
PIC32MZ W1 Software User's Guide

Introduction

This document describes the software features supported by the PIC32MZ W1 Family using the MPLAB® Harmony v3 framework. This framework is integrated with a development environment that works directly with the WFI32E01 module. The software release package enables a rich set of PIC32MZ1025W104 SoC features such as 802.11 b/g/n, Ethernet, USB, CAN, CAN-FD, SPI, I2C, SQI, UART and JTAG, which are supported by the PIC32MZ W1 Family.

Features

Harmony v3 Peripheral Support

- Three UART modules (one high-speed UART with dedicated pads and two user-configurable UART using Peripheral Pin Select)
- I²C Master and Slave with Address Masking
- Two SPI Ports
 - One dedicated high-speed SPI
 - One user configurable SPI using PPS
- One USB OTG 2.0 (full-speed, device mode CDC console only)
- 35 Remappable GPIOs using PPS
- One Fast Ethernet (10/100) Reduced Media Independent Interface (RMII)
- Seven Timers
 - 16-bit timers/counters can be concatenated to form a single 32-bit timer
- Eight Channel Hardware DMA (Direct Memory Access) Controller with Automatic Data Size Detection supporting 32-bit CRC-checked Transfers of up to 64 KB in size
- Node Version Manager (NVM) Read/Write Support
- Watchdog Timer (WDT) for Fail Safe Operations
- 20 External Analog Inputs for Sampling/Conversion
- Four Output Compare Ports

Harmony v3 System Services Support

- Clock Support up to 200 MHz
- Four On-chip Integer PLLs:
 - USB (UPLL)
 - Ethernet/Wi-Fi® (EWPLL)
 - System (SPLL)
 - Bluetooth (BTPLL) (unused)
- Power-up Timer (PWRT) and Oscillator Start-up Timers (OST)
- Interrupts Enabled through Peripheral Libraries
- System Console for User Debug Log Messages
- Reset Source Selections:
 - Power-on Reset (POR)
 - Master Clear Reset (MCLR)

- Software Reset (SWR)
- Brown-out Reset (BOR)
- Four System Ports (A, B, C and K)
- Device Configuration (DEVCON) for all Peripheral-related Bits including Clocks, Programming and Debugging

Harmony v3 Networking Support

- MPLAB Harmony v3 TCP/IP Stack
- WLAN STA and AP Networking Modes
 - TLS v1.2 with symmetric crypto acceleration
 - DHCP client/server, DNS client/server, ICMPv4, iPerf
- Wireless Network Security Standard (WEP, WPA/WPA2-Personal and WPA3 – FreeRTOS only)
- Protected Management Frames (802.11w)
- Wi-Fi Transmit Power Control
- Configurable Region Selection for Regulatory Compliance

Table of Contents

Introduction.....	1
Features.....	1
1. Quick References.....	4
1.1. Reference Documentation.....	4
1.2. Hardware Prerequisites.....	4
1.3. Software Prerequisites.....	4
2. Functional Overview.....	5
2.1. Hardware Setup.....	5
2.1.1. Power Supply.....	5
2.1.2. Debugger/Programmer Selection.....	7
2.1.3. ICSP Header.....	8
2.2. Harmony Setup.....	9
2.2.1. Configuration Bits	9
2.2.2. Clock Source Selection.....	9
2.2.3. Pin Configuration using Pin Manager.....	12
2.3. Programming MPLAB Projects.....	15
3. Appendix A: Configuration Bits.....	16
4. Document Revision History.....	18
The Microchip Website.....	19
Product Change Notification Service.....	19
Customer Support.....	19
Microchip Devices Code Protection Feature.....	19
Legal Notice.....	20
Trademarks.....	20
Quality Management System.....	21
Worldwide Sales and Service.....	22

1. Quick References

1.1 Reference Documentation

For further details, refer to the following:

- *PIC32MZ1025W104 MCU and WFI32E01 Module with Wi-Fi® and Hardware-based Security Accelerator Data Sheet* (DS70005425)
- *PIC32 WFI32E Curiosity Board User's Guide* (DS50003028)

Note: For Reference Manuals, refer to the **Documents** page of the www.microchip.com/PIC32MZW1.

1.2 Hardware Prerequisites

- PIC32 WFI32E Curiosity Board Evaluation Kit
- MPLAB ICD3 Programmer/Debugger (optional)

1.3 Software Prerequisites

- MPLAB Integrated Development Environment (MPLAB X IDE) tool (version 5.35)
- MPLAB XC32 compiler (version 2.40)
- Terminal emulator utility program (Tera Term)

2. Functional Overview

This section describes the features supported by the PIC32MZ W1 software release package. This package enables Wi-Fi functionality on the device, supporting either STA or AP mode and WPA/WPA2/WPA3 security (optional). It also provides peripheral drivers, networking stack, network security and sample applications that are supported by the Harmony v3 framework. With extensive use of pin multiplexing, the PIC32MZ W1 Family can accommodate a large number of peripheral functions. The package has the following components:

- WLAN applications – For the list of WLAN applications supported by the PIC32MZ W1 Family, refer to the [WLAN Examples](#).
- Peripheral libraries – For the list of peripheral libraries supported by the PIC32MZ W1 Family, refer to the [Peripheral Examples](#).
- Core examples – For the list of core examples supported by the PIC32MZ W1 Family, refer to the [Core Examples](#).
- Third party libraries – For the list of third party libraries supported by the PIC32MZ W1 Family, refer to the following:
 - [wolfMQTT library](#)
 - [wolfSSL library](#)
 - [FreeRTOS library](#)
- MPLAB Harmony Configurator (MHC) – For more information on how to install the MHC and how to get started using MPLAB Harmony, refer to [MPLAB Harmony](#).
- WLAN Functional APIs – The following set of functions provide abstracted control plane functionality to the application:
 - Scanning and network discovery
 - Connection/disconnection to an AP (STA mode)
 - AP enable/disable and configuration (AP mode)
 - Support for implemented security configurations
 - Power control
 - Channel or region configuration

2.1 Hardware Setup

This section describes the hardware setup using the PIC32 WFI32E Curiosity Board Evaluation Kit.

2.1.1 Power Supply

The PIC32 WFI32E Curiosity Board can be powered using any of the following sources:

- External 5V (J201)
- PKOB3 micro-B USB (J302)
- Target VBUS micro-B (J204)

Note: For the jumper connections, refer to the *PIC32 WFI32E Curiosity Board User's Guide* ([DS50003028](#)).

The following table lists the power supply source details and its jumper positions.

Table 2-1. Power Supply Sources

Power Input	Description	Jumper Position (J202 ⁽¹⁾)
External 5V (J201 ⁽¹⁾)	Connect the Curiosity board to an external 5V power supply	P/S-VIN (2-1)
PKOB3 micro-B USB (J302 ⁽¹⁾)	Connect the Type-A male to micro-B USB cable to the USB debug port for power supply	PKOB-VIN (4-3)

PIC32MZ W1

Functional Overview

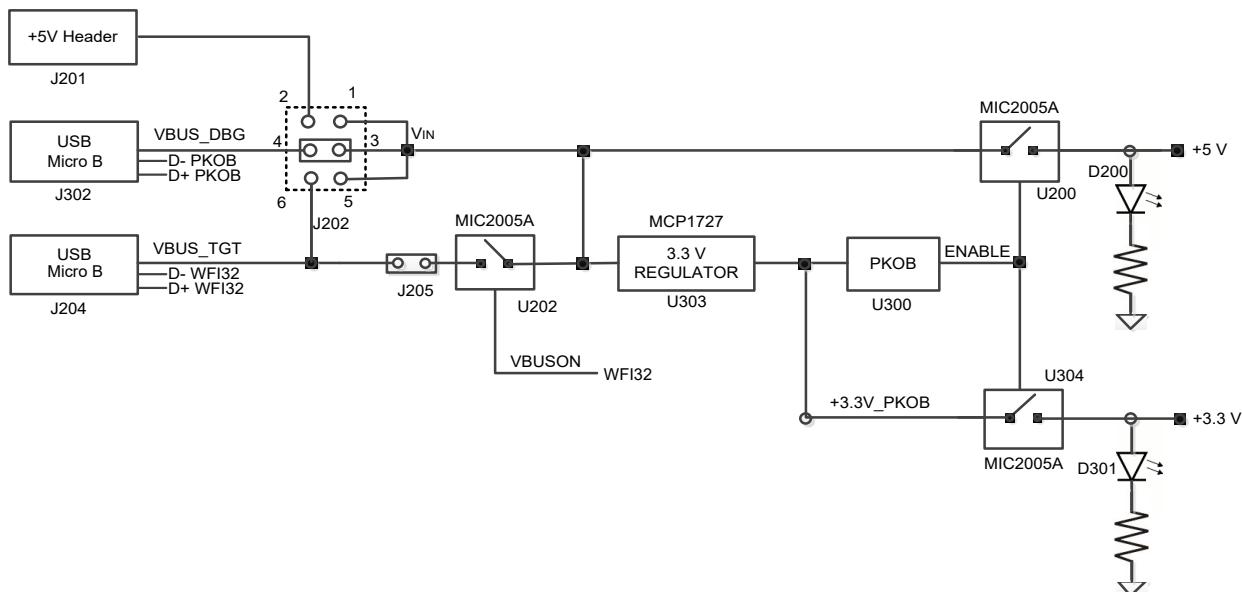
.....continued

Power Input	Description	Jumper Position (J202 ⁽¹⁾)
Target VBUS micro-B (J204 ⁽¹⁾)	Connect the Type-A male to micro-B USB cable to the USB power port for power supply	VBUS-VIN (6-5)

Note:

1. For the jumper connections, refer to the *PIC32 WFI32E Curiosity Board User's Guide* ([DS50003028](#)).

The following figure illustrates the jumper positions for powering the Curiosity board.


Figure 2-1. Jumper Configuration for Power Input

Note: Ensure that the 3V3_MOD and 3V3_IN of J102 are connected on the WFI32E01PC carrier board.

Use the J202 jumper to select the voltage source for the Curiosity board. The MCP1727 voltage regulator generates a +3.3V power supply for the MCU. Connect the PKOB debugger to a host PC. Turn on the power supply (+3.3V and +5V) to the Curiosity board via a power switch (MIC2005A) to drive the ENABLE signal to high.

