bit index	Mask	Description
0	0x0001	If set, this bit activates the function of the pin /RTS. This pin indicates whether the internal buffer is currently busy (/RTS = high) or not. When busy all received bytes (radio or UART) will be discarded without further user notification.
1	0x0002	If set, this bit activates the function of the pin /CTS. This pin will be queried by the UART driver before another byte is send by the module. The host must use this pin accordingly (LOW = data will be send to host, HIGH = data will be delayed till /CTS is low again, radio and uart rx will be disabled until /CTS is low).
2	0x0004	Obsolete. If set, this bit activates the function of the pin /DATA IND. This pin will indicate whether data is ready for output via UART. It can be used, for example, to wake a host processor.
3 - 15	0xFFFF8	Reserved. All bits must be '0'

Table 21: Parameters for CFG_Flags

8.3 Obsolete configuration parameters

The following parameters are not recommended to be used anymore. If your application requires those parameters you are encouraged to adopt your application or request a custom firmware version for your application through our sales team.

Parameter	Description	Address offset (dec)
UART_DIDelay	Configurable output delay	6
APP_WOR_PeriodH	WOR period factor msb	28
APP_WOR_PeriodL	WOR period factor lsb	29
APP_WOR_MultiplerH	WOR multiplier factor msb	30
APP_WOR_MultiplierL	WOR multiplier factor lsb	31
APP_WOR_RX_Time	WOR listen active time in between sleep and wake-up	32
MBUS_RXTimeout	Time in ms that the module remains in the RX mode after transmitting data	43
MBUS_FrameFormat	RX frame Frameformat filter	44
Config_CRC_Disable	Accept any UART CS in commands	72

Table 22: Obsolete UserSettings

Some settings from the former manuals are not mentioned here anymore as they are no longer available or are handled automatically by the firmware.

9 Timing parameters

9.1 Reset behavior

Following a reset (by `CMD_RESET_REQ` or pin `/RESET`), a stable LOW level over a duration of at least 5ms on the `/RTS` pin signalizes that the module is ready for operation.

During restart the `/RTS` may be pulled to `GND` level for a short time until it is configured accordingly by the application on the module.

9.1.1 Reset via `/RESET` pin

To force a module restart by means of the `/RESET` pin, it must first be set to LOW for at least 1ms. After the pin is released, the module will reboot.

Recommended procedure: After the `/RESET` pin is released, wait for up to 1000ms for the stable LOW level on the `/RTS` pin.

This section applies only to a situation where the VCC is stable and the module was already running. Additional timings are needed when VCC was just applied to the module, see chapter 4.2

10 Radio parameters

10.1 Wireless M-BUS radio parameters

The EN 13757-4 defines wireless M-BUS modes which are implemented by the modules for being able to send and receive conforming frames. Modules that support N mode (169 MHz) cannot support S, T or C mode (868 MHz) and vice versa. But they are exchangeable as they share the same footprint, pin functions and command interface.

The wM-BUS mode is mapped to the UserSettings parameter `Mode_Preset`. It may be modified temporarily during runtime by using the command `CMD_SET_MODE_REQ` or be altered in a non-volatile way using the command `CMD_SET_REQ`.

Setting a corresponding `Mode_Preset` with RX support is sufficient to receive wM-BUS frames complying to EN13757. For sending data a mode with TX support needs to be selected. The host must then transfer a wM-BUS conforming frame inside a `CMD_DATA_REQ` or in transparent mode via UART to the module which will then send this frame with the selected wM-BUS mode.

The module performs some filtering of non EN13757-3:2013 compliant frames. Non compliant frames will be discarded without host notification.

wM-BUS Mode	Direction	Frequency [MHz]	Chiprate [kcps]	Coding
N1a	TX only	169.406250	4.8	NRZ
N2a	RX and TX	169.406250	4.8	NRZ
N1b	TX only	169.418750	4.8	NRZ
N2b	RX and TX	169.418750	4.8	NRZ
N1c	TX only	169.431250	2.4	NRZ
N2c	RX and TX	169.431250	2.4	NRZ
N1d	TX only	169.443750	2.4	NRZ
N2d	RX and TX	169.443750	2.4	NRZ
N1e	TX only	169.456250	4.8	NRZ
N2e	RX and TX	169.456250	4.8	NRZ
N1f	TX only	169.468750	4.8	NRZ
N2f	RX and TX	169.468750	4.8	NRZ

Table 23: wM-BUS mode radio settings for 169 MHz

Transmit mode	Suitable receive mode
N1a, N2a	N2a
N1b, N2b	N2b
N1c, N2c	N2c
N1d, N2d	N2d
N1e, N2e	N2e
N1f, N2f	N2f

Table 24: Compatible wM-BUS modes for 169 MHz

The data rate can be calculated by combining chip rate and coding.

In Manchester coding the factor is $\frac{1}{2}$ meaning the data rate for uplink and downlink is $\frac{32.768}{2} = 16.384$ kbps

The 3 out of 6 coding will introduce a factor of $\frac{2}{3}$ so the T mode uplink data rate is $100 \times \frac{2}{3} = 66.667$ kbps.

NRZ coding has a factor of 1 resulting in 100 kbps uplink and 50 kbps downlink data rate for C mode and in 4.8 kbps and 2.4 kbps for the different N sub-modes.

10.2 EU Regulation

The module is tested through an accredited test lab to conform to the requirements of the RED. The module complies to receiver category 2.

That means at 50Ω conducted on the corresponding evaluation board all requirements are met. Decisive for the end product is the effective radiated power. The power depends on the selected antenna, the wiring to the antenna, the quality of the power supply, possible disturbances etc., and should therefore be tested in the customer application.

An important aspect to comply with the radio regulatory is to adhere to the requirements of the duty cycle. The duty cycle is the ratio expressed as a percentage of the cumulative duration of transmission $T_{on,cum}$ within an observation time interval of T_{obs} . $DC = (T_{on,cum}/T_{obs})F_{obs}$ on an observation bandwidth F_{obs} . Unless otherwise specified, T_{obs} is 1 hour and the observation bandwidth F_{obs} is the operational frequency band.

There are no mechanisms for constraining the duty cycle in the firmware. The customer is fully responsible for the compliance of the duty cycle.

The wireless M-Bus modes of the Mimas-I fall into sub band D of the EN 300 220:

- Band D
169.4 MHz - 169.475 MHz
Output power ≤ 27 dBm
Duty cycle $\leq 10\%$ for metering devices

11 Battery powered operation

If the parameter RF_AutoSleep is set to sleep (0x02), the module will be in sleep mode, if no data transmission is requested by the host. During this time, the reception of frames via radio is disabled.

If the listening shall be controlled by the host, the module can be set to the RX mode by reconfiguring this parameter to full active mode (RF_AutoSleep = 0x00). As this will use a CMD_SET_REQ and therefore consume a flash cycle the host shall not perform this procedure too often.

If a message is received during this time, the module will forward this message to the host and subsequently go back to sleep again.

We highly recommend requesting a custom firmware for any battery operated system so optimizations can be implemented and tested accordingly to the system requirements and use cases.

UART baud rates of more than 9600 baud or not using the ACLK as UART clock source result in higher current consumption as the sleep mode cannot be activated in the µC.

Non terminated module pads will introduce leakage current. Make sure you adopt the module design according to the corresponding chapters for design in and pinout.

Depending on the hardware platform some specific further steps are required as explained in the following section.

11.1 Mimas-I (AMB3626-M)

Due to its implemented µC and the TCXO crystal the Mimas-I has specific requirements to be able to achieve an optimized sleep current:

- The firmware version must be at least 2.8.0
- The following UserSettings for UART (9600 Baud 8n1 with ACLK use) must be used
 - UART_CTL0 = 0x00
 - UART_CTL1 = 0x40
 - UART_BR0 = 0x03
 - UART_BR1 = 0x00
 - UART_MCTL = 0x06

Using a single CMD_SET_REQ for enabling UART settings can be achieved by sending the following command to the module.

SFD	CMD	Length	Memory index	length	parameter(s)	CS
0xFF	0x09	0x07	0x00	0x05	0x0040030006	0xB1

A CMD_RESET_REQ or pin reset is required to apply the changed settings.

Caution: Using this UART setting will introduce an error of up to 45% (e.g. see Texas Instruments MSP430 F5xxx family user guide chapter 36, table 36-4). This is hardware related and cannot be avoided when the UART shall stay active using this HW-platform during efficient sleep state.

- The RX_Timeout must be 0x00 (which is the default setting)
- When RF_AutoSleep = 0x00 the parameter Mode_Preset must be set to either of the following modes which are TX only modes (indicated by the "1" in the mode name).
 - N1a
 - N1b
 - N1c
 - N1d
 - N1e
 - N1f
- As an alternative the parameter RF_AutoSleep must be set to 0x02 when any Mode_Preset that also supports RX shall be used. Please have in mind that RF_AutoSleep = 0x02 will disable the radio RX function in this modes.
- RF_AutoSleep must not be set to 0x01 (WOR)

12 Custom firmware

12.1 Custom configuration of standard firmware

The configuration of standard firmware includes adoption of the non-volatile Usersettings (see chapter 8) to customer requirements and creating a customized product on base of the standard product with a unique ordering number for a specific customer that needs this configuration.

For example if the UART baud rate shall be changed from the default value to another value. This variant will result in a customer exclusive module with a unique ordering number. This will also fix the firmware version to a specific and customer tested version and thus results in a customer exclusive module with a unique ordering number.

Further scheduled firmware updates of the standard firmware will not be applied to this variant automatically. Applying updates or further functions require a customer request and customer release procedure.

