

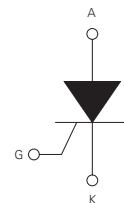
S6002xS

Description

The S6002xS offers high very high di/dt capability through small die planar construction design. It is glass-passivated to ensure long term reliability and parametric stability.

Features

- Surge capability > 25Amps
- Blocking voltage (V_{DRM}/V_{RRM}) capability — up to 600V
- High di/dt capability of 500A/ μ s
- Improved turn-off time (t_{q}) < 55 μ sec.
- Sensitive gate for direct microprocessor interface
- Thru hole and surface mount packages
- RoHS compliant and Halogen-Free


Main Features

Symbol	Value	Unit
I_{TRMS}	2	A
V_{DRM}/V_{RRM}	600	V
I_{GT}	200	μ A

Applications

The S6002xS is specifically designed for capacitor discharge application such as high-power gas flame ignition.

Schematic Symbol

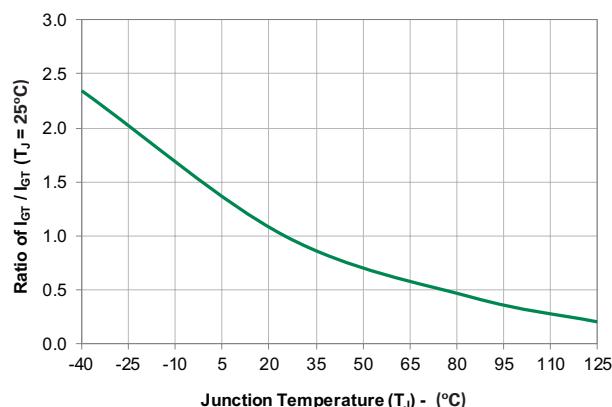
Absolute Maximum Ratings

Symbol	Parameter		Value	Unit
I_{TRMS}	RMS on-state current (full sine wave)	TO-92	$T_c = 65^\circ C$	2
		SOT-223	$T_c = 95^\circ C$	
$I_{T(AV)}$	Average on-state current	TO-92	$T_c = 65^\circ C$	1.2
		SOT-223	$T_c = 95^\circ C$	
I_{TSM}	Non repetitive surge peak on-state current (Single cycle, T_j initial = 25°C)	TO-92 SOT-223	$F = 50$ Hz	22.5
			$F = 60$ Hz	
I^2t	I^2t Value for fusing	$t_p = 10$ ms	$F = 50$ Hz	2.5
di/dt	Critical rate of rise of on-state current $IG = 10$ mA	TO-92 SOT-223	$T_j = 25^\circ C$	500
I_{GM}	Peak gate current	$t_p = 20$ μ s	$T_j = 125^\circ C$	1.0
$P_{G(AV)}$	Average gate power dissipation		$T_j = 125^\circ C$	0.2
T_{stg}	Storage junction temperature range			-40 to 150
T_j	Operating junction temperature range			-40 to 125

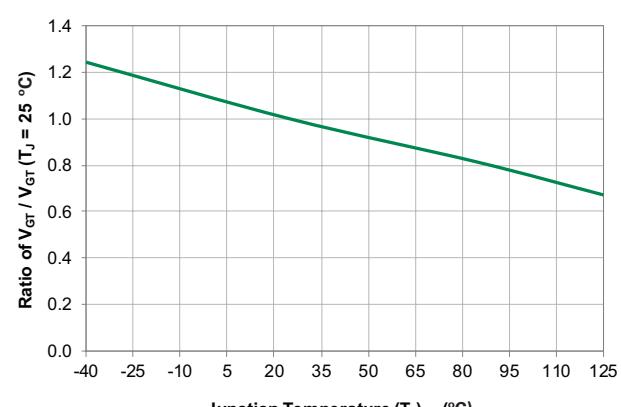
Electrical Characteristics ($T_J = 25^\circ\text{C}$, unless otherwise specified)

