MICROCHIP AN3992
PIC32CM LS00/LS60 Security Reference Guide

Introduction

This document is intended to help the developer to use the PIC32CM LS00/LS60 security features for building secure
embedded applications.

The following application development aspects are covered in this document:

» Single and Dual-developer approach
» Secure solution development using the PIC32CM LS00/LS60 ecosystem
+ Secure software protection using Arm® TrustZone® for ARMv8-M and Debug Access Levels

» System root of trust using Secure Boot with SHA256-based or HMAC-based authentication for PIC32CM LS00/
LS60

» Security standard support with Device Identity Composition Engine (DICE) based on Unique Device Secret
(UDS)

» Hardware/Software Cryptographic Accelerator (CRYA)
+ System root of trust using Secure Boot with ATECC608B CryptoAuthentication™ Device for PIC32CM LS60
The use of key security features is illustrated using MPLAB Harmony v3 software examples on the following:

» Secure, Non-Secure, and Mix-Secure peripherals

» Data Flash and TrustRAM for storing and protecting application secrets using tamper detection, scrambling, and
silent accesses

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 1
and its subsidiaries



AN3992

Table of Contents

a1 0T [8 o3 1] o SRR 1

B o =T (=T 01T =T PR SSSPRPPIN 3

2. Introduction to PIC32CM LS00/LS60 Security FEatures...........ccoocuviiriiiiiiieiniie e 4

2.1, TrustZone for ARMUSB-M........coo ittt et e e et e st e e e ant e e ennee e anneeeenneeeeennes 4

2.2.  Peripherals Security AtFDULION..........oo it 10

2.3.  Security Configuration Lock Bit (SECCFGLOCK).......ccccuiiiiiiiiiiiie it 14

2.4. Debug Access Level (DAL) and Chip Erase.........cccueiiiiiiiiiiieie et 15

D2 S =Y o B - = o T SRS 18

2.6. Secure Boot Using ATECC608B CryptoAuthentication™ Device (PIC32CM LS60 only)........... 20

2.7. Device Identity Composition ENgine (DICE)..........cooiiiiiiiiiii e 20

2.8.  Cryptographic AcCelerator (CRYA).......cii oottt e e e s e e e e st e e e e s enveeeaaeeaaes 23

3. PIC32CM LS00/LS60 Application Development (Developers A and B).......ccccoveviiiiiiiiiiiiieccees 24

3.1.  Single DeVveloper APPrOACH........coo i ittt e et e e st e e et e e eeeneeeeans 24

I T2 B IV F= 1 R B TAVZ=Y (] o 1= g o] o] Y- T o HUR SRR 25

3.3. Develop a TrustZone Example (Developer A).........cooiiiiiiiiiiiee et 26

3.4. Develop a Non-Secure Project (Developer B)........ccuii i 37

3.5. Developing TrustZone Example with SHA256-based or HMAC-based Secure Boot (Developer

N T PSP P PP 46

4. Software Use Case EXAMPIES..........oooiiiiiiiiiii ittt e e e e e e et aee e e e s e saaee e e e e esntreeaeesennns 51

4.1, Non-Secure Peripheral (TCO).......ccoiuiiiiiiieiiee ettt e e e e senee s 51

4.2, Secure Peripheral (TCO).......ououuiiiiieeiiit ettt sttt e st e e sne e e e bneeenee 54

4.3.  Mix-Secure Peripheral (EIC)..........ccoouiiiiiiiiiiii ettt e e et e e e e e e anaeeaeeaas 56

4.4, TIUSTRAM. ...t et a ettt a ettt bttt e bt bt ae e e n e ne e 58

T O - = - T o SRR 60

LT 1011 | OSSPSR 64

LT = 1= Y [o RO PEP 65

A 5 (1Y 1o ) T 1) o] 2 PRSP 66

The MICrOCHID WEDSITE. ...ttt e e bt e et e e sanes 67

Product Change Notification SEIrVICE..........o e it a e e 67

(10T} (] 0 [=T RS U o] o] SRRSO PPPRPN 67

Microchip Devices Code Protection Feature.............ooouiiiiiiiiiii e 67

[T o P 1 Ao (o7 T SRR PPRRRRN 68

B = To (10 =T o G SRR PPPRRPN 68

Quality Management SYSTEM........cooiiiiii et 69

WOrldwide Sales @Nd SEIVICE.......ccoiuiiiiiiieeiiie ettt et e e e ne e e st e e s bt e e e anteeesneeesneee s 70
© 2022 Microchip Technology Inc. Application Note DS00003992B-page 2

and its subsidiaries



AN3992

Prerequisites

1. Prerequisites

Chapter 2 and Chapter 3 of this document describes how to develop or launch an MPLAB Harmony v3-based
TrustZone project for the PIC32CM LS00/LS60 Curiosity Pro board. The hardware and software requirements are
listed as follows:

Hardware Requirements:
* 1x PIC32CM LS00/LS60 Curiosity Pro board
Software Requirements:

« MPLAB X IDE most up-to-date version

* MPLAB Code Configurator (MCC) for MPLAB Harmony v3 up-to-date version
— csp package
— csp_apps_pic32cm le 1s package

* Trust Platform Design Suite (TPDS) v2 (PIC32CM LS60 only)

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 3
and its subsidiaries



2.1

AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

Introduction to PIC32CM LS00/LS60 Security Features

TrustZone for ARMv8-M

The central security element for the Microchip PIC32CM LS00/LS60 microcontrollers (MCUs) is the implementation
of the TrustZone for an ARMv8-M device. The TrustZone technology is a System-on-Chip (SoC) and MCU system-
wide approach to security that enables Secure and Non-Secure application code to run on a single MCU.

TrustZone for an ARMv8-M device is based on specific hardware that is implemented in the Cortex-M23 core,
which is combined with a dedicated Secure instruction set. It enables creating multiple software security domains
that restrict access to selected memory, peripherals, and I/O to trusted software without compromising system
performance.

The main goal of the TrustZone for an ARMv8-M device is to simplify the security assessment of a deeply embedded
device. The principle behind TrustZone for the ARMv8-M embedded software application is illustrated in the following
figure.

Figure 2-1. Standard Interactions Between Secure and Non-Secure States

Secure state

- for Cortex-M

In the PIC32CM LS00/LS60 Cortex-M23 core implementation, the security management is done using the
Implementation Defined Attribution Unit (IDAU). The IDAU interface controls the access to the execution of specific
instructions which are based on the current core security state and the address of the instruction. The following figure
illustrates the Core or Debugger access verification, performed by the system prior to allowing access to specific
memory region.

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 4
and its subsidiaries



AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

Figure 2-2. IDAU Interface and Memory Accesses

Core/Debugger
access

IDAU
Interface

Combine

g

Non-Secure Non-Secure
MPU MPU

Access to

memory
Cortex-M23

PIC32CM LS00/LS60

Thanks to this implementation, a simple function call or interrupt processing, results in a path to a specific security
state as illustrated in the following figure. This allows efficient calls by avoiding any code and execution overhead.

Figure 2-3. ARMv8-M with TrustZone States Transitions

Non-Secure Secure
Handler Handler
Mode

Non-Secure Secure
Thread Thread
Mode Mode

ARMv8-M with TrustZone

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 5
and its subsidiaries



2141

2.1.2

AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

Memory Security Attribution

To differentiate and isolate Secure code from Non-Secure code, the PIC32CM LS00/LS60 device family is partitioned
with up to nine memory regions as illustrated in the following figure. Each region size is configurable using dedicated
NVM Configuration bit fields, such as BNSC, BOOTPROT, AS, ANSC, DS, and RS.

Figure 2-4. PIC32CM LS00/LS60 Memory Mapping

0x0000 0000

Secure Flash

(BOOT Region) 0x2000 0000

Secure SRAM

1)
BOOTPROT x 0x100 — BNSC x 0x20

Non-Secure Callable Flash 0x2000 0000 x (RS x 0x80)

(BOOT Region) Non-Secure SRAM

(]
BOOTPROT x 0x100 0x2001 0000

SRAM (Up to 64 KB)

Secure Flash
(APPLICATION Region)

)
(BOOTPROT + AS) x 0x100 — ANSC x 0x20
Non-Secure Callable Flash
" (APPLICATION Region) 0x0040 0000
(BOOTPROT  + AS) x 0x100 Secure Data Flash

0x40 0000 x (DS x 0x20)

Non-Secure Data Flash

0x40 4000
Non-Secure Flash Data Flash (Up to 16 KB)
(APPLICATION Region)

0x0008 0000
Flash (Up to 512 KB)

Notes:
1. BOOTPROT = BS.
2. All the NVM Configuration bit field acronyms, shown in the figure above, are defined in the Glossary.

Each memory region is preconfigured in the hardware with one of the following attributes:

» Secure (S): Used for memory and peripherals, which are accessible only by secure software.

* Non-Secure Callable (NSC): A special type of secure memory location. It enables software transition from a
Non-Secure to a Secure state.

* Non-Secure (NS): Used for memory and peripherals, which are accessible by all software running on the
device.

The security attribute of each region will define the security state of the code stored in this region.

Secure and Non-Secure Function Call Mechanism

To prevent Secure code and data being accessed from a Non-Secure state, the Secure code must meet several
requirements. The responsibility for meeting these requirements is shared between the MCU architecture, software
architecture, and the toolchain configuration.

At the core level, a set of Secure instructions dedicated to ARMv8-M devices are used to preserve and protect the
Secure register values during the CPU security state transition.

» Secure Gateway (SG): Used for switching from a Non-Secure to a Secure state at the first instruction of a
Secure entry point

« Branch with eXchange to Non-Secure state (BXNS): Used by the Secure software to branch or return to the
Non-Secure program

« Branch with Link and eXchange to Non-Secure State (BLXNS): Used by the Secure software to call the
Non-Secure functions

At the toolchain level, a ‘C’ language extension (CMSE) provided by Arm must be used to ensure the use of
ARMv8-M Secure instruction.

At the software architecture level, specific Secure and Non-Secure function call mechanisms must be used to ensure
security, which are described in the following sections.

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 6
and its subsidiaries



AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

21.21 Non-Secure Callable APIs
When working with TrustZone for ARMv8-M, the application developer can define a set of Non-Secure Callable APIs
which can be used to access the Secure code from the Non-Secure world. These APls, known as Secure Gateways
(SG) or veneers oversee the CPU security state switch, and allow the decoupling of Secure entry points from the
rest of the Secure code. Therefore, they limit the amount of code that can be potentially accessed by the non-secure
state.

SG are expected to be placed in the NSC memory regions, which are executable only when the CPU is in the
non-secure state. The rest of the secure code is expected to be placed in the Secure memory regions, which are not
accessible when the CPU is in the Non-Secure state as shown in the following figure:

Figure 2-5. Non-Secure Callable APls Mechanism

Non-Secure Non-Secure Callable Secure

1 \ / ) \ !
Branch (BLXNS) SG Branch (BLXNS)
|

Non-Secure code

! [
|

|
|

|
|
I |
I Veneer | Secure Function

|
|

|
|

|
' |
| .

Return (BXNS)
\

Using Non-Secure Callable APlIs requires the use of specific Cortex-M23 instructions that ensure security during the
core security state switching. A direct API function call from the Non-Secure to the Secure software entry points is
allowed only if the first instruction of the entry points is an SG and is in a Non-Secure callable memory location. The
use of the special instructions (BXNS and BLXNS) are required to branch to Non-Secure code.

The following code illustrates a Secure function and its SG API declaration and definition using an XC32 toolchain
with a ‘C’ language extension (CMSE):

Nonsecure_entry.h

/* Non-secure callable functions */
extern int nsc_ funcl (int x);

Nonsecure_entry.c (linked in the NSC memory region of the device):

/* Non-secure callable (entry) functions */
int _ attribute ((cmse nonsecure entry)) nsc_funcl (int x)

{

return secure_ funcl (x);

}
Secure_function.c (linked in the secure memory region of the device):

int secure funcl (int x)

{

return x + 3;

}

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 7
and its subsidiaries



AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

21.2.2 Non-Secure Software Callbacks
The Secure code can define and use software callbacks to execute functions from the Non-Secure world. This is a
consequence of separating Secure and Non-Secure code into separate executable files. The following figure shows
the software callback approach:

Figure 2-6. Non-Secure Software Callbacks Flow Chart

Secure
Driver/Handler

Secure peripheral
management or
secure algorithm

Non-Secure
Callback

Secure peripheral
management or
secure algorithm

Return

The management of callback functions can be performed using the BLXNS instruction. The following figure illustrates
the Non-Secure callback mechanism:

Figure 2-7. Non-Secure Software Callback Mechanism

Non-Secure Non-Secure Callable

Branch (BLXNS)

Non-Secure code Secure API Secure Function

Branch (BXNS)

Note: The definition of Non-Secure software callback is done through a pointer to a Non-Secure code location. If not
correctly checked in the Secure application, a wrong use of pointers can lead to a security weakness that enables

the execution of any Secure functions by the Non-Secure code. To overcome these disadvantages, a set of CMSE
functions based on the new Cortex-M23 Test Target (TT) instructions is provided.

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 8

and its subsidiaries



21.23

213

AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

Security State and Call Mismatch

Any attempts to access Secure regions from the Non-Secure code, or a mismatch between the code that is executed
and the security state of the system results in a Hard Fault exception, as shown in the following figure:

Figure 2-8. Security State and Call Mismatch

Non-Secure Secure NSC Secure

MOV ro, #10 DCD OXE97FE97F
MOV ri1, #abc MOVS ri1, #0
ADD r2, re, ri MOVS rl, #0 MOVS r3, #1

MOVS r3, #1
BLX secure_addr BXNS 1r

CMP ri1, #result

Secure and Non-Secure Interrupts Handling

The Cortex-M23 (ARMv8-M architecture) uses the same exception stacking mechanism as the ARMv7-M
architecture, where a subset of core registers is stored automatically into the stack (hardware context saving). This
permits immediate execution of the interrupt handler without the need to perform a context save in the software. The
ARMv8-M extends this mechanism to provide enhanced security based on two different stack pointers: a Secure
stack pointer and a Non-Secure stack pointer.

According to the priority settings configured in the Nested Vector Interrupt Controller (NVIC), the Secure code can
interrupt the Non-Secure code execution, and the Non-Secure code can interrupt the Secure code execution. The
NVIC registers at the core level are duplicated. This allows two vector table definitions: one for Secure, and another
for Non-Secure.

At product start-up, all interrupts are mapped by default to the Secure world (Secure vector table). Specific CMSIS
functions accessible in the Secure world, allocate each interrupt vector to a Non-Secure handler (declared in the
Non-Secure vector table).

