Microchip Nano Debugger Manual o
P 58 @ MICROCHIP

Product Page Links

Introduction

The Microchip Nano Debugger is a cost-effective programmer/debugger solution used in entry-level
development kits made by Microchip and various partners. The most notable of these is the Curiosity Nano
platform.

The Nano Debugger provides a unique balance of simplicity and versatility, which is needed in space- and
cost-constrained development boards and tools.

About This Document

This Nano Debugger Manual is a generic user guide for the Nano Debugger, which is found on various
Microchip and partner development boards. If you are using a debugger or development board that utilizes the
Nano Debugger, then this document complements or replaces the debugger-specific sections of that product's
user guide.

https://microchip.com

Table of Contents

INEFOAUCTION. ..ttt ettt st ettt b et s bt e b et e b e e e bt e er e sa st s st aesenenenen 1
L O L < =TSO TP PPRPRP 4
2. CAPADIIITIES ettt e bt a bR Rt R bR e ne e n e nes 6
2.1 FATUIES ..ttt b et b e st e b b s h e b s a e b b e bt e b e s nbesatens 6
2.2, TAIGET DVICES....eetieieetieterteee ettt ettt sttt s bt et s et e b e e bt e bt s ae e s bt e e e she et e s ae e b e e st e st e aneebe e st saee b e e anesreenrene 6
3. NanNO DebUZEEr USB INTEITACE.ciiuiirieieteetetetertetet ettt sttt ettt ettt b et b et b ekt besaebe s ebensenenes 8
4, CMSIS-DAP DeBUE INtOITACE. . ittt sttt ettt ettt et e sbesbesbesbesbesbesbesbesbensensensensenneneen 9
T (U ISY=T g =11 o T o (5 1 TSP 10
ST B @Y= o V= TP TP PT PP PRRPRPORPROONS 10
5.2, Operating SYSTEIM SUPPOIT....ccuiiiieierieieieieeeiteit ettt sttt st et sttt et et e et e st e st e b eebesbesbesbesbesbensensens 10
5.3, LIMIEAEIONS. .ttt et a et 10
5. SIBNAIING ettt st h s b bbb b et et et et e e e st e Rt e b e Rt e b e e b e s b e s b e s benb et e ee b entenes 11
5.5, AQVANCEA USE...iiiiiieieertee ettt ettt b et bbb bbb bbbt b e s b bt s bbb e bt b et et e bt b e benenbenea 11
6. MASS STOIAZE DOVICE. ...ttt sttt ettt st s bt st s h et st b e et e s bt e b e ebe e b e saee bt st e sreesbessnebesntessesanenreens 14
6.1. Mass Storage Device IMpPlementation.. ..ottt s s 14
6.2. FUSe/Configuration BYTES/WOIS........cocecivieirieerienisieieieteiestetetstestebe et sa bt se st et sessesestesesbenesbenesbenesbeneses 15
6.3. Limitations of Drag-and-Drop Programming.........cccecerecereerieerieeneesieesieessesessessssessssesessesessessssessesesseses 15
6.4, SPECIAl COMMANGAS..ciiiiiiiiiirierieniertest ettt ettt et s s e ste st e sbesbesbesbesbessessesbessensessessensesaesessassassessessessessessensens 15
6.5. Drag-and-Drop Programming USiNg UF2 FOIMAt.......ccveririerireninieninienieietsieeeieseeteseere s saesenaeveneen 16
7. Data GateWay INTErTate (DGI)..c.ccirierieieieireniriesesiesiestesteste st steste sttt e st et et et s e ssassessasbesbesbesbesbesbessensensensensensensons 18
7.1, DEDUE GPIO ...ttt sttt ettt b et b et b ekt bbbt e bt e bt e bt s b e bt s b eae b e s ke st et e st et et be st e b et b et ee 18
7.2, TIMESTAMIPING e itiitiiteiteitt ettt et sr et s bbbt st e s bt et s bt e b e e st e bt s as e s bt e bt she e b e e mtesbesaeesseeanesneeseennesreennenns 19
8. BOArd CONTrOllEr FUNCHIONS.c.ciuiieieieteirteeete ettt ettt et b ettt st a e st b et b et b et st et sb et ebe e e b et ebe s ebenaebensebens 20
8.1, VOILAEE IMONILON . cutiieieieietetetete ettt sttt et ettt ettt e e s s b e s b e s b e st e sbe s b e b e b e st e b e b estesasassbessesbasbessesbesbens 20
8.2, VOILAZE CONLIOL..cuiitiiitiietiieterte ettt ettt b e bbbt bbbt se st et e b st st et s bene s b e e ebeeenen 20
8.3, VOILAZE OFf PiN (VOFF)..c. ittt sttt sttt sttt b etk st be bbb et ebe b ebe st ebesaebenaenens 21
8.4, VOILAZE CONLIOl EI OIS .uiiiiieiirieiiieisieesie sttt sttt ettt sttt et ebe e bt sb et et e e e b e st ebesbesesesesesasenesenessenas 22
S TR 15 I} VA1 1= o o TSSO PO PRSPPSO PRTUSPRUP 23
9. DebUBEEr CONFIGUIATION.....cciitiirtiieietetetetete ettt sttt ettt sttt s b et s b et skt e ket et et s b et e be e ebe b ebe st ebesaenesaenens 24
9.1, BOArd CONFIGUIATION...c.iviriririertertestestestest ettt ettt e e st s te st st st e st et et et e s e e e s e ebesbesbesbesbesbesbesbesbenbensensensenns 24
9.2, DEVICE CONTIGUIATION....eciitiietiietiieiert ettt ettt ettt sttt sttt ettt be s bt e b e e bbbt s bbb ebe st ese st esesbesesbenesbeneas 27
9.3. Modifying the Debugger CONfigUIratioN.........ccveireirieirieirieeiertee sttt st sttt enes 30
T0. TOOIS ANA IDES....iieiiiieiirieierieerietrt ettt sttt b et et b et b et b e b e b e b e e b et e b et e b et e bt st e bt s b bt sbenenbe st benesbenenen 32
10,7, PaArTNEr ECOSYSTEIMS. ..ottt ettt sttt ettt b st s r et b e e e e b e st e s bt e aeshe e bt saaesbe e b e sbeeabesnnennesneesesnne 32
10.2. MPLAB® TOOIS fOr VS COU@.....uuvmrmrrrrrriarieaeeseessssesssessessssssssssssnsssssssnns 32
10.3. USING MPLAB DAta VISUBIZEN ...c..cutrieuirieirieerieisteeieestetset sttt ettt sttt ettt st s b ettt eaes 33
104, KIT WINAOW VIBW...cuetiieiiieiirieitsteeste sttt sttt b et bbb et e bt e b et ebe b eb et eb et e bt s b ebe st ebesbenesbesesenesbenessenes 34
TO.5. IMPLAB Xttt ettt st ettt st st et b bbbt h ettt snens 35
10.6. MiICrOCHIP STUQIO ..cuiiiiiiiiiiiiirereresese ettt ettt st sbe s st st s b st e st e besbesbenbensensensessenseneesessassessessensenes 38

@ MICROCHIP

10.7. Using Other Hardware Tools with @ Nano Debugger Kit........ccocuririrerinineneneneniesieniesieeeseseeeeeeeseene 39

TO.8. USB DIIVEIS..utiiiiitetctetetet ettt ettt ettt s b e bbb b sa e e e e bbbt s bt s bt s b s b s n e b e nn e s 40
T PYENON TOOIS ettt b ettt s a e st b e et et e st e s s s ese s b e se s b ese et enesbenesbenesbenesbenesbenesbeneetensesan 41
111, PYACDUEEEIUPEIAE. ...ttt ettt ettt sttt ettt b et s b et bt b et b et e b e et e b e be e ebe e ebeeens 41
1020 PYKITINTO ittt ettt sttt b et b et e b bbb bt e b et e bt e bt st e bt s b e bt st ene b ene s 41
1130 PYEADEIID ...ttt b e st s bbb e bbb e et et et e st e b s b e b e s b e ebesbesbesbenbens 42
T PYIMICUPIOE e veeueerreererieenttetesteestesseessesseessesueesseestesbesasesaeesbeessessesssesseensesheeaseaatebeensesaeensesasessesseenseensessesnsesseensenns 42
11,5, PYAEDUEEEICONTIG . ittt sttt b et b e b et b et e b e bbb b e st ebe st ene e 43
17,6, PYCMISISAAPSWITCNE c..uiiiiieiiieete ettt ettt b et b e stk st be bbb e bt ebe b ebesaebesbenesbenens 43
11,7, PYKIECOMMANART .ttt ettt st s b st s b s b et et e b e b et et e st e st e st ebesbesbesbesbesbe st esbenbensenee 44
T2, PINOUL RETEIENCE. ...ttt ettt bbbt bbbtk e b et b et e b et e b et e b et eb et eb e s b ebenbebe b ese b enesbenesaenis 45
13. NaNO DEDUZEEI FIrMWAIE....cuiiiieieieietetetste ettt sttt ettt ettt s s b s b e s b e st e s be st e st esbe s ebenbesensenassasbessessesseses 46
1301, FIFMWAIE PACKS...cueiiiieiirieirie ettt ettt ettt st et b et b bbb bt bbb e bt e be st e bt st ebestesesbenesbeneas 46
13,2, REVISION HISTOMY ettt ettt ettt st e sae et e s bt e b e sae e bt e aneshe et e sanesbeennesneensesnnenne 46
T4, DOCUMENT FEVISION NISTOIY ..ttt ettt ettt sttt ettt b et b et st b et b et b b ebetebe st ebenes 48
MiICrOCHIP INTOIMALION....ciuiitiririrtererere ettt sttt ettt et et e b et et e ebe e b e s besbesbesbesbe st e s bebensensensensenseneen 49
TrAARMAIKS. ..ttt sttt st ae sttt et st e st et et e b e st e b et e b etk et ekt e bt e b et ebe b bbbt b e bt s b be b ene st eneee 49
LEEAI NOTICE. .ottt ettt ettt st h e s b s b s b s b e s b e s b e b et et et et e st ent e st e st e st ese e st ebeebesbesbesbesbesbenbensensensan 49
Microchip Devices Code ProteCtion FEAUIE.......ccuiiiiiiririrenenienieste sttt ettt et et s sbe st st st st sbe st et e nsensensens 49
PrOTUCE PAZE LINKS..coiiiieiiiriieieiictcctt ettt sttt b et s b bbbttt b et 50

@ MICROCHIP

1. Use Cases
The Nano Debugger can be used in many ways. Here are some examples.
Curiosity Nano MCU Boards
Curiosity Nano MCU boards are entry-level development boards that provide a uniform way to
evaluate new silicon products from Microchip. The board pinout is standardized and mapped to the

device pinout in a logical, systematic manner. This enables the use of a set of base boards to provide
peripherals and features across all MCU boards.

All Curiosity Nano kits include a Nano Debugger.

Figure 1-1. PIC32CM PL10 Curioisty Nano

Custom Development Kit
The Nano Debugger can be used on any development kit with an ARM® Cortex or modern AVR®
microcontroller.

An example is the AVR-IoT Cellular Mini
Figure 1-2. AVR-IoT Cellular Mini

o = VOB TGM02S

Aw «

280§wg ~.
. . AVRY 48 . o !
Cellular Mini " «, ~ et 0
SMARY[CONNECY;DISiCURfyv‘ '1" ATE‘CCG"Das 2T
3 o
P3v3 MCU 2 ®

-~ —

QR » :

Bag > % bl |
Sosmir: “MCPSBDB
AS MO RX o o 9

O Tip: You can make your own development kit using the Nano Debugger by
= following the Nano Debugger Integration Guide.

Making a Standalone Debugger

When mounted on a development kit, the Nano Debugger provides both debugger and board
control functionality. In a standalone implementation, the Nano Debugger no longer has full control
of its environment and has no knowledge of the target device because it is not permanently
mounted to the board. In this configuration, the Nano Debugger is a cost-effective debugger with an
optional Virtual Serial Port bridge.

@ MICROCHIP

http://onlinedocs.microchip.com/v2/keyword-lookup?keyword=NEDBG_INTEGRATION.INTRO&redirect=true

O Tip: You can make your own standalone debugger using the Nano Debugger by
= following the Nano Debugger Integration Guide Nano Debugger Integration Guide

@ MICROCHIP

http://onlinedocs.microchip.com/v2/keyword-lookup?keyword=NEDBG_INTEGRATION.INTRO&redirect=true

2. Capabilities

2.1. Features
Key Features of the Nano Debugger:

+ Programming and Debugging of ARM Cortex Devices via the Industry-Standard CMSIS-DAP
Interface

+ Programming and Debugging of AVR and Selected PIC16, PIC18, PIC24 and dsPIC33 Devices via
CMSIS-DAP Vendor Extensions

« Standard Virtual Serial Port (CDC)

* Mass Storage Implementation for Reading Kit Information and Drag-and-Drop Programming of
Selected Device Families

+ Data Gateway Interface for Simple Logic Analysis FunctionsBoard Control Functionality
+ Open Protocol Implementation Supported in Many IDEs and Ecosystems
* Firmware Available for Integration into Custom Hardware Solutions Using a SAMD21 MCU

2.2. Target Devices

Programming and Debugging of ARM Cortex Devices

The Microchip Nano Debugger implements a standard CMSIS-DAP interface as specified by ARM.
This means that it is inherently capable of programming and debugging any ARM Cortex-based
device.

The CMSIS-DAP implementation is version 1, which uses a HID interface to communicate with the
host PC.

SWO trace is not yet supported.

O Tip: In a future firmware update, the Nano Debugger will support CMSIS-DAP
= version 2 using the bulk/vendor interface. For legacy IDE support (e.g., Microchip
Studio), an older firmware must be used.

Table 2-1. ARM SWD Pinout

SWDIO Serial Wire Data DBGO
SWCLK Serial Wire Clock DBG1
RESET Target reset DBG3

Programming and Debugging of AVR Devices

The Microchip Nano Debugger can be used with any AVR device that has the Unified Programming
and Debugging Interface (UPDI). This interface is a single-wire, asynchronous, UART-based protocol
(v1), with some implementations requiring RESET as an additional signal (UPDI header version 2).

NOTI Older AVR devices that use JTAG, debugWIRE, PDI, TPI, ISP, HVSP, or HVPP are not
CE
supported by the Nano Debugger.

Programming non-volatile memories using the UPDI interface is documented in the data sheet for
the AVR device in question, while the debugging interface is not publicly distributed.

@ MICROCHIP

https://arm-software.github.io/CMSIS_5/DAP/html/index.html
https://arm-software.github.io/CMSIS_5/DAP/html/dap_revisionHistory.html
https://arm-software.github.io/CMSIS_5/DAP/html/dap_revisionHistory.html

The AVR programming and debugging commands are implemented using Vendor Commands on
the CMSIS-DAP specification. The command-set used for this protocol is documented in the EDBG-
based Tools Protocols document and implemented in code in pyedbglib.

O Tip: The Nano Debugger is an evolutionary extension of the EDBG and largely
= follows the same protocols, with some refinements and extensions.

Table 2-2. AVR UPDI Pinout
UPDI Programming and Debugging DBGO
RESET Target reset (where applicable) DBG3

Programming and Debugging of PIC® Devices

The Microchip Nano Debugger can be used with only a selection of the devices listed below. These
devices all have the Microchip ICSP physical interface, but they differ logically between device
families. This includes:

« PIC16 devices
+ PIC18 devices
+ PIC24 devices
+ dsPIC33 devices

The Nano Debugger includes a scripting engine very similar to the one used for programming and
debugging PIC devices with the MPLAB® PICkit™ 5 (and similar) tools. Python scripts are included
in the scripts folder of the Device Family Pack for supported devices. The Python stack converts
programming algorithms into bytecode for the scripting engine, which is passed to the Nano
Debugger using the same Vendor Commands on the CMSIS-DAP interface.

Important: The PIC programming interface is documented in the device
programming specifications, but debugging protocols are not published. The
scripting language used for programming and debugging is proprietary and not
published.

Table 2-3. PIC ICSP Pinout

ICSPDAT Programming data DBGO
ICSPCLK Programming clock DBG1
MCLR Master clear (reset) DBG3

@ MICROCHIP

https://arm-software.github.io/CMSIS_5/DAP/html/group__DAP__Vendor__gr.html
https://ww1.microchip.com/downloads/en/DeviceDoc/50002630A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/50002630A.pdf
https://github.com/microchip-pic-avr-tools/pyedbglib
https://arm-software.github.io/CMSIS_5/DAP/html/group__DAP__Vendor__gr.html

3. Nano Debugger USB Interface

The Nano Debugger presents itself to the host computer as a composite USB device with 4
interfaces:

+ CMSIS-DAP - an industry standard open specification provided by ARM for programming and
debugging Cortex MCUs

+ Virtual Serial Port (CDC) - a standard serial port interface
+ Mass Storage Class device (MSC) - a standard removable storage 'disk'’
« Data Gateway Interface - Microchip proprietary interface for streaming data to the host computer

Remember: Keep the debugger's firmware up to date. Firmware upgrades are
automatic when using a current Microchip IDE. Alternatively, check for updated
Tool Packs for PKOB nano support and use pydebuggerupgrade to manually
upgrade the firmware.

