
EXTERNAL USE0

MPC5748G-GW-RDB
EXAMPLE CODES USER GUIDE (ECUG)

Ultra-Reliable MCUs for Industrial and Automotive Applications

1

SUMMARY

• 1. Hands-on - CAN
• 2. Hands-on - CAN_FD
• 3. Hands-on - ENET0+SPI
• 4. Hands-on - ENET1
• 5. Hands-on - UART
• 6. Hands-on - LIN

Hands-on – CAN
01.

3

Hands-on – CAN: Objective
−Features of FlexCAN module on MPC5748G
−How to set a pin as output/input with SDK
−How to configure the port of CAN
−How to modify an existing SDK project with S32DS to suit this board
−Use CAN0~CAN7 to send CAN message
−Use CAN0~CAN7 to receive CAN message

4

Hands-on – CAN: Resources

• Resources to be used:
−On-board user CAN ports (hardwired to GPIOs)

5

Hands-on – CAN: Theory
• Full implementation of the CAN FD & CAN 2.0 B

− data field bitrate up to 8Mbps
• Flexible mailboxes (0/8/16/32/64 bytes data length)
• Listen-Only mode capability
• Programmable Loop-Back mode supporting self-test operation
• Programmable transmission priority scheme
• Independence from the transmission medium
• CRC status for transmitted message
• Full featured Rx FIFO with storage capacity for 6 frames
• DMA request for Rx FIFO
• Programmable clock source to the CAN Protocol Interface,

either bus clock or crystal oscillator
• 100% backward compatibility with previous FlexCAN version
• 8 FlexCAN instances

6

Hands-on – CAN: Theory
Access to and from the internal interface bus
(clocks, address and data buses, interrupts,
DMA and test signals)

Embedded RAM dedicated to the FlexCAN

Message buffer selection for reception and
transmission (arbitration and ID matching
algorithms)

Serial communication on the CAN bus (RAM
access requests for rx and tx frames, rx
messages validation, error handling)

7

Hands-on – CAN: Import Existing Project

• Create S32DS project from Example:
- File->New->New S32DS Project from Example

- Select: flexcan_mpc5748g from MPC57xxRTM SDK v1.0.0 Example Projects

8

Hands-on – CAN: Modify
• The example of flexcan_mpc5748g project is suit to DEVKIT
• How to modify?

DEVKIT

Modify

Jobs

1.Peripheral Power Supply
2.CAN Phy enablement
3.The Ports of CAN
4.CAN configuration
5.Application code of the main.c

9

Hands-on – CAN: Modify-Peripheral Power Supply

• Enable the peripheral power supply
• Open ‘pin_mux’ component in ‘Component Inspector’ to configure pin routing
• SIUL2 tab -> GPIO 60（61）> select the pin (one option) + direction output

10

Hands-on – CAN: Modify-CAN Phy Enablement
• Configure the CAN4~7 Phy(TJA1043T) GPIO

11

Hands-on – CAN: Modify-CAN Phy Enablement

• The configuration method is similar to the slides on the previous page

CAN Phy port routing direction Note

CAN4 EN PB[3] SIUL2/gpio/19 Out

CAN4 STB PJ[4] SIUL2/gpio/148 Out There is a
problem

CAN5 EN PA[2] SIUL2/gpio/2 Out

CAN5 STB PE[10] SIUL2/gpio/74 Out

CAN6 EN PG[9] SIUL2/gpio/105 Out

CAN6 STB PF[12] SIUL2/gpio/92 Out

CAN7 EN PH[14] SIUL2/gpio/126 Out

CAN7 STB PI[7] SIUL2/gpio/135 Out

Note:The default configuration of PJ[4] is input, we need to change

the OBE to Enabled mode enable output.

12

Hands-on – CAN: Modify- Ports of CAN
• In ‘pin_mux’ component –> Routing(Collapsed)– select ‘CAN’

-Configuration the ports according to the schematic.

13

Hands-on – CAN: Modify- CAN configuration
• From ‘Components Library’ view, double-click ‘flexcan’ component to add it the

project

14

Hands-on – CAN: Modify- CAN configuration
• No need to change default configuration for CAN:

− standard CAN (no FD), minimum payload, 500 kbps

Equation:
PE clock(40MHz)=
((propagation segment+1)+(segment1+1)+(segment2+1)+1)
(Prescaler Division +1)(Bitrate)

15

Hands-on – CAN: Modify- CAN configuration
• After all the CAN configurations are complete, the components window should be

like this
-Hit the ‘Generate code’ button

16

Hands-on – CAN: Application Code
• Open the main.c file in text editor view

You can refer to the sample project (can_mpc5748g) we provided to modify the main.c file. You can also
replace it directly.

