

a YAGEO company

KEMET Snap-In Electrolytic Evolution!

Solution for multiple market problems!

Press-Fit ALFxx:
Eliminates Solder!

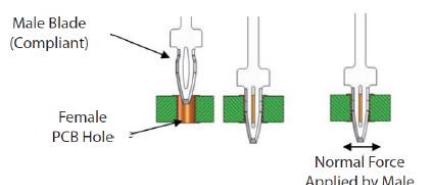
Press-Fit

Solution for Multiple Problems

Problem

Soldering Problems


- Ever increasing large aluminum electrolytics used on a PCB
- Heavy copper tracking on the PCB acts as a heat sink making soldering difficult
- Low/Mid volumes are assembled with expensive hand-soldering which has high variability
- Solder quality issues result - cold spots, voids, splatter, cracks, solder balls, flux residue and others


Solution

Stop Soldering!

- No solder and no flux needed
- Press-Fit pins create the electrical connection within the PCB
- The Press-Fit pin used by KEMET is the proven 'eye of the needle' technology

Press-Fit Male/Female Interconnects

Press-Fit

Solution for Multiple Problems

- After reflow or hand soldering, the PCB must be washed
- More aggressive methods of washing are emerging, and this can force water under the insulating sleeve of larger aluminum electrolytics.

Problem

Washing Problems

- Expensive Hand-washing
- Selective soldering after the washing operation – expensive equipment and programming required
- Protecting large capacitors with “a hat” before washing (ummmmm really??)
- Removing the insulating sleeve which can lead to other complications

Ballooning sleeve caused by water entrapment during aggressive washing of a large electrolytic

©KEMET Co.

ts Reserved

Solution

Stop Washing

- Insert Press-Fit after washing with a simple pressing operation
- Without solder and flux, no washing is required

Press-Fit

Solution for Multiple Problems

Problem

Rework Problems

- At the end of the line and PCB tests faulty.....
- Saving the good, valuable components with rework makes sense, if you can.....
- Solder makes removal of the capacitor difficult
- Capacitor or PCB may no longer be usable

Solution

Push the Press-Fit capacitor out with a manual Arbor Press

- PTH in the PCB can be used with a new Press-Fit up to 2X
- Capacitors can be salvaged but re-use should use solder to ensure the performance

Press-Fit

Solution for Multiple Problems

Problem

Field Repair or Preventative Maintenance

- Multiple soldered components makes field work complicated and lengthy
- This creates angry customers and cranky repairmen

Solution

Easy Repair

- Instead of de-soldering and re-soldering, or even replacing the entire PCB, use a simple arbor press to push out the Press-Fit capacitors and re-insert new ones in a fraction of the time or at much less expense