@ MICROCHIP

https://packs.download.microchip.com/#collapse-Microchip-nEDBG-TP-pdsc
https://pypi.org/project/pydebuggerupgrade/

4. CMSIS-DAP Debug Interface

The Nano Debugger is an implementation of the CMSIS-DAP debugger interface standard specified
by ARM and will appear as a Human Interface Device (HID) on the host computer's USB subsystem.

HID devices typically don't need specific operating system drivers since they are widely used for
mouse and keyboard applications. This also means that they may not obviously appear as Microchip
devices in your system configuration or device manager.

O Tip: For more information on device drivers, see section USB Drivers.

@ MICROCHIP

5.1.

5.2.

5.3.

Virtual Serial Port (CDC)

The virtual serial port (CDC) is a general purpose serial bridge between a host PC and a target
device.

Overview

The Nano Debugger implements a composite USB device with a standard Communications Device
Class (CDC) interface, which appears on the host as a virtual serial port. Use the CDC to stream
arbitrary data between the host computer and the target in both directions: All characters sent
through the virtual serial port on the host computer will be transmitted as UART on the debugger's
CDC TX pin. The UART characters captured on the debugger's CDC RX pin will be returned to the
host computer through the virtual serial port.

Figure 5-1. CDC Connection

Debugger Target MCU
Terminal s6 Target &
PC Send Receive
. ——P —» CDCTX

Terminal USB

Software — D o 00[08 1) &8 ¢—— UART TX
Terminal
Receive

Info: The debugger's CDC TX pin is connected to a UART RX pin on the target
for receiving characters from the host computer, as shown in the figure above.
Similarly, the debugger’'s CDC RX pin is connected to a UART TX pin on the target
for transmitting characters to the host computer.

Operating System Support

On Windows® machines, the CDC will enumerate as Curiosity Virtual COM Port and appear in the
Ports section of the Windows Device Manager. The COM port number can also be found there.

Info: On older Windows systems, the CDC requires a USB driver. The MPLAB X
IDE installation includes this driver.

On Linux® machines, the CDC will enumerate and appear as /dev/ttyACM#.

Info: tty* devices belong to the “dialout” group in Linux, so it may be necessary to
become a member of that group to have permission to access the CDC.

On Mac® machines, the CDC will enumerate and appear as /dev/tty.usbmodem#. Depending on
the terminal program used, it will appear in the available list of modems as usbmodem#.

Limitations
Not all UART features are implemented in the Nano Debugger CDC. The constraints are outlined
here:

@ MICROCHIP

10

5.4.

5.5.

« Baud rate: Must be in the range of 1200 bps to 500 kbps. Any baud rate outside this range will
be set to the closest limit without warning. The baud rate can be changed on the fly.

+ Character format: Only 8-bit characters are supported.
+ Parity: Can be odd, even or none.

+ Hardware flow control: Not supported.

+ Stop bits: One or two bits are supported.

Signaling
During USB enumeration, the host OS will start the communication and data pipes of the CDC

interface. At this point, it is possible to set and read back the baud rate and other UART parameters
of the CDC, but sending and receiving data will not be enabled.

The terminal must assert the DTR signal when it connects to the host. As this is a virtual control
signal implemented on the USB interface, it is not physically present on the board. Asserting the DTR
signal from the host will indicate to the Nano Debugger that a CDC session is active. The debugger
will enable its level shifters (if available) and start the CDC data send and receive mechanismes.

Deasserting DTR in debugger firmware version 1.20 or earlier has the following behavior:

+ The debugger UART receiver is disabled, and no more data will be transferred to the host
computer

+ The debugger UART transmitter will continue to send queued data ready for transfer, but no new
data is accepted from the host computer

+ Level shifters (if available) are not disabled, and the debugger CDC TX line remains driven

Deasserting DTR in debugger firmware version 1.21 or later has the following behavior:

+ The debugger UART receiver is disabled, and no further data will be transferred to the host
computer

+ The debugger UART transmitter will continue to send queued data that are ready for transfer, but
no new data will be accepted from the host computer

+ Once the ongoing transmission is complete, level shifters (if available) are disabled, and the
debugger CDC TX line will become high-impedance

Remember: Set up the terminal emulator to assert the DTR signal. Without this
signal, the Nano Debugger will not send or receive data through its UART.

O Tip: The Nano Debugger's CDC TX pin will not be driven until the CDC interface is

= enabled by the host computer. Also, there are no external pull-up resistors on the
CDC lines connecting the debugger and the target, meaning the lines are floating
during power-up. The target device may enable the internal pull-up resistor on
the pin connected to the debugger's CDC TX pin to avoid glitches resulting in
unpredictable behavior like framing errors.

Advanced Use

CDC Override Mode

In ordinary operation, the Nano Debugger is a UART bridge between the host and the device.
However, in certain use cases, the Nano Debugger can override the basic Operating mode and use
the CDC TX and RX pins for other purposes.

@ MICROCHIP

Dropping a text file into the Nano Debugger's mass storage drive can send characters out of the
debugger's CDC TX pin. The filename and extension are trivial, but the text file will start with the
characters:

CMD: SEND UART=

Debugger firmware version 1.20 or earlier has the following limitations:
+ The maximum message length is 50 characters - all remaining data in the frame are ignored

+ The default baud rate used in this mode is 9600 bps, but if the CDC is already active or
configured, the previously used baud rate still applies

Debugger firmware version 1.21 and later has the following limitations/features:

+ The maximum message length will vary depending on the MSC/SCSI layer timeouts on the host
computer and/or operating system. A single SCSI frame of 512 bytes (498 characters of payload)
is ensured, and files up to 4 KB will work on most systems. The transfer will be completed on the
first NULL character encountered in the file.

* The baud rate used is always 9600 bps for the default command:

CMD: SEND UART=

+ Do not use the CDC Override mode simultaneously with data transfer over the CDC/terminal.
If a CDC terminal session is active when receiving a file via the CDC Override mode, it will be
suspended for the duration of the operation and resumed once complete.

+ Additional commands are supported with explicit baud rates:

CMD: SEND_9600=
CMD: SEND_115200=
CMD: SEND_460800=

USB-Level Framing Considerations

Sending data from the host to the CDC can be done byte-wise or in blocks, chunked into 64-byte
USB frames. Each frame will be queued for transfer to the debugger's CDC TX pin. Sending a

small amount of data per frame can be inefficient, particularly at low baud rates, as the Nano
Debugger buffers frames but not bytes. A maximum of four 64-byte frames can be active at any
time. The Nano Debugger will throttle the incoming frames accordingly. Sending full 64-byte frames
containing data is the most efficient method.

When receiving data on the debugger’'s CDC RX pin, the Nano Debugger will queue up the incoming
bytes into 64-byte frames, which are sent to the USB queue for transmission to the host when they
are full. Incomplete frames are also pushed to the USB queue at approximately 100 ms intervals,
triggered by USB start-of-frame tokens. Up to eight 64-byte frames can be active at any time.

An overrun will occur if the host (or the software running) fails to receive data fast enough. When
this happens, the last-filled buffer frame recycles instead of being sent to the USB queue, and a
complete data frame will be lost. To prevent this, the user must ensure that the CDC data pipe is
continuously read, or alternatively reduce the incoming data rate.

Sending Break Characters

The host can send a UART break character to the device using the CDC, which can be usable
for resetting a receiver state-machine or signaling an exception condition from the host to the
application running on the device.

A break character is a sequence of at least 11 zero bits transmitted from the host to the device.

Not all UART receivers have support for detecting a break, but a correctly-formed break character
usually triggers a framing error on the receiver.

@ MICROCHIP

Sending a break character using the debugger's CDC has the following limitations:
+ Abreak must NOT be sent simultaneously with the use of CDC Override mode (drag-and-drop).
Both these functions are temporary states and must be used independently.

+ Sending a break will cause any data being sent to be lost. Be sure to wait a sufficient amount
of time to allow all characters in the transmission buffer to be sent (see above section) before
sending the break, which is also in line with expected break character usage. For example, reset a
receiver state-machine after a timeout occurs waiting for returning data to the host.

« The CDC specification allows for debugger-timed breaks of up to 65534 ms in duration to be
requested. For simplicity, the debugger will limit the break duration to a maximum of 11 bit-
durations at its minimum supported baud rate.

+ The CDC specification allows for indefinite host-timed breaks. In this case, it is the responsibility
of the terminal application or user to release the break state.

Note: Sending break characters is available in debugger firmware version 1.24 and later.

@ MICROCHIP

6.1.

Mass Storage Device

The Nano Debugger includes a simple Mass Storage Device implementation, which is accessible for
read/write operations via the host operating system to which it is connected.

It provides:
+ Read access to basic text and HTML files for detailed kit information and support

« Write access for programming Intel® HEX and UF2 formatted files into the target device’s
memory

+ Write access for simple text files for utility purposes

Note: Support for the UF2 format is available in debugger firmware version 1.31 or later.

Mass Storage Device Implementation

The Nano Debugger implements a highly optimized variant of the FAT12 file system with several
limitations, partly due to the nature of FAT12 itself and optimizations made to fulfill its purpose for
its embedded application.

The Curiosity Nano USB device is USB Chapter 9-compliant as a mass storage device but does
not, in any way, fulfill the expectations of a general purpose mass storage device. This behavior is
intentional.

When using the Windows operating system, the Nano Debugger enumerates as a Curiosity Nano
USB Device found in the disk drives section of the device manager. The CURIOSITY drive appears in
the file manager and claims the following available drive letter in the system.

The CURIOSITY drive contains approximately 1 MB of free space and does not reflect the target
device's Flash size. When programming an Intel HEX or UF2 file, the binary data are encoded in ASCII
with metadata providing significant overhead. Therefore, 1 MB is an arbitrarily chosen value for the
disk size.

It is not possible to format the CURIOSITY drive. When programming a file to the target, the filename
may appear in the disk directory listing; however, this is merely the operating system'’s view of the
directory, which in reality has not been updated. It is not possible to read out the file contents.
Removing and replugging the board will return the file system to its original state, but the target will
still contain the previously programmed application.

Copy a text file starting with “cMD: ERASE" onto the disk to erase the target device.

By default, the CURIOSITY drive contains several read-only files used for generating icons, reporting
status, and linking to further information:

* AUTORUN. ICO - icon file for the Microchip logo

* AUTORUN. INF - system file required for Windows Explorer to show the icon file
* CLICK-ME.HTM - redirect to a kit-specific web demo application

* KIT-INFO.HTM - redirect to the development board website

* KIT-INFO.TXT - a text file containing details about the board’s debugger firmware version,
board name, USB serial number, device, and drag-and-drop support

* PUBKEY.TXT - a text file containing the public key for data encryption
* STATUS.TXT - a text file containing the programming status of the board

@ MICROCHIP

Info: The Nano Debugger dynamically updates STATUS. TXT. However, the
contents may not reflect the correct status because the operating system may
cache the file.

O Tip: The presence of the CLICK-ME and PUBKEY files depends on the debugger
= board configuration.

6.2. Fuse/Configuration Bytes/Words

Fuse Bytes (AVR® MCU Targets)

When performing drag-and-drop programming, the Nano Debugger masks out any fuse bits that
attempt to disable Unified Program and Debug Interface (UPDI), meaning that the UPDI pin cannot
be used in its Reset or GPIO modes. Selecting one of the alternative functions of the UPDI pin will
render the device inaccessible without using an external debugger capable of high-voltage UPDI
activation.

Configuration Bytes/Words (PIC® MCU Targets)

When performing drag-and-drop programming, the debugger masks out any configuration bytes
or words that attempt to disable the ICSP interface, or other One-Time Programmable (OTP)
configurations.

6.3. Limitations of Drag-and-Drop Programming

ARM Cortex Devices

Drag-and-drop programming is not supported on ARM Cortex devices. Use one of the supported
IDEs or command-line utilities for programming.

Lock Bits

Lock bits included in the hex file will be ignored when using drag-and-drop programming. To
program lock bits, use one of the supported IDEs.

Enabling CRC Check in Fuses

It is not advisable to enable the CRC check fuses in the target device when using drag-and-drop
programming because a subsequent chip erase (which does not affect fuse bits) will cause a CRC
mismatch, and the application will fail to boot. A chip erase must be performed using a supported
IDE, which automatically clears the CRC fuses after erasing to recover the target from this state.

6.4. Special Commands

Several utility commands are supported by copying text files to the mass storage disk. The filename
or extension is irrelevant - the command handler reacts to content only.

Table 6-1. Special File Commands

CMD:ERASE Executes a target chip erase

CMD: SEND_UART= Sends a string of characters to the CDC UART. See Advanced Use.
CMD:SEND 9600= CMD:SEND 115200= Sends a string of characters to the CDC UART at the specified baud
CMD:SEND 460800= rate. Note that only the baud rates explicitly specified here are

supported. See Advanced Use (Debugger firmware v1.25 or newer.)

CMD:RESET Resets the target device by entering Programming mode and
then exiting Programming mode immediately afterwards. The exact
timing may vary depending on the programming interface of the
target device. (Debugger firmware v1.25 or newer.)

@ MICROCHIP

6.5.

Table 6-1. Special File Commands (continued)

CMD : POWERTOGGLE Powers down the target and restores it after a 100 ms delay. If
external power is provided, this command has no effect. (Debugger
firmware v1.25 or newer.)

CMD: OV Powers down the target device by disabling the target supply
regulator. If external power is provided, this has no effect. (Debugger
firmware v1.25 or newer.)

CMD:1V8 Sets the target voltage to 1.8V. If using external power, this has no
effect. (Debugger firmware v1.25 or newer.)

CMD:3V3 Sets the target voltage to 3.3V. If using external power, this has no
effect. (Debugger firmware v1.25 or newer.)

CMD: 5V0 Sets the target voltage to 5.0V. If using external power, this
command has no effect. (Debugger firmware v1.25 or newer.)

Info: The content sent to the emulated mass storage disk disk triggers the
commands listed in the table above and does not provide feedback in the case of
either success or failure.

Drag-and-Drop Programming Using UF2 Format

UF2 Format for Drag-and-Drop

Drag-and-Drop programming provides a simple mechanism for programming the non-volatile
memories of the microcontroller on a development kit. This is typically done using the Intel®

HEX format, which includes the necessary addresses and segmentation information as part of

the format. Intel HEX files contain the memory contents encoded as ASCII characters, which must
be parsed in strictly sequential order. This means that the host operating system must send the
content in the correct sequence. This is not always the case for all variants of all operating systems.
The UF2 format was developed by Microsoft as a means to allow memory to be transferred out of
sequence. This is achieved by enforcing a fixed block size throughout the entire data transfer path,
thereby preventing partial writes.

More information on the UF2 format is available on GitHub.

Generating a UF2 file
The result of a project compilation procedure is typically an Intel hex file, which can be converted
into a UF2 file using a post-build step.

The pymcuprog package distributed on pypi.org includes a function to convert an Intel hex file to a
UF2 file in version 3.17 or later.

Tip: This procedure requires the installation of a recent release of Python 3 and
= the pymcuprog package in that environment, as well as ensuring that the Python
scripts folder is included in the system or user path.

An Intel HEX file can be converted into a UF2 file using the pymcuprog command-line interface:

pymcuprog makeuf2 -f app.hex --uf2file app.uf2

@ MICROCHIP

https://github.com/microsoft/uf2
https://pypi.org/project/pymcuprog/

This process can be streamlined by adding a post-build step in MPLAB X IDE. In the Project

Properties configuration dialog, select the Building tab and check Execute this line after build.
Add the command to the edit box:

pymcuprog makeuf2 -f ${ImagePath} --uf2file ${ImageDir}\${ProjectName}.X.${IMAGE TYPE}.uf2

Each time the application is built, the produced Intel hex file will automatically be converted to a UF2
file with the same filename but with a .uf2 file extension.

@ MICROCHIP

7. Data Gateway Interface (DGI)

Data Gateway Interface (DGI) is a USB interface that transports raw and timestamped data between
the Nano Debugger and host computer-based visualization tools. MPLAB Data Visualizer is used on
the host computer to display any debug GPIO data. It is available as a plug-in for MPLAB X IDE or as
a stand-alone application that can be used in parallel with MPLAB® X IDE.

O Tip: The number of GPIO channels can vary depending on the device mounted on
= the kit. AVR devices have two channels, while all other device types have a single
channel.

7.1. Debug GPIO

Debug GPIO channels are timestamped digital signal lines that connect the target application to a
host computer visualization application. They are typically used to plot low-frequency events on a
time axis, such as when specific application state transitions occur.

The figure below shows the monitoring of the digital state of a mechanical switch connected to a
debug GPIO in MPLAB Data Visualizer.

