

InnoSwitch Cheat Sheet (Apps) V1.0

InnoSwitch-CH Output Power Table		
Product	85-265 VAC	
	Adapter	Peak or Open Frame
INN20x3K	12 W	15 W
INN20x4K	15 W	20 W
INN20x5K	20 W	25 W

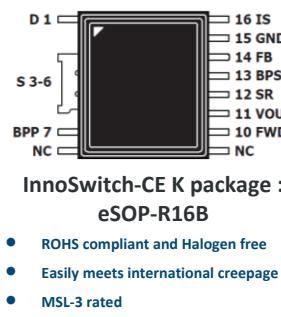
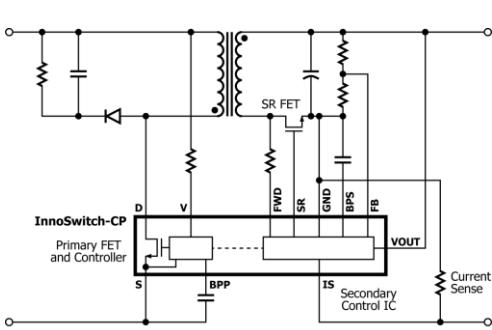
InnoSwitch-EP Output Power Table

Product	230 VAC $\pm 15\%$ 85-265 VAC	
	Peak or Open Frame	
INN2603K	24 W	15 W
INN2604K	27 W	20 W
INN2605K	35 W	25 W

InnoSwitch-CE Power Table

Product	85-265 VAC	
	Adapter (40 °C amb.)	Peak or Open Frame
INN21X3K	12 W	15 W
INN21X4K	15 W	20 W
INN21X5K	20 W	25 W

InnoSwitch-CP Power Table



Product	230 VAC $\pm 15\%$ 85-265 VAC	
	Adapter	Peak or Open Frame
INN2214K	15 W	20 W
INN2215K	22 W	22 W

InnoSwitch-EP (900 V) Power Table

Product	230 VAC $\pm 15\%$ 85-265 VAC	
	Peak or Open Frame	
INN2904K	27 W	20 W

Part Families and Power Rating

1. Inno-CH : Chargers and high voltage Quick Charge (QC)
2. Inno-EP : Appliance, industrial auxiliary power, server standby
3. Inno-CP : Rapid Charging – QC 2.0, QC 3.0 and USB-PD
4. Inno-CE : Appliances, STB, general adapter, - Systems that see surge/spikes
5. Inno-EP (900 V): Meter, Ind. high operating voltage, need to stay on in line surges/swells

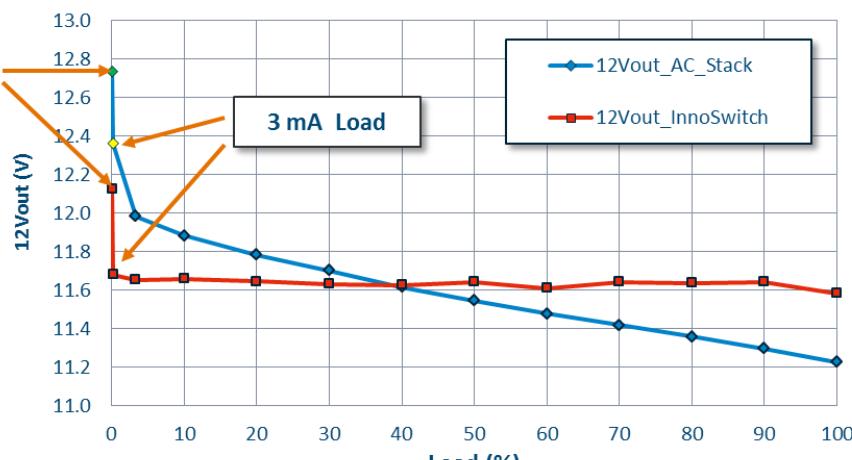
InnoSwitch-CE K package : eSOP-R16B

- ROHS compliant and Halogen free
- Easily meets international creepage
- MSL-3 rated

Family	Part Number	Current Profile	O/P Current	O/P Power	MOSFET	Input uv/ov
CH	20XX	Constant Current	Fixed (2A)	25 W	650 V	No
EP	26XX	Constant Current	External Resistor	35 W	725 V	Yes
CP	22XX	Constant Power	External Resistor	22 W	650 V	Yes
CE	21XX	Constant Current	External Resistor	25 W	650 V	Yes
EP	2904	Constant Current	External Resistor	25 W	900 V	Yes