Note:
The sending and receiving function of this project is realized separately, which needs to be controlled by
macros.

17

Hands-on – CAN: Application Code
(1) Peripheral Power Supply:

18

Hands-on – CAN: Application Code
(2) CAN4~CAN7 `S Phy（TJA1043T）Enable:

19

Hands-on – CAN: Application Code
(3) Sending data via CAN:

Note:
When testing , we need to connect

the port of CAN which need tested,
otherwise it will wait for the completion
of sending.

Eg. Testing CAN3

20

Hands-on – CAN: Application Code
(4) Receiving data via CAN:

Note:
Unlike CAN sending, you can test

the receive on any port.

21

Hands-on – CAN: Build and Debug

• Click the ‘build project’ button – make sure there are no compilation errors

• Select the correct debug configuration and interface to debug the application

22

Hands-on – CAN: Build and Debug

• TEST: Sending data via CAN:
1) Open the macro of CAN_SEND, commented out CAN_RECEIVE.
2) Connect the sending port with PEAK(The test tools we use) through the wire.
3) Debug the application.

Receiving the data from CANx port of the board

The data of CAN to be send

23

Hands-on – CAN: Build and Debug

• TEST: Receiving data via CAN :
1) Open the macro of CAN_RECEIVE, commented out CAN_SEND
2) Connect the receiving port with PEAK(The test tools we use) through the wire.
3) Debug the application.

Sending the ID=2 of CAN data by cycle to the board
The data of CAN received

Debug window

Hands-on – CAN_FD
02.

25

Hands-on – CAN_FD: Objective

• CAN_FD is configured similarly to CAN.
• This section will be modified based on the previous section(Hands-on-CAN).

- Modify the CAN configurations.
- Modify the application code of main.c

• Please refer to section 1 if there is anything unclear

26

Hands-on – CAN_FD: Modify- CAN_FD configuration
• Need to change default configuration for CAN_FD:

− standard CAN_FD, maxmum payload, Arbitration Phase: 500 kbps, Data Phase: 2000kbps.

Equation:
PE clock(40MHz)=
((propagation segment+1)+(segment1+1)+(segment2+1)+1)
(Prescaler Division +1)(Bitrate)

27

Hands-on – CAN_FD: Modify - Application Code
(1) Sending data via CAN:

64Bytes of data to be send
(Data: from 0 to 63)

The length of the data to be
send, the max length is 64

28

Hands-on – CAN_FD: Modify - Application Code
(2) Receiving data via CAN:

The length of the data to be
receive, the max length is 64

For debug

29

Hands-on – CAN_FD: Build and Debug

• TEST: Sending data via CAN_FD:
1) Open the macro of CAN_SEND, commented out CAN_RECEIVE.
2) Connect the sending port with PEAK(The test tools we use) through the wire.
3) Debug the application.

Receiving the data from CANx port of the board

The data of CAN to be send

30

Hands-on –CAN_FD: Build and Debug

• TEST: Receiving data via CAN :
1) Open the macro of CAN_RECEIVE, commented out CAN_SEND
2) Connect the receiving port with PEAK(The test tools we use) through the wire.
3) Debug the application.

Sending the ID=2 of CAN_FD data by cycle to the board

The data of CAN received

Debug window

Hands-on – ENET0+SPI
03.

32

Hands-on – ENET0: Objective
−Features of ENET0 module on MPC5748G
−How to set a pin as output/input with SDK
−How to configure the port of ENET0
−How to configure the SPI module to communicate with Switch(SJA1105)
−How to modify an existing SDK project with S32DS to suit this board
−Use CAN0~CAN7 to send CAN message

33

Hands-on – ENET0: Resources
• Resources to be used:

−on-board user ENET ports

MAC0

SWITCH

TRX2

TRX3
TRX4

MII0

MII1

MII2

MII3/4
TJA1102

TJA1100

TJA1100 TRX1
SPI5

SPI

34

Hands-on – ENET0: ENET-Theory
• The core implements a dual-speed 10/100-

Mbit/s Ethernet MAC compliant with the
IEEE802.3-2002 standard. The MAC layer
provides compatibility with half- or fullduplex
10/100-Mbit/s Ethernet LANs.