As illustrated in the following figure, if the Secure code is running when a higher priority Non-Secure interrupt arrives,
the core pushes all its register content into a dedicated Secure stack. Registers are then zeroed automatically to
prevent any information from being read, and the core executes the Non-Secure exception handler. When the Non-
Secure handler execution is finished, the hardware recovers all the registers from the Secure stack automatically.
This mechanism is managed in hardware and does not require any software intervention. This allows a Secure
handover from running Secure code to a Non-Secure interrupt handler, and returning to running Secure code.

Figure 2-9. Cortex-M23 Interrupt Mechanism

Run Secure code Non-secure interrupt

Push Core registers

Zero Core registers

Switch to Non-Secure

Pop Core registers

Switch to Secure

Return from Handler Run Non-Secure Handler

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 9
and its subsidiaries



2.2

2.21

AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

Peripherals Security Attribution

The PIC32CM LS00/LS60 family of devices extends the concept of TrustZone to its integrated peripherals and offers
the possibility to allocate a specific peripheral to the Secure and Non-Secure world. The PIC32CM LS00/LS60 also
embeds peripherals that can share their resources between Secure and Non-Secure applications called Mix-Secure
peripherals. The management of each peripheral security attribution is done through the Peripheral Access Controller
(PAC).

Note: The IDAU peripheral is always Secure and the DSU (Device Service Unit) peripheral is always Non-Secure.
Refer to the “PIC32CM LEOO/LS00/LS60 Family Data Sheet” for additional information.

Secure and Non-Secure Peripherals

In the following figure, the PAC controller embeds a set of registers that define the security attribution of each
integrated peripheral of the system. These registers are configured at device startup by the ROM code which sets the
PAC.NONSECKX registers according to the user configuration stored in the User Row (UROW) fuses.

Figure 2-10. PAC NONSECXx Registers Description

31:24
2316
NONSECA 15:8 Reserved Reserved AC PORT FREQM EIC RTC WDT
70 GCLK SUPC OSC3EKCTR OSCCTRL RSTC MCLK PM PAC
3124
23:16
NONSECB 158
7:0 UsB HMATRIXHS DMAC NVMCTRL DsuU IDAU
31:24
23:16 TRAM OPAMP 128 CCL TRNG PTC
NENEERE 15:8 DAC ADC TCC3 TCC2 TCCAH TCCO TC2 TCA
7:0 TCO SERCOMS5 | SERCOM4 = SERCOM3 & SERCOM2 = SERCOM1 | SERCOMO EVSYS

Important: The peripherals security attribution cannot be changed by accessing the PAC.NONSECx
registers during application run-time unless the SECCFGLOCK bit is cleared before exiting the Boot ROM.
Refer to Security Configuration Lock Bit (SECCFGLOCK) for more information. Any changes must be
done using the User Row fuses and require a reset of the PIC32CM LS00/LS60 device. The application
can read the PAC.NONSECXx register to get the current attribution of integrated peripherals.

Peripherals can be categorized into two groups depending on their PAC security attribution and their internal secure
partitioning capabilities (standard/mix-secure):

» Secure peripheral: A standard peripheral is configured as Secure in the PAC. The security attribution of the
whole peripheral is defined by the associated NONSECx fuse set to zero. Secure accesses to the peripheral are
granted where Non-Secure accesses are discarded (Write is ignored, Read 0x0) and a PAC error is triggered.

* Non-Secure peripheral: A standard peripheral is configured as Non-Secure in the PAC. The security attribution
of the whole peripheral is defined by the associated NONSECx fuse set to one. Secure and Non-Secure
accesses to the peripheral are granted.

When a peripheral is allocated to the Secure world, only secure accesses to its registers are granted, and interrupt
handling should be managed in the Secure world only.

© 2022 Microchip Technology Inc. Application Note D8000039928-page 10
and its subsidiaries



2.2.2

2.2.21

AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

Mix-Secure Integrated Peripherals

The PIC32CM LS00/LS60 family of devices embed five Mix-Secure peripherals, which allow part of their internal
resources to be shared between the Secure and Non-Secure applications. A complete list of the PIC32CM LS00/
LS60 Mix-Secure peripherals and their resources are as follows:

» Peripheral Access Controller (PAC): Manages the peripherals security attribution (Secure or Non-Secure).

* Non-Volatile Memory Controller (NVMCTRL): Handles the Secure and Non-Secure Flash regions
programming.

» 1/0O Controller (PORT): Supports individual allocation of each 1/O to the Secure or Non-Secure applications.

» External Interrupt Controller (EIC): Supports individual assignment of each external interrupt to the Secure or
Non-Secure applications.

» Event System (EVSYS): Supports individual assignment of each event channel to the Secure or Non-Secure
applications.

The capability for a Mix-Secure peripheral to share its internal resources depends on the security attribution of that
peripheral in the PAC peripheral (PAC Secured or PAC Non-Secured):

*  When a Mix-Secure peripheral is secured (NONSECx fuse set to zero), the Secure application can allocate
internal peripheral resources to the Non-Secure application using dedicated registers

*  When a Mix-Secure peripheral is Non-Secured (NONSECXx fuse set to one), the peripheral behaves as a
standard Non-Secure peripheral. Secure and Non-Secure accesses to the peripheral register are granted.

Mix-Secure Peripheral (PAC Secured)

When a Mix-Secure peripheral is PAC Secured (associated PAC NONSECx fuses set to zero), the peripheral is
banked and accessible through two different memory aliases, as shown in the following figure:

Figure 2-11. PAC Secured Mix-Secure Peripheral Registers Addressing

Peripheral Base Address
(PERIPH->xxx)

Non-Secure Alias

Peripheral Base Address + Offset
(PERIPH_SEC->xxx)

NEEWAES Peripheral Registers

Logical addressing Physical addressing

The Secure world can then independently enable non-secure access to the internal peripheral resources using the
NONSEC register, as shown in the following figure for the External Interrupt Controller:

© 2022 Microchip Technology Inc. Application Note D8000039928-page 11
and its subsidiaries



AN3992

Introduction to PIC32CM LS00/LS60 Security Feature...

Figure 2-12. External Interrupt Controller NONSEC Register

Name: NONSEC

Offset: 0x40

Reset: 0x00000000

Property: PAC Write-Protection, Write-Secure

This register allows to set the NMI or external interrupt control and status registers in non-secure mode, individually

per interrupt pin.

Important: This register is only available for PIC32CM LS00/LS60 and has no effect for PIC32CM LE00.

Bit 31 30 29 28 27 26 25 24
NMI |
Access RW/R/RW
Reset 0
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 1 10 9 8
EXTINT15 EXTINT14 EXTINT13 EXTINT12 EXTINT11 EXTINT10 EXTINT9 EXTINTS
Access RW/R/RW RW/R/RW RW/R/RW RW/R/RW RW/R/RW RW/R/RW RW/R/RW RW/R/RW
Reset 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
EXTINT7 EXTINT6 EXTINTS EXTINT4 EXTINT3 EXTINT2 EXTINT1 EXTINTO
Access RW/R/RW RW/R/RW RW/R/RW RW/R/RW RW/R/RW RW/R/RW RW/R/RW RW/R/RW
Reset 0 0 0 0 0 0 0 0

The NONSEC register content can only be modified by the Secure world through the peripheral register secure alias

(PERIPH_SEC.NONSEC).

Setting a specific internal feature bitfield in the NONSEC register, enables access to the different bitfields associated

to this feature in the peripheral non-secure alias.

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note

DS00003992B-page 12



AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

2.2.2.2 Mix-Secure Peripheral (PAC Non-Secured)
When a Mix-Secure peripheral is PAC Non-Secured (associated NONSECx fuses set to one), the peripheral behaves

as a standard Non-Secure peripheral.

Secure and Non-Secure accesses to the peripheral register are granted. The peripheral register mapping is shown in
the following figure:

Figure 2-13. PAC Non-Secured Mix-Secure Peripheral Registers Addressing

Non-Secure Alias

Peripheral Base Address
(PERIPH->xxx)

Reserved Peripheral Registers

Logical addressing Physical addressing

Managing PAC Non-Secured (Mix-Secured) peripherals at the application level is like managing a standard Non-
Secure peripheral.

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 13

and its subsidiaries



AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

Security Configuration Lock Bit (SECCFGLOCK)

The Security Configuration Lock bit is a bit from the BOCOR row that allows the modification of the security
configurations during the application execution by programming the different IDAU, PAC, and NVMCTRL peripheral
registers.

After exiting the Boot ROM:

* IfSECCFGLOCK =1:
— The security configurations are locked so that no code (even Secure) can change them before next reset
sequence.
— The only way to update the security configurations is to reprogram the NVM Configuration rows then reset
the device.
* If SECCFGLOCK = 0:
— The security configurations can be modified during the application execution.
— ltis possible to update the security configurations by reprogramming the NVM Configuration rows, then
resetting the device.

The SECCFGLOCK = 0 configuration brings added value to the Secure software code running from the Flash BOOT
region compared to the one running from the Flash APPLICATION region, as it is possible to exit the Boot ROM
without locking the security configuration bits.

Therefore, the Secure software code of the Flash BOOT region will have the responsibility to lock the security
configuration before passing control to the Secure software code of the Flash APPLICATION region.

If BOCOR.SECCFGLOCK = 0, to guarantee the security of the overall application, it is critical that the
Secure software code of the BOOT region locks all the IDAU/PAC/NVMCTRL security configuration
registers and restores the Debug Access Level configuration.

A\ CAUTION

Refer to the Boot ROM section in the “PIC32CM LEOO/LS00/LS60 Family Data Sheet” for additional information.

© 2022 Microchip Technology Inc. Application Note D8000039928-page 14
and its subsidiaries



2.4

AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

Debug Access Level (DAL) and Chip Erase

The PIC32CM LS00/LS60 family of devices have the following configurable Debug Access Levels (DAL), which
restrict programming and debug access to the Secure and Non-Secure resources in the system.

» DAL2: Highest debug access level with no restrictions in term of memory and peripheral accesses.
» DALA1: Access is limited to the Non-Secure memory regions. Secure memory region accesses are forbidden.
» DALDO: No access is authorized except with a debugger using the Boot ROM Interactive Mode.

Note: For additional information on Boot ROM Interactive Mode, refer to the ‘Boot ROM’ chapter in the “PIC32CM
LEOO/LS00/LS60 Family Data Sheet”.

The DAL is combined with three-key protected ChipErase commands, which provide three levels of Non-Volatile
Memory erase granularity as shown in the following figure:

Figure 2-14. ChipErase Commands

Secure Flash
(BOOT Region)

Non-Secure Callable Flash
(BOOT Region)

Secure Flash
(APPLICATION Region)

Non-Secure Callable Flash

(APPLICATION Region)

Non-Secure Flash
(APPLICATION Region)

Secure Data Flash

Non-Secure Data Flash

CMD CEx :

The configuration of the ChipErase command protection key is done through the BOCOR bit field configuration, as
shown in the following tables:

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 15
and its subsidiaries



AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

Table 2-1. PIC32CM LS00 BOCOR Mapping

Bit
Pos.

0x00-0x1 15:0 Reserved
0x02 23:16 BNSC Reserved
0x03 31:24 Reserved BNSC
0x04 39:32 BOOTOPT
0x05 47:40 BOOTPROT
0x06 55:48 Reserved DICEEN SECCFGLOCK BOOTPROT
0x07 63:56 Reserved BCREN BCWEN
0x08-0x0B 95:64 BOCORCRC
0x0C-0x0F 127:96 Reserved
0x10-0x1F 255:128 CEKEY0
0x20-0x2F 383:256 CEKEY1
0x30-0x3F 511:384 CEKEY2
0x40-0x4F 639:512 CRCKEY
0x50-0x6F 895:640 BOOTKEY
0x70-0x8F 1151:896 ubs
0x90-0xDF 1791:1152 Reserved
OXEO-OxFF 2047:1792 BOCORHASH

Table 2-2. PIC32CM LS60 BOCOR Mapping

=114
Pos.

0x00-0x1 15:0 Reserved
0x02 23:16 BNSC Reserved
0x03 31:24 Reserved BNSC
0x04 39:32 BOOTOPT
0x05 47:40 BOOTPROT
0x06 55:48 Reserved DICEEN SECCFGLOCK BOOTPROT
0x07 63:56 Reserved BCREN BCWEN
0x08-0x0B 95:64 BOCORCRC
0x0C-0x0F 127:96 Reserved
0x10-0x1F 255:128 CEKEYO
0x20-0x2F 383:256 CEKEY1
0x30-0x3F 511:384 CEKEY2
0x40-0x4F 639:512 CRCKEY
0x50-0x6F 895:640 BOOTKEY
0x70-0x8F 1151:896 ubs
0x90-0xAF 1407:1152 IOPROTKEY
0xB0-0xDF 1791:1408 Reserved
OXEO-OxFF 2047:1792 BOCORHASH

The different ChipErase commands are used to increase the DAL level without compromising the code security.
Therefore, erase the code before changing to a higher DAL level, as illustrated in the following figure:

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 16

and its subsidiaries



AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

Figure 2-15. PIC32CM LS00/LS60 DAL and ChipErase Mechanism

] 1) Program NVM regions '—————_‘_,_‘
Delivered parts 2) Send SDALO command (NVMCTRL) P
After Reset
_ 1) Program NVM regions ___ After Reset > 1) Program Non-Secure NVM regions After Reset
2)Send SDAL1 command (NVMCTRL) T 2) Send SDALO command (NVMCTRL) I

ChipErase_S | ChipErase_NS
with CEKEY1 key if BS ==0 / — with CEKEYO key

e ChipErase_ALL —
with CEKEY2 key

Note:
1. BS =BOOTPROT for PIC32CM LS00/LS60 family of devices.

The MPLAB® X IDE provides an easy method to set the DAL and ChipErase commands.
Figure 2-16. ChipErase Commands Under MPLAB X IDE Project Tree

— @ﬂtrustZone_basic_pkB2cm_lsOO_cpro_NonSecure
—} IZ] Device actions |
i[=] SetDALO
[-] SetDAL 1
(-] ChipErase_NS CEO
(-] ChipErase_S CE1
- [=] ChipErase_ALL CE2|
} @ Header Files
} ﬁ Important Files
} @ Linker Files
HEE) Source Files
LS Libraries

+ (& Loadables

Note: This feature is available when the PIC32CM LS00/LS60 project is opened in MPLAB X IDE.

