

# Quick Start Guide

To test the MAXREFDES278#, connect it to a port of an IO-Link master. In the following example, a MAXREFDES145# IO-Link master and TE-Concept IO-Link Control Tool are used. However, any IO-Link compliant master and associated IO-Link device GUI should work.

## Required Equipment Supplied by Maxim

- MAXREFDES278#

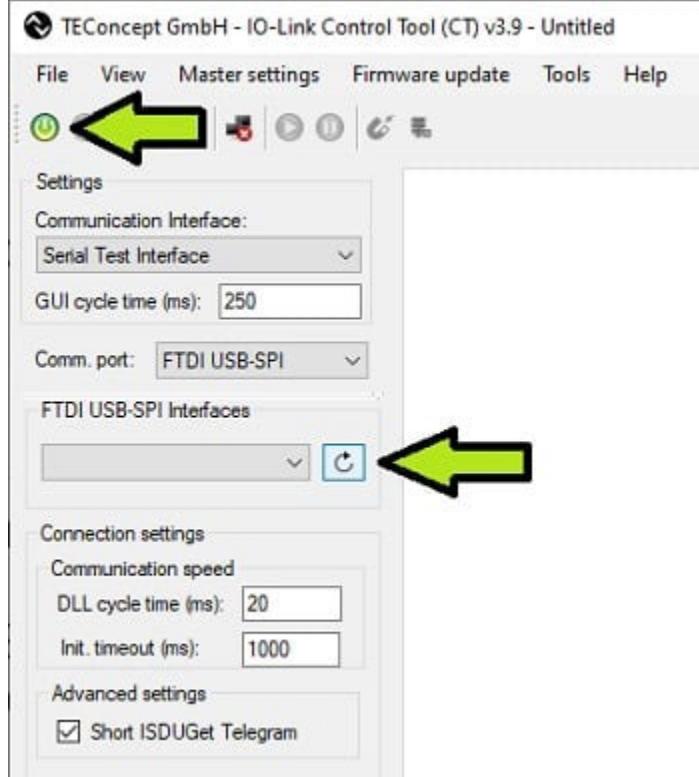
## User Supplied

- IO-Link master (i.e., MAXREFDES145#) with a 24V AC-to-DC power adapter
- TE-Concept IO-Link Control Tool software
- One IO-Link cable
- Windows PC with a USB port
- 24V Solenoid or Motor

