CRYPTOGRAPHY: FUNDAMENTALS ON
THE MODERN APPROACH

By: Zia A. Sardar

Abstract:

This installment is part of a series of application notes on cryptography. It is designed to be a quick
study guide for a product development engineer and takes an engineering rather than theoretical
approach. In this segment, we'll discuss the fundamental concepts behind modern cryptography. A
similar version of this application note originally appeared on April 16, 2020, on Electronic Design.

Cryptographic Keys

Keeping cryptographic applications secure relies upon symmetric keys and private keys that are
continually kept secret. The method used to keep them secret is also protected.

Asymmetric keys and symmetric keys are two basic types of algorithms that are used in modern
cryptography. Asymmetric key algorithms use a combination of private and public keys while
symmetric algorithms use only private ones, commonly referred to as secret keys. Table 1 provides
a snapshot of the main features of each algorithmic method.

Table 1. Cryptographic Algorithm Comparison

Algorithm Method
Security Services and Feature
Implementation Symmetric Key Asymmetric Key
Confidentiality Yes Yes
Identification and Yes es
Authentication
Integrity Yes Yes
MNon-repudiation Yes, combined with a public/private key algorithm Yes
Encryption Yes, Fast Yes, Slow
Decryption Yes, Fast Yes, Slow
Overall Security High High
Key Management Key exchange and securing the key on both the sender and recipient Securing each private key on both the sender and recipient's side is needed

side is needed

Algorithm Complexity Easy to understand Can be difficult to understand

Key Size 128 bits, 192 bits, or 256 bits or longer but do not need to be aslong 256 bits, 1024 bits, 2048 bits, 3072 bits or longer. Depends on the
as the asymmetric key (depends on secrecy of keys) intractability (the amount of time and resources needed to be solved)

System Vulnerabilities Improper key management, Improper implementation

generation and usage

Attack Approaches Brute force, linear/differential cryptanalysis Brute force, linear/differential cryptanalysis and Oracle

Let’s take a look at how we can achieve each of the cryptographic goals using these two types of
algorithms.

Confidentiality Using Symmetric Key Algorithms

The main goal of confidentiality is to keep information away from all who are not privy toit. In a
symmetric key cryptographic system, this is very straightforward and is achieved by encrypting the
data that is exchanged between the sender and the recipient. Both the sender and the recipient have
access to the same secret key that is used to encrypt and decrypt the exchanged message, as
shown in Figure 1.

SYMMETRIC KEY ALGORITHM — CONFIDENTIALITY (ENCRYPTION/DETECTION)

SENDER ! ; - RECIPIENT

COMMON
SECRET KEY

COMMON
SECRET KEY

ENCRYPT | ENCRYPTED DECRYPT

MESSAGE

UNENCRYPTED
MESSAGE

DECRYPTED
MESSAGE

ENCRYPTION i DECRYPTION
ALGORITHM : ALGORITHM

THE SECRET KEY IS SHARED BETWEEN SENDER AND RECIPIENT

Figure 1. Symmetric key algorithms help achieve confidentiality using private or secret keys.

As long as the key is secured and only the sender and the recipient have access to the
encryption/decryption key, no one else can receive the transmitted message even if it is intercepted
mid-transmission. Thus, the message stays “confidential.”

Confidentiality Using Asymmetric Key Algorithm

In an asymmetric key system, the recipient freely distributes her/his public key. The sender acquires
the public key and verifies the authenticity of it. There are a few steps, as shown in Figure 2, that
are required to accomplish this. To keep things simple, let's assume that the sender has access to
the verified public key of the recipient. The sender then uses that public key to encrypt the message
and sends it to the recipient.

ASYMMETRIC KEY ALGORITHM — CONFIDENTIALITY (ENCRYPTION/DECRYPTION)
SENDER AND RECIPIENT USE A SEPARATE SECRET KEY BUT SHARE EACH OTHER'S PUBLIC KEY

SENDER RECIPIENT

RECIPIENT'S
PUBLIC KEY

RECIPIENT'S
PRIVATE KEY

ENCRYPT

ENCRYPTED DECRYPT

MESSAGE

UN-ENCRYPTED

MESSAGE DECRYPTED

MESSAGE

ENCRYPTION : DECRYPTION
ALGORITHM i ALGORITHM

THE PRIVATE AND THE PUBLIC KEYS ARE MATHEMATICALLY RELATED

Figure 2. Asymmetric key algorithm helps achieve confidentiality through the use of public and
private keys.