Symbol	Description	Test Conditions	Value		Unit
			Min	Max	
I_{GT}	DC Gate Trigger Current	$V_D = 6\text{V}$ $R_L = 100\ \Omega$	20	200	μA
V_{GT}	DC Gate Trigger Voltage		—	0.8	V
V_{GRM}	Peak Reverse Gate Voltage	$I_{RG} = 10\mu\text{A}$	5	—	V
I_H	Holding Current	$R_{GK} = 1\ \text{k}\Omega$	—	5	mA
V_{GD}	Gate Non-Trigger Voltage	$V_D = V_{DRM}$ $R_{GK} = 1\ \text{k}\Omega$ $T_J = 125^\circ\text{C}$	0.2	-	V
dv/dt	Critical Rate-of-Rise of Off-State Voltage	$T_J = 125^\circ\text{C}$ $V_D = 67\% V_{DRM}$ Exponential Waveform $R_{GK} = 1\ \text{k}\Omega$	25	—	V/ μs
t_q	Turn-Off Time	$I_T = 0.5\text{A}$	—	55	μs
t_{gt}	Turn-On Time	$I_G = 10\text{mA}$ PW = 15 μsec $I_T = 3.0\text{A}$ (pk)	—	3	μs

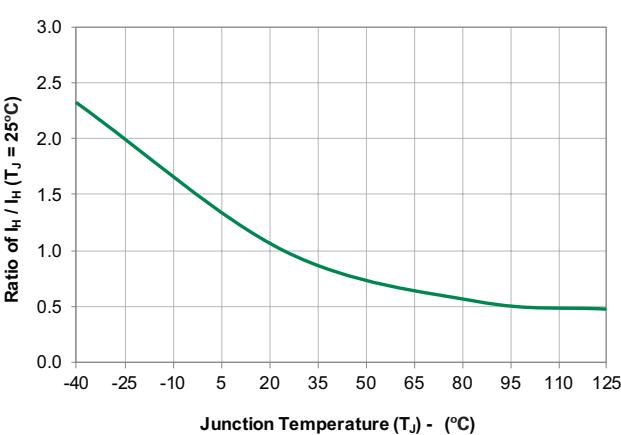
Static Characteristics ($T_J = 25^\circ\text{C}$, unless otherwise specified)


Symbol	Description	Test Conditions	Value		Unit
			Min	Max	
V_{TM}	Peak On-State Voltage	$I_{TM} = 3\text{A}$ (pk), $T_p = 380\mu\text{s}$	—	1.5	V
I_{DRM} / I_{RRM}	Off-State Current, Peak Repetitive	$T_J = 25^\circ\text{C} @ V_D = V_{DRM}$ $R_{GK} = 1\ \text{k}\Omega$	—	5	μA
		$T_J = 125^\circ\text{C} @ V_D = V_{DRM}$ $R_{GK} = 1\ \text{k}\Omega$	—	500	μA

Thermal Resistances


Symbol	Parameter			Value	Unit
$R_{\theta(JC)}$	Junction to case (AC)	$I_T = 1.5\text{A}$ ¹ (RMS)	TO-92	30	$^\circ\text{C}/\text{W}$
			SOT-223	15	
$R_{\theta(J-A)}$	Junction to ambient	$I_T = 1.5\text{A}$ ¹ (RMS)	TO-92	160	$^\circ\text{C}/\text{W}$
			SOT-223	60	

¹ 60Hz AC resistive load condition, 100% conduction.


Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

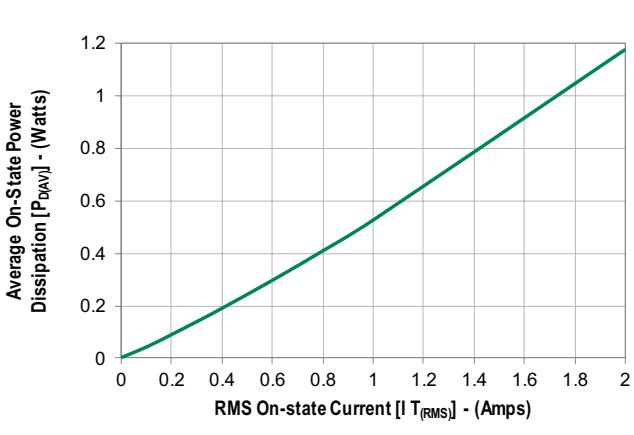
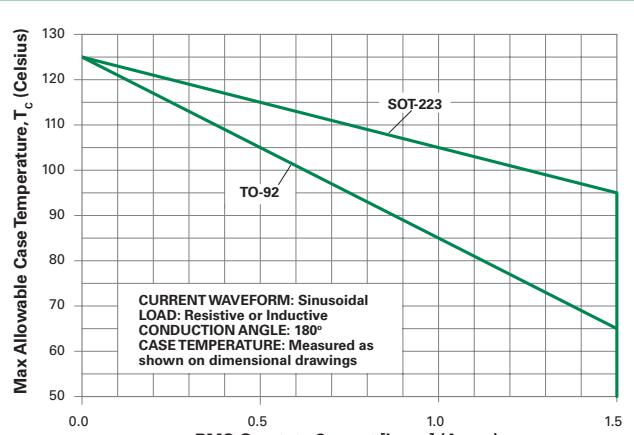

Figure 2: Normalized DC Holding Current vs. Junction Temperature

Figure 3: Normalized DC Gate Trigger Voltage vs. Junction Temperature


Figure 4: On-State Current vs. On-State Voltage (Typical)

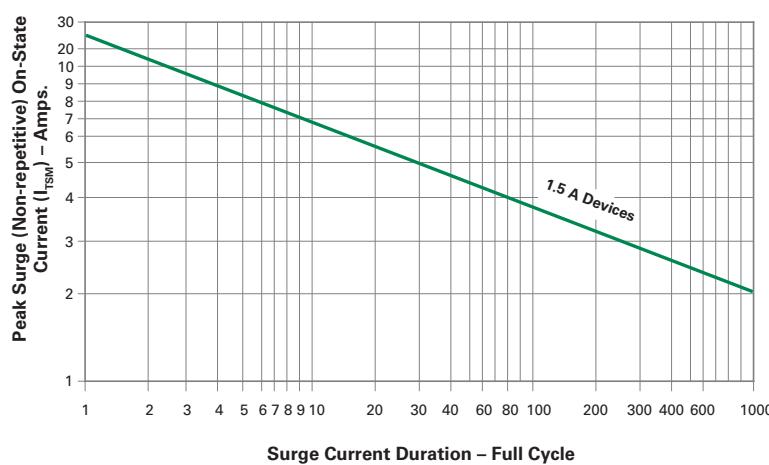
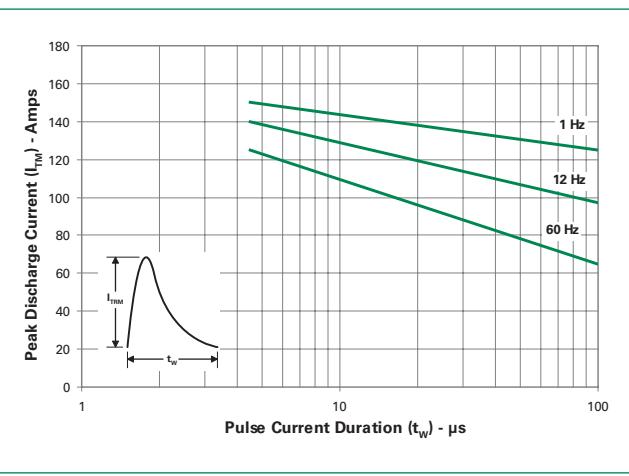
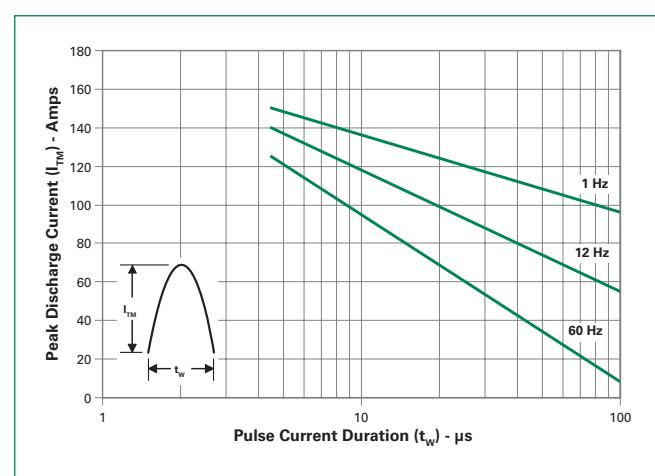

Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

Figure 6: Maximum Allowable Case Temperature vs. On-State Current


Figure 7: Surge Peak On-State Current vs. Number of Cycles


Supply Frequency: 60Hz Sinusoidal
 Load: Resistive
 RMS On-State Current (I_{TIRMS}): Max Rated Value at Specific Case Temperature

- Notes:
1. Gate control may be lost during and immediately following surge current interval.
 2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

Figure 8: Peak Repetitive Capacitor Discharge Current

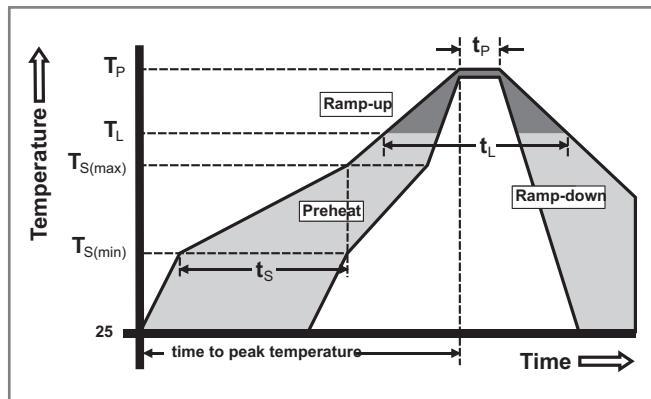


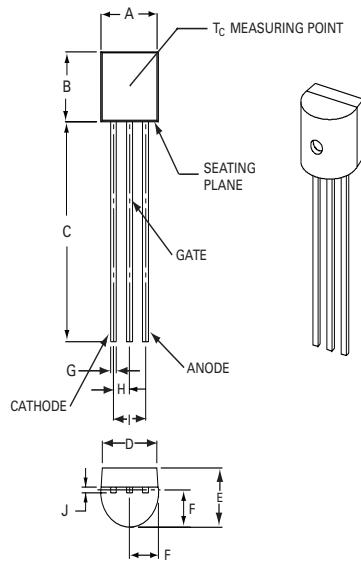
Figure 9: Peak Repetitive Sinusoidal Pulse Current

Soldering Parameters

Reflow Condition		Pb – Free assembly
Pre Heat	-Temperature Min ($T_{s(min)}$)	150°C
	-Temperature Max ($T_{s(max)}$)	200°C
	-Time (min to max) (t_s)	60 – 180 secs
Average ramp up rate (Liquidus Temp) (T_L) to peak		5°C/second max
$T_{s(max)}$ to T_L - Ramp-up Rate		5°C/second max
Reflow	-Temperature (T_L) (Liquidus)	217°C
	-Time (min to max) (t_s)	60 – 150 seconds
Peak Temperature (T_p)		260 ^{+0/-5} °C
Time within 5°C of actual peak Temperature (t_p)		20 – 40 seconds
Ramp-down Rate		5°C/second max
Time 25°C to peak Temperature (T_p)		8 minutes Max.
Do not exceed		280°C

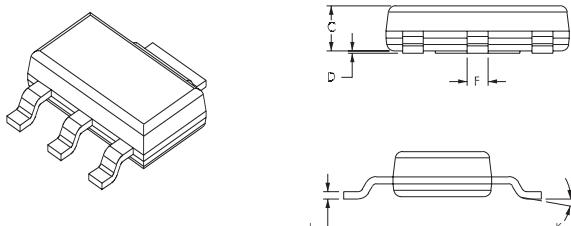
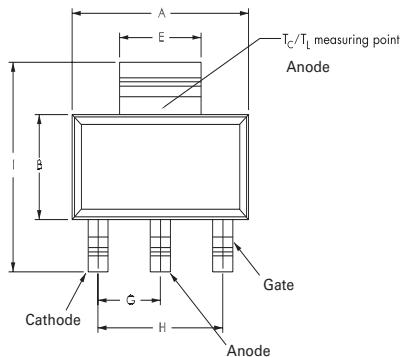
Physical Specifications