The PIC32CM LS00/LS60 ChipErase key fuses are also available in the Configuration Bits window provided by the
MPLAB X IDE by opening Toolbar > Window > Target Memory Views > Configuration Bits:

Figure 2-17. ChipErase Key Fuses Setting Under MPLAB X IDE Configuration Bits

Configuration Bits x
QL Address  Name Value Field Option Category Setting
B 0080_C010 BOCOR_WORD_4 FFFFFFFF BOOTROM CEKEY0_0  User range: OXFFFFFFFF  Chip Erase Key 0 bits 31:0 Enter Hexadecimal value
= 0080_C014 BOCOR_WORD_S5 FFEFFFFF BOOTROM_CEKEY0_l User range: OXFEEEFEEEE Chip Erase Key 0 bits 63:32 Enter Hexadecimal value
Ql 0080_co18 _WORD_¢ FFFFEFFF BOOTROM CEKEY0 2  User range: OXFFFFFEEE  Chip Erase Key 0 bits 95:64 Enter Hexadecimal value
&> 0080_C01C BOCOR_WORD_7 FFFFFFEF BOOTROM CEKEY0_3  User range: OXFFFFFEEE  Chip Erase Key 0 bits 127:96 Enter Hexadecimal value
LY 0080_C020 BOCOR WORD_S FFFFFFEF BOOTROM CEKEY1 0  User range: OXFFFFFFEE  Chip Erase Key 1 bits 31:0 Enter Hexadecimal value
0080_C024 BOCOR WORD_$ FFFFFFEF BOOTROM CEKEYl 1  User range: OXFFFFFFEE  Chip Erase Key 1 bits 63:32 Enter Hexadecimal value
E] 0080_C028 BOCOR_WORD_10 FFFFFFFF BOOTROM_CEKEYl 2 User range: OXFFFFFFFF Chip Erase Key 1 bits 95:64 Enter Hexadecimal value
0080_C02C BOCOR_WORD_11 FFFFFFFF BOOTROM_CEKEYl 3 User range: OXFFFFFFEF Chip Erase Key 1 bits 127:96 Enter Hexadecimal value
0080_C030 BOCOR_WORD_12 FFFFFFFF BOOTROM CEKEY2_0 User range: OXFFFFFFFF Chip Erase Key 2 bits 31:0 Enter Hexadecimal value
0080_C034 BOCOR_WORD_13 FFFFFFFF BOOTROM_CEKEY2 1 User range: OXFFFFFFEF Chip Erase Key 2 bits €3:32 Enter Hexadecimal value
0080_C038 BOCOR_WORD_l14 FFFFFFFF BOOTROM_CEKEY2 2 User range: OXFFFFFFEF Chip Erase Key 2 bits 95:64 Enter Hexadecimal value
0080_C03C BOCOR_WORD_15 FFFFFFFF BOOTROM_CEKEY2 3 User range: OXFFFFFFFF Chip Erase Key 2 bits 127:96 Enter Hexadecimal value
Memory |ConfigurationBits | Format |Read/Write v oo Soures Core B U
© 2022 Microchip Technology Inc. Application Note DS00003992B-page 17

and its subsidiaries



2.5

AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

Secure Boot

The PIC32CM LS00/LS60 Boot ROM is always executed at product startup. This software is ROM coded into the
device and cannot be bypassed by the user. Depending on the Boot Configuration Row (BOCOR) fuse setting, the
Boot ROM knows if a Secure Boot region is defined in the system.

The Boot ROM can perform an integrity check (SHA-256) or authenticate (SHA-256 + BOOTKEY or HMAC +
BOOTKEY) the firmware stored in the Secure Boot region prior to executing it. This verification mechanism is a key
element to consider for ensuring the system root of trust during deployment and execution of the Secure firmware.
The following figure illustrates the Secure Boot process with BS verification:

Figure 2-18. Secure Boot Process with BOOTPROT Verification

Boot ROM

- Verify Secure Boot

Region (optional)

0x0000 0000 Secure Flash - Jump at address
(BOQOT Region) 0x00000000

Non-Secure Callable Flash
(BOOT Region)

(€]

BOOTPROT ™ x 0x100 - BNSC x 0x20

]

BOOTPROT ™ x 0x100

Secure Flash

(APPLICATION Region)

Non-Secure Callable Flash
(APPLICATION Region)

(€]

(BOOTPROT " + AS) x 0x100 - ANSC x 0x20

(¢)]

(BOOTPROT "~ + AS) x 0x100

Non-Secure Flash
(APPLICATION Region)

0x0008 0000 (1) : BOOTPROT = BS

Flash (Up to 512 KB)

Note: The PIC32CM LS60 family of devices embeds an ATECC608B secure element allowing Secure Boot with
ATECCG608B. Refer to the chapter ‘PIC32CM LS60 Secure Boot with ATECC608B CryptoAuthencitation™ Device’ for
more details

To validate the Secure Bootloader code stored in the device Flash BOOTPROT memory section, the ROM code
computes the digest/MAC of the Flash BOOTPROT using the Crypto Accelerator (CRYA) and compares it to a
reference digest/MAC (256 bits/32 bytes) stored in the device Secure Flash (BOOT region) memory section. This
reference digest/MAC is stored in the last 256 bits of the Secure Flash (BOOT region) as shown in the following
figure:

Figure 2-19. Reference Digest/MAC Location

0x00000000 ——
A

BOOTPROT

Reference Digest/MAC : 256bits (32 bytes)

BOOTPROT * 0x100 Y

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 18
and its subsidiaries



AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

If the verification result is equal to the reference digest/MAC, the Boot ROM starts the bootloader execution. Any
mismatch in the value puts the device in an endless loop preventing Flash code execution. Only a ChipErase ALL
command allows the recovery from this device state. This command erases the full memory content and resets the
fuses to their factory settings.

The following fuses are used in the Secure Boot process configuration:

« BOOTPROT and BNSC: Defines the configuration of the boot section in the product Flash. The size of
the Secure and Non-Secure Callable boot sections can be customized according to the application needs.
These fuses are used for security memory allocation in the product IDAU, and for integrity and authentication
mechanisms when configured in the BOOTOPT fuse. Any change of the fuse setting requires a reset to be
considered by the device, as only the Boot ROM can change the IDAU setting.

+ BOOTOPT: Defines the type of verification to be performed.
+ BOOTKEY: A 256-bit key used for the authentication mechanism.

Table 2-3. PIC32CM LS00/LS60 BootKey Fuse Address

0x50-0x6F 895:640 BOOTKEY

Table 2-4. PIC32CM LS00 Secure Boot Verification Methods

BOOTOPT BOOTPROT Region BOCOR Row
Verification Method Verification Method

0 Secure Boot Disabled

1 SHA-256

2 SHA-256 with BOOTKEY (1)

3 HMAC with BOOTKEY (1)
Others Reserved

Table 2-5. PIC32CM LS60 Secure Boot Verification Methods

BOOTOPT BOOTPROT region NVM Boot
Verification Method Configuration Row

(BOCOR)

0 Secure Boot Disabled

1 SHA-based Secure Boot

2 SHA-based Secure Boot with BOOTKEY(")

3 HMAC-based Secure Boot with BOOTKEY(1)

4 ATECC608B-based Secure Boot SHA

5 ATECC608B-based Secure Boot SHA with BOOTKEY(1)

6-255 ATECC608B-based Secure Boot HMAC with BOOTKEY(1)

Notes:

1. BOOTKEY is defined in the BOCOR row.

2. The PIC32CM LS60 family of devices embeds an ATECC608B secure element, allowing more BOOTPROT
verification methods. Refer to the PIC32CM LS60 Secure Boot with ATECC608B CryptoAuthentication™
Device for more details

3. Referto the PIC32CM LEO0/LS00/LS60 Family Data Sheet for additional information on the Secure Boot
process and the verification methods.

© 2022 Microchip Technology Inc. Application Note D8000039928-page 19
and its subsidiaries



2.6

2.7

AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

Secure Boot Using ATECC608B CryptoAuthentication™ Device (PIC32CM LS60

only)

The PIC32CM LS60 device embeds a provisioned variant of the ATECC608B. The ATECC608B configuration of the
PIC32CM LS60 family is nearly identical to that of the TrustFLEX secure element called ATECC608B-TFLXTLS.

The PIC32CM LS60 Boot ROM provides support for secure boot using the ATECC608B. The general approach is
that the Boot ROM will use the ATECCG608B to assist in authenticating and checking the integrity of an application
code that is to be subsequently executed.

Note: Refer to the PIC32CM LE0O/LS00/LS60 Family Data Sheet for more details on the embedded ATECC608B
CryptoAuthentication Device.

To ease the ATECC608B configuration and provisioning for the customer, Microchip Technology has developed the
Trust Platform Design Suite (TPDS) v2, which is a dedicated software platform for onboarding with embedded
security. In addition to offering Secure Element and security solutions, Microchip also offers a full onboarding
experience to start with embedded security (including but not limited to trainings and interactive application notes) to
leverage Microchip's secure and optimized provisioning flow.

* Running a PIC32CM LS60 TrustZone Example with ATECC608B SHA256-based or ATECC608B HMAC-based
Secure Boot for MPLAB Harmony v3

To benefit from the ATECC608B + TPDS v2 environment using a PIC32CM LS60 for Secure Boot, the following
important steps must be realized:

1. Flashthe trustZone kit protocol example available in
C:\<TPDSv2_install_folder>\tpds_core\TrustFLEX\01_accessory_authentication\firmware\LS60.

2. Run the Firmware Validation use case for the ATECC608B-TFLXTLS under TPDS v2 by providing the Boot
and Application hex files.
3. Flash the generated combined hex file and enjoy.

Note: The trustZone basic with SBoot 1s60 example can be used as support for steps two and three. The
user must update the project configuration to switch to BOOTOPT >= 4.

Device Identity Composition Engine (DICE)
The Device Identifier Composition Engine (DICE) is a standard developed by the Trusted Computing Group (TCG) for
implementing attestation in low-cost loT devices.

When enabled using BOCOR.DICEEN fuse, the DICE engine generates the Compound Device Identifier (CDI) at
boot time that is based on a stored Unique Device Secret (UDS) key and the digest/MAC of the boot Flash image
(BOOTPROT region).

The CDI is written in the SRAM at the offset specified by the UROW.CDIROFFSET fuse, making it available for the
boot Flash code for the attestation purpose. The boot Flash code optionally can use the CDI to derive other keys for
attestation and encryption.

The Boot ROM checks that CDIROFFSET is within the max SRAM range: if not, the CDlI is not written.

Important: It is up to the user to ensure the CDI is written in the Secure SRAM region.

© 2022 Microchip Technology Inc. Application Note D8000039928-page 20
and its subsidiaries



AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

Figure 2-20. DICE CDI SRAM Location

------- - 0x2000 0000

Secure SRAM

------- - 0x2000 0000 + UROW.CDIROFFSET

RS CDI

Non-Secure SRAM

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 21
and its subsidiaries



2.71

AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

Unique Device Secret (UDS)
The Unique Device Secret (UDS) is a 256-bit symmetric key used to generate the CDI. The UDS key is only
accessible by the DICE engine and is only used for calculating the CDI at boot time.

Important: The UDS must be accessible only during Boot ROM execution: BOCOR.BCWEN and

BOCOR.BCREN must be set both to ‘0’ and BOCOR.CECFGLOCK must be set to ‘1’ to follow DICE

standard.

The Unique Device Secret must be provisioned on the BOCOR.UDS fuse. It must be unique for each device and
have a strong entropy. If DICE is enabled but the UDS key is not provisioned (BOCOR.UDS is all 1’s), all zeros are
written to the CDI output.

A\ CAUTION

Important: Devices can be factory programmed with securely key provisioned software.

A ChipErase ALL (CE2) will reset the whole BOCOR including the provisioned UDS.

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 22

and its subsidiaries



2.7.2

2.8

AN3992
Introduction to PIC32CM LS00/LS60 Security Feature...

Compound Device ldentifier

The Compound Device Identifier (CDI) is the output of the DICE module that is passed to the boot Flash code at a
specified memory location in the SRAM. The CDI can be used by the boot Flash code directly for attestation or to
derive other keys.

For additional information, refer to the “PIC32CM LEO0/LS00/LS60 Family Data Sheet”.
Figure 2-21. DICE CDI Key Generation Flow

BOCOR.DICEEN ==17?
BOCOR.BOOTPROT ==17?
BOCOR.UDS == All'1's ?

No

Exit DICE Engine

Exit DICE Engine

CDI=All'0's

UROW.CDIROFFSET <=
(SRAM size - CDI size)

Write CDI to SRAM

CDI Key Generation

A
Inputs

Flash Image

BOCORLDS (BOOTPROT region)

Exit DICE Engine

Cryptographic Accelerator (CRYA)

The PIC32CM LS00/LS60 products embed a hardware or software cryptographic accelerator (CRYA) which supports
Advanced Encryption Standard (AES) encryption and decryption, Secure Hash Algorithm 2 (SHA-256) authentication,
Galois Counter Mode (GCM) encryption, and authentication through a set of APIs.

Features:
The following are key features of CRYA:

* Advanced Encryption Standard (AES) compliant with FIPS Publication 197
— Encryption with 128-bit, 192-bit, and 256-bit cryptographic key
— Decryption with 128-bit, 192-bit, and 256-bit cryptographic key
« Secure Hash Algorithm 2 (SHA-256), compliant with FIPS Pub 180-4
— Accelerates message schedule and inner compression loop
» Galois Counter Mode (GCM) encryption using AES engine and authentication
— Accelerates the GF(2'28) multiplication for AES-GCM hash function

Refer to the PIC32CM LEOO/LS00/LS60 Family Data Sheet for additional information on this feature.

© 2022 Microchip Technology Inc. Application Note D8000039928-page 23
and its subsidiaries



3.1

AN3992
PIC32CM LS00/LS60 Application Development (Develop...

PIC32CM LS00/LS60 Application Development (Developers A and B)

The combination of the system DAL and ChipErase commands with the TrustZone for Cortex-M architecture allows
the developers to handle the following development and deployment approaches:

» Single-developer approach (Developer A)
» Dual-developer approach (Developer A + Developer B)

MPLAB Harmony v3 development tool coupled with MPLAB X IDE provides a full set of advanced features to
accelerate the development of a PIC32CM LS00/LS60 application. The following sections illustrate the approaches to
be followed by Developer A and Developer B to create and customize their application.

Single Developer Approach

In a single developer approach, the developer (Developer A) oversees the development and deployment of the
Secure and Non-Secure code. The Developer A’s application can be protected by using DALO. The following figure
illustrates a single developer approach on the PIC32CM LS00/LS60:

Figure 3-1. Single Developer Approach

Microchip Deve’:oper I End-User

DAL:2 DAL:0

© 2022 Microchip Technology Inc. Application Note D8000039928-page 24
and its subsidiaries



3.2

AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Dual-Developer Approach

In this approach, the first developer (Developer A) is in charge of developing the Secure application and its
associated Non-Secure callable library (. 1ib/ .h), and providing a prebuilt Non-Secure project to the second
developer (Developer B). This Secure application is then loaded in the PIC32CM LS00/LS60 Flash and protected
using the set DAL1 command to prevent further access to the Secure memory region of the device.

