
www.semtech.com

LoRa Basics™ Modem 1 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

LoRa Basics™ Modem
Porting Guide

www.semtech.com

LoRa Basics™ Modem 2 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

Table of Contents
1 Introduction ... 5

1.1 Purpose of this Manual .. 5

1.2 Scope ... 5

2 Overview ... 6

2.1 MCU Requirements ... 7

2.2 Transceiver Requirements .. 7

2.3 Release Build Resource Use .. 8

2.4 Debug Build Resource Use ... 10

2.5 System Design Considerations .. 12

3 Radio Driver HAL Implementation ... 13

4 RAL BSP Implementation ... 14

5 LoRa Basics Modem HAL Implementation .. 15

5.1 smtc_modem_hal_reset_mcu() .. 15

5.2 smtc_modem_hal_reload_wdog() .. 15

5.3 smtc_modem_hal_get_time_in_s() .. 15

5.4 smtc_modem_hal_get_time_compensation_in_s() ... 16

5.5 smtc_modem_hal_get_compensated_time_in_s() .. 16

5.6 smtc_modem_hal_get_time_in_ms() .. 17

5.7 smtc_modem_hal_get_time_in_100us() .. 17

5.8 smtc_modem_hal_get_radio_irq_timestamp_in_100us() ... 17

5.9 smtc_modem_hal_start_timer() ... 17

5.10 smtc_modem_hal_stop_timer() ... 18

5.11 smtc_modem_hal_disable_modem_irq() ... 18

5.12 smtc_modem_hal_enable_modem_irq() ... 18

5.13 smtc_modem_hal_context_restore() ... 19

5.14 smtc_modem_hal_context_store() ... 19

5.15 smtc_modem_hal_store_crashlog() ... 19

5.16 smtc_modem_hal_restore_crashlog() ... 20

5.17 smtc_modem_hal_set_crashlog_status() ... 20

5.18 smtc_modem_hal_get_crashlog_status() .. 20

5.19 smtc_modem_hal_assert_fail() ... 20

5.20 smtc_modem_hal_get_random_nb() .. 21

5.21 smtc_modem_hal_get_random_nb_in_range() .. 21

5.22 smtc_modem_hal_get_signed_random_nb_in_range() .. 22

www.semtech.com

LoRa Basics™ Modem 3 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

5.23 smtc_modem_hal_irq_config_radio_irq() .. 22

5.24 smtc_modem_hal_radio_irq_clear_pending () .. 23

5.25 smtc_modem_hal_start_radio_tcxo() .. 23

5.26 smtc_modem_hal_stop_radio_tcxo() .. 23

5.27 smtc_modem_hal_get_radio_tcxo_startup_delay_ms() .. 23

5.28 smtc_modem_hal_get_battery_level() ... 24

5.29 smtc_modem_hal_get_temperature() .. 24

5.30 smtc_modem_hal_get_voltage()... 24

5.31 smtc_modem_hal_get_board_delay_ms() .. 24

5.32 smtc_modem_hal_print_trace() ... 25

6 Building with GNU Make .. 26

7 Building without GNU Make ... 27

7.1 Logging ... 27

8 Rx Window Debugging .. 28

8.1 Clock Error Compensation .. 28

8.2 Rx Window Fine-Tuning .. 28

8.2.1 Rx Window Debugging Configuration ... 28

8.2.2 Add IRQ Timing Log Information ... 29

8.2.3 Add Ready and Trigger Timing Log Information .. 29

8.2.4 Perform a Debugging Session .. 30

9 Revision History .. 31

List of Figures
Figure 1: LoRa Basics™ Modem Software Stack ... 6

www.semtech.com

LoRa Basics™ Modem 4 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

List of Tables
Table 1: Release Build Resource Use for All Supported Regions .. 9
Table 2: Resource Use Values to Subtract for Unused Regions .. 9
Table 3: Debug Build Resource Use for All Supported Regions ... 11
Table 4: Resource Use Values to Subtract for Unused Regions .. 11

www.semtech.com

LoRa Basics™ Modem 5 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

1 Introduction
The LoRa Basics™ Modem has been designed for easy portability and use with a variety of microcontrollers and Semtech
transceivers. To this end, it implements a stacked architecture in which the microcontroller and transceiver interact via
abstraction layers.

1.1 Purpose of this Manual
This document describes how to port the LoRa Basics Modem to a microcontroller or board.

1.2 Scope
This document applies to the LoRa Basics Modem (SWL2001). This version of this document applies to version 3.2.4
(https://github.com/Lora-net/SWL2001/releases/tag/v3.2.4).

It should be read in conjunction with the following documents:

• LoRa Basics Modem SDK User Manual and associated SDK (SWSD001), version 2.0.0 (https://github.com/Lora-
net/SWSD001/releases/tag/v2.0.0)

• LoRa Basics Modem User Manual, which contains information about the API (Refer to the LoRa Edge web page:
(https://www.semtech.com/products/wireless-rf/lora-edge/lr1110#documentation)

• LoRa Development Portal which contains information about LoRa Cloud Modem & Geolocation Services,
Application server code, and other resources (https://lora-developers.semtech.com/)

https://lora-developers.semtech.com/build/software/lora-basics/lora-basics-for-end-nodes/lora-basics-for-end-nodes-welcome/
https://github.com/LoRa-net/SWL2001
https://github.com/Lora-net/SWL2001/releases/tag/v3.2.4
https://github.com/Lora-net/SWSD001
https://github.com/Lora-net/SWSD001/releases/tag/v2.0.0
https://github.com/Lora-net/SWSD001/releases/tag/v2.0.0
https://www.semtech.com/products/wireless-rf/lora-edge/lr1110#documentation
https://lora-developers.semtech.com/

www.semtech.com

LoRa Basics™ Modem 6 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

2 Overview
The LoRa Basics Modem (SWL2001) runs on top of a radio driver and a Radio Abstraction Layer (RAL).

To port the LoRa Basics Modem to a microcontroller, the LoRa Basics Modem Hardware Abstraction Layer (HAL) must be
implemented for that microcontroller.

For each transceiver used on that microcontroller, it is necessary to implement the radio driver HAL. It is also necessary to
implement the board support package for the Radio Abstraction Layer.

In what follows, LBM_DIR refers to the directory containing the LoRa Basics Modem, which is named
lora_basics_modem in the SDK (SWSD001).