Terminal Finish	100% Matte Tin-plated.
Body Material	UL Recognized compound meeting flammability rating V-0.
Lead Material	Copper Alloy

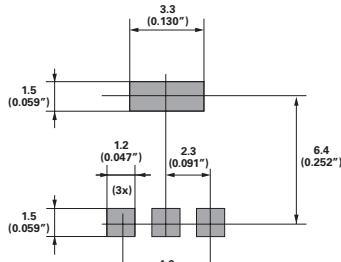

Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications



Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 1000 cycles; -55°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 160V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

Dimensions – TO-92 (E Package)



Dimensions	Inches		Millimeters	
	Min	Max	Min	Max
A	0.175	0.205	4.450	5.200
B	0.170	0.210	4.320	5.330
C	0.500	—	12.700	—
D	0.135	—	3.430	—
E	0.125	0.165	3.180	4.190
F	0.080	0.105	2.040	2.660
G	0.016	0.021	0.407	0.533
H	0.045	0.055	1.150	1.390
I	0.095	0.105	2.420	2.660
J	0.015	0.020	0.380	0.500

Dimensions – SOT-223

Pad Layout for SOT-223

Dimensions in Millimeters (Inches)

Dimensions	Inches			Millimeters		
	Min	Typ	Max	Min	Typ	Max
A	0.248	0.256	0.264	6.30	6.50	6.70
B	0.130	0.138	0.146	3.30	3.50	3.70
C	—	—	0.071	—	—	1.80
D	0.001	—	0.004	0.02	—	0.10
E	0.114	0.118	0.124	2.90	3.00	3.15
F	0.024	0.027	0.034	0.60	0.70	0.85
G	—	0.090	—	—	2.30	—
H	—	0.181	—	—	4.60	—
I	0.264	0.276	0.287	6.70	7.00	7.30
J	0.009	0.010	0.014	0.24	0.26	0.35
K	10° MAX					

Product Selector

Part Number	Voltage	Gate Sensitivity	Package
	600V		
S6002ES	X	200µA	TO92
S6002TS	X	200µA	SOT223

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
S6002ES	S6002ES	0.217g	Bulk	2500
SS6002ESAP	S6002ES	0.217g	Ammo Pack	2000
S6002ESRP	S6002ES	0.217g	Tape & Reel	2000
S6002TSRP	S6002TS	0.120g	Tape & Reel	1000

Part Numbering System

SCR SERIES

VOLTAGE
60: 600V

CURRENT
02: 2A

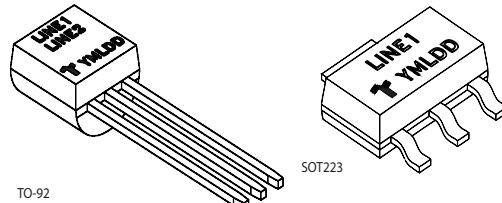
PACKING TYPE

Blank: Bulk Pack

RP: Reel Pack (TO-92)

AP: Embossed Carrier Pack (SOT-223)