## Procedure

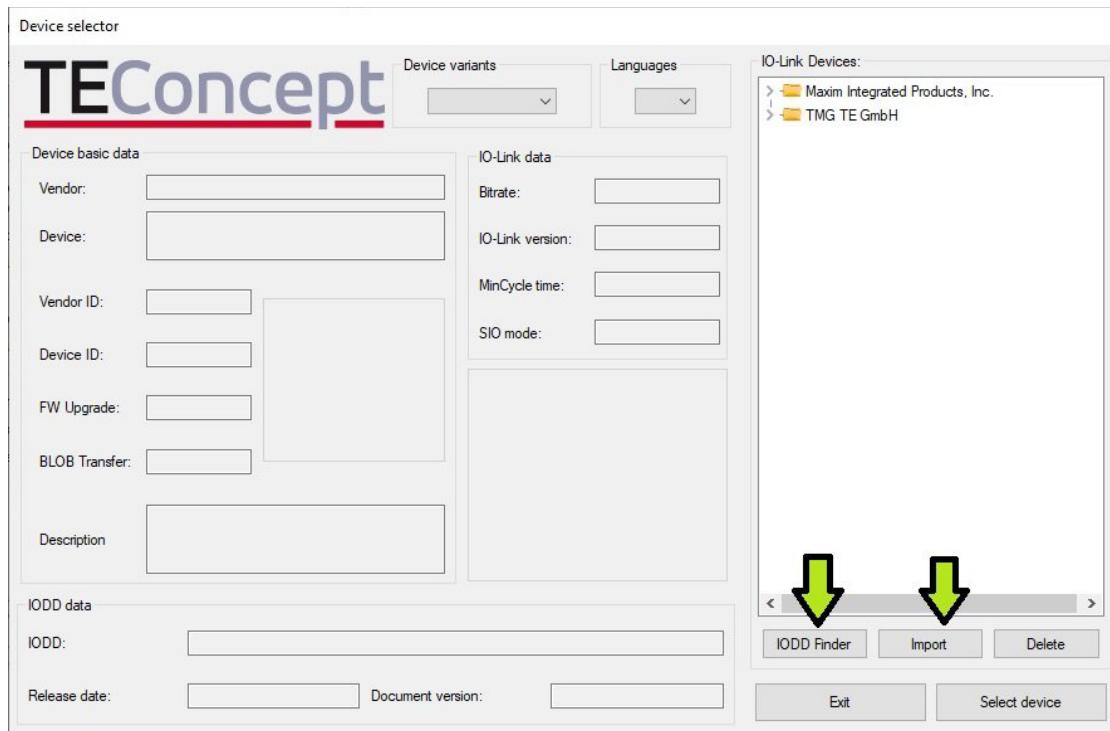
### Master Setup Procedure

- Connect the MAXREFDES278# actuator to the IO-Link master with an IO-Link M12 cable.
- Connect the IO-Link master to the PC with a USB cable.
- Download and install the latest IO-Link Control Tool software