Figure 1: LoRa Basics™ Modem Software Stack

www.semtech.com

LoRa Basics™ Modem 7 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

2.1 MCU Requirements
The LoRa Basics Modem SDK contains an implementation for the STMicroelectronics STM32L476 Nucleo board, however,
LoRa Basics Modem can be easily ported to other MCUs. The following MCU features are required:

• 32-bit native operation (No specific CPU core needed)
• Refer to section 2.3 for detailed memory requirements
• Little-endian
• Software MCU reset
• A timer with 100µs resolution or better (Timer accuracy compensation is possible by widening the LoRaWAN

reception windows)
• A random number generator (can be implemented in software)
• Non-volatile storage for modem state storage (refer to section 2.3)
• An SPI controller with MISO, MOSI, SCK, NSS
• GPIO lines for the transceiver IRQ, BUSY, and RESET lines
• A dedicated (non-shared) GPIO MCU interrupt for the transceiver IRQ line is recommended

Note that reliable Class A LoRaWAN communication can be obtained without any major time constraints on the MCU
oscillator, or the oscillator used to clock the devices that implement the time-related LoRa Basics Modem HAL
functions. To compensate for time-related oscillator frequency errors, calling the
smtc_modem_set_crystal_error_ppm() modem API function with an appropriate value is sufficient. This results
in a widening of the LoRaWAN reception window and increased power consumption. In the case of Class B, however,
it is desirable to be able to remain synchronized with the beacon over relatively long time intervals, even if beacons
are sometimes not received due to poor RF conditions. In this case, it is recommended to use an accurate crystal
oscillator or TCXO to clock the devices used to implement the time-related LoRa Basics Modem HAL functions.

2.2 Transceiver Requirements
This version of LoRa Basics Modem supports the following transceivers:

• LR1110 transceiver with firmware version 0x0307 or greater
• LR1120 transceiver with firmware version 0x0101 or greater
• SX1261
• SX1262
• SX1268
• SX1280 (not yet supported by the LoRa Basics Modem SDK)
• SX1281 (not yet supported by the LoRa Basics Modem SDK)

In certain situations, such as the use of GNSS reception with the LR11xx, a transceiver TCXO is required. When using GNSS
advanced scan on the LR1110, the TCXO must have a relatively fast settling time, and the 32.768 kHz crystal oscillator
must have 20ppm accuracy at 25 degrees. For more information, see Application Note AN1200.59.

Additionally, when transmitting at high power with little thermal insulation between the transceiver and its oscillator,
self-heating of the latter may occur, resulting in drift that may interfere with communication. For more information,
consult your transceiver documentation and Application Note AN1200.59.

https://lora-developers.semtech.com/documentation/product-documents
https://lora-developers.semtech.com/documentation/product-documents

www.semtech.com

LoRa Basics™ Modem 8 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

2.3 Release Build Resource Use
The RAM and flash use of a release build for LR1110 on STM32L476 are listed below. These values were determined by
building the SDK "lorawan" example with the Arm® GNU Toolchain version 8-2018-q4-major, after modifying the file
apps/examples/lorawan/makefile/Makefile, as follows:

APP_TRACE ?= no
MODEM_TRACE ?= no
DEBUG ?= no
OPT ?= -Os

$ make REGION=EU_868,AS_923,US_915,AU_915,CN_470,AS_923_GRP2,AS_923_GRP3,IN_865,KR_920,RU_
864,CN_470_RP_1_0

 text data bss dec hex filename
 522 0 0 522 20a lr11xx_bootloader.o
 1242 0 0 1242 4da lr11xx_crypto_engine.o
 15 0 0 15 f lr11xx_driver_version.o
 2818 0 0 2818 b02 lr11xx_radio.o
 486 0 0 486 1e6 lr11xx_regmem.o
 1554 0 0 1554 612 lr11xx_system.o
 2286 0 0 2286 8ee lr11xx_wifi.o
 326 0 0 326 146 lr11xx_lr_fhss.o
 1636 0 0 1636 664 lr11xx_gnss.o
 2925 0 0 2925 b6d ral_lr11xx.o
 238 0 0 238 ee ralf_lr11xx.o
 3154 0 0 3154 c52 radio_planner.o
 36 0 0 36 24 radio_planner_hal.o
 2476 0 3512 5988 1764 lorawan_api.o
 800 0 0 800 320 dm_downlink.o
 4935 15 433 5383 1507 modem_context.o
 5757 0 2764 8521 2149 smtc_modem.o
 2612 0 276 2888 b48 smtc_modem_test.o
 756 0 0 756 2f4 fifo_ctrl.o
 52 0 0 52 34 modem_utilities.o
 144 0 0 144 90 smtc_modem_services_hal.o
 1326 0 0 1326 52e lorawan_certification.o
 3724 3 675 4402 1132 modem_supervisor.o
 948 0 0 948 3b4 smtc_clock_sync.o
 58 0 0 58 3a almanac_update.o
 230 0 0 230 e6 stream.o
 1882 0 0 1882 75a rose.o
 1342 0 0 1342 53e file_upload.o
 740 0 0 740 2e4 alc_sync.o
 1676 0 24 1700 6a4 lr11xx_ce.o
 1134 16 0 1150 47e smtc_modem_crypto.o
 1406 0 0 1406 57e region_as_923.o
 2564 0 0 2564 a04 region_au_915.o
 2739 0 0 2739 ab3 region_cn_470.o
 1370 0 0 1370 55a region_cn_470_rp_1_0.o
 1553 0 0 1553 611 region_eu_868.o
 1147 0 0 1147 47b region_in_865.o
 1058 0 0 1058 422 region_kr_920.o
 1269 0 0 1269 4f5 region_ru_864.o
 2509 0 0 2509 9cd region_us_915.o

www.semtech.com

LoRa Basics™ Modem 9 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

 7884 0 0 7884 1ecc lr1_stack_mac_layer.o
 2878 0 0 2878 b3e lr1mac_core.o
 678 0 0 678 2a6 lr1mac_utilities.o
 7165 0 0 7165 1bfd smtc_real.o
 1313 0 0 1313 521 smtc_duty_cycle.o
 860 0 0 860 35c smtc_lbt.o
 1919 0 0 1919 77f lr1mac_class_c.o
 3332 0 0 3332 d04 smtc_beacon_sniff.o
 3215 0 0 3215 c8f smtc_ping_slot.o
 226 0 0 226 e2 smtc_multicast.o
 92915 34 7684 100633 18919 (TOTALS)

 text data bss dec hex filename
124648 3576 42252 170476 299ec build/lorawan.elf

The "(TOTALS)" line above indicates the resource use of the LoRa Basics Modem, the radio drivers, and the RAL. Certain
features of LoRa Basics Modem that are not used by the application will be removed at link time, so the effective size of
LoRa Basics Modem is likely to be smaller for a given application.

The "build/lorawan.elf" line indicates the resource use of the entire project, including the simple LoRaWAN® demo
application, and the LoRa Basics Modem HAL implementation, based on the STM32Cube MCU HAL implementation. It is
possible to reduce resource use by using a size-optimized HAL for a given platform.

The worst-case stack use is currently unknown. A simple example that includes joining a device to the network and then
sending a few uplinks uses approximately 2kB of stack RAM.

We can conclude that a release build of the stack, drivers, and RAL uses 92915 bytes of flash and 9766 bytes of RAM
(34+7684+2048). A release build of the entire demo uses 124648 bytes of flash and 47876 bytes of RAM
(3576+42252+2048).