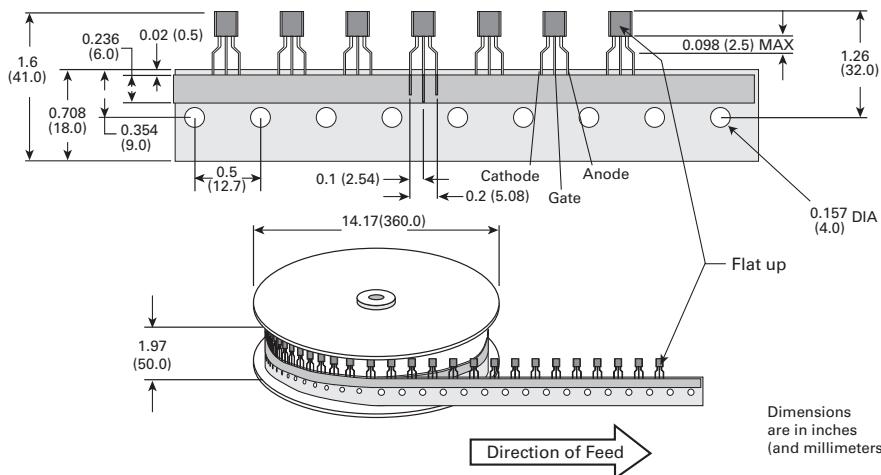
SENSITIVITY


S: 200µA Sensitive SCR

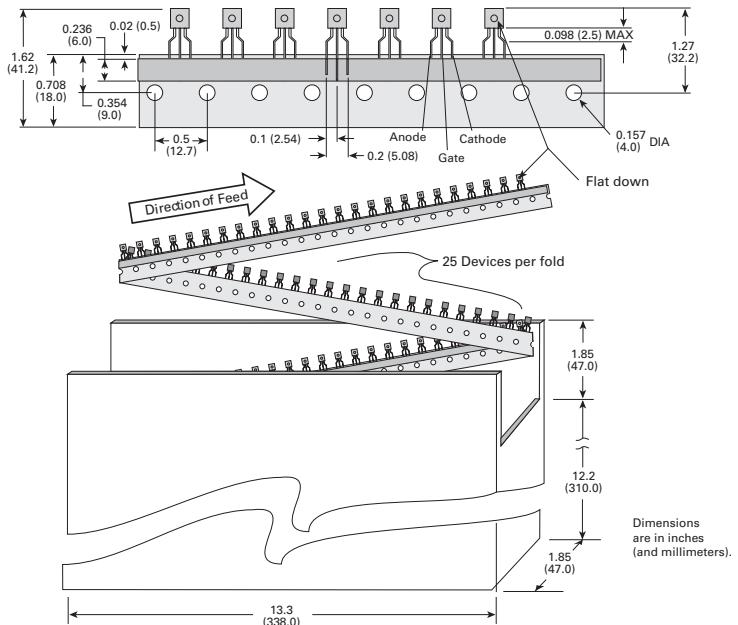
PACKAGE TYPE

E: TO-92

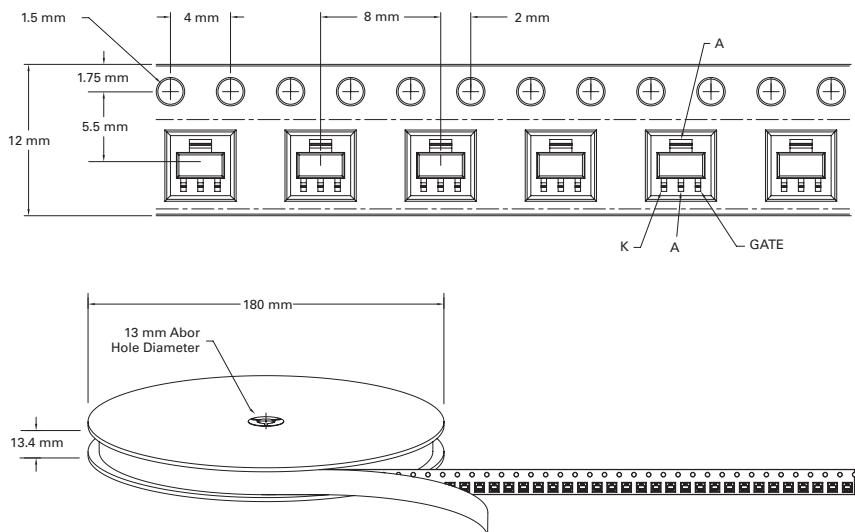
T: SOT-223


Part Marking System

Line1 = Littelfuse Part Number
Line2 = continuation...Littelfuse Part Number
Y = Last Digit of Calendar Year
M = Letter Month Code (A-L for Jan-Dec)
L = Location Code
DD = Calendar Date


TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-C Standards



TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

Meets all EIA-468-C Standards

SOT-223 Reel Pack (RP) Specifications

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications.

Read complete Disclaimer Notice at <http://www.littelfuse.com/disclaimer-electronics>.