Figure 2-2. Power Tree Diagram

2.1.2 Debugger/Programmer Selection

By default, the external debugger is connected to the programming pins (PGEC2 and PGED2) of the WFI32E01PC module. The following table lists the details of the debugger/programmer selection using the J301 header.

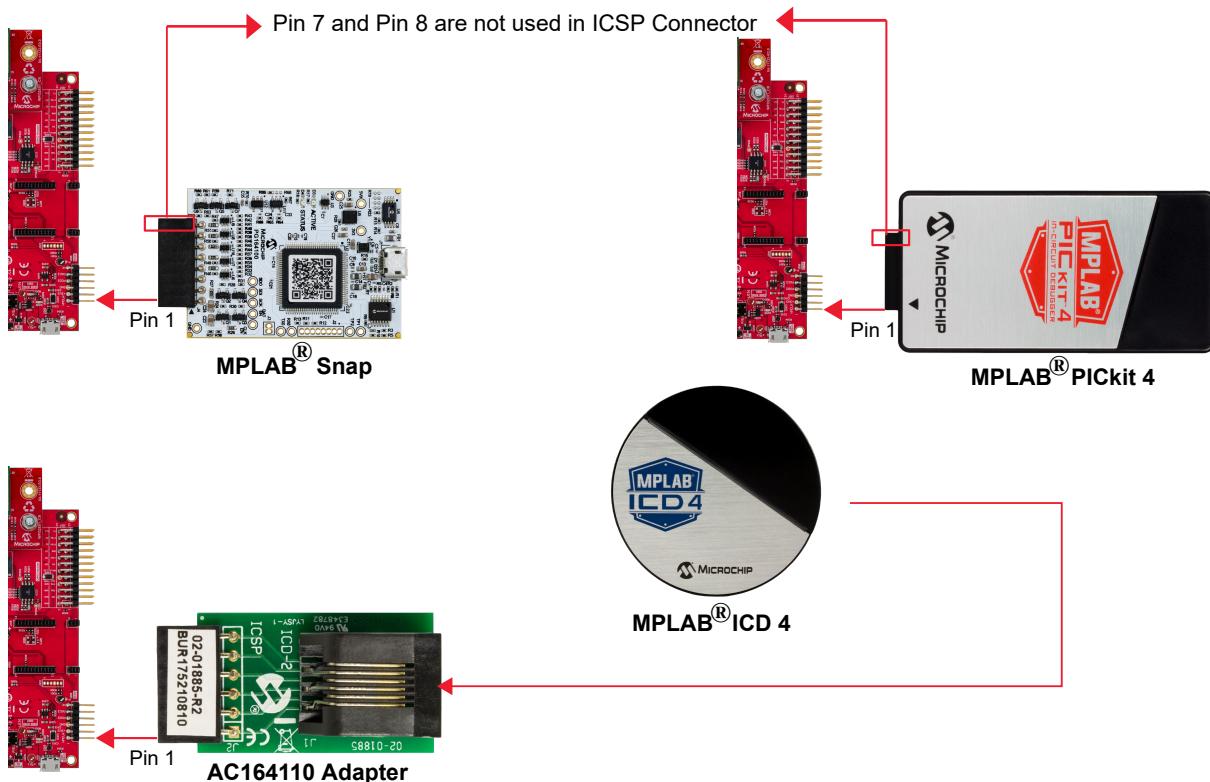
Note: For the jumper connections, refer to the *PIC32 WFI32E Curiosity Board User's Guide* (DS50003028).

Important: Use an external debugger such as MPLAB ICD 4, MPLAB PICkit 4 or MPLAB Snap for the best programming and debugging experience.

The PIC32 WFI32E Curiosity Board has an on-board debugger (PKOB3) based on the PIC24FJ256GB106 MCU. The on-board debugger enables the user to power, program and debug through the micro-B USB connector (J302).

Table 2-2. Debugger/Programmer Selection

Header Position (J301 ⁽¹⁾)	Debugger Used	Description
Pins 1-2 and 3-4 shorted	On-board	Selects the on-board debugger
Pins 1-2 and 3-4 open	External	Selects the external debugger (for more details, refer to 2.1.3 ICSP Header)


Note:

1. For the jumper connections, refer to the *PIC32 WFI32E Curiosity Board User's Guide* ([DS50003028](#)).

2.1.3 ICSP Header

The ICSP header (J206) is a standard 6-pin staggered header. It allows in-circuit emulation and debugging using Microchip's in-circuit emulator tools and it allows direct programming of the WFI32E01PC module. The ICSP header supports external debuggers, such as MPLAB ICD 4, MPLAB PICkit 4 and MPLAB Snap. Use the standard ICSP header to connect an MPLAB programmer or debugger to the PIC32 WFI32E Curiosity Board. The following figure illustrates the connection between the ICSP header, external debuggers and the PIC32 WFI32E Curiosity Board.

Figure 2-3. Connection Diagram

The following table provides the pin details and descriptions of the ICSP header.