12.2 Customer specific firmware

A customer specific firmware may include "Custom configuration of standard firmware" plus additional options or functions and tasks that are customer specific and not part of the standard firmware.

Further scheduled firmware updates of the standard firmware will not be applied to this variant automatically. Applying updates or further functions require a customer request and customer release procedure.

This also results in a customer exclusive module with a unique ordering number.

An example for this level of customization are functions like host-less operation where the module will perform data generation (e.g. by reading a SPI or I²C sensor) and cyclic transmission of this data to a data collector while sleeping or being passive most of the time.

Also replacing UART with SPI as host communication interface is classified such a custom specific option.

Certification critical changes need to be re-evaluated by an external qualified measurement laboratory. These critical changes may occur when e.g. changing radio parameters, the channel access method, the duty-cycle or in case of various other functions and options possibly used or changed by a customer specific firmware.

12.3 Customer firmware

A customer firmware is a firmware written and tested by the customer himself or a 3rd party as a customer representative specifically for the hardware platform provided by a module.

This customer firmware (e.g. in form of a Intel hex file) will be implemented into the module's production process at our production side.

This also results in a customer exclusive module with a unique ordering number.

The additional information needed for this type of customer firmware, such as hardware specific details and details towards the development of such firmware are not available for the public and can only be made available to qualified customers.

The qualification(s) and certification(s) of the standard firmware cannot be applied to this customer firmware solution without a review and verification.

12.4 Contact for firmware requests

Please contact your local field sales engineer (FSE) or wireless-sales@we-online.com for quotes regarding this topics.

13 Firmware update

We highly recommend having the UART and either SPY-Bi-Wire or JTAG accessible in any application to have the possibility to perform a firmware update. Firmware updates can only be performed through this interfaces once a module is implemented into a customer PCB.

Flashing a customer or non standard firmware makes all regulatory and conformity information and certificates of chapter 21 invalid.

13.1 Update using the UART interface

Only the *UTDX*, *URXD* and *GND* signals are needed for this connection. A suiting adapter/ converter is required for a PC connection (e.g. the FTDI TTL-323R-3V3 UART to USB converter).

None of the module pins is 5V TTL compatible. Applying overvoltage to any pin may damage the hardware permanently. Make sure your levels are in the range of the electrical specification shown in chapter 2.

13.1.1 ACC software

As long as our standard firmware is running on the module the module can be updated with the PC utility "AMBER Config Center" via the serial interface. Therefore the module must be reset via */RESET* pin when ACC requests for it.

If the module is not directly connected to a PC, at least the UART should be made accessible, e.g. by means of suitable connectors.

The */RESET* signal shall be connectable to *GND* for performing a reset of the module (e.g. using a push-button which pulls to *GND* when pressed). The */RESET* pin has an internal pull-up of 100 kΩ.

13.1.2 Generic UART solution

This information is not available for public and requires a NDA and licensing procedure for qualified customers. Additional information is available upon request from wireless-sales@we-online.com.

13.2 Update using JTAG or SPY-Bi-Wire

Using this interface option allows performing a fail-safe firmware update even in case of a broken firmware or misconfiguration. The user needs hardware and software tools to be able to perform this procedure. In detail those are:

- Flash adapter for MSP430 μC .

- Flasher software according to the used flasher adapter.
- Additional to the JTAG pins also the */RESET*, *GND* and *VCC* pins are needed for the JTAG / SPY-Bi-Wire connection.
- Additional external wiring may be required to support JTAG and/or SPY-Bi-Wire, please check your flashers manual.

No	Designation	Description
6	JTAG_TDI	JTAG Test data in
7	JTAG_TDO	JTAG Test data out
8	JTAG_TMS	JTAG Test Mode Select
17	TEST	SPY-Bi-Wire
18	JTAG_TCK	JTAG Test clock

Table 25: JTAG and SPY-Bi-Wire pins, Mimas-I

Our binary firmware files are not publicly available and require a NDA and licensing procedure for qualified customers. Additional information is available upon request from wireless-sales@we-online.com.

Using this method may require a full chip-erase to be able to write a new firmware into the module. Factory configuration data is lost during a full chip-erase and needs to be restored accordingly.

Never erase the entire chip. Some memory segments (such as factory configuration and FactorySettings) must be retained if original firmware shall be flashed onto the μ C again. Missing, illegal or erased parameters/flash segments may lead to module malfunctions.

14 Firmware history

14.1 Mimas-I (AMB3626-M, AMB3665-M)

Version 2.7.3 "Release"

- Firmware maintenance
- Known issues:
 - In high traffic scenarios, commands are not accepted. As described in the manual, the radio RX has the highest priority and therefore blocks the internal buffer. For module configuration use either ACC or avoid high traffic zones.
 - In N Modes with frame format B long (>16 byte) sequences of 0x00 or 0xFF cause the radio chip to loose bit-sync. This leads to CRC errors and the packet is lost. Make sure you either use frame format A, encrypt your frame or reorder your data blocks in a way such long sequences cannot occur.
 - WOR function does not work as expected.

Version 2.8.0 "Release"

- Added C field filter for Bit7. According to EN13757, packets will be discarded if this bit is not '0'.
- Unused pins are pulled to low level (i.e. configured to output low).
- Bugfix in WOR function.
- Adopted new release revision numbering
- Known issues:
 - In high traffic scenarios, commands are not accepted. As described in the manual, the radio RX has the highest priority and therefore blocks the internal buffer. For module configuration use either ACC or avoid high traffic zones.
 - In N Modes with frame format B long (>16 byte) sequences of 0x00 or 0xFF cause the radio chip to loose bit-sync. This leads to CRC errors and the packet is lost. Make sure you either use frame format A, encrypt your frame or reorder your data blocks in a way such long sequences cannot occur.

15 Design in guide

15.1 Advice for schematic and layout

For users with less RF experience it is advisable to closely copy the relating evaluation board with respect to schematic and layout, as it is a proven design. The layout should be conducted with particular care, because even small deficiencies could affect the radio performance and its range or even the conformity.

The following general advice should be taken into consideration:

- A clean, stable power supply is strongly recommended. Interference, especially oscillation can severely restrain range and conformity.
- Variations in voltage level should be avoided.
- LDOs, properly designed in, usually deliver a proper regulated voltage.
- Blocking capacitors and a ferrite bead in the power supply line can be included to filter and smoothen the supply voltage when necessary.

No fixed values can be recommended, as these depend on the circumstances of the application (main power source, interferences etc.).

Frequently switching the module on and off, especially with a slowly changing voltage level of the power supply, can lead to erratic behavior, in rare cases even as far as damaging the module or the firmware. The use of an external reset IC can solve this matter and shall be considered especially in battery operated scenarios.

- Elements for ESD protection should be placed on all pins that are accessible from the outside and should be placed close to the accessible area. For example, the RF-pin is accessible when using an external antenna and should be protected.
- ESD protection for the antenna connection must be chosen such as to have a minimum effect on the RF signal. For example, a protection diode with low capacitance such as the LXES15AAA1-100 or a 68 nH air-core coil connecting the RF-line to ground give good results.
- Placeholders for optional antenna matching or additional filtering are recommended.
- The antenna path should be kept as short as possible.

Again, no fixed values can be recommended, as they depend on the influencing circumstances of the application (antenna, interferences etc.).

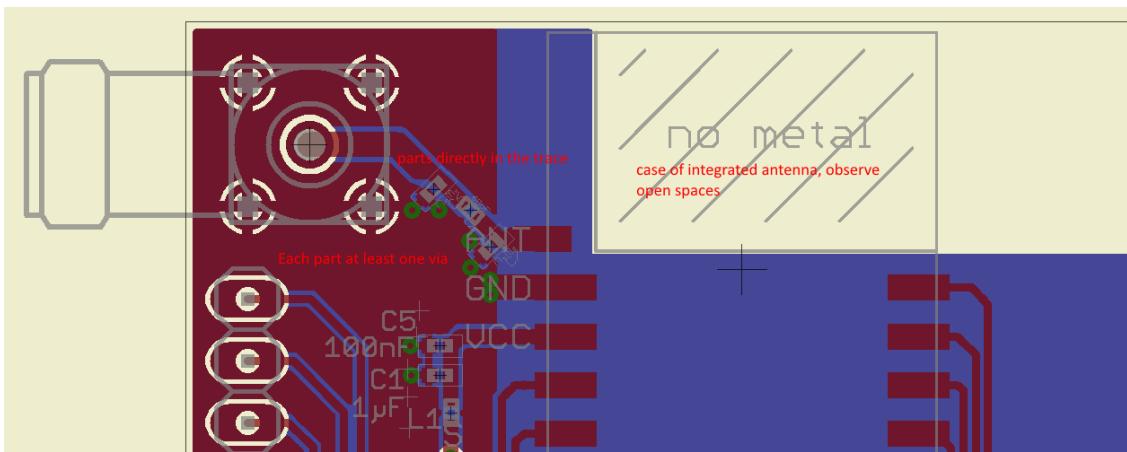


Figure 3: Layout

- To avoid the risk of short circuits and interference there should be no routing underneath the module on the top layer of the baseboard.
- On the second layer, a ground plane is recommended, to provide good grounding and shielding to any following layers and application environment.
- In case of integrated antennas it is required to have areas free from ground. This area should be copied from the evaluation board.
- The area with the integrated antenna must overlap with the carrier board and should not protrude, as it is matched to sitting directly on top of a PCB.
- Modules with integrated antennas should be placed with the antenna at the edge of the main board. It should not be placed in the middle of the main board or far away from the edge. This is to avoid tracks beside the antenna.
- Filter and blocking capacitors should be placed directly in the tracks without stubs, to achieve the best effect.
- Antenna matching elements should be placed close to the antenna / connector, blocking capacitors close to the module.
- Ground connections for the module and the capacitors should be kept as short as possible and with at least one separate through hole connection to the ground layer.
- ESD protection elements should be placed as close as possible to the exposed areas.