Component Flash RAM
Stack, drivers, RAL 92915 9766
Entire STM32L476 demo (including stack,
drivers, RAL, LoRa Basics Modem HAL,
STM32Cube MCU HAL)

124648 47876

Table 1: Release Build Resource Use for All Supported Regions

If some supported regions are not needed, the approximate flash use may be obtained by subtracting the flash use of the
unneeded regions:

Region Flash RAM
EU_868 1553 0
US_915 2509 0
CN_470 2739 0
CN_470_RP_1_0 1370 0
AS_923 1406 0
AU_915 2564 0
IN_865 1147 0
KR_920 1058 0
RU_864 1269 0

Table 2: Resource Use Values to Subtract for Unused Regions

For example, a complete LoRa Basics Modem stack for the US_915 region uses approximately 79809 bytes of flash (92915-
1553-2739-1370-1406-2564-1147-1058-1269). Note that this is an approximate calculation. By compiling with REGION=
US_915, one can determine that the exact flash use for a complete LoRa Basics Modem stack for this region is 77864 bytes.

www.semtech.com

LoRa Basics™ Modem 10 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

2.4 Debug Build Resource Use
For a debug build for the LR1110 on the STM32L476, the RAM and flash requirements for LoRa Basics Modem, the radio
drivers, and the RAL are listed below. These values were determined by building the SDK "lorawan" example with the
Arm® GNU Toolchain version 8-2018-q4-major, after modifying the file apps/lorawan/makefile, as follows:

APP_TRACE ?= yes
MODEM_TRACE ?= yes
DEBUG ?= yes
OPT ?= -O0

$ make REGION=EU_868,AS_923,US_915,AU_915,CN_470,AS_923_GRP2,AS_923_GRP3,IN_865,KR_920,RU_
864,CN_470_RP_1_0

 text data bss dec hex filename
 1014 0 0 1014 3f6 lr11xx_bootloader.o
 2444 0 0 2444 98c lr11xx_crypto_engine.o
 19 0 0 19 13 lr11xx_driver_version.o
 5442 0 0 5442 1542 lr11xx_radio.o
 1110 0 0 1110 456 lr11xx_regmem.o
 2982 0 0 2982 ba6 lr11xx_system.o
 5634 0 0 5634 1602 lr11xx_wifi.o
 802 0 0 802 322 lr11xx_lr_fhss.o
 3230 0 0 3230 c9e lr11xx_gnss.o
 6187 0 0 6187 182b ral_lr11xx.o
 1156 0 0 1156 484 ralf_lr11xx.o
 8788 0 0 8788 2254 radio_planner.o
 100 0 0 100 64 radio_planner_hal.o
 6588 0 3512 10100 2774 lorawan_api.o
 4690 56 0 4746 128a dm_downlink.o
 12681 15 442 13138 3352 modem_context.o
 17226 0 2772 19998 4e1e smtc_modem.o
 8042 0 276 8318 207e smtc_modem_test.o
 1556 0 0 1556 614 fifo_ctrl.o
 124 0 0 124 7c modem_utilities.o
 375 0 0 375 177 smtc_modem_services_hal.o
 6221 0 0 6221 184d lorawan_certification.o
 10800 3 676 11479 2cd7 modem_supervisor.o
 3945 0 0 3945 f69 smtc_clock_sync.o
 108 0 0 108 6c almanac_update.o
 516 0 0 516 204 stream.o
 4561 0 0 4561 11d1 rose.o
 2484 0 0 2484 9b4 file_upload.o
 2972 0 0 2972 b9c alc_sync.o
 3083 0 24 3107 c23 lr11xx_ce.o
 2356 16 0 2372 944 smtc_modem_crypto.o
 4916 0 0 4916 1334 region_as_923.o
 8246 0 0 8246 2036 region_au_915.o
 8118 16 0 8134 1fc6 region_cn_470.o
 5266 0 0 5266 1492 region_cn_470_rp_1_0.o
 4878 0 0 4878 130e region_eu_868.o
 4496 0 0 4496 1190 region_in_865.o
 4432 0 0 4432 1150 region_kr_920.o
 4676 0 0 4676 1244 region_ru_864.o
 8214 0 0 8214 2016 region_us_915.o

www.semtech.com

LoRa Basics™ Modem 11 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

 22973 64 0 23037 59fd lr1_stack_mac_layer.o
 10297 168 0 10465 28e1 lr1mac_core.o
 2208 0 0 2208 8a0 lr1mac_utilities.o
 17774 0 0 17774 456e smtc_real.o
 2904 0 0 2904 b58 smtc_duty_cycle.o
 4053 0 0 4053 fd5 smtc_lbt.o
 6989 0 0 6989 1b4d lr1mac_class_c.o
 9215 0 0 9215 23ff smtc_beacon_sniff.o
 10828 0 0 10828 2a4c smtc_ping_slot.o
 689 8 0 697 2b9 smtc_multicast.o
268408 346 7702 276456 437e8 (TOTALS)

 text data bss dec hex filename
270720 3888 42276 316884 4d5d4 build/lorawan.elf

The "(TOTALS)" line above indicates the resource use of the LoRa Basics Modem, the radio drivers, and the RAL.
The "build/lorawan.elf" line indicates the resource use of the entire project, including the simple LoRaWAN® demo
application, and the LoRa Basics Modem HAL implementation, based on the STM32Cube MCU HAL implementation.
Depending on the features used by the final application, parts of the LoRa Basics Modem library may be removed by the
linker and take no space in the final executable.

The worst-case stack use is currently unknown. A simple example that includes joining a device to the network and then
sending a few uplinks uses approximately 4kB of stack RAM.

We can conclude that a debug build of the stack, drivers, and RAL uses 268408 bytes of flash and 12144 bytes of RAM
(346+7702+4096). A debug build of the entire demo uses 270720 bytes of flash and 50260 bytes of RAM
(3888+42276+4096).

Component Flash RAM
Stack, drivers, RAL 268408 13317
Entire STM32L476 demo (including stack,
drivers, RAL, LoRa Basics Modem HAL,
STM32Cube MCU HAL)

270720 50260

Table 3: Debug Build Resource Use for All Supported Regions

If some supported regions are not needed, the approximate flash use may be obtained by subtracting the flash use of the
unneeded regions:

Region Flash RAM
EU_868 4878 0
US_915 8214 0
CN_470 8134 0
CN_470_RP_1_0 5266 0
AS_923 4916 0
AU_915 8246 0
IN_865 4496 0
KR_920 4432 0
RU_864 4676 0

Table 4: Resource Use Values to Subtract for Unused Regions

www.semtech.com

LoRa Basics™ Modem 12 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

2.5 System Design Considerations
There are numerous requirements and options to consider when developing a device that implements LoRaWAN.
For the LoRa Basics Modem, it is important to consider the transceiver and timer interrupt behavior and configuration.
The LoRa Basics Modem is designed to use a specific transceiver DIO line as the radio interrupt source. For SX126x, this is
the DIO1 line, and for LR11xx, this is the DIO9 line.

Two principal interrupt sources interact with the LoRa Basics Modem: a timer interrupt, and a radio interrupt.

The system interrupt priorities must be configured in such a way that the timer and radio interrupts do not nest or
interrupt each another.

The current implementation of the LoRa Basics Modem has been designed to perform certain radio operations in the
MCU's interrupt context. For this reason, HAL API commands are provided to disable and enable these two interrupt
sources.