• The MAC operation is fully programmable and
can be used in Network Interface Card(NIC),
bridging, or switching applications. The core
implements the remote network monitoring
(RMON) counters according to IETF RFC 2819.

• The programmable Ethernet MAC with IEEE
1588 integrates a standard IEEE 802.3 Ethernet
MAC with a time-stamping module. The IEEE
1588 standard provides accurate clock
synchronization for distributed control nodes for
industrial automation applications.

35

Hands-on – ENET0: SPI-Theory
• Full-duplex, three-wire synchronous transfers
• Master mode
• Slave mode
• Data streaming operation in Slave mode with continuous slave selection
• Buffered transmit operation using the transmit first in first out (TX FIFO) with depth

of 4 entries
• Support for 8/16-bit accesses to the PUSH TX FIFO Register Data Field
• Buffered receive operation using the receive FIFO (RX FIFO) with depth of 4 entries
• Asynchronous clocking scheme for Register and Protocol Interfaces
• TX and RX FIFOs can be disabled individually for low-latency updates to SPI queues
• Visibility into TX and RX FIFOs for ease of debugging
• 6 peripheral chip selects (PCSes), expandable to 64 with external demultiplexer
• Deglitching support for up to 32 peripheral chip selects (PCSes) with external demultiplexer

36

Hands-on – ENET0: Lab Preview

PC terminal

MediaConverter_TJA1100

Gateway Board

>toggle LED 1

ENET

RJ45 <----> 100BASE-T1

37

Hands-on – ENET0: Import Example Project

• Import ‘enet_ping’ example provided with the SDK:
− File->New->New S32DS Project from Example
− Select: lwip_mpc5748g from MPC57xxRTM SDK v1.0.0 Example Projects

38

Hands-on – ENET0: Modify
• The example of flexcan_mpc5748g project is suit to DEVKIT
• How to modify?

DEVKIT

Modify

Jobs

1.Peripheral Power Supply
2.SWITCH configuration(Through SPI)
3.ENET configuration
4.Lwip middleware configuration
5.Application code

39

Hands-on – ENET0: Modify-Peripheral Power Supply

• Enable the peripheral power supply
• Open ‘pin_mux’ component in ‘Component Inspector’ to configure pin routing
• SIUL2 tab -> GPIO 60（61）> select the pin (one option) + direction output

40

Hands-on – ENET0: SWITCH configuration

(1) Add spi_pal component

• From ‘Components Library’ view, double-click ‘spi_pal’ component to add it the project

41

Hands-on – ENET0: SWITCH configuration
(2) The port of SPI configuration

• In ‘pin_mux’ component –> Routing(Collapsed)– select ‘SPI’
-Configuration the ports according to the schematic.

42

Hands-on – ENET0: SWITCH configuration

(3) SPI component configuration

43

Hands-on – ENET0: SWITCH configuration
(4) Configure SWITCH`s data structure

• We have a tool for configuring SWITCH called sja1105_tools (The version of this tool will be
updated aperiodically, please contact FAE to get the latest version of the tool).

• You can refer to the sample demo(The project of ENET0_MPC5748G) we provided. And copy the
SwitchConfigure.c file to your project without any modification.

44

Hands-on – ENET0: ENET configuration

• In ‘pin_mux’ component –> Routing(Collapsed)– select ‘ENET’
-Configuration the ports according to the schematic.

45

Hands-on – ENET0: lwip middleware configuration

Define it by yourself

46

Hands-on – ENET0: Application Code
(1) Peripheral Power Supply:

- {Project Name} -> Source -> main.c

47

Hands-on – ENET0: Application Code
(2) Modify the configuration of SPI to adaptation SJA1105:

- {Project Name} -> SDK -> platform -> pal -> spi -> src -> spi_pal.c
Note:

If you have a patched after update the SDK, you can ignore this modification

Explanation:
The default configuration of SPI`s CS pin cannot be maintained until the delivery is completed when the send function
(SPI_MasterTransferBlocking()) is called. In order to match the SWITCH, you need to configure the
dspiConfig.continuousPCS = true

Add macro definition

48

Hands-on – ENET0: Application Code
(3) Add the initialization function of the SWITCH:

- {Project Name} -> SDK -> middleware -> tcpip -> tcpip_stack -> demo -> test.c

Add macro definition

49

Hands-on – ENET0: Application Code
(4) Add client application for lwip_tcp

- You can refer to the sample demo(The project of ENET0_MPC5748G) we provided. And
copy the tcpiptest.c file to your project without any modification.