Figure 4: Placement of the module with integrated antenna

15.2 Dimensioning of the micro strip antenna line

The antenna track has to be designed as a 50Ω feed line. The width W for a micro strip can

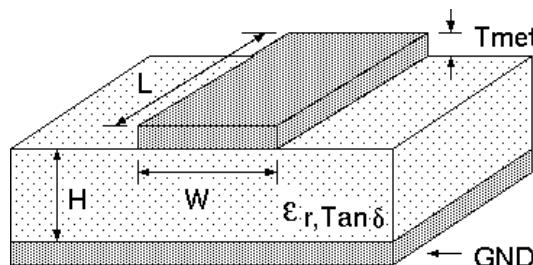


Figure 5: Dimensioning the antenna feed line as micro strip

be calculated using the following equation:

$$W = 1.25 \times \left(\frac{5.98 \times H}{e^{\frac{50 \times \sqrt{\epsilon_r} + 1.41}{87}}} - T_{met} \right) \quad (1)$$

Example:

A FR4 material with $\epsilon_r = 4.3$, a height $H = 1000 \mu\text{m}$ and a copper thickness of $T_{met} = 18 \mu\text{m}$

will lead to a trace width of $W \sim 1.9$ mm. To ease the calculation of the micro strip line (or e.g. a coplanar) many calculators can be found in the internet.

- As rule of thumb a distance of about $3 \times W$ should be observed between the micro strip and other traces / ground.
- The micro strip refers to ground, therefore there has to be the ground plane underneath the trace.
- Keep the feeding line as short as possible.

15.3 Antenna solutions

There exist several kinds of antennas, which are optimized for different needs. Chip antennas are optimized for minimal size requirements but at the expense of range, PCB antennas are optimized for minimal costs, and are generally a compromise between size and range. Both usually fit inside a housing.

Range optimization in general is at the expense of space. Antennas that are bigger in size, so that they would probably not fit in a small housing, are usually equipped with a RF connector. A benefit of this connector may be to use it to lead the RF signal through a metal plate (e.g. metal housing, cabinet).

As a rule of thumb a minimum distance of $\lambda/10$ (which is 3.5 cm @ 868 MHz and 1.2 cm @ 2.44 GHz) from the antenna to any other metal should be kept. Metal placed further away will not directly influence the behavior of the antenna, but will anyway produce shadowing.

Keep the antenna away from large metal objects as far as possible to avoid electromagnetic field blocking.

The choice of antenna might have influence on the safety requirements.

In the following chapters, some special types of antenna are described.

15.3.1 Wire antenna

An effective antenna is a $\lambda/4$ radiator with a suiting ground plane. The simplest realization is a piece of wire. Its length is depending on the used radio frequency, so for example 8.6 cm 868.0 MHz and 3.1 cm for 2.440 GHz as frequency. This radiator needs a ground plane at its feeding point. Ideally, it is placed vertically in the middle of the ground plane. As this is often not possible because of space requirements, a suitable compromise is to bend the wire away from the PCB respective to the ground plane. The $\lambda/4$ radiator has approximately 40Ω input impedance, therefore matching is not required.

15.3.2 Chip antenna

There are many chip antennas from various manufacturers. The benefit of a chip antenna is obviously the minimal space required and reasonable costs. However, this is often at the expense of range. For the chip antennas, reference designs should be followed as closely as possible, because only in this constellation can the stated performance be achieved.

15.3.3 PCB antenna

PCB antenna designs can be very different. The special attention can be on the miniaturization or on the performance. The benefits of the PCB antenna are their small / not existing (if PCB space is available) costs, however the evaluation of a PCB antenna holds more risk of failure than the use of a finished antenna. Most PCB antenna designs are a compromise of range and space between chip antennas and connector antennas.

15.3.4 Antennas provided by Würth Elektronik eiSos

15.3.4.1 2600130011 - Helike - 169 MHz dipole antenna

Figure 6: 169 MHz dipole-antenna

Specification	Value
Frequency range [MHz]	169
Impedance [Ω]	50
VSWR	≤ 2.1
Gain [dBi]	1
Dimensions (L x d) [mm]	320 x 15
Weight [g]	42
Connector	SMA plug
Operating Temp. [°C]	-40 – +85

This antenna requires a ground plane which will influence the electrical parameters.

15.3.4.2 2600130041 - Herse - 434 MHz dipole antenna

Figure 7: 434 MHz dipole-antenna

Specification	Value
Frequency range [MHz]	433
Impedance [Ω]	50
VSWR	≤ 1.5
Polarization	Vertical
Radiation	Omni
Gain [dBi]	0
Antenna Cover	TPEE
Dimensions (L x d) [mm]	90 x 12
Weight [g]	9.6
Connector	SMA plug
Operating Temp. [°C]	-40 – +80

This antenna requires a ground plane which will influence the electrical parameters.

15.3.4.3 2600130081 - Hyperion-I - 868 MHz dipole antenna

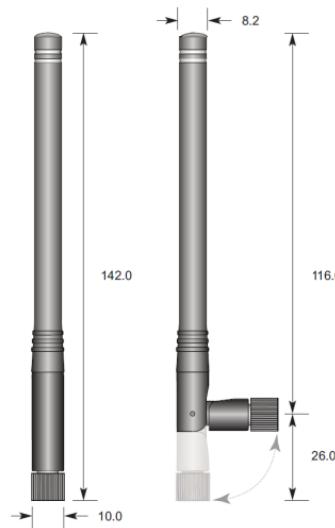


Figure 8: 868 MHz dipole-antenna

Ideally suited for applications where no ground plane is available.

The 2600130081 antenna can be also used for 902MHz - 928MHz range.

Specification	Value
Center frequency [MHz]	868
Frequency range [MHz]	853 – 883
Wavelength	0.5 wave
VSWR	≤ 2.0
Impedance [Ω]	50
Connector	SMA (Male)
Dimensions (L x d) [mm]	142 x 10
Peak gain [dBi]	-2.3
Operating temp. [°C]	-30 – +80

15.3.4.4 2600130082 - Hyperion-II - 868 MHz magnetic base antenna

Well suited for applications where the RF is lead through a metal wall that could serve as ground plane to the antenna.

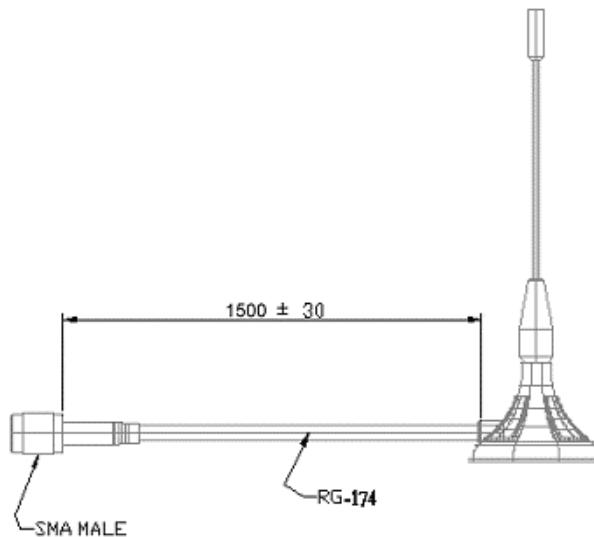


Figure 9: 868 MHz magnet foot antenna with 1.5 m antenna cable

The 2600130082 is a kind of $\lambda/4$ radiator and therefore needs a ground plane at the feeding point.