A second developer (Developer B) will then start their development on a programmed PIC32CM LS00/LS60 with
limited access to Secure resources (call to Non-Secure API only). To achieve this, Developer B will use the Non-
Secure project and the NSC library provided by Developer A. The following figure illustrates the dual-developer
approach on the PIC32CM LS00/LS60:

Microchip ‘ Deve}-l\oper Developer

mp °

Figure 3-2. Dual-Developer Approach

End-User

DAL: 2 DAL:1 DAL: O

The following sections describe the application development and deployment process to be implemented for
Developer A and Developer B.

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 25

and its subsidiaries



3.3

3.31

AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Develop a TrustZone Example (Developer A)

To help Customer A to start with the PIC32CM LS00/LS60 (regardless of single or dual developer approaches),
MPLAB Harmony v3 provides pre-configured trustZone basic 1s00 and trustZone basic 1s60 examples
that illustrate the basic Secure and Non-Secure application execution as shown in the following figure. This template
can be used to evaluate and understand the TrustZone for ARMv8-M implementation in the device, or as a start-up
point for custom solution development.

Note: For more understanding, the trustZone basic example name will be mentioned in the whole document
starting now, which refers to the PIC32CM LS00 and PIC32CM LS60 MPLAB Harmony v3 examples.

Figure 3-3. TrustZone_basic Example Overview

Non-Secure Project Secure Project

TrustZone
for Cortex-M

Opening a PIC32CM LS00/LS60 TrustZone Example from MPLAB Harmony v3
The trustZone basic example is available in the MPLAB Harmony v3 framework.

Note: The user must ensure that the MPLAB Harmony v3 framework is installed. This folder can be downloaded
using the MPLAB Code Configurator (MCC) Content Manager. If the MPLAB Harmony framework is not installed
while opening an MCC project, the user can download the required package from the following path: C:/Users/
HarmonyFramework).

Follow these steps to open the software project:

1. Open MPLAB X IDE.

2. Select Toolbar > File > Open Project (Ctrl + Shift + O).

3. Navigate to C:\<sHarmony3_Framework_Path>\csp_apps_pic32cm_le_Is\apps\trustZone.
4

Open the appropriate trustZone_basic example (depending on connected board).
When opened, the trustZone_basic example must appear in the MPLAB X IDE project tree as shown in the
following figure:

Figure 3-4. TrustZone_basic_ls00 Example Under MPLAB X IDE

Projects x | Files | =)
E---ﬁatrusthne_basjc_lsﬂﬂ

[ trustZone_basic_pic32cm_|s00_cpro_NonSecure

>ﬁ trustZone_basic_pic32cm_|s00_cpro_Secure

----- D project.group

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 26
and its subsidiaries



3.3.2

3.3.21

AN3992
PIC32CM LS00/LS60 Application Development (Develop...

5. Set the Non-Secure project as main then run the application.

TrustZone_basic Example Description
The PIC32CM LS00/LS60 trustZone basic example provided with MPLAB Harmony v3 is composed of pre-
configured Non-Secure and Secure projects.

All the configuration aspects related to TrustZone for ARMv8-M implementation are already implemented to facilitate
the development process. The following sections describe the content of the example, and the key elements to be
modified to customize the solution according to the application needs.

Secure Project Description
The goal of the Secure project included in the PIC32CM LS00/LS60 trustZone basic example is to provide

a configured development base for Secure code development. The Secure project is configured to illustrate the
following aspects of a standard Secure application on the PIC32CM LS00/LS60:

» Device resources attribution for the Secure and Non-Secure applications (fuse settings).
+ Initialization of system security.

» Declaration of secure gateways with the Non-Secure application (veneers).

» Secure call to the Non-Secure application.

The following figure describes the file architecture of the configured Secure project:

Figure 3-5. TrustZone_basic Example: Secure Project Architecture

= -@BtrustZone_basic _pic32cm _|s00_cpro_Secure
=) E] Header Files

LT_I config

L‘.ﬁ. @ packs Config/packs folder: Contains the

: ) device configuration from MPLAB

+t @ Important Files Harmony v3 development tool, the
E] Linker F”ES product DFP and the CMSIS header files.
E] Source Files

Secure Main.c file: Contains the Secure
application main routine

E] trustZone
E] | Nonsecure_entry.c: Contains the
Lol entry c | definition of the Non-Secure Callable
E Libraries (NSC) gateway.
(g Loadables

The following figure describes the main routine of the configured Secure project:

© 2022 Microchip Technology Inc. Application Note D8000039928-page 27
and its subsidiaries



AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-6. TrustZone_basic Example: Secure Project Main Flowchart

Secure main routine

SYS_|Initialize ()

<

Prepare and jump
to Non-secure
world

<

return
(EXIT_FAILURE)

The Secure main.c file must be used as a starting point for any secure application development.

3.3.2.2 Non-Secure Project Description
The Non-Secure project provided within the PIC32CM LS00/LS60 trustZone basic example is a standard
application that runs in a Non-Secure world. This application can use all system resources allocated to the Non-
Secure world. It uses a programmed Non-Secure Callable (NSC) function using the nonsecure_entry.h provided
by Developer A. The Non-Secure project architecture is shown in the following figure:

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 28
and its subsidiaries



AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-7. TrustZone_basic Example: Non-Secure Project Architecture

= getrustZone_basi c_pic32cm_|s00_cpro_NonSecure

=}- E] Header Files Config/packs folder: Contains the device
R — configuration from MPLAB Harmony v3
i conﬁg| development tool, the product DFP and
! pad<s the CMSIS header files.
=-(g) trustZone

: Contains the NSC

ﬂOﬂScCUF:_cnU“,‘.h gateway to the Secure project

‘:},% Important Files
- ‘1 Makefile
E] Linker Files
=}-|gz] Source Files

@-{F) config
; @ main.c Non-Secure Main.c: Contains the Non-

: : Secure application main routine
(g Libraries

= Eﬁ Loadables Secure loadable project: Contains the
: Q pic32cm 1s00 cpro SECUI'EI Secure application project that is loaded

before the Non-Secure project
The following flowchart describes the main routine of the configured Non-Secure project:

© 2022 Microchip Technology Inc. Application Note D8000039928-page 29
and its subsidiaries



AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-8. TrustZone_basic Example: Non-Secure Project Main Flowchart

Non-Secure main
routine

SYS_lInitalize ()

Display menu on
terminal

retum
(EXIT_FAILURE) S E)

o0 100

Scan X,y numbers|
fo add

Add x,y numbers
and print result

Display menu on
terminal

Case MULTIPLY,

<>

Scan x,y numbers|
to multiply

Multiply X,y
numbers and print|
result

Display menu on
terminal

Case DEFAULT

¢
ie [

Display menu on
terminal

The Non-Secure main function illustrates the call of specific Secure code through gateways declared in the
nonsecure_entry.h file provided by the Secure application.

This Non-Secure main. c file can be used as a starting point for any Non-Secure applications development.

3.3.2.3 Memory Configuration with Arm® TrustZone® for Armv8-M Manager

The Arm® TrustZone® for Armv8-M Manager is a tool that allows the Memory Configuration and the Peripheral
Configuration to be set with a GUI for the PIC32CM LS00/LS60 devices. To access this window, the MPLAB
Harmony v3 development tool must be opened.

The following figure shows the PIC32CM LS00/LS60 memory configuration for the trustzone basic example:

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 30
and its subsidiaries



AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-9. TrustZone_basic Example: Memory Configuration

FLASH (524,288 Bytes) DATA FLASH (16,384 Bytes)—— - SRAM (65,536 Bytes)
)

261,120
Bytes

AS
RS

32,768 Bytes

x3c 0x8000

APPLICATION
v
DS

ANS
RNS

0x80001 = 0x4000 0x1000!

Users can configure the Memory Configuration of the PIC32CM LS00/LS60 by accessing the System block in the
Project Graph view. Once selected, the following information will be displayed in the Configuration Options window.

Figure 3-10. Configuration Options Window

(] Configuration Options
=] [+

[=-System

Device & Project Configuration
#-Cortex-M23 Configuration
Ports

Clock

- Interrupts (NVIC)

DMA (DMAC)

WDT

#-PAC

Under System, expand Device & Project Configuration > PIC32CM5164LSXX100 Device Configuration > Memory
Configurator.

© 2022 Microchip Technology Inc. Application Note D80000399ZB-page 31
and its subsidiaries



AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-11. TrustZone_basic Example: Memory Configuration Through System Block
= System

[i}-Deviu:e 2 Project Configuration

[%--PICBECMSlEﬁLSDDlDD Device Configuration

%----Note: Set Device Configuration Bits via Programming Tool

--Fuse Settings

--TrustZDne Manager

E}--Memury configurator

- application Mon-Secure Callable size | 1,024 Bytes
- Boot Non-Secure Callable size 0 Bytes b
- ppplication Secure size 262,144 Bytes ~
--Data Secure size 16,384 Bytes ~
- Boot Protection size 0 Bytes W
- RAM Secure size 32,768 Bytes ~

3.3.2.4 NVM Configuration Rows Settings
To ease the definition and modification of application fuses, MPLAB Harmony v3 development tool allows the manual
configuration of all the NVM Configuration rows by accessing the Configuration Options window.

Important: The fuses used to partition the memory sections are directly computed and defined by the
MPLAB Harmony v3 development tool regarding the memory configuration of the device while generating
the project. These values are then set as preprocessed macros as shown in the next chapter.

Under System, expand Device & Project Configuration > PIC32CM5164LSXX100 Device Configuration > Fuse
Settings.

© 2022 Microchip Technology Inc. Application Note D8000039928-page 32
and its subsidiaries



3.3.2.5

AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-12. NVM Configuration Bit fields Settings

= System
[=-Device & Project Configuration
£-PIC32CMS5164LS00100 Device Configuration
Note: Set Device Configuration Bits via Programming Tool
E}-Fuse Settings
=-Generate Fuse Settings

NVM Secure Region Locks 0x 7 s
NVM Non-Secure Region Locks 0x 6 s
BOD33 User Level 0x'6 2
BOD33 Disable CLEAR v
BOD33 Action Ox 1

WDT Run During Standby CLEAR v

WDT Enable CLEAR v

WDT Always On CLEAR v

WDT Period 0x B s
WDT Window 0x B 4
WDOT Early Warning Offset 0x B =
WDT Window Mode Enable CLEAR v
BOD33 Hysteresis CLEAR v

RAM is eXecute Never CLEAR v
DATA FLASH is eXecute Never SET N7

User Row Write Enable SET v
Location of CDI value when DICE is programmed 0x/0 2
CRC for USER[1,2,3] DWORDS 0x E87673B6 &
Boot Option 0x D v
Security Configuration Lock SET v

These fuses define the configuration of Boot modes, ChipErase, system peripherals (BOD and watchdog), IDAU
(Memory security attribution), and PAC (Peripheral security attribution), and must be modified according to the
application needs.

Note: To get more information concerning the description of the different NVM Configuration rows and bit fields,
refer to the NVM Configuration Rows chapter of the PIC32CM LEO0/LS00/LS60 Family Data Sheet.

Any change to the fuse configuration requires a restart of the device, as fuses are handled by the Boot ROM
executed at device start-up. The Boot ROM is responsible for copying the configuration of the fuses in the different
peripheral registers, and then locking the configuration to any users (including Developer A) until the next boot.

Note: Refer to the Boot ROM chapter of the “PIC32CM LEO0/LS00/LS60 Family Data Sheet” for additional
information on the Boot ROM.

Secure and Non-Secure Projects Linker Files

The Secure and Non-Secure projects share the same configured linker file which is available in the PIC32CM-
Ls_DrP folder. This linker file is built to fit with the project configuration available in project Properties > XC32 (Global
Options) > xc32-1d > Symbols & Macros > Preprocessor macro definitions.

The following settings are generated by the MPLAB Harmony v3 development tool, which based on the memory
configuration of the Arm® TrustZone® for Armv8-M Manager as shown in the following figure.

© 2022 Microchip Technology Inc. Application Note D8000039928-page 33
and its subsidiaries



AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-13. Preprocessor Macro Definitions

Q Preprocessor macro definitions X
Destroy Up
SECURE ~

AS_SIZE=0x40000
ANSC_SIZE=0x400
R5_SIZE=0x8000

BOOTPROT_SIZE=0x0

The preprocessor macros reflect the size of the memory space and not the fuse value that explains the

CAUTION .
a _s1zE suffix after the fuse name.

To ensure that the memory section definitions are in line with the fuse settings, the configured linker file is built as
follows:

#if defined(SECUREiBOOTLOADER)
define SECURE
define TZ ROM ORIGIN (ROM ORIGIN)
define TZ ROM LENGTH (BOOTPROT SIZE)
define TZ_ROM NSC_ORIGIN ((ROM_ORIGIN + BOOTPROT_SIZE) - BNSC_SIZE)
define Tz ROM NSC_LENGTH (BNSC_SIZE)
define TZ RAM ORIGIN (RAM ORIGIN)
define TZ RAM LENGTH (RS _SIZE)
elif defined (SECURE)
define _SECURE
define TZ_ ROM ORIGIN (ROM_ORIGIN + BOOTPROT_SIZE)
define Tz ROM LENGTH (AS_SIZE)
define TZ ROM NSC ORIGIN (ROM ORIGIN + ((BOOTPROT SIZE + AS SIZE) - ANSC SIZE))
define TZ_ROM NSC_LENGTH (ANSC_SIZE)
define Tz RAM ORIGIN (RAM ORIGIN)
define TZ RAM LENGTH (RS SIZE)
#elif defined (NONSECURE)
# define Tz ROM ORIGIN (ROM ORIGIN + (BOOTPROT SIZE + AS SIZE))
# define TZ ROM LENGTH (ROM LENGTH - (BOOTPROT SIZE + AS SIZE))
+

SE S S S S e S o o o 3 o o o

# define TZ RAM ORIGIN (RAM ORIGIN + RS SIZE)
# define TZ RAM LENGTH (RAM LENGTH - RS_SIZE)
#endif

Depending on the project tag (SECURE, NONSECURE or SECURE_BOOTLOADER), the appropriate memory
space will be defined that allows for the modification of the project settings to fit with the application needs, without
modifying the linker file.

The preprocessor macro values can be modified manually in MPLAB X IDE project properties. However,
the MPLAB Harmony v3 and MPLAB X IDE projects configurations will not be aligned. Configure the
memory configuration in Arm® TrustZone® for Armv8-M Manager from the MHC Harmony v3 development
tool regarding the project needs, to ensure both MPLAB Harmony v3, and MPLAB X IDE project memory
configurations are aligned.