- Add clicent application call function under the test.c file
- {Project Name} -> SDK -> middleware -> tcpip -> tcpip_stack -> demo -> test.c

50

Hands-on – ENET0: Build and Debug

• Click the ‘build project’ button – make sure there are no compilation errors

• Select the correct debug configuration and interface to debug the application

51

Hands-on – ENET0: Build and Debug

PC terminal

MediaConverter_TJA1100

Gateway Board

>toggle LED 1

ENET

RJ45 <----> 100BASE-T1

TEST: Ping the board from PC:

52

Hands-on – ENET0: Build and Debug

MediaConverter_TJA1100Gateway Board
>toggle LED 1

RJ45 <----> 100BASE-T1

TEST: LWIP_tcp Client: TCP
Server ip:192.168.1.22
Port :1234

Port1~port4

Hands-on – ENET1
04.

54

Hands-on – ENET1: Objective

• ENET1 is configured similarly to ENET0.
- Unlike the previous section, the Phy(DP83848)for MCA1 directly connected.

• Please refer to section 3 if there is anything unclear

55

Hands-on – ENET1: Resources
• Resources to be used:

−on-board user ENET1 ports

MAC1

Doip

MII

dp83848

100Base-TX

56

Hands-on – ENET1: Modify-Peripheral Power Supply

• Enable the peripheral power supply
• Open ‘pin_mux’ component in ‘Component Inspector’ to configure pin routing
• SIUL2 tab -> GPIO 60（61）> select the pin (one option) + direction output

57

Hands-on – ENET1: DP83848 configuration

• Initialize the DoIP-Reset pin
- Initialize to high level

58

Hands-on – ENET1: DP83848 configuration

• Enable the DoIP Phy`s Power

59

Hands-on – ENET1: ENET configuration

• In ‘pin_mux’ component –> Routing(Collapsed)– select ‘ENET’
-Configuration the ports according to the schematic.

60

Hands-on – ENET1: lwip middleware configuration

Define it by yourself

61

Hands-on – ENET1: Application Code
(1) Peripheral Power Supply:

- {Project Name} -> Source -> main.c

62

Hands-on – ENET1: Application Code
(2) Fix a problem that exists in our SDK

- {Project Name} -> SDK -> middleware -> tcpip -> tcpip_stack -> ports -> netif -> enetif -> enetif.h

Note:
If you have a patched after update the SDK, you can ignore this modification

Add macro definition

Explanation:
The SDK only implements the configuration for MAC0, and the code
shown above needs to be added to support MAC1

63

Hands-on – ENET1: Application Code
(3) Fix a problem that exists in our PE

CASE:There is a problem with the generated code for ENET1`s GPIO configuration.

You can refer to the sample demo(The project of ENET1_MPC5748G) we provided. And copy the Enet1IOConfigure.c
file to your project without any modification.

64

Hands-on – ENET1: Application Code
(4) Add client application for lwip_tcp

- You can refer to the sample demo(The project of ENET0_MPC5748G) we provided. And
copy the tcpiptest.c file to your project without any modification.

- Add clicent application call function under the test.c file
- {Project Name} -> SDK -> middleware -> tcpip -> tcpip_stack -> demo -> test.c

65

Hands-on – ENET1: Build and Debug

• Click the ‘build project’ button – make sure there are no compilation errors

• Select the correct debug configuration and interface to debug the application

66

Hands-on – ENET1: Build and Debug

PC terminal

Gateway Board

>toggle LED 1

TEST: Ping the board from PC:

67

Hands-on – ENET1: Build and Debug

Gateway Board
>toggle LED 1

TEST: LWIP_tcp Client: TCP
Server ip:192.168.2.22
Port :1234

Hands-on – UART
05.

69

Hands-on – UART: Objective
−Features of UART module on MPC5748G
−How to set a pin as output/input with SDK
−How to configure the port of UART
−How to modify an existing SDK project with S32DS to suit this board

70

Hands-on – UART: Theory
• Full-duplex communication
• Separate clock for baud rate calculation
• The relationship “(2/3)* LIN_CLK > PBRIDGEx_CLK > 1/3*LIN_CLK” should be maintained.
• 15/16/7/8 bits data, parity
• 1/2/3 stop bits
• 12-bit + parity reception
• 4-byte buffer for reception, 4-byte buffer for transmission
• 12-bit counter for timeout management
• The maximum baud rate achievable is LIN_CLK/4 Mbit/s.
• For bit rate ≤ LIN_CLK/16 Mbit/s
• Sixteen times oversampling
• 3:1 majority voting
• For LIN_CLK/16 Mbit/s < bit rate ≤ LIN_CLK/8 Mbit/s
• Reduced over sampling programmable by the user
• 3:1 majority voting for reduced over sampling of 8
• For LIN_CLK/8 Mbit/s < bit rate ≤ LIN_CLK/4 Mbit/s
• Reduced over sampling programmable by the user

