



Typical Unit

**FEATURES**

- Input Range of 36-75V (48V nominal)
- Output Voltage of 50V @ 14A
- Adjustable Output Voltage: 25-55V
- Efficiency up to 97.7%
- Industry-Standard 1/4 Brick Package
- PMBus® Interface (optional)
- Low Output Ripple & Noise
- Over Current/Voltage/Temperature Protection
- Remote On/Off (negative logic – standard configuration)
- Planned Certifications: UL62368-1:2019, CAN/CSA C22.2 No. 62368-1-19, 3<sup>rd</sup> Ed. 2014-12-01, IEC62368 1:2018 (Third edition)
- Integrated Baseplate for Thermal Performance
- Basic Insulation, 2.250Vdc isolation (I/O)


 For full details go to  
<https://www.murata-ps.com/rohs>

**SAFETY APPROVALS**

- UL 62368-1 3<sup>rd</sup> Edition
- CSA C22.2 No. 62368-1-19
- IEC 62368-1:2018


**PRODUCT OVERVIEW**

The MPQ700-50V14-D48NBMC is a 700W, isolated, highly-efficient, digitally controlled DC-DC board-mount power converter with a single 50Vdc output.

PMBus® digital communication capability (included in all base models) supports a comprehensive command list providing capability for the system/host to configure control and monitor status.

Robust hardware fault protection from overvoltage, overtemperature, and overload conditions is provided and supports operation over a wide temperature range.

This series offers a competitive advantage in base-station RFPA (Radio Frequency Power Amplifier) or any ITE application requiring high power density, efficiency, and reliable DC-DC power conversion.

**ORDERING GUIDE**

| Part Number <sup>1</sup> | VIN      | VOUT  | POUT | L inch(mm)  | W inch(mm)   | H inch(mm) |
|--------------------------|----------|-------|------|-------------|--------------|------------|
| MPQ700-50V14-D48NBC      | 36-75Vdc | 50Vdc | 700W | 2.3 (58.42) | 1.45 (36.83) | (14.4)     |
| MPQ700-50V14-D48NBMC     | 36-75Vdc | 50Vdc | 700W | 2.3 (58.42) | 1.45 (36.83) | (14.4)     |

**INPUT VOLTAGE CHARACTERISTICS**

| Parameter                                 | Conditions                                   | Min. | Nom. | Max. | Units              |
|-------------------------------------------|----------------------------------------------|------|------|------|--------------------|
| External Input Fuse                       |                                              | -    | 30   | -    | A                  |
| Internal Filter Type                      |                                              | -    | Pi   | -    |                    |
| Input Reverse Polarity Protection         |                                              | -    | N/A  | -    |                    |
| Input Voltage, Operating                  |                                              | 36   | 48   | 75   | Vdc                |
| Voltage Transients (100ms duration)       |                                              | -    | -    | 100  | Vdc                |
| Start-Up Voltage                          |                                              | 32   | 34   | 36   | Vdc                |
| Input Capacitance                         | Per unit, Nichicon UPM2A271MHD or equivalent | 270  | -    | -    | μF                 |
| Full Load Conditions                      | Vin @ nominal                                | -    | 15   | -    | A                  |
| Low Line Input Current                    | Vin @ min.                                   | 18   |      | 23   | A                  |
| Inrush Transient                          | Vin @ nominal                                | -    | 0.7  | 1    | A <sup>2</sup> Sec |
| No Load Input Current                     | Vin @ nominal, Iout = 0 A, Unit = ON         | -    | 50   |      | mA                 |
| Shutdown Mode Input Current (Off, UV, OT) |                                              | -    | -    | 30   | mA                 |

**OUTPUT VOLTAGE CHARACTERISTICS**

| Parameter                       | Conditions                                                   | Min.  | Nom.  | Max.  | Units |
|---------------------------------|--------------------------------------------------------------|-------|-------|-------|-------|
| Efficiency                      | Vin = 48V, half load, Ta=25°C                                | -     | 97.6  | -     | %     |
|                                 | Vin = 48V, full load, Ta=25°C                                | -     | 97.2  | -     |       |
|                                 | Vin = 53V, half load, Ta=25°C                                | -     | 97.5  | -     |       |
|                                 | Vin = 53V, full load, Ta=25°C                                | -     | 97.4  | -     |       |
| Peak Efficiency                 | Vin=53V, Pout=500W, Ta=25°C                                  |       | 97.7  |       |       |
| Switching Frequency             |                                                              | 85    | -     | 130   | kHz   |
| Output Voltage Set Point        | Vin=48V, Pout=0W, Tc=25°C                                    | 49.50 | 50.00 | 50.50 | Vdc   |
| Output Voltage Tolerance Band   | Vin=36-75V, 0-100% of Load                                   | 48.50 | -     | 51.50 | Vdc   |
| Output Current                  |                                                              | 0     | -     | 14    | A     |
| Output Power                    |                                                              | -     | -     | 700   | W     |
| Ripple & Noise <sup>1</sup>     | 20MHz Bandwidth                                              | -     | -     | 400   | mVp-p |
| Output Capacitance <sup>2</sup> | 50% ceramic, 50% Oscon or POSCAP                             | 1470  | -     | 4700  | μF    |
| Line Regulation                 | Vin = 36-75 V, Vout = full load                              | -100  | -     | 100   | mV    |
| Load Regulation                 | Iout = min. to max., Vin = 48 V, Vout@min_load-Vout@max_load | -100  | -     | 100   | mV    |

**OUTPUT VOLTAGE CHARACTERISTICS (continued)**

| Parameter           | Conditions                                                                                       | Min. | Nom. | Max. | Units |
|---------------------|--------------------------------------------------------------------------------------------------|------|------|------|-------|
| Output Adjust Range |                                                                                                  | 25.0 | -    | 55.0 | Vdc   |
| Trim Down           | Trim (pin J6) to -Vout Sense (pin J5), Rt down (kΩ) = 1/((Vnom-Vo)/Vnom)-1.2                     | -50  | -    | -    | %     |
| Trim Up             | Trim (pin #6) to +Vout Sense (pin J7), Rt up(kΩ)= Vnom*(1+Δ)/(1.225*Δ)-1/Δ-1.2, Δ= Vnom-Vo)/Vnom | -    | -    | 10   | %     |

**RELIABILITY & SAFETY**

| Parameter                | Conditions                                                    | Min. | Nom. | Max. | Units  |
|--------------------------|---------------------------------------------------------------|------|------|------|--------|
| Isolation Voltage        | Input to Output Test Voltage                                  | -    | -    | 2250 | Vdc    |
|                          | Input to Baseplate Test Voltage                               | -    | -    | 1500 |        |
|                          | Baseplate to Output Test Voltage                              | -    | -    | 1500 |        |
| Insulation Safety Rating | Basic Insulation                                              | -    | -    | -    |        |
| Isolation Capacitance    | Telcordia SR-332 , Issue 3 , Method 1 , Case 1 , Ground Fixed | -    | 1500 | -    | pF     |
| Calculated MTBF          | Telcordia SR-332 , Issue 3 , Method 1 , Case 1 , Ground Fixed | -    | 5000 | -    | kHours |

**Note:**

<sup>1</sup> Cout = 1.0 μF ceramic, 10 μF tantalum and 1470μF low ESR polymer capacitor across the load. 1470μF low ESR polymer capacitor is X-CON Electronics RPF1018331M063K or equivalent. Bandwidth = 20MHz.

**PERFORMANCE SPECIFICATIONS SUMMARY AND ORDERING GUIDE<sup>1</sup>**

| Model Number <sup>2</sup> | Output  |                |                 |                              |                   |          | Input       |           |                             | Efficiency |  |
|---------------------------|---------|----------------|-----------------|------------------------------|-------------------|----------|-------------|-----------|-----------------------------|------------|--|
|                           | out (V) | IOUT (A, max.) | Total Power (W) | Ripple & Noise (mVp-p, max.) | Regulation (max.) |          | Vin Nom (V) | Range (V) | Iin, full load@Vin Nom. (A) |            |  |
|                           |         |                |                 |                              | Line (%)          | Load (%) |             |           |                             |            |  |
| MPQ700-50V14-D48NBC       | 50      | 14.0           | 700             | 400                          | 0.2               | 0.2      | 48          | 36-75     | 14                          | 97.2%      |  |
| MPQ700-50V14-D48NBMC      | 50      | 14.0           | 700             | 400                          | 0.2               | 0.2      | 48          | 36-75     | 14                          | 97.2%      |  |

**Notes:**

<sup>1</sup> Typical at Ta = +25°C under nominal line voltage and full-load conditions. All models are specified with an external 1μF multi-layer ceramic and 10μF capacitors across the output pins.

<sup>2</sup> See the following Part Number Structure table for details.

**PART NUMBER STRUCTURE**

|                          |   |   |     |     |     |   |   |  |                                                                                                   |
|--------------------------|---|---|-----|-----|-----|---|---|--|---------------------------------------------------------------------------------------------------|
| Product Family           | M | P |     |     |     |   |   |  | MP = Murata Power                                                                                 |
| Form Factor              |   |   | Q   |     |     |   |   |  | Q = Quarter Brick (Industry Standard Pinout)                                                      |
| Output Power             |   |   | 700 |     |     |   |   |  | 700W                                                                                              |
| Output Voltage           |   |   |     | 50V |     |   |   |  | 50Vout                                                                                            |
| Output Current           |   |   |     |     | 14  |   |   |  | Max. Iout in Amps                                                                                 |
| Input Voltage Range      |   |   |     |     | D48 |   |   |  | D48 = 36-75Vin                                                                                    |
| On/Off Control Logic     |   |   |     |     |     | N |   |  | N = Negative Logic, (Standard Configuration), P = Positive Logic (optional – Contact the factory) |
| Mechanical Configuration |   |   |     |     |     | B |   |  | B = Baseplate                                                                                     |
| PMBus option             |   |   |     |     |     |   | M |  | M = PMBus interface & Power Good included, Blank = Without PMBus, No Power Good                   |
| RoHS                     |   |   |     |     |     |   | C |  | C = RoHS Compliant                                                                                |

**ABSOLUTE MAXIMUM RATINGS<sup>1</sup>**

| Parameter                                | Conditions <sup>1</sup> | Min. | Typ/Nom. | Max. | Units |
|------------------------------------------|-------------------------|------|----------|------|-------|
| Input Voltage, Continuous                | Input to Output         | -0.5 |          | 80   | Vdc   |
| Isolation Voltage                        |                         | -    |          | 2250 |       |
| On/Off Remote Control                    |                         | 0    |          | 13.5 |       |
| Output Power                             |                         | 0    |          | 700  |       |
| Operating Temperature Range <sup>2</sup> | Vin = Zero (no power)   | -40  |          | 125  | °C    |
| Storage Temperature Range                |                         | -55  |          | 125  |       |

<sup>1</sup> Absolute maximum are stress ratings. Exposure of devices to greater than any of these conditions can adversely affect long-term reliability.

<sup>2</sup> See thermal consideration section.

**TURN-ON/TURN-OFF CHARACTERISTICS**

| Parameter                | Conditions                                                                                                                                        | Min. | Typ/Nom. | Max. | Units |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------|-------|
| Turn-On Delay-1          | Defined as time between Vin reaching Turn-On voltage and Vout reaching 10% of final value. Enable is asserted before Vin reaches Turn-On voltage. | 80   | 100      | 120  | ms    |
| Turn-On Delay-2          |                                                                                                                                                   | 45   | 60       | 75   |       |
| Output Voltage Rise Time |                                                                                                                                                   | 60   | -        | 90   |       |
| Pre-Bias Voltage         |                                                                                                                                                   | 0    | -        | Vout | Vdc   |

**DYNAMIC CHARACTERISTICS**

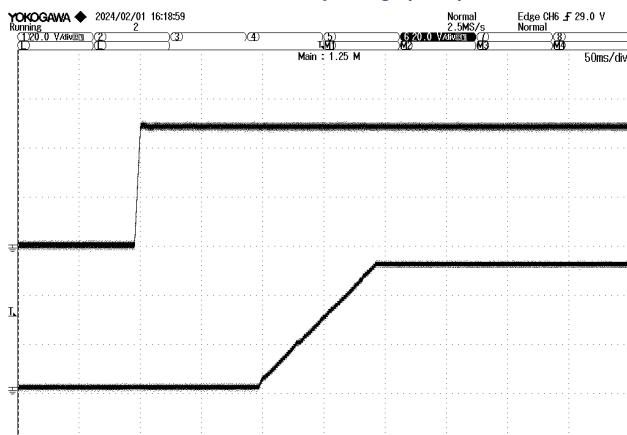
| Parameter                                    | Conditions <sup>1</sup> | Min. | Typ/Nom. | Max. | Units |
|----------------------------------------------|-------------------------|------|----------|------|-------|
| Dynamic Load Response <sup>1,2,3</sup>       |                         | -    | -        | 500  | μS    |
| Dynamic Load Peak Deviation <sup>1,2,3</sup> |                         | -    | -        | ±900 | mV    |

<sup>1</sup> VIN = 48 V, Load step = 50% of Pout Max from 25-75-25%.

<sup>2</sup> External capacitances tested with a 1.0 μF ceramic, 10 μF tantalum and 1470μF low ESR polymer capacitor across the load.