Figure 7-1. Monitoring Debug GPIO with MPLAB Data Visualizer

T T T T
100.4s 10055 100.8s5 100.7s 100.8s 100.8s 101s 101.1s 101.2s 101.3s

Debug GPIO channels are timestamped, so the resolution of DGI GPIO events is determined by the
DGI Timestamp module resolution.

Important: Although capturing higher-frequency signal bursts is possible, the
frequency range in which the debug GPIO can be used is up to about 2 kHz.
Attempting to capture signals above this frequency will result in data saturation
and overflow, which may cause the DGI session to abort.

@ MICROCHIP

7.2. Timestamping
When captured by the debugger, DGI sources are timestamped. The timestamp counter

implemented in the Curiosity Nano debugger increments at a frequency of 2 MHz, providing a
timestamp resolution of half a microsecond.

@ MICROCHIP

8.2.

Board Controller Functions

Voltage Monitor

The Nano Debugger uses an ADC channel to monitor the voltage on the target device. Reading the
target voltage is controlled by the TVR (Target Voltage Readout) field in the board configuration - if
this feature bit is cleared, then voltage monitoring is disabled.

The voltage monitor is a background task running in the Nano Debugger firmware that samples the
ADC at regular intervals.

When used as an on-board debugger, the board designer sets the VMIN field in the board
configuration, which specifies the minimum operating voltage value. Below this voltage, the Voltage
Monitor registers that the target voltage is off. Handling of attempted programming and debugging
operations in the off-state depends on the target device type.

The current operating voltage can be read out using a Microchip IDE or pymcuprog:

pymcuprog getvoltage

To read the set-point for the supply voltage, use:

pymcuprog getsupplyvoltage

USB Voltage

The Nano Debugger can also read the voltage on the USB VBUS line, which is its power source. This
is primarily a convenience feature.

The USB voltage can be read using a Microchip IDE or pymcuprog:

pymcuprog getusbvoltage

Voltage Control

The Nano Debugger can supply the target device with its own voltage source. This is optional for
both on-board and standalone debugger configurations.

To change the operating voltage, use one of the Microchip IDEs or pymcuprog:

pymcuprog —--setsupplyvoltage

O Tip: There is an easy option to adjust the target voltage by copying a drag-and-
= drop command text file to the board, which supports a set of commonly used
target voltages. See section Special Commands for further details.

The mechanism used by the Nano Debugger for controlling target voltage depends upon the board
configuration in place.

Table 8-1. Board configuration for voltage control

ANALOG_FEATURES: TVS Target voltage set Indicates that the target voltage can be controlled
VMIN Minimum operating voltage Setting the voltage below this value will fail

VMAX Maximum operating voltage Setting the voltage above this value will fail

VTG Default operating voltage Voltage used when no voltage is set

VREG Voltage regulator Indicates which regulator is mounted on the board

configuration

@ MICROCHIP

20

https://pypi.org/project/pymcuprog/
https://pypi.org/project/pymcuprog/
https://pypi.org/project/pymcuprog/

8.3.

@ MICROCHIP

Voltage Regulator Configuration 0 - None
No voltage control is available when this configuration is used.

Voltage Regulator Configuration 1 - Curiosity Nano
Note: This configuration is used on Curiosity Nano boards (adjustable voltage boards).

When the VREG board configuration is set to 0x01, the Nano Debugger uses a DAC to regulate
the voltage on the target device by manipulating the voltage on the feedback pin of a low drop-
out regulator. The Nano Debugger monitors the output of this regulator as described in Voltage
Monitor, and regulates the voltage accordingly.

The target voltage regulator is a MIC5353 variable output LDO. The Nano Debugger can adjust
the voltage output supplied to the board's target section by manipulating the MIC5353's feedback
voltage. The hardware implementation is limited to an approximate voltage range of 1.7V to 5.1V.

MIC5353 supports a maximum current load of 500 mA. Itis an LDO regulator in a small package,
placed on a small printed circuit board (PCB), and can reach thermal shutdown at loads lower than
500 mA. The maximum current load depends on the input voltage, the selected output voltage, and
the ambient temperature. The figure below shows the safe operating area for the regulator, with an
input voltage of 5.1V and an ambient temperature of 23°C.

Figure 8-1. Target Regulator Safe Operation Area

400

1500 2000 2500 3000 3500 4000
Vout [mV]

The profile shown here was measured on a Curiosity Nano board and may vary
TICE .
depending on the PCB.

The voltage output of the target regulator is continuously monitored (measured) by the Nano
Debugger. An error condition is flagged if a deviation of 100 mV above or below the expected
voltage is detected. In this case, the voltage regulator will be switched off.

The error detection will also handle deviations in an externally applied voltage.
For more information, see Voltage Off Pin (VOFF).

Voltage Off Pin (VOFF)

The VOFF pin is only relevant when an adjustable regulator is used.

21

Instead of using the on-board target regulator, an external voltage can be used to power the target
device. When the Voltage Off (VOFF) pin is shorted to the ground (GND) pin, the Nano Debugger
firmware disables the target regulator, making it safe to apply an external voltage to the VTG pin.

The VOFF pin is used to allow a Curiosity Nano base board to provide power to a mounted
Curiosity Nano kit. Voltage is applied via the VTG pin; otherwise, the two power supplies would
be in contention. The base board pulls the VOFF pin low when it is connected.

The VOFF pin can be tied low or released at any time, and this change will be detected by a
pin-change interrupt to the Nano Debugger, which will then control the target voltage regulator
accordingly.

/A\WARNING Applying an external voltage to the VTG pin without shorting VOFF to GND may
cause permanent damage to the board.

Do not apply any voltage to the VOFF pin. Let the pin float to enable the power

/\WARNING supply.

Applying a higher voltage than the maximum operating voltage of the target

WARNING .
A device may cause permanent damage to the board.

Info: If the Nano Debugger shuts off the target regulator, it will begin blinking the
status LED rapidly, to indicate an error condition. Once the error is resolved the
Nano Debugger will switch on the target regulator and stop blinking the status
LED.

Programming, debugging, and data streaming are still possible with an external power supply. The
USB cable powers the debugger and signal level shifters. Both regulators, the debugger, and the
level shifters are powered down when the USB cable is removed.

Info: In addition to the power consumed by the target device, approximately
100 pA will be drawn from any external power source to power the on-board
level shifters and voltage monitor circuitry when a USB cable is plugged into

the DEBUG connector on the board. When the USB cable is unplugged, some
current is used to supply the level shifter's voltage pins, with a worst-case current
consumption of approximately 5 pA. Typical values may be as low as 100 nA.

8.4. Voltage Control Errors
This section summarizes the most common issues that can arise with the power supply.

Target Voltage Shuts Down

Not reaching the set target voltage can occur if the target section draws too much current at a given
voltage, causing the thermal shutdown safety feature of the MIC5353 regulator to activate. To avoid
this, reduce the current load of the target section.

Target Voltage Setting is Not Reached

The USB input voltage (specified to be 4.4-5.25V) limits the maximum output voltage of the MIC5353
regulator at a given voltage setting and current consumption. If a higher output voltage is needed,
use a USB power source with a higher input voltage or an external voltage supply on the VTG pin.

B 22
@ MICROCHIP

Target Voltage is Different From Setting

An externally applied voltage to the VTG pin without setting the VOFF pin low can cause this. If
the target voltage fluctuates by more than 100 mV above or below the voltage setting, the Nano
Debugger will detect it, and the internal voltage regulator will shut down. To fix this issue, remove
the applied voltage from the VTG pin, and the Nano Debugger will enable the voltage regulator
when the new condition is detected. Note that the PS LED will blink rapidly if the target voltage is
below 100 mV of the setting but will remain on if it is more than 100 mV above it.

No, or Very Low Target Voltage and PS LED is Blinking Rapidly

A full or partial short circuit can cause this and is a specific instance of the issue described above.
Remove the short circuit, and the Nano Debugger will re-enable the target voltage regulator.

No Target Voltage and PS LED is Lit 1

This situation occurs if the target voltage is set to 0.0V. To fix this, set the target voltage to a value
within the specified voltage range for the target device.

No Target Voltage and PS LED is Lit 2

This situation can occur when power jumper(s) are cut and the target voltage regulator is set to a
value within the specified voltage range for the target device. To fix this, solder a wire or bridge
between the pads or, if a pin header is mounted, add a jumper.

VBUS Output Voltage is Low or Not Present

If the VBUS output voltage is low or missing, the most likely reason is a high current drain on VBUS,
which has caused the current limiter to trip and cut off VBUS completely. To fix this issue, reduce the
current consumption on the VBUS pin.

8.5. ID System

The ID line on the Nano Debugger supports a mechanism used to identify base boards and
extensions that are connected to the Xplained Pro (XPRO) extension header on those base boards.

Note: Only Microchip Xplained Pro extensions and Curiosity Nano base boards feature the
identification system.

During power-up, the Nano Debugger scans the ID line for both base boards and extensions and
presents this information to the IDE upon request.

Note: An extension or base board connected after powering up the Nano Debugger will not be
detected.

Q Tip: For more information on the ID system, see the Xplained Pro Hardware
Development Kit (HDK).

@ MICROCHIP

9.1.

@ MICROCHIP

Debugger Configuration

The Nano Debugger uses a portion of its internal non-volatile memory to store information about
the hardware it interacts with. This content is typically programmed during manufacturing but can
also be modified by end users. This configuration is preserved when debugger firmware is updated,
and is thus an important mechanism to prevent specific customizations from being made in the
firmware itself.

Debugger configuration includes two parts:

+ Board configuration describes the board on which the Nano Debugger is mounted and is
mandatory

+ Device configuration describes the device that is permanently mounted to a kit and is optional

Tip: If no device configuration is needed, a dummy configuration is used. This
= indicates to the Nano Debugger that drag-and-drop programming is not available.

Board Configuration

The board configuration (or board-config) of the Nano Debugger resides in a section of non-volatile
memory. The board configuration format is specified in XML, with various offsets in this section
allocated to different fields and bits. The API to the host computer is simply a block read/write
operation with no knowledge of the format. The meaning of the fields is defined by the Python files
(for the host computer) and header files (for the Nano Debugger) generated from the configuration
XML itself. New fields can be added without changing the API by allocating unused space in the XML
and regenerating the Python and header files. The XML schema uses semantic versioning (semver)
for compatability.

Table 9-1. Board Configuration 1.14

DEVNAME Up to 32 ASCII characters Device name Specify the exact device
name here if a device is
permanently mounted on the
board.

If the target device is not
mounted on the board this
field must be blank.

KITNAME Up to 60 ASCII characters Kit name Give your kit a nice name
here

MNFRNAME Up to 60 ASCII characters Manufacturer name Specify who you are as a
vendor

SERNUM 20 characters USB serial number A specific USB serial number

can be set here. It is
recommended to use exactly
20 upper-case alphanumeric
characters and no spaces.

Setting the "automatic serial
number" bit will override this
at enumeration time, but

the original value will remain
in the configuration in flash
memory.

REDIRECT 4 characters Redirect ID See note below

24

Table 9-1. Board Configuration 1.14 (continued)

DATE 8 digits Manufacturing date Optionally specify the
manufacturing date of the kit
in format YYYYMMDD

INSTANCE 1 byte Content revision This is a simple version field,
and can be incremented for
each change made to the
configuration

TARGET_DEBUG_INTERFACES 4 bytes Set of programing Set the bits in this bitfield
and debugging interfaces to indicate which physical
supported interface(s) are supported in

this implementation.
Relevant bits are:
+ Bit 1: SWD for ARM

devices

+ Bit 8: UPDI for AVR
devices

+ Bit 10: SWO for ARM
devices

* Bit11:ICSP for PIC and
dsPIC® devices

TARGET_DEBUG_FEATURES 1 byte Set of programming Set the bits in this bitfield to
and debugging features enable individual features:
implemented Relevant bits are:

* Bit 0: SINGLE_DEVICE - set
this bit if the device is
permanently mounted to
the board

* Bit 1: PROG_ENABLED -
set this bit to enable
programming

+ Bit 2: DEBUG_ENABLED
- set this bit to enable
debugging

+ Bit3:
FUSE_CONFIG_PROTECTI
ON - set this bit to enable
protection of fuses and
configuration bytes. A set
of protection masks must
be provided in the device
configuration for this to
work.

+ Bit4:
AUTO_SERIAL_NUMBER
- set this bit to
automatically generate a
USB serial number

DGI_INTERFACES 4 bytes Set of DGI interfaces Set the bits in this bitfield
supported to indicate to the debugger
which DGl interfaces are
connected.

Relevant bits are:
+ Bit0: GPIO

25

@ MICROCHIP

Table 9-1. Board Configuration 1.14 (continued)

DGI_GPIO_MAP

ANALOG_FEATURES

VMIN

VMAX

VREG

ID_CHANNELS

CONFIG_FORMAT_MAJOR
CONFIG_FORMAT_MINOR
CONFIG_FORMAT_BUILD

HARDWARE_MOD

USB_ENUMERATION
MSD_SETTINGS
CLICK_ME_TYPE

@ MICROCHIP

1 byte

4 bytes

1 byte

1 byte

1 byte

1 byte

1 byte

4 bytes

1 byte

1 byte
1 byte
1 byte

Map of DGI GPIO channels

Analog features

Minimum voltage

Maximum voltage

Default voltage

Voltage regulator

ID channels

The version of the
configuration specification
being used. If new fields are
added, this version is updated
and this document will also
be updated.

Specify hardware
modifications which affect the
firmware

USB enumeration
Mass storage content settings

Click-me type configuration

Set the bits in this bitfield
to indicate to the debugger
which DGI GPIO lines are
connected.

Relevant bits are:
* Bit 0: DGI_GPIOO

+ Bit 1: DGI_GPIO1

Set the bits in this bitfield

to indicate to the debugger

which analog implementation

is present on the board.

Relevant bits are:

+ Bit 0: TVS - the debugger
can control the target
voltage

« Bit 1: TVR - the debugger
can measure the target
voltage

+ Bit 2: LVC - level shifters
are present between
debugger and the target

For adjustable-voltage
boards, specify the minimum
voltage in deciVolts

For adjustable-voltage
boards, specify the maximum
voltage in deciVolts

For adjustable-voltage
boards, specify the default
voltage in deciVolts

Specify the voltage regulation
circuit implemented

Values are:
+ 0x00 - not adjustable

* 0x01 - adjustable
regulator configuration 1
controlled by the Nano
Debugger

Specify which ID channels are
implemented

+ Bit0:ID channel 1

(latest)

0x00

0x03
0x00
OxFF

26

9.2.

Table 9-1. Board Configuration 1.14 (continued)

I2C_ADDR_0, 12C_ADDR_1 1 byte 12C address, alternative 12C 0x00
address

LABS 1 byte Activate experimental 0x00
firmware features

KEY1_TYPE 1 byte Key type: loT kits
*+ 0:None

+ 1:48-bit MAC
+ 2:64-bit MAC

*+ 3:UUID

+ 4:UID

* 5:PUBKEY
KEY2_TYPE 1 byte Key type: loT kits
KEY3_TYPE 1 byte + 0:None loT kits
KEY4_TYPE 1 byte * 1:48-bit MAC loT kits

+ 2:64-bit MAC

*+ 4:UID
KEY1_LEN 1 byte Up to 64 bytes Length of content of KEY1
KEY2_LEN 1 byte Up to 32 bytes Length of content of KEY2
KEY3_LEN 1 byte Up to 16 bytes Length of content of KEY3
KEY4_LEN 1 byte Up to 16 bytes Length of content of KEY4
KEY1 64 bytes Key 1 value -
KEY2 32 bytes Key 2 value -
KEY3 16 bytes Key 3 value -
KEY4 16 bytes Key 4 value -

Note: The REDIRECT_ID field is used to populate the URL on the USB Mass Storage disk,
redirecting via kits.microchip.com to a product-specific web page. Contact Microchip support or
edbg@microchip.com if you want to customize a Nano Debugger for your product.

Device Configuration

The device configuration of the Nano Debugger provides information about the device that

is permanently connected to the debugger. Its main function is to support drag-and-drop
programming, which needs to be self-contained (no IDE is involved). The device configuration can be
empty (unprogrammed), but it is recommended to program a null or dummy device configuration

in cases where drag-and-drop programming is not supported (e.g., ARM target devices) or when a
target device is not mounted (e.g., a standalone debugger scenario).

Device configuration has only a single instance, and is not intended to be modified by the user.
The images in the Nano Debugger firmware zip include the null device configuration.

The pydebuggerconfig tool available on pypi.org can be used to write or replace the device config on
a Nano Debugger.

Device Configuration - Advanced Information

Important: This information is for reference only. The device configuration is not
intended to be user-serviced.

@ MICROCHIP

27

http://pypi.org/

@ MICROCHIP

The device configuration is a 3 kB section in non-volatile memory on the Nano Debugger that is
preserved during debugger upgrades.