Press-Fit

Other Advantages

All the electrical robustness of the KEMET Industrial Snap-in family

Design flexibility for optimization

On-line life calculator to determine hours of life in the specific application

PET sleeve and Lexan disc are recognized to UL: QMTR2, UL No. E358957

Applications

Energy Storage Systems

Drives

Alternative Energy

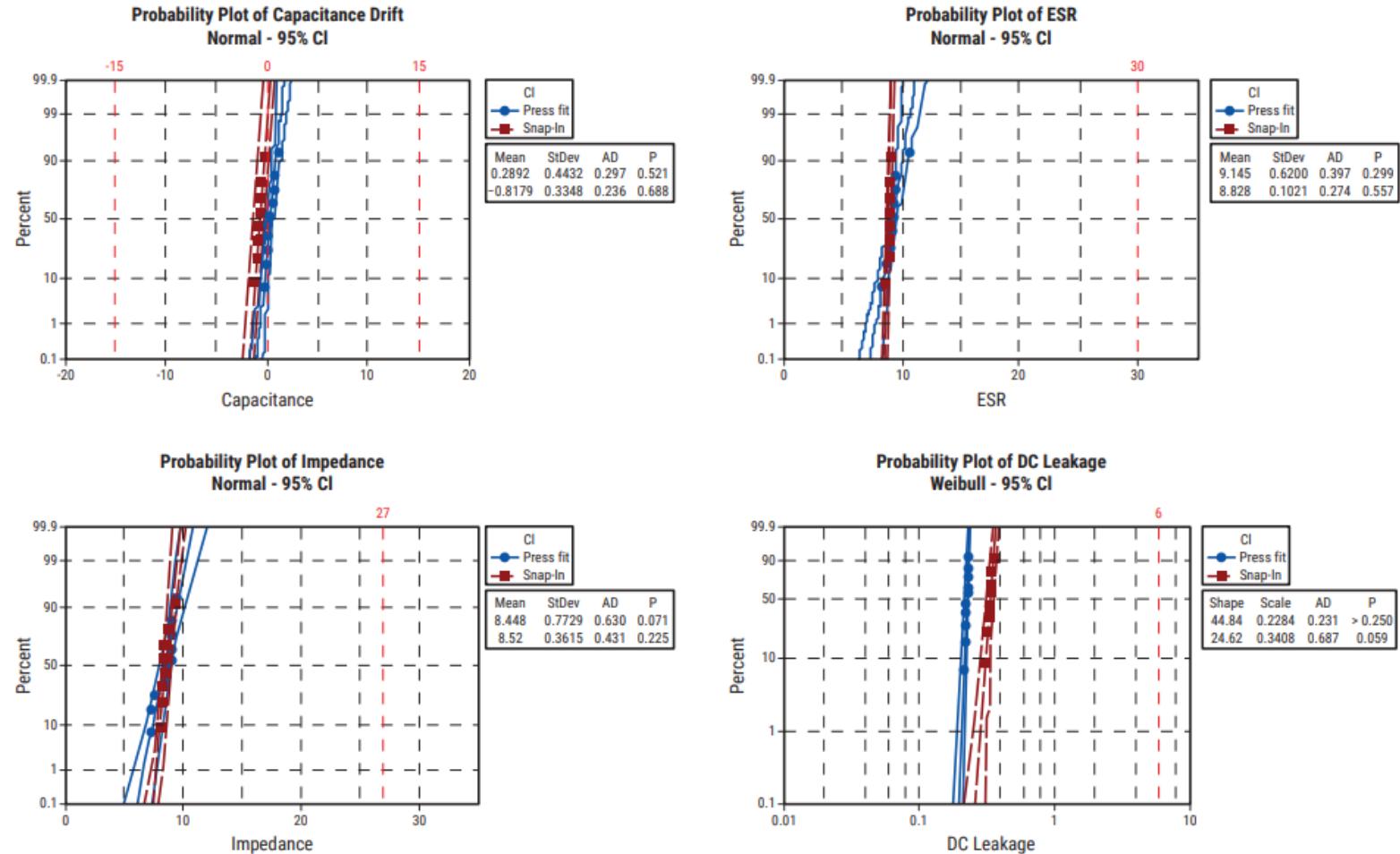
Press-Fit can be qualified
AEC-Q200 – think EV On-board Chargers

Applications using PCBs
with multiple large
Snap-ins!

Press-Fit

Vibration

- Testing has proven that the vibration performance of Press-Fit pins is the same as that of KEMET's robust Industrial Snap-in terminals soldered into a PCB in parts with the same size/weight.
- Same vibration rating in the specifications – 10 g
- Vibrations specifications are always with the capacitors clamped by the body. The rating measures the internal elements' ability to withstand vibration; common failure point is the tabs inside the capacitor


Vibration Test Specifications		Procedure	Requirements
		D ≤ 40 mm	D > 40 mm
		<p>0.75 mm displacement amplitude or 10 g maximum acceleration.</p> <p>Vibration applied for three 2-hour sessions at 10 – 500 Hz</p> <p>(Capacitor clamped by body).</p>	<p>No leakage of electrolyte or other visible damage.</p> <p>Deviations in capacitance from initial measurements must not exceed: $\Delta C/C < 5\%$</p>
		<p>0.35 mm displacement amplitude or 5 g maximum acceleration.</p> <p>Vibration applied for three 0.5-hour sessions at 10 – 55 Hz</p> <p>(Capacitor clamped by body).</p>	

Press-Fit

Electrical performance

- Testing has proven that the electrical performance is the same or better than the corresponding Snap-in equivalent. The pin material actually has slightly lower resistance than that of Snap-in terminals