The recipient’s public key is mathematically related to the recipient’s private key. The sender, and
anyone else for that matter, doesn’t have access to the recipient’s private key. Once the recipient
receives the message, the private key is used to decrypt the message. The recipient’s private key is
the only one that can be used to decrypt the message that was encrypted with the related public key.
Since the private key only resides with the recipient, another person or organization can’t decrypt the
sent message. Thus, the message stays “confidential.”

Identification and Authentication Using Symmetric Key Algorithm

The goal of identification and authentication is to first identify an object or a user and then
authenticate them so we know that we are communicating with someone that we really meant to
communicate with.

How is this achieved using a symmetric key scheme? Figure 3 shows a simple example of the
symmetric key identification and authentication process. Review Steps 1 to 6 for a better
understanding. Step 4 uses a concept called the “digest.” A digest or hash is a fixed-length value
that is computed over a large data set.

SYMMETRIC KEY ALGORITHM — IDENTIFICATION AND AUTHENTICATION — SIMPLE EXAMPLE

SENDER | RECIPIENT
e SHARED KEY

STEP 1: SENDER REQUESTS
IDENTIFICATION FROM THE RECIPIENT

STEP 2: RECIPIENT SENDS BACK
STEP 3: SENDER VERIFIES THE ID AND THE REQUIRED IDENTIFICATION
THEN SENDS A NONCE NUMBER/WORD
TO THE RECIPIENT. “NONCE" IS A

NUMBER THAT IS USED ONCE AND THEN

DISCARDED.

STEP 6: THE SENDER THEN
CALCULATES THE DIGEST FROM THE
NONCE SENT AS WELL AS THE
SHARED KEY, AND THEN COMPARES
IT TO THE ONE RECEIVED FROM THE
RECIPIENT. IF THEY MATCH, THE
RECIPIENT IS AUTHENTICATED.

STEP 4: RECIPIENT CALCULATES THE
DIGEST AS FOLLOWING:
DIGEST (SHARED KEY, NONCE).

STEP 5: THE DIGEST IS THEN SENT
TO THE SENDER AS WELL AS AN
"AUTHENTICATE ME” REQUEST.

il

Figure 3. This diagram shows a simple example of the symmetric key identification and
authentication process.

Why Do We Need a “Nonce”?

An imposter could gain possession of the last digest transmitted by the recipient and then issue an
“authenticate me” with that digest. These types of attacks are called “replay attacks,” i.e., a resend of
a previously used digest. The use of a “nonce” or a single-use random number for authentication
prevents such attacks. In this case, the authentication will fail, since for each authentication, the
sender requires a new digest with a brand-new nonce number. These numbers are usually
generated using an approved random number generator.

Now let’s investigate a real-life example of identification and authentication using the SHA3-256
algorithm.

Identification and Authentication Using the SHA-3 Algorithm

Figure 4 shows a more complete example of the symmetric key identification and authentication
process. This uses the SHA-3 symmetric key algorithm, which is the latest in the Secure Hash
Algorithm (SHA) family. Maxim Integrated is the first to have a SHA3-256 secure authentication
device in production. Review Steps 1 to 6 in the diagram to better understand the process. The
‘random number” in Figure 4 is basically the “nonce” needed to prevent replay attacks as discussed
in the simple example in a section earlier.