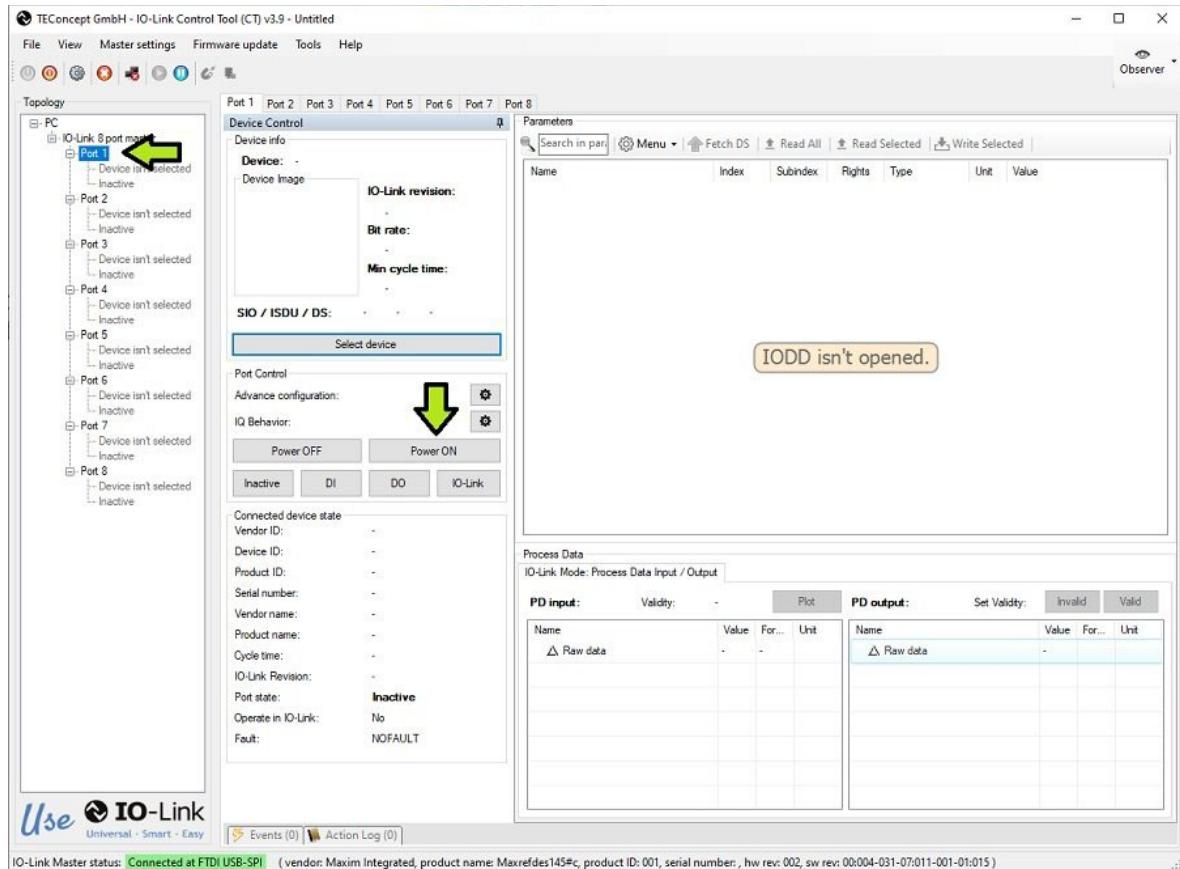

<https://www.maximintegrated.com/content/dam/files/secured/design-tools/software/6423/maxrefdes145-tc-installer-v3.9.7136.zip>

- Download the IODD file for the MAXREFDES278# from the IODD Finder website.  
<https://ioddfinder.io-link.com/>
- The MAXREFDES278# comes preprogrammed with firmware and the IO-Link device stack.