Table 2-3. ICSP Header Description

Pin Number	Pin on ICSP Header	Pin Description of ICSP Header	Pin on WFI32E01PC Module ⁽¹⁾
1	MCLR	Reset pin	MCLR
2	3V3	3.3V power supply	+3V3
3	GND	Ground	GND

.....continued

Pin Number	Pin on ICSP Header	Pin Description of ICSP Header	Pin on WFI32E01PC Module ⁽¹⁾
4	PGD	ICSP™ programming data	PGD2/AN5/CVD5/CVDR5/CVDT2/RTCC/ RPB5
5	PGC	ICSP™ programming clock	PGC2/AN4/CVD4/CVDR4/CVDT3/ RPB4/RB4
6	NC	Not connected	NC

Notes:

1. For more details on the WFI32E01PC pins, refer to the *PIC32MZ1025W104 MCU and WFI32E01 Module with Wi-Fi® and Hardware-based Security Accelerator Data Sheet* ([DS70005425](#)).
2. Use an external debugger such as MPLAB ICD 4 or MPLAB Snap for the best programming and debugging experience.

2.2 Harmony Setup

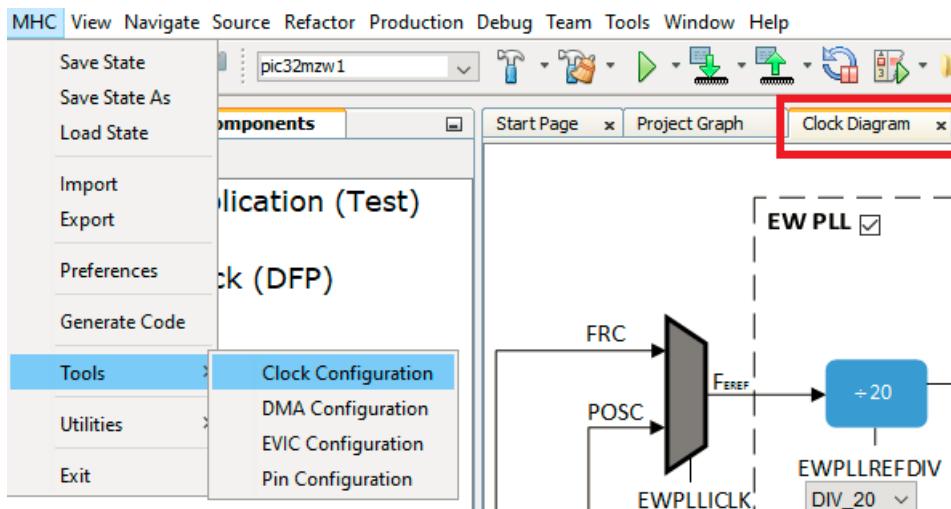
The recommended configuration bits and clock configuration are automatically set to compile or build the project.

Note: For more information on how to install the MHC and how to get started using MPLAB Harmony, refer to [MPLAB Harmony](#).

2.2.1 Configuration Bits

It is recommended to use the default configuration bits; the corresponding values are placed in the `initialization.c` file.

Note: For more details, refer to [3. Appendix A: Configuration Bits](#).


2.2.2 Clock Source Selection

In MHC, the **Clock Diagram** tab shows all the clocks available in the PIC32MZ1025W104 SoC and their configuration options. The permitted range of inputs is set to generate clock configurations for a pre-determined output range (via drop-down menus). Use the clock diagram for the following purposes:

Note: Use only to override defaults; usually not recommended.

- To configure any clock PLL in the PIC32MZ W1 Family if needed
- To reconfigure peripheral clock dividers if needed for a particular use case

Figure 2-4. Clock Diagram

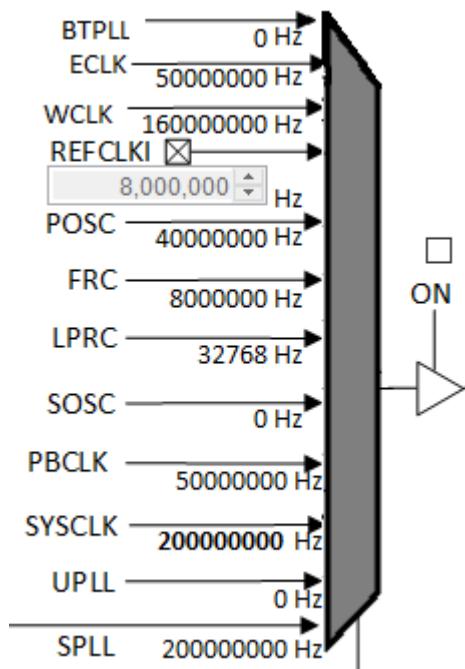

The following table lists the clock sources for all the peripherals supported by the PIC32MZ W1 Family.

Table 2-4. Clock Sources for PIC32MZ W1 Peripherals

PLL	Peripheral CLK	Peripherals
SPLL	PBCLK5	TRNG, BA414E, Symmetric Crypto
	PBCLK3	Ethernet, I2C2, ICAP-1/2/3/4, SQI1, OCMP-1/2/3/4, UART-1/2, SPI-1/2, USB
	PBCLK2	Ports (A, B, C, K), I2C1, CAN1, CAN2 (CAN-FD), ADC-HS
	PBCLK1	BOR, NVM, WDT, DMT, PPS, PTG, UART3, Timer 1-7, CFG

Route each PLL to inputs on the clock MUX and configure as a system clock source as shown in the following figure. Microchip recommends using SPLL to generate the system clock (through ROSEL1). The following figure shows the actual values used in this release.