<sup>3</sup> Low ESR polymer capacitor is X-CON Electronics RPF1018331M063K or equivalent.

**FEATURES AND OPTIONS**


| Parameter                                                                                       | Conditions <sup>1</sup>                                 | Min. | Typ/Nom. | Max. | Units |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------|------|----------|------|-------|
| Primary On/Off Control (suitable for driving open collector logic; voltages referenced to -Vin) |                                                         |      |          |      |       |
| "N" Suffix: (Standard Configuration)                                                            |                                                         |      |          |      |       |
| Negative Logic, ON state                                                                        | ON = ground pin or external voltage                     | -0.1 |          | 0.8  | Vdc   |
| Negative Logic, OFF state                                                                       | OFF = pin open or external voltage                      | 3.5  |          | 13.5 |       |
| Control Current                                                                                 | open collector/drain                                    |      | 0.1      | 0.2  | mA    |
| "P" Suffix: (Optional – Contact Factory)                                                        |                                                         |      |          |      |       |
| Positive Logic, ON state                                                                        | ON = pin open or external voltage                       | 3.5  |          | 13.5 | Vdc   |
| Positive Logic, OFF state                                                                       | OFF = ground pin or external voltage                    | -0.1 |          | 0.8  |       |
| Control Current                                                                                 | open collector/drain                                    |      | 0.1      | 0.2  | mA    |
| Remote Sense Compliance                                                                         | Sense pins connected externally to respective Vout pins |      |          | 10   | %     |
| Power-Good Signal <sup>1</sup>                                                                  |                                                         |      |          |      |       |
| Output Voltage Low (trigger limits)                                                             |                                                         |      | 23.5     |      | Vdc   |
| Output Voltage Hysteresis                                                                       |                                                         | 0.2  |          |      |       |
| High State Voltage                                                                              |                                                         | 3    |          | 5.5  |       |
| High State Leakage Current (into pin)                                                           |                                                         | 0    |          | 10   | μA    |
| Low State Voltage                                                                               |                                                         | 0    |          | 0.8  | V     |
| Low State Current (into Pin)                                                                    |                                                         | 0    |          | 5    | mA    |
| Power Good Signal De-assert Response Time                                                       |                                                         | 0    |          | 3    | ms    |
| Power Good Signal Assert Response Time                                                          |                                                         | 0    | -        | 3    |       |

<sup>1</sup> The Power Good Logic can be changed via PMBus.

| OUTPUT                                                                                              |                                                                           |                      |                 |        |        |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------|-----------------|--------|--------|
| Parameter                                                                                           | Conditions                                                                | Min.                 | Typ/Nom.        | Max.   | Units  |
| Total Output Power                                                                                  |                                                                           | 0                    |                 | 700    | W      |
| <b>Voltage</b>                                                                                      |                                                                           |                      |                 |        |        |
| Initial Output Voltage                                                                              | VIN = 48 V, Iout = 0 A, temp = 25 °C<br>Both with and without "S" suffix. | 49.50                | 50.00           | 50.50  | Vdc    |
| Output Adjust Range                                                                                 |                                                                           | 25                   |                 | 55     |        |
| Trim Down: Trim (pin #J6) to -Vout Sense (pin #J5)                                                  | Rt down (kΩ) = 1/(Vnom-Vo)/Vnom)-1.2                                      | -50                  |                 | -      | %      |
| Trim Up: Trim (pin #J6) to +Vout Sense (pin #J7)                                                    | Rt up(kΩ) = 1*Vnom*(1+Δ)/(1.225*Δ)-1/Δ-2<br>Δ= Vnom-Vo)/Vnom              |                      |                 | 10     |        |
| <b>Current</b>                                                                                      |                                                                           |                      |                 |        |        |
| Output Current Range                                                                                |                                                                           | 0                    |                 | 14     | A      |
| Minimum Load                                                                                        |                                                                           |                      | No minimum load |        |        |
| <b>Short Circuit</b>                                                                                |                                                                           |                      |                 |        |        |
| (remove short for recovery)                                                                         |                                                                           |                      |                 |        |        |
| Short circuit protection method                                                                     |                                                                           |                      | Latch off       |        |        |
| PROTECTION                                                                                          |                                                                           |                      |                 |        |        |
| Parameter                                                                                           | Conditions                                                                | Min.                 | Typ/Nom.        | Max.   | Units  |
| Vout Undervoltage Shutdown                                                                          |                                                                           | 30                   | 32              | 34     | Vdc    |
| Vin UVP Hysteresis                                                                                  |                                                                           | -                    | 2               | 4      |        |
| Vin Overvoltage Shutdown                                                                            |                                                                           | 76                   | 78              | 80     |        |
| Vin Overvoltage Shutdown Recover                                                                    |                                                                           | 74                   | 76              | 78     |        |
| Vin OVP Hysteresis                                                                                  |                                                                           | -                    | 2               | 4      |        |
| Vout Overvoltage Shutdown                                                                           |                                                                           | 57                   | 59              | 61     |        |
| Output Over-Current                                                                                 |                                                                           | 17                   |                 | 21     | A      |
| Over-Temperature                                                                                    | Baseplate hotspot                                                         | -                    | 110             | -      | °C     |
| Note: The protection threshold can be configurate through PMBus. See the PMBus section for details. |                                                                           |                      |                 |        |        |
| ENVIRONMENTAL CHARACTERISTICS                                                                       |                                                                           |                      |                 |        |        |
| Parameter                                                                                           | Conditions                                                                | Min.                 | Typ/Nom.        | Max.   | Units  |
| Operating Temperature - Ambient                                                                     |                                                                           | -40                  |                 | 85     | °C     |
| Storage Temperature                                                                                 | Vin = Zero (no power)                                                     | -55                  |                 | 125    |        |
| Altitude, Operating                                                                                 |                                                                           | -500                 |                 | 13,120 | feet   |
| Relative Humidity                                                                                   | Operating, Non-Condensing                                                 | 10                   |                 | 90     | %      |
|                                                                                                     | Non-Operating, Non-Condensing                                             | 10                   |                 | 95     |        |
| Electromagnetic Interference Conducted, (EN55022/CISPR22)                                           | External filter required. See Emissions Performance Test.                 |                      | B               |        | Class  |
| MECHANICAL                                                                                          |                                                                           |                      |                 |        |        |
| Parameter                                                                                           | Conditions                                                                | Min.                 | Typ/Nom.        | Max.   | Units  |
| Mechanical Dimensions                                                                               |                                                                           | 2.30 x 1.45 x 0.5    |                 |        | Inches |
|                                                                                                     |                                                                           | 58.42 x 36.83 x 12.7 |                 |        | mm     |
| Weight (per unit)                                                                                   |                                                                           | -                    | 2.35            | -      | Ounces |
|                                                                                                     |                                                                           |                      | 80              | -      | Grams  |
| Pin Length                                                                                          |                                                                           | -                    | 0.180           |        | Inches |
|                                                                                                     |                                                                           | -                    | 4.572           |        | mm     |
| Pin Diameter                                                                                        |                                                                           | 0.040/0.060          |                 |        | Inches |
|                                                                                                     |                                                                           |                      | 1.016/1.524     |        | mm     |
| Pin Material                                                                                        | Copper with matte tin plating over nickel under plating                   |                      |                 |        |        |
| Baseplate Material                                                                                  | Black anodized aluminum                                                   |                      |                 |        |        |

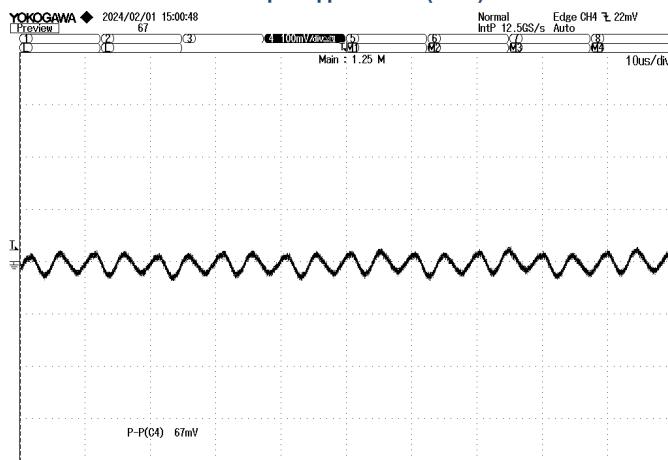
**PERFORMANCE DATA**

**Start-Up Voltage (48Vin)**

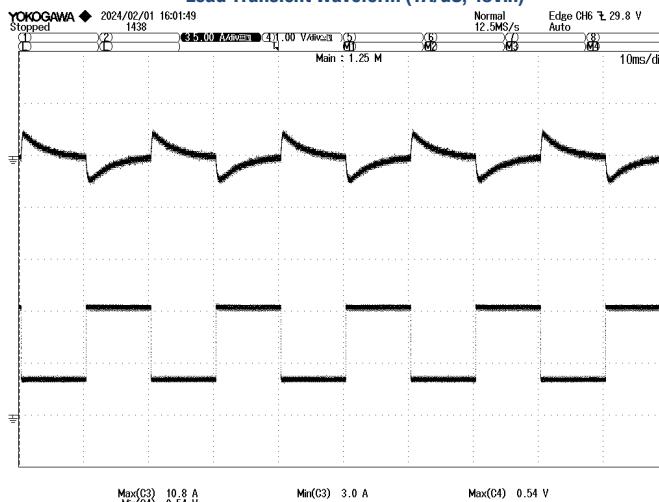


**Shut Down Voltage (48Vin)**




Start-up enabled by connecting VI at:  
TP1 = +25°C  
VI = 48 V  
IO = 14A resistive load

Top trace: Input voltage (20 V/div.)  
Bottom trace: Output voltage (20 V/div.)  
Time scale: (50ms/div.)


Shut down enabled by disconnecting VI at:  
TP1 = +25°C  
VI = 48 V  
IO = 14A resistive load

Top trace: Input voltage (20 V/div.)  
Bottom trace: Output voltage (20 A V/div.)  
Time scale: (50ms/div.)

**Output Ripple & Noise (48Vin)**

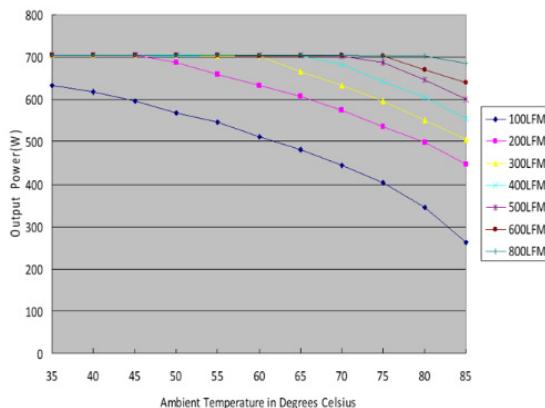


**Load Transient Waveform (1A/uS, 48Vin)**



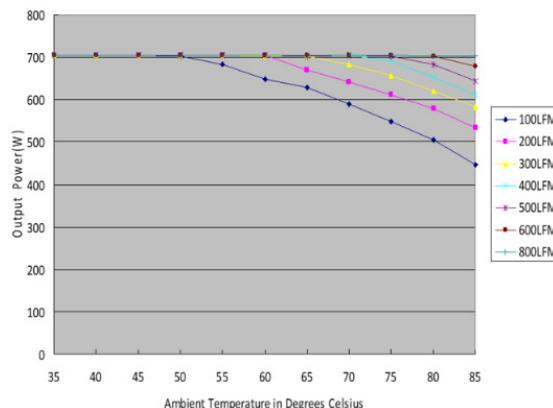
TP1 = +25°C  
VI = 48 V  
IO = 14A resistive load

Trace: Output voltage (100 mV/div.)  
Time scale: (10μs/div.)  
20 MHz bandwidth filter 10 μF+1 μF

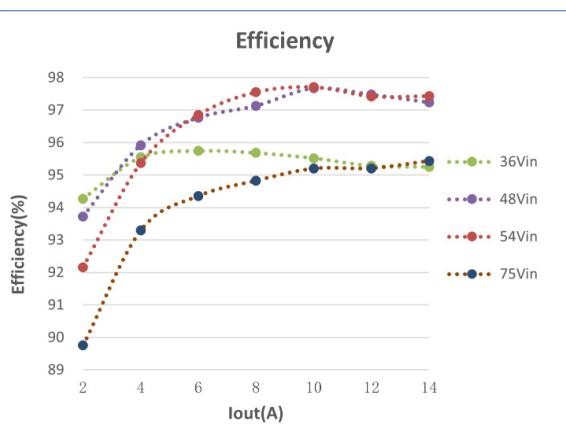

Output voltage response to load current  
step change (75% - 25%-75% f) TP1 =  
+25°C, VI = 48 V

Top trace: Output voltage (1V/div.)  
Bottom trace: Output current (5A/div.)  
Time scale: (10ms/div.)