Therefore, when designing hardware that will run LoRa Basics Modem, it is recommended that the MCU GPIO lines
selected for the transceiver's DIO interrupt request line do not share an MCU interrupt flag with other timing-critical
hardware. If MCU interrupt flags are shared, it may not always be possible to react immediately to interrupts originating
from these other devices.

The LoRa Basics Modem timer and radio interrupt service routines may perform radio operations over the transceiver SPI
bus. If the MCU hardware SPI controller is used to communicate with other devices, interference to that communication
may occur due to the timer and radio interrupt service routines that might reconfigure the MCU hardware SPI controller
at an unexpected time. Therefore, it is recommended that the radio has exclusive use of its MCU hardware SPI controller
device. In certain circumstances, it may be possible to coordinate the communication between devices sharing the SPI
controller. However, that is beyond the scope of this document.

www.semtech.com

LoRa Basics™ Modem 13 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

3 Radio Driver HAL Implementation
The LoRa Basics Modem depends on Semtech's radio driver, which, in turn, requires a radio driver HAL implementation.
A brief description of the necessary steps for this implementation follows.

The HAL implementation must provide platform-specific read, write, reset, and wakeup implementations.

• Radio driver API functions call the HAL implementation to perform the actual reset, wake, and communication
operations needed by the driver.

• For the LR11xx, these functions are documented in
LBM_DIR/smtc_modem_core/radio_drivers/lr11xx_driver/src/lr11xx_hal.h.

• For the SX126x, these functions are documented in
LBM_DIR/smtc_modem_core/radio_drivers/sx126x_driver/src/sx126x_hal.h.

All radio driver API functions take a 'const void* context' argument:

• This argument is opaque to both the radio driver and LoRa Basics Modem.
• It may be used by the HAL implementer to differentiate between different transceivers, which makes it easy to

communicate with several radios inside the same application.
• Driver API functions do not use the context argument but pass it directly to the HAL implementation.

The LoRa Basics Modem imposes a specific requirement on the radio driver HAL implementation:

• If a radio driver API function is called while the transceiver is in sleep mode, the HAL implementation must
properly wake the transceiver and wait until it is ready before initiating any SPI communication.

• This typically requires that the HAL keeps track of whether the radio is awake or asleep, potentially by
monitoring any commands sent to the transceiver to detect the SetSleep command.

• For a concrete LR11xx example, see the SDK file: shields/LR11XX/radio_drivers_hal/lr11xx_hal.c.
• For a concrete SX126x example, see the SDK file: shields/SX126X/radio_drivers_hal/sx126x_hal.c.

When compiling the radio driver HAL implementation, it is necessary to add the radio driver source directory to the
include path. For example, for LR11xx:

• LBM_DIR/smtc_modem_core/radio_drivers/lr11xx_driver/src

www.semtech.com

LoRa Basics™ Modem 14 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

4 RAL BSP Implementation
When porting the LoRa Basics Modem to a new radio + MCU implementation, a Radio Abstraction Layer (RAL) board
support package (BSP) implementation is necessary. A brief description of the necessary steps follows.

The RAL provides radio-independent API functions that are similar to those provided by each radio driver. The RAL, and a
complementary layer called the RALF, are described in the following header functions:

• LBM_DIR/smtc_modem_core/smtc_ral/src/ral.h
• LBM_DIR/smtc_modem_core/smtc_ralf/src/ralf.h

The RAL requires the implementer to define a few BSP API functions for the selected transceiver, by providing platform
or radio-specific information to the RAL.

• For the LR11xx, these functions are described in
LBM_DIR/smtc_modem_core/smtc_ral/src/ral_lr11xx_bsp.h.

• For the SX126x, these functions are described in
LBM_DIR/smtc_modem_core/smtc_ral/src/ral_sx126x_bsp.h.

• An LR11xx sample implementation is in the SDK file
shields/LR11XX/LR1110MB1LxKS/BSP/ral_bsp/ral_lr11xx_bsp.c.

• An SX126x sample implementation is in the SDK file shields/SX126X/SX1262MB1CAS/ral_sx126x_bsp.c.

The role of the 'const void* context' variable is described in Section 3. It is typically used to store radio-specific
information, but depending on the radio driver BSP implementation, it may be NULL if a single transceiver is used. The
RAL and RALF need to store the 'const void* context' variable, and keep track of functions implementing the RAL
and RALF for a given radio, as described below:

• Typically, on startup, an application creates a ralf_t structure, storing both the 'const void* context'
address and pointers to RAL and RALF API functions. The only information required from the application
developer is the context variable.

• On startup, instead of taking the 'const void* context' variable as a startup argument, LoRa Basics Modem
requires the address of the ralf_t structure. This gives the modem full access to all RAL and RALF API functions.

• All the SDK examples call a function named smtc_board_initialise_and_get_ralf() which creates the
ralf_t structure that gets passed to smtc_modem_init(). For details, see the following files:
• apps/examples/lorawan/main_lorawan.c
• shields/LR11XX/LR1110MB1LxKS/BSP/board/lr1110_mb1lxks_board.c

When compiling the RAL BSP implementation, it is necessary to add the radio driver source directory and the RAL source
directory to the include path. For example, for LR11xx:

• LBM_DIR/smtc_modem_core/radio_drivers/lr11xx_driver/src
• LBM_DIR/smtc_modem_core/smtc_ral/src

www.semtech.com

LoRa Basics™ Modem 15 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

5 LoRa Basics Modem HAL Implementation
Porting LoRa Basics Modem to a new MCU architecture requires implementing the modem Hardware Abstraction Layer
(HAL) API commands described by the prototypes in the header file LBM_DIR/smtc_modem_hal/smtc_modem_hal.h.

Among other things, these API implementations define how timing information is provided to the LoRa Basics Modem,
how random numbers are generated, and how data is stored in non-volatile memory.

If a TCXO is used, its startup timing behavior should be specified in the RAL BSP implementation, and the
documentation of the smtc_modem_hal_start_radio_tcxo(), smtc_modem_hal_stop_radio_tcxo(), and
smtc_modem_hal_get_radio_tcxo_startup_delay_ms() functions, should be consulted.

The following sections provide the list and more details on the different modem HAL APIs.

5.1 smtc_modem_hal_reset_mcu()
void smtc_modem_hal_reset_mcu(void);

Brief
Reset the MCU.

LoRa Basics Modem may need to reset the MCU on initial startup, or if a state arises from which the modem cannot recover
without restarting.

5.2 smtc_modem_hal_reload_wdog()
void smtc_modem_hal_reload_wdog(void);

Brief
Reload the watchdog timer.

If the HAL implementation configures a watchdog timer, then this function should be implemented to reload the
watchdog timer. Currently, the only code in LoRa Basics Modem that calls this HAL API command is the test code in
smtc_modem_test.c.

5.3 smtc_modem_hal_get_time_in_s()
uint32_t smtc_modem_hal_get_time_in_s(void);

Brief
Provide the time since startup, in seconds.

LoRa Basics Modem uses this command to help perform various LoRaWAN® activities that do not have significant time
accuracy requirements, such as NbTrans retransmissions.