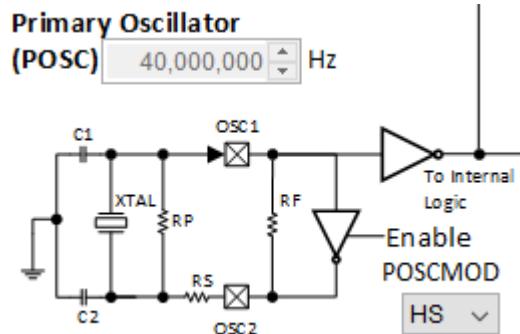
Figure 2-5. PLL Clock Source Selection

By default, the system is set to operate at a maximum frequency of 200 MHz. All of the software demos are tested at this frequency. The following table lists the different clock frequencies supported by the PIC32MZ W1 Family.

Table 2-5. Clock Frequencies

Clock	Frequency (MHz)
ETHCLK	50
EWPLL	160
UPLL	96

The FRC (8 MHz) is a low frequency clock available at boot-up as the system clock and is mostly used to evaluate a new part during the initial development stage or until it switches to clock sources.


2.2.2.1 Clock Configuration Procedure

Perform the following steps to configure PLLs and peripheral clocks for recommended values:

1. Launch the MHC configuration menu for the main project.

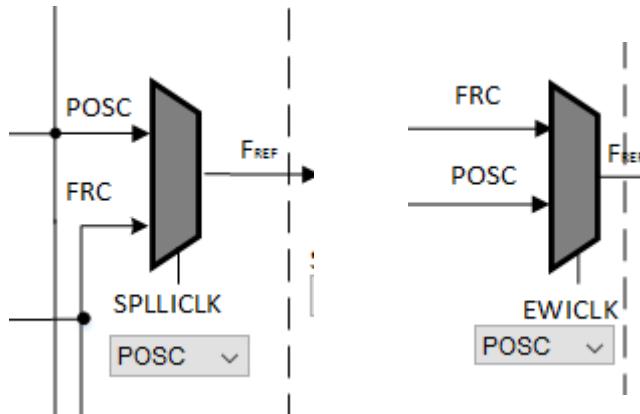
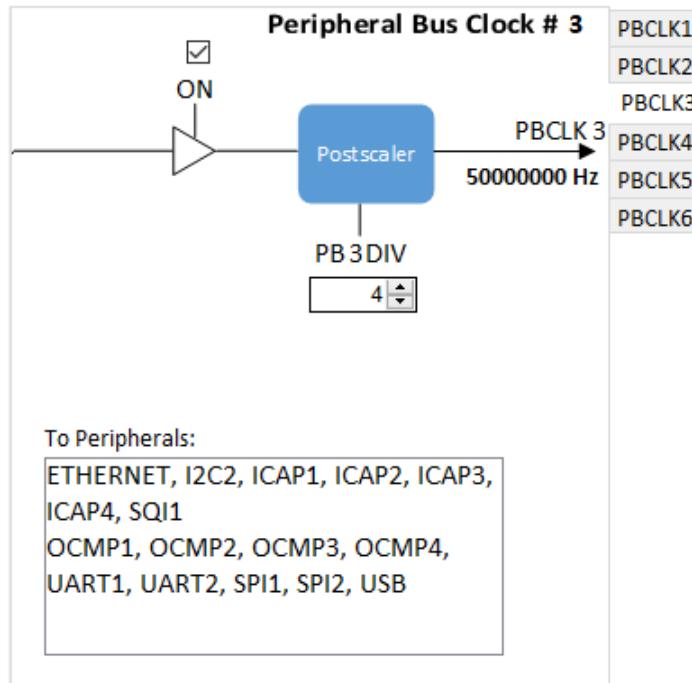

2. Open the Clock Diagram from the menu (*MHC > Tools > Clock Configuration*) as shown in [2.2.2 Clock Source Selection](#).
- 2.1. Enable POSCMOD to HS (if not set).