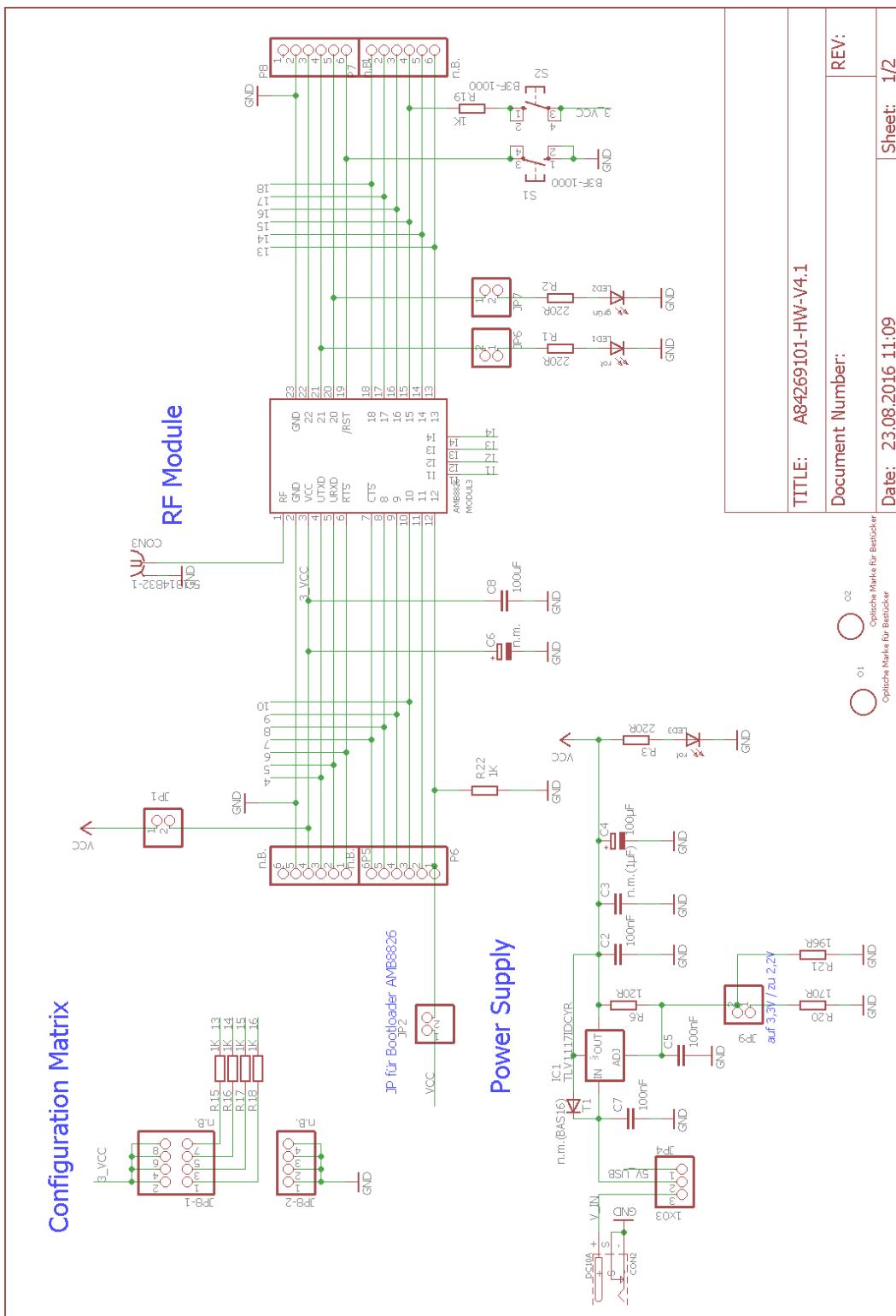
Specification	Value
Frequency range [MHz]	824 – 894
VSWR	≤ 2.0
Polarisation	Vertical
Impedance [Ω]	50 ± 5
Connector	SMA (Male)
Dimensions (L x d) [mm]	89.8 x 27
Weight [g]	50 ± 5
Operating temp. [°C]	-30 – +60

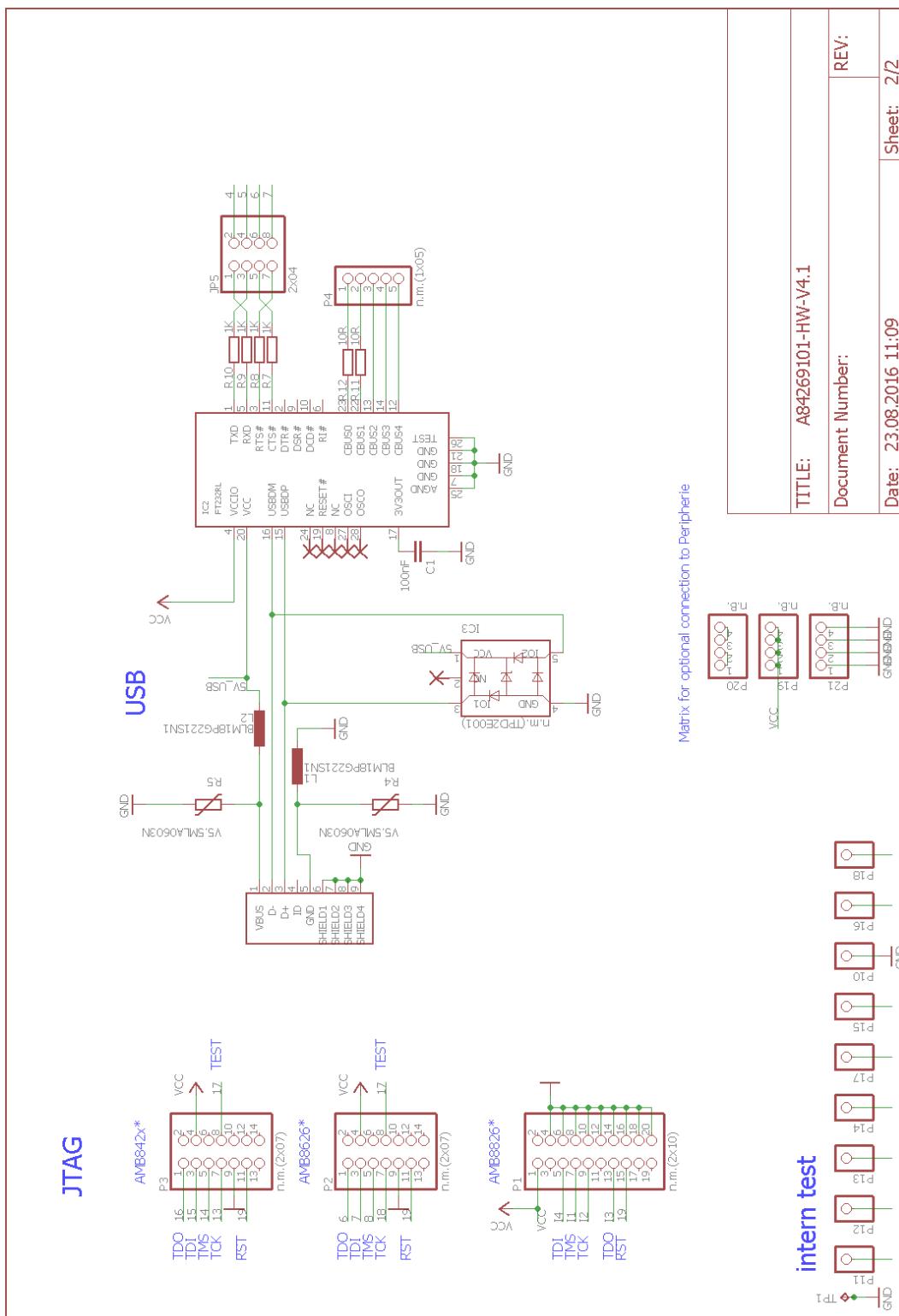
15.3.4.5 2600130021 - Himalia - 2.4 GHz dipole antenna

Figure 10: 2.4 GHz dipole-antenna

Due to the fact, that the antenna has dipole topology there is no need for an additional ground plane. Nevertheless the specification was measured edge mounted and 90° bent on a 100 x 100 mm ground plane.

Specification	Value
Frequency range [GHz]	2.4 – 2.5
Impedance [Ω]	50
VSWR	$\leq 2:1$
Polarization	Linear
Radiation	Omni-Directional
Peak Gain [dBi]	2.8
Average Gain [dBi]	-0.6
Efficiency	85 %
Dimensions (L x d) [mm]	83.1 x 10
Weight [g]	7.4
Connector	SMA plug
Operating temp. [°C]	-40 – +80


16 Reference design


Mimas-I was tested and certified on the corresponding Mimas-I evaluation board. For the compliance with the EU directive 2014/53/EU Annex I, the evaluation board serves as reference design.

This is no discrepancy due to the fact that the evaluation board itself does not fall within the scope of the EU directive 2014/53/EU Annex I as the module is tested on the evaluation board, which is also the recommended use.

Further information concerning the use of the evaluation board can be found in the manual of the Mimas-I evaluation board.