Return
The current system uptime in seconds.

www.semtech.com

LoRa Basics™ Modem 16 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

5.4 smtc_modem_hal_get_time_compensation_in_s()
int32_t smtc_modem_hal_get_time_compensation_in_s(void);

Brief
Provide a time-correcting term, in seconds.

Suppose that, due to MCU clock inaccuracy, the principal time source used for smtc_modem_hal_get_time_in_s()
significantly lags behind or runs ahead of the real time. If the LoRa Basics Modem HAL developer can quantify this
deviation and calculate an integer number of seconds that additively corrects the time source, it should be returned by
this HAL API command. Otherwise, this command should return the value 0.

For example, consider an MCU clock that loses one second per day. If after exactly one day of runtime (86400 seconds),
the API function smtc_modem_hal_get_time_in_s() returns 86399, then the API function
smtc_modem_hal_get_time_compensation_in_s() should be implemented to return the value 1 after the first
day, return 2 after the second day, and so on. This effectively corrects the error so that
smtc_modem_hal_get_compensated_time_in_s() returns the correct time.

Return
Additive correction of the time source. Return zero, if unknown.

5.5 smtc_modem_hal_get_compensated_time_in_s()
uint32_t smtc_modem_hal_get_compensated_time_in_s(void);

Brief
Provide the compensated time since startup, in seconds.

This command should be implemented as follows:

uint32_t smtc_modem_hal_get_compensated_time_in_s()
{
 return smtc_modem_hal_get_time_compensation_in_s() + smtc_modem_hal_get_time_i
n_s();
}

If active, the ALC Sync service obtains accurate time from the network GPS clock. Currently, the ALC Sync implementation
is the only LoRa Basics Modem code that uses the compensated time, as described in the brief for
smtc_modem_hal_get_time_compensation_in_s(). This may seem unnecessary since the purpose of ALC Sync is
to provide an accurate clock. However, if the time is accurately compensated by
smtc_modem_hal_get_time_compensation_in_s() and smtc_modem_hal_get_compensated_time_in_s(),
ALC Sync requires less network activity to keep the clock perfectly synchronized. In the future, this HAL API command
may be removed.

Return
Additive correction of the time source. Return zero, if unknown.

www.semtech.com

LoRa Basics™ Modem 17 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

5.6 smtc_modem_hal_get_time_in_ms()
uint32_t smtc_modem_hal_get_time_in_ms(void);

Brief
Provide the time since startup, in milliseconds.

Return
The system uptime, in milliseconds. The value returned by this function must monotonically increase all the way to
0xFFFFFFFF and then overflow to 0x00000000.

5.7 smtc_modem_hal_get_time_in_100us()
uint32_t smtc_modem_hal_get_time_in_100us(void);

Brief
Provide the time since startup, in 100µs units.

This command is used for Class B ping slot openings and must use the same timer as the one used for
smtc_modem_hal_get_radio_irq_timestamp_in_100us().

Return
The system uptime, in tenths of milliseconds. The value returned by this function must monotonically increase all the way
to 0xFFFFFFFF, and then overflow to 0x00000000.

5.8 smtc_modem_hal_get_radio_irq_timestamp_in_100us()
uint32_t smtc_modem_hal_get_radio_irq_timestamp_in_100us(void);

Brief
Provide the time of the last radio interrupt (i.e.: the end of TX), in 100µs units.

Return
The timestamp, in tenths of milliseconds, of the last radio IRQ event. This must use the same timer as the one used for
smtc_modem_hal_get_time_in_100us().

5.9 smtc_modem_hal_start_timer()
void smtc_modem_hal_start_timer(
 const uint32_t milliseconds,
 void (*callback)(void* context),
 void* context
);

Brief
Start a timer that will expire at the requested time.

Upon expiration, the provided callback is called with context as its sole argument.

www.semtech.com

LoRa Basics™ Modem 18 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

The current design of the LoRa Basics Modem has only been tested in the case where the provided callback is executed
in an interrupt context, with interrupts disabled. Also, note that this callback may communicate with the radio using the
MCU SPI device.

Parameters
[in] milliseconds Number of milliseconds before callback execution

[in] callback Callback to execute

[in] context Argument that is passed to callback

5.10 smtc_modem_hal_stop_timer()
void smtc_modem_hal_stop_timer(void);

Brief
Stop the timer that may have been started with smtc_modem_hal_start_timer().

5.11 smtc_modem_hal_disable_modem_irq()
void smtc_modem_hal_disable_modem_irq(void);

Brief
Disable the two interrupt sources that execute the LoRa Basics Modem code: the timer, and the transceiver DIO interrupt
source.

Please also refer to System Design Considerations.

5.12 smtc_modem_hal_enable_modem_irq()
void smtc_modem_hal_enable_modem_irq(void);

Brief
Enable the two interrupt sources that execute the LoRa Basics Modem code: the timer, and the transceiver DIO interrupt
source.

Please also refer to Section 2.5.

www.semtech.com

LoRa Basics™ Modem 19 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

5.13 smtc_modem_hal_context_restore()
void smtc_modem_hal_context_restore(
 const modem_context_type_t ctx_type,
 uint8_t* buffer,
 const uint32_t size
);

Brief
Restore to RAM a data structure of type ctx_type that has previously been stored in non-volatile memory by calling
smtc_modem_hal_context_store().

Parameters
[in] ctx_type Type of modem context to be restored

[out] buffer Buffer where context must be restored

[in] size Number of bytes of context to restore

5.14 smtc_modem_hal_context_store()
void smtc_modem_hal_context_store(
 const modem_context_type_t ctx_type,
 const uint8_t* buffer,
 uint32_t size
);

Brief
Store a data structure of type ctx_type from RAM to non-volatile memory.

Parameters
[in] ctx_type Type of modem context to be saved

[in] buffer Buffer which must be saved

[in] size Number of bytes of context to save

5.15 smtc_modem_hal_store_crashlog()
void smtc_modem_hal_store_crashlog(uint8_t crashlog[CRASH_LOG_SIZE]);

Brief
Store the modem crash log to non-volatile memory.

On most MCUs, RAM is preserved upon reset, so it may be possible to use RAM for this purpose.

Parameters
[in] crashlog Buffer pointer to write from

www.semtech.com

LoRa Basics™ Modem 20 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

5.16 smtc_modem_hal_restore_crashlog()
void smtc_modem_hal_restore_crashlog(uint8_t crashlog[CRASH_LOG_SIZE]);

Brief
Retrieve the modem crash log from non-volatile memory.

On most MCUs, RAM is preserved upon reset, so it may be possible to use RAM for this purpose.

Parameters
[out] crashlog Buffer pointer to write to

5.17 smtc_modem_hal_set_crashlog_status()
void smtc_modem_hal_set_crashlog_status(bool available);

Brief
Store the modem crash log status to non-volatile memory. True indicates that a crash log has been stored and is available
for retrieval.

On most MCUs, RAM is preserved upon reset, so it may be possible to use RAM for this purpose.

Parameters
[in] available True if a crash log is available; false otherwise

5.18 smtc_modem_hal_get_crashlog_status()
bool smtc_modem_hal_get_crashlog_status(void);

Brief
Get the modem crash log status from non-volatile memory.