SYMMETRIC KEY ALGORITHM - IDENTIFICATION AND AUTHENTICATION — A DETAILED EXAMPLE WITH SHA3 ALGORITHM

(SENDER \ f RECIPIENT \
%

RECIPIENTID STEP 1: SENDER REQUESTS IDENTIFICATION FROM THE RECIPIENT. RANDOM

______ NUMBER
RANDOM ~™===.__ P + FROM _ AGREED
NUMBER “~. =K STEP 2: RECIPIENT SENDS BACK THE REQUIRED IDENTIFICATION. | P UPON

Y STEP 3: SENDER VERIFIES THE ID AND THEN SENDS A RANDOM

<
\

OTHER ™) NUMBER BACK TO THE RECIPIENT. THIS IS THE “NONCE” TO

— 52"
AGREED PREVENT REPLAY ATTACKS.
UPON_ -
} DATA -
]

g STEP 4: SENDER EITHER HAS OR REQUESTS AND RECEIVES OTHER | MESSAGE
a SHA3ENGINE K AGREED UPON DATA FROM THE RECIPIENT. THIS WILL BE USED BY |
THE SENDER TO RECREATE THE DIGEST.
&
SHA3 ENGINE
STEP 5: RECIPIENT CALCULATES THE DIGEST ON SOME PREDEFINED|
DIGEST AND AGREED UPON DATA STREAM OR “MESSAGE,” AND SENDS
YES THE DIGEST BACK TO THE SENDER. THE “MESSAGE” INCLUDES THE
SHARED KEY REJECT ID AND THE RANDOM NUMBER RECEIVED FROM THE SENDER.
RECIPIENT DIGEST

. - SHARED KEY
@IPILNTIS AUTH[NTILMy /

STEP 6: THE SENDER THEN CALCULATES THE DIGEST USING THE RECIPIENT'S ID, THE RANDOM NUMBER SENT TO THE RECIPIENT AND THE
OTHER AGREED UPON DATA. IF THIS DIGEST MATCHED THE ONE RECEIVED FROM THE RECIPIENT, THE AUTHENTICATION PROCESS IS COMPLETE.

Figure 4. This diagram shows a detailed example of symmetric key algorithm with SHA-3.
|dentification and Authentication Using Asymmetric Key Algorithm

As mentioned, the goal for identification and authentication is to first identify an object or a user and
then authenticate them so that we know we are communicating with someone that we really meant
to communicate with.

How is this achieved using an asymmetric key scheme? Figure 5 shows a simple example of the
symmetric key identification and authentication process. Review Steps 1 to 6 in the diagram to
understand the process.

ASYMMETRIC KEY ALGORITHM — IDENTIFICATION AND AUTHENTICATION — SIMPLE EXAMPLE

SENDER RECIPIENT

/ ? RECIPIENT'S PUBLIC Kgy\ / ? RECIPIENT'S PRIVATE KEY\

STEP 1: SENDER REQUESTS

IDENTIFICATION FROM THE I—I

RECIPIENT

STEP 2: RECIPIENT SENDS BACK

THE REQUIRED IDENTIFICATION.
STEP 3: SENDER VERIFIES THE ID AND

THEN SENDS A NONCE NUMBER/WORD STEP 4: RECIPIENT CALCULATES THE

TO THE RECIPIENT. “NONCE” IS A — SIGNATURE AS FOLLOWING:

NUMBER THAT IS USED ONCE AND SIGNATURE (PRIVATE KEY, NONCE)
THEN DISCARDED.

STEP 6: RECIPIENT VERIFIES THE
SIGNATURE AS FOLLOWING:
VERIFY (PUBLIC KEY, SIGNATURE,
NONCE).

IF THE SIGNATURE IS PROPERLY VERIFIED, THEN
\ THE RECIPIENT IS IDENTIFIED AND AUTHENTICATED.

Figure 5. This diagram shows a simple example of identification and authentication using the
asymmetric key algorithm.

STEP 5: THE SIGNATURE IS THEN SENT
TO THE SENDER AS WELL AS AN
“AUTHENTICATE ME" REQUEST.

Why Do We Need a Nonce?

An imposter could obtain the last signature transmitted by the recipient and then issue an
“authenticate me” with that signature. These types of attacks are called “replay attacks” i.e., a resend
of a previously used signature. The use of a nonce or single-use random number for authentication
prevents such attacks. In this case, the authentication will fail, since the sender requires a new
signature with a brand-new nonce number for each authentication. These numbers are usually
generated using an approved random number generator.

Now let’s investigate a real-life example of identification and authentication using the Elliptic Curve
Digital Signature Algorithm (ECDSA) algorithm.