InnoSwitch Family Features/Differentiation

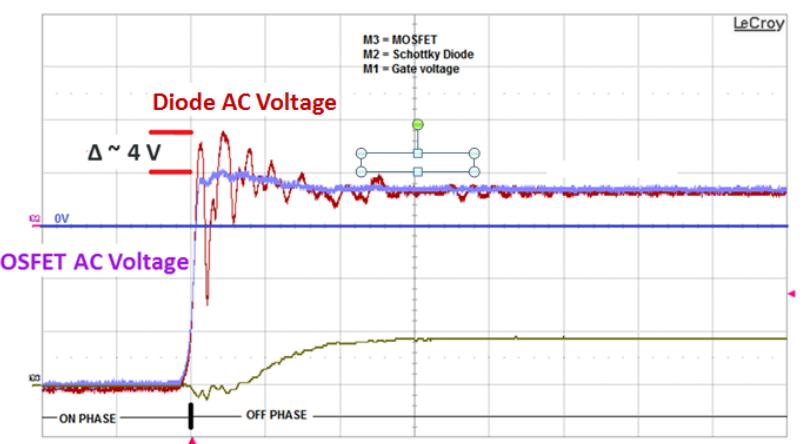
Step	Description	PI Xls used?
1	Enter variables into PI Xls spreadsheet	Yes
2	Enter InnoSwitch-CH variables	Yes
3	Enter bias winding variables	Yes
4	Confirm transformer core and bobbin selection	Yes
5	Iterate transformer design and generate initial design	Yes
6	Use PI Transformer Designer to create a transformer build document	Yes
7	Select circuit components based on the spreadsheet	Yes
8	Select Bias Winding Components based on the spreadsheet	Yes
9	Select primary clamp components	No
10	Select SR-FET and secondary snubber	No
11	Build and test a prototype of the power supply	No
12	Use the test result to refine the design using the PI Xls spreadsheet	Yes


- Primary bypass pin capacitor value determines current limit level for primary-side controller
 - 1 uF INC - increased current limit
 - 0.1 uF STD - standard current limit
 - 10 uF RED - reduced current limit

	B_M	L_g	CMA
L	↑	-	↑
NS	↑	↓	↑
Core size	↑	↓	↑

↑ = Value increases
↓ = Value decreases
- = N/A

Applications


Design Rules

12 V Output regulation (zero load on 5V Main output)

Diodes have larger shift (not compensated) as load increases (Blue slope)

Also the ring on the diode is high – causing higher output at no-load due to peak-charging of the output capacitors.

Synchronous Rectification Much Better than Diodes for Cross-Regulation

- Constant Power is the best solution
 - Always delivers maximum power without over-design of the driver

- As load voltage drops
 - Output current increases
 - Linear change (no steps)
- Best user of charger power
 - Least over-design
 - Most cost-effective
- Best power delivery to load
 - Constant power at any load
 - Ideal for small voltage steps

V_{PK} : Constant Power Threshold
Limited by InnoSwitch maximum power handling capability at 3.0 A (QC 3.0 limit)

- $V_{PK} > 5.35$ V for INN2214
- $V_{PK} > 6.35$ V for INN2215

- BOM cost of PSR, but delivers performance of SSR

- Very fast transient, even though <10 mW no load

- Smaller output capacitor

- Accurate CV/CC

- Independent of transformer variations

- Lowest component count

- Improves manufacturing yield

- Very reliable SR controller

- Low-cost MOSFET rather than Schottky solution
 - 2-3% better efficiency

- High-voltage output without extra components
 - FORWARD pin rated to 150 V

- Easily meets DOE 6/CoC V5 regulations

- Low RMS current delivered in auto-restart (protection) mode
 - Prevents damage in case of a short in a micro-USB output connector

Inno-CP has Constant Power for QC3.0 and USB PD

- Reliable synchronous rectification increases efficiency
 - Integrated primary MOSFET and SR-FET drive
 - Eliminates risk of cross-conduction
 - Reduced dead-time increases efficiency
 - Charger efficiency typically 2-3 % higher than for diode rectification
 - No-load consumption for typical designs less than 10 mW at 230 VAC

High Efficiency and < 10 mW no-load

High Efficiency and < 10 mW no-load