Table 9-2. Header Structure

uint8 major version Major version of device-specific configuration specification
1 uint8 minor version Minor version
2 uint16 build number Build number of specification
4 uint16 content length Number of bytes of actual content (after header)
6 uint16 content Checksum over content (not currently validated)
checksum
8 uint8 instance Version of this config instance. Sequentially increasing.
7 bytes reserved For future use

Table 9-3. Version 1 Encoding

16 uint8 (enum) programming interface type 0x00: None
0x01: AVR UPDI by EDBG API

0x02: reserved

0x03: PIC by GEN4 binary code
0x04: PIC by GEN4 primitives
0x05-0xFF: reserved

17 uint8 (enum) device sub-variant For PIC devices:
*+ 0x00: PIC16
+ 0x01:PIC18

« 0x02: PIC24/dsPIC
* 0x03-0xFF: reserved

18 14 bytes reserved For future use
After these headers, a lookup table of relative offsets of binary objects (BLOB) is encoded

Table 9-4. BLOB Table Encoding

uint8 L List token
33 uint8 size Number of items
34 uint16 offset Offset of item 1

34+2n uint16 offset Offset of item n
Each BLOB is encoded

Table 9-5. BLOB Header Encoding

uint8 Structure type + 'S" binary object from GEN4 script

+ 'D" device context (as used for AVR)

1 uint8 ID eg: script ID
2 uint16 size data length in bytes
data binary data

28

Table 9-6. GEN4 Script Binary Types

O

Binary code for enter programming mode

o bW N = O

Binary code for get device ID

Binary code for erase chip

Binary code for program flash memory

Binary code for program config words

Binary code for exit programming mode

Binary code for read flash memory

Device Context (parametric device data)

The Device Context for AVR devices is described in the Embedded Debugger-Based Tools Protocol
User's Guide and in pymcuprog.

Table 9-7. Device Context for AVR devices

0x00
0x02
0x03
0x04
0x06
0x08
0x0A
0x0C
0xOE
0x10
0x12
0x16
0x18
Ox1A
0x1B
0x1C
0x1D
Ox1E
Ox1F
0x20
0x22
0x24
0x26
0x28
0x2A
0x2C
0x2D
O0x2E

Ox2F
0x30

@ MICROCHIP

uint16
uint8
uint8
uint16
uint16
uint16
uint16
uint16
uint16
uint16
uint32
uint16
uint16
uint8
uint8
uint8
uint8
uint8
uint8
uint16
uint16
uint16
uint16
uint16
uint16
uint8
uint8
uint8

uint8
uint16

Base address for Program Flash memory

Flash page bytes

EEPROM page bytes

Address of NVMCTRL module

Address of OCD module

reserved

reserved

reserved

reserved

Maximum frequency of PDI pin

Flash size in bytes

EEPROM size in bytes

User Row size in bytes

Fuse memory size in bytes

Offset of SYSCFGO or PINCFG fuse within fuse area

AND mask to apply to SYSCFG/PINCFG value when writing
OR mask to apply to SYSCFG/PINCFG value when writing
AND mask to apply to SYSCFG/PINCFG value after erase
OR mask to apply to SYSCFG/PINCFG value after erase
Base address of EEPROM memory

Base address of User Row memory

Base address of Signature Row memory

Base address of Fuse memory

Base addrses of Lockbits memory

Device ID

MSB of base address of Program Flash memory (extends offset 0x00)
MSB of flash page size in bytes (extends offset 0x02)
Addressing mode of UPDI:

* 0x00: use 16-bit addressing

+ 0x01: use 24-bit addressing

High-voltage implementation

Base address of Boot Row

29

https://ww1.microchip.com/downloads/en/DeviceDoc/50002630A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/50002630A.pdf
https://github.com/microchip-pic-avr-tools/pymcuprog/blob/main/pymcuprog/avr8target.py

9.3.

Table 9-7. Device Context for AVR devices (continued)

0x32 uint16 Boot Row size in bytes
0x34 uint16 Fuse protection mask. One bit per fuse byte (from LSB):
+ 0:write allowed

+ 1:protected

The Device Context for PIC devices is described here:

Table 9-8. Device Context for PIC Devices

0x00 uint32 Base address for PFM (Program Flash Memory)
0x04 uint32 Base address for EEPROM memory

0x08 uint32 Base address for User Row memory

0x0C uint32 Base address for Configuration memory

0x10 uint32 Flash size in bytes

0x14 uint16 EEPROM size in bytes

0x16 uint16 User Row size in bytes

0x18 uint16 Configuration memory size in bytes

Ox1A uint16 Flash write block size in bytes

0x1C uint16 EEPROM write block size in bytes

Ox1E uint8 User Row write block size in bytes

Ox1F uint8 Configuration memory write block size in bytes
0x20 uint16 Device ID

0x22 uint32 Configuration memory protection mask. One bit per configuration location (from LSB):

* 0: write allowed

+ 1:protected

Modifying the Debugger Configuration

The board configuration and device configuration can be changed by the end user using the
pydebuggerconfig utility.

For more general information about using pydebuggerconfig, see the information on pypi.org.

Use-Case: Altering the Configuration for Device Protection

When used in conjunction with AVR devices that are permanently mounted to a kit, the

Nano Debugger includes a protection mechanism intended to prevent the MCU from becoming
unrecoverable, especially when using drag-and-drop programming. Disabling the programming and
debugging interface or permanently locking memories are features of some MCUs that are not
conducive to evaluation on a development kit platform.

The protection mechanism works by intercepting write operations to the relevant fuses or
configuration bits and conditionally masking the addresses and values written.

Info: The protection mechanism is intended to prevent making accidental
irreversible changes. Users intentionally making irreversible changes do so at
their own risk.

@ MICROCHIP

30

Info: The available feature-set and corresponding prevention mechanisms
depend on the device. Check the data sheet for further information.

The protection mechanism can be disabled for users who want to have the full experience of
features that require irreversible changes. Doing so will result in permanent changes.

pydebuggerconfig can be used to tweak many aspects of the debugger, including configuration
protection. This procedure requires the installation of a recent release of Python 3 and the
pydebuggerconfig package in that environment.

Step 1: Current Status

Determine whether protection is currently enabled by executing:

pydebuggerconfig read

Next, check for the section:

Register TARGET DEBUG_FEATURES: 0x0F (15) # Program/debug features
bit 0, SINGLE DEVICE: 1 # Single-device
bit 1, PROG_ENABLED: 1 # Programming
bit 2, DEBUG ENABLED: 1 # Debug
bit 3, FUSE_PROTECTION: 1 # Fuse protection

A FUSE_PROTECTION value of '1' indicates that protection is in place.
Step 2: Modifying the Protection Setting

Calculate the desired setting for TARGET_DEBUG_FEATURES by setting FUSE_PROTECTION to '0'.
Replace the current value in the TARGET_DEBUG_FEATURES register by executing, for example:

pydebuggerconfig replace -r TARGET DEBUG FEATURES=0x07

To verify the new value, repeat the process from step 1 and then toggle the power on the kit. All
protection mechanisms are now disabled.

Step 3: Restoring Protection

Protection can be re-enabled either by repeating step 2 with the initial value or using the factory-
restore function by executing:

pydebuggerconfig restore

Important: The restore function will only restore any kit configuration settings
that have been altered since manufacturing, by restoring a copy of the kit
configuration settings stored internally on the debugger. This operation does
not affect the MCU and will not undo any irreversible changes made to its
configuration.

31

@ MICROCHIP

10.

10.1.

10.2.

Tools and IDEs

The Nano Debugger is supported by multiple front-end tools published by Microchip, our partners
and the open-source community.

Partner Ecosystems

The Nano Debugger is supported by various partner ecosystems and IDEs. The CMSIS-DAP standard
debug implementation it is based on effectively provides support for any ARM Cortex device. The
AVR protocol specification is public, and various IDEs that support AVR devices also support the
Nano Debugger (This is the same protocol as used in JTAGICE3, Atmel-ICE, PowerDebugger, and
EDBG.)

Partner integration includes, but is not limited to:
* IAR Embedded Workbench

+ Keil Microvision

+ CodeVisionAVR

*+ OpenOCD
+ pyOCD

+ AVRDUDE
+ PlatformlO
+ Bloom

+ probe-rs

O Tip: For up-to-date information about our partners, see Development Tool
= Partners.

MPLAB® Tools for VS Code

The Nano Debugger is supported in the VS Code development environment. As a standard CMSIS-
DAP debugger, it supports generic debug adapters for ARM Cortex devices and frameworks built
using these mechanisms. In addition, it is supported by MPLAB Tools for VS Code.

The MPLAB Tools for VS Code can be downloaded from the MPLAB Extensions official website or
from the VS Code Marketplace. Each resource provides a complete list of MPLAB extensions that
can be installed individually or together as part of the MPLAB Extensions Pack. The installation is
performed through the VS Code Extensions. Tutorials are available on the official website with links
to the Extensions Developer Help and the MPLAB Extensions for VS Code Video playlist.

@ MICROCHIP

32

https://www.microchip.com/en-us/tools-resources/develop/mplab-extensions-vs-code?utm_source=Document&utm_medium=TextLink&utm_campaign=MCU8_PIC32CM%20GC00&utm_content=Development_Tools_Migration_Guide%20-document&utm_bu=MCU08
https://marketplace.visualstudio.com/items?itemName=Microchip.mplab-extension-pack
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/ides/extensions/?utm_source=Document&utm_medium=TextLink&utm_campaign=MCU8_PIC32CM%20GC00&utm_content=Development_Tools_Migration_Guide%20-document&utm_bu=MCU08
https://www.youtube.com/watch?v=0kyqGx3fqLc&list=PLtQdQmNK_0DRncMlBVPL2JTDJnOpDdSWi

Figure 10-1. MPLAB Extensions within the VS Code Extensions Marketplace

File Edit Selection View Go Run -+ £ Search
EXTENSIONS: MARKETPLACE . B Extension: MPLAB X

MPLAB =Y

MPLAB
MPLAB D15K K5

MPLAB Extension Pack installs basic MPLAB... Microchip Technology # mi i ' ® TED LASAIAS
1 & Microchip Technology Install MPLAB Extension Pack installs basic MPLAB extensions to get started.

CMake Runner for MPLAB D 14K * 45 v Install / Auto Update $5%
Faci the use of CMa or building M
chip Technology Install
DETAILS
DI18K K 5
ther Extension Pack (13)

Marketplace
Install

MPITABAI @ gAss'Sta[“ Identifier microchip.mplab-

14K * 5 ant optirr o C
&2wm p Technology Install
Version

Memory Inspector Published
ul [
Install Eclipse CDT Cloud Install Last 2025-08
Released 23:55:16
MPLAB Data Visualizer D 14K K5

L Ir af ion data MPLAB Data Visualizer

i Categories
Microchip Technology

Platform for MPLAB 15K * 5 Programming
1 manag Languages

rochip Technology Install Debuggers

L‘lser Interflafes:for MPLA;B D 14K K5 M PLAB ® EXtenSIOh PaCk Extension Packs

uding S
2 Visualization
rochip Technology install

Welcome! We are working hard to improve your experience and appreciate y« /\

Debug Adapter for MPLAB D 14K K5

using thy

patience and support. Features and functionality will remain in active development. Resources

10.3. Using MPLAB Data Visualizer

The Nano Debugger, via its USB/serial bridge, facilitates a connection between a UART on the target
MCU and your computer's COM port. For example, you can use this to connect to MPLAB Data
Visualizer or other terminal programs.

@ MICROCHIP

https://onlinedocs.microchip.com/v2/keyword-lookup?keyword=MPLAB_DATA_VISUALIZER&version=latest&redirect=true
https://onlinedocs.microchip.com/v2/keyword-lookup?keyword=MPLAB_DATA_VISUALIZER&version=latest&redirect=true

MPLAB
T

VISUARLIZER

% PIC18F56Q71 Curiosity Nano o

Debug GPIO
DGI Endpoint | N\

Serial

% Device Manager - O X

v § Microchip Tools
i ‘ Curiosity Data Gateway < —
v @ Ports (COM & LPT)
i \ Curiosity Virtual COM Port (COM42)‘ :

|

COM42 5

——

View Debua 10

UL L |

1302s 1350 13048 1288 12088 12878 13588 125

Plot View Serial Port
[et x Toashbona x [over resavme rave x [

Time Plot X

wescroling RQA@ 9 T 0@ ¥

=0{Count_|

Terminal Serial Port
Terminal X
n the terminal, send 'ON' to turn the LED on, and 'OFF" ' .
to turn it off.

Note: commands 'ON' and 'OFF' are case sensitive.

0K, LED OFF.

ON

@)
DebuglO
DEBUGGER TARGET
mcu |0 O
UART TX
O

Q Tip: References for the example Data Visualizer Plot- and Terminal-views above:
1. Plot View - DebuglO: DebuglO Hello World (Microchip University).
2. Plot View - Serial Port: MCC Melody Use Case Data Visualizer Run Time Use

Case 1.

3. Terminal - Serial Port: MCC Melody UART Driver; LED Control Commands.

10.4. Kit Window View

Microchip IDEs have a mechanism for detecting Microchip tools connected via USB and presenting
useful information in a Kit Window. This includes, for example, an image of the kit in question,
ordering information for the kit and/or the device mounted on it, schematics, and links to example

projects.

This view is rendered in each IDE with a different look and feel, but the data is deployed on a web
server. Updates to the database are not synchronised with any IDE release cycle.

Some of the data presented in the Kit Window is read from the connected kit and not retrieved from
the database. This data is stored in the Board Configuration of the Nano Debugger, and can thus be

modified by kit developers (partners) as well as by end-users.

@ MICROCHIP

34

https://mu.microchip.com/visual-debugging-with-mplab-data-visualizer/695707
https://www.youtube.com/watch?v=80OA-Cw0F_k
https://www.youtube.com/watch?v=80OA-Cw0F_k
https://www.youtube.com/watch?v=yfr8Jgwljh0

10.5.

Note: The Kit Window is a mechanism developed by Microchip. A subset of this kit information is
accessible using the standard CMSIS-DAP APl commands on partner IDEs and tools.

For an example of the Kit Window view, see MPLAB X.

MPLAB X
The Nano Debugger is supported in MPLAB X IDE and IPE.

O Tip: Microchip has released MPLAB Tools for VS Code, which is a valuable update
= for MPLAB X users!

When a Nano Debugger is connected to a host PC via USB, if MPLAB X IDE is open, a Kit Window is
opened with several key links presented.

When creating a new project using a development board that includes a Nano Debugger (for
example, a Curiosity Nano kit), the part number will be read from the connected board. Nano
Debuggers in a standalone configuration will not have this information so the part number must be

entered manually.
File Edit View Mavigate Source Ref
N =8 S

Prosectl New Project... (Ctrl+Shift+N)

B4 New Project

Steps Select Device

Choose Project

Select Device

Select Header Family: All Families "
Select Plugin Board

Select Compiler)

Select Project Name and Device: PIC18F56071 v
Folder

@ s

Tool: PIC18F56Q71 Curiosity Nano-SN: MC... ~ | [] Show Al

PIC18F56071 Curiosity Nano-5N: MC020041201HIP002233

Note: Be sure to use the latest Tool Pack and Device Family Pack, especially when starting a new
project.

As shown in the image below, additional information about your Curiosity Nano can be seen in the
"Debug Tool" window once you click "Refresh Debug Tool Status".

@ MICROCHIP

35

* 8 X IDE w6.15 - CNano-Timer : default

wigate Source Refactor Production Debug Team Tooks Window Help

e H-B bLR R0 02 e w Bfdfoe]

=1 Gt Window x

2 PICIEFSBQT1 Curiesity Nano

In

Refresh Debug Tool Status
CRC32: Hex

MCU Baards PIC18F56Q71 Curiosity Nano

siMcrochipincliv 241 ¥ fExternal Links
Kaborn: PIC18F-Q_DFP (120, -
ks disabled. Cick to enable Load Symbi @
Diata 4 096 (0x 1000) bytes @
| B Program 65 536 (0 10000) biytes ¥ Bxension
& 5tack Usage Guidance L X
| Nane
L
Output - Kits =
Curiosity Hoard: PICIEFEEQ7L Curiosity Nano [SN: MCO20

O Tip:

bar: Window > Kit Window

41 201HIPOOZ233]

+ If closed, you can reopen the Kit Window in MPLAB® X IDE through the menu

« The 'How do I?' search bar often provides excellent results if you're new to

MPLAB X IDE
+ 'Debug main project" will start a debug session

FFLEU@@@@EI@“@‘E G © @- ﬁ

|E mterupth x| 4

ter C?‘imL‘.rﬁCdllhcn:ki'lt'JDm:;),‘

PHES D e ER B
Projects | Files | Resource Management [MCC] x| & |[startPoge sh’uuaxsme n[p Debug main pro;ect Eman.c x [mro.c] muu x
[MCCv537 _ Souce Hstory .\Lﬁ"d Ty 3 © | laif
Project Rmurces [Generate [”] @ 33 #include Jenerated le ystem/sy . h"
e 34 const struct mn INTERFACE *Timer = stmr0;
v Timer
35
Q= o ‘ 36 [J void Timer_Callback_100ms (void) {
e 37 ED Toggle();
Device Resources Content Manager = DebugIO Teggle();
[‘Hano Tumer - Dashb... = | Navigator | Pin Package View =] 39 }
2 73 Chiano Teer 10
Ty Project Type: Appiication - Configuration: defoult
(<} Device 41 int main(void)
L onlcl_s'scm: 42 O {
?ﬁmbuqﬁd f TE! SYSTEM Initialize();
® @ PKOB nano: MCO20041201HIP002233 44 e P (e
=D versions 45
= Debugger: 1.27.129 (Ox01,0x1b.0x81) e = =
46 INTERRUFT GloballInterruptEnable();
=] oDewceIdentﬁ(ahan 47 . - A
i Device Id: 7760 L
.= Device Revision Id: 20020000 i Lt
=@ voltages !
L= Target: 3.304 50
i Supply: 3.3
iomdl USB: 5.19

[=-30f Debug Resources S > @ I

O Program BP Used: 1 Free: 2| ...
O Data BP Used: 1 Free: 2
"0 Unlimited BP (5\W): Disabled

x Lowtpwt)

[B tine C:\MPLABXIDVRT\DVRunTime Lib-Q71.Xmain.c:46 - Project: DVRurTime 1b-Q71

[+ & Line CA\MPLABX\DVRun Time\CNano- Timer.X\main.c38 - Project: Chana- Timer

MPLAB

Watches _'v-mun ulsudc nnnnunnmlmc] | Pin Grd V. :‘ IDE

@ MICROCHIP

36

Tip:
+ After clicking on 'Refresh Debug Tool Status,' you can see information such as
MCU Target Voltage

+ What are Program- and Data-Break Points? MPLAB X IDE Advanced Debugging
- Breakpoints Demo

Using a Nano Debugger kit with External Microcontrollers

A Nano Debugger on a development kit can easily be modified to operate with a microcontroller not
originally mounted on that kit.