Figure 2-6. Enable POSCMOD

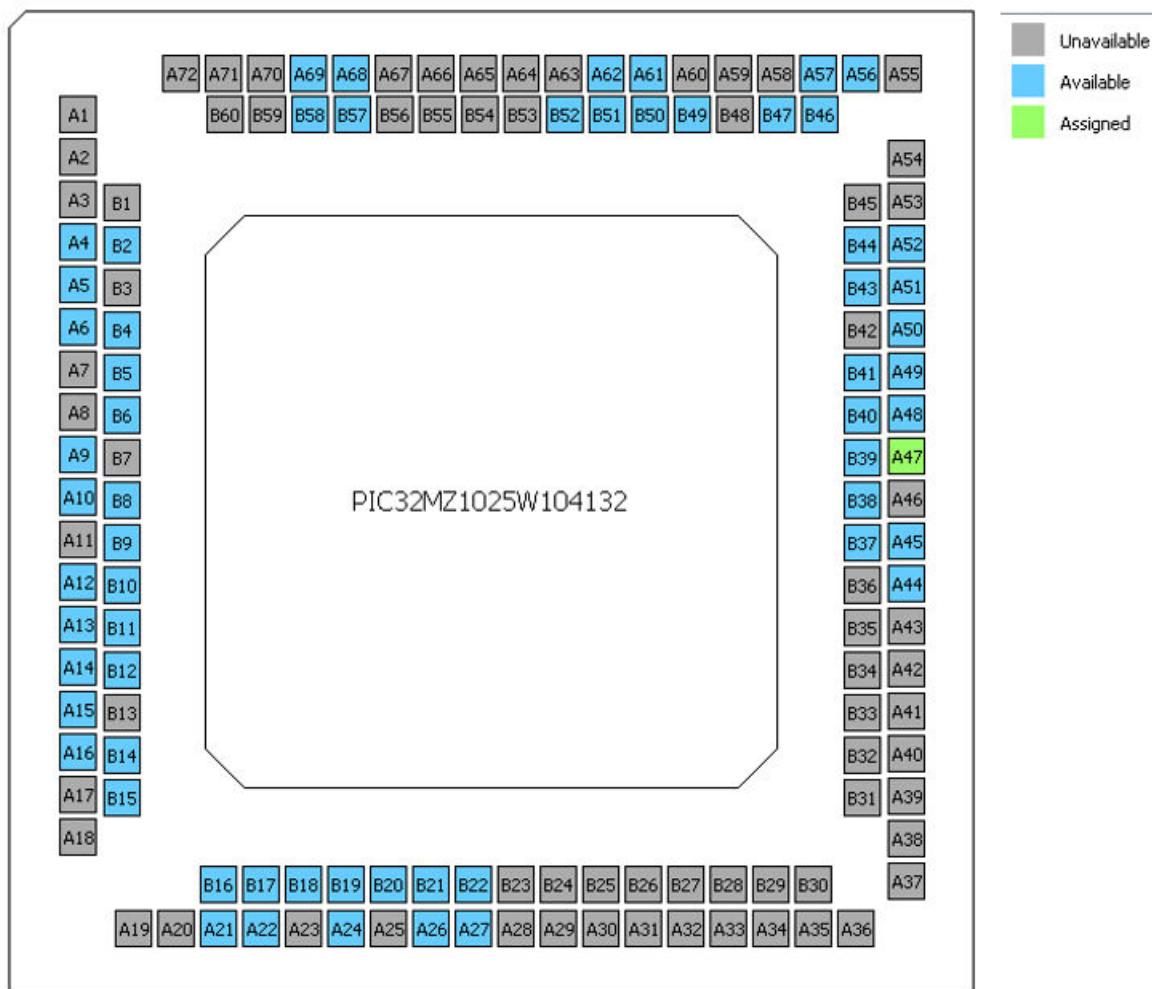
- 2.2. Select the input clock as POSC from the respective clock MUX for SPLLICLK and EWICLK as shown in the following figure.
- 2.3. Click the **Auto-Calculate** button for each PLL block to set the proper divisor values to achieve the required output frequency.
- 2.4. In all the example codes, the system clock (SYSCLK) is set to 200 MHz.


Figure 2-7. Set Input Voltage

Note: The following instructions are for specific use cases, where the configuration may need a modification. Generally, these configurations are done by default by Harmony and do not require a change for most of the cases.

3. Generate the peripheral clock (PBCLK1) as per the following requirements:
 - 3.1. Ensure from the Clock Diagram that the required frequencies are derived for peripheral clocks through the clock settings. Most of the peripheral clocks are SYSCLK/2.
 - 3.2. Some applications may need to use 4 as the PBCLK3 divisor value (PB3DIV) to provide a 50 MHz clock for the required peripherals.

Figure 2-8. PBCLK3 Divisor Value


- Save the settings and click on the button to generate the code.
 - Once the code generation is successful, click on the **Build Project** button.
 - The “Build Successful” message in the output window of MPLAB X IDE confirms successful compilation.

Note: This procedure applies to all the existing examples or demo projects and for the development of new examples or application projects.

2.2.3 Pin Configuration using Pin Manager

The Pin Manager enables users to configure (assign peripheral function, set pin direction, configure pull-up or pull-down and so on) and map the I/O pins. It consists of **Pin Settings**, **Pin Diagram** and the **Pin Table** tabs. The following figure illustrates the pictorial representation of the available, assigned and not available pins of the MCU.

Figure 2-9. Pin Diagram

Notes: The following color combinations are associated with the pins in the graphical or table view:

- Gray – These pins are not used in the selected configuration. These pins are locked out by selected system functions and cannot be changed by the user.
- Blue – These pins are available and can be allocated to a module.
- Green – This pin is allocated and selected for a module. It displays either the name of the pin in the module's context or a custom name entered. This pin is locked and not available for any new pin assignment.

The **Pin Table** tab provides the Pin Manager's grid view. Select *DQFN* from the Package drop-down list.

- The package details display in the package view.
- The table view provides the pin numbers for the selected package. The leftmost columns in the table view indicate the module's and the functionality name.