Identification and Authentication Using the ECDSA Algorithm

Figure 6 shows a more complete example of the asymmetric key identification and authentication
process using the ECDSA asymmetric key algorithm. Steps 1 to 6 in the diagram can help you better
understand the process.

ASYMMETRIC KEY ALGORITHM — IDENTIFICATION AND AUTHENTICATION — A DETAILED EXAMPLE WITH ECDSA

SENDER \ [RECIPIENT \

RECIPIENTID « _ STEP 1: SENDER RE > “NONCE"
-~ QUESTS IDENTIFICATION FROM THE RECIPIENT.
Tes D FROM , OTHER
“NONCE"._ OTHER ~~~_ « SENDER .~ AGREED
" AGREED <STEP 2: RECIPIENT SENDS BACK THE REQUIRED IDENTIFICATION, b UPON
UPON DATA
DATA > STEP 3: SENDER VERIFIES THE ID AND THEN SENDS A RANDOM H
N “s NUMBER BACK TO THE RECIPIENT. THIS IS THE “NONCE" OR)
SHA2 ENGINE, “CHALLENGE". 2
DIGEST \‘\\ '/' SHA2 ENGINE
ECDSA VERIEY /;TEP 4: SENDER EITHER HAS OR REQUESTS AND RECEIVES OTHER p
a N AGREED UPON DATA FROM THE RECIPIENT. THIS WILL BE USED BY DIGEST
SIGNATURE THE SENDER TO RE-CREATE THE SHA2 DIGEST THAT THE RECIPIENT]
o HAS CREATED FOR SIGNATURE GENERATION. ECDSA SIGN o
? STEP 5: RECIPIENT GENERATES THE SIGNATURE USING THE SHA2
¢ DIGEST AND SENDS THE SIGNATURE TO THE SENDER. THE
RECIPIENT'S REJECT “MESSAGE” THAT IS USED TO GENERATE THE DIGEST INCLUDES SIGNATURE
PUBLIC KEY RECIPIENT THE ID, THE “NONCE" RECEIVED FROM THE SENDER AND THE RECIPIENT'S
OTHER AGREED UPON DATA. PUBLIC KEY

QCIPILNTISAUTH[NTICAT& j

STEP 6: UPON RECEIPT OF THE SIGNATURE, THE SENDER VERIFIES THE SIGNATURE USING THE RECIPIENT'S PUBLIC KEY. IF THE ECDSA
VERIFICATION FAILS, THE RECIPIENT IS REJECTED OTHERWISE THE RECIPIENT IS AUTHENTICATED.

Figure 6. A detailed example of identification and authentication using the ECDSA asymmetric key
algorithm.

Although this method completes the device authentication, it doesn’t cover the complete system
authentication process. This includes verification that the recipient is part of the system and the
required verification of the device digital certificates.

Comparing Cryptographic Algorithms

Figure 7 shows a side-by-side comparison of key usage for symmetric and asymmetric key
algorithms. Before we go into the next topic, we need to understand the differences between the
following two concepts:

e Secure hash
¢ HMAC (hashed message authentication code)

COMPARING CRYPTOGRAPHIC ALGORITHMS

ENCRYPTION USING THE SYMMETRIC KEY ALGORITHM
= ENCRYPTION AND DECRYPTION USE THE SAME KEY

7TSwPO"8a"lyUdSL

- "

ENCRYPTION USING THE ASYMMETRIC KEY ALGORITHM
* ENCRYPTION AND DECRYPTION USE DIFFERENT KEYS — A PUBLIC KEY AND A PRIVATE KEY

FOKT " &UK987xdf1
SELL THE ABC STOCK —{ ENCRYPT —’K‘(&uk4789kd50"| DECRYPT |— SELL THE ABC STOCK

PUBLIC PRIVATE
Figure 7. This is a comparison of symmetric key and asymmetric key cryptographic algorithms.

Figure 8 illustrates the differences between HMAC and secure hash. Essentially, secure hash uses
a hashing algorithm, such as SHA-3, to produce a fixed-length hash of the message regardless of
the message length. HMAC is similar but uses a key as an additional input to the hashing engine. It
also produces a fixed-length hash regardless of the input message length.