Note: See the User Guide for that particular kit when performing this procedure with a Curiosity
Nano kit.

To program and debug a microcontroller other than the one mounted on the board, configure
Microchip MPLAB X IDE to allow independent selection of devices and programming interfaces.

1. Navigate to Tools > Options through the menu at the top of the application.
2. Select the Embedded > Generic Settings category in the options window.
3. Check the Exclude device checks for kits option.

@ MICROCHIP

37

https://youtu.be/RVPOhPopujs?list=PLtQdQmNK_0DTsTgCR47l9l6HHQIb6b3-T
https://youtu.be/RVPOhPopujs?list=PLtQdQmNK_0DTsTgCR47l9l6HHQIb6b3-T

¥4 Options x

B & L EQ)

General Editor Fonts & Colors Keymap |Embedded| Team Appearance Flugins Miscellaneous

MISRA Check Manaoed Tools Suppressible Messages Diagnostics Other MPLAE Data Visualizer
Generic Settings Project Options Build Tools

Projects Folder:

ELF debug session symbal load methodology (MIPS/ARM) v
Open source file and locate line in editor when debugger halts Enabled -
Clear tool output window on new session {debug, program, upload) 2
Halt build on first failure a
Maintain active connection to hardware tool a
Read Device Memory To File: Export only memary used [
Silent build [
Enable alternate watch list views during debug sessions O
Disable auto refresh for call stadk view during debug sessions. O
On mouse-over structure and array expressions during a debug sess... | @)
Show unresalvable variable names in watch window during debug se... [
Enable Gathering of Compiler symbals a
Prefer online help over offiine if both are available a
On mouse-over source lines in editor, evaluate break point status, SHIFT HMouse -
Hold-off period before memory view synchronization: Give priority to... | 1 Second o
Debug Reset @ (Following reset action during paused debug session) | Main o
Debug startup {Following debug project action) Run o
Default Charset 150-8859-1 e
Ficlude device checks for kits a
MPLAE Code Coverage Report Type HTML W

Export... Import... Apply Cancel Help

Note: Microchip MPLAB X IDE allows any microcontroller and interface to be selected when the
Exclude device checks for kits setting is checked - also microcontrollers and interfaces not
supported by the Nano Debugger.

10.6. Microchip Studio

The Nano Debugger is supported in Microchip Studio when used with devices that are supported
by Microchip Studio and distributed through the Pack Server. This includes many AVR devices with a
UPDI interface and some SAM devices.

Microchip Studio is "mature" and not recommended for new designs.

@ MICROCHIP

38

Important: The Nano Debugger USB interface may change in the future, which
could render the firmware unusable in Microchip Studio.

O Tip: Microchip has released MPLAB Tools for VS Code, which is a valuable update
= for Microchip Studio users!

Using a Nano Debugger kit with External Microcontrollers

A Nano Debugger on a development kit can easily be modified to operate with a microcontroller not
originally mounted on that kit.

Note: See the User Guide for that particular kit when performing this procedure with a Curiosity
Nano kit.

To program and debug a different microcontroller than the one mounted on the board, configure
Microchip Studio to allow an independent selection of devices and programming interfaces.

1. Navigate to Tools > Options through the menu at the top of the application.
2. Select the Tools > Tool settings category in the options window.
3. Setthe Hide unsupported devices option to False.

Options ? et
Search Options (Ctrl+E) P v Tool settings

b Erwironment Automatically pick a tool True

b Projects Check firmware True

I Source Control Custom pregramming tool default ti 60

b Text Editor Enable diagnostic logging True

I: Debugger Hide unsupperted devices False ~
I- Atmmel Start Mask interrupts while stepping True

I- Atmel Studic Feedback

I: Builder

[Device and Tool libraries

I Extensions

I Programming Dialog

[- Status Management

- Toolchain

4 Tools

Tool settings Hide unsupported devices
I XAML Designer Hide devices that are not qualified for use with the current tool.
Cancel

Note: Microchip Studio allows any microcontroller and interface to be selected when the Hide
unsupported devices setting is set to False - also microcontrollers and interfaces not supported by
the on-board debugger.

10.7. Using Other Hardware Tools with a Nano Debugger Kit

When mounted as an on-board debugger on a development kit, the Nano Debugger allows for
external tools to be connected. Such tools could offer additional features or better performance.

The Nano Debugger will not drive the debugger signal lines without instruction from an IDE.

39

@ MICROCHIP

O Tip: For information on using an external debugger with a Nano Debugger kit
= read that kit's User Guide.

Important: When using a programmer capable of high-voltage programming, be
sure to disconnect the Nano Debugger from the high-voltage line. High voltage
can permanently damage the Nano Debugger.

10.8. USB Drivers

When a board with the Nano Debugger is connected to the computer for the first time, the
operating system will install the driver software. The drivers for the Nano Debugger are included
with MPLAB Tools for VS Code, MPLAB X IDE, and Microchip Studio.

@ MICROCHIP

40

11.

11.1.

11.2.

Python Tools

A number of Python-based utilities are published on pypi.org that are useful when working with the
Nano Debugger.

pydebuggerupgrade

pydebuggerupgrade is a CLI and library for upgrading the firmware on the Nano Debugger.
Why you Might use it

Use pydebuggerupgrade to keep your Nano Debugger firmware up to date.

Example

$ pydebuggerupgrade latest
Upgrading nedbg (ATML3203081800012252) to 'latest'
Upgrade to firmware version '1.33.76' successful

Table 11-1. In a Nutshell
Download link pypi.org/project/pydebuggerupgrade/
Source code -

Documentation -

Command line interface Yes

Library Yes

Supported kit types Nano Debugger based
Supported device types All

pykitinfo

pykitinfo is a lightweight Python utility for reading out useful information regarding connected
development kits and debuggers, including the Nano Debugger.

Why you Might use it

The pykitinfo CLI is especially useful when you have multiple Nano Debugger kits connected to a
computer and need a quick lookup of which kit is mapped to which Virtual Serial Port.

Example

$ pykitinfo

Looking for Microchip kits...

Compatible kits detected: 1

Kit ATML3203081800012252: 'AVR-IoT WG' (ATmega4808) on COM163

Table 11-2. In a Nutshell

Download link pypi.org/project/pykitinfo/

Source code github.com/microchip-pic-avr-tools/pykitinfo
Documentation microchip-pic-avr-tools.github.io/pykitinfo/
Command line interface Yes

Library Yes

Supported kit types Various

Supported device types All

@ MICROCHIP

41

https://pypi.org/user/microchiptools/
https://pypi.org/project/pydebuggerupgrade/
https://pypi.org/project/pykitinfo/
https://github.com/microchip-pic-avr-tools/pykitinfo
https://microchip-pic-avr-tools.github.io/pykitinfo/

11.3.

11.4.

pyedbglib
pyedbglib is a library that provides access to the protocols and sub-protocols embedded in the
CMSIS-DAP interface of the Nano Debugger.

Why you Might use it
pyedbglib might be useful when building your own tools or utilities.

Example (Python library)

Example usage of pyedbglib to read debugger firmware version and target voltage
noan

from pyedbglib.hidtransport.hidtransportfactory import hid transport

from pyedbglib.protocols.housekeepingprotocol import Jtagice3HousekeepingProtocol
from pyedbglib import _ version as pyedbglib version

Report library version
print ("pyedbglib version {}".format (pyedbglib version))

Make a connection using HID transport
transport = hid transport ()
transport.connect ()

Create a housekeeper
housekeeper = Jtagice3HousekeepingProtocol (transport)
housekeeper.start session()

Read out debugger firmware version

major = housekeeper.get byte (Jtagice3HousekeepingProtocol.HOUSEKEEPING CONTEXT CONFIG,
Jtagice3HousekeepingProtocol.HOUSEKEEPING CONFIG_FWREV_MAJ)

minor = housekeeper.get byte (Jtagice3HousekeepingProtocol.HOUSEKEEPING CONTEXT CONFIG,
Jtagice3HousekeepingProtocol .HOUSEKEEPING CONFIG_FWREV_MIN)

build = housekeeper.get lelé6 (Jtagice3HousekeepingProtocol.HOUSEKEEPING CONTEXT CONFIG,
Jtagice3HousekeepingProtocol.HOUSEKEEPING CONFIG BUILD)

print ("Debugger firmware is version {}.{}.{}".format (major, minor,build))

Read out target voltage

target voltage =

housekeeper.get lel6 (Jtagice3HousekeepingProtocol.HOUSEKEEPING CONTEXT ANALOG,
Jtagice3HousekeepingProtocol.HOUSEKEEPING ANALOG VTREF)

print ("Target voltage is {:.02f}V".format (target voltage/1000.0))

Tear down

housekeeper.end session ()
transport.disconnect ()

Table 11-3. In a Nutshell

Download link pypi.org/project/pyedbglib/

Source code github.com/microchip-pic-avr-tools/pyedbglib
Documentation microchip-pic-avr-tools.github.io/pyedbglib/
Command line interface No

Library Yes

Supported kit types Various

Supported device types All

pymcuprog

pymcuprog is a lightweight Python utility for erasing, reading and writing non-volatile memories on
devices connected to the Nano Debugger and other Microchip standalone debuggers.

Why you Might use it

The pymcuprog CLI is especially useful when you want to check connectivity to a device ("ping"), or
perform simple read and write operations from the command line.

@ MICROCHIP

42

https://pypi.org/project/pyedbglib/
https://github.com/microchip-pic-avr-tools/pyedbglib
https://microchip-pic-avr-tools.github.io/pyedbglib/

11.5.

11.6.

Example

$ pymcuprog ping

Connecting to anything possible

Connected to nEDBG CMSIS-DAP from Microchip (serial number ATML3203081800012252)
Debugger firmware version 1.21.37

Debugger hardware revision 0

Device mounted: 'atmega4808'

No device specified. Using on-board target (atmega4808)

Pinging device...

Ping response: 1E9650

Done.

Table 11-4. In a Nutshell

Download link pypi.org/project/pymcuprog/

Source code github.com/microchip-pic-avr-tools/pymcuprog
Documentation microchip-pic-avr-tools.github.io/pymcuprog/
Command line interface Yes

Library Yes

Supported kit types - Curiosity Nano

+ Standalone CMSIS-DAP v1 debuggers

Supported device types « AVR devices
+ PIC devices with Curiosity Nano boards

+ Limited support of select SAMD devices

pydebuggerconfig

pydebuggerconfig is a utility for configuring the Nano Debugger.

Why you Might use it

Use pydebuggerconfig when creating custom hardware with the Nano Debugger.

Example

S pydebuggerconfig write -b board-configs/ATmega4809-CNANO.xml

Table 11-5. In a Nutshell
Download link pypi.org/project/pydebuggerconfig/
Source code -

Documentation -

Command line interface Yes

Library Yes

Supported kit types Nano Debugger
Supported device types All
pycmsisdapswitcher

pycmsisdapswitcher is a utility for switching firmware on certain Microchip debuggers and kits.

Important: pycmsisdapswitcher does NOT work for the Nano Debugger - use
pydebuggerupgrade

@ MICROCHIP

43

https://pypi.org/project/pymcuprog/
https://github.com/microchip-pic-avr-tools/pymcuprog
https://microchip-pic-avr-tools.github.io/pymcuprog/
https://pypi.org/project/pydebuggerconfig/

11.7.

Why you Might use it

Use pycmsisdapswitcher to switch your PICkit™ 4, PICkit™ 5, PICkit™ Basic, Snap, or PKOB4 into
CMSIS-DAP v2 mode.

Example

$ pycmsisdapswitcher --appsource path to appfile

Table 11-6. In a Nutshell
Download link pypi.org/project/pycmsisdapswitcher/
Source code -

Documentation -

Command line interface Yes
Library Yes
Supported kit types PKOB4
Supported device types All
pykitcommander

pykitcommander manages interactions with applications running on kits that use the Nano
Debugger.

Why you Might use it
Use pykitcommander when you want to load an application onto an MCU and communicate with it
using the Virtual Serial Port.

Table 11-7. In a Nutshell

Download link pypi.org/project/pykitcommander/

Source code github.com/microchip-pic-avr-tools/pykitcommander
Documentation microchip-pic-avr-tools.github.io/pykitcommander/
Command line interface No

Library Yes

Supported kit types Various

Supported device types All

@ MICROCHIP

44

https://pypi.org/project/pycmsisdapswitcher/
https://pypi.org/project/pykitcommander/
https://github.com/microchip-pic-avr-tools/pykitcommander
https://microchip-pic-avr-tools.github.io/pykitcommander/

12. Pinout Reference

Table 12-1. Nano Debugger SAMD21 Pinout

1 CDC_TX

2 CDC_RX

3 Power supply adjust
4 VTG_ADC

5 DBGO_RX

6 Reserved

7 DBGO_TX

8 DBG1

9 VDDANA

10 GNDANA

11 DBG2_CTRL
12 DBG2

13 Power supply enable
14 VBUS_ADC

15 DBGO_CTRL
16 DBG1_CTRL
17 DBG3 RESET MCLR
18 VTG_EN

19 CDC_RX_CTRL
20 VOFF

21 CDC_TX_CTRL
22 ID_SYS

23 USB_DM

24 USB_DP

25 BOOT

26 RESET

27 LED

28 GND

29 VDDCORE

30 VDDIN

31 SWCLK

32 SWDIO

@ MICROCHIP

CDC UART transmit

CDC UART receive

Analog output for power supply adjustment
Analog input for target voltage measurement
Receive signal for debug interface data

Do not connect

Transmit signal for debug interface data
Debug interface clock

Analog voltage supply for SAMD21

Analog ground for SAMD21

Level shifter direction for DBG2 (DGI GPIO)
Data for DBG2 (DGI GPIO)

Enable signal for power supply switch
Analog input for USB VBUS measurement
Level shifter direction for DBGO (debug data)
Level shifter direction for DBG1 (debug clock)
Open-drain control for DBG3 (RESET ,MCLR))
Enable switch for target voltage

Level shifter direction for CDC RX

External voltage detection

Level shifter direction for CDC TX

ID system

USB data

USB data

Force bootloader entry

Nano Debugger reset

Status LED

Ground

SAMD21 core decoupling

SAMD21 VDD

SWCLK for debugging the Nano Debugger
SWDIO for debugging the Nano Debugger

45

13.
13.1.

13.2.

Nano Debugger Firmware

Firmware Packs

The Nano Debugger firmware is not open source. Intel HEX files are included in the Tool Packs
published by Microchip on the Microchip Packs Repository under PKOB nano support.

Inside each Tool Pack, you will find a firmware subfolder containing nedbg_fw.zip. The file
avrtools_fw.xml provides information about the HEX file nedbg.hex.

Standalone Upgrade

Use pydebuggerupgrade to update the firmware on your Nano Debugger.

Q Tip: use the command

pydebuggerupgrade latest

to automatically get the latest released firmware

Tip: use the command

pydebuggerupgrade <x.y.z>

to automatically download and install the firmware in pack version x.y.z

IDE Upgrade
Use the Pack Manager in MPLAB X and MPLAB Tools for VS Code to download the latest Nano

Debugger firmware pack. The firmware is updated automatically when the IDE connects to the kit.