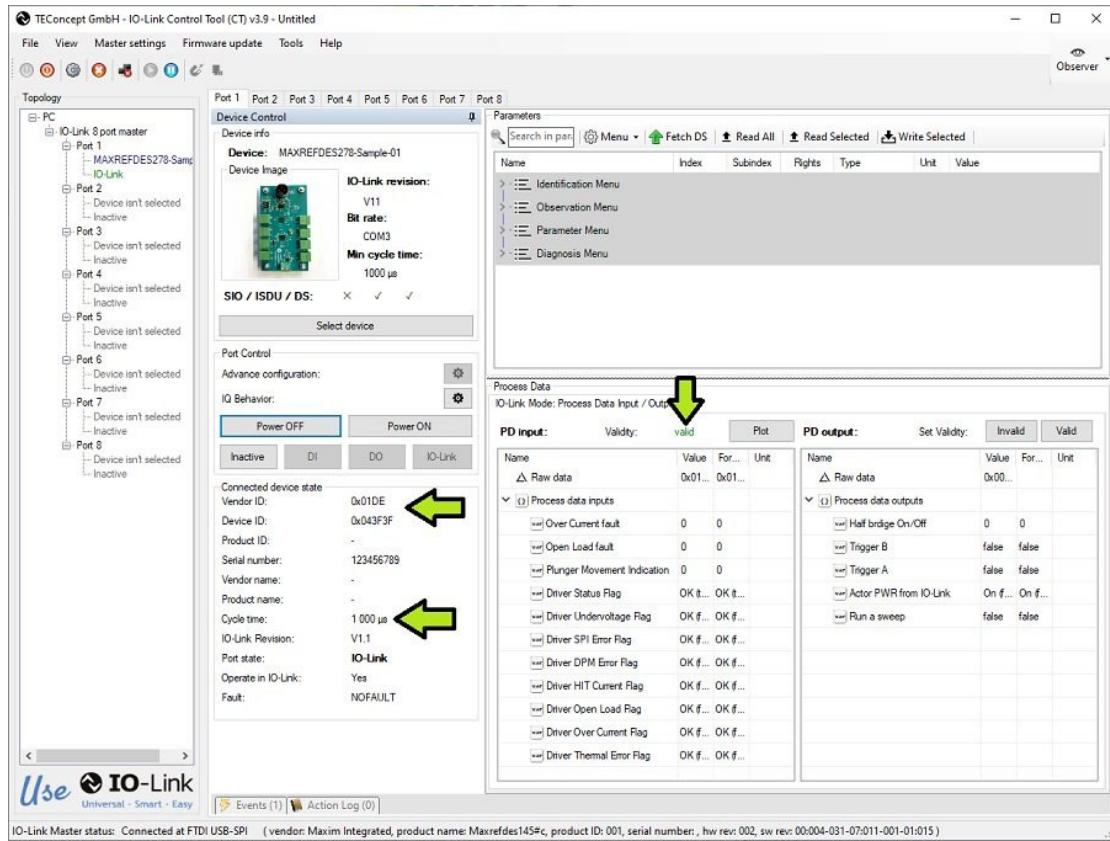
### MAXREFDES278 Testing Procedure


1. Connect the female end of the IO-Link cable to the MAXREFDES278#.
2. Connect the male end of the IO-Link cable to one of the ports on the IO-Link master.
3. Make sure that the MAXREFDES145 is powered with 24V supply and connected to the PC through a USB cable.

4. Open the IO-Link Control Tool software as shown in **Figure 3**, and in the **FTDI USB-SPI Interfaces** area, click **refresh** button. The GUI automatically finds the IO-Link Master. Then click green **connect** button.




*Figure 3. Connect and Refresh buttons in the IO-Link Control Tool software.*


5. As shown in **Figure 4**, import the IODD file for the MAXREFDES278#. The TE-Concept GUI also allows to automatically download the **IODD file** from IODD Finder, by clicking IODD Finder in the **Select Device** menu.



6. As shown in **Figure 5**, in the **Topology** area, in the **Device Tree**, select the Port where the MAXREFDES278# is connected to.
7. Click **Power ON** button, this enables the L+ supply for the selected Port. The power-led on MAXREFDES278# as well as the red L+ LED on the selected MAXREFDES145# Port should now be on.
8. Then, click the **IO-Link** button.



9. If communication is established correctly as shown in **Figure 6**, the IO-Link Control Tool software shows the Vendor ID, Device ID, Cycle time, as well as the Process Data input (PD input). Next to the PD input it should show Validity: valid in green. This means the Master is successfully communicating with the IO-Link Device.



10. Observe that under Process data inputs all diagnostic shows "0" or "OK".
  1. Over Current fault is an 8-bit value, each individual bit flags the status of the appropriate channel.
  2. Overload fault is an 8-bit value, each individual bit flags the status of the appropriate channel.
  3. Plunger Movement Indication is an 8-bit value, each individual bit flags the status of the appropriate channel.
  4. Driver Status Flag shows the status of the MAX22200 octal driver.
  5. Driver Undervoltage Flag shows if the MAX22200 faces an undervoltage condition.
  6. Driver SPI Error Flag shows if the MAX22200 has SPI communication errors.
  7. Driver DPM Flag shows if there was a Plunger fault on any channel of the MAX22200.
  8. Driver HIT Flag shows if the HIT current isn't reached on any channel of the MAX22200.
  9. Driver Open Load Flag shows if there is an Open Load condition on any channel of the MAX22200.
  10. Driver Over Current Flag shows if there is an overcurrent condition on any channel of the MAX22200.
  11. Driver Thermal Error Flag shows if the MAX22200 is in thermal shutdown.
11. Details about above status information as well as adjustments can be made in the **Parameter** menu in the top right part of the Port window as shown in **Figure 7**.
12. Click little arrow to the right of the **Parameter** Menu, then click little arrow on the **Device Parameterization (Bit access)**.