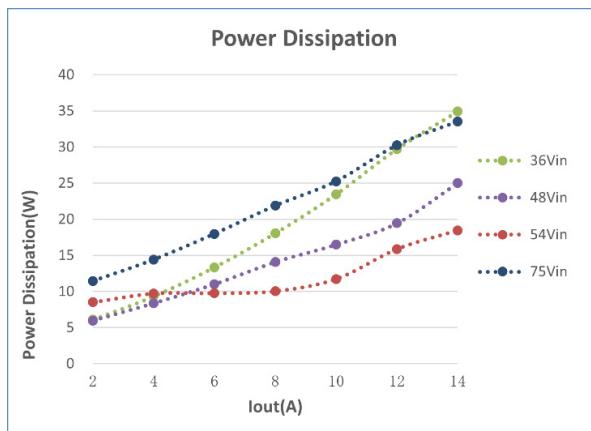
**PERFORMANCE DATA**


**Output Power vs. Temperature**

Temperature Derating in Longitudinal Direction with Heatsink  
Vin=48Vdc (air flow direction is from Vin to Vout on 10x10 inch PCB)

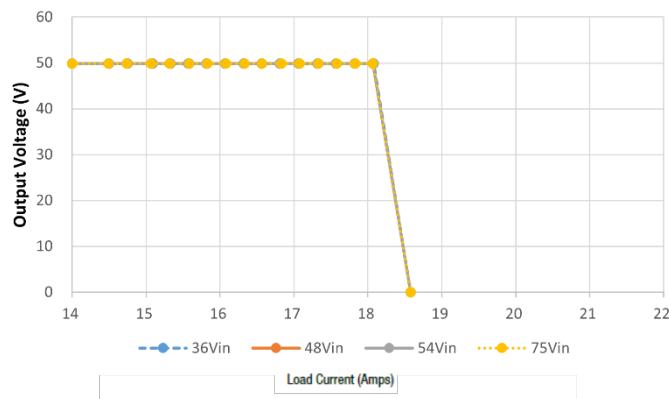



**Output Load Current vs. Temperature**

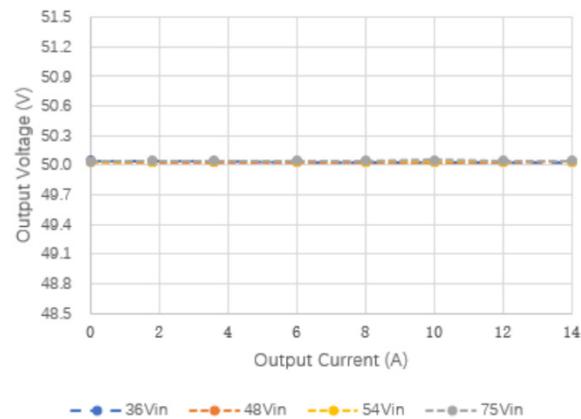

Temperature Derating in Longitudinal Direction with Heatsink  
Vin=48Vdc (air flow direction is from Vin to Vout on 10x10 inch PCB)



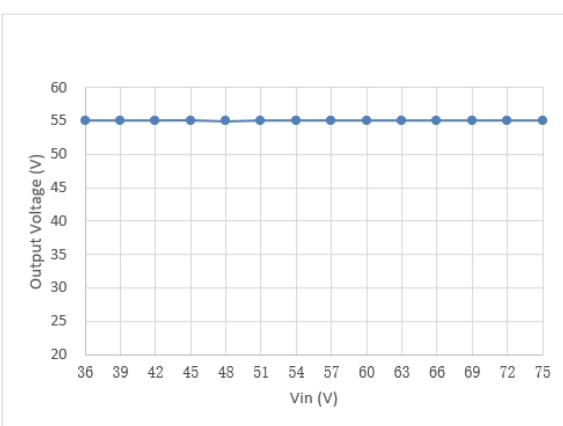
**Efficiency vs. Load Current & Input Voltage @25°C**



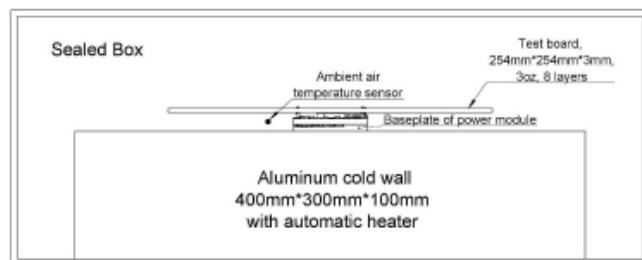

**Dissipated Power vs. Load Current & Input Voltage @25°C**



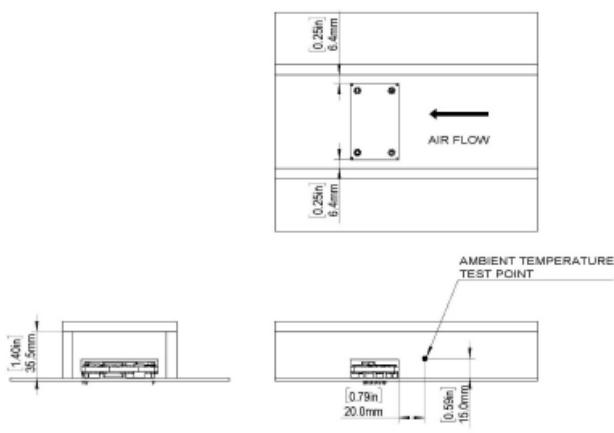

**PERFORMANCE DATA**


**Current Limit Characteristics @ 25°C**

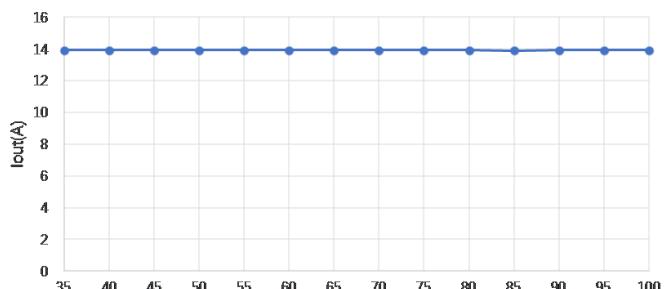



**Output Voltage vs. Load Current @ 25°C**



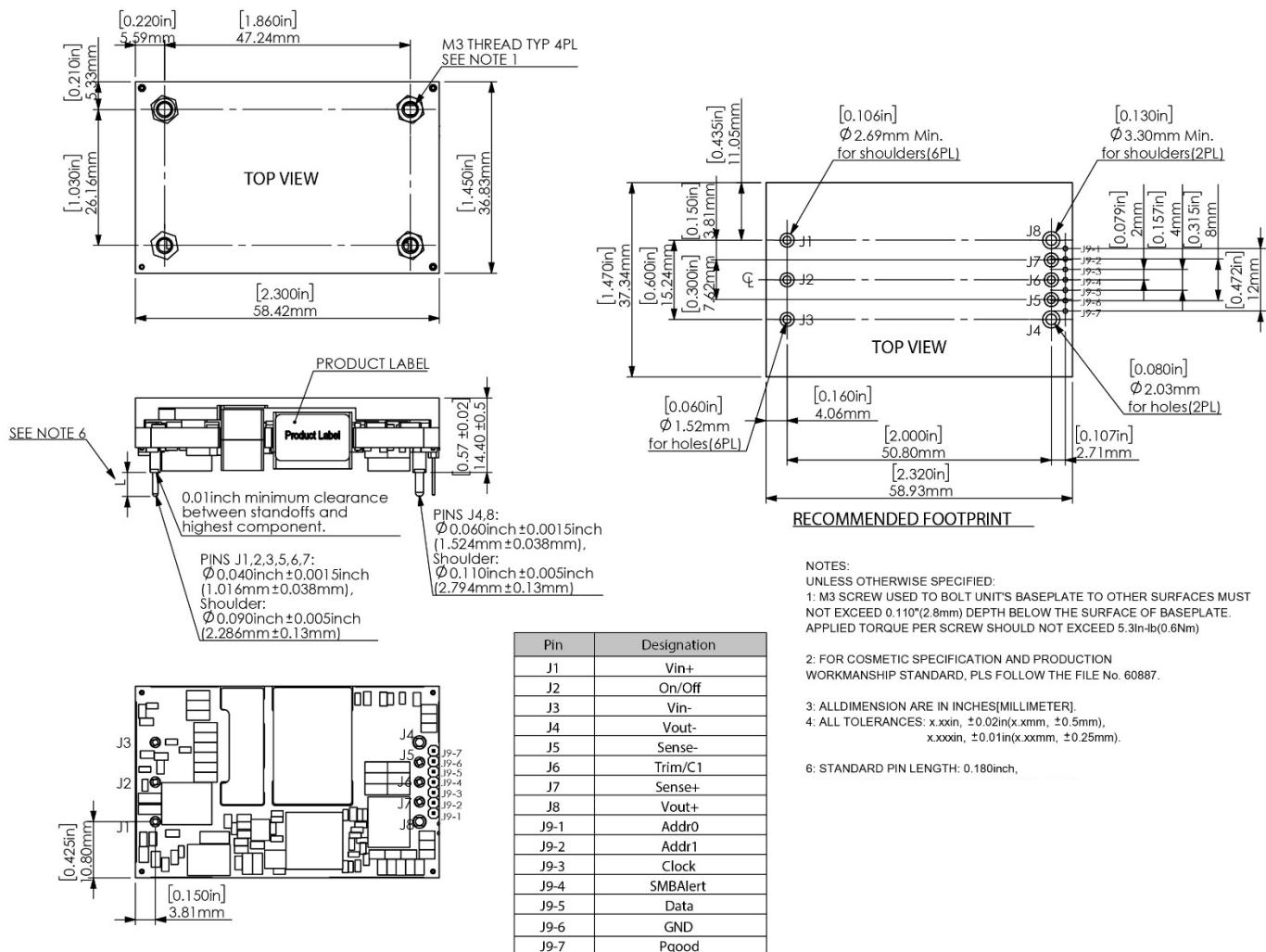

**Maximum Adjustable Output Voltage**




**Cold Wall Test Set-up**



**Wind Tunnel Test Set-up**



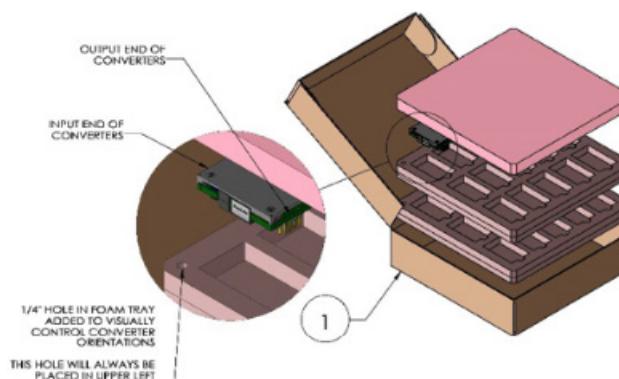
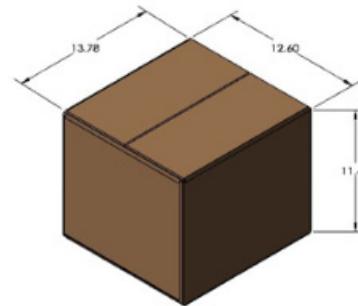

**Output Current Derating – Cold Wall Sealed Box**



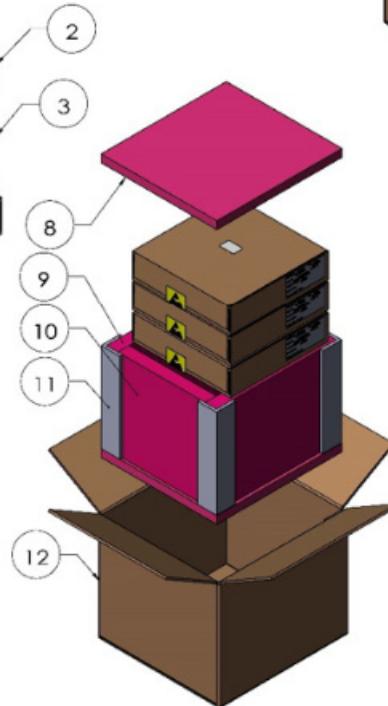
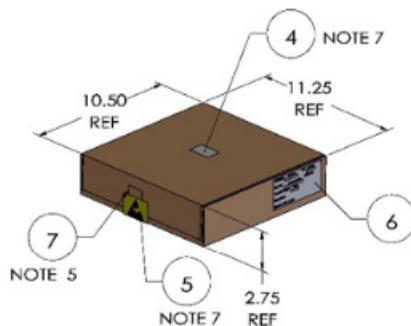
Available output current vs. base plate temperature (°C) , Vin=48V

**MECHANICAL SPECIFICATIONS**





**PIN DESCRIPTION**

| Pin  | Name       | Input/Output | Function                                 |
|------|------------|--------------|------------------------------------------|
| J1   | Vin+       | Input        | Positive input voltage                   |
| J2   | On/Off     | Input        | Turns unit On(low) and Off(high or open) |
| J3   | Vin-       | Input        | Negative input voltage                   |
| J4   | Vout-      | Output       | Negative output voltage                  |
| J5   | Sense-     | Input        | Remote Sense negative                    |
| J6   | Trim/C1    | Input        | TRIM function                            |
| J7   | Sense+     | Input        | Remote Sense positive                    |
| J8   | Vout+      | Output       | Positive output voltage                  |
| J9-1 | Addr0      | Input        | PMBus address pin 0                      |
| J9-2 | Addr1      | Input        | PMBus address pin 1                      |
| J9-3 | Clock      | Input/Output | PMBus clock line                         |
| J9-4 | SMBALERT#  | Output       | PMBus alert line                         |
| J9-5 | Data       | Input/Output | PMBus data line                          |
| J9-6 | SIGNAL_GND | Output       | GND, be equivalent to Vout-              |
| J9-7 | PGood      | Output       | Power Good                               |