Note: Be sure to select either a specific Tool Pack or "latest" in the project properties.
Legacy Upgraders

Microchip Studio only includes bundled firmware, which is no longer updated. Use a standalone
upgrader or atfw.exe to update the firmware on the Nano Debugger.

Note: Microchip Studio may automatically downgrade your Nano Debugger to the latest bundled
firmware. To prevent this behavior, delete or rename the firmware zip file inside the Microchip
Studio Program Files folder.

Use the atfw.exe from Microchip Studio:

Tip: use the command

atfw.exe -a <zipfile>

to upgrade the firmware using a zip archive extracted from a Tool Pack

Revision History

Note: The revision is specified in decimal in this table, but some IDEs and tools report it in
hexadecimal.

@ MICROCHIP

46

https://packs.download.microchip.com/#collapse-Microchip-nEDBG-TP-pdsc
https://pypi.org/project/pydebuggerupgrade/

Table 13-1. Revision history of the Nano Debugger firmware

Tool Pack Release date Notable fixes and features

1.34

1.33

1.32

1.31

1.30

1.29

1.27

1.25

1.23

1.22

1.21

1.20

1.18.x

1.17.969

1.16.876

1.14.751

1.13.715

1.12.711

1.11.554

1.10.488

1.9.446

1.7.295

1.5.210

1.3.164

1.0.33

December 2025

September 2025

March 2025
April 2024
October 2023

October 2023

December 2022

May 2022

December 2021

March 2021
September 2020
June 2020
March 2020

March 2020
2018-2019

FW5G-1580

FW5G-1459

FW5G-1362

FW5G-1323

FW5G-1306

FW5G-1250

FW5G-1192

FW5G-1133

FW5G-1086

FW5G-880

FW5G-744

FW5G-708

FW5G-620

FW5G-516
FW5G-485

SWD timing improvements

dsPIC33A support and fixes
DAP_SWJ_Pins timing fix

AVR-SD UPDI handshake
added UF2 parser
hotfix for previous 1.29 hex file issue

fix for AVR NVM P:4
added support for AVR BOOTROW
added PDID protection filter

added AVR NVM P:4
added support for dsPIC33

added support for CDC BREAK

added AVR EA support
fix to AVR fuse protection

multiple CDC fixes
added MSC to CDC bridge
SAM-I0T related fixes

added SAM-loT

Initial public tool pack release

Internal releases and bundles with Studio/MPLAB

The reference can be used when contacting Microchip support

@ MICROCHIP

47

14. Document revision history

Table 14-1. Document Revisions

A 12/2025 Initial document release

@ MICROCHIP

48

Microchip Information

Trademarks

The “Microchip” name and logo, the “M" logo, and other names, logos, and brands are registered
and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or
subsidiaries in the United States and/or other countries (“Microchip Trademarks"). Information
regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legal-
information/microchip-trademarks.

ISBN: 979-8-3371-2428-5

Legal Notice

This publication and the information herein may be used only with Microchip products, including

to design, test, and integrate Microchip products with your application. Use of this information

in any other manner violates these terms. Information regarding device applications is provided
only for your convenience and may be superseded by updates. It is your responsibility to ensure
that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR

ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,

and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

+ Microchip products meet the specifications contained in their particular Microchip Data Sheet.

« Microchip believes that its family of products is secure when used in the intended manner, within
operating specifications, and under normal conditions.

« Microchip values and aggressively protects its intellectual property rights. Attempts to breach the
code protection features of Microchip products are strictly prohibited and may violate the Digital
Millennium Copyright Act.

+ Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

@ MICROCHIP

49

https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

Product Page Links

ATmega1608, ATmega1609, ATmega3208, ATmega3209, ATmegad808, ATmegad809,

ATmega808, ATmega809, ATSAM4E16E, ATSAM4LC4C, ATSAM4LC8C, ATSAM4N16C,

ATSAMA4SD32C, ATSAMC20E15A, ATSAMC20E16A, ATSAMC20E17A, ATSAMC20E18A, ATSAMC20G15A,
ATSAMC20G16A, ATSAMC20G17A, ATSAMC20G18A, ATSAMC20)15A, ATSAMC20)16A, ATSAMC20J17A,
ATSAMC20J18A, ATSAMC20N17A, ATSAMC20N18A, ATSAMC21E15A, ATSAMC21E16A,
ATSAMC21E17A, ATSAMC21E18A, ATSAMC21G15A, ATSAMC21G16A, ATSAMC21G17A,
ATSAMC21G18A, ATSAMC21)J15A, ATSAMC21)16A, ATSAMC21)17A, ATSAMC21)18A, ATSAMC21N17A,
ATSAMC21N18A, ATSAMCA1TE17A, ATSAMD20E14, ATSAMD20E15, ATSAMD20E16, ATSAMD20E17,
ATSAMD20E18, ATSAMD20G14, ATSAMD20G15, ATSAMD20G16, ATSAMD20G17, ATSAMD20G18,
ATSAMD20J14, ATSAMD20J15, ATSAMD20J16, ATSAMD20J17, ATSAMD20J18, ATSAMD21E15,
ATSAMD21E15L, ATSAMD21E16, ATSAMD21E16L, ATSAMD21E17, ATSAMD21E17L, ATSAMD21E18,
ATSAMD21G15, ATSAMD21G16, ATSAMD21G16L, ATSAMD21G17, ATSAMD21G17L, ATSAMD21G18,
ATSAMD21J15, ATSAMD21J16, ATSAMD21)17, ATSAMD21)18, ATSAMD51G18A, ATSAMD51G19A,
ATSAMD51)18A, ATSAMD51J19A, ATSAMD51J20A, ATSAMDS51TN19A, ATSAMDS51N20A,
ATSAMD51P19A, ATSAMD51P20A, ATSAMDA1E14B, ATSAMDA1E15B, ATSAMDA1E168B,
ATSAMDA1G14B, ATSAMDA1G15B, ATSAMDA1G16B, ATSAMDA1)14B, ATSAMDA1J15B,
ATSAMDA1)16B, ATSAMES51G18A, ATSAME51G19A, ATSAMES1)18A, ATSAMES1J19A, ATSAMES1J20A,
ATSAMES1TN19A, ATSAMES51TN20A, ATSAMES3)18A, ATSAMES3)19A, ATSAMES3J20A, ATSAMES3N19A,
ATSAMES3N20A, ATSAMES54N19A, ATSAMES54N20A, ATSAMES4P19A, ATSAMES4P20A,
ATSAME70J19, ATSAME70J20, ATSAME70J21, ATSAME70N19, ATSAME70N20, ATSAME70N21,
ATSAME70Q19, ATSAME70Q20, ATSAME70Q21, ATSAMG53, ATSAMHAOE14A-B, ATSAMHAOE15A-

B, ATSAMHAOE16A-B, ATSAMHAOG14A-B, ATSAMHAOG15A-B, ATSAMHAOG16A-B, ATSAMHAOG17A-
B, ATSAMHA1E14A-B, ATSAMHA1E15A-B, ATSAMHA1E16A-B, ATSAMHATG14A, ATSAMHA1G14A-

B, ATSAMHA1G15A, ATSAMHA1G15A-B, ATSAMHA1G16A, ATSAMHA1G16A-B, ATSAMHA1G17A-

B, ATSAML10D14A, ATSAML10D15A, ATSAML10D16A, ATSAML10E14A, ATSAML10E15A,
ATSAML10E16A, ATSAML11D14A, ATSAML11D15A, ATSAML11D16A, ATSAMLT1E14A,
ATSAML1T1E15A, ATSAMLT1E16A, ATSAML21E15B, ATSAML21E16B, ATSAML21E17B, ATSAML21E18B,
ATSAML21G16B, ATSAML21G17B, ATSAML21G18B, ATSAML21)16B, ATSAML21)17B, ATSAML21)18B,
ATSAML22G16A, ATSAML22G17A, ATSAML22G18A, ATSAML22)16A, ATSAML22J17A, ATSAML22J18A,
ATSAML22N16A, ATSAML22N17A, ATSAML22N18A, ATSAMS70J19, ATSAMS70J20, ATSAMS70)21,
ATSAMS70N19, ATSAMS70N20, ATSAMS70N21, ATSAMS70Q19, ATSAMS70Q20, ATSAMS70Q21,
ATSAMV70J19, ATSAMV70J20, ATSAMV70N19, ATSAMV70N20, ATSAMV70Q19, ATSAMV70Q20,
ATSAMV71J19, ATSAMV71J20, ATSAMV71)21, ATSAMV71N19, ATSAMV71N20, ATSAMV71N21,
ATSAMV71Q19, ATSAMV71Q20, ATSAMV71Q21, ATtiny1604, ATtiny1606, ATtiny1607, ATtiny1614,
ATtiny1616, ATtiny1617, ATtiny1624, ATtiny1626, ATtiny1627, ATtiny202, ATtiny204, ATtiny212,
ATtiny214, ATtiny3216, ATtiny3217, ATtiny3224, ATtiny3226, ATtiny3227, ATtiny402, ATtiny404,
ATtiny406, ATtiny412, ATtiny414, ATtiny416, ATtiny417, ATtiny424, ATtiny426, ATtiny427,

ATtiny804, ATtiny806, ATtiny807, ATtiny814, ATtiny816, ATtiny817, ATtiny824, ATtiny826,

ATtiny827, ATtiny828, ATtiny861, AV32DU20, AV32DU28, AVR128DA28, AVR128DA28S, AVR128DA32,
AVR128DA32S, AVR128DA48, AVR128DA48S, AVR128DA64, AVR128DA64S, AVR128DB28,
AVR128DB32, AVR128DB48, AVR128DB64, AVR16DD14, AVR16DD20, AVR16DD28, AVR16DD32,
AVR16DU14, AVR16DU20, AVR16DU28, AVR16DU32, AVR16EA28, AVR16EA32, AVRT16EA4S,
AVR16EB14, AVR16EB20, AVR16EB28, AVR16EB32, AVR16LA14, AVR16LA20, AVR16LA28, AVRT16LA32,
AVR32DA28, AVR32DA28S, AVR32DA32, AVR32DA32S, AVR32DA48, AVR32DA48S, AVR32DB28,
AVR32DB32, AVR32DB48, AVR32DD14, AVR32DD20, AVR32DD28, AVR32DD32, AVR32DU 14,
AVR32DU20, AVR32DU28, AVR32DU32, AVR32EA28, AVR32EA32, AVR32EA48, AVR32EB14,
AVR32EB20, AVR32EB28, AVR32EB32, AVR32EC28, AVR32EC32, AVR32EC48, AVR32LA14, AVR32LA20,
AVR32LA28, AVR32LA32, AVR325D20, AVR325D28, AVR325D32, AVR64DA28, AVR64DA28S,
AVR64DA32, AVR64DA32S, AVR64DA48, AVR64DA48S, AVR64DA64, AVR64DA64S, AVR64DB28,
AVR64DB32, AVR64DB48, AVR64DB64, AVR64DD14, AVR64DD20, AVR64DD28, AVR64DD32,
AVR64DU28, AVR64DU32, AVR64EA28, AVR64EA32, AVR64AEA48, AVR64EC28, AVR64EC32,