| Parameters |                                       |       |          |        |        |      |       |
|------------|---------------------------------------|-------|----------|--------|--------|------|-------|
|            | Name                                  | Index | Subindex | Rights | Type   | Unit | Value |
| >          | Identification Menu                   |       |          |        |        |      |       |
| >          | Observation Menu                      |       |          |        |        |      |       |
| >          | Parameter Menu                        |       |          |        |        |      |       |
| >          | Device Parameterization (Bit access)  |       |          |        |        |      |       |
| >          | [ ] STATUS (Bit access)               | 91    | 0        | RW     | Record |      |       |
| >          | [ ] Channel 1 CFG (Bit access)        | 92    | 0        | RW     | Record |      |       |
| >          | [ ] Channel 2 CFG (Bit access)        | 93    | 0        | RW     | Record |      |       |
| >          | [ ] Channel 3 CFG (Bit access)        | 94    | 0        | RW     | Record |      |       |
| >          | [ ] Channel 4 CFG (Bit access)        | 95    | 0        | RW     | Record |      |       |
| >          | [ ] Channel 5 CFG (Bit access)        | 96    | 0        | RW     | Record |      |       |
| >          | [ ] Channel 6 CFG (Bit access)        | 97    | 0        | RW     | Record |      |       |
| >          | [ ] Channel 7 CFG (Bit access)        | 98    | 0        | RW     | Record |      |       |
| >          | [ ] Channel 8 CFG (Bit access)        | 99    | 0        | RW     | Record |      |       |
| >          | [ ] FAULT (Bit access)                | 100   | 0        | RO     | Record |      |       |
| >          | [ ] CFG_DPM (Bit access)              | 101   | 0        | RW     | Record |      |       |
| >          | Device Parameterization (Word access) |       |          |        |        |      |       |
| >          | Diagnosis Menu                        |       |          |        |        |      |       |

13. As shown in **Figure 8**, open **Channel 1 CFG (Bit access)** menu, then click **Channel 1 CFG (Bit access)** to make sure it's highlighted. Then click **Read Selected**, this reads the current settings of Channel 1.

| Parameters |                             |       |          |        |                  |                                |
|------------|-----------------------------|-------|----------|--------|------------------|--------------------------------|
|            | Name                        | Index | Subindex | Rights | Type             | Unit                           |
| > :        | Identification Menu         |       |          |        |                  |                                |
| > :        | Observation Menu            |       |          |        |                  |                                |
| ▼ :        | Parameter Menu              |       |          |        |                  |                                |
| ▼ :        | Device Parameterization     |       |          |        |                  |                                |
| ▼ :        | (Bit access)                |       |          |        |                  |                                |
| > [ ]      | STATUS (Bit access)         | 91    | 0        | RW     | Record           |                                |
| > [ ]      | Channel 1 CFG (Bit access)  | 92    | 0        | RW     | Record           |                                |
| var        | Scale                       | 92    | 1        | RW     | Boolean          | Full-Scale (false)             |
| var        | Hold Current Duty Cycle     | 92    | 2        | RW     | Unsigned Integer | 39.37 % (50)                   |
| var        | Trigger Select              | 92    | 3        | RW     | Boolean          | SPI (ONCH-bit) (false)         |
| var        | Hit Current Duty Cycle      | 92    | 4        | RW     | Unsigned Integer | 100.00 % (127)                 |
| var        | Hit Time (0-255)            | 92    | 5        | RW     | Unsigned Integer | 100                            |
| var        | Current or Voltage Drive    | 92    | 6        | RW     | Boolean          | Voltage-Drive Mode (true)      |
| var        | High-Side or Low-Side Drive | 92    | 7        | RW     | Boolean          | High-Side Mode (true)          |
| var        | Frequency Configuration     | 92    | 8        | RW     | Unsigned Integer | FreqMain/4 (0)                 |
| var        | Slew-Rate Control           | 92    | 9        | RW     | Boolean          | Fast OUT transitions (false)   |
| var        | Open Load Diagnostic        | 92    | 10       | RW     | Boolean          | Open Load Detect ON (true)     |
| var        | Plunger Movement Detection  | 92    | 11       | RW     | Boolean          | Plunger Movement Detect ON ... |
| var        | HIT-Current Diagnostic      | 92    | 12       | RW     | Boolean          | HIT Current Diagnostic OFF ... |
| > [ ]      | Channel 2 CFG (Bit access)  | 93    | 0        | RW     | Record           |                                |
| > [ ]      | Channel 3 CFG (Bit access)  | 94    | 0        | RW     | Record           |                                |
| > [ ]      | Channel 4 CFG (Bit access)  | 95    | 0        | RW     | Record           |                                |