**SHIPPING TRAYS AND BOXES**

| (ITEM NO.<br>(95000050121) | PART NUMBER  | DESCRIPTION                                  | QTY        |
|----------------------------|--------------|----------------------------------------------|------------|
| 1                          | 2300208      | SHIPPING BOX, 10" X 10" X 2.50"              | 3          |
| 2                          | 2300221      | SHIPPING TRAY BASE (PAD), .75" THICK         | 3 (NOTE 8) |
| 3                          | 2300234      | SHIPPING TRAY, 1/4 BRICK (15 CAVITY)         | 6          |
| 4                          | 2300159      | LABEL, 1.0" X 1.5" PAPER                     | 3          |
| 5                          | 5600-01098-0 | LABEL, PRE-PRINTED ESD ATTENTION             | 3          |
| 6                          | 5652-01166-0 | LABEL, PAPER, 2.0" X 4.0"                    | 3 (NOTE 6) |
| 7                          | 6200-01211-0 | ESD TAPE, 3/4" WIDE                          | 1.0"       |
| 8                          | 6256-01125-0 | ESD PAD 335mm X 305mm                        | 2          |
| 9                          | 6256-01124-0 | ESD PAD 335mm X 225mm                        | 2          |
| 10                         | 6256-01126-0 | ESD PAD 255mm X 225mm                        | 2          |
| 11                         | 6256-01127-0 | RIGHT ANGLE CLIP                             | 4          |
| 12                         | 6256-01671-0 | SHIPPING BOX 110" X 120" X 28" WITH MPS LOGO | 1          |

ITEM NUMBERS REFER TO 95000050121 BOM. ITEMS ABOVE ARE FOR REFERENCE ONLY.  
REFER TO APPROPRIATE BOM FOR COMPLETE LIST OF PARTS.



THIS HOLE WILL ALWAYS BE  
PLACED IN UPPER LEFT CORNER OF CARTON AS  
SHOWN



**NOTES:**

1. THIS DOCUMENT DEFINES THE GENERAL PACKING RULES FOR APPLICABLE SHIPPING KIT. INFORMATION FOR SEALING AND MARKING IS NOT PART OF THIS DOCUMENT.

2. REFER TO SHIPPING KIT BOM DETAILS.

3. INSERT UNITS INTO FOAM POCKETS IN TRAYS APPROX AS SHOWN

4. EACH FOAM TRAY (ITEM 3) CONTAINS 15 UNITS. EACH BOX (ITEM 1) CONTAINS 30 UNITS. IN FULL CARTON (ITEM 12) QUANTITIES, 3 BOXES (ITEM 1) EQUAL A TOTAL OF 90 UNITS.

5. IF SHIPPING QTY IS 30PCS, PLEASE ALSO USE ITEM 12 TO MAKE THE PACKAGE (TWO EMPTY BOX (ITEM 1) PUT ON THE BOX (ITEM 1) WITH PRODUCTS).

6. FRONT FLAP SHALL BE SEALED WITH ESD TAPE SPECIFIED OR EQUIVALENT FLAP AFTER THE BOX IS CLOSED.

7. LABEL (ITEM 4) USED FOR MFR OVERPACK CARTON

8. APPLY ESD LABEL (ITEM 5) OVER TAPE USED TO SEAL BOX AND APPLY IDENTIFICATION LABEL (ITEM 6) APPROX AS SHOWN.

9. PAD (ITEM 2) MAY, AT MFR'S OPTION, BE EXCHANGED FOR THINNER PAD IF FOAM STACKUP EXCEEDS CARTON HEIGHT BY >1.0". OR, THICKER PAD MAY BE ADDED IF STACKUP IS BELOW CARTON HEIGHT BY <1/8".  
ALTERNATE PADS: 1/4" THK=2300216, 3/8" THK=2300218, 1/2" THK=2300219, 3/4" THK=2300221

**MPQ = 30**

## TECHNICAL NOTES & APPLICATIONS OVERVIEW

### Power Management Overview and PMBus Interface (Applicable Models)

A wide range of parameters can be read and configured by the system/host by using PMBus™ digital communications.

Each module is provided pre-configured for a wide range operation. Refer to the PMBus™ Interface section for details.

### SMBAERT# Hardware Signal (Applicable Models)

SMBAERT# signal offers an alternate method for system/host notification that a fault or Warning has been detected (mirrors the STATUS\_X fault/warn register bits) within the module and is useful in applications requiring real time fault notification independent or in addition to reading PMBus™ STATUS\_X register fault bits which might not be read by system/host frequently enough to detect that a fault/ warning bit flag was set.

Internally driven low <0.4Vdc indicates a Vout, Iout, Vin, Temperature, or Power Good fault/warning has been detected and remains low until the fault/warning stimulus has been removed and the system/host clears the individual bit flag or issues “CLEAR\_FAULTS” command.

Drive high, >2.4Vdc to indicate no fault conditions within power module are detected.

### Soft-Start Power Up

The default rise time of the ramp up is 30ms. When starting by applying input voltage the control circuit boot-up time adds an additional 10ms delay. The soft-start power up of the module can be reconfigured using the PMBus interface.

### Output Over Voltage Protection (OVP)

Both OVP limit and response can be configured via PMBus command (See PMBus Command 40h VOUT\_OV\_FAULT\_LIMIT for details). The default output OVP limit is set to 20% above nominal output voltage and responds by immediately shutdown of main output and occur, output is latch, to rectify the fault, need to restart enable or Vin.

### Over Current Protection (OCP, Current limit)

The module includes current limiting circuitry for protection at continuous over load. The default setting for the product is latch mode. The current limit can be configured by PMBus command 0x46, IOUT\_OC\_FAULT\_LIMIT, to be greater than the IOUT\_OC\_WARN\_LIMIT (PMBus Command 0x4A). The maximum value that the current limit could be set is 40A.

### Power Good

The module provides Power Good (PG) flag in the STATUS\_WORD register that indicates the output voltage is within a specified tolerance of its target level and no fault condition exists. The Power Good pin default logic is negative and it can be configured by MFR\_PGOOD\_POLARITY.

**CAUTION:** This converter is not internally fused. To avoid danger to persons or equipment and to retain safety certification, you must connect an external fast-blow input fuse as listed in the specifications. Ensure that the PC board pad area and etch size are adequate to provide enough current so that the fuse blows with an overload.

### Start Up Considerations

When power is first applied to the DC-DC converter, there is risk of startup difficulties if you do not have both low AC and DC impedance and adequate regulation of the input source. Ensure that your source supply does not allow the instantaneous input voltage to go below the minimum voltage. Use a moderate size capacitor close to the input terminals. You might need two or more parallel capacitors. A larger electrolytic or ceramic cap supplies the surge current and a smaller parallel low-ESR ceramic cap gives low AC impedance.

The input current is carried both by the wiring and the ground plane return. Ensure the ground plane uses adequate thickness copper. Run additional bus wire if necessary.

### Input Fusing

Certain applications or safety agencies might require fuses at the inputs of power conversion components. Fuses should also be used when there is the possibility of sustained input voltage reversal, which is not current-limited. For safety purposes, Murata Power Solutions recommends a fast blow fuse installed in the ungrounded input supply line.

### Input Under-Voltage Shutdown and Start-Up Threshold

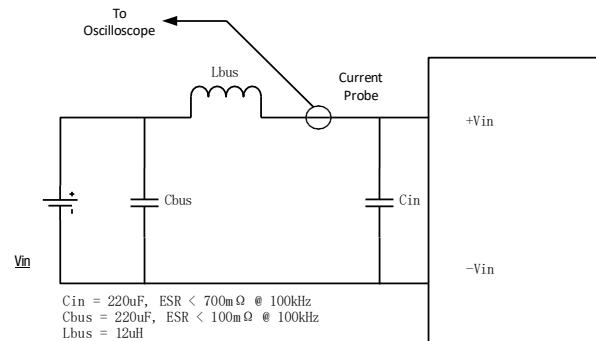
Converters will not begin to fully regulate until the rising input voltage exceeds and remains at the Start-Up Threshold Voltage (see Specifications). Once operating, converters will not turn off until the input voltage drops below the Under-Voltage Shutdown Limit. Subsequent restart does not occur until the input voltage rises again above the Start-Up Threshold. This built-in hysteresis prevents any unstable on/off operation at a single input voltage. The over/under-voltage fault level and fault response and hysteresis can be configured via the PMBus interface. See commands 0x55 (VIN\_OV\_FAULT\_LIMIT) and 0x59 (VIN\_UV\_FAULT\_LIMIT) in the PMBus command list for additional details.

### Start-Up Time

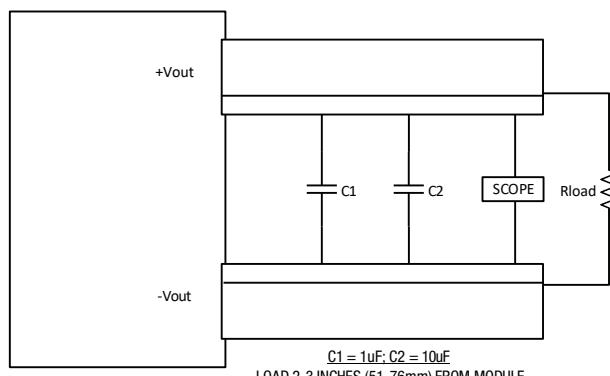
Turn-on time (see Specifications) is the time interval between the point when the rising input voltage crosses the start-up threshold and the output voltage rises to within 10% of regulation point. These converters include a soft start circuit to control Vout ramp time, thereby limiting the input inrush current.

The On/Off Remote Control interval from On command to Vout (final  $\pm 10\%$ ) assumes that the converter already has its input voltage stabilized above the Start-Up Threshold before the On command. The interval is measured from the On command until the output enters and remains within its specified accuracy band. See PMBus command 0x60 (TON\_DELAY) for additional configuration details.

### Recommended Input Filtering


The user must ensure that the input source has low AC impedance to provide dynamic stability and that the input supply has little or no inductive content, including long distributed wiring to a remote power supply. The converter operates with no additional external capacitance if these conditions are met. For best performance, Murata Power Solutions recommends installing a low-ESR capacitor immediately adjacent to the converter's input terminals. The capacitor should be a ceramic type such as the Murata GRM32 series or a polymer type. More input bulk capacitance can be added in parallel (either electrolytic or tantalum) if needed.

### Recommended Output Filtering


This series needs minimum polymer capacitor to keep loop stabilization. However, the user can install external output capacitance to further improve ripple or for improved dynamic response; however, low-ESR ceramic (Murata GRM32 series) or polymer capacitors must be used and mounted close to the converter using only as much capacitance as required to achieve your ripple and noise objectives. Excessive capacitance can make step load recovery sluggish or introduce instability. Never exceed the maximum rated output capacitance listed in the specifications.

### Input Ripple Current and Output Noise

All models in this converter series are tested and specified for input reflected ripple current and output noise using designated external input/output components, circuits and layout as shown in the following figures. The Cbus and Lbus components simulate a typical DC voltage bus.



### Measuring Input Ripple Current



### Measuring Output Ripple and Noise (PARD)

### Minimum Output Loading Requirements

All models regulate within specification and are stable under no load to full load conditions.

### Thermal Shutdown (OTP)

This series includes thermal sense and shutdown circuitry that protects itself from overtemperature conditions. Upon detection of overtemperature condition defined by PMBus command 0x4F "OT\_FAULT\_LIMIT", the module enters OTP and shuts down. Once the temperature falls below restart threshold, as defined in PMBus command list, (OT\_FAULT\_LIMIT, 0x4F and MFR\_OT\_FAULT\_HYS, 0xEA), the module automatically restarts. OTP fault limit and recovery hysteresis are configurable via [PMBus](#).

**CAUTION:** If you operate too close to the thermal limits, the converter can shut down suddenly without warning. Ensure to thoroughly test the application to avoid unplanned thermal shutdown.

## Temperature Derating Curves

The graphs in this data sheet illustrate typical operation under a variety of conditions. The Derating curves show the maximum continuous ambient air temperature and decreasing maximum output current which is acceptable under increasing forced airflow measured in Linear Feet per Minute ("LFM"). Note that these are AVERAGE measurements. The converter will accept brief increases in current or reduced airflow if the average is not under increasing forced airflow measured in Linear Feet per Minute ("LFM"). Note that these are AVERAGE measurements. The converter will accept brief increases in current or reduced airflow if the average is not exceeded.

Note that the temperatures are of the ambient airflow, not the converter itself which is obviously running at higher temperature than the outside air. Also note that "natural convection" is defined as very low flow rates which are not using fan-forced airflow. Depending on the application, "natural convection" is usually about 30-65 LFM but is not equal to still air (0 LFM).

Murata Power Solutions makes Characterization measurements in a closed cycle wind tunnel with calibrated airflow. We use both thermocouples and an infrared camera system to observe thermal performance. As a practical matter, it is quite difficult to insert an anemometer to precisely measure airflow in most applications. Sometimes it is possible to estimate the effective airflow if you thoroughly understand the enclosure geometry, entry/exit orifice areas and the fan flow rate specifications.