Return
The crash log status, as previously written using smtc_modem_hal_set_crashlog_status().

5.19 smtc_modem_hal_assert_fail()
void smtc_modem_hal_assert_fail(uint8_t* func, uint32_t line) ;

Brief
Indicate the location of an unrecoverable error and reset the MCU.

Parameters
[in] func String indicating the name of the function

[in] line Line number

www.semtech.com

LoRa Basics™ Modem 21 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

5.20 smtc_modem_hal_get_random_nb()
uint32_t smtc_modem_hal_get_random_nb(void);

Brief
Return a uniformly-distributed 32-bit unsigned random integer.

Return
The random integer.

5.21 smtc_modem_hal_get_random_nb_in_range()
uint32_t smtc_modem_hal_get_random_nb_in_range(
 const uint32_t val_1,
 const uint32_t val_2
);

Brief
Return a uniformly-distributed unsigned random integer from the closed interval [val_1, ..., val_2] or [val_2, ..., val_1].

This command may be implemented as follows:

uint32_t smtc_modem_hal_get_random_nb_in_range(const uint32_t val_1, const
uint32_t val_2)
{
 if(val_1 <= val_2)
 {
 return (uint32_t)((smtc_modem_hal_get_random_nb() % (val_2 - val_1 +
1)) + val_1);
 }
 else
 {
 return (uint32_t)((smtc_modem_hal_get_random_nb() % (val_1 - val_2 +
1)) + val_2);
 }
}

In the future, this HAL API command may be removed.

Return
The random integer.

www.semtech.com

LoRa Basics™ Modem 22 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

5.22 smtc_modem_hal_get_signed_random_nb_in_range()
int32_t smtc_modem_hal_get_signed_random_nb_in_range(
 const int32_t val_1,
 const int32_t val_2
);

Brief
Return a uniformly-distributed signed random integer from the closed interval [val_1, ..., val_2] or [val_2, ..., val_1].

This command may be implemented as follows:

int32_t smtc_modem_hal_get_signed_random_nb_in_range(const int32_t val_1, const
int32_t val_2)
{
 uint32_t tmp_range = 0; // (val_1 <= val_2) ? (val_2 - val_1) : (val_1 -
val_2);

 if(val_1 <= val_2)
 {
 tmp_range = (val_2 - val_1);
 return (int32_t)((val_1 + smtc_modem_hal_get_random_nb_in_range(0,
tmp_range)));
 }
 else
 {
 tmp_range = (val_1 - val_2);
 return (int32_t)((val_2 + smtc_modem_hal_get_random_nb_in_range(0,
tmp_range)));
 }
}

In the future, this HAL API command may be removed.

Return
The random integer.

5.23 smtc_modem_hal_irq_config_radio_irq()
void smtc_modem_hal_irq_config_radio_irq(
 void (*callback)(void* context),
 void* context
);

Brief
Store the callback and context argument that must be executed when a radio event occurs.

Parameters
[in] callback Callback that is executed upon radio interrupt service request

[in] context Argument that is provided to callback

www.semtech.com

LoRa Basics™ Modem 23 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

5.24 smtc_modem_hal_radio_irq_clear_pending ()
void smtc_modem_hal_radio_irq_clear_pending(void);

Brief
Clear interrupt pending status, if an interrupt service request is pending inside the MCU hardware interrupt controller or
stored as a flag in software.

After this function is called, the HAL implementation must guarantee that an interrupt that was raised before this
function was called, will not be processed by the callback provided to the API function
smtc_modem_hal_irq_config_radio_irq().

5.25 smtc_modem_hal_start_radio_tcxo()
void smtc_modem_hal_start_radio_tcxo(void);

Brief
If the TCXO is not controlled by the transceiver, powers up the TCXO.

If no TCXO is used, or if the TCXO has been configured in the RAL BSP to start up automatically, then implement an empty
command. If the TCXO is not controlled by the transceiver, then this function must power up the TCXO, and then busywait
until the TCXO is running with the proper accuracy.

5.26 smtc_modem_hal_stop_radio_tcxo()
void smtc_modem_hal_stop_radio_tcxo(void);

Brief
If the TCXO is not controlled by the transceiver, stop the TCXO.

If no TCXO is used, or if the TCXO has been configured in the RAL BSP to start up automatically, implement an empty
command.

5.27 smtc_modem_hal_get_radio_tcxo_startup_delay_ms()
uint32_t smtc_modem_hal_get_radio_tcxo_startup_delay_ms(void);

Brief
Return the time, in milliseconds, that the TCXO needs to start up with the required accuracy.

This does not implement a delay but is used to perform certain calculations in the LoRa Basics Modem so that this time
will be taken into consideration when opening the Rx window.

If the TCXO is configured by the RAL BSP to start up automatically, then the value used here should be the same as the
startup delay used in the RAL BSP.

Return
The needed TCXO startup time, in milliseconds. Return 0 if no TCXO is used.

www.semtech.com

LoRa Basics™ Modem 24 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

5.28 smtc_modem_hal_get_battery_level()
uint8_t smtc_modem_hal_get_battery_level(void);

Brief
Indicate the current battery state.

Return
A value between 0 (for 0%) and 255 (for 100%).

5.29 smtc_modem_hal_get_temperature()
int8_t smtc_modem_hal_get_temperature(void);

Brief
Indicate the current system temperature.

Return
The temperature, in degrees Celsius.

5.30 smtc_modem_hal_get_voltage()
uint8_t smtc_modem_hal_get_voltage(void);

Brief
Indicates the current battery voltage.

Return
The battery voltage, in units of 20mV.

5.31 smtc_modem_hal_get_board_delay_ms()
int8_t smtc_modem_hal_get_board_delay_ms(void);

Brief
Return the amount of time that passes between the moment the MCU calls ral_set_tx() or ral_set_rx(), and the
moment the radio transceiver enters RX or TX state.

This varies depending on the MCU clock speed and SPI bus speed. See Section 8 for more information.

Return
The board delay, in milliseconds.

www.semtech.com

LoRa Basics™ Modem 25 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

5.32 smtc_modem_hal_print_trace()
void smtc_modem_hal_print_trace(
 const char* fmt,
 ...
);

Brief
Output a printf-style variable-length argument list to the logging subsystem.

Parameters
[in] fmt printf-style string

[in] ... Arguments that accompany fmt

www.semtech.com

LoRa Basics™ Modem 26 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

6 Building with GNU Make
If GNU Make is available, it offers the easiest way to build the LoRa Basics Modem library. Command line arguments can
be used to select the region, transceiver, logging (MODEM_TRACE), and other options.