SECURE HASH HMAC (KEYED HASH)
H
SENDER RECIPIENT SENDER i RECIPIENT
1
1
| ¥ !
i
MESSAGE MESSAGE MESSAGE : MESSAGE
i
SHARED KEY
SHA-2/SHA-3
3:21 ri/ESHA 3 ENGINE SHA-2/SHA3 SHA-2/SHA-3
ENGINE i ENGINE
i
MESSAGE MESSAGE i
HASH HASH HMAC i HMAC
i
1
1

Figure 8. There are similarities but key differences between HMAC and Secure Hash.
Preserving Integrity Using Symmetric Key Algorithms

The goal of preserving the integrity of a message is to ensure that any message received, or any
new device being connected, is not carrying unwanted code or information. Let’s look at an example
of how this can be achieved using a symmetric key algorithm such as SHA-3. Later, we’ll review the
specifics of how these algorithms work.

In Figure 9, the sender calculates the digest of a message by using a specific key. As this is a
symmetric key scheme, this key is shared between the sender and the recipient. The digest or hash
that is generated using a key is called an HMAC (hash-based message authentication code).

SYMMETRIC KEY ALGORITHM — PRESERVING INTEGRITY WITH SHA-3

SENDER RECIPIENT
MESSAGE MESSAGE
SHARED KEY
SENDER CALCULATES THE RECIPIENT CALCULATES
KEYED HASH USING THE THE KEYED HASH USING
SHA-3 ENGINE AND A THE SAME SHA-3
SHARED KEY. ENGINE AND THE SAME
SHAS SHARED KEY. SHA-3
HMAC HMAC MESSAGE INTEGRITY
IS PRESERVED

SENDER THEN SENDS THE v
HASH TO THE RECIPIENT /\ —
YES
M LH MESSAGE INTEGRITY

NO S COMPROMISED
AN HMAC IS A DIGEST/HASH THAT IS GENERATED USING A —s
SPECIFIC KEY. HENCE, IT IS A “KEYED" DIGEST/HASH OF A MESSAGE.

Figure 9. SHA-3 symmetric key algorithm preserves integrity.

This is generated by feeding the message and the key to the SHA-3 engine. The resultant HMAC
and message is then sent to the recipient. The recipient then generates her own HMAC using the
key she has. The two HMACs are then compared and, if they match, the message has not been
tampered with. In this scenario, someone could intercept both the HMAC and the message and then
alter the message and generate a new HMAC and send it to the recipient. This will not work,
however, since the interceptor will not have the recipient’s secret key and the HMACs will not match.

Preserving Integrity Using Asymmetric Key Algorithms

The goal of preserving the integrity of a message is to ensure that any message received, or any
new device being connected is not carrying unwanted code or information. Let’s look at an example
of how this is achieved using an asymmetric key algorithm such as ECDSA (Elliptic Curve Digital
Signature Algorithm).

The basic idea behind this is that the sender signs a message with a digital signature and the
recipient verifies the signature, to be assured of the received message’s integrity.

In Figure 10, the sender calculates the digest of a message by feeding the message to a SHA-2
hashing engine. As this is an asymmetric key scheme, this key is not shared between the sender
and the recipient. The sender has a private key that is never shared, and the recipient has a public
key that can be shared with many people and vice versa, unlike the symmetric key algorithm the
digest/hash that is generated doesn’t use a key.

ASYMMETRIC KEY ALGORITHM — PRESERVING INTEGRITY WITH SHA2/ECDSA

SENDER RECIPIENT'S | RECIPIENT'S RECIPIENT
? PUBLIC KEY PRIVATE KEY '
UNENCRYPTED ENCRYPTED DECRYPTED
MESSAGE MESSAGE MESSAGE
1
? SENDER'S SENDER'S ? SHA-2 ENGINE
SHA-2 ENGINE PRIVATE KEY PUBLIC KEY l
MESSAGE A DIGITAL | MESSAGE
DIGEST M2 SIGNATURE _— DIGEST M1
N " of
ENGINE E ENGINE
MESSAGE INTEGRITY
NOTE: THIS DIAGRAM SHOWS A SENDER TO RECIPIENT IS COMPROMISED
EXAMPLE. IT CAN BE REVERSED TO SHOW A RECIPIENT NO
TO SENDER TRANSACTION X

YES

MESSAGE INTEGRITY
IS PRESERVED

Figure 10. ECDSA asymmetric key algorithm helps preserve message integrity.