Figure 2-10. Pin Table

Module	Function	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23
		NC	PMU_VS...	VDD33	RC15	RK13	RK12	VREGCA...	VDD15	RC0	RC2	VDD33	RC5	RC7	SPI1_CS...	RA2	RA4	NC	NC	NC	NC	RA7	RA9	MCLR
External Interrupt 1	INT1																							
External Interrupt 2	INT2																							
External Interrupt 3	INT3																							
External Interrupt 4	INT4																							
GPIO	GPIO																							
I2C 1 (I2C_ID_1)	SCL1																							
	SDA1																							
I2C 2 (I2C_ID_2)	SCL2																							
	SDA2																							
IC1 (IC_ID_1)	IC1																							
IC2 (IC_ID_2)	IC2																							
IC3 (IC_ID_3)	IC3																							
IC4 (IC_ID_4)	IC4																							
JTAG	TMS																							
	TCK																							

The **Pin Settings** tab enables the user to perform the following functions:

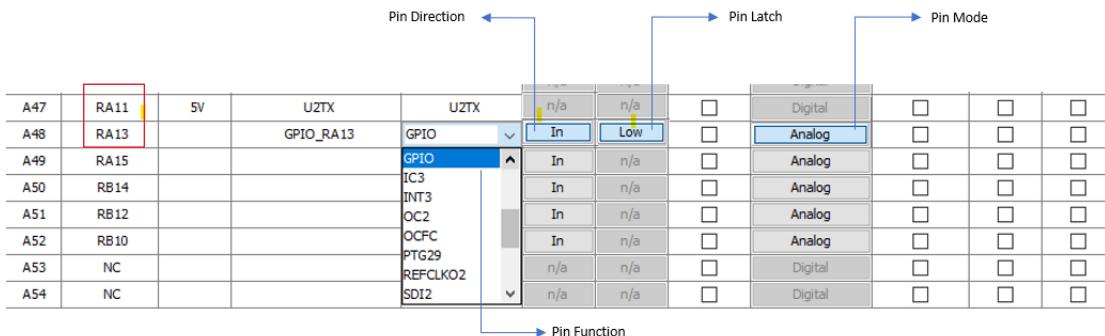

- To configure the pins
- To provide a custom name for the pin
- To change the pin function, direction, latch and other properties

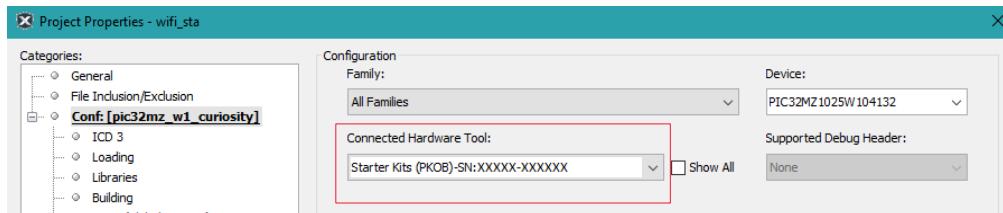
Figure 2-11. Pin Settings

Pin Number	Pin ID	Voltage Tolerance	Name	Function	Direction (TRIS)	Latch (LAT)	Open Drain (ODC)	Mode (ANSEL)	Change Notification	Pull Up (CNPU)	Pull Down (CNPD)
					n/a	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A1	NC				n/a	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A2	PMU_VSENSE				n/a	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A3	VDD33				n/a	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A4	RC15	5V		Available	In	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A5	RK13	5V		Available	In	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A6	RK12	5V		Available	In	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A7	VREGCAP2				n/a	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A8	VDD15				n/a	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A9	RC0	5V		Available	In	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A10	RC2	5V		Available	In	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A11	VDD33				n/a	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A12	RC5	5V		Available	In	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A13	RC7			Available	In	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A14	RA1	5V	SPI1_CS	GPIO	Out	High	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A15	RA2	5V		Available	In	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A16	RA4	5V		Available	In	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A17	NC				n/a	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A18	NC				n/a	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
A19	NC				n/a	n/a	<input type="checkbox"/>	Digital	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

The following figure illustrates an example where the RA11 pin is configured as an U2TX (UART2 transmit pin). Similarly, it shows another example where the RA13 pin is configured as a *GPIO*. The highlighted buttons on the right side enable the user to set the Direction, Latch and the Mode of the selected pin.

Figure 2-12. Example of Pin Settings

Note: For more details on the Pin Manager, refer to *MPLAB Harmony Configurator User's Guide* ([MPLAB Harmony](#)).


2.3 Programming MPLAB Projects

Note: For more information on how to install the MHC and how to get started using MPLAB Harmony, refer to [MPLAB Harmony](#).

Perform the following steps in MHC for programming the project:

1. Open the MPLAB project.
2. In the Projects Properties window, select the on-board PKOB from the “Connected Hardware Tool” drop-down menu as shown in the following image.

Figure 2-13. Selecting On-board PKOB

3. Use the following steps to build the project:
 - 3.1. Go to *Production > Build Main Project* or press F11 to build a project.
 - 3.2. Go to *Production > Set Main Project > Choose the project to program*.
 - 3.3. Go to *Debug > Debug Main Project*.

Note: For more details on programming and debugging of the Curiosity board, refer to *PIC32 WFI32E Curiosity Board User's Guide* (DSxxxxxx).