Endurance Test - AC

Press-Fit

KEMET is first to market with the Press-Fit version of a Snap-in but it is not patented

- Press-Fit technology is not new in the electronic component industry. It's been used for years and is common in IGBTs and Connectors.
- The Press-Fit connection is a proven concept; pairing it with a large aluminum electrolytic is a new innovation
- Other Electrolytic manufacturers are testing and in development now

- Just as other manufacturers are in development, KEMET continues to build the technical road-map
 - Smaller diameter 3 pin version
 - Expansion of the series to include 630V
 - AEC-Q200 qualification of the series (available now on part number basis)

Press-Fit

Reduce Assembly Costs!

- No solder or flux
- Doesn't require expensive hand-soldering
- Elimination of solder quality failures reduces scrap and increases yield
- Insert after washing – eliminate water trapped under the sleeve or hand washing, expensive selective solder equipment, and other protective measures
- New options to maximize savings during rework.

+ Advantages in the field

Major EU Customer estimated
70% assembly cost reduction!

Electrical/Physical Characteristics

Series	Temperature Range	Case Sizes	Tolerance	Dielectric	Pins	Voltage Options	Capacitance Values
ALF70	-40 to 85°C	35, 40, 45, 50 mm diameter; 30 to 105 mm length (smaller diameters on road-map)	±20%	Aluminum Electrolytic	4 pin option 5 pin option (3 pin on road-map)	40-600 VDC	50-150,000 µF
ALF80	-40 to 105°C					25-500 VDC	200-240,000 µF

Press-Fit

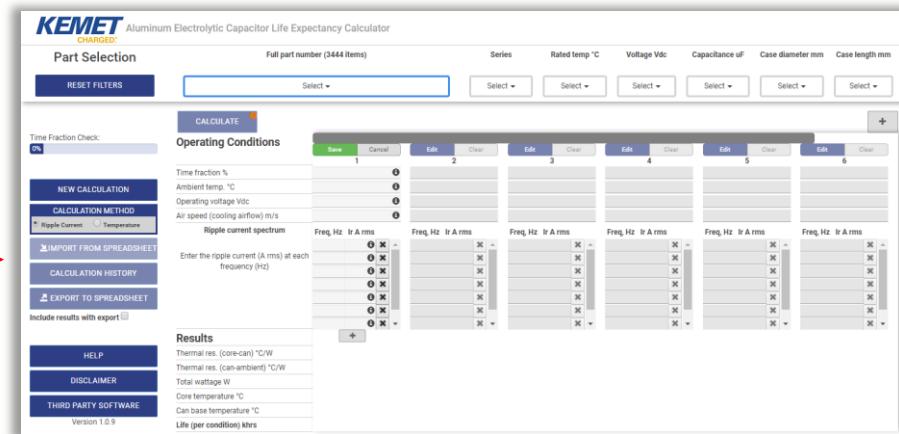
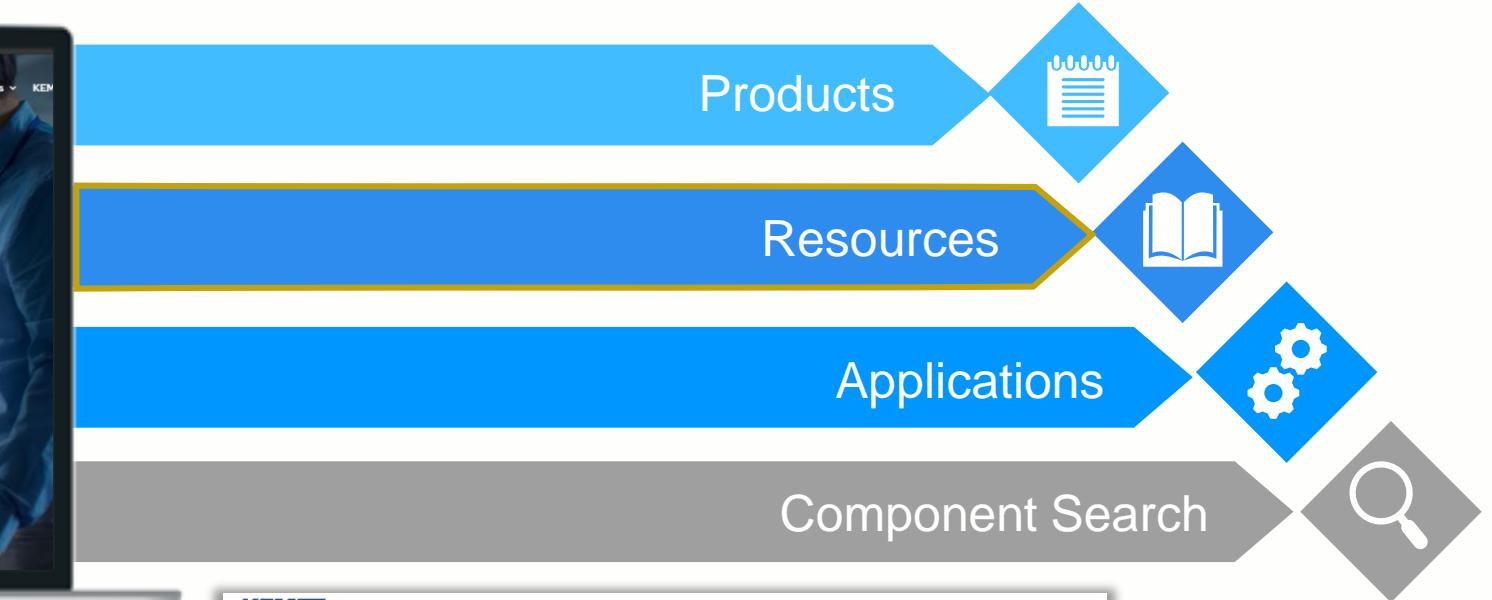
Fun Facts