The generated digest is then fed to the ECDSA engine along with the sender’s private key to
generate a digital signature of the message. This signature, along with the message, is sent to the
recipient. This completes the signing process for the sent message.

Now that the recipient has received the message and the digital signature from the sender, she can
start the verification process. This process consists of two distinct steps:

Step 1: The recipient computes a message digest from the received message.

Step 2: This newly computed digest, the received digital signature from the sender, along with the
sender’s public key are then fed into the ECDSA engine for verification.

During the verification process, the ECDSA engine produces a “yes” or a “no” result. If the result is a
“yes,” then the message integrity has been preserved. If the result is a “no,” the message integrity
has been compromised.

Non-Repudiation Using Asymmetric Key Algorithms

A message signed by a digital signature from the sender can be used to prove that the message
was sent by the sender and that the message was unaltered. However, a digital signature cannot
prove the identity of the sender. Proof of identity is achieved by using a digital certificate. Figures
11 through 14 show the complete steps needed to achieve a complete public key system where
messages exchanged cannot be repudiated by either party.

STEP 1: SENDER AND THE RECIPIENT EXCHANGE OTHER'S DIGITAL CERTIFICATE THAT IS SIGNED BY A TRUSTED THIRD PARTY
(CERTIFICATE AUTHORITY — CA)

SENDER RECIPIENT

IGIT, IFI N

SENDER'S IDENTITY
CERTIFICATE VALIDITY DATE
SENDER'S PUBLIC KEY
CERTIFICATE AUTHORITY'S DIGITAL SIGNATURE
(SIGNED BY THE CA’S PRIVATE KEY)

| IPIEN

RECIPIENT'S IDENTITY
CERTIFICATE'S VALIDITY DATE
RECIPIENT'S PUBLIC KEY
CERTIFICATE AUTHORITY'S DIGITAL SIGNATURE
(SIGNED BY THE CA'S PRIVATE KEY)

<

Figure 11. A sender and recipient exchange a trusted third-party-signed digital certificate.

STEP 2: SENDER AND THE RECIPIENT EXTRACT THE CA's DIGITAL SIGNATURE FROM EACH OTHER'S DIGITAL CERTIFICATE AND THEN
VERIFY IT. THIS VERIFIES THE AUTHENTICITY OF THE TWO CERTIFICATES.

SENDER S _-?| RECIPIENT
\~~\ ”r’
\~~~ : ””
‘\ 1 27
~, -
DIGITAL CERTIFICATE (RECIPIENT) \\;{/’ DIGITAL CERTIFICATE (SENDER)
N
RECIPIENT'S IDENTITY ot P SENDER'S IDENTITY
CERTIFICATE'S VALIDITY DATE e ! W CERTIFICATE VALIDITY DATE
RECIPIENT'S PUBLIC KEY i SENDER'S PUBLIC KEY
CERTIFICATE AUTHORITY’S DIGITAL SIGNATURE i CERTIFICATE AUTHORITY'S DIGITAL SIGNATURE
(SIGNED BY THE CA'S PRIVATE KEY) i (SIGNED BY THE CA'S PRIVATE KEY)
1
! E |
CERTIFICATE AUTHORITY'S DIGITAL ' CERTIFICATE AUTHORITY'S DIGITAL
SIGNATURE ! SIGNATURE
(SIGNED BY THE CA's PRIVATE KEY) i (SIGNED BY THE CA's PRIVATE KEY)
|
PUBLIC KEY (CA) ! ! PUBLIC KEY (CA)
SIGNATURE VERIFICATION i SIGNATURE VERIFICATION —

?__.