14. Select the Scale, Hit, and Hold currents in percent as well as timing parameters. For detailed information about these settings, refer to the [MAX22200 datasheet](#). Detailed status can be read under the **STATUS (Bit access)** menu as shown in **Figure 9**.
15. For detailed Status and global Configuration of the MAX22200, refer to the **STATUS** section.

| Parameters                                |       |          |        |                  |      |                               |
|-------------------------------------------|-------|----------|--------|------------------|------|-------------------------------|
| Name                                      | Index | Subindex | Rights | Type             | Unit | Value                         |
| Device Parameterization (Bit access)      |       |          |        |                  |      |                               |
| [ ] STATUS (Bit access)                   | 91    | 0        | RW     | Record           |      |                               |
| var OVT Fault Mask                        | 91    | 2        | RW     | Boolean          |      | OVT Faults Enabled (false)    |
| var OCP Fault Mask                        | 91    | 3        | RW     | Boolean          |      | OCP Faults Enabled (false)    |
| var OLF Fault Mask                        | 91    | 4        | RW     | Boolean          |      | OLF Faults Enabled (false)    |
| var HHF Fault Mask                        | 91    | 5        | RW     | Boolean          |      | HHF Faults Enabled (false)    |
| var DPM Fault Mask                        | 91    | 6        | RW     | Boolean          |      | DPM Faults Enabled (false)    |
| var COM Fault Mask                        | 91    | 7        | RW     | Boolean          |      | COM Faults Enabled (false)    |
| var Undervoltage Fault Mask               | 91    | 8        | RW     | Boolean          |      | Undervoltage Faults Enable... |
| var Internal Oscillator Frequency setting | 91    | 9        | RW     | Boolean          |      | 100kHz (false)                |
| var Channel 1 / 2 Config                  | 91    | 10       | RW     | Unsigned Integer |      | 0: Independent Mode (0)       |
| var Channel 3 / 4 Config                  | 91    | 11       | RW     | Unsigned Integer |      | 0: Independent Mode (0)       |
| var Channel 5 / 6 Config                  | 91    | 12       | RW     | Unsigned Integer |      | 0: Independent Mode (0)       |
| var Channel 7 / 8 Config                  | 91    | 13       | RW     | Unsigned Integer |      | 0: Independent Mode (0)       |
| var Thermal Error Flag                    | 91    | 14       | RW     | Boolean          |      | Nomal Operation (false)       |
| var OverCurrent Error Flag                | 91    | 15       | RW     | Boolean          |      | Nomal Operation (false)       |
| var OpenLoad Error Flag                   | 91    | 16       | RW     | Boolean          |      | Nomal Operation (false)       |
| var HIT-Current Error Flag                | 91    | 17       | RW     | Boolean          |      | Nomal Operation (false)       |
| var Plunger Error Flag                    | 91    | 18       | RW     | Boolean          |      | Nomal Operation (false)       |
| var Communication Error Flag              | 91    | 19       | RW     | Boolean          |      | Nomal Operation (false)       |
| var Undervoltage Error Flag               | 91    | 20       | RW     | Boolean          |      | Normal Operation (false)      |
| var Active Bit                            | 91    | 21       | RW     | Boolean          |      | Normal Operation (true)       |
| [ ] Channel 1 CFG (Bit                    | 92    | n        | RW     | Record           |      |                               |