16.1 Schematic

16.2 Layout

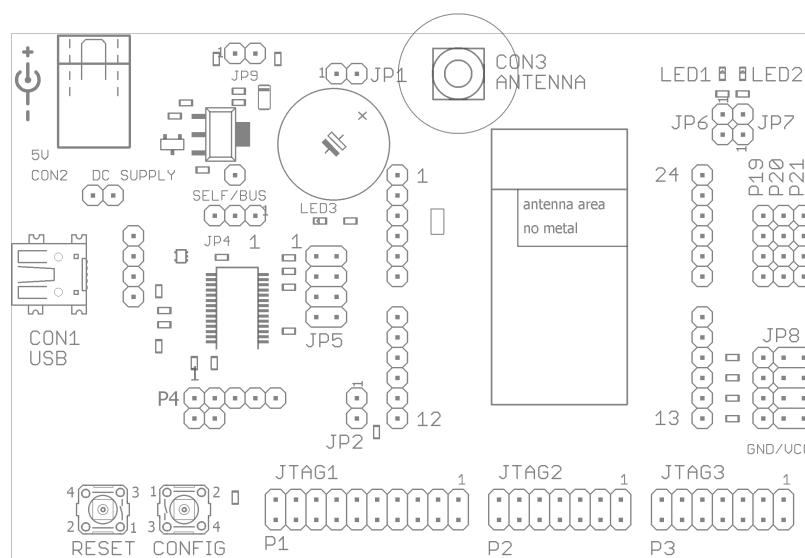


Figure 11: Assembly diagram

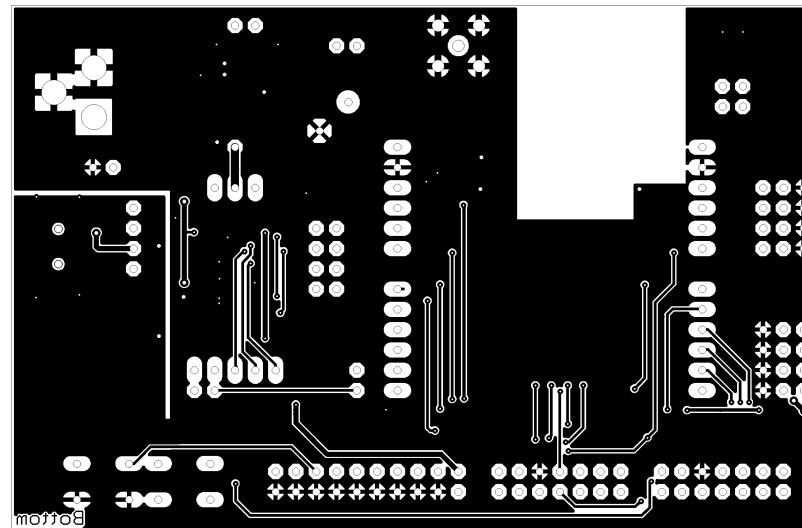
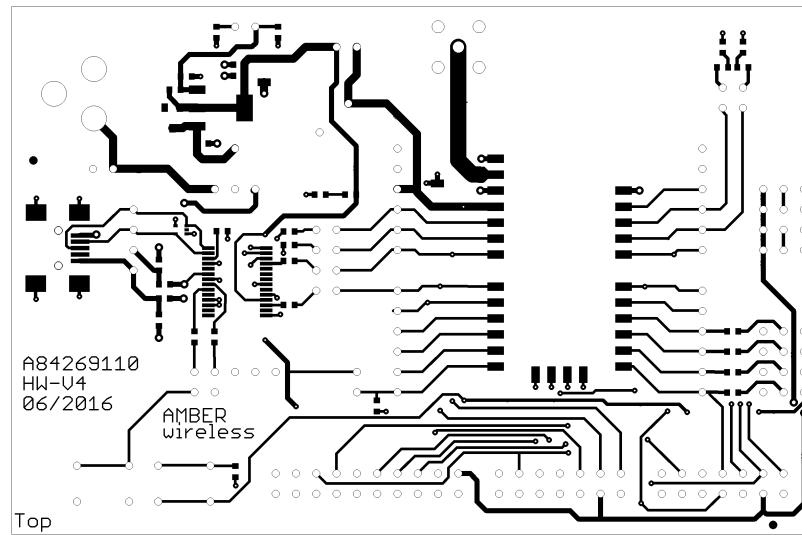



Figure 12: Top and Bottom Layer

17 Manufacturing information

17.1 Moisture sensitivity level

This wireless connectivity product is categorized as JEDEC Moisture Sensitivity Level 3 (MSL3), which requires special handling.

More information regarding the MSL requirements can be found in the IPC/JEDEC J-STD-020 standard on www.jedec.org.

More information about the handling, picking, shipping and the usage of moisture/reflow and/or process sensitive products can be found in the IPC/JEDEC J-STD-033 standard on www.jedec.org.

17.2 Soldering

17.2.1 Reflow soldering

Attention must be paid on the thickness of the solder resist between the host PCB top side and the modules bottom side. Only lead-free assembly is recommended according to JEDEC J-STD020.

Profile feature		Value
Preheat temperature Min	$T_{S\ Min}$	150 °C
Preheat temperature Max	$T_{S\ Max}$	200 °C
Preheat time from $T_{S\ Min}$ to $T_{S\ Max}$	t_S	60 - 120 seconds
Ramp-up rate (T_L to T_P)		3 °C / second max.
Liquidous temperature	T_L	217 °C
Time t_L maintained above T_L	t_L	60 - 150 seconds
Peak package body temperature	T_P	see table below
Time within 5 °C of actual preak temperature	t_P	20 - 30 seconds
Ramp-down Rate (T_P to T_L)		6 °C / second max.
Time 20 °C to T_P		8 minutes max.

Table 26: Classification reflow soldering profile, Note: refer to IPC/JEDEC J-STD-020E

Package thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
< 1.6mm	260 °C	260 °C	260 °C
1.6mm - 2.5mm	260 °C	250 °C	245 °C
> 2.5mm	250 °C	245 °C	245 °C

Table 27: Package classification reflow temperature, PB-free assembly, Note: refer to IPC-/JEDEC J-STD-020E

It is recommended to solder this module on the last reflow cycle of the PCB. For solder paste use a LFM-48W or Indium based SAC 305 alloy (Sn 96.5 / Ag 3.0 / Cu 0.5 / Indium 8.9HF / Type 3 / 89%) type 3 or higher.

The reflow profile must be adjusted based on the thermal mass of the entire populated PCB, heat transfer efficiency of the reflow oven and the specific type of solder paste used. Based on the specific process and PCB layout the optimal soldering profile must be adjusted and verified. Other soldering methods (e.g. vapor phase) have not been verified and have to be validated by the customer at their own risk. Rework is not recommended.

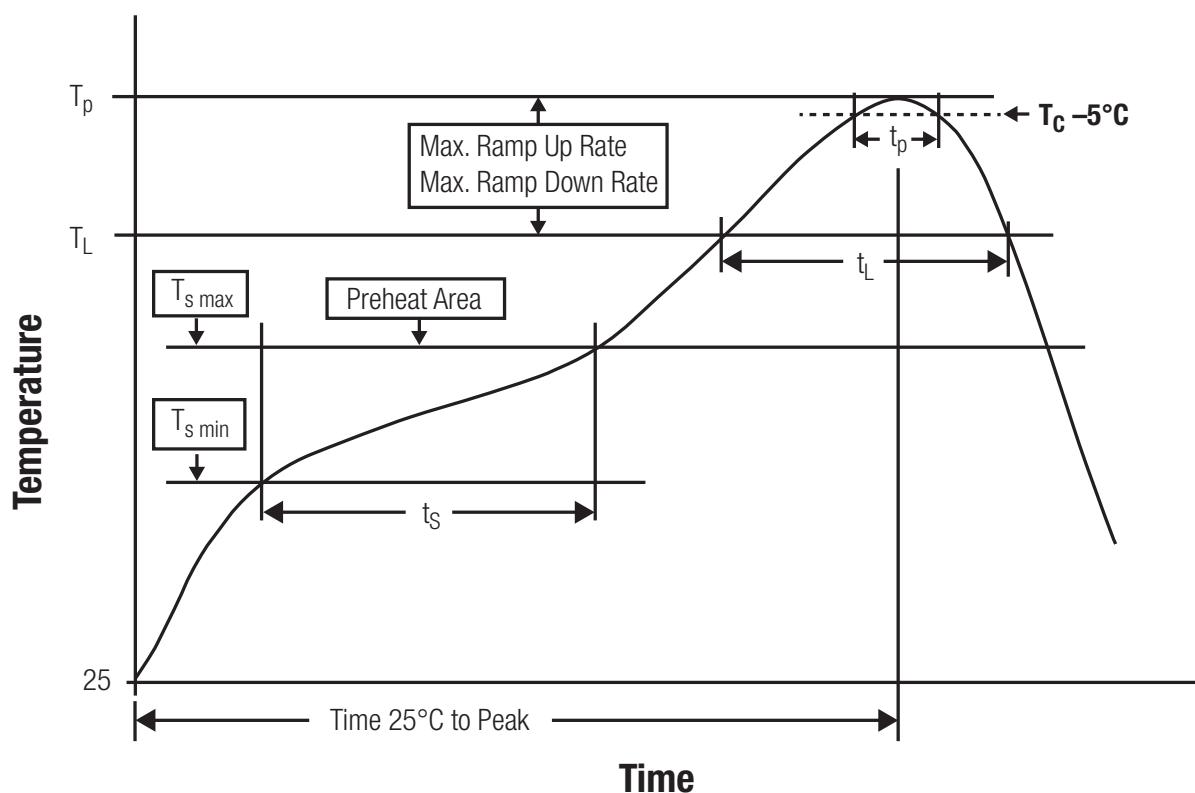


Figure 13: Reflow soldering profile

After reflow soldering, visually inspect the board to confirm proper alignment

17.2.2 Cleaning

Do not clean the product. Any residue cannot be easily removed by washing. Use a "no clean" soldering paste and do not clean the board after soldering.

- Do not clean the product with water. Capillary effects can draw water into the gap between the host PCB and the module, absorbing water underneath it. If water is trapped inside, it may short-circuit adjoining pads. The water may also destroy the label and ink-jet printed text on it.
- Cleaning processes using alcohol or other organic solvents may draw solder flux residues into the housing, which won't be detected in a post-wash inspection. The solvent may also destroy the label and ink-jet printed text on it.
- Do not use ultrasonic cleaning as it will permanently damage the part, particularly the crystal oscillators.

17.2.3 Other notations

- Conformal coating of the product will result in the loss of warranty. The RF shields will not protect the part from low-viscosity coatings.
- Do not attempt to improve the grounding by forming metal strips directly to the EMI covers or soldering on ground cables, as it may damage the part and will void the warranty.
- Always solder every pad to the host PCB even if some are unused, to improve the mechanical strength of the module.
- The part is sensitive to ultrasonic waves, as such do not use ultrasonic cleaning, welding or other processing. Any ultrasonic processing will void the warranty.

17.3 ESD handling

This product is highly sensitive to electrostatic discharge (ESD). As such, always use proper ESD precautions when handling. Make sure to handle the part properly throughout all stages of production, including on the host PCB where the module is installed. For ESD ratings, refer to the module series' maximum ESD section. For more information, refer to the relevant chapter 2. Failing to follow the aforementioned recommendations can result in severe damage to the part.

- the first contact point when handling the PCB is always between the local GND and the host PCB GND, unless there is a galvanic coupling between the local GND (for example work table) and the host PCB GND.
- Before assembling an antenna patch, connect the grounds.
- While handling the RF pin, avoid contact with any charged capacitors and be careful when contacting any materials that can develop charges (for example coaxial cable with around 50-80 pF/m, patch antenna with around 10 pF, soldering iron etc.)

- Do not touch any exposed area of the antenna to avoid electrostatic discharge. Do not let the antenna area be touched in a non ESD-safe manner.
- When soldering, use an ESD-safe soldering iron.