PROCESS OUTLINED BY THE CA

PROCESS OUTLINED BY THE CA

POINT TO REMEMBER: THE CA's SIGNATURE WAS SIGNED BY ITS PRIVATE KEY THAT IT ONLY KNOWS. THE CERTIFICATE IS BEING VERIFIED
USING CA's PUBIC KEY THAT WAS DERIVED FROM ITS PRIVATE KEY. THE PUBLIC KEY IS FREELY DISTRIBUTED.

Figure 12. A sender and recipient verify the authenticity of a trusted third-party-signed digital

certificate.

STEP 3: NOW THAT THE SENDER AND THE RECIPIENT HAVE VERIFIED THE AUTHENTICITY OF EACH OTHER'S CERTIFICATES,
THEY EXTRACT EACH OTHER'S PUBLIC KEYS FROM THE CERTIFICATE.

SENDER . \ /| RECIPIENT
R |
\\ ‘1 'l
\\ : 'I
DIGITAL CERTIFICATE (RECIPIENT) N DIGITAL CERTIFICATE (SENDER
N 1 4
RECIPIENT'S IDENTITY S SENDER'S IDENTITY
CERTIFICATE'S VALIDITY DATE Y CERTIFICATE'S VALIDITY DATE
RECIPIENT'S PUBLIC KEY 2 SENDER'S PUBLIC KEY
CERTIFICATE AUTHORITY'S DIGITALSIGNATURE |~ | ™\ |CERTIFICATE AUTHORITY'S DIGITAL SIGNATURE
(SIGNED BY THE CA'S PRIVATE KEY) SN (SIGNED BY THE CA'S PRIVATE KEY)
o i .
| / 3; ‘\\ |
l' \; LY
RECIPIENT'S PUBLIC KEY / | N SENDER'S PUBLIC KEY

— ', : \\ PU—
’) A Y
? » i E ?
I
I

Figure 13. A sender and recipient extract each other’s public keys from a digital certificate.

STEP 4: NOW THE SENDER AND THE RECIPIENT CAN EXCHANGE MESSAGES USING EACH OTHER'S PUBLIC KEYS. THESE MESSAGES CAN'T
BE REPUDIATED BY EITHER AS THEY WERE EXCHANGED USING PUBLIC KEYS THAT WERE EXTRACTED FROM A DIGITAL CERTIFICATE SIGNED
BY A TRUSTED THIRD PARTY — CA.

RECIPIENT'S RECIPIENT'S

SENDER PUBLIC KEY PRIVATE KEY

RECIPIENT

«®

UNENCRYPTED
ENCRYPTED DECRYPTED
MESSAGE MESSAGE —-G_. MESSAGE ﬁ

. SENDER'S SHA-2 ENGINE
SHA-2 ENGINE ? SENDER'S PUBLIC KEY ?

PRIVATE KEY

MESSAGE | DIGITAL MESSAGE
peestm2 —| SIGNATURE DIGEST M1
ECDSA
ECDSA ENGINE

ENGINE MESSAGE INTEGRITY
SIGNATURE
VERIFIED?

NOTE: THIS DIAGRAM SHOWS A SENDER TO RECIPIENT ISCOMPROMISED
EXAMPLE. IT CAN BE REVERSED TO SHOW A RECIPIENT X)
TO SENDER TRANSACTION. YES

MESSAGE INTEGRITY
IS PRESERVED

Figure 14. The sender and recipient exchange messages that cannot be repudiated.

The main idea is that both the sender and recipient need to prove their identity to one another, and
their respective public keys need to be proven authentic by a trusted third party.

Why is it so important to use a digital certificate? Without it, someone pretending to be the sender
(i.e., an imposter) could send a message encrypted with the recipient’s public key along with a digital
signature signed with the imposter’s private key. The imposter would then send the recipient his/her
made-up public key. The recipient would then use that public key to verify the digital signature and
everything would be validated. But the message from the imposter may have malicious information

that the recipient will never suspect. This is the issue that can be avoided by using a digital
certificate that verifies that the public key received did indeed belong to the sender and not some
imposter.

Maxim Integrated has a wide variety of symmetric and asymmetric key based

hardware authenticators that can be used to accomplish all the concepts discussed in this chapter.
Watch for other segments in our series of cryptography application notes to continue deepening your
understanding of this important security technique.