- Press-Fit terminations are not a new concept. The market has long term experience with the technology.
- Minimum PCB board thickness = 1.57mm
- See datasheet for details on PTH size/tolerance and copper plating requirements
- **Not a “drop-in” replacement for Snap-in; use for new designs and re-designs (due to hole sizing)**
- Shoulder on the pin helps ensure proper fit – press till the shoulder contacts the PCB
- Meets BS EN 60352-5:2012 (Press-Fit standard)
- Base material = Copper Alloy C19010
- Plating Material - Ni and Sn
- Press-Fit capacitors can be pushed out and re-inserted (re-use of capacitors requires solder)
- Replacement during Preventive Maintenance in the field is greatly simplified – press out and new capacitors press in with the same manual arbor press and simple tooling
- PTH can be re-used up to 2X with a new Press-Fit capacitor
- Pressure to insert the Press-Fit pins is 100N per pin.
A 4 pin Press-Fit requires 400N of pressure (roughly 90 pounds). Maximum pressure is 125N per pin.

KEMET ENGINEERING CENTER

Life Time Calculation

Resources → Design Tools



Access and Download KEMET's Top Design Tools

Capacitor Life Calculator

STP Files (3D Models)

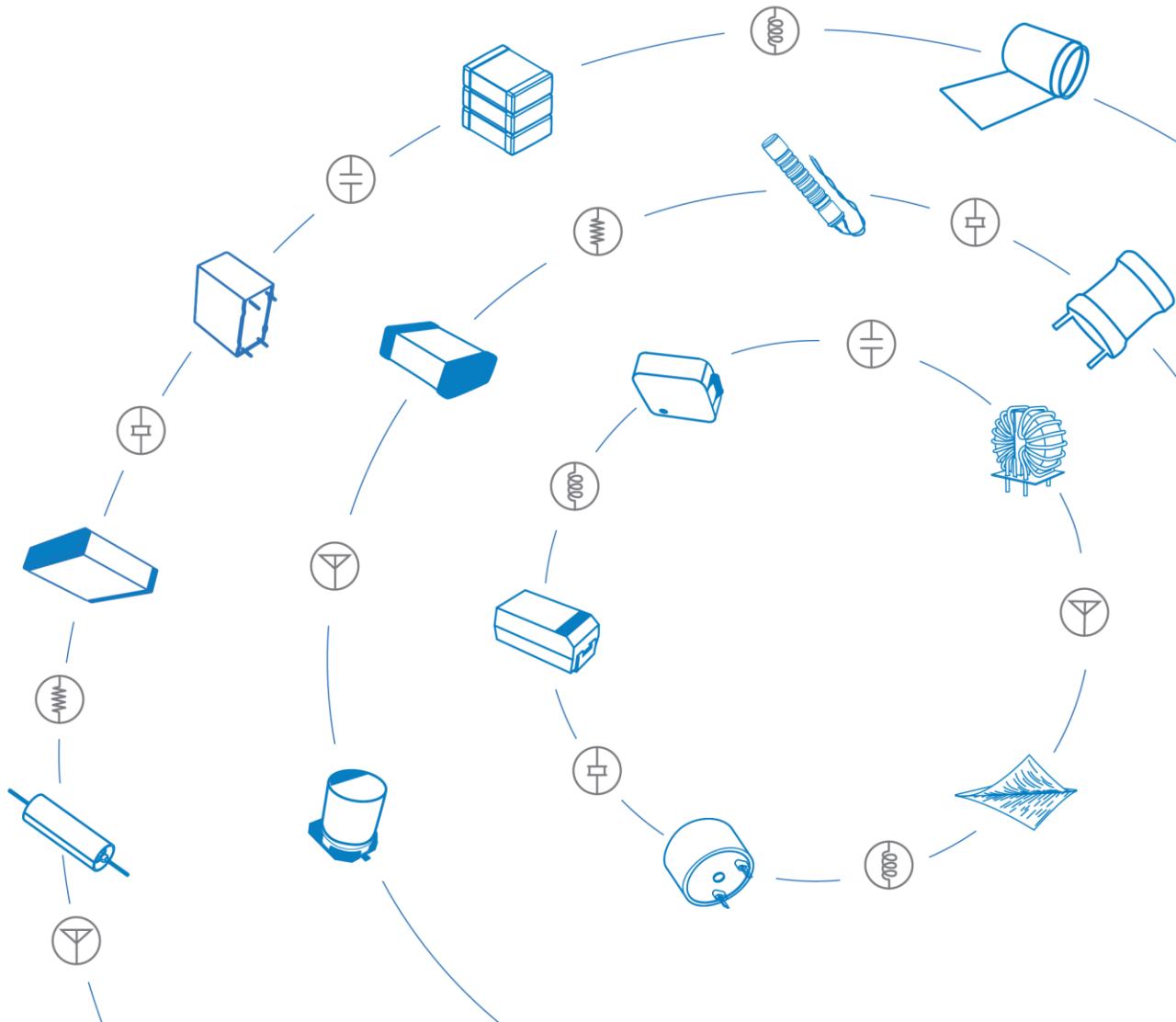
SSD Configuration Calculator

K-SIM

ECAD: Screw Terminal, Snap-In & Press-Fit

Ambient Ta	105.0	A Tc	Life Factor Le	60500	RHa °C/Watt	1.948	old	Op. Vop	450	ED Type
Average Th	105		Arrhenius T2	10	Airflow m/s	0		Std. Vfs	680	Poly
Tr (core rise)	0.0		Act Tr x @ EOL Tx	2	Current paths	1		V Factor Kv	1.000	0.5 mm
Max core Tm	120.0		Max ESR (x)	2	Act esr temp	0.0		Life Lop	15125	H/Sink
Tr for calc Ir	5.0		ESR Factor Ke	1	Use actual esr			Fail mode	ESR	0
Default freqs			Freq	Act ESR	ESR(stdt)	IMP(stdt)	ESR	Calc Ir	Act Ir	Watts
Get Data		Write Cat Data	100	0	9.0	159.4	5.7	21.47	0	0.00
Refresh			120	0	8.5	132.9	5.2	22.47	0	0.00
Life Calc			360	0	6.9	44.7	3.6	27.17	0	0.00
More detail			*	0	5.1	-1.0	1.8	39.14	0	0.00

Theoretical simulation:


- Thermal conditions (ambient, core temperature)
- Ripple currents/frequencies
- ESR, Impedance
- Operational Life
- Airflow

Samples:

- 1 • Samples for testing with thermocouples
- 2 • Measuring the core temperature of the capacitor
- 3 • Performance in a real application environment
- Test data for evaluation

Thank You!