17.4 Safety recommendations

It is your duty to ensure that the product is allowed to be used in the destination country and within the required environment. Usage of the product can be dangerous and must be tested and verified by the end user. Be especially careful of:

- Use in areas with risk of explosion (for example oil refineries, gas stations).
- Use in areas such as airports, aircraft, hospitals, etc., where the product may interfere with other electronic components.

It is the customer's responsibility to ensure compliance with all applicable legal, regulatory and safety-related requirements as well as applicable environmental regulations. Disassembling the product is not allowed. Evidence of tampering will void the warranty.

- Compliance with the instructions in the product manual is recommended for correct product set-up.
- The product must be provided with a consolidated voltage source. The wiring must meet all applicable fire and security prevention standards.
- Handle with care. Avoid touching the pins as there could be ESD damage.

Be careful when working with any external components. When in doubt consult the technical documentation and relevant standards. Always use an antenna with the proper characteristics.

Since the module itself is not fused the voltage supply shall be fed from a limited power source according to EN 62368-1 class PS1.

Modules with high output power of up to 500mW, as for example the Thebe family, generate a high amount of warmth while transmitting. The manufacturer of the end device must take care of potentially necessary actions for his application.

18 Physical dimensions

18.1 Dimensions

Dimensions
17 x 27 x 4 mm

Table 28: Dimensions

18.2 Weight

Weight
3g

Table 29: Weight

18.3 Module drawing

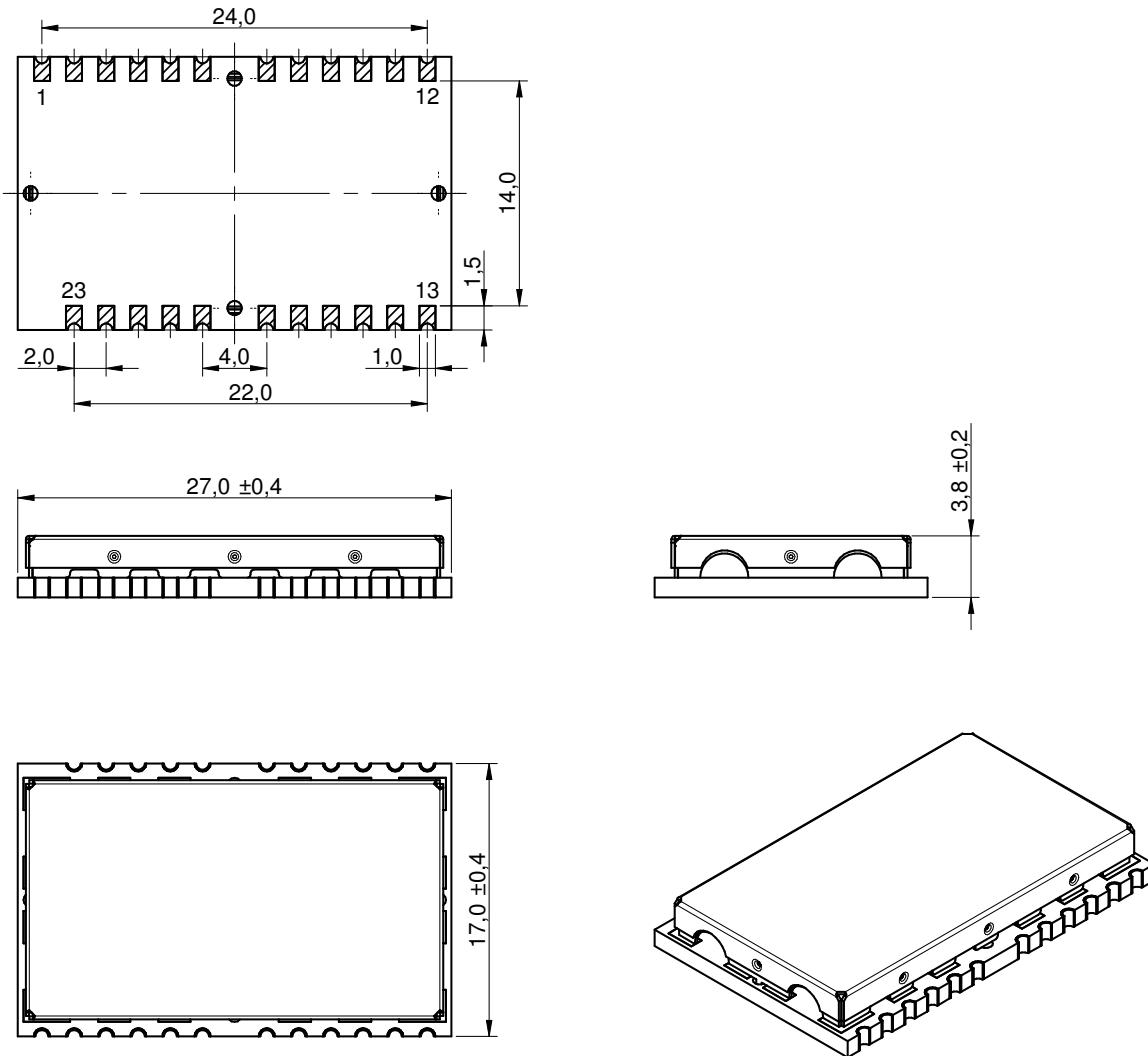


Figure 14: Module dimensions [mm]

18.4 Footprint

The following points have to be considered:

- To avoid the risk of short circuits, a minimum clearance of at least 14 mm between the opposing pad rows has to be maintained!
- No routing on the top layer of a carrier PCB (i.e. "under" the module) shall be performed.
- The carrier PCB shall place no vias "under" the module to prevent shortcuts
- This footprint is also compatible to AMB8626, AMB8426, AMB4426 and AMB3626 hardware platforms.

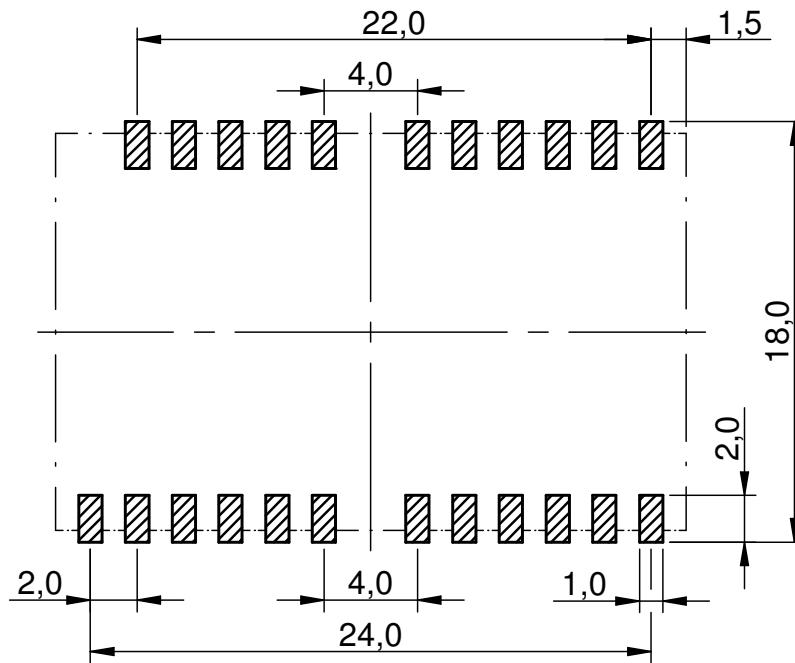


Figure 15: Footprint and dimensions [mm]

18.5 Antenna free area

To avoid influence and mismatching of the antenna the recommended free area around the antenna should be maintained. As rule of thumb a minimum distance of metal parts to the antenna of $\lambda/10$ should be kept (see figure 15). Even though metal parts would influence the characteristic of the antenna, but the direct influence and matching keep an acceptable level.

19 Marking

19.1 Lot number

The 15 digit lot number is printed in numerical digits as well as in form of a machine readable bar code. It is divided into 5 blocks as shown in the following picture and can be translated according to the following table.

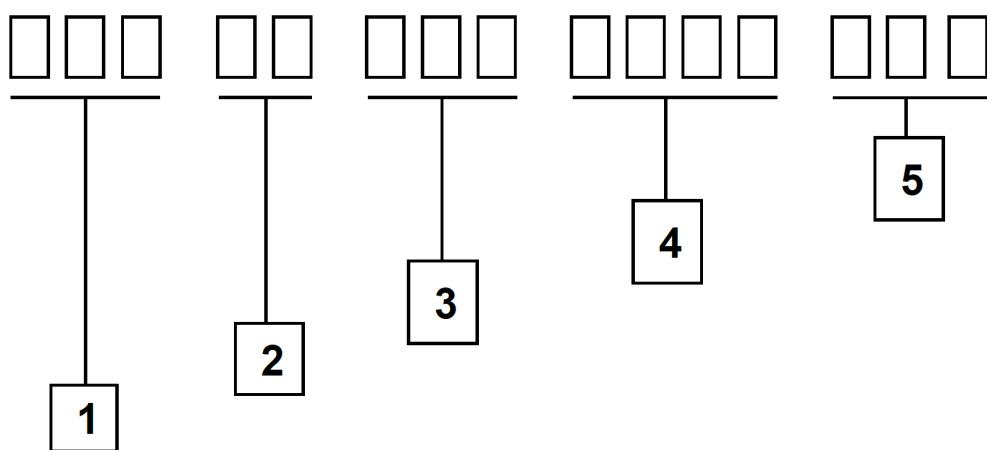


Figure 16: Lot number structure

Block	Information	Example(s)
1	eiSos internal, 3 digits	439
2	eiSos internal, 2 digits	01
3	Hardware version, 3 digits	V2.4 = 024, V12.2 = 122
4	Date code, 4 digits	1703 = week 03 in year 2017, 1816 = week 16 in year 2018
5	Firmware version, 3 digits	V3.2 = 302, V5.13 = 513

Table 30: Lot number details

As the user can perform a firmware update the printed lot number only shows the factory delivery state. The currently installed firmware can be requested from the module using the corresponding product specific command. The firmware version as well as the hardware version are restricted to show only major and minor version not the patch identifier.