3. Appendix A: Configuration Bits

This section describes the configuration bits used for all of the application examples. The configuration bit details are part of the `initialization.c` file in any of the Harmony projects.

```

// ****
// **** Section: Configuration Bits ****
// ****
// **** FBCFG0 ****
#pragma config BUHSEN = OFF
#pragma config PCSCMODE = DUAL
#pragma config BOOTISA = MIPS32

// **** DEVCFG0 ****
#pragma config TDOEN = ON
#pragma config TROEN = OFF
#pragma config JTAGEN = OFF
#pragma config FCPRI = LRSA
#pragma config DMAPRI = LRSA
#pragma config EXLPRI = LRSA
#pragma config USBSSEN = OFF
#pragma config PMULOCK = OFF
#pragma config PGLOCK = OFF
#pragma config PMDLOCK = OFF
#pragma config IOLOCK = OFF
#pragma config CFGLOCK = OFF
#pragma config OC_ACLK = OCMP_TMR2_TMR3
#pragma config IC_ACLK = ICAP_TMR2_TMR3
#pragma config CANFDIV = 0
#pragma config PCM = SFR
#pragma config UPLLHWMD = OFF
#pragma config SPLLHWMD = OFF
#pragma config BTPLLHWMD = OFF
#pragma config ETHPLLHWMD = OFF
#pragma config FECCCON = OFF
#pragma config ETHTPSF = RPSF
#pragma config EPGMCLK = FRC

// **** DEVCFG1 ****
#pragma config DEBUG = EMUC
#pragma config ICSEL = ICS_PGx2
#pragma config TRCEN = ON
#pragma config FMIEN = OFF
#pragma config ETHEXEREF = OFF
#pragma config CLASSBDIS = DISABLE
#pragma config USBIDIO = ON
#pragma config VBUSIO = ON
#pragma config HSSPIEN = OFF
#pragma config SMCLR = MCLR_NORM
#pragma config USBDMTRIM = 0
#pragma config USBDPTRIM = 0
#pragma config HSUARTEN = ON
#pragma config WDTPSS = PSS1

// **** DEVCFG2 ****
#pragma config DMTINTV = WIN_63_64
#pragma config POSCMOD = HS
#pragma config WDTRMCS = LPRC
#pragma config SOSCSEL = CRYSTAL
#pragma config WAKE2SPD = ON
#pragma config CKSWEN = ON
#pragma config FSCMEN = ON
#pragma config WDTPS = PS1
#pragma config WDTSPGM = STOP
#pragma config WINDIS = NORMAL
#pragma config WDTE = OFF
#pragma config WDTEN = WINSZ_25
#pragma config DMTCNT = DMT31
#pragma config DMTEN = OFF

// **** DEVCFG4 ****

```

PIC32MZ W1

Appendix A: Configuration Bits

```
#pragma config SOSCCFG      = 0
#pragma config VBZPBOREN    = ON
#pragma config DSZPBOREN    = ON
#pragma config DSWDTPS      = DSPS1
#pragma config DSWDTOSC     = LPRC
#pragma config DSWDTEN      = OFF
#pragma config DSEN          = OFF
#pragma config SOSCEN        = OFF
```

4. Document Revision History

Revision	Date	Section	Description
A	09/2020	Document	Initial revision

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBloX, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omnicient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQL, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6640-6

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: www.microchip.com/support Web Address: www.microchip.com	Australia - Sydney Tel: 61-2-9868-6733 China - Beijing Tel: 86-10-8569-7000 China - Chengdu Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588 China - Dongguan Tel: 86-769-8702-9880 China - Guangzhou Tel: 86-20-8755-8029 China - Hangzhou Tel: 86-571-8792-8115 China - Hong Kong SAR Tel: 852-2943-5100 China - Nanjing Tel: 86-25-8473-2460 China - Qingdao Tel: 86-532-8502-7355 China - Shanghai Tel: 86-21-3326-8000 China - Shenyang Tel: 86-24-2334-2829 China - Shenzhen Tel: 86-755-8864-2200 China - Suzhou Tel: 86-186-6233-1526 China - Wuhan Tel: 86-27-5980-5300 China - Xian Tel: 86-29-8833-7252 China - Xiamen Tel: 86-592-2388138 China - Zhuhai Tel: 86-756-3210040	India - Bangalore Tel: 91-80-3090-4444 India - New Delhi Tel: 91-11-4160-8631 India - Pune Tel: 91-20-4121-0141 Japan - Osaka Tel: 81-6-6152-7160 Japan - Tokyo Tel: 81-3-6880- 3770 Korea - Daegu Tel: 82-53-744-4301 Korea - Seoul Tel: 82-2-554-7200 Malaysia - Kuala Lumpur Tel: 60-3-7651-7906 Malaysia - Penang Tel: 60-4-227-8870 Philippines - Manila Tel: 63-2-634-9065 Singapore Tel: 65-6334-8870 Taiwan - Hsin Chu Tel: 886-3-577-8366 Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei Tel: 886-2-2508-8600 Thailand - Bangkok Tel: 66-2-694-1351 Vietnam - Ho Chi Minh Tel: 84-28-5448-2100	Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829 Finland - Espoo Tel: 358-9-4520-820 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Garching Tel: 49-8931-9700 Germany - Haan Tel: 49-2129-3766400 Germany - Heilbronn Tel: 49-7131-72400 Germany - Karlsruhe Tel: 49-721-625370 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Germany - Rosenheim Tel: 49-8031-354-560 Israel - Ra'anana Tel: 972-9-744-7705 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Italy - Padova Tel: 39-049-7625286 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Norway - Trondheim Tel: 47-72884388 Poland - Warsaw Tel: 48-22-3325737 Romania - Bucharest Tel: 40-21-407-87-50 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820