A\ CAUTION

3.3.3 Debugging the trustZone_basic Example

When the device is in DAL = 2, the debugging of the full example (Secure + Non-Secure project) is allowed. The
following steps provide the capabilities of the MPLAB X IDE for debugging the TrustZone application:

© 2022 Microchip Technology Inc. Application Note D8000039928-page 34
and its subsidiaries



AN3992
PIC32CM LS00/LS60 Application Development (Develop...

T~
1. To build the example in MPLAB X IDE, click the icon.
Note: The Non-Secure project must be set as the main project to re-build and load the full example.

2. Ensure that the PIC32CM LS00/LS60 debugger I/O is connected to a computer and is recognized.
3. Add a breakpoint on the result = secure_add(x,y) linein the Non-Secure project main. c file.
Figure 3-14. Adding a Breakpoint Line

B mainc x| ] plib_sercom3_usartc x | (] nonsecure_entryc x| B mainc x

sorce | Histoy QB8 - QABFRBOH|P LS D[S0 | & 52

66 while (1)

€7 {

€8 switch (cmd)

€9 {

70 case ADD:

71 {

i printf("\n\rEnter t first t i ps E")
73 scanf("%1lu , &X);

74 printf("\n\rx t t t i r: En) e
75 scanf(":lu", &y):

(m I result = secure add((uintlé_t)x, (uintlé6 t)y):

141

78 printf("\n\rx f t t : 1lu\t", x):;
79 printf("\n\rI first it is: 1lu\t", y):
80 printf("\n\rI At ds: \ttlu", result):

8l

82 display menu();

83 break;

24

4. Add a breakpoint on the return line of the secure add in the Secure project nonsecure entry.c file.
Figure 3-15. Adding a Breakpoint Line to secure_add

B mainc x| ] plib_sercom3_usartc x | (] nonsecure_entry.c x| ] mainc x | @ nonsecure_entryh  x

Source  History T | (& [ ~ 'Q%S%ﬁfﬁ/cb‘gﬁ‘é O H | & 8

41
42
43 #include
44
45
® 1int32_t _ attribute__ ((cmse_nonsecure_entry)) secure_add(uintlé_t x, uintlé_t y)
47 {
(=} T return (x + y);
49
® uint32 t _ attribute_ ((cmse_nonsecure_entry)) secure_multiply(uintlé t x, uintlé t y)
51 {
52 T return (x * y);
53
When debugging the Secure application veneers, only hardware breakpoints must be used to stop
A\ CAUTION ) . . . C "
code execution on an SG instruction. Using software breakpoints implies the addition of a BKP

instruction before SG instruction, which triggers a Secure fault during the code execution. This
behavior is normal, as the first instruction to be executed when accessing the NSC region must be
an SG instruction.

© 2022 Microchip Technology Inc. Application Note D8000039928-page 35
and its subsidiaries



AN3992
PIC32CM LS00/LS60 Application Development (Develop...

T

1
l} 4 >
5. Start the debugging session by clicking the button, and continue the debugging by clicking the

®
button.
As a result, the debugger must stop successively on:

— The result = secure add(x,y) function call (Non-Secure project)
— The secure_add return (Secure project)

3.34 Protecting the Secure Project Using Debug Access Levels
In a dual-developer deployment approach, it is important to protect the Secure memory regions (Secure application)
from further debugger accesses prior to delivering the programmed devices to Developer B. This can be done by
changing the DAL to DAL = 1 using the Device Actions commands as shown in the projects tree.
1. Close the debug session (if running).
2. Expand the Device Actions commands in the project tree (Secure or Non-Secure).
Figure 3-16. Device Actions Commands

—|- (s trustZone_basic_pic32cm_Is00_cpro_NonSecure
_édb Device actions

SetDAL O

SetDAL 1
ChipErase_NS CEO
ChipErase_S CE1
ChipErase=ALL CE2
+ ) Header Files

+} ﬁ Important Files

+ ) Linker Files

+ D) SourceFiles

+}- & Libraries

+}- & Loadables

3. Double-click on the Set DAL 1 command.
4. After the following confirmation message is displayed, click OK.
Figure 3-17. DAL 1 Set Prompt Message

o Jod e s

B9 Set DAL 1 X

ﬁ DAL is now 1

As a result, setting DAL = 1 prevents any future debug access to the Secure memory region of the device, as shown
in the following figure:

© 2022 Microchip Technology Inc. Application Note D8000039928-page 36
and its subsidiaries



AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-18. DAL Protected Device Memory Region

0x0000 0000

0x2000 0000 ==
@ [$50505050aeesss

BOOTPROT x 0x100 - BNSC x 0x20

505050
0x2000 0000 x (RS x0x80) [

(1)
BOOTPROT X 0x100 0x2001 0000

(©)
(BOOTPROT + AS) X 0x100 - ANSC x 0x20

&) 0x0040 0000
(BOOTPROT  + AS) x 0x100 B ot
0x40 0000 x (DS X 0x20) |

0x40 4000
SIS [ Data Flash (Up to 16 KB)

0x0008 0000 (1) : BOOTPROT = BS
Flash (Up to 512 KB)
Note:
1. BOOTPROT =BS.
Any future debug access to the Secure memory region will be refused by the device and reported as follows by
MPLAB X IDE.

Figure 3-19. The MPLAB X IDE Error Message at Runtime on DAL Protected Area

java.lang.RuntimeException: java.lang.RuntimeException: DAP transfer error 4

Important: Further development with the device may require the use of a standalone Non-Secure
project. Refer to Develop a Non-Secure Project (Developer B). To re-enable debug access on the
Secure memory regions, a ChipErase ALL command (CE2) must be issued using the Device Actions
commands. The whole device memory and fuse settings are erased, and the Secure application must be
reprogrammed in the device.

34 Develop a Non-Secure Project (Developer B)

In the Developer B context, the development starts with a programmed PIC32CM LS00/LS60 device that contains a
DAL1 protected Secure project with predefined veneers.

© 2022 Microchip Technology Inc. Application Note D8000039928-page 37
and its subsidiaries



AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Devel I
eveBoper End-User

DAL:2 DAL:1 DAL:0

Figure 3-20. Develop a Non-Secure Project (Developer B)

Microchip - Devil\oper

-

In this context, it is mandatory for Developer A to provide Non-Secure resource attribution descriptions, and a
Non-Secure callable function API library to Developer B.

Ideally, Developer A provides a preconfigured MPLAB Harmony v3 Non-Secure project to Developer B. The following
sections describe how to create and configure a Non-Secure project for a PIC32CM LS00/LS60 device embedding a
programmed DAL1 protected Secure application.

3.4.1 Creating a Non-Secure Project from MPLAB X IDE
Follow these steps to create a Non-Secure project using MPLAB X IDE:

1. Open MPLAB X IDE.

2. Select File > New Project (Ctrl + Shift + N), or from the Toolbar click the E’ button.

3. In the New Project Window, under Steps, select Choose Project.
4. In the right pane, under Categories, select Microchip Embedded, and then under Projects select Standalone
Project.
5. Click Next.
© 2022 Microchip Technology Inc. Application Note DS00003992B-page 38

and its subsidiaries



AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-21. MPLAB X IDE Standalone Project Creation: Choose Project Window

B3 New Project

*
Steps Choose Project
1. Choose Project Q, Filter:
2 .
Categories: Projects:
[ @i crochip Embedded . 32-bit MPLAB Harmony 3 Project

[C3) Other Embedded Standalone Project]

3 samples [ 32-bit MCC Harmony Project

m Existing MPLAE IDE w8 Project

m Prebuilt {Hex, Loadable Image) Project
(& User Makefile Project

m Library Project

m Import START MPLAB Project

m Import Atmel Studio Project

Description:

MPLAB® Harmony Project Wizard

< Back Finish Cancel Help

6. Select the option Select Device, and in the right pane select the PIC32CM LS00/LS60 device and the
appropriate tool, if available.
7. Click Next.
Figure 3-22. MPLAB X IDE Standalone Project Creation: Select Device Window
¥4 New Project X
Steps Select Device
1. Choose Projﬁct
; Sssl::‘tiHl::::E Family: All Families ~
4. Select Plugin Board
2‘ :::::tts'gﬁamam Device: |Presacms 16ats00100 ~]
Folder
- Tool: IFlCiZCMLSEIEICunus\tme-SN‘MCH.” vIDSthAH
MPLAB
X IDE
.
< Back Finish Cancel Help
8. Select the option Select Compiler, and in the right pane choose the latest XC32 Compiler Toolchain installed,
and then click Next.
Figure 3-23. MPLAB X IDE Standalone Project Creation: Select Compiler Window
QNEVTIDJQ(( X
Steps Select Compiler
;: ;W::D:f:;ﬁ [Compiler Toolchains
MPLAB
X IDE
‘Iv
<Back Fi Cancel Help
© 2022 Microchip Technology Inc. Application Note

DS00003992B-page 39
and its subsidiaries



3.4.2

3.4.21

AN3992

PIC32CM LS00/LS60 Application Development (Develop...

9.

Select the option Select Project Name and Folder, and in the right pane enter details for Project Name and

Project Location, and then click Finish.

Figure 3-24. MPLAB X IDE Standalone Project Creation: Select Project Name and Folder Window

B3 New Project

Steps

‘Select Proj and Folder

hoo

a
= Project Name:
Sele

s

5

Project Location:
ect Compler

‘Select Project Name and
Folder

Project Folder:

Project name

IShnda\ ane_NonSecure_PIC32CMLS0_Project

jects\Standalone _Nonsecure_PIC32CMLS00_ProjectX

V/ Enceding: 150-3859-1

d folder path length

A an are nearing the Windows limit. This may cause issues during build or {
5 Try shortening the project name or path,

ancel Help

The following Non-Secure project details will be displayed.

Figure 3-25. MPLAB X IDE Standalone Project Creation: Non-Secure PIC32CMLS00 Project Tree

+E Header Files
+ﬁ Important Files
+ﬁ Linker Files
+ﬁ Source Files
+@' Libraries
+ﬁi Loadables

==

Project Configuration

After creating a Non-Secure project, follow these steps to configure it according to the preprogrammed Secure
project mapping and Secure gateway APls:

1.

2.
3.

Configure the project by aligning its linker file (using the pre-processor macros) to the Secure and Non-Secure

memories attribution predefined by Developer A.
Link the secure gateway library to the project.
Add the nonsecure_entry.h file to the project.

Align Pre-processor Macros for Linker File to the PIC32CM LS00/LS60 Non-Secure Memories
Attributions

Follow these steps to align the project preprocessor macros to the linker file according to the Secure and Non-Secure
memory space allocation as illustrated in the following figure:

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note

DS00003992B-page 40



AN3992

PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-26. TrustZone Example Memory Attribution

0x0000 0000

Secure Flash
(APPLICATION Region)

0x0003 FEOO
Non-Secure Callable Flash

(APPLICATION Region)
0x0004 0000

Non-Secure Flash
(APPLICATION Region)

0x0008 0000
Flash (Up to 512 KB)

0x2000 0000

Secure SRAM

0x2000 8000
Non-Secure SRAM

0x2001 0000
SRAM (Up to 64 KB)

0x0040 0000

Secure Data Flash

0x0040 4000
Data Flash (Up to 16 KB)

(1) : BOOTPROT = BS

1. Open the Project Properties window and go to XC32 (Global Options) > xc32-Id > Symbols & Macros.

2. Click the icon to the right of the ‘Preprocessor macro definitions’ as shown below.
Figure 3-27. Symbols and Macros
a Project Properties - Standalone_NonSecure_PIC32CMLS00_Project X
Categories: X
______ © General Options for xc324d (v3.01)
""" @ File Indusion/Exclusion Option categories: | Symbols &Macros —
=~ o Conf: [default
i O Loading Linker symboals
@ Libraries Preprocessor macro definitions
> @ Building vmbol I
& @ XC32 (Global Options) e Keepa s
e @ ¥c32-as
Additional options:
o x32-acc
@ w3dg+ Option Description Generated Command Line  User Comments
b @
e @ x32-ar
@ Analysis
Manage Configurations...
| oK | | Cancel | | Apply | Unlock Help
3. Enter the macros to fit with the TrustZone example memory attribution, and then click OK.

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note

DS00003992B-page 41



AN3992

PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-28. Preprocessor Macro Definitions

B3 Preprocessor macro definitions X
Destroy Down Up
NONSECURE

AS_SIZE=0x40000

ANSC_SIZE=0x200

BOOTPROT_SIZE=0x0

BNSC_SIZE=0x0

Rs_si7E=0x8000

E Cancel

A\ CAUTION

3.4.2.2 Adding and Linking Secure Gateway Library to Non-Secure Project

The preprocessor macros reflect the size of the memory space and not the value of the fuse.

Follow these steps to add and link the secure gateway library that is generated during secure application

development provided by Developer A:

1. Copy the provided secure gateway library into the Non-Secure folder.

Figure 3-29. Adding Secure Gateway Library to the Non-Secure Project

pic32em_Is00_cpro.X

pic32em_Is00_cpro_Secure_sg_veneer.lib

2. Link the secure gateway library to the Non-Secure project.
a. Open the Project Properties.

Under Categories, expand Conf (default) > XC32 (Global Options), and select xc32-Id.

b
c. For Option Categories, choose Libraries.
d. For Library directories select the library directory information.

Figure 3-30. Adding Secure Gateway Library Directory to the Non-Secure Project

Manage Configurations...

a Project Properties - Standalone_NonSecure_PIC32CMLS00_Project X
catEgones: Options for xc324d (v3.01
o General st VEXT)
i+ @ File Indusion/Exdusion Option categories: |Librai Reset
=~ © Conf: [default
o Loading Optimization level of Standard Libraries None < | fad
> Libraries System Libraries
@ Building
P N ) Library directories -\ v
=}- © XC32 (Global Options)
- @ xc32-as Additional options:
@ xc32-gcc
@ xc32g++ Option Description  Generated Command Line  User Comments
pe32id If you select an option its description will appear here.
@ xc32-ar
@ Analysis

Apply

Help

e. For Additional options, enter the library name and apply the modifications, and then click OK.