For more information about building with GNU Make, type:

$ make help

For example, to build the LoRa Basics Modem library for an LR1110 transceiver with EU_868 regional support, type:

$ make basic_modem_lr1110 REGION=EU_868

When not building for an STM32L476, use the MCU_FLAGS make argument to specify any compilation flags needed by
the MCU. For example:

$ make basic_modem_lr1110 REGION=EU_868 MCU_FLAGS="-mcpu=cortex-m4 –mthumb –mfpu=fpv4-sp-
d16 –mfloat-abi=hard"

To compile the modem HAL implementation, it is necessary to add the following include directory:

• LBM_DIR/smtc_modem_hal

To compile the modem application code, it is necessary to add the following include directory:

• LBM_DIR/smtc_modem_api

The project must then link with the LoRa Basics Modem HAL implementation, the radio driver HAL implementation, the
RAL BSP implementation, and the LoRa Basics Modem library. The latter will have one of these names, depending on the
selected transceiver, and whether or not MODEM_TRACE has been chosen:

• LBM_DIR/build/basic_modem_<transceiver>_trace.a
• LBM_DIR/build/basic_modem_<transceiver>_notrace.a

For more information about the radio driver HAL implementation and RAL BSP implementation, see Sections 3 and 4.

www.semtech.com

LoRa Basics™ Modem 27 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

7 Building without GNU Make
When building without GNU Make, the various source code files, include directories, and common preprocessor
definitions can be found by looking through the files in the LBM_DIR/makefiles directory.

LBM_DIR/makefiles/regions.mk lists the source code files, include directories, and preprocessor definitions needed
for all transceivers.

LBM_DIR/makefiles/sx126x.mk lists the source code files, include directories, and preprocessor definitions needed
for the SX126x transceivers.

LBM_DIR/makefiles/lr11xx.mk lists the source code files, include directories, and preprocessor definitions needed
for the LR11xx transceivers.

LBM_DIR/makefiles/regions.mk lists the source files and preprocessor definitions needed to select a set of regions.

7.1 Logging
To disable logging, define MODEM_HAL_DBG_TRACE to be equal to 0.

To enable additional logging of radio-related operations, define MODEM_HAL_DBG_TRACE_RP to be equal to 1.

It is preferable to use a high-speed UART to implement the trace because logging can potentially interfere with modem
communication.

www.semtech.com

LoRa Basics™ Modem 28 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

8 Rx Window Debugging
LoRaWAN® requires accurate receive window timing. This section provides tips to verify that the window timing is good.

Having an accurate MCU clock facilitates debugging, so when getting started with LoRa Basics Modem it is recommended
to configure the MCU to provide the most accurate possible clock to the various time-related HAL API functions.

Enable logging, as described in Sections 6 and 7.1. A high baud rate is recommended, such as 921600 baud, since the
logging code may interfere with the timing.

8.1 Clock Error Compensation
To provide an upper bound on crystal error, the modem API command smtc_modem_set_crystal_error_ppm() can
be called to specify the crystal error, in parts per million. Large crystal error values result in wider Rx windows.

For more information, see Application Note AN1200.24.

8.2 Rx Window Fine-Tuning
The LoRa Basics Modem can use an algorithm to fine-tune the Rx window position.

To understand how this algorithm works, consider the case where the LoRa Basics Modem is running in the absence of a
packet forwarder, or without an appropriate configuration on the network server. In this case, uplinks are not responded
to and result in an RxTimeout interrupt. Since LoRa Basics Modem knows the reception timeout value that was used, the
time elapsed between the TxDone interrupt and the RxTimeout interrupt can be used to position the start of the Rx
window. This is the purpose of the fine-tuning algorithm found in
LBM_DIR/smtc_modem_core/lr1mac/src/lr1_stack_mac_layer.c.

On every reception failure, the fine-tuning algorithm generates log messages like this:

DR3 Fine tune correction (ms) = 1, error fine tune (ms) = 0, lr1_mac->rx_offset_ms = -18

If this algorithm is working properly, on every reception failure for a given data rate, the fine tune correction value for that
data rate will be incremented or decremented until it converges to a value that results in reliable reception. From this
point on, error fine tune should stay close to zero. This approach works in many cases. To work well, the HAL
smtc_modem_hal_get_time…() and smtc_modem_hal_get_radio_irq_timestamp…() functions must provide
accurate time. Timing inaccuracies due to crystal oscillator aging or temperature change may cause a previously tuned
system to malfunction.

8.2.1 Rx Window Debugging Configuration
Fine-tuning convergence may be slow, or not occur. Debugging this type of problem, and determining what value to use
for smtc_modem_hal_get_board_delay_ms(), is the purpose of the following sections of this chapter.

In order to know if something is interfering with Rx window placement, it is important to know the desired length of the
window, as requested by the MCU. This desired window length can then be compared to the actual window length, as
measured by a logic analyzer.

With this in mind, temporarily deactivate the window fine-tuning feature by globally defining the preprocessor definition
BSP_LR1MAC_DISABLE_FINE_TUNE.

https://lora-developers.semtech.com/documentation/product-documents

www.semtech.com

LoRa Basics™ Modem 29 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

8.2.2 Add IRQ Timing Log Information
The following change to the rp_radio_irq() function in
LBM_DIR/smtc_modem_core/radio_planner/src/radio_planner.c makes it possible to observe in the log the
MCU time at which every radio IRQ arrives. Change the following line of code:

SMTC_MODEM_HAL_RP_TRACE_PRINTF(" RP: INFO - Radio IRQ received for hook #%u\n", rp-
>radio_task_id);

to read:

SMTC_MODEM_HAL_RP_TRACE_PRINTF(" RP: INFO - Radio IRQ received for hook #%u at time
%u\n", rp->radio_task_id, rp->irq_timestamp_ms[rp->radio_task_id]);

8.2.3 Add Ready and Trigger Timing Log Information
The variable start_time_ms contains the MCU time at which the SetRx command should be sent to the MCU. Shortly
after, this provokes the opening of the Rx window.

When functioning properly, the command lr1_stack_mac_rx_lora_launch_callback_for_rp() is expected to
be executed a short time before start_time_ms. After preparing the radio for reception, a while-loop inside this
command waits until the current time is equal to start_time_ms. At this point in time, called the trigger time, the
command ral_set_rx() is called. The point at which this while-loop was entered is called the ready time.

The following change to command lr1_stack_mac_rx_lora_launch_callback_for_rp() in
LBM_DIR/smtc_modem_core/lr1mac/src/lr1_stack_mac_layer.c makes it possible to observe the MCU ready
time and the MCU trigger time in the log.

Change the following block of code:

// Wait the exact time
while((int32_t)(rp->tasks[id].start_time_ms - smtc_modem_hal_get_time_in_ms())
> 0)
{
}
smtc_modem_hal_assert(ral_set_rx(&(rp->radio->ral), rp->radio_params[id].rx.time
out_in_ms) == RAL_STATUS_OK);
rp_stats_set_rx_timestamp(&rp->stats, smtc_modem_hal_get_time_in_ms());

to read:

// Wait the exact time
uint32_t tcurrent_ms = smtc_modem_hal_get_time_in_ms();
while((int32_t)(rp->tasks[id].start_time_ms - smtc_modem_hal_get_time_in_ms())
> 0)
{
}
smtc_modem_hal_assert(ral_set_rx(&(rp->radio->ral), rp->radio_params[id].rx.time
out_in_ms) == RAL_STATUS_OK);
rp_stats_set_rx_timestamp(&rp->stats, smtc_modem_hal_get_time_in_ms());
SMTC_MODEM_HAL_TRACE_PRINTF("RX ready at %d, triggered at %d\n", tcurrent_ms, rp->t
asks[id].start_time_ms);

www.semtech.com

LoRa Basics™ Modem 30 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

8.2.4 Perform a Debugging Session
Once the logging is configured as described above, connect a logic analyzer and run the LoRaWAN® example.