**CAUTION:** If you exceed these Derating guidelines, the converter might have an unplanned Over Temperature shut down. Also, these graphs are all collected near Sea Level altitude. Be sure to reduce the derating for higher altitude.

## Output Short Circuit Condition

The short circuit condition is an extension of the “Current Limiting” condition. When the monitored peak current signal reaches a certain range, the PWM controller’s outputs are shut off thereby turning the converter “off.” This is followed by an extended time out period. This period can vary depending on other conditions such as the input voltage level. Following this time out period, the PWM controller will attempt to re-start the converter by initiating a “normal start cycle” which includes soft start. If the “fault condition” persists, another “hiccup” cycle is initiated. This “cycle” can and will continue indefinitely until such time as the “fault condition” is removed, at which time the converter will resume “normal operation.” Operating in the “hiccup” mode during a fault condition is advantageous in that average input and output power levels are held low preventing excessive internal increases in temperature.

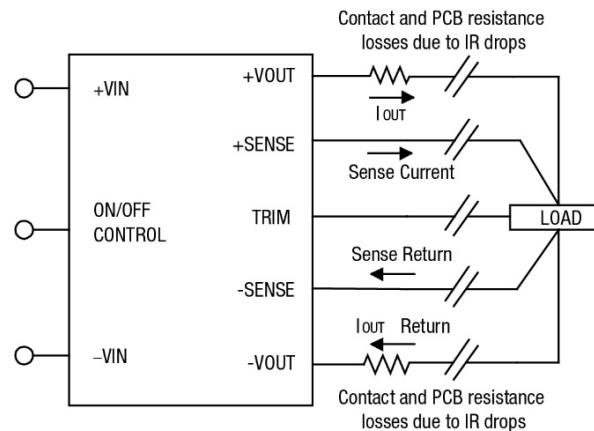
## Remote On/Off Control

The MPQ series modules are equipped with an [On/Off control pin](#) (internal pull up, TTL open-collector and/or CMOS open-drain compatible) and is configurable via PMBus interface. Output is enabled when the On/Off is

grounded or brought to within a low voltage (see specifications) with respect to  $-V_{in}$ . The device is off (disabled) when the On/Off is left open or is pulled high to +13.5Vdc with respect to  $-V_{in}$ . The On/Off function allows the module to be turned on/off by an external device switch.

The restart delay for this module to turn On/Off by the On/Off control pin is 200ms.

On/Off can be configured by PMBus command [0xDD](#) (MFR\_PRIMARY\_ON\_OFF\_CONFIG); default configuration does not ignore the control pin and therefore requires the On/Off control pin to be asserted to start the unit.


On/Off status is dependent on On/Off control and OPERATION (PMBus command) status; both must be ON to turn MPQ on; if one of them is OFF, unit will be turned off.

## Output Capacitive Load

These converters require external minimum capacitance added to achieve rated specifications. Users should consider adding capacitance to reduce switching noise and/or to handle spike current load steps. Install only enough capacitance to achieve noise objectives. Excess external capacitance might cause degraded transient response and possible oscillation or instability.

## Remote Sense Input

Use the Sense inputs with caution. Sense is normally connected at the load. Sense inputs compensate for output voltage inaccuracy delivered at the load. This is done by correcting IR voltage drops along the output wiring and the current carrying capacity of PC board etches. This output drop (the difference between Sense and Vout when measured at the converter) should not exceed 0.5V. Consider using heavier wire if this drop is excessive. Sense inputs also improve the stability of the converter and load system by optimizing the control loop phase margin.



## Remote Sense Circuit Configuration

**Note:** The Sense input and power Vout lines are internally connected through low value resistors to their respective polarities so that the converter can operate without external connection to the Sense. Nevertheless, if the Sense function is not used for remote regulation, the user should connect +Sense to +Vout and -Sense to -Vout at the converter pins.

The remote Sense lines carry minimal current. They are also capacitively coupled to the output lines and therefore are in the feedback control loop to regulate and stabilize the output. As such, they are not low impedance inputs and must be treated with care in PC board layouts. Sense lines on the PCB should run adjacent to DC signals, preferably Ground. In cables and discrete wiring, use twisted pair, shielded tubing or similar techniques.

Any long, distributed wiring or significant inductance introduced into the Sense control loop can adversely affect overall system stability. If in doubt, test your applications by observing the converter's output transient response during step loads. There should not be any appreciable ringing or oscillation. You can also adjust the output trim slightly to compensate for voltage loss in any external filter elements. Do not exceed maximum power ratings.

Observe the sense inputs tolerance to avoid improper operation:

$$[V_{OUT}(+) - V_{OUT}(-)] - [Sense(+) - Sense(-)] \leq 10\% \text{ of } V_{OUT}$$

Output overvoltage protection is monitored at the output voltage pin, not the Sense pin. Therefore, excessive voltage differences between Vout and Sense together with trim adjustment of the output can cause the overvoltage protection circuit to activate and shut down the output.

Power derating of the converter is based on the combination of maximum output current and the highest output voltage. Therefore, the designer must ensure:

$$(V_{OUT} \text{ at pins}) \times (I_{OUT}) \leq (\text{Max. rated output power}) \text{ Soldering}$$

### Guidelines

Murata Power Solutions recommends the specifications below when installing these converters. These specifications vary depending on the solder type.

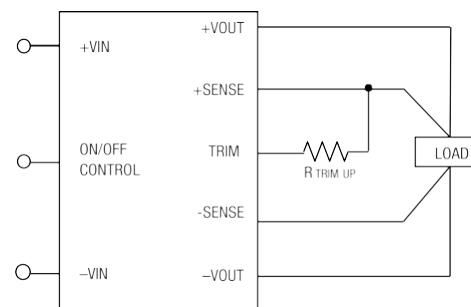
Exceeding these specifications can cause damage to the product. Be cautious when there is high atmospheric humidity. It is strongly recommended to use a mild pre-bake (100° C for 30 minutes). Your production environment might differ; therefore, thoroughly review these guidelines with process engineers.

| Wave Solder Operation for Through-Hole Mounted Products (THMT) |           |
|----------------------------------------------------------------|-----------|
| <b>For Sn/Ag/Cu based solders:</b>                             |           |
| Maximum Preheat Temperature                                    | 115       |
| Maximum Pot Temperature                                        | 270       |
| Maximum Solder Dwell Time                                      | 7 seconds |
| <b>For Sn/Pb based solders:</b>                                |           |
| Maximum Preheat Temperature                                    | 105       |
| Maximum Pot Temperature                                        | 250       |
| Maximum Solder Dwell Time                                      | 6 seconds |

### Trimming the Output Voltage

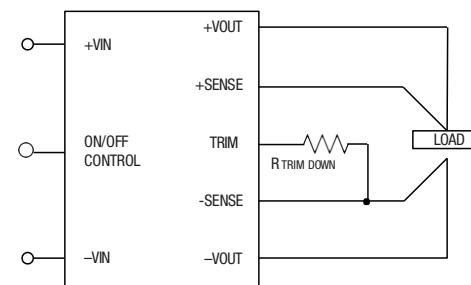
The [Trim input pin](#) is used to adjust the output voltage over the rated trim range (please refer to the Specifications). As illustrated in the trim equations and circuit diagrams below, trim adjustments use a single fixed resistor connected between the Trim input and either Vout Sense pin. Trimming resistors should have a low temperature coefficient ( $\pm 100 \text{ ppm/deg.C}$  or less) and be mounted close to the converter keeping leads short. If the trim function is not used, leave the trim unconnected, the converter will default to its specified output voltage accuracy.

#### CAUTION:


1. Avoid activating shutdown protection (OVP, OCP, OTP) by ensuring the output voltage or output power is not exceeded when setting the output voltage trim.
2. Keep the trim external connections as short as possible to avoid excessive noise that might otherwise cause instability or oscillation using shielding if needed.

### Trim Equations

#### Trim Up: Connect Trim (Pin #J6) to +Vout Sense (Pin #J7)


$$R_{TRIM \text{ UP}}(\text{k}\Omega) = V_{ONOM} * (1 + \Delta) / (1.225 * \Delta) - 1 / \Delta - 1.2$$

$$\Delta = |(V_{ONOM} - V_{O}) / V_{ONOM}|$$



#### Trim Down: Connect Trim (Pin #J6) to -Vout Sense (Pin #J5)

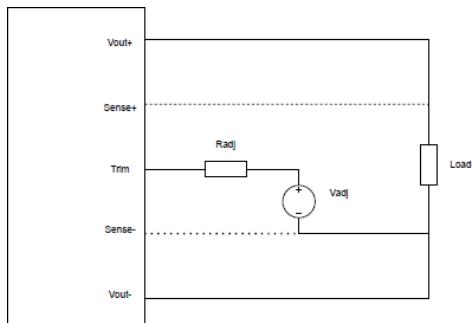
$$R_{TRIM \text{ DOWN}}(\text{k}\Omega) = 1 / ((V_{ONOM} - V_{O}) / V_{ONOM}) - 1.2$$



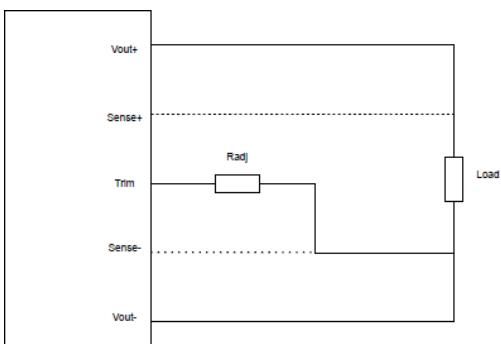
**NOTE:** Adjustment accuracy is subject to resistor tolerances and factory-adjusted output accuracy. Mount trim resistor close to converter. Use short leads.

### Output Voltage Adjust

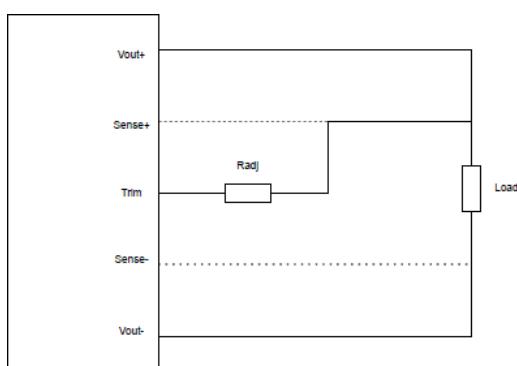
The output voltage can be adjusted using a voltage applied to the **Vadj** pin through a resistor **Radj**. This voltage is calculated by using the following equation.


$$V_{adj} = \left( 1.225 + (R_{adj} + 2) \times 1.225 \times \frac{V_{desired} - 50}{50} \right) V$$

where,


**Vdesired**: desired (trimmed) output voltage

(V) **Vadj**: the external trim voltage (V)

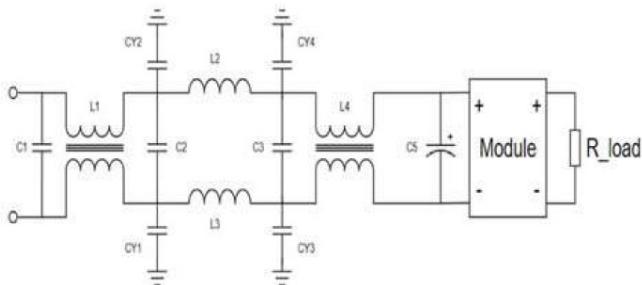

**Radj**: the external trim resistor (kΩ)



Active Adjust



Passive Adjust Decrease



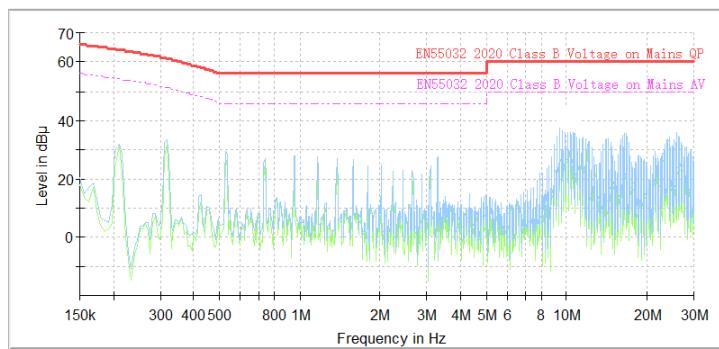

Passive Adjust Increase

## Emissions Performance

Murata Power Solutions measures its products for conducted emissions against the EN 55022 and CISPR 22 standards. Passive resistance loads are employed and the output is set to the maximum voltage. If you set up your own emissions testing, make sure the output load is rated at continuous power while doing the tests.

The recommended external input and output capacitors (if required) are included. Please refer to the fundamental switching frequency. This information is listed in the Product Specifications. An external discrete filter is installed and the circuit diagram is shown below.