© 2022 Microchip Technology Inc. Application Note
and its subsidiaries

DS00003992B-page 42



AN3992

PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-31. Link Secure Gateway to the Non-Secure Project

& 0

2
i @
e 0
2
°

i@ Libraries
-~ @ Building
XC32 (Global Options)
i-a

E Project Properties - Standalone_NonSecure_PIC32CMLSD0_Project

X
Categories:
e O General Options for xc324d (v3.01)
i~ @ File Indusion/Exdusion Option categories: | ibraries » -
(=~ @ Conf: [default;
i@ Loading Optimization level of Standard Libraries None -~

System Libraries

Library directories o\

xc32-as

Additional options: |4:pic32cm Is00_cpro_Secure_sg_veneerJib |
w32-gec

w32-g++
uc324d

Option Description  Generated Command Line  User Comments

wc32-ar
Analysis

Manage Configurations...

| I

Cancel I Apply I Unlock Help

3.4.2.3 Adding and Including Secure Gateway Header File
To add and include the secure gateway header file, perform these actions:

1. Copy the provided secure gateway header file into the Non-Secure folder.
Figure 3-32. Adding Secure Gateway Header File into the Non-Secure Folder

pic32em_s00_cpro.X

]
ks

L nonsecure_entry.h

pic32cm_s00_cpro_Secure_sg_veneer.lib

2. Right-click on the Non-Secure project in the project explorer, and then select Add Existing Item.
3. Select the secure gateway header file.

Figure 3-33. Select Secure Gateway Header File

B select ltem >
Look in: Standalone_MonSecure_PIC32CMLS00_Project ~ £ EE-
Y pic3dem_Is00_cpro.x ) Auto
._._j E nonsecure_entry.h (@) Relative
Recent Items pic32cm_ls00_cpro_Secure_sg_veneer.lib [ Copy
l File name: Inonsecure_enh'y.h I I Select I
Desktop Files of type: | All Files ~ Cancel
4. Add the secure gateway header at the beginning of the nonsecure main.c file.

© 2022 Microchip Technology Inc.

and its subsidiaries

Application Note

DS00003992B-page 43



AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-34. Include nonsecure_entry Header File

(&) Output x| (3] nonsecure_maine  x
sowce Hsory il |[[@ B-H- QA FBL (¢S
1@ |
2
3
4
S
€
7
g
9
10
11 1 ]
12
18| &)
14
15
16 int main(int argc, char** argv)
17| B «
18 int w,x,Y¥,%;
19 x = 10;
20 y=2;
21
22 w = secure add (x,y):
23 z = secure multiply (x,y):
24
25 while (1)
26
27 recurn ( ):
28

Important: Prior to loading the project on the target PIC32CM LS00/LS60 device, ensure that the
Erase All Before Programming check box is cleared ( under Program Options). This will prevent
the process from executing a ChipErase ALL command and erase the programmed PIC32CM
LS00/LS60.

Figure 3-35. Uncheck Erase All Before Programming

Categories: T e
e @ General SIS
- @ File Indusion/Exclusion Option categories: IProgram Options VI S
= @ Conf: [default
Y Compute boot signature
@ Loading Wutocorrect urow/bocor checksums
i @ Librari
oraries Erase key with validation O3 FFFFFFF JNFFFFFFFF JMFFFFFFFF  FFFFFFFF
pe @ Building
= @ ®C32 (Global Options) Chip erase type All Memories +NVM configuration rows (ChipErase_ALL) ~
@ w32as Set PC and SP to VTOR O
@ 32
e TOR table or numerical address cxception_table
-9 w32gH+
5 x32dd Board file path ${ProjectDir}/board.xboard
@ w32-ar Erase All Before Program O
2 Analysis
Option Description
If vou select an option its description will appear here.
Manage Configurations...
Cancel Apply Unlock Help
© 2022 Microchip Technology Inc. Application Note DS00003992B-page 44

and its subsidiaries



AN3992
PIC32CM LS00/LS60 Application Development (Develop...

lh;:'

5.  Build the project by clicking the icon, and verify no error is reported by the build process.
6. Launch the debug session and verify whether the project is working.

Important: Debugging the Non-Secure project requires a compatible programmed Secure application
that configures and starts the Non-Secure execution. If this Secure application is not available on the chip,
the debug process will hang.

© 2022 Microchip Technology Inc. Application Note D8000039928-page 45
and its subsidiaries



3.5

3.51

AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Developing TrustZone Example with SHA256-based or HMAC-based Secure Boot
(Developer A)

The PIC32CM LS00/LS60 devices offer two configurable memory sections for storing the Secure boot program.
These two sections are protected against ChipErase S and ChipErase NS offering possibilities to store the
Secure bootloader code as shown in the following figure.

Figure 3-36. Application with Secure Boot Program

0x0000 0000
Secure Flash
(BOOT Region)
BOOTPROT x 0x100 - BNSC x 0x20
Non-Secure Callable Flash
(BOOT Region)
BOOTPROT x 0x100 |
Secure Flash
(APPLICATION Region)

(BOOTPROT + AS) x 0x100 - ANSC x 0x20
Non-Secure Callable Flash

(APPLICATION Region)

(BOOTPROT + AS) x 0x100

Non-Secure Flash
(APPLICATION Region)

0x0008 0000
Flash (Up to 512 KB) CMD CEx : 0 1 2

In addition to ChipErase protection, the product Boot ROM offers the possibility to perform an integrity check or
authenticate the firmware stored in the Secure Boot section prior to executing it. This verification mechanism is a key
element to consider for ensuring the system root of trust during deployment and execution of the Secure firmware.

Opening a PIC32CM LS00/LS60 TrustZone Example with SHA256-based or HMAC-based Secure

Boot from MPLAB Harmony v3

To ease the development of an application with the Secure Boot program, MPLAB Harmony v3 provides predefined
trustZone basic with SBoot 1s00 and trustZone basic with SBoot 1s60 examples. These examples
can be used to evaluate and understand the solution architecture and to start the development of a custom
application featuring a Secure Boot project.

Note: For a better understanding, the trustZone basic with SBoot example name will be used to generalize
it for PIC32CM LS00/LS60 devices.

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 46

and its subsidiaries



AN3992

PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-37. TrustZone_basic_with_SBoot Example Overview

Non-Secure Project

User application

(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

— — — ]

To open the pre-configured trustZone basic with SBoot example, follow these steps:

Open MPLAB X IDE.
Select Toolbar > File > Open Project (Ctrl + Shift + O).

Pobdb=

connected board).

Fl’rustZone
N — “ for Cortex-M

Navigate to C:\<Harmony3_Framework_Path>\csp_apps_pic32cm_le_Is\apps\trustZone.
Open the App and BS_App projects within the trustZone basic with SBoot example (depending on

When opened, the trustZone basic with SBoot example must appear in the MPLAB X IDE project tree

as shown in the following figure:

Figure 3-38. TrustZone_basic_with_SBoot_Is00 Example: Project Tree

Projects x | Files |

=

E trustZone_basic_with_secureboot_pic32cm_|s00_cpro_Secure
D project.group
E...ﬁﬂgs_ﬂm

E trustZone_basic_with_secureboot_pic32cm _|s00_cpro_Dummy
D project.group

E trustZone_basic_with_secureboot_pic32cm _|s00_cpro_MonSecure

E trustZone_basic_with_secureboot_pic32cm_|s00_cpro_BootSecure

5. Run the application.
a. Set the BootSecure project as main then run the example.
b. Set the NonSecure project as main then run the example.

© 2022 Microchip Technology Inc. Application Note
and its subsidiaries

DS00003992B-page 47



3.5.2

3.5.21

3.5.2.2

AN3992
PIC32CM LS00/LS60 Application Development (Develop...

TrustZone_basic_with_SBoot Example Description
PIC32CM LS00/LS60 trustZone basic with SBoot example provided with MPLAB Harmony v3 is similar to

the trustZone basic example described in the previous chapters; however, it embeds a Secure Boot program
(stored in the BOOTPROT memory region of the device).

Secure Boot Project Description
The goal of the Secure Boot project included in the trustZone basic with SBoot example is to provide a
preconfigured development base for Secure boot code development on the PIC32CM LS00/LS60. The Secure

project is preconfigured to illustrate the following aspects of a standard Secure application on the PIC32CM LS00/
LS60:

» Definition and declaration of Secure Boot gateways with the Non-Secure world (veneers)
» Secure call to the Secure application

The following figure illustrates the file architecture of the pre-configured BootSecure project:

Figure 3-39. TrustZone_basic_with_SBoot Example: BootSecure Project Architecture

Iél---mﬁtrustZDne basic_with_secureboot_pic32am_|s00_cpro_BootSecure
E} E Header Files

i config
] deviceh
: u_J Ddd"s Config/packs folder: Contains the device
configuration from MPLAB Harmony v3
. ﬁ' Im pnrtant FllES development tool, the product DFP and
.ﬁ LlnkE[ F||Es the CMSIS header files.
E} [a:‘ Source Files
. Wip) config
Secure Main.c file: Contains the Secure
" R]j main.c application main routine.
El . trustZone

Nonsecure_entry.c: Contains the

‘[]J nonsecure_entry | bnsc.c - definition of the Non-Secure Callable
(NSC) gateway.
l ﬁ Libraries

H--ﬁl Loadables

Note:

1. The Non-Secure project provided in the PIC32CM LS00/LS60 trustZone basic_with SBoot example
has the same architecture than the one presented for the trustZone basic example. But it also includes
the BootSecure loadable project and the nonsecure _entry bnsc.h file containing the boot secure
functions.

Memory Configuration with Arm® TrustZone® for Armv8-M Manager

The following figure shows the PIC32CM LS00/LS60 memory configuration for the
trustZone basic with SBoot example:

© 2022 Microchip Technology Inc. Application Note D8000039928-page 48
and its subsidiaries



AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-40. TrustZone_basic_with_SBoot Example: Memory Configuration

FLASH (524,288 Bytes) DATA FLASH (16,384 Bytes)— SRAM (65,536 Bytes)

0x0 0x0

BOOTPROT

RS

32,768 Bytes

AS

16,384 Bytes =

APPLICATION
RNS

ANS

IV

0x4000

3.5.2.3 NVM Configuration Bit Fields Configuration
The following fuse sizes are defined in the preprocessor macros for the project:

Figure 3-41. Preprocessor Macros Configuration

ANSC_SIZE=0x800
AS_SIZE=0x2aa00
BOOTPROT_SIZE=0x2aa00
RS_SIZE=0x8000
BNSC_SIZE=0x800

Note: The other fuses are set with their default value.

3.5.2.4 Enabling Secure Boot Process with BS Verification
Follow these steps to enable the Secure Boot process verification when working on an MPLAB Harmony v3
TrustZone project:
1. Perform a ChipErase ALL command in Device Actions.
2. Runthe trustzZone basic with SBoot application using MPLAB X IDE.
3. Change BOOTOPT fuse to 0x01, 0x02 or 0x03 using the Configuration Bits tool:

© 2022 Microchip Technology Inc. Application Note DSOOOOSQQZB-page 49
and its subsidiaries



AN3992
PIC32CM LS00/LS60 Application Development (Develop...

Figure 3-42. Secure Boot Process with BOOTPROT Verification

Configuration Bits x
31 Address Name Value Field Option
F&_ NONSECC_OPAMP CLEAR
E] NONSECC_TRAM CLEAR
0080_401C USER_WORD_7 00000000 BOOTROM CDIROFFSET User range: Ox0 - OxFFFFFFFF
5 0080_4020 USER WORD 8 DEOATA2B BOOTROM_USERCRC User range: Ox0 - OxFFFFFFFF
E: 0080_C000 BOCOR WORD O F207FFFF IDAU BNSC User range: O0x0 - Ox1FF
= 0080_C004 BOCOR_WORD_1 |JFWvvAsRRB00TROM BOOTOPT User range: Ox0 - OxFF
ﬁ 000000AA IDAU BOOTPROT User range: Ox0 - Ox7FF
BOOTROM_SECCFGLOCK SET
BOOTROM_DICEEN CLEAR
NVMCTRL_BCWEN SET
NVMCTRL BCREN SET

Note: Setting the BOOTOPT fuse to 0x04, 0x05 or 0x06 on PIC32CM LS60 allows it to benefit from Secure Boot
with the ATECC608B. Refer to the PIC32CM LS60 Secure Boot with ATECC608B CryptoAuthentication™ Device
chapter for more details on this feature.

The reference hash will then be computed and written in memory automatically once BOOTOPT fuse is set as shown
in the following figure:

Figure 3-43. Secure Boot Application Reference Hash

0002R1R0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF {yyyvyvvyyyvvvvy
0002R1B0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF {yyyvyyyyyvvvvvy
0002R1CO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF {yyyvyvyyyvvvvvy
0002R1D0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF {yyyvyyyyyvvvvvy
0002R1E0 DB A3 3A 58 BD DC 78 07 E1 A3 OF 94 AC EE 7A OE Reference Hash
0002A1F0 76 DF 3E 15 DD FD 34 02 AD 42 AR 94 A6 BO A4 20
00022200 7F E9 7F E9 Dé F7 E6 B9 7F E9 7F ES D6 F7 EA B9 BNSC
00022210 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF {yyyyyyyyyvvvvvy
00022220 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF {yyyyyyvyyvvvvvy
0002R230 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF {yyyyvvyvyvvvvvy
0002RA240 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF {yyyyyvvyyyvvvvy

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 50

and its subsidiaries



41

AN3992

Software Use Case Examples

Software Use Case Examples

Non-Secure Peripheral (TC0)

This use case example describes how to configure a PIC32CM LS00/LS60 integrated peripheral (TCO) as a Non-
Secure peripheral using MPLAB Harmony v3. In this example, the Secure project allocates the PORT and TC
peripherals to the Non-Secure world, sets the system clocks and peripherals, and then jumps to the Non-Secure
application.

The Non-Secure application uses the TCO to generate a PWM signal on PC19 (LEDO). The following figure illustrates
the execution flow of the Secure main routine:

Figure 4-1. Non-Secure TCO0 MPLAB Harmony v3 Use Case: Secure Application Flowchart

Secure main routine

SYS_Initialize ()

-~

Prepare and jump
to Non-secure
world

<

return
(EXIT_FAILURE)

The following figure illustrates the execution flow of the Non-Secure main routine:

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 51

and its subsidiaries



AN3992

Software Use Case Examples

Figure 4-2. Non-Secure TCO0 MPLAB Harmony v3 Use Case: Non-Secure Application Flowchart

Non-secure main

[CLUnS TCO Compare

Interrupt Handler

Get interrupt
status

MCO interrupt 2

Clear LED1 state

SYS_Initialize ()

Set TCO callback
register

Enable TCO
peripheral

return
(EXIT_FAILURE)

OVF interrupt ?

Set LED1 state
Wait for 10 ms @

To ease the secure state configuration of a peripheral, MPLAB Harmony v3 development tool provides the Peripheral
Configuration tool in the Arm® TrustZone® for Armv8-M Manager.

For this example, TCO is set as Non-Secure and the appropriate box is highlighted in red in the Peripheral
Configuration window of the Arm® TrustZone® for Armv8-M Manager tool:

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 52
and its subsidiaries



AN3992

Software Use Case Examples

Figure 4-3. Non-Secure TCO MPLAB Harmony v3 Use Case: Peripheral Configuration

(] TrustZone-M Manager = B

TRUSTZONE

Note: Click on peripherals to change from Secure (green color) to Non-Secure (red color) vice versa.