16. Detailed per Channel Faults can be read under the **FAULT (Bit access)** menu as shown in **Figure 10**.

| Parameters                      |     |                  |          |          |          |                      |                |
|---------------------------------|-----|------------------|----------|----------|----------|----------------------|----------------|
|                                 |     | Search in par... | Menu     | Fetch DS | Read All | Read Selected        | Write Selected |
| Name                            |     | Index            | Subindex | Rights   | Type     | Unit                 | Value          |
| FAULT (Bit access)              | [ ] | 100              | 0        | RO       | Record   |                      |                |
| CH1 Overcurrent Bit             | var | 100              | 1        | RO       | Boolean  | CH1 Normal Operation | I              |
| CH2 Overcurrent Bit             | var | 100              | 2        | RO       | Boolean  | CH2 Normal Operation | I              |
| CH3 Overcurrent Bit             | var | 100              | 3        | RO       | Boolean  | CH3 Normal Operation | I              |
| CH4 Overcurrent Bit             | var | 100              | 4        | RO       | Boolean  | CH4 Normal Operation | I              |
| CH5 Overcurrent Bit             | var | 100              | 5        | RO       | Boolean  | CH5 Normal Operation | I              |
| CH6 Overcurrent Bit             | var | 100              | 6        | RO       | Boolean  | CH6 Normal Operation | I              |
| CH7 Overcurrent Bit             | var | 100              | 7        | RO       | Boolean  | CH7 Normal Operation | I              |
| CH8 Overcurrent Bit             | var | 100              | 8        | RO       | Boolean  | CH8 Normal Operation | I              |
| CH1 HIT Current not reached Bit | var | 100              | 9        | RO       | Boolean  | CH1 Normal Operation | I              |
| CH2 HIT Current not reached Bit | var | 100              | 10       | RO       | Boolean  | CH2 Normal Operation | I              |
| CH3 HIT Current not reached Bit | var | 100              | 11       | RO       | Boolean  | CH3 Normal Operation | I              |
| CH4 HIT Current not reached Bit | var | 100              | 12       | RO       | Boolean  | CH4 Normal Operation | I              |
| CH5 HIT Current not reached Bit | var | 100              | 13       | RO       | Boolean  | CH5 Normal Operation | I              |
| CH6 HIT Current not reached Bit | var | 100              | 14       | RO       | Boolean  | CH6 Normal Operation | I              |
| CH7 HIT Current not reached Bit | var | 100              | 15       | RO       | Boolean  | CH7 Normal Operation | I              |
| CH8 HIT Current not reached Bit | var | 100              | 16       | RO       | Boolean  | CH8 Normal Operation | I              |
| CH1 Open Load Fault Bit         | var | 100              | 17       | RO       | Boolean  | CH1 Normal Operation | I              |
| CH2 Open Load Fault Bit         | var | 100              | 18       | RO       | Boolean  | CH2 Normal Operation | I              |
| CH3 Open Load Fault Bit         | var | 100              | 19       | RO       | Boolean  | CH3 Normal Operation | I              |
| CH4 Open Load Fault Bit         | var | 100              | 20       | RO       | Boolean  | CH4 Normal Operation | I              |
| CH5 Open Load Fault Bit         | var | 100              | 21       | RO       | Boolean  | CH5 Normal Operation | I              |
| CH6 Open Load Fault Bit         | var | 100              | 22       | RO       | Boolean  | CH6 Normal Operation | I              |

Figure 10. FAULT (Bit access) menu.

17. Individual channels can be driven by setting a bit in the Process Data output-> Half-bridge On/Off byte. Each bit drives an individual channel. Bit 0 stands for Channel 1
  1. to drive Channel 1, set Half bridge On/Off to 1.
  2. to drive Channel 2, set it to 2
  3. to drive Channel 3, set it to 4.
  4. to drive Channel 1 and 3, set it to 5.
18. Groups can also be built and then driven by the Trigger A or Trigger B bits.  
To enable this feature the Trigger Select bit must be set in the individual Channel Configuration.
19. If an external 24V supply is provided for the solenoids, the 24V supply from IO-Link can be disabled by setting the "Actor PWR from IO-Link" bit in the Process Data Output.