71

Hands-on – UART: Import Example Project

• Import ‘uart’ example provided with the SDK:
− File->New->New S32DS Project from Example
− Select: uart_pal_mpc5748g from MPC57xxRTM SDK v1.0.0 Example Projects

72

Hands-on – UART: Modify-Peripheral Power Supply

• Enable the peripheral power supply
• Open ‘pin_mux’ component in ‘Component Inspector’ to configure pin routing
• SIUL2 tab -> GPIO 60（61）> select the pin (one option) + direction output

73

Hands-on – UART: UART configuration

(1) Configure the port of UART

74

Hands-on – UART: UART configuration

(2) Configuration of UART properties

75

Hands-on – UART: UART configuration
(3) Port printf library functions

- You can refer to the sample demo(The project of UART_MPC5748G) we provided. And
copy the printf.c file to your project without any modification.

76

Hands-on – UART: Build and Debug

• Click the ‘build project’ button – make sure there are no compilation errors

• Select the correct debug configuration and interface to debug the application

77

Hands-on – UART: Build and Debug

>toggle LED 1

TEST: UART send and receive
Main.c

Hands-on – LIN
06.

79

Hands-on – LIN: Theory
• Supports LIN protocol version 1.3, 2.0, 2.1, and 2.2
• Bit rates up to 20 Kbit/s (LIN protocol)
• Master/Slave mode
• Classic and Enhanced Checksum calculation and check
• Single 8-byte buffer or FIFO for Transmission/Reception
• Timeout management
• Identifier filters
• DMA interface
• Supports a maximum of 16 possible identifiers
• Master mode with autonomous message handling
• Wakeup event on dominant bit detection
• True LIN field state machine
• Advanced LIN error detection
• Header, response, and frame timeout
• Slave mode
• Autonomous header handling
• Autonomous transmit/receive data handling
• Identifier filters for autonomous message handling in Slave mode
• Separate clock for baud rate calculation
• The relationship “(2/3)* LIN_CLK > PBRIDGEx_CLK > 1/3*LIN_CLK”
• should be maintained.

80

Hands-on – LIN: Import Existing Project

• Import existing S32DS project for MPC5748G:

Then the selected project will be added to the Project Explorer window

1

2

3

4

81

Hands-on – LIN: Resources

• Resources to be used:
−on-board user LIN ports (hardwired to GPIOs)

TJA1021T

MCU LIN1
MCU LIN6

82

Hands-on – LIN: Application Code

Set BaudRate

Set LIN_1 and LIN_6 to be master mode

83

Hands-on – LIN: Build and Debug

Message ID Message ID

Hands-on – eMMC+Fatfs
07.

85

Hands-on – eMMC+Fatfs: Objective
−Features of UART module on MPC5748G
−How to set a pin as output/input with SDK
−How to configure the port of UART
−How to configure the port of eMMC
−How to modify an existing SDK project with S32DS to suit this board

NOTE: This demo is only available for the SDK version RTM2.0.0, Please make sure your
SDK has been upgraded to RTM2.0.0

86

Hands-on – eMMC+Fatfs: Import Example Project

• Import ‘sdhc_fatfs_mpc5748g’ example provided with the SDK:
− File->New->New S32DS Project from Example
− Select: sdhc_fatfs _mpc5748g from MPC57xxRTM SDK v2.0.0 Example Projects

87

Hands-on – eMMC+Fatfs: Modify-Peripheral Power Supply

• Enable the peripheral power supply
• Open ‘pin_mux’ component in ‘Component Inspector’ to configure pin routing
• SIUL2 tab -> GPIO 60（61）> select the pin (one option) + direction output

88

Hands-on – eMMC+Fatfs: UART configuration

Configure the port of UART

89

Hands-on – eMMC+Fatfs: uSDHC configuration

90

Hands-on – eMMC+Fatfs: Application Code
(1) Fix a problem that exists in SDK

- {Project Name} -> SDK -> middleware -> sdhc -> sd-> sd.c

91

Hands-on – eMMC+Fatfs: Build and Debug