Peripherals

Memory Configuration

Peripheral Configuration I AC I | ADC I I o I | DAC I I DMAC | | DSU I I FREQM |
I 12s I | opPAMP I I PM I | PTC I I RSTC | | RTC I I SERCOMO |
I SERCOM1 I | SERCOM2 I I SERCOM3 I | SERCOM4 I I SERCOMS5 | | SUPC I I T |
I TCa1 I | TC2 I I Toco I | TCcL I I T2 | | TOC3 I I TRAM |
I TRNG I | usB I I wDT I

Mix-Secure Peripheral

EIC EVSYS NVMCTRL PAC PORT

System Resourc

I GAK I | IDAU I I MAK I |USC32KC[RLI I OSOCTRL |

The following pictures show the code generated by the MPLAB Harmony v3 development tool to allocate the TCO
peripheral to the Non-Secure world:

» TCO allocation to the Non-Secure world in the fuses definition (Secure initialization.c file).
Figure 4-4. Non-Secure TCO MPLAB Harmony v3 Use Case: TCO Defined as Non-Secure

fpragma config NONSECC_ SERCOM5 = CLEAR

ragma config NONSECC_TCO = SET|
#fpragma config NONSECC _TCl = CLEAR

» TCO peripheral interrupt allocation to the Non-Secure world (plib nvic.c).
Figure 4-5. Non-Secure TCO MPLAB Harmony v3 Use Case: TCO Interrupt Defined as Non-Secure

INVIC SetTargetState (TCO IRQn) ;|

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 53

and its subsidiaries



AN3992

Software Use Case Examples

Secure Peripheral (TCO0)

This use case example demonstrates how to configure a PIC32CM LS00/LS60 integrated peripheral (TCO) as a
Secure peripheral. In this use case, the Secure project is in charge of configuring system resources and managing
the TC peripheral. It also provides specific TCO APIs and Non-Secure callbacks to the Non-Secure world.

Note: This use case secure main routine is the same as the Non-Secure TCO use case, but the SYS Initialize
() content is different. Refer to the Non-Secure TCO MPLAB Harmony v3 Use Case for more details.

The following figure illustrates the Non-Secure main flowchart of this application:

Figure 4-6. Secure TCO MPLAB Harmony v3 Use Case: Non-Secure Main Routine Flowchart

Non-secure main
routine

SYS_lnitialize ()

NS callable to Veneer to start

start Systick timer Systick timer Start Systick timer|

NS callable to
enable TCO
peripheral

Veneer to enable Enable TCO
TCO peripheral peripheral

NS callable to .
register "LED_On" Veneer to register Register TCO

TCO MCO secure MCO secure
as TCO MCO secure|
callback callback callback

NS callable to ; .
register "LED_Off" Veneer to register Register TCO

TCO OVF secure OVF secure
as TCO ovf secure
callback callback callback

4

return
(EXIT_FAILURE)

mi; I_:_agg)edl&y 'Veneer to change Change TCO duty

e TCO duty cycle

NS callable to Veneer to
generate a 10 ms generate a 10 ms
delay delay

The following flowchart illustrates the TCO interrupt handler routine for this use case:

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 54
and its subsidiaries



AN3992

Software Use Case Examples

Figure 4-7. Secure TCO MPLAB Harmony v3 Use Case: TC Handler Flowchart

Secure TCO Interrupt
Handler

CMO Interrupt ?

OVF Interrupt ?

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 55
and its subsidiaries



4.3

AN3992

Software Use Case Examples

Mix-Secure Peripheral (EIC)

This use case example shows how to configure and use the PIC32CM LS00/LS60 Mix-Secure peripheral (EIC).
Using this example, the user can configure two interrupt lines, EXTIN2 and EXTIN12, and then allocate them to the
Non-Secure and Secure world.

The following figure illustrates the execution flow of the Secure main routine:

Figure 4-8. Mix-Secure EIC MPLAB Harmony v3 Use Case: Secure Application Flowchart

Secure Main Routine SWITCH_handler

Toggle Secure
SYS_Initialize () LED state

return
Register

"SWITCH_handler"
as EIC 12 callback
register

Prepare and jump to
Non-Secure Reset
handler

return
(EXIT_FAILURE)

The following figure illustrates the execution flow of the Non-Secure main routine:

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 56

and its subsidiaries



AN3992

Software Use Case Examples

Figure 4-9. Mix-Secure EIC MPLAB Harmony v3 Use Case: Non-Secure Application Flowchart

Non-Secure main

routine SWITCH_handler

Toggle Non-Secure
SYS_|Initialize () PA22 state

Register return
"SWITCH_handler"
as EIC 2 callback
register

Start RTC timer

return
(EXIT_FAILURE)

© 2022 Microchip Technology Inc. Application Note
and its subsidiaries

DS00003992B-page 57



AN3992

Software Use Case Examples

TrustRAM

The TrustRAM (TRAM) embedded in the PIC32CM LS00/LS60 offers the following advanced security features for
secure information storage:

» Address and data scrambling

» Silent access

+ Data remanence

» Active shielding and tamper detection

» Full erasure of scramble key and RAM data on tamper detection

In this example, the TrustRAM content is displayed and refreshed every second on a console (USART 3), allowing
users to experiment with static and dynamic tamper detections coupled with a TrustRAM full erase.

Figure 4-10. TrustRAM MPLAB Harmony v3 Use Case: Output

T COM27 - Tera Term VT - O XK

File Edit Setup Control Window Help

rust RAM content {1s refresh>
Bxa5a5 Bxa5a5 BxabSab Bxa5aS BxabSab Bxa5a5 BxaSab
Bxa%ab Bxabab Bxabab Bxabab Bxabab BxaS5ab BxaSab
Bxa%ab Bxabab Bxabab Bxabab Bxabab BxaS5ab BxaSab
Bxa5ab Bxabab Bxabab Bxabab Bxabab Bxa5abd BxaSab
Bxa5a5 BxaS5a5 Bxabab Bxa5a5 Bxabab Bxab5a5 Bxabab
Bxa5a5 Bxa5a5 Bxabab Bxaba5 Bxabab Bxaba5 Bxabab
Bxa5a5 Bxa5a5 BxaS5ab Bxa5aS BxabSab Bxa5a5 BxaSab
BxaS5a5 Bxa5a5 BxaS5a5 BxaSab BAxaSab BAxaS5a5 BxaS5as

rust RAM content {1s refreshd
Bxa5a5 BxaS5a5 Bxabab Bxab5a5 Bxabab Bxab5a5 Bxabab
Bxa5a5 BxaS5a5 BxaS5ab Bxa5a5 BxabSab Bxa5a5 Bxabab
Bxa5a5 Bxa5a5 BxabSab Bxa5aS BxaSab Bxa5a5 BxaSab
Bxa5a5 Bxa5a5 BxaSab Bxa5aS BxabSab Bxa5a5 BxaSab
Bxa%ab Bxabab Bxabab Bxabab Bxabab BxaS5ab BxaSabd
Bxa%ab Bxabab Bxabab Bxabab Bxabab BxaS5ab BxaSabd
Bxa5ab Bxabab Bxabab Bxabab Bxabab Bxa5abd BxaSab
Bxa5a5 BxaS5a5 Bxab5aS Bxa5a5 Bxabab BxaS5a5 BxaSab

rust RAM content {1s refresh>
AxPA0N AxAANA AxAPRA AxABAD BxPAAR AxAAPRA OxAAAA
xR BIxPARE BxBPRA AxAPAP BxPAAR AxPARA BxAAAA
xR BxPABE BxBPRA AxABEB BxPAAR BxPABE BxAEEA
xR BxPABR BxBBRA AxABEB BxPRAR BxBABE BxBABRA
BxPOBD BxBABR BxBBBA AxABEB DOxPRAB BxPEBE BxBABA
BxPO00 BxPOBD BxDDOD AxPBRB DxPOOB BxPRBR OxDBBA
BxPO00 BxPOBD BxDDOD IxPDBRB OxPOOBD BxPRBR OxDBBA
AxPRRN AIxAARA BxAPRA AxARAR BxPBAAR AxAARE AxAAAA

Figure 4-11. TrustRAM MPLAB Harmony v3 Use Case: TRAM Physical Content (Not Erased)

Rddress s HName Hex Decimal Binary

4200 5€00  RAMO Ox45BTeESL 1219%9E8... 01001000 10110111 01101110 10010001
4200_5604 BAM]1 Ox42B7eESL 1219%93,... 01001000 10110111 01101110 10010001
4266_5668 ROM2 Ox45BT7eESL 12195%3... 01001000 10110111 01101110 10010001
4EGD_SEGE ROM3 Ox42BTeESL 1219938,... 01001000 10110111 01101110 10010001
4200_5610 RAM4 0x45BTeESL 1219%38,...01001000 10110111 01101110 10010001
4266_5614 BOLMS Ox45BTeESL 1219%98... 01001000 10110111 01101110 10010001
4200_5618 BAMG 0x45BTeESL 12195%E,.. 01001000 10110111 01101110 10010001
4EGD:EElE ROLMT Ox45BTeESL 1219%9E8... 01001000 10110111 01101110 10010001

Note: This use case secure main routine is the same as the Non-Secure TCO use case but the SYS Initialize
() content is different. Refer to the TrustRAM MPLAB Harmony v3 Use Case for more details.

The following figure illustrates the execution flow of the non-secure main routine:

© 2022 Microchip Technology Inc. Application Note D8000039928-page 58
and its subsidiaries



AN3992

Software Use Case Examples

Figure 4-12. TrustRAM MPLAB Harmony v3 Use Case: Non-Secure Application Flowchart

Non-secure main
routine

SYS_lInitialize ()

[7)
5
a
(%)
&
P

NS callable to
enable RTC
peripheral

NS callable to
enable RTC
peripheral

¢

return NS callable to
(EXIT_FAILURE) print message on

console

NS callable to
display TRAM
content

Wait 1s

Veneer to enable
RTC timer

Veneer to enable
RTC timer

Veneer to print
message on
console

Veneer to display
TRAM content

Veneer to enable
RTC timer

Veneer to enable
RTC timer

Print message on
console

Display TRAM
content

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note

DS00003992B-page 59



4.5

4.5.1

AN3992

Software Use Case Examples

Data Flash

The Data Flash embedded in the PIC32CM LS00 offers the following advanced security features for secure
information storage:

» Data Flash Scramble
« Silent access to selected row (TEROW)
» Tamper erase of selected row (TEROW) on tamper detection

There are two Data Flash use cases explained below, that illustrate the configuration of the NVMCTRL for Secure
Data Flash management:

1. Data Flash Scrambling activated with key: 0x123456.
2. Silent access enabled on the first Data Flash ROW.

In these examples, the Secure Data Flash row 0 is erased and its content is displayed. Then the Secure Data Flash
security features are enabled, the row 0 is filled with a OXCAFEDECA pattern, and the row 0 content is displayed on
the console.

Secure Data Flash with Data Flash Scramble
Figure 4-13. Secure Data Flash with Data Flash Scramble MPLAB Harmony v3 Use Case: Output

+
1

1155 |

Fon s s )

AL ERED R

=
=
oy

EEEEREDED DS DS S
R R s R el R R e R

= =
= =)
= &

A " ) ' RO
p R( A & P onte

P [3 [3 ' L h [ () () () ()
3 A ¢ Ax4RERRS AFEDECH GAFEDEGH
P A : Bx4PGB16 AFEDECA CAFEDECH
3 9 - BxABBRLS AFEDECH CREEDEGE
p A : Ax4APA20 AFEDECA CAFEDECH
p A : @ g AFEDECA CAFEDECH
p A : @ A AFEDECA CAFEDECH
D 5 5 : () I () () I )
P 5 E [} I 0} [} I 0}
P 5 : [} I [} [} I [}
P 5 E [} I (] [} I (]
P 5 : () I () () I ()
p A 1: AFEDECA CAFEDECH
p A G AFEDECA CAFEDECH
D 5 E () I () () I )
P 5 : [} I 0} [} I 0}

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 60

and its subsidiaries



AN3992

Software Use Case Examples

Figure 4-14. Secure Data Flash with Data Flash Scramble MPLAB Harmony v3 Use Case: Data Flash Physical
Content (Not Erased)

DATAFLASH Me...

: FEAE|EA9$

FEAElEAﬁC

FEAS|EA9$

FEAS

0040 _0010

. [FE&3Z

[ERGC

FEAS [ERSC

FEAS [ERSC

FE&S

0040_0020

. |[FEAS

|EA9$

FEAElEAﬁC

FEAS|EA9$

FEAS

0040 _0030

- [FERS [ERGC

FEAS [ERSC

FEAS [ERSC

FE&S

0040_0040

. |[FEAS

|EA9$

FEAElEAﬁC

FEAS|EA9$

FEAS

0040 00350

. [FE&3Z

[ERGC

FEAS [ERSC

FEAS [ERSC

FE&S

0040_0060 [ERSC
0040_0070 [ERSC

FEAS [ERAC
FELS [EASC

FELS [ERAC
FEAS [ERSC

FELE [ERAC
FEAS [ERSC

FELS
FE&S

4.5.2 Secure Data Flash with Silent Access

Figure 4-15. Secure Data Flash with Silent Access MPLAB Harmony v3 Use Case: Output

RO
P R IL 8 H & F 0
p 5 A3 5
] - o ARG
d d 9
e
P § [ 4] §
] - ARG
¥ . 9 )
J - AT O
) 135 2 ]
P 1 0 28
P 1 § 1
P § g 1
P L 1
P 0 1
P 0 1
P § 1
P g §
P L 1
P 0 1
P b 1
"
1 A ) A i
P H & F 0 e
P E 5 () . n n . ()
L 5 5 () . n n I )
P 5 5 () . n n . ()
P E 5 (] . n n I (]
P 5 5 () . n n I ()
P E 5 () . n n . ()
[ 5 5 ) . () () I n
P 5 5 () . n n . ()
P 5 (] . n n I (]
P 5 () . n n I ()
P 5 () . n n . ()
[ 5 ) . () () I n
P 5 () . n n . ()
P 5 (] . n n I (]
P 5 () . n n I ()
P 5 () . n n . ()

Application Note DS00003992B-page 61

© 2022 Microchip Technology Inc.
and its subsidiaries



AN3992

Software Use Case Examples

Figure 4-16. Secure Data Flash with Silent Access MPLAB Harmony v3 Use Case: Data Flash Physical

Content (Not Erased)

DRTAFLASH Me...