## Conducted Emissions Parts List

| Reference | Description   |
|-----------|---------------|
| C1        | 0.47uF        |
| C2        | 0.47uF        |
| C3        | 0.47uF        |
| C5        | 220uF (e-lyt) |
| CY1, CY2  | 4*4.7nF       |
| CY3, CY4  | 4*4.7nF       |
| L1, L4    | 5mH           |
| L2, L3    | 11uH          |

## Conducted Emissions Test Equipment Used

Hewlett Packard HP8594L Spectrum Analyzer – S/N 3827A00153  
2Line V-networks LS1-15V 50Ω/50Uh Line Impedance Stabilization Network

## Conducted Emissions Test Results – Negative Line



## Layout Recommendations

### Conducted Emissions Performance, Negative Line CISPR 22, Class B, Full Load

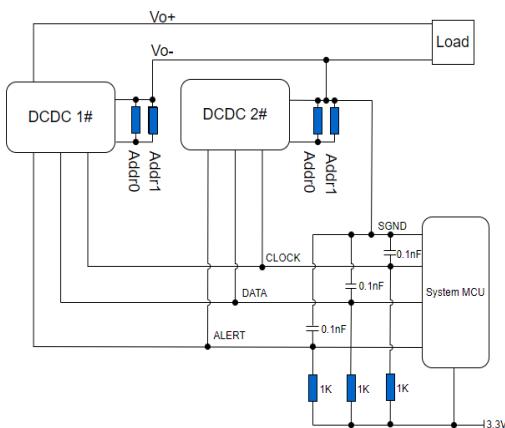
Most applications can use the filtering which is already installed inside the converter or with the addition of the recommended external capacitors. For greater emissions suppression, consider additional filter components and shielding. Emissions performance will depend on the user's PC board layout, the chassis shielding environment and choice of external components. Since many factors affect both the amplitude and spectra of emissions, we recommend using an engineer who is experienced at emissions suppression.

### PMBus™ Digital Communications Protocol

This module offers a PMBus digital interface that enables the user to configure many characteristics of the device operation as well as to monitor the input and output voltages, output current and device temperature. The module can be used with any standard two-wire I<sup>2</sup>C or SMBus host device.

A system controller (host device) can monitor a wide variety of parameters through the PMBus interface and detect fault conditions by monitoring the SMBALERT# pin, which will be asserted when any number of pre-configured fault or warning conditions occurs. The system controller can also continuously monitor any number of power conversion parameters including, but not limited to the following:

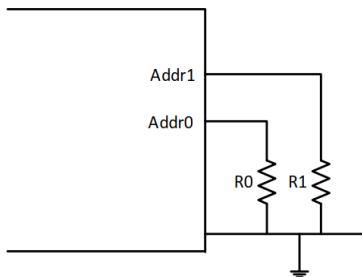
- Input voltage
- Output voltage
- Output current
- Module temperature


### Software Tools for Design and Production

For these modules, Murata-Power Solutions provides software for configuring and monitoring via the PMBus interface. For more information, contact your local Murata-Power Solutions representative.

### Standard PMBus™ characteristics

- Complies with "Power Systems Management Protocol Specification Part 1 General Requirements Transport and Electrical requirements revision 1.2" & "Power Systems Management Protocol Specification Part 2 Command Language revision 1.2".
- Linear data format is used for all supported parameters unless noted.
- Up to 400kHz I<sup>2</sup>C communications bus speed is supported.
- SMBALERT## is supported.
- PEC is supported.
- Clock stretching is supported.


### PMBus™ Monitoring Accuracy



| Parameter                        | Conditions                         | Min. | Typ. | Max. | Units |
|----------------------------------|------------------------------------|------|------|------|-------|
| <b>PMBus</b>                     |                                    |      |      |      |       |
| PMBus General                    |                                    |      |      |      |       |
| Bus Speed                        |                                    |      |      | 400  | kHz   |
| Logic High Input                 |                                    | 2.1  |      | 3.3  | Vdc   |
| Logic Low Input                  |                                    | 0    |      | 0.8  | Vdc   |
| Logic High Output                |                                    | 2.3  |      |      | Vdc   |
| Logic Low Output                 |                                    |      |      | 0.4  | Vdc   |
| <b>PMBus Monitoring Accuracy</b> |                                    |      |      |      |       |
| VIN_READ                         |                                    | -1.5 |      | 1.5  | V     |
| VOUT_READ                        |                                    | -2   |      | 2    | %     |
| IOUT_READ                        | Vin=48V, Io=50% ~ 100% of Io, max. | -5   |      | 5    | %     |
|                                  | Vin=48V, Io=5% ~ 50% of Io, max.   | -3   |      | 3    | A     |
| TEMP_READ                        |                                    | -10  |      | 10   | °C    |

## PMBus Addressing

This power module series offers three address configurations to support a wide range of applications. The address is set by externally connecting two resistors from each of the two address pins "Addr1" and "Addr0" to signal ground "Signed" and forms two octal (0 to 7) digits, each pin setting one digit. The resistor value for each digit is defined according to the desired configuration.



**Addressing configuration 0 (default):** If the calculated PMBus address is 0~12D, 40D, 44D, 45D or 55D, SA0 or SA1 lefts open, default PMBus address 127D is assigned instead.

$$\text{Address} = 8 \times (\text{SA1 index}) + (\text{SA0 index})$$

| Digit                                                     | Resistor Value RSA0/RSA1 [kΩ] |
|-----------------------------------------------------------|-------------------------------|
| 0                                                         | 10                            |
| 1                                                         | 15.4                          |
| 2                                                         | 23.7                          |
| 3                                                         | 36.5                          |
| 4                                                         | 54.9                          |
| 5                                                         | 84.5                          |
| 6                                                         | 130                           |
| 7                                                         | 200                           |
| Calculation: PMBus_Address = 8x (SA1 index) + (SA0 index) |                               |

**Addressing configuration 0 (default):** If the calculated PMBus address is 0D, 11D, 12D, SA0 or SA1 lefts open, default PMBus address 119D is assigned instead.

$$\text{Address} = 8 \times (\text{SA0 index}) + (\text{SA1 index})$$

| Digit                                                     | Resistor Value RSA0/RSA1 [kΩ] |
|-----------------------------------------------------------|-------------------------------|
| 0                                                         | 10                            |
| 1                                                         | 22                            |
| 2                                                         | 33                            |
| 3                                                         | 47                            |
| 4                                                         | 68                            |
| 5                                                         | 100                           |
| 6                                                         | 150                           |
| 7                                                         | 220                           |
| Calculation: PMBus_Address = 8x (SA0 value) + (SA1 value) |                               |

**Addressing configuration 0 (default):** If the calculated PMBus address is 0~12D, 40D, 44D, 45D or 55D, SA0 or SA1 lefts open, default PMBus address 88D is assigned instead.

$$\text{Address} = 16 \times \text{Addr1} + \text{Addr0}$$

| Digit                                           | Resistor Value RSA0/RSA1 [kΩ] |
|-------------------------------------------------|-------------------------------|
| 0                                               | 24.9                          |
| 1                                               | 49.9                          |
| 2                                               | 75                            |
| 3                                               | 100                           |
| 4                                               | 124                           |
| 5                                               | 150                           |
| 6                                               | 174                           |
| 7                                               | 200                           |
| Calculation: PMBus_Address = 16 x Addr1 + Addr0 |                               |

**NOTE:** Follow these steps to change the power module address configuration:

1. Select the desired address configuration via PMBus command 0xF5.
2. Save configuration to non-volatile user store memory by writing command 0x15 "STORE\_USER\_ALL".
3. Recycle input power.

**Supported PMBus™ Command List**

| CMD | Command Name           | SMBus Transaction Type: Writing Data | SMBus Transaction Type: Reading Data    | Number Of Data Bytes | Default Value |      | Lower limit | Upper limit | Unit | Notes                                                                                                                                                                                                                                                |
|-----|------------------------|--------------------------------------|-----------------------------------------|----------------------|---------------|------|-------------|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01h | OPERATION              | Write Byte                           | Read Byte                               | 1                    | 0x80          |      |             |             |      | Only support 0x80 and 0x00                                                                                                                                                                                                                           |
| 02h | ON_OFF_CONFIG          | Write Byte                           | Read Byte                               | 1                    | 0x1D          |      |             |             |      | Bit7:5 Reserved<br>Bit4 0:Auto power up 1:Use control/Operation<br>Bit3:2 1:Control pin 2:Operation 3:Control pin & Operation<br>Bit1 0:Active low (Pull pin low to start the unit) 1:Active high (Pull pin high to start the unit)<br>Bit0 Reserved |
| 03h | CLEAR_FAULTS           | Send byte                            | N/A                                     | 0                    | N/A           |      |             |             |      |                                                                                                                                                                                                                                                      |
| 10h | WRITE_PROTECT          | Write Byte                           | Read Byte                               | 1                    | 0x00          |      |             |             |      |                                                                                                                                                                                                                                                      |
| 11h | STORE_DEFAULT_ALL      | N/A                                  | N/A                                     | 0                    | N/A           |      |             |             |      |                                                                                                                                                                                                                                                      |
| 12h | RESTORE_DEFAULT_ALL    | Send byte                            | N/A                                     | 0                    | N/A           |      |             |             |      |                                                                                                                                                                                                                                                      |
| 15h | STORE_USER_ALL         | Send byte                            | N/A                                     | 0                    | N/A           |      |             |             |      |                                                                                                                                                                                                                                                      |
| 16h | RESTORE_USER_ALL       | Send byte                            | N/A                                     | 0                    | N/A           |      |             |             |      |                                                                                                                                                                                                                                                      |
| 19h | CAPABILITY             | N/A                                  | Read Byte                               | 1                    | 0xB0          |      |             |             |      |                                                                                                                                                                                                                                                      |
| 1Ah | QUERY                  | N/A                                  | "Block Write - Block Read Process Call" | 1                    |               |      |             |             |      |                                                                                                                                                                                                                                                      |
| 1Bh | SMBALERT_MASK          | Write Word                           | "Block Write - Block Read Process Call" | 2                    |               |      |             |             |      |                                                                                                                                                                                                                                                      |
| 20h | VOUT_MODE              | N/A                                  | Read Byte                               | 1                    | 0x1A          |      |             |             |      |                                                                                                                                                                                                                                                      |
| 21h | VOUT_COMMAND           | Write Word                           | Read Word                               | 2                    | 0x0C80        | 50   | 25          | 55          | V    |                                                                                                                                                                                                                                                      |
| 22h | VOUT_TRIM              | Write Word                           | Read Word                               | 2                    | 0             |      | -25         | 5           | V    | Effective after turn off then to turn back on                                                                                                                                                                                                        |
| 35h | VIN_ON                 | Write Word                           | Read Word                               | 2                    | 34            |      |             |             | V    |                                                                                                                                                                                                                                                      |
| 36h | VIN_OFF                | Write Word                           | Read Word                               | 2                    | 32            |      |             |             | V    |                                                                                                                                                                                                                                                      |
| 40h | VOUT_OV_FAULT_LIMIT    | Write Word                           | Read Word                               | 2                    | 0x0E80        | 58   | 50          | 60          | V    |                                                                                                                                                                                                                                                      |
| 41h | VOUT_OV_FAULT_RESPONSE | Write Byte                           | Read Byte                               | 1                    | 0xF8          |      |             |             |      | 7:6: All support<br>5:3: Only support latch or continuous hiccup<br>2:0: Set turn off delay when 7:6=01B, unit is 130ms                                                                                                                              |
| 42h | VOUT_OV_WARN_LIMIT     | Write Word                           | Read Word                               | 2                    | 0xODE0        | 55.5 | 50          | 60          | V    |                                                                                                                                                                                                                                                      |
| 43h | VOUT_UV_FAULT_LIMIT    | Write Word                           | Read Word                               | 2                    | 0x05E0        | 23.5 | 21          | 25          | V    |                                                                                                                                                                                                                                                      |
| 44h | VOUT_UV_FAULT_RESPONSE | Write Byte                           | Read Byte                               | 1                    | 0xF8          |      |             |             |      |                                                                                                                                                                                                                                                      |
| 45h | VOUT_UV_WARN_LIMIT     | Write Word                           | Read Word                               | 2                    | 0x0620        | 24.5 | 21          | 25          | V    |                                                                                                                                                                                                                                                      |
| 46h | IOUT_OC_FAULT_LIMIT    | Write Word                           | Read Word                               | 2                    | 0xE898        | 19   | 16          | 20          | A    |                                                                                                                                                                                                                                                      |
| 47h | IOUT_OC_FAULT_RESPONSE | Write Byte                           | Read Byte                               | 1                    | 0xF8          |      |             |             |      | 7:6: 00B is continues operation without interruption, 01B/10B is not supported, 11B is supported.<br>5:3: Only support latch or continuous hiccup<br>2:0: Not supported                                                                              |
| 4Ah | IOUT_OC_WARN_LIMIT     | Write Word                           | Read Word                               | 2                    | 0xE878        | 15   | 14          | 17          | A    |                                                                                                                                                                                                                                                      |
| 4Fh | OT_FAULT_LIMIT         | Write Word                           | Read Word                               | 2                    | 0xF1B8        | 110  | 30          | 130         | °C   | Default value of with "B" suffix: 120C                                                                                                                                                                                                               |
| 50h | OT_FAULT_RESPONSE      | Write Byte                           | Read Byte                               | 1                    | 0xF8          |      |             |             |      | 7:6: 00B is continues operation without interruption, 01B is not supported (same behavior as 00B), 10B/11B are supported.<br>5:3: Only support latch or continuous hiccup<br>2:0: Not supported                                                      |
| 51h | OT_WARN_LIMIT          | Write Word                           | Read Word                               | 2                    | 0xF1A4        | 105  | 30          | 130         | °C   |                                                                                                                                                                                                                                                      |