19.2 General labeling information

The module labels may include the following fields:

- Manufacturer identification WE, Würth Elektronik or Würth Elektronik eiSos
- WE Order Code and/or article alias
- Serial number or MAC address
- Certification identifiers (CE, FCC ID, IC, ARIB,...)
- Barcode or 2D code containing the serial number or MAC address

The serial number includes the product ID (PID) and an unique 6 digit number. The first 1 to 3 digits represent the PID, then the "." marks the start of the 6 digit counter to create a unique product marking.

In case of small labels, the 3 byte manufacturer identifier (0x0018DA) of the MAC address is not printed on the labels. The 3 byte counter printed on the label can be used with this 0018DA to produce the full MAC address by appending the counter after the manufacturer identifier.

19.2.1 Example labels of Würth Elektronik eiSos products

2603011021001 CE
FCC ID: R7TAMB2220
IC: 5136A-AMB2220
SN: 107.002005

AMB2621
SN: 0A6495
FCCID: CE
R7TAMB2621

 WE CE
SN: 116.002641
2609011081001
AMB8826

Würth Elektronik
FCC ID: R7TAMB9826
IC: 5136A-AMB9826
SN: 124.000323
2609011091001

20 Information for Ex Protection

In case the end product should be used in Ex protection areas the following information can be used:

- The module itself is unfused.
- The maximum output power of the module is 15dBm.
- The total amount of capacitivty of all capacitors is 1.607 μ F.
- The total amount of inductivity of all inductors is 677nH.

21 Regulatory compliance information

21.1 Important notice EU

The use of RF frequencies is limited by national regulations. The Mimas-I has been designed to comply with the R&TTE directive 1999/5/EC and the RED directive 2014/53/EU of the European Union (EU).

The Mimas-I can be operated without notification and free of charge in the area of the European Union. However, according to the R&TTE / RED directive, restrictions (e.g. in terms of duty cycle or maximum allowed RF power) may apply.

21.2 Conformity assessment of the final product

The Mimas-I is a subassembly. It is designed to be embedded into other products (products incorporating the Mimas-I are henceforward referred to as "final products").

It is the responsibility of the manufacturer of the final product to ensure that the final product is in compliance with the essential requirements of the underlying national radio regulations. The conformity assessment of the subassembly Mimas-I carried out by Würth Elektronik eiSos does not replace the required conformity assessment of the final product.

21.3 Exemption clause

Relevant regulation requirements are subject to change. Würth Elektronik eiSos does not guarantee the accuracy of the before mentioned information. Directives, technical standards, procedural descriptions and the like may be interpreted differently by the national authorities. Equally, the national laws and restrictions may vary with the country. In case of doubt or uncertainty, we recommend that you consult with the authorities or official certification organizations of the relevant countries. Würth Elektronik eiSos is exempt from any responsibilities or liabilities related to regulatory compliance.

Notwithstanding the above, Würth Elektronik eiSos makes no representations and warranties of any kind related to their accuracy, correctness, completeness and/or usability for customer applications. No responsibility is assumed for inaccuracies or incompleteness.

21.4 EU Declaration of conformity

EU DECLARATION OF CONFORMITY

Radio equipment: 2607011113000 & 2607046213001

The manufacturer: Würth Elektronik eiSos GmbH & Co. KG
Max-Eyth-Straße 1
74638 Waldenburg

This declaration of conformity is issued under the sole responsibility of the manufacturer.

Object of the declaration: 2607011113000 & 2607046213001

The object of the declaration described above is in conformity with the relevant Union harmonisation legislation: Directive 2014/53/EU and 2011/65/EU.

Following harmonised norms or technical specifications have been applied:

- EN 300 220-1 V3.1.1 (2017-02)
- EN 300 220-2 V3.1.1 (2017-02)
- EN 301 489-1 V2.2.0 (Draft)
- EN 301 489-3 V2.1.1 (Final draft)
- EN 62479 : 2010
- EN 60950-1: 2006 + A11: 2009 + A1: 2010 + A12: 2011

i.A. A. Eszterhazy

Trier, 28th of October 2018

Place and date of issue

22 Important information

The following conditions apply to all goods within the wireless connectivity product range of Würth Elektronik eiSos GmbH & Co. KG :

22.1 General customer responsibility

Some goods within the product range of Würth Elektronik eiSos GmbH & Co. KG contain statements regarding general suitability for certain application areas. These statements about suitability are based on our knowledge and experience of typical requirements concerning the areas, serve as general guidance and cannot be estimated as binding statements about the suitability for a customer application. The responsibility for the applicability and use in a particular customer design is always solely within the authority of the customer. Due to this fact, it is up to the customer to evaluate, where appropriate to investigate and to decide whether the device with the specific product characteristics described in the product specification is valid and suitable for the respective customer application or not. Accordingly, the customer is cautioned to verify that the documentation is current before placing orders.

22.2 Customer responsibility related to specific, in particular safety-relevant applications

It has to be clearly pointed out that the possibility of a malfunction of electronic components or failure before the end of the usual lifetime cannot be completely eliminated in the current state of the art, even if the products are operated within the range of the specifications. The same statement is valid for all software and firmware parts contained in or used with or for products in the wireless connectivity product range of Würth Elektronik eiSos GmbH & Co. KG . In certain customer applications requiring a high level of safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health, it must be ensured by most advanced technological aid of suitable design of the customer application that no injury or damage is caused to third parties in the event of malfunction or failure of an electronic component.

22.3 Best care and attention

Any product-specific datasheets, manuals, application notes, PCN's, warnings and cautions must be strictly observed in the most recent versions and matching to the products firmware revisions. This documents can be downloaded from the product specific sections on the wireless connectivity homepage.

22.4 Customer support for product specifications

Some products within the product range may contain substances, which are subject to restrictions in certain jurisdictions in order to serve specific technical requirements. Necessary information is available on request. In this case, the field sales engineer or the internal sales person in charge should be contacted who will be happy to support in this matter.

22.5 Product improvements

Due to constant product improvement, product specifications may change from time to time. As a standard reporting procedure of the Product Change Notification (PCN) according to the JEDEC-Standard, we inform about major changes in hard- or firmware. In case of further queries regarding the PCN, the field sales engineer, the internal sales person or the technical support team in charge should be contacted. The basic responsibility of the customer as per section 22.1 and 22.2 remains unaffected.

22.6 Product life cycle

Due to technical progress and economical evaluation we also reserve the right to discontinue production and delivery of products. As a standard reporting procedure of the Product Termination Notification (PTN) according to the JEDEC-Standard we will inform at an early stage about inevitable product discontinuance. According to this, we cannot ensure that all products within our product range will always be available. Therefore, it needs to be verified with the field sales engineer or the internal sales person in charge about the current product availability expectancy before or when the product for application design-in disposal is considered. The approach named above does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.

22.7 Property rights

All the rights for contractual products produced by Würth Elektronik eiSos GmbH & Co. KG on the basis of ideas, development contracts as well as models or templates that are subject to copyright, patent or commercial protection supplied to the customer will remain with Würth Elektronik eiSos GmbH & Co. KG. Würth Elektronik eiSos GmbH & Co. KG does not warrant or represent that any license, either expressed or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, application, or process in which Würth Elektronik eiSos GmbH & Co. KG components or services are used.

22.8 General terms and conditions

Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms and Conditions of Würth Elektronik eiSos Group", last version available at www.we-online.com.

23 Legal notice

23.1 Exclusion of liability

Würth Elektronik eiSos GmbH & Co. KG considers the information in this document to be correct at the time of publication. However, Würth Elektronik eiSos GmbH & Co. KG reserves the right to modify the information such as technical specifications or functions of its products or discontinue the production of these products or the support of one of these products without any written announcement or notification to customers. The customer must make sure that the information used corresponds to the latest published information. Würth Elektronik eiSos GmbH & Co. KG does not assume any liability for the use of its products. Würth Elektronik eiSos GmbH & Co. KG does not grant licenses for its patent rights or for any other of its intellectual property rights or third-party rights. Notwithstanding anything above, Würth Elektronik eiSos GmbH & Co. KG makes no representations and/or warranties of any kind for the provided information related to their accuracy, correctness, completeness, usage of the products and/or usability for customer applications. Information published by Würth Elektronik eiSos GmbH & Co. KG regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof.

23.2 Suitability in customer applications

The customer bears the responsibility for compliance of systems or units, in which Würth Elektronik eiSos GmbH & Co. KG products are integrated, with applicable legal regulations. Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Würth Elektronik eiSos GmbH & Co. KG components in its applications, notwithstanding any applications-related information or support that may be provided by Würth Elektronik eiSos GmbH & Co. KG. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences lessen the likelihood of failures that might cause harm and take appropriate remedial actions. The customer will fully indemnify Würth Elektronik eiSos GmbH & Co. KG and its representatives against any damages arising out of the use of any Würth Elektronik eiSos GmbH & Co. KG components in safety-critical applications.

23.3 Trademarks

AMBER wireless is a registered trademark of Würth Elektronik eiSos GmbH & Co. KG. All other trademarks, registered trademarks, and product names are the exclusive property of the respective owners.