@ MICROCHIP

50

https://www.microchip.com/en-us/product/ATmega1608
https://www.microchip.com/en-us/product/ATmega1609
https://www.microchip.com/en-us/product/ATmega3208
https://www.microchip.com/en-us/product/ATmega3209
https://www.microchip.com/en-us/product/ATmega4808
https://www.microchip.com/en-us/product/ATmega4809
https://www.microchip.com/en-us/product/ATmega808
https://www.microchip.com/en-us/product/ATmega809
https://www.microchip.com/en-us/product/ATSAM4E16E
https://www.microchip.com/en-us/product/ATSAM4LC4C
https://www.microchip.com/en-us/product/ATSAM4LC8C
https://www.microchip.com/en-us/product/ATSAM4N16C
https://www.microchip.com/en-us/product/ATSAM4SD32C
https://www.microchip.com/en-us/product/ATSAMC20E15A
https://www.microchip.com/en-us/product/ATSAMC20E16A
https://www.microchip.com/en-us/product/ATSAMC20E17A
https://www.microchip.com/en-us/product/ATSAMC20E18A
https://www.microchip.com/en-us/product/ATSAMC20G15A
https://www.microchip.com/en-us/product/ATSAMC20G16A
https://www.microchip.com/en-us/product/ATSAMC20G17A
https://www.microchip.com/en-us/product/ATSAMC20G18A
https://www.microchip.com/en-us/product/ATSAMC20J15A
https://www.microchip.com/en-us/product/ATSAMC20J16A
https://www.microchip.com/en-us/product/ATSAMC20J17A
https://www.microchip.com/en-us/product/ATSAMC20J18A
https://www.microchip.com/en-us/product/ATSAMC20N17A
https://www.microchip.com/en-us/product/ATSAMC20N18A
https://www.microchip.com/en-us/product/ATSAMC21E15A
https://www.microchip.com/en-us/product/ATSAMC21E16A
https://www.microchip.com/en-us/product/ATSAMC21E17A
https://www.microchip.com/en-us/product/ATSAMC21E18A
https://www.microchip.com/en-us/product/ATSAMC21G15A
https://www.microchip.com/en-us/product/ATSAMC21G16A
https://www.microchip.com/en-us/product/ATSAMC21G17A
https://www.microchip.com/en-us/product/ATSAMC21G18A
https://www.microchip.com/en-us/product/ATSAMC21J15A
https://www.microchip.com/en-us/product/ATSAMC21J16A
https://www.microchip.com/en-us/product/ATSAMC21J17A
https://www.microchip.com/en-us/product/ATSAMC21J18A
https://www.microchip.com/en-us/product/ATSAMC21N17A
https://www.microchip.com/en-us/product/ATSAMC21N18A
https://www.microchip.com/en-us/product/ATSAMCA1E17A
https://www.microchip.com/en-us/product/ATSAMD20E14
https://www.microchip.com/en-us/product/ATSAMD20E15
https://www.microchip.com/en-us/product/ATSAMD20E16
https://www.microchip.com/en-us/product/ATSAMD20E17
https://www.microchip.com/en-us/product/ATSAMD20E18
https://www.microchip.com/en-us/product/ATSAMD20G14
https://www.microchip.com/en-us/product/ATSAMD20G15
https://www.microchip.com/en-us/product/ATSAMD20G16
https://www.microchip.com/en-us/product/ATSAMD20G17
https://www.microchip.com/en-us/product/ATSAMD20G18
https://www.microchip.com/en-us/product/ATSAMD20J14
https://www.microchip.com/en-us/product/ATSAMD20J15
https://www.microchip.com/en-us/product/ATSAMD20J16
https://www.microchip.com/en-us/product/ATSAMD20J17
https://www.microchip.com/en-us/product/ATSAMD20J18
https://www.microchip.com/en-us/product/ATSAMD21E15
https://www.microchip.com/en-us/product/ATSAMD21E15L
https://www.microchip.com/en-us/product/ATSAMD21E16
https://www.microchip.com/en-us/product/ATSAMD21E16L
https://www.microchip.com/en-us/product/ATSAMD21E17
https://www.microchip.com/en-us/product/ATSAMD21E17L
https://www.microchip.com/en-us/product/ATSAMD21E18
https://www.microchip.com/en-us/product/ATSAMD21G15
https://www.microchip.com/en-us/product/ATSAMD21G16
https://www.microchip.com/en-us/product/ATSAMD21G16L
https://www.microchip.com/en-us/product/ATSAMD21G17
https://www.microchip.com/en-us/product/ATSAMD21G17L
https://www.microchip.com/en-us/product/ATSAMD21G18
https://www.microchip.com/en-us/product/ATSAMD21J15
https://www.microchip.com/en-us/product/ATSAMD21J16
https://www.microchip.com/en-us/product/ATSAMD21J17
https://www.microchip.com/en-us/product/ATSAMD21J18
https://www.microchip.com/en-us/product/ATSAMD51G18A
https://www.microchip.com/en-us/product/ATSAMD51G19A
https://www.microchip.com/en-us/product/ATSAMD51J18A
https://www.microchip.com/en-us/product/ATSAMD51J19A
https://www.microchip.com/en-us/product/ATSAMD51J20A
https://www.microchip.com/en-us/product/ATSAMD51N19A
https://www.microchip.com/en-us/product/ATSAMD51N20A
https://www.microchip.com/en-us/product/ATSAMD51P19A
https://www.microchip.com/en-us/product/ATSAMD51P20A
https://www.microchip.com/en-us/product/ATSAMDA1E14B
https://www.microchip.com/en-us/product/ATSAMDA1E15B
https://www.microchip.com/en-us/product/ATSAMDA1E16B
https://www.microchip.com/en-us/product/ATSAMDA1G14B
https://www.microchip.com/en-us/product/ATSAMDA1G15B
https://www.microchip.com/en-us/product/ATSAMDA1G16B
https://www.microchip.com/en-us/product/ATSAMDA1J14B
https://www.microchip.com/en-us/product/ATSAMDA1J15B
https://www.microchip.com/en-us/product/ATSAMDA1J16B
https://www.microchip.com/en-us/product/ATSAME51G18A
https://www.microchip.com/en-us/product/ATSAME51G19A
https://www.microchip.com/en-us/product/ATSAME51J18A
https://www.microchip.com/en-us/product/ATSAME51J19A
https://www.microchip.com/en-us/product/ATSAME51J20A
https://www.microchip.com/en-us/product/ATSAME51N19A
https://www.microchip.com/en-us/product/ATSAME51N20A
https://www.microchip.com/en-us/product/ATSAME53J18A
https://www.microchip.com/en-us/product/ATSAME53J19A
https://www.microchip.com/en-us/product/ATSAME53J20A
https://www.microchip.com/en-us/product/ATSAME53N19A
https://www.microchip.com/en-us/product/ATSAME53N20A
https://www.microchip.com/en-us/product/ATSAME54N19A
https://www.microchip.com/en-us/product/ATSAME54N20A
https://www.microchip.com/en-us/product/ATSAME54P19A
https://www.microchip.com/en-us/product/ATSAME54P20A
https://www.microchip.com/en-us/product/ATSAME70J19
https://www.microchip.com/en-us/product/ATSAME70J20
https://www.microchip.com/en-us/product/ATSAME70J21
https://www.microchip.com/en-us/product/ATSAME70N19
https://www.microchip.com/en-us/product/ATSAME70N20
https://www.microchip.com/en-us/product/ATSAME70N21
https://www.microchip.com/en-us/product/ATSAME70Q19
https://www.microchip.com/en-us/product/ATSAME70Q20
https://www.microchip.com/en-us/product/ATSAME70Q21
https://www.microchip.com/en-us/product/ATSAMG53
https://www.microchip.com/en-us/product/ATSAMHA0E14A-B
https://www.microchip.com/en-us/product/ATSAMHA0E15A-B
https://www.microchip.com/en-us/product/ATSAMHA0E15A-B
https://www.microchip.com/en-us/product/ATSAMHA0E16A-B
https://www.microchip.com/en-us/product/ATSAMHA0G14A-B
https://www.microchip.com/en-us/product/ATSAMHA0G15A-B
https://www.microchip.com/en-us/product/ATSAMHA0G16A-B
https://www.microchip.com/en-us/product/ATSAMHA0G17A-B
https://www.microchip.com/en-us/product/ATSAMHA0G17A-B
https://www.microchip.com/en-us/product/ATSAMHA1E14A-B
https://www.microchip.com/en-us/product/ATSAMHA1E15A-B
https://www.microchip.com/en-us/product/ATSAMHA1E16A-B
https://www.microchip.com/en-us/product/ATSAMHA1G14A
https://www.microchip.com/en-us/product/ATSAMHA1G14A-B
https://www.microchip.com/en-us/product/ATSAMHA1G14A-B
https://www.microchip.com/en-us/product/ATSAMHA1G15A
https://www.microchip.com/en-us/product/ATSAMHA1G15A-B
https://www.microchip.com/en-us/product/ATSAMHA1G16A
https://www.microchip.com/en-us/product/ATSAMHA1G16A-B
https://www.microchip.com/en-us/product/ATSAMHA1G17A-B
https://www.microchip.com/en-us/product/ATSAMHA1G17A-B
https://www.microchip.com/en-us/product/ATSAML10D14A
https://www.microchip.com/en-us/product/ATSAML10D15A
https://www.microchip.com/en-us/product/ATSAML10D16A
https://www.microchip.com/en-us/product/ATSAML10E14A
https://www.microchip.com/en-us/product/ATSAML10E15A
https://www.microchip.com/en-us/product/ATSAML10E16A
https://www.microchip.com/en-us/product/ATSAML11D14A
https://www.microchip.com/en-us/product/ATSAML11D15A
https://www.microchip.com/en-us/product/ATSAML11D16A
https://www.microchip.com/en-us/product/ATSAML11E14A
https://www.microchip.com/en-us/product/ATSAML11E15A
https://www.microchip.com/en-us/product/ATSAML11E16A
https://www.microchip.com/en-us/product/ATSAML21E15B
https://www.microchip.com/en-us/product/ATSAML21E16B
https://www.microchip.com/en-us/product/ATSAML21E17B
https://www.microchip.com/en-us/product/ATSAML21E18B
https://www.microchip.com/en-us/product/ATSAML21G16B
https://www.microchip.com/en-us/product/ATSAML21G17B
https://www.microchip.com/en-us/product/ATSAML21G18B
https://www.microchip.com/en-us/product/ATSAML21J16B
https://www.microchip.com/en-us/product/ATSAML21J17B
https://www.microchip.com/en-us/product/ATSAML21J18B
https://www.microchip.com/en-us/product/ATSAML22G16A
https://www.microchip.com/en-us/product/ATSAML22G17A
https://www.microchip.com/en-us/product/ATSAML22G18A
https://www.microchip.com/en-us/product/ATSAML22J16A
https://www.microchip.com/en-us/product/ATSAML22J17A
https://www.microchip.com/en-us/product/ATSAML22J18A
https://www.microchip.com/en-us/product/ATSAML22N16A
https://www.microchip.com/en-us/product/ATSAML22N17A
https://www.microchip.com/en-us/product/ATSAML22N18A
https://www.microchip.com/en-us/product/ATSAMS70J19
https://www.microchip.com/en-us/product/ATSAMS70J20
https://www.microchip.com/en-us/product/ATSAMS70J21
https://www.microchip.com/en-us/product/ATSAMS70N19
https://www.microchip.com/en-us/product/ATSAMS70N20
https://www.microchip.com/en-us/product/ATSAMS70N21
https://www.microchip.com/en-us/product/ATSAMS70Q19
https://www.microchip.com/en-us/product/ATSAMS70Q20
https://www.microchip.com/en-us/product/ATSAMS70Q21
https://www.microchip.com/en-us/product/ATSAMV70J19
https://www.microchip.com/en-us/product/ATSAMV70J20
https://www.microchip.com/en-us/product/ATSAMV70N19
https://www.microchip.com/en-us/product/ATSAMV70N20
https://www.microchip.com/en-us/product/ATSAMV70Q19
https://www.microchip.com/en-us/product/ATSAMV70Q20
https://www.microchip.com/en-us/product/ATSAMV71J19
https://www.microchip.com/en-us/product/ATSAMV71J20
https://www.microchip.com/en-us/product/ATSAMV71J21
https://www.microchip.com/en-us/product/ATSAMV71N19
https://www.microchip.com/en-us/product/ATSAMV71N20
https://www.microchip.com/en-us/product/ATSAMV71N21
https://www.microchip.com/en-us/product/ATSAMV71Q19
https://www.microchip.com/en-us/product/ATSAMV71Q20
https://www.microchip.com/en-us/product/ATSAMV71Q21
https://www.microchip.com/en-us/product/ATtiny1604
https://www.microchip.com/en-us/product/ATtiny1606
https://www.microchip.com/en-us/product/ATtiny1607
https://www.microchip.com/en-us/product/ATtiny1614
https://www.microchip.com/en-us/product/ATtiny1616
https://www.microchip.com/en-us/product/ATtiny1617
https://www.microchip.com/en-us/product/ATtiny1624
https://www.microchip.com/en-us/product/ATtiny1626
https://www.microchip.com/en-us/product/ATtiny1627
https://www.microchip.com/en-us/product/ATtiny202
https://www.microchip.com/en-us/product/ATtiny204
https://www.microchip.com/en-us/product/ATtiny212
https://www.microchip.com/en-us/product/ATtiny214
https://www.microchip.com/en-us/product/ATtiny3216
https://www.microchip.com/en-us/product/ATtiny3217
https://www.microchip.com/en-us/product/ATtiny3224
https://www.microchip.com/en-us/product/ATtiny3226
https://www.microchip.com/en-us/product/ATtiny3227
https://www.microchip.com/en-us/product/ATtiny402
https://www.microchip.com/en-us/product/ATtiny404
https://www.microchip.com/en-us/product/ATtiny406
https://www.microchip.com/en-us/product/ATtiny412
https://www.microchip.com/en-us/product/ATtiny414
https://www.microchip.com/en-us/product/ATtiny416
https://www.microchip.com/en-us/product/ATtiny417
https://www.microchip.com/en-us/product/ATtiny424
https://www.microchip.com/en-us/product/ATtiny426
https://www.microchip.com/en-us/product/ATtiny427
https://www.microchip.com/en-us/product/ATtiny804
https://www.microchip.com/en-us/product/ATtiny806
https://www.microchip.com/en-us/product/ATtiny807
https://www.microchip.com/en-us/product/ATtiny814
https://www.microchip.com/en-us/product/ATtiny816
https://www.microchip.com/en-us/product/ATtiny817
https://www.microchip.com/en-us/product/ATtiny824
https://www.microchip.com/en-us/product/ATtiny826
https://www.microchip.com/en-us/product/ATtiny827
https://www.microchip.com/en-us/product/ATtiny828
https://www.microchip.com/en-us/product/ATtiny861
https://www.microchip.com/en-us/product/AV32DU20
https://www.microchip.com/en-us/product/AV32DU28
https://www.microchip.com/en-us/product/AVR128DA28
https://www.microchip.com/en-us/product/AVR128DA28S
https://www.microchip.com/en-us/product/AVR128DA32
https://www.microchip.com/en-us/product/AVR128DA32S
https://www.microchip.com/en-us/product/AVR128DA48
https://www.microchip.com/en-us/product/AVR128DA48S
https://www.microchip.com/en-us/product/AVR128DA64
https://www.microchip.com/en-us/product/AVR128DA64S
https://www.microchip.com/en-us/product/AVR128DB28
https://www.microchip.com/en-us/product/AVR128DB32
https://www.microchip.com/en-us/product/AVR128DB48
https://www.microchip.com/en-us/product/AVR128DB64
https://www.microchip.com/en-us/product/AVR16DD14
https://www.microchip.com/en-us/product/AVR16DD20
https://www.microchip.com/en-us/product/AVR16DD28
https://www.microchip.com/en-us/product/AVR16DD32
https://www.microchip.com/en-us/product/AVR16DU14
https://www.microchip.com/en-us/product/AVR16DU20
https://www.microchip.com/en-us/product/AVR16DU28
https://www.microchip.com/en-us/product/AVR16DU32
https://www.microchip.com/en-us/product/AVR16EA28
https://www.microchip.com/en-us/product/AVR16EA32
https://www.microchip.com/en-us/product/AVR16EA48
https://www.microchip.com/en-us/product/AVR16EB14
https://www.microchip.com/en-us/product/AVR16EB20
https://www.microchip.com/en-us/product/AVR16EB28
https://www.microchip.com/en-us/product/AVR16EB32
https://www.microchip.com/en-us/product/AVR16LA14
https://www.microchip.com/en-us/product/AVR16LA20
https://www.microchip.com/en-us/product/AVR16LA28
https://www.microchip.com/en-us/product/AVR16LA32
https://www.microchip.com/en-us/product/AVR32DA28
https://www.microchip.com/en-us/product/AVR32DA28S
https://www.microchip.com/en-us/product/AVR32DA32
https://www.microchip.com/en-us/product/AVR32DA32S
https://www.microchip.com/en-us/product/AVR32DA48
https://www.microchip.com/en-us/product/AVR32DA48S
https://www.microchip.com/en-us/product/AVR32DB28
https://www.microchip.com/en-us/product/AVR32DB32
https://www.microchip.com/en-us/product/AVR32DB48
https://www.microchip.com/en-us/product/AVR32DD14
https://www.microchip.com/en-us/product/AVR32DD20
https://www.microchip.com/en-us/product/AVR32DD28
https://www.microchip.com/en-us/product/AVR32DD32
https://www.microchip.com/en-us/product/AVR32DU14
https://www.microchip.com/en-us/product/AVR32DU20
https://www.microchip.com/en-us/product/AVR32DU28
https://www.microchip.com/en-us/product/AVR32DU32
https://www.microchip.com/en-us/product/AVR32EA28
https://www.microchip.com/en-us/product/AVR32EA32
https://www.microchip.com/en-us/product/AVR32EA48
https://www.microchip.com/en-us/product/AVR32EB14
https://www.microchip.com/en-us/product/AVR32EB20
https://www.microchip.com/en-us/product/AVR32EB28
https://www.microchip.com/en-us/product/AVR32EB32
https://www.microchip.com/en-us/product/AVR32EC28
https://www.microchip.com/en-us/product/AVR32EC32
https://www.microchip.com/en-us/product/AVR32EC48
https://www.microchip.com/en-us/product/AVR32LA14
https://www.microchip.com/en-us/product/AVR32LA20
https://www.microchip.com/en-us/product/AVR32LA28
https://www.microchip.com/en-us/product/AVR32LA32
https://www.microchip.com/en-us/product/AVR32SD20
https://www.microchip.com/en-us/product/AVR32SD28
https://www.microchip.com/en-us/product/AVR32SD32
https://www.microchip.com/en-us/product/AVR64DA28
https://www.microchip.com/en-us/product/AVR64DA28S
https://www.microchip.com/en-us/product/AVR64DA32
https://www.microchip.com/en-us/product/AVR64DA32S
https://www.microchip.com/en-us/product/AVR64DA48
https://www.microchip.com/en-us/product/AVR64DA48S
https://www.microchip.com/en-us/product/AVR64DA64
https://www.microchip.com/en-us/product/AVR64DA64S
https://www.microchip.com/en-us/product/AVR64DB28
https://www.microchip.com/en-us/product/AVR64DB32
https://www.microchip.com/en-us/product/AVR64DB48
https://www.microchip.com/en-us/product/AVR64DB64
https://www.microchip.com/en-us/product/AVR64DD14
https://www.microchip.com/en-us/product/AVR64DD20
https://www.microchip.com/en-us/product/AVR64DD28
https://www.microchip.com/en-us/product/AVR64DD32
https://www.microchip.com/en-us/product/AVR64DU28
https://www.microchip.com/en-us/product/AVR64DU32
https://www.microchip.com/en-us/product/AVR64EA28
https://www.microchip.com/en-us/product/AVR64EA32
https://www.microchip.com/en-us/product/AVR64EA48
https://www.microchip.com/en-us/product/AVR64EC28
https://www.microchip.com/en-us/product/AVR64EC32

AVR64EC48, AVR64SD28, AVR64SD32, AVR64SD48, PIC16F13145, PIC16F13276, PIC16F15244,
PIC16F15276, PIC16F17146, PIC16F18076, PIC16F18446, PIC18F16Q20, PIC18F16Q40, PIC18F16Q41,
PIC18F47K42, PIC18F47Q10, PIC18F56Q24, PIC18F56Q35, PIC18F56Q71, PIC18F57Q43, PIC18F57Q84,
PIC32CK0512GC00064, PIC32CK0O512GC00100, PIC32CKO512GC01064, PIC32CKO512GC01100,
PIC32CK05125G00064, PIC32CK05125G00100, PIC32CK05125G01064, PIC32CK05125G01100,
PIC32CK1025GC00064, PIC32CK1025GC00100, PIC32CK1025GC01064, PIC32CK1025GC01100,
PIC32CK1025GC01144, PIC32CK10255G00064, PIC32CK10255G00100, PIC32CK10255G01064,
PIC32CK10255G01100, PIC32CK10255G01144, PIC32CK2051GC00064, PIC32CK2051GC00100,
PIC32CK2051GC00144, PIC32CK2051GC01064, PIC32CK2051GC01100, PIC32CK2051GC01144,
PIC32CK20515G00064, PIC32CK20515SG00100, PIC32CK20515G00144, PIC32CK20515G01064,
PIC32CK20515G01100, PIC32CK20515G01144, PIC32CM1216JH01032, PIC32CM1216MC00032,
PIC32CM1216MC00048, PIC32CM1216PL10028, PIC32CM1216PL10032, PIC32CM1216PL10048,
PIC32CM1216PL10064, PIC32CM1602GV00032, PIC32CM1602GV00048, PIC32CM1602GV00064,
PIC32CM1602PL10020, PIC32CM1602PL10028, PIC32CM1602PL10032, PIC32CM2532JH00032,
PIC32CM2532JH00048, PIC32CM2532JH00064, PIC32CM2532JH00100, PIC32CM2532JH01032,
PIC32CM2532JH01048, PIC32CM2532)H01064, PIC32CM2532JH01100, PIC32CM2532LE00048,
PIC32CM2532LE00064, PIC32CM2532LE00100, PIC32CM2532LS00048, PIC32CM2532LS00064,
PIC32CM2532LS00100, PIC32CM2532L560048, PIC32CM2532L560064, PIC32CM2532L560100,
PIC32CM3204GV00032, PIC32CM3204GV00048, PIC32CM3204GV00064, PIC32CM3204JH00032,
PIC32CM3204JH00048, PIC32CM3204JH00064, PIC32CM3204PL10020, PIC32CM3204PL10028,
PIC32CM3204PL10032, PIC32CM5112GC00048, PIC32CM5112GC00064, PIC32CM5112GC00100,
PIC32CM51125G00048, PIC32CM51125G00064, PIC32CM51125G00100, PIC32CM5164JH00032,
PIC32CM5164JH00048, PIC32CM5164JH00064, PIC32CM5164JH00100, PIC32CM5164JH01032,
PIC32CM5164JH01048, PIC32CM5164JH01064, PIC32CM5164JH01100, PIC32CM5164LE00048,
PIC32CM5164LE00064, PIC32CM5164LE00100, PIC32CM5164LS00048, PIC32CM5164LS00064,
PIC32CM5164LS00100, PIC32CM5164L560048, PIC32CM5164L560064, PIC32CM5164LS60100,
PIC32CM6408JH00032, PIC32CM6408)H00048, PIC32CM6408JH00064, PIC32CM6408MC00032,
PIC32CM6408MC00048, PIC32CM6408PL10028, PIC32CM6408PL10032, PIC32CM6408PL10048,
PIC32CM6408PL10064, PIC32CX1012BZ24032, PIC32CX1012BZ25048, PIC32CX1025MTC,
PIC32CX1025MTG, PIC32CX1025MTSH, PIC32CX10255G41100, PIC32CX10255G41128,
PIC32CX10255G60100, PIC32CX10255G60128, PIC32CX10255G61100, PIC32CX10255G61128,
PIC32CX2051BZ62132, PIC32CX2051MTC, PIC32CX205TMTC128, PIC32CX2051MTG,
PIC32CX2051MTSH, PIC32CX5109BZ31032, PIC32CX5109B231048, PIC32CX5109BZ36032,
PIC32CX5109BZ36048, PIC32CX5112MTC, PIC32CX5112MTG, PIC32CX5112MTSH, PIC32CX-BZ2,
PIC32CX-BZ3, PIC32CX-BZ6, PIC32CZ2051CA70064, PIC32CZ2051CA70100, PIC32CZ2051CA70144,
PIC32CZ2051CA80100, PIC32CZ2051CA80144, PIC32CZ2051CA80176, PIC32CZ2051CA80208,
PIC32CZ2051CA90100, PIC32CZ2051CA90144, PIC32CZ2051CA90176, PIC32CZ2051CA90208,
PIC32CZ2051MC70064, PIC32CZ2051MC70100, PIC32CZ2051MC70144, PIC32CZ4010CA80100,
PIC32CZ4010CA80144, PIC32CZ4010CA80176, PIC32CZ4010CA80208, PIC32CZ4010CA90100,
PIC32CZ4010CA90144, PIC32CZ4010CA90176, PIC32CZ8110CA80100, PIC32CZ8110CA80144,
PIC32CZ8110CA80176, PIC32CZ8110CA80208, PIC32CZ8110CA90100, PIC32CZ8110CA90144,
PIC32CZ8110CA90176, PIC32CZ8110CA90208