35CR |21DE |01FE |35CA |35CR |21DE |01FE [35CA [.5.!... N —

0040_0010 |35CR |210DE |01FE |35CA |35CR 21DE |01FE |35C& [.5.!... S —
0040 _0020 |35CA |21DE |01FE |35CA |35CA 21DE |01FE |35C4 [.5.!... N -
0040_0030 [35CA |21DE |01FE |35C4 [35CA |21L0E |01FE |35CA [.5.!... N —
0040_0040 |35CR |21DE |01FE |35CA |35CR 21DE |01FE |35CR [.5.!... 1
0040 0050 |35CA |21DE |01FE |35CA |35C4 21DE |01FE |35CA [.5.!... N T
0040 0080 |35CR |21DE |01FE |35CA |35CR 21DE |01FE |35C& [.5.!... S —
0040 _0070 |35CA |21DE |01FE |35CA |35CA& |21DE |01FE |35C& [.5.!... el

Note:

The secure main routine for both examples is the same as the Non-Secure TCO use case but the SYS Initialize
() content is different. Refer to Secure Data Flash with Silent Access MPLAB Harmony v3 Use Case: Non-Secure
Application Flowchart use case for more details.

The following figure illustrates the execution flow of the non-secure main routine for Secure Data Flash with Silent

Access use case:

© 2022 Microchip Technology Inc.

and its subsidiaries

Application Note

DS00003992B-page 62



AN3992

Software Use Case Examples

Figure 4-17. Secure Data Flash with Silent Access MPLAB Harmony v3 Use Case: Non-Secure Application

Flowchart

Non-secure main
routine

SYS_Initialize ()

NS callable to erase
rows

NS callable to read
and display TEROW
0 & 1 content

NS callable to write
OxCAFEDECA
pattern in TEROW 0
&1

NS callable to read
and display TEROW
0 & 1 content

return
EXIT_FAILURE

Veneer to erase rows

Veneer to read and
display TEROW 0 & 1
content

Veneer to write
O0xCAFEDECA pattern
in TEROW 0 & 1

Veneer to read and
display TEROW 0 & 1
content

Erase row

Read and display
TEROW 0 & 1
content

Write OXCAFEDECA
pattern in TEROW 0
&1

Read and display
TEROW 0 & 1
content

© 2022 Microchip Technology Inc.

and its subsidiaries

Application Note

DS00003992B-page 63



AN3992
Glossary

Glossary

The following table provides a list of NVM Configuration bit field acronyms used throughout this document and their
definitions:

NVM Confi ti
Acronyms onriguration Definition
Row

BOOTPROT (BOOT Protection) BOCOR Defines the size of the (S) + (NSC) sub-regions of the BOOT region
BOOTOPT (BOOT Option) BOCOR Defines the Secure Boot check applied to the BOOTPROT sub-region
BNSC (BOOT Non-Secure Callable) BOCOR Defines the size of the (NSC) sub-region of the BOOT region
AS (APPLICATION Secure) UROW Defines the size of the (S) + (NSC) sub-regions of the APPLICATION region
Q:HS;I(SPPL'CAT'ON Non-Secure UROW Defines the size of the (NSC) sub-region of the APPLICATION region
RS (SRAM Secure) UROW Defines the size of the (S) region of the SRAM region
DS (Data Flash Secure) UROW Defines the size of the (S) region of the Data Flash region
© 2022 Microchip Technology Inc. Application Note DS00003992B-page 64

and its subsidiaries



AN3992

References
6. References
+ PIC32CM LEOO/LS00/LS60 Family Data Sheet (DS60001615)
* PIC32CM LEOO/LS00/LS60 Family Silicon Errata and Data Sheet Clarifications (DS80000906)
+ PIC32CM LEOO0/LS00/LS60 Curiosity Pro User Guide (DS70005443)
© 2022 Microchip Technology Inc. Application Note DS00003992B-page 65

and its subsidiaries



AN3992

Revision History

7. Revision History

Revision B - 01/2022
The following updates were incorporated for this revision:

Updated the product naming throughout the document to add in the PIC32CM LS60

Updated all references of TrustZone-M Manager to Arm® TrustZone® for Armv8-M Manager throughout the
document

Added content for the CRYA and ATECC608B to the Introduction
Updated Prerequisites to include the PIC32CM LS60 Curiosity Pro Board and Trust Platform Design Suite
Introduced new figures to include the PIC32CM LS60 in the following sections:
— TrustZone for ARMv8-M
— Single Developer Approach
— Dual Developer Approach
— Opening a PIC32CM LS00 TrustZone Example from MPLAB Harmony v3
— Develop a Non-Secure Project (Developer B)
— Creating a Non-Secure Project from MPLAB X IDE
— Align Pre-processor Macros for Linker File to the PIC32CM LS00/LS60 Non-Secure Memories Attributions
— Adding and Linking Secure Gateway Library to Non-Secure Project
— Adding and Including Secure Gateway Header File

— Opening a PIC32CM LS00 TrustZone Example with SHA256-based or HMAC-based Secure Boot from
MPLAB Harmony v3

— Non-Secure Peripheral (TCO)
Added a PIC32CM LS60 BOCOR Mapping table to Debug Access Level (DAL) and Chip Erase
Added new notes and a table to Secure Boot
Added a new note to Develop a TrustZone Example (Developer A)
Added a new note to Enabling Secure Boot Process with BS Verification
Added the following NEW sections:
— Crypto Accelerator (CRYA)
— PIC32CM LS60 Secure Boot with ATECC608B CryptoAuthentication™ Device

Revision A - 04/2021
This is the initial release of this document.

© 2022 Microchip Technology Inc. Application Note D8000039928-page 66
and its subsidiaries



AN3992

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative

* Local Sales Office

» Embedded Solutions Engineer (ESE)
» Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

» Microchip products meet the specifications contained in their particular Microchip Data Sheet.

» Microchip believes that its family of products is secure when used in the intended manner and under normal
conditions.

* There are dishonest and possibly illegal methods being used in attempts to breach the code protection features
of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

» Microchip is willing to work with any customer who is concerned about the integrity of its code.

» Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

© 2022 Microchip Technology Inc. Application Note D8000039928-page 67
and its subsidiaries


http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

AN3992

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip
Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC,
ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge,
In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto,
maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad,
SQl, SuperSwitcher, SuperSwitcher Il, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2022, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-9647-2

© 2022 Microchip Technology Inc. Application Note D8000039928-page 68
and its subsidiaries



AN3992

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2022 Microchip Technology Inc. Application Note D8000039928-page 69
and its subsidiaries


http://www.microchip.com/quality

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC [EUROPE |

Corporate Office Australia - Sydney India - Bangalore Austria - Wels

2355 West Chandler Blvd. Tel: 61-2-9868-6733 Tel: 91-80-3090-4444 Tel: 43-7242-2244-39
Chandler, AZ 85224-6199 China - Beijing India - New Delhi Fax: 43-7242-2244-393
Tel: 480-792-7200 Tel: 86-10-8569-7000 Tel: 91-11-4160-8631 Denmark - Copenhagen
Fax: 480-792-7277 China - Chengdu India - Pune Tel: 45-4485-5910
Technical Support: Tel: 86-28-8665-5511 Tel: 91-20-4121-0141 Fax: 45-4485-2829
www.microchip.com/support China - Chonggqing Japan - Osaka Finland - Espoo

Web Address: Tel: 86-23-8980-9588 Tel: 81-6-6152-7160 Tel: 358-9-4520-820
www.microchip.com China - Dongguan Japan - Tokyo France - Paris
Atlanta Tel: 86-769-8702-9880 Tel: 81-3-6880- 3770 Tel: 33-1-69-53-63-20
Duluth, GA China - Guangzhou Korea - Daegu Fax: 33-1-69-30-90-79
Tel: 678-957-9614 Tel: 86-20-8755-8029 Tel: 82-53-744-4301 Germany - Garching
Fax: 678-957-1455 China - Hangzhou Korea - Seoul Tel: 49-8931-9700
Austin, TX Tel: 86-571-8792-8115 Tel: 82-2-554-7200 Germany - Haan

Tel: 512-257-3370 China - Hong Kong SAR Malaysia - Kuala Lumpur Tel: 49-2129-3766400
Boston Tel: 852-2943-5100 Tel: 60-3-7651-7906 Germany - Heilbronn
Westborough, MA China - Nanjing Malaysia - Penang Tel: 49-7131-72400
Tel: 774-760-0087 Tel: 86-25-8473-2460 Tel: 60-4-227-8870 Germany - Karlsruhe
Fax: 774-760-0088 China - Qingdao Philippines - Manila Tel: 49-721-625370
Chicago Tel: 86-532-8502-7355 Tel: 63-2-634-9065 Germany - Munich
ltasca, IL China - Shanghai Singapore Tel: 49-89-627-144-0
Tel: 630-285-0071 Tel: 86-21-3326-8000 Tel: 65-6334-8870 Fax: 49-89-627-144-44
Fax: 630-285-0075 China - Shenyang Taiwan - Hsin Chu Germany - Rosenheim
Dallas Tel: 86-24-2334-2829 Tel: 886-3-577-8366 Tel: 49-8031-354-560
Addison, TX China - Shenzhen Taiwan - Kaohsiung Israel - Ra’anana

Tel: 972-818-7423 Tel: 86-755-8864-2200 Tel: 886-7-213-7830 Tel: 972-9-744-7705
Fax: 972-818-2924 China - Suzhou Taiwan - Taipei Italy - Milan

Detroit Tel: 86-186-6233-1526 Tel: 886-2-2508-8600 Tel: 39-0331-742611
Novi, Ml China - Wuhan Thailand - Bangkok Fax: 39-0331-466781
Tel: 248-848-4000 Tel: 86-27-5980-5300 Tel: 66-2-694-1351 Italy - Padova
Houston, TX China - Xian Vietnam - Ho Chi Minh Tel: 39-049-7625286
Tel: 281-894-5983 Tel: 86-29-8833-7252 Tel: 84-28-5448-2100 Netherlands - Drunen
Indianapolis China - Xiamen Tel: 31-416-690399
Noblesville, IN Tel: 86-592-2388138 Fax: 31-416-690340
Tel: 317-773-8323 China - Zhuhai Norway - Trondheim
Fax: 317-773-5453 Tel: 86-756-3210040 Tel: 47-72884388

Tel: 317-536-2380 Poland - Warsaw

Los Angeles Tel: 48-22-3325737
Mission Viejo, CA Romania - Bucharest
Tel: 949-462-9523 Tel: 40-21-407-87-50
Fax: 949-462-9608 Spain - Madrid

Tel: 951-273-7800 Tel: 34-91-708-08-90
Raleigh, NC Fax: 34-91-708-08-91
Tel: 919-844-7510 Sweden - Gothenberg
New York, NY Tel: 46-31-704-60-40
Tel: 631-435-6000 Sweden - Stockholm
San Jose, CA Tel: 46-8-5090-4654
Tel: 408-735-9110 UK - Wokingham

Tel: 408-436-4270 Tel: 44-118-921-5800
Canada - Toronto Fax: 44-118-921-5820

Tel: 905-695-1980
Fax: 905-695-2078

© 2022 Microchip Technology Inc. Application Note DS00003992B-page 70
and its subsidiaries


http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1.  Prerequisites
	2.  Introduction to PIC32CM LS00/LS60 Security Features
	2.1.  TrustZone for ARMv8-M
	2.1.1.  Memory Security Attribution
	2.1.2.  Secure and Non-Secure Function Call Mechanism
	2.1.2.1.  Non-Secure Callable APIs
	2.1.2.2.  Non-Secure Software Callbacks
	2.1.2.3.  Security State and Call Mismatch

	2.1.3.  Secure and Non-Secure Interrupts Handling

	2.2.  Peripherals Security Attribution
	2.2.1.  Secure and Non-Secure Peripherals
	2.2.2.  Mix-Secure Integrated Peripherals
	2.2.2.1.  Mix-Secure Peripheral (PAC Secured)
	2.2.2.2.  Mix-Secure Peripheral (PAC Non-Secured)


	2.3.  Security Configuration Lock Bit (SECCFGLOCK)
	2.4.  Debug Access Level (DAL) and Chip Erase
	2.5.  Secure Boot
	2.6.  Secure Boot Using ATECC608B CryptoAuthentication™ Device (PIC32CM LS60 only)
	2.7.  Device Identity Composition Engine (DICE)
	2.7.1.  Unique Device Secret (UDS)
	2.7.2.  Compound Device Identifier

	2.8.  Cryptographic Accelerator (CRYA)

	3.  PIC32CM LS00/LS60 Application Development (Developers A and B)
	3.1.  Single Developer Approach
	3.2.  Dual-Developer Approach
	3.3.  Develop a TrustZone Example (Developer A)
	3.3.1.  Opening a PIC32CM LS00/LS60 TrustZone Example from MPLAB Harmony v3
	3.3.2.  TrustZone_basic Example Description
	3.3.2.1.  Secure Project Description
	3.3.2.2.  Non-Secure Project Description
	3.3.2.3.  Memory Configuration with Arm® TrustZone® for Armv8-M Manager
	3.3.2.4.  NVM Configuration Rows Settings
	3.3.2.5.  Secure and Non-Secure Projects Linker Files

	3.3.3.  Debugging the trustZone_basic Example
	3.3.4.  Protecting the Secure Project Using Debug Access Levels

	3.4.  Develop a Non-Secure Project (Developer B)
	3.4.1.  Creating a Non-Secure Project from MPLAB X IDE
	3.4.2.  Project Configuration
	3.4.2.1.  Align Pre-processor Macros for Linker File to the PIC32CM LS00/LS60 Non-Secure Memories Attributions
	3.4.2.2.  Adding and Linking Secure Gateway Library to Non-Secure Project
	3.4.2.3.  Adding and Including Secure Gateway Header File


	3.5.  Developing TrustZone Example with SHA256-based or HMAC-based Secure Boot (Developer A)
	3.5.1.  Opening a PIC32CM LS00/LS60 TrustZone Example with SHA256-based or HMAC-based Secure Boot from MPLAB Harmony v3
	3.5.2.  TrustZone_basic_with_SBoot Example Description
	3.5.2.1.  Secure Boot Project Description
	3.5.2.2.  Memory Configuration with Arm® TrustZone® for Armv8-M Manager
	3.5.2.3.  NVM Configuration Bit Fields Configuration
	3.5.2.4.  Enabling Secure Boot Process with BS Verification



	4.  Software Use Case Examples
	4.1.  Non-Secure Peripheral (TC0)
	4.2.  Secure Peripheral (TC0)
	4.3.  Mix-Secure Peripheral (EIC)
	4.4.  TrustRAM
	4.5.  Data Flash
	4.5.1.  Secure Data Flash with Data Flash Scramble
	4.5.2.  Secure Data Flash with Silent Access


	5.  Glossary
	6.  References
	7.  Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