23.4 Usage restriction

Würth Elektronik eiSos GmbH & Co. KG products have been designed and developed for usage in general electronic equipment only. This product is not authorized for use in equipment where a higher safety standard and reliability standard is especially required or where a failure of the product is reasonably expected to cause severe personal injury or death, unless the parties have executed an agreement specifically governing such use. Moreover,

Würth Elektronik eiSos GmbH & Co. KG products are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc. . Würth Elektronik eiSos GmbH & Co. KG must be informed about the intent of such usage before the design-in stage. In addition, sufficient reliability evaluation checks for safety must be performed on every electronic component, which is used in electrical circuits that require high safety and reliability function or performance. By using Würth Elektronik eiSos GmbH & Co. KG products, the customer agrees to these terms and conditions.

24 License agreement for Würth Elektronik eiSos GmbH & Co. KG connectivity product firmware and software

Agreement between You and Würth Elektronik eiSos GmbH & Co. KG

The following terms of this license agreement for the usage of the Würth Elektronik eiSos GmbH & Co. KG wireless connectivity product firmware are a legal agreement between you and Würth Elektronik eiSos GmbH & Co. KG and/or its subsidiaries and affiliates (collectively, "Würth Elektronik eiSos"). You hereby agree that this license agreement is applicable to the product and the incorporated software and firmware (collectively, "Firmware") made available by Würth Elektronik eiSos in any form, including but not limited to binary, executable or source code form.

The Firmware included in any Würth Elektronik eiSos wireless connectivity product is purchased to you on the condition that you accept the terms and conditions of this license agreement. You agree to comply with all provisions under this license agreement.

24.1 Limited license

Würth Elektronik eiSos hereby grants you a limited, non-exclusive, non-transferable and royalty-free license to use the Firmware under the conditions that will be set forth in this license agreement. You are free to use the provided Firmware only in connection with one of the products from Würth Elektronik eiSos to the extent described in this license agreement. You are not entitled to change or alter the provided Firmware.

You are not entitled to transfer the Firmware in any form to third parties without prior written consent of Würth Elektronik eiSos.

You are not allowed to reproduce, translate, reverse engineer, read out, decompile, disassemble or create derivative works of the incorporated Firmware in whole or in part.

No more extensive rights to use and exploit the Firmware granted to you.

24.2 Usage and obligations

The responsibility for the applicability and use of the Würth Elektronik eiSos wireless connectivity product with the incorporated Firmware in a particular customer design is always solely within the authority of the customer. Due to this fact, it is up to you to evaluate and investigate, where appropriate, and to decide whether the device with the specific product characteristics described in the product specification is valid and suitable for your respective application or not.

You are responsible for using the Würth Elektronik eiSos Product with the incorporated Firmware in compliance with all applicable product liability and product safety laws. You acknowledge to minimize the risk of loss and harm to individuals and bear the risk for failure leading to personal injury or death due to your usage of the product.

Würth Elektronik eiSos' products with the incorporated Firmware are not authorized for use in safety-critical applications, or where a failure of the product is reasonably expected to cause severe personal injury or death. Moreover, Würth Elektronik eiSos' products with the incorporated Firmware are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train

control, ship control), transportation signal, disaster prevention, medical, public information network etc. You shall inform Würth Elektronik eisOs about the intent of such usage before design-in stage. In certain customer applications requiring a very high level of safety and in which the malfunction or failure of an electronic component could endanger human life or health, you must ensure to have all necessary expertise in the safety and regulatory ramifications of your applications. You acknowledge and agree that you are solely responsible for all legal, regulatory and safety-related requirements concerning your products and any use of Würth Elektronik eisOs' products with the incorporated Firmware in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by Würth Elektronik eisOs. YOU SHALL INDEMNIFY WÜRTH ELEKTRONIK EISOS AGAINST ANY DAMAGES ARISING OUT OF THE USE OF WÜRTH ELEKTRONIK EISOS' PRODUCTS WITH THE INCORPORATED FIRMWARE IN SUCH SAFETY-CRITICAL APPLICATIONS.

24.3 Ownership

The incorporated Firmware created by Würth Elektronik eisOs is and will remain the exclusive property of Würth Elektronik eisOs.

24.4 Firmware update(s)

You have the opportunity to request the current and actual firmware for a bought wireless connectivity Product within the time of warranty. However, Würth Elektronik eisOs has no obligation to update a modules firmware in their production facilities, but can offer this as a service on request. The upload of firmware updates falls within your responsibility, e.g. via ACC or another software for firmware updates. Firmware updates will not be communicated automatically. It is within your responsibility to check the current version of a firmware in the latest version of the product manual on our website. The revision table in the product manual provides all necessary information about firmware updates. There is no right to be provided with binary files, so called "firmware images", those could be flashed through JTAG, SWD, Spi-Bi-Wire, SPI or similar interfaces.

24.5 Disclaimer of warranty

THE FIRMWARE IS PROVIDED "AS IS". YOU ACKNOWLEDGE THAT WÜRTH ELEKTRONIK EISOS MAKES NO REPRESENTATIONS AND WARRANTIES OF ANY KIND RELATED TO, BUT NOT LIMITED TO THE NON-INFRINGEMENT OF THIRD PARTIES' INTELLECTUAL PROPERTY RIGHTS OR THE MERCHANTABILITY OR FITNESS FOR YOUR INTENDED PURPOSE OR USAGE. WÜRTH ELEKTRONIK EISOS DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS IN WHICH THE WÜRTH ELEKTRONIK EISOS' PRODUCT WITH THE INCORPORATED FIRMWARE IS USED. INFORMATION PUBLISHED BY WÜRTH ELEKTRONIK EISOS REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE A LICENSE FROM WÜRTH ELEKTRONIK EISOS TO USE SUCH PRODUCTS OR SERVICES OR A WARRANTY OR ENDORSEMENT THEREOF.

24.6 Limitation of liability

Any liability not expressly provided by Würth Elektronik eiSos shall be disclaimed. You agree to hold us harmless from any third-party claims related to your usage of the Würth Elektronik eiSos ' products with the incorporated Firmware. Würth Elektronik eiSos disclaims any liability for any alteration, development created by you or your customers as well as for any combination with other products.

24.7 Applicable law and jurisdiction

Applicable law to this license agreement shall be the laws of the Federal Republic of Germany. Any dispute, claim or controversy arising out of or relating to this license agreement shall be resolved and finally settled by the court competent for the location of Würth Elektronik eiSos ' registered office.

24.8 Severability clause

If a provision of this license agreement is or becomes invalid, unenforceable or null and void, this shall not affect the remaining provisions of the agreement. The parties shall replace any such provisions with new valid provisions that most closely approximate the purpose of the agreement.

24.9 Miscellaneous

This license agreement constitutes the entire understanding and merges all prior discussions between the parties relating to this license agreement.

No ancillary verbal agreements have been made and no such agreements shall be valid. Any additions and amendments to this license agreement shall require the written form in order to be binding.

We recommend you to be updated about the status of new firmware, which is available on our website or in our data sheet, and to implement new firmware in your device where appropriate. In case only firmware is provided, we expressly exclude the automatic receipt of PCN information. Thus, new firmware will also not be provided automatically.

By ordering a wireless connectivity Product, you accept this license agreement in all terms.

List of Figures

1	Block diagram of the Mimas-I module	9
2	Pinout (top view)	13
3	Layout	64
4	Placement of the module with integrated antenna	65
5	Dimensioning the antenna feed line as micro strip	65
6	169 MHz dipole-antenna	68
7	434 MHz dipole-antenna	69
8	868 MHz dipole-antenna	70
9	868 MHz magnet foot antenna with 1.5 m antenna cable	71
10	2.4 GHz dipole-antenna	72
11	Assembly diagram	76
12	Top and Bottom Layer	77
13	Reflow soldering profile	79
14	Module dimensions [mm]	83
15	Footprint and dimensions [mm]	84
16	Lot number structure	85

List of Tables

1	Ordering information	9
2	Recommended operating conditions, Mimas-I	10
3	Absolute maximum ratings, Mimas-I	10
4	Power consumption, Mimas-I	11
5	Radio characteristics, Mimas-I	12
6	Pin characteristics, Mimas-I	12
7	Pinout	14
8	wM-BUS mode radio settings for 169 MHz	20
9	Transparent mode frame structure	24
10	Command interface generic frame structure	26
11	Frequently used commands	27
12	Further commands	27
13	wM-BUS Modes for CMD_SET_MODE_REQ command at 169 MHz	31
14	Preconfigured baud rates of the UART interface	35
15	Content and order of primary address	40
16	Table of UserSettings	42
17	Further UserSettings	43
18	Parameter RF_Power of wM-BUS modules with up to 25mW output power	46
19	wM-BUS modes for Mode_Preset in the 169 MHz band	48
20	Values for RF_AutoSleep parameter	50
21	Parameters for CFG_Flags	50
22	Obsolete UserSettings	51
23	wM-BUS mode radio settings for 169 MHz	53
24	Compatible wM-BUS modes for 169 MHz	54
25	JTAG and SPY-Bi-Wire pins, Mimas-I	61
26	Classification reflow soldering profile, Note: refer to IPC/JEDEC J-STD-020E	78

27	Package classification reflow temperature, PB-free assembly, Note: refer to IPC/JEDEC J-STD-020E	79
28	Dimensions	82
29	Weight	82
30	Lot number details	85

more than you expect

**Internet
of Things**

**Monitoring
& Control**

**Automated Meter
Reading**

Contact:

Würth Elektronik eiSos GmbH & Co. KG
Division Wireless Connectivity & Sensors

Rudi-Schillings-Str. 31
54296 Trier
Germany

Tel.: +49 651 99355-0
Fax.: +49 651 99355-69
www.we-online.com/wireless-connectivity