51

@ MICROCHIP

https://www.microchip.com/en-us/product/AVR64EC48
https://www.microchip.com/en-us/product/AVR64SD28
https://www.microchip.com/en-us/product/AVR64SD32
https://www.microchip.com/en-us/product/AVR64SD48
https://www.microchip.com/en-us/product/PIC16F13145
https://www.microchip.com/en-us/product/PIC16F13276
https://www.microchip.com/en-us/product/PIC16F15244
https://www.microchip.com/en-us/product/PIC16F15276
https://www.microchip.com/en-us/product/PIC16F17146
https://www.microchip.com/en-us/product/PIC16F18076
https://www.microchip.com/en-us/product/PIC16F18446
https://www.microchip.com/en-us/product/PIC18F16Q20
https://www.microchip.com/en-us/product/PIC18F16Q40
https://www.microchip.com/en-us/product/PIC18F16Q41
https://www.microchip.com/en-us/product/PIC18F47K42
https://www.microchip.com/en-us/product/PIC18F47Q10
https://www.microchip.com/en-us/product/PIC18F56Q24
https://www.microchip.com/en-us/product/PIC18F56Q35
https://www.microchip.com/en-us/product/PIC18F56Q71
https://www.microchip.com/en-us/product/PIC18F57Q43
https://www.microchip.com/en-us/product/PIC18F57Q84
https://www.microchip.com/en-us/product/PIC32CK0512GC00064
https://www.microchip.com/en-us/product/PIC32CK0512GC00100
https://www.microchip.com/en-us/product/PIC32CK0512GC01064
https://www.microchip.com/en-us/product/PIC32CK0512GC01100
https://www.microchip.com/en-us/product/PIC32CK0512SG00064
https://www.microchip.com/en-us/product/PIC32CK0512SG00100
https://www.microchip.com/en-us/product/PIC32CK0512SG01064
https://www.microchip.com/en-us/product/PIC32CK0512SG01100
https://www.microchip.com/en-us/product/PIC32CK1025GC00064
https://www.microchip.com/en-us/product/PIC32CK1025GC00100
https://www.microchip.com/en-us/product/PIC32CK1025GC01064
https://www.microchip.com/en-us/product/PIC32CK1025GC01100
https://www.microchip.com/en-us/product/PIC32CK1025GC01144
https://www.microchip.com/en-us/product/PIC32CK1025SG00064
https://www.microchip.com/en-us/product/PIC32CK1025SG00100
https://www.microchip.com/en-us/product/PIC32CK1025SG01064
https://www.microchip.com/en-us/product/PIC32CK1025SG01100
https://www.microchip.com/en-us/product/PIC32CK1025SG01144
https://www.microchip.com/en-us/product/PIC32CK2051GC00064
https://www.microchip.com/en-us/product/PIC32CK2051GC00100
https://www.microchip.com/en-us/product/PIC32CK2051GC00144
https://www.microchip.com/en-us/product/PIC32CK2051GC01064
https://www.microchip.com/en-us/product/PIC32CK2051GC01100
https://www.microchip.com/en-us/product/PIC32CK2051GC01144
https://www.microchip.com/en-us/product/PIC32CK2051SG00064
https://www.microchip.com/en-us/product/PIC32CK2051SG00100
https://www.microchip.com/en-us/product/PIC32CK2051SG00144
https://www.microchip.com/en-us/product/PIC32CK2051SG01064
https://www.microchip.com/en-us/product/PIC32CK2051SG01100
https://www.microchip.com/en-us/product/PIC32CK2051SG01144
https://www.microchip.com/en-us/product/PIC32CM1216JH01032
https://www.microchip.com/en-us/product/PIC32CM1216MC00032
https://www.microchip.com/en-us/product/PIC32CM1216MC00048
https://www.microchip.com/en-us/product/PIC32CM1216PL10028
https://www.microchip.com/en-us/product/PIC32CM1216PL10032
https://www.microchip.com/en-us/product/PIC32CM1216PL10048
https://www.microchip.com/en-us/product/PIC32CM1216PL10064
https://www.microchip.com/en-us/product/PIC32CM1602GV00032
https://www.microchip.com/en-us/product/PIC32CM1602GV00048
https://www.microchip.com/en-us/product/PIC32CM1602GV00064
https://www.microchip.com/en-us/product/PIC32CM1602PL10020
https://www.microchip.com/en-us/product/PIC32CM1602PL10028
https://www.microchip.com/en-us/product/PIC32CM1602PL10032
https://www.microchip.com/en-us/product/PIC32CM2532JH00032
https://www.microchip.com/en-us/product/PIC32CM2532JH00048
https://www.microchip.com/en-us/product/PIC32CM2532JH00064
https://www.microchip.com/en-us/product/PIC32CM2532JH00100
https://www.microchip.com/en-us/product/PIC32CM2532JH01032
https://www.microchip.com/en-us/product/PIC32CM2532JH01048
https://www.microchip.com/en-us/product/PIC32CM2532JH01064
https://www.microchip.com/en-us/product/PIC32CM2532JH01100
https://www.microchip.com/en-us/product/PIC32CM2532LE00048
https://www.microchip.com/en-us/product/PIC32CM2532LE00064
https://www.microchip.com/en-us/product/PIC32CM2532LE00100
https://www.microchip.com/en-us/product/PIC32CM2532LS00048
https://www.microchip.com/en-us/product/PIC32CM2532LS00064
https://www.microchip.com/en-us/product/PIC32CM2532LS00100
https://www.microchip.com/en-us/product/PIC32CM2532LS60048
https://www.microchip.com/en-us/product/PIC32CM2532LS60064
https://www.microchip.com/en-us/product/PIC32CM2532LS60100
https://www.microchip.com/en-us/product/PIC32CM3204GV00032
https://www.microchip.com/en-us/product/PIC32CM3204GV00048
https://www.microchip.com/en-us/product/PIC32CM3204GV00064
https://www.microchip.com/en-us/product/PIC32CM3204JH00032
https://www.microchip.com/en-us/product/PIC32CM3204JH00048
https://www.microchip.com/en-us/product/PIC32CM3204JH00064
https://www.microchip.com/en-us/product/PIC32CM3204PL10020
https://www.microchip.com/en-us/product/PIC32CM3204PL10028
https://www.microchip.com/en-us/product/PIC32CM3204PL10032
https://www.microchip.com/en-us/product/PIC32CM5112GC00048
https://www.microchip.com/en-us/product/PIC32CM5112GC00064
https://www.microchip.com/en-us/product/PIC32CM5112GC00100
https://www.microchip.com/en-us/product/PIC32CM5112SG00048
https://www.microchip.com/en-us/product/PIC32CM5112SG00064
https://www.microchip.com/en-us/product/PIC32CM5112SG00100
https://www.microchip.com/en-us/product/PIC32CM5164JH00032
https://www.microchip.com/en-us/product/PIC32CM5164JH00048
https://www.microchip.com/en-us/product/PIC32CM5164JH00064
https://www.microchip.com/en-us/product/PIC32CM5164JH00100
https://www.microchip.com/en-us/product/PIC32CM5164JH01032
https://www.microchip.com/en-us/product/PIC32CM5164JH01048
https://www.microchip.com/en-us/product/PIC32CM5164JH01064
https://www.microchip.com/en-us/product/PIC32CM5164JH01100
https://www.microchip.com/en-us/product/PIC32CM5164LE00048
https://www.microchip.com/en-us/product/PIC32CM5164LE00064
https://www.microchip.com/en-us/product/PIC32CM5164LE00100
https://www.microchip.com/en-us/product/PIC32CM5164LS00048
https://www.microchip.com/en-us/product/PIC32CM5164LS00064
https://www.microchip.com/en-us/product/PIC32CM5164LS00100
https://www.microchip.com/en-us/product/PIC32CM5164LS60048
https://www.microchip.com/en-us/product/PIC32CM5164LS60064
https://www.microchip.com/en-us/product/PIC32CM5164LS60100
https://www.microchip.com/en-us/product/PIC32CM6408JH00032
https://www.microchip.com/en-us/product/PIC32CM6408JH00048
https://www.microchip.com/en-us/product/PIC32CM6408JH00064
https://www.microchip.com/en-us/product/PIC32CM6408MC00032
https://www.microchip.com/en-us/product/PIC32CM6408MC00048
https://www.microchip.com/en-us/product/PIC32CM6408PL10028
https://www.microchip.com/en-us/product/PIC32CM6408PL10032
https://www.microchip.com/en-us/product/PIC32CM6408PL10048
https://www.microchip.com/en-us/product/PIC32CM6408PL10064
https://www.microchip.com/en-us/product/PIC32CX1012BZ24032
https://www.microchip.com/en-us/product/PIC32CX1012BZ25048
https://www.microchip.com/en-us/product/PIC32CX1025MTC
https://www.microchip.com/en-us/product/PIC32CX1025MTG
https://www.microchip.com/en-us/product/PIC32CX1025MTSH
https://www.microchip.com/en-us/product/PIC32CX1025SG41100
https://www.microchip.com/en-us/product/PIC32CX1025SG41128
https://www.microchip.com/en-us/product/PIC32CX1025SG60100
https://www.microchip.com/en-us/product/PIC32CX1025SG60128
https://www.microchip.com/en-us/product/PIC32CX1025SG61100
https://www.microchip.com/en-us/product/PIC32CX1025SG61128
https://www.microchip.com/en-us/product/PIC32CX2051BZ62132
https://www.microchip.com/en-us/product/PIC32CX2051MTC
https://www.microchip.com/en-us/product/PIC32CX2051MTC128
https://www.microchip.com/en-us/product/PIC32CX2051MTG
https://www.microchip.com/en-us/product/PIC32CX2051MTSH
https://www.microchip.com/en-us/product/PIC32CX5109BZ31032
https://www.microchip.com/en-us/product/PIC32CX5109BZ31048
https://www.microchip.com/en-us/product/PIC32CX5109BZ36032
https://www.microchip.com/en-us/product/PIC32CX5109BZ36048
https://www.microchip.com/en-us/product/PIC32CX5112MTC
https://www.microchip.com/en-us/product/PIC32CX5112MTG
https://www.microchip.com/en-us/product/PIC32CX5112MTSH
https://www.microchip.com/en-us/product/PIC32CX-BZ2
https://www.microchip.com/en-us/product/PIC32CX-BZ3
https://www.microchip.com/en-us/product/PIC32CX-BZ6
https://www.microchip.com/en-us/product/PIC32CZ2051CA70064
https://www.microchip.com/en-us/product/PIC32CZ2051CA70100
https://www.microchip.com/en-us/product/PIC32CZ2051CA70144
https://www.microchip.com/en-us/product/PIC32CZ2051CA80100
https://www.microchip.com/en-us/product/PIC32CZ2051CA80144
https://www.microchip.com/en-us/product/PIC32CZ2051CA80176
https://www.microchip.com/en-us/product/PIC32CZ2051CA80208
https://www.microchip.com/en-us/product/PIC32CZ2051CA90100
https://www.microchip.com/en-us/product/PIC32CZ2051CA90144
https://www.microchip.com/en-us/product/PIC32CZ2051CA90176
https://www.microchip.com/en-us/product/PIC32CZ2051CA90208
https://www.microchip.com/en-us/product/PIC32CZ2051MC70064
https://www.microchip.com/en-us/product/PIC32CZ2051MC70100
https://www.microchip.com/en-us/product/PIC32CZ2051MC70144
https://www.microchip.com/en-us/product/PIC32CZ4010CA80100
https://www.microchip.com/en-us/product/PIC32CZ4010CA80144
https://www.microchip.com/en-us/product/PIC32CZ4010CA80176
https://www.microchip.com/en-us/product/PIC32CZ4010CA80208
https://www.microchip.com/en-us/product/PIC32CZ4010CA90100
https://www.microchip.com/en-us/product/PIC32CZ4010CA90144
https://www.microchip.com/en-us/product/PIC32CZ4010CA90176
https://www.microchip.com/en-us/product/PIC32CZ8110CA80100
https://www.microchip.com/en-us/product/PIC32CZ8110CA80144
https://www.microchip.com/en-us/product/PIC32CZ8110CA80176
https://www.microchip.com/en-us/product/PIC32CZ8110CA80208
https://www.microchip.com/en-us/product/PIC32CZ8110CA90100
https://www.microchip.com/en-us/product/PIC32CZ8110CA90144
https://www.microchip.com/en-us/product/PIC32CZ8110CA90176
https://www.microchip.com/en-us/product/PIC32CZ8110CA90208

	Introduction
	Table of Contents
	1. Use Cases
	2. Capabilities
	2.1. Features
	2.2. Target Devices

	3. Nano Debugger USB Interface
	4. CMSIS-DAP Debug Interface
	5. Virtual Serial Port (CDC)
	5.1. Overview
	5.2. Operating System Support
	5.3. Limitations
	5.4. Signaling
	5.5. Advanced Use

	6. Mass Storage Device
	6.1. Mass Storage Device Implementation
	6.2. Fuse/Configuration Bytes/Words
	6.3. Limitations of Drag-and-Drop Programming
	6.4. Special Commands
	6.5. Drag-and-Drop Programming Using UF2 Format

	7. Data Gateway Interface (DGI)
	7.1. Debug GPIO
	7.2. Timestamping

	8. Board Controller Functions
	8.1. Voltage Monitor
	8.2. Voltage Control
	8.3. Voltage Off Pin (VOFF)
	8.4. Voltage Control Errors
	8.5. ID System

	9. Debugger Configuration
	9.1. Board Configuration
	9.2. Device Configuration
	9.3. Modifying the Debugger Configuration

	10. Tools and IDEs
	10.1. Partner Ecosystems
	10.2. MPLAB® Tools for VS Code
	10.3. Using MPLAB Data Visualizer
	10.4. Kit Window View
	10.5. MPLAB X
	10.6. Microchip Studio
	10.7. Using Other Hardware Tools with a Nano Debugger Kit
	10.8. USB Drivers

	11. Python Tools
	11.1. pydebuggerupgrade
	11.2. pykitinfo
	11.3. pyedbglib
	11.4. pymcuprog
	11.5. pydebuggerconfig
	11.6. pycmsisdapswitcher
	11.7. pykitcommander

	12. Pinout Reference
	13. Nano Debugger Firmware
	13.1. Firmware Packs
	13.2. Revision History

	14. Document revision history
	Microchip Information
	Trademarks
	Legal Notice
	Microchip Devices Code Protection Feature

	Product Page Links