1. First, confirm that the MCU ready time is less than the MCU trigger time. If not, this indicates that there is no
margin for error because either lr1_stack_mac_rx_lora_launch_callback_for_rp() is being entered
too late, or the radio preparations are taking too long. Debugging with additional trace calls should be done in
such a way as to not interfere with LoRa Basics Modem timing. Other possibilities for debugging include using
LED diagnostics.

2. Referring back to section 8.2.2, observe the log to determine the MCU time at which the TxDone interrupt was
timestamped by the MCU. Define this value tm1.

3. Referring back to section 8.2.3, observe the log to determine the MCU time at which the SetRx call was initiated.
Define this value tm2.

4. Define delta1 = tm2 - tm1.
5. Using a logic analyzer that can decode the radio SPI bus communication, search for the last transceiver command

preceding the first transceiver post-reset radio interrupt service request. The command should be SetTx, which
can be verified by looking at the SPI bus data and the transceiver user manual.

6. Define ta1 to be the time, according to the logic analyzer, at which the DIO line rises.
7. Shortly after this moment when the DIO line rises, the MCU software should read and clear the IRQ status, causing

the DIO line to fall.
8. Now, search for the last transceiver command preceding the second post-reset transceiver interrupt service

request. This command should be SetRx, which can be verified by looking at the transceiver user manual. Define
ta2 to be the time, according to the logic analyzer, at which the NSS line fell right before sending SetRx. This
corresponds approximately to the trigger time.

9. Define delta2 = ta2 – ta1.
a. delta1 is the MCU time between the TxDone interrupt and the initiation of the SetRx command.
b. delta2 is the logic analyzer time between the TxDone interrupt and the initiation of the SetRx

command.
c. delta1 and delta2 should be within 1 ms of one another, after correcting for the MCU clock accuracy.

10. Recall that the board delay is the amount of time between the ready time and the moment the transceiver
initiates reception. Consider the SetRx command on the logic analyzer, and observe the amount of time
between the moment that NSS falls and the moment that NSS rises. This value, in milliseconds, is reasonably
close to the board delay. Edit the smtc_modem_hal_get_board_delay_ms() HAL command so that it returns
this value, after rounding up.

The window fine-tuning feature can now be reactivated, if desired, by undefining the preprocessor definition
BSP_LR1MAC_DISABLE_FINE_TUNE.

www.semtech.com

LoRa Basics™ Modem 31 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

9 Revision History

User
Manual
Version

ECO Date Applicable to Changes

1.0 - Apr 2020 Use Case: 01
FW Version:

03.07 or later

First Release

2.0 060217 Jan-2022 Use Case: 01
FW Version:

03.07 or later

Major updates for LoRa Basics Modem changes.

3.0 062410 Jul-2022 Use Case: 01
FW Version:

03.07 or later

Updated according to LoRa Basics Modem version 3.1.7.

4.0 064024 Oct-2022 - Updated according to LoRa Basics Modem version 3.2.4.

www.semtech.com

LoRa Basics™ Modem 32 of 32
Porting Guide Rev 4.0 Semtech
PG.LoRaBasicsModem.W.App October 2022 Proprietary & Confidential

Important Notice

Information relating to this product and the application or design described herein is believed to be reliable, however, such
information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or
design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice.
Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. Semtech warrants performance of its products to the specifications applicable at the time of sale, and all sales are made
in accordance with Semtech's standard terms and conditions of sale.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT
APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED
TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH
PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a
customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees
which could arise.

The Semtech name and logo are registered trademarks of the Semtech Corporation. The LoRa® Mark is a registered trademark of
the Semtech Corporation. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective
companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further
notice. Semtech makes no warranty, representation, or guarantee, express or implied, regarding the suitability of its products for
any particular purpose. All rights reserved.

© Semtech 2022

Contact Information

Semtech Corporation
Wireless & Sensing Products

200 Flynn Road, Camarillo, CA 93012
E-mail: sales@semtech.com

Phone: (805) 498-2111, Fax: (805) 498-3804
www.semtech.com

http://www.semtech.com/

	1 Introduction
	1.1 Purpose of this Manual
	1.2 Scope

	2 Overview
	2.1 MCU Requirements
	2.2 Transceiver Requirements
	2.3 Release Build Resource Use
	2.4 Debug Build Resource Use
	2.5 System Design Considerations

	3 Radio Driver HAL Implementation
	4 RAL BSP Implementation
	5 LoRa Basics Modem HAL Implementation
	5.1 smtc_modem_hal_reset_mcu()
	5.2 smtc_modem_hal_reload_wdog()
	5.3 smtc_modem_hal_get_time_in_s()
	5.4 smtc_modem_hal_get_time_compensation_in_s()
	5.5 smtc_modem_hal_get_compensated_time_in_s()
	5.6 smtc_modem_hal_get_time_in_ms()
	5.7 smtc_modem_hal_get_time_in_100us()
	5.8 smtc_modem_hal_get_radio_irq_timestamp_in_100us()
	5.9 smtc_modem_hal_start_timer()
	5.10 smtc_modem_hal_stop_timer()
	5.11 smtc_modem_hal_disable_modem_irq()
	5.12 smtc_modem_hal_enable_modem_irq()
	5.13 smtc_modem_hal_context_restore()
	5.14 smtc_modem_hal_context_store()
	5.15 smtc_modem_hal_store_crashlog()
	5.16 smtc_modem_hal_restore_crashlog()
	5.17 smtc_modem_hal_set_crashlog_status()
	5.18 smtc_modem_hal_get_crashlog_status()
	5.19 smtc_modem_hal_assert_fail()
	5.20 smtc_modem_hal_get_random_nb()
	5.21 smtc_modem_hal_get_random_nb_in_range()
	5.22 smtc_modem_hal_get_signed_random_nb_in_range()
	5.23 smtc_modem_hal_irq_config_radio_irq()
	5.24 smtc_modem_hal_radio_irq_clear_pending ()
	5.25 smtc_modem_hal_start_radio_tcxo()
	5.26 smtc_modem_hal_stop_radio_tcxo()
	5.27 smtc_modem_hal_get_radio_tcxo_startup_delay_ms()
	5.28 smtc_modem_hal_get_battery_level()
	5.29 smtc_modem_hal_get_temperature()
	5.30 smtc_modem_hal_get_voltage()
	5.31 smtc_modem_hal_get_board_delay_ms()
	5.32 smtc_modem_hal_print_trace()

	6 Building with GNU Make
	7 Building without GNU Make
	7.1 Logging

	8 Rx Window Debugging
	8.1 Clock Error Compensation
	8.2 Rx Window Fine-Tuning
	8.2.1 Rx Window Debugging Configuration
	8.2.2 Add IRQ Timing Log Information
	8.2.3 Add Ready and Trigger Timing Log Information
	8.2.4 Perform a Debugging Session

	9 Revision History