| CMD | Command Name           | SMBus Transaction Type:<br>Writing Data | SMBus Transaction Type:<br>Reading Data | Number Of Data Bytes | Default Value            |  | Lower limit | Upper limit | Unit | Notes |
|-----|------------------------|-----------------------------------------|-----------------------------------------|----------------------|--------------------------|--|-------------|-------------|------|-------|
| 55h | VIN_OV_FAULT_LIMIT     | Write Word                              | Read Word                               | 2                    | 0xEA70                   |  | 78          | 75          | 80   | V     |
| 56h | VIN_OV_FAULT_RESPONSE  | Write Byte                              | Read Byte                               | 1                    | 0xF8                     |  |             |             |      |       |
| 57h | VIN_OV_WARN_LIMIT      | Write Word                              | Read Word                               | 2                    | 0xEA60                   |  | 76          | 75          | 80   | V     |
| 58h | VIN_UV_WARN_LIMIT      | Write Word                              | Read Word                               | 2                    | 0xE910                   |  | 34          | 32          | 36   | V     |
| 59h | VIN_UV_FAULT_LIMIT     | Write Word                              | Read Word                               | 2                    | 0xE900                   |  | 33          | 31          | 35   | V     |
| 5Ah | VIN_UV_FAULT_RESPONSE  | Write Byte                              | Read Byte                               | 1                    | 0xF8                     |  |             |             |      |       |
| 5Eh | POWER_GOOD_ON          | Write Word                              | Read Word                               | 2                    | 0x0620                   |  | 24.5        | 1           | 25   | V     |
| 5Fh | POWER_GOOD_OFF         | Write Word                              | Read Word                               | 2                    | 0x05E0                   |  | 23.5        | 1           | 25   | V     |
| 61h | TON_RISE               | Write Word                              | Read Word                               | 2                    | 0x005E                   |  | 94          | 60          | 100  | ms    |
| 68h | POUT_OP_FAULT_LIMIT    | Write Word                              | Read Word                               | 2                    | 0x03B6                   |  | 950         | 700         | 1000 | W     |
| 69h | POUT_OP_FAULT_RESPONSE | Write Byte                              | Read Byte                               | 2                    | 0xF8                     |  |             |             |      |       |
| 6Ah | POUT_OP_WARN_LIMIT     | Write Word                              | Read Word                               | 2                    | 0x02EE                   |  | 750         | 700         | 900  | W     |
| 78h | STATUS_BYTE            | Write Byte                              | Read Byte                               | 1                    | N/A                      |  |             |             |      |       |
| 79h | STATUS_WORD            | Write Word                              | Read Word                               | 2                    | N/A                      |  |             |             |      |       |
| 7Ah | STATUS_VOUT            | Write Byte                              | Read Byte                               | 1                    | N/A                      |  |             |             |      |       |
| 7Bh | STATUS_IOUT            | Write Byte                              | Read Byte                               | 1                    | N/A                      |  |             |             |      |       |
| 7Ch | STATUS_INPUT           | Write Byte                              | Read Byte                               | 1                    | N/A                      |  |             |             |      |       |
| 7Dh | STATUS_TEMPERATURE     | Write Byte                              | Read Byte                               | 1                    | N/A                      |  |             |             |      |       |
| 7Eh | STATUS_CML             | Write Byte                              | Read Byte                               | 1                    | N/A                      |  |             |             |      |       |
| 88h | READ_VIN               | N/A                                     | Read Word                               | 2                    | N/A                      |  |             |             |      | V     |
| 8Bh | READ_VOUT              | N/A                                     | Read Word                               | 2                    | N/A                      |  |             |             |      | V     |
| 8Ch | READ_IOUT              | N/A                                     | Read Word                               | 2                    | N/A                      |  |             |             |      | A     |
| 8Dh | READ_TEMPERATURE_1     | N/A                                     | Read Word                               | 2                    | N/A                      |  |             |             |      | °C    |
| 94h | READ_DUTY_CYCLE        | N/A                                     | Read Word                               | 2                    | N/A                      |  |             |             |      | %     |
| 95h | READ_FREQUENCY         | N/A                                     | Read Word                               | 2                    | N/A                      |  |             |             |      | kHZ   |
| 96h | READ_POUT              | N/A                                     | Read Word                               | 2                    | N/A                      |  |             |             |      | W     |
| 98h | PMBUS_REVISION         | N/A                                     | Read Byte                               | 1                    | 0x22                     |  |             |             |      |       |
| 99h | MFR_ID                 | N/A                                     | Block Read                              | 22                   | "Murata Power Solutions" |  |             |             |      |       |
| 9Ah | MFR_MODEL              | Block Write*                            | Block Read                              | <=20                 | N/A                      |  |             |             |      |       |
| 9Bh | MFR_REVISION           | Block Write*                            | Block Read                              | <=6                  | N/A                      |  |             |             |      |       |
| 9Ch | MFR_LOCATION           | Block Write*                            | Block Read                              | <=10                 | N/A                      |  |             |             |      |       |
| 9Dh | MFR_DATE               | Block Write*                            | Block Read                              | <=10                 | N/A                      |  |             |             |      |       |
| 9Eh | MFR_SERIAL             | Block Write*                            | Block Read                              | <=20                 | N/A                      |  |             |             |      |       |
| A0h | MFR_VIN_MIN            | N/A                                     | Read Word                               | 2                    | 0xE920                   |  | 36          |             |      | V     |
| A1h | MFR_VIN_MAX            | N/A                                     | Read Word                               | 2                    | 0xEA58                   |  | 75          |             |      | V     |
| A2h | MFR_IIN_MAX            | N/A                                     | Read Word                               | 2                    | 0xDA90                   |  | 20.5        |             |      | A     |
| A3h | MFR_PIN_MAX            | N/A                                     | Read Word                               | 2                    | 0x02D5                   |  | 725         |             |      | W     |
| A4h | MFR_VOUT_MIN           | N/A                                     | Read Word                               | 2                    | 0x0640                   |  | 25          |             |      | V     |

| CMD | Command Name                   | SMBus Transaction Type:<br>Writing Data | SMBus Transaction Type:<br>Reading Data | Number Of Data Bytes | Default Value   |     | Lower limit | Upper limit | Unit | Notes                                                                                                                     |
|-----|--------------------------------|-----------------------------------------|-----------------------------------------|----------------------|-----------------|-----|-------------|-------------|------|---------------------------------------------------------------------------------------------------------------------------|
| A5h | MFR_VOUT_MAX                   | N/A                                     | Read Word                               | 2                    | 0x0DC0          | 55  |             |             | V    |                                                                                                                           |
| A6h | MFR_IOUT_MAX                   | N/A                                     | Read Word                               | 2                    | 0xE870          | 14  |             |             | A    |                                                                                                                           |
| A7h | MFR_POUT_MAX                   | N/A                                     | Read Word                               | 2                    | 0x02BC          | 700 |             |             | W    |                                                                                                                           |
| A8h | MFR_TAMBIENT_MAX               | N/A                                     | Read Word                               | 2                    | 0xF154          | 85  |             |             | °C   |                                                                                                                           |
| A9h | MFR_TAMBIENT_MIN               | N/A                                     | Read Word                               | 2                    | 0XF760          | -40 |             |             | °C   |                                                                                                                           |
| ADh | IC_DEVICE_ID                   | N/A                                     | Block Read                              |                      | "TMS320F280023" |     |             |             |      |                                                                                                                           |
| C0h | MFR_MAX_TEMP_1                 | N/A                                     | Write Word                              | 2                    | 0xF208          | 130 |             |             | °C   |                                                                                                                           |
| DAh | Erase EEPROM                   | Write Word                              | N/A                                     | 2                    | N/A             |     |             |             |      |                                                                                                                           |
| DBh | MFR_CURRENT_SHARE_CONFIG       | Write Byte*                             | Read Byte                               | 1                    | 0x00/0x01       |     |             |             |      | Default value of DROOP CURRENT SHARE<br>ENABLED mode: 0x01<br>Default value of DROOP CURRENT SHARE<br>DISABLED mode: 0x00 |
| DDh | MFR_ENABLE_POLARITY_CONFIG     | Write Byte*                             | Read Byte                               | 1                    | 0x00            |     |             |             |      | Default value of negative logic: 0x00<br>Default value of positive logic: 0x02                                            |
| DEh | MFR_PGOOD_POLARITY             | Write Byte                              | Read Byte                               | 1                    | 0x01            |     |             |             |      | Default value of negative logic: 0x00<br>Default value of positive logic: 0x01                                            |
| DFh | MFR_BLACKBOX_CONFIG_BYTE       | Write Byte*                             | Write Byte                              | 1                    | 0x03            |     |             |             |      | Bit0: Blackbox Enable<br>Bit1: Rewrite Enable                                                                             |
| E0h | MFR_BLACKBOX_EVENT             | N/A                                     | Block Read                              | 32                   |                 |     |             |             |      |                                                                                                                           |
| E1h | MFR_BLACKBOX_OFFSET            | Write Byte*                             | Write Byte                              | 1                    |                 |     |             |             |      |                                                                                                                           |
| E8h | MFR_VIN_OV_FAULT_HYS           | Write Word*                             | Read Word                               | 2                    | 0xE80C          | 1.5 | 0           | 3           | V    |                                                                                                                           |
| E9h | MFR_VIN_UV_FAULT_HYS           | Write Word*                             | Read Word                               | 2                    | 0xE810          | 2   | 0           | 3           | V    |                                                                                                                           |
| EAh | MFR_OT_FAULT_HYS               | Write Word*                             | Read Word                               | 2                    | 0xF028          | 10  | 5           | 50          | °C   |                                                                                                                           |
| F5h | MFR_PMBUS_ADDRESS_CONFIG       | Write Byte*                             | N/A                                     | 32                   | N/A             |     |             |             |      |                                                                                                                           |
| F6h | MFR_CALIBRATION_STATUS         | N/A                                     | Read Byte                               | 1                    | 0x07            |     |             |             |      |                                                                                                                           |
| F9h | MFR_VIN_SENSE_CALIBRATION      | Write byte*                             | N/A                                     | 1                    | N/A             |     |             |             |      |                                                                                                                           |
| FAh | MFR_IOUT_SENSE_CALIBRATION     | Write Word*                             | N/A                                     | 2                    | N/A             |     |             |             |      |                                                                                                                           |
| FBh | MFR_VOUT_SET_POINT_CALIBRATION | Write Word*                             | N/A                                     | 2                    | N/A             |     |             |             |      |                                                                                                                           |
| FCh | MFR_SUPERVISOR_PASSWORD        | Block Write*                            | N/A                                     | N/A                  | N/A             |     |             |             |      |                                                                                                                           |

**NOTES:**

\* Only available in supervisor mode (default state is user mode, send password to command 0xFC to change to supervisor mode).

1. Unit restores the entire contents of the non-volatile User Store memory when power up.

2. PEC is supported.

3. Max bus speed: 400kHz.

4. SMBALERT# is supported.

5. Linear data format used.

**MFR Commands**

**DAh Erase EEPROM**

| BITS  | VALUE | ERASE MODE                                                    | MEANING           |
|-------|-------|---------------------------------------------------------------|-------------------|
| 15:12 | 0001  | The erase object is all content.                              | Erase all Content |
|       | 0010  | The erase object is block.                                    | Erase block       |
|       | 0011  | The erase object is page.                                     | Erase page        |
| 11:8  | 0000  | Select block 0, or block 1 to be erased.                      | Erase block 0     |
|       | 0001  |                                                               | Erase block 1     |
| 7:1   | 0000  | Select the specific page from page 0 to page 15 to be erased. | Erase page 0      |
|       | 0001  |                                                               | Erase page 1      |
|       | 0010  |                                                               | Erase page 2      |
|       | ..... |                                                               | .....             |
|       | 1101  |                                                               | Erase page 13     |
|       | 1110  |                                                               | Erase page 14     |
|       | 1111  |                                                               | Erase page 15     |

|         |         |
|---------|---------|
| Block 0 | Block 1 |
| Page 0  | Page 0  |
| Page 1  | Page 1  |
| Page 2  | Page 2  |
| .....   | .....   |
| Page 13 | Page 13 |
| Page 14 | Page 14 |
| Page 15 | Page 15 |

EEPROM Data Structure

**DBh MFR\_CURRENT\_SHARE\_CONFIG**

| BITS | PURPOSE               | VALUE   | MEANING                          | CTRL/CS PIN | VOUT_DROOP       | TON_DELAY        | TOFF_DELAY       | TON_RISE         | TON_FALL         |
|------|-----------------------|---------|----------------------------------|-------------|------------------|------------------|------------------|------------------|------------------|
| 7:1  | 0                     | 0000000 | Reserved                         | --          | --               | --               | --               | --               | --               |
| 0    | Current share control | 0       | Current share disabled           | CTRL        | configurable     | configurable     | configurable     | configurable     | configurable     |
|      |                       | 1       | Droop current share mode enabled | CTRL        | locked to 0x000A | locked to 0x0001 | locked to 0x0000 | locked to 0x0000 | locked to 0x0000 |

**DDh MFR\_PRIMARY\_ON\_OFF\_CONFIG**

| BITS | PURPOSE                                           | VALUE | MEANING                                                               |
|------|---------------------------------------------------|-------|-----------------------------------------------------------------------|
| 7:3  |                                                   | 00000 | Reserved                                                              |
| 2    | Controls how the unit responds to the CONTROL pin | 0     | Unit ignores the primary ON/OFF pin                                   |
|      |                                                   | 1     | Unit requires the primary ON/OFF pin to be asserted to start the unit |
| 1    | Polarity of primary ON/OFF logic                  | 0     | Active low (Pull pin low to start the unit)                           |
|      |                                                   | 1     | Active high (Pull high or open to start the unit)                     |
| 0    |                                                   | 0     | Reserved                                                              |

**DEh MFR\_PGOOD\_POLARITY**

| BITS | PURPOSE                       | VALUE  | MEANING                                                     |
|------|-------------------------------|--------|-------------------------------------------------------------|
| 7:1  |                               | 000000 | Reserved                                                    |
| 0    | Power good polarity of pin 12 | 0      | Negative logic, output low if Vout rises to specific value  |
|      |                               | 1      | Positive logic, output high if Vout rises to specific value |

**E8h MFR\_VIN\_OV\_FAULT\_HYS**

Hysteresis of VIN\_OV\_FAULT recover, linear data format.

**E9h MFR\_VIN\_UV\_FAULT\_HYS**

Hysteresis of VIN\_UV\_FAULT recover, linear data format.

**EAh MFR\_OT\_FAULT\_HYS**

Hysteresis of OT\_FAULT recover, linear data format.

**F3h MFR\_FAULT\_STATUS**

Real-time fault status

| Bits | Meaning            |
|------|--------------------|
| 15   | VIN_OV_FAULT       |
| 14   | VIN_UV_FAULT       |
| 13   | RSVD               |
| 12   | RSVD               |
| 11   | RSVD               |
| 10   | VOUT_OV_FAULT      |
| 9    | VOUT_OV_FAST_FAULT |
| 8    | RSVD               |

| Bits | Meaning             |
|------|---------------------|
| 7    | IOUT_OC_FAULT       |
| 6    | IOUT_SHORT_FAULT    |
| 5    | OUTPUT_POWER_FAULT  |
| 4    | OT_FAULT            |
| 3    | PRI_ENABLE_OFF      |
| 2    | PMBUS_OPERATION_OFF |
| 1    | RSVD                |
| 0    | MINI_OFF_TIME       |

**F4h MFR\_FAULT\_COUNTER**

Bits  
15:0

How many faults occurred.

Max counter 65535 starts over from 0 if exceeds this number.

Duplicate failure is not counted. For example, continuous hiccup is counted as 1 time fault.

**F5h MFR\_EVENT\_LOG**

**F6h MFR\_CALIBRATION\_STATUS**

Refer to calibration procedure file.

**F9h MFR\_VIN\_SENSE\_CALIBRATION**

Refer to calibration procedure file.

| Step.x | Vin calibrate point (V) | Write Byte |
|--------|-------------------------|------------|
| Step 1 | 38                      | 0x01       |
| Step 2 | 50                      | 0x02       |
| Step 3 | 62                      | 0x03       |
| Step 4 | 74                      | 0x04       |

**FAh MFR\_IOUT\_SENSE\_CALIBRATION**

Refer to the calibration procedure file.

**FBh MFR\_VOUT\_SET\_POINT\_CALIBRATION**

Refer to the calibration procedure file.

**FCh MFR\_SUPERVISOR\_PASSWORD**

Set the unit to supervisor mode or ROM mode. See the password table.

**Status Register Bit Names**

GREEN = supported

| STATUS_VOUT           |
|-----------------------|
| 7 VOUT_OV_FAULT       |
| 6 VOUT_OV_WARNING     |
| 5 VOUT_UV_WARNING     |
| 4 VOUT_UV_FAULT       |
| 3 VOUT_MAX Warning    |
| 2 TON_MAX_FAULT       |
| 1 TOFF_MAX_WARNING    |
| 0 VOUT Tracking Error |

| STATUS_WORD    |
|----------------|
| 7 VOUT         |
| 6 IOUT/POUT    |
| 5 INPUT        |
| 4 MFR_SPECIFIC |
| 3 POWER_GOOD#  |
| 2 FANS         |
| 1 OTHER        |
| 0 UNKNOWN      |
| 7 BUSY         |

| STATUS_INPUT                     |
|----------------------------------|
| 7 VIN_OV_FAULT                   |
| 6 VIN_OV_WARNING                 |
| 5 VIN_UV_WARNING                 |
| 4 VIN_UV_FAULT                   |
| 3 Unit Off For Low Input Voltage |
| 2 IIN_OC_FAULT                   |
| 1 IIN_OC_WARNING                 |
| 0 PIN_OP_WARNING                 |

| STATUS_IOUT              |
|--------------------------|
| 7 IOUT_OC_FAULT          |
| 6 IOUT_OC_LV_FAULT       |
| 5 IOUT_OC_WARNING        |
| 4 IOUT_UC_FAULT          |
| 3                        |
| 2 In Power Limiting Mode |
| 1 POUT_OP_FAULT          |
| 0 POUT_OP_WARNING        |

| 6 OFF               |
|---------------------|
| 5 VOUT_OV_FAULT     |
| 4 IOUT_OC_FAULT     |
| 3 VIN_UV_FAULT      |
| 2 TEMPERATURE       |
| 1 CML               |
| 0 NONE OF THE ABOVE |

| STATUS_MFR_SPECIFIC  |
|----------------------|
| Manufacturer Defined |

| STATUS_TEMPERATURE |
|--------------------|
| 7 OT_FAULT         |
| 6 OT_WARNING       |
| 5 UT_WARNING       |
| 4 UT_FAULT         |
| 3 Reserved         |
| 2 Reserved         |
| 1 Reserved         |
| 0 Reserved         |

| STATUS_OTHER                  |
|-------------------------------|
| 7 Reserved                    |
| 6 Reserved                    |
| 5 Input A Fuse/Breaker Fault  |
| 4 Input B Fuse/Breaker Fault  |
| 3 Input A OR-ing Device Fault |
| 2 Input B OR-ing Device Fault |
| 1 Output OR-ing Device Fault  |
| 0 Reserved                    |

| STATUS_FANS_1_2        |
|------------------------|
| 7 Fan 1 Fault          |
| 6 Fan 2 Fault          |
| 5 Fan 1 Warning        |
| 4 Fan 2 Warning        |
| 3 Fan 1 Speed Override |
| 2 Fan 2 Speed Override |
| 1 Air Flow Fault       |
| 0 Air Flow Warning     |

| STATUS_CML                    |
|-------------------------------|
| 7 Invalid/Unsupported Command |
| 6 Invalid/Unsupported Data    |
| 5 Packet Error Check Failed   |
| 4 Memory Fault Detected       |
| 3 Processor Fault Detected    |
| 2 Reserved                    |
| 1 Other Communication Fault   |
| 0 Other Memory Or Logic Fault |

| STATUS_FANS_3_4        |
|------------------------|
| 7 Fan 3 Fault          |
| 6 Fan 4 Fault          |
| 5 Fan 3 Warning        |
| 4 Fan 4 Warning        |
| 3 Fan 3 Speed Override |
| 2 Fan 4 Speed Override |
| 1 Reserved             |
| 0 Reserved             |

**Command Language and Configuration Details:**

01-CFh Refer to PMBUS 1.2 SPEC

**DDh MFR\_PRIMARY\_ON\_OFF\_CONFIG**

| Bits | Purpose                                           | Value | Meaning                                                                |
|------|---------------------------------------------------|-------|------------------------------------------------------------------------|
| 7:3  |                                                   | 00000 | Reserved                                                               |
| 2    | Controls how the unit responds to the CONTROL pin | 0     | Unit ignores the primary ON/OFF pin                                    |
|      |                                                   | 1     | Unit requires the primary ON/OFF pin to be asserted to start the unit. |
| 1    | Polarity of primary ON/OFF logic                  | 0     | Active low (Pull pin low to start the unit)                            |
|      |                                                   | 1     | Active high (Pull high or open to start the unit)                      |
| 0    |                                                   | 0     | Reserved                                                               |

**DEh MFR\_PGOOD\_POLARITY**

| Bits | Purpose                       | Value   | Meaning                                                     |
|------|-------------------------------|---------|-------------------------------------------------------------|
| 7:1  |                               | 0000000 | Reserved                                                    |
| 0    | Power good polarity of pin 12 | 0       | Negative logic, output low if Vout rises to specific value  |
|      |                               | 1       | Positive logic, output high if Vout rises to specific value |

**E8h MFR\_VIN\_OV\_FAULT\_HYS**

Hysteresis of VIN\_OV\_FAULT recover, Linear data format

**E9h MFR\_VIN\_UV\_FAULT\_HYS**

Hysteresis of VIN\_UV\_FAULT recover, Linear data format

**EAh MFR\_OT\_FAULT\_HYS**

Hysteresis of OT\_FAULT recover, Linear data format

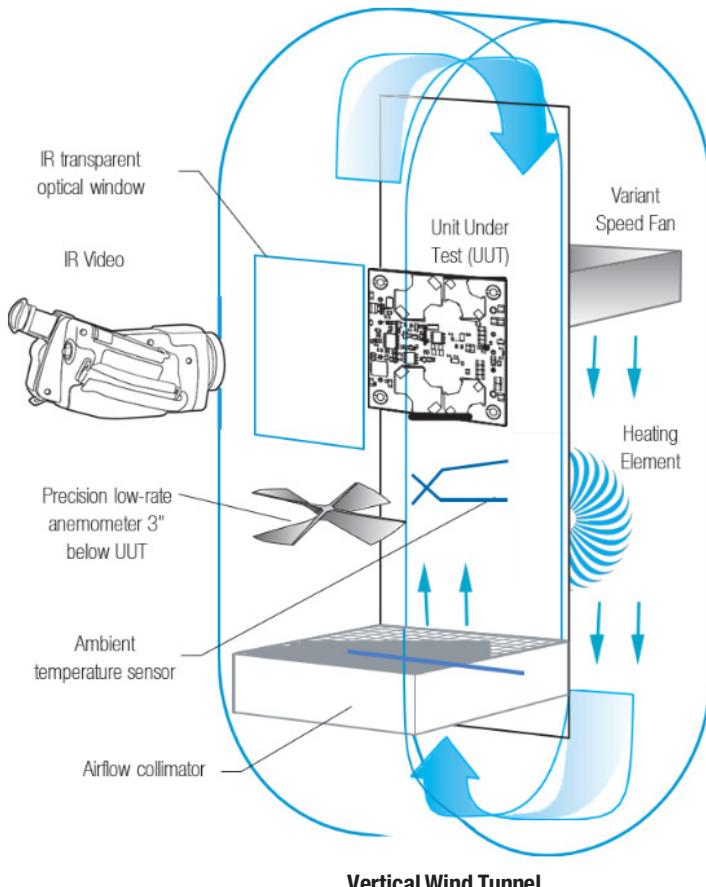
**F6h MFR\_CALIBRATION\_STATUS**

Refer to calibration procedure file

**F9h MFR\_VIN\_SENSE\_CALIBRATION**

Refer to calibration procedure file

**FAh MFR\_IOUT\_SENSE\_CALIBRATION**


Refer to calibration procedure file

**FBh MFR\_VOUT\_SET\_POINT\_CALIBRATION**

Refer to calibration procedure file

**FCh MFR\_SUPERVISOR\_PASSWORD**

Set unit to supervisor mode or ROM mode. See the password table.



#### Vertical Wind Tunnel

Murata Power Solutions employs a computer controlled custom-designed closed loop vertical wind tunnel, infrared video camera system, and test instrumentation for accurate airflow and heat dissipation analysis of power products. The system includes a precision low flow-rate anemometer, variable speed fan, power supply input and load controls, temperature gauges, and adjustable heating element.

The IR camera monitors the thermal performance of the Unit Under Test (UUT) under static steady-state conditions. A special optical port is used which is transparent to infrared wavelengths.

Both through-hole and surface mount converters are soldered down to a 10" x 10" host carrier board for realistic heat absorption and spreading. Both longitudinal and transverse airflow studies are possible by rotation of this carrier board since there are often significant differences in the heat dissipation in the two airflow directions. The combination of adjustable airflow, adjustable ambient heat, and adjustable Input/Output currents and voltages mean that a very wide range of measurement conditions can be studied.

The collimator reduces the amount of turbulence adjacent to the UUT by minimizing airflow turbulence. Such turbulence influences the effective heat transfer characteristics and gives false readings. Excess turbulence removes more heat from some surfaces and less heat from others, possibly causing uneven overheating.

Both sides of the UUT are studied since there are different thermal gradients on each side. The adjustable heating element and fan, built-in temperature gauges, and no-contact IR camera mean that power supplies are tested in real-world conditions.

Murata Power Solutions, Inc.  
129 Flanders Rd., Westborough, MA 01581 USA  
ISO 9001 and 14001 REGISTERED



This product is subject to the following operating requirements and the Life and Safety Critical Application Sales Policy:  
Refer to: <https://www.murata.com/products/power/requirements/>

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.