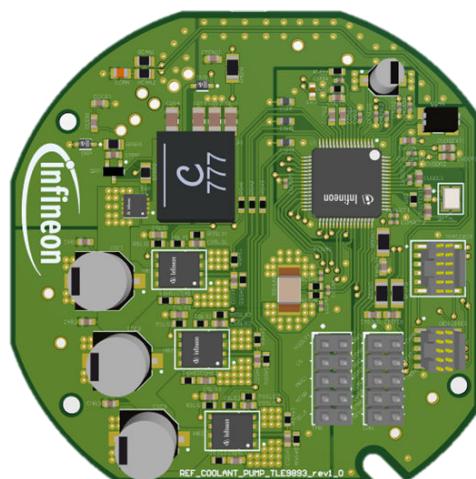


TLE9893-150W Reference Design Guide Preview

Coolant pump 150W

Design overview

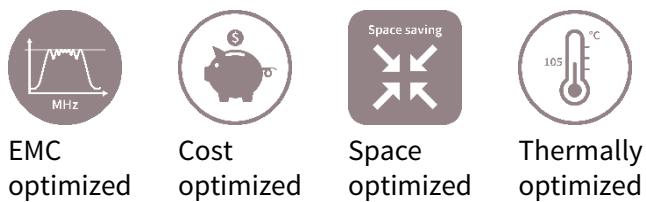

This Infineon reference design guide describes a detailed implementation of an automotive coolant pump using the 3-phase motor driver TLE9893 of the MOTIX™ MCU embedded power IC family as BLDC motor controller. The three half-bridge MOSFETs in a SSO8 package are used to control a coolant pump with sensor-less FOC.

The design is capable of driving loads up to 150 W at a battery voltage of 12 V.

This design guide contains a description of the design, schematics, and measurement reports.

EMC is tested according to the CISPR25 standard. Thermal performance information is given and discussed.

Reference design and diagram

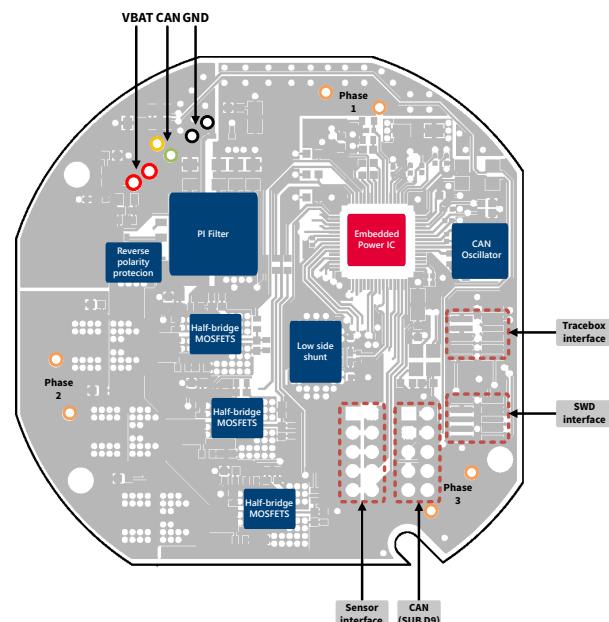

Highlighted components

- TLE9893-2QKW62s
- IAUCN04S7N020D
- IPZ40N04S5-3R1

Applications

- Coolant pumps
- Oil pumps
- 150 W BLDC motor for 12 V applications

Highlighted design aspects



EMC optimized

Cost optimized

Space optimized

Thermally optimized

Important notice**Important notice**

The Evaluation Boards, Reference Boards and the information in this document are solely intended to support designers of applications to evaluate the use of products of Infineon Technologies in the intended application. Environmental conditions have been considered in the design of the Evaluation Boards and Reference Boards provided by Infineon Technologies. The design of the Evaluation Boards and Reference Boards is **tested by** Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The Evaluation Boards and Reference Boards provided by Infineon Technologies are **subject to functional testing only under typical load conditions**. Evaluation Boards and Reference Boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation Boards and Reference Boards are not commercialized products and are **solely intended to be used for evaluation and testing purposes**. They should not be used for reliability testing or production. Hence, the Evaluation Boards and Reference Boards may not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that each Evaluation Board and Reference Board will be handled in a way which is compliant with all relevant requirements and standards in the country in which they are operated.

The Evaluation Boards, Reference Boards and any information in this document are addressed **only to qualified and skilled technical staff, for laboratory usage**, and should be used and managed according to the terms and conditions set forth in this document and in any other related documentation provided with the respective Evaluation Boards or Reference Board.

It is the **responsibility of customer's technical departments to evaluate the suitability** of the Evaluation Boards and Reference Boards for the intended application and the completeness and correctness of the information provided in this document with respect to such application.

The customer accepts that the Evaluation Boards and Reference Boards are not intended to be used for life-endangering applications such as medical, nuclear, military, life-critical or other applications, where failure of the Evaluation Boards and Reference Boards or any results from the use thereof can reasonably be expected to result in personal injury.

The Evaluation Boards and Reference Boards and any information in this document is provided "as is" and Infineon Technologies disclaims any and all warranties, express or implied, including but not limited to warranties of non-infringement of third-party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the Evaluation Boards and Reference Boards and/or from any information provided in this document. The customer is obliged to defend, indemnify, and hold harmless Infineon Technologies from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to change this document and/or any information provided herein at any time without further notice.

Table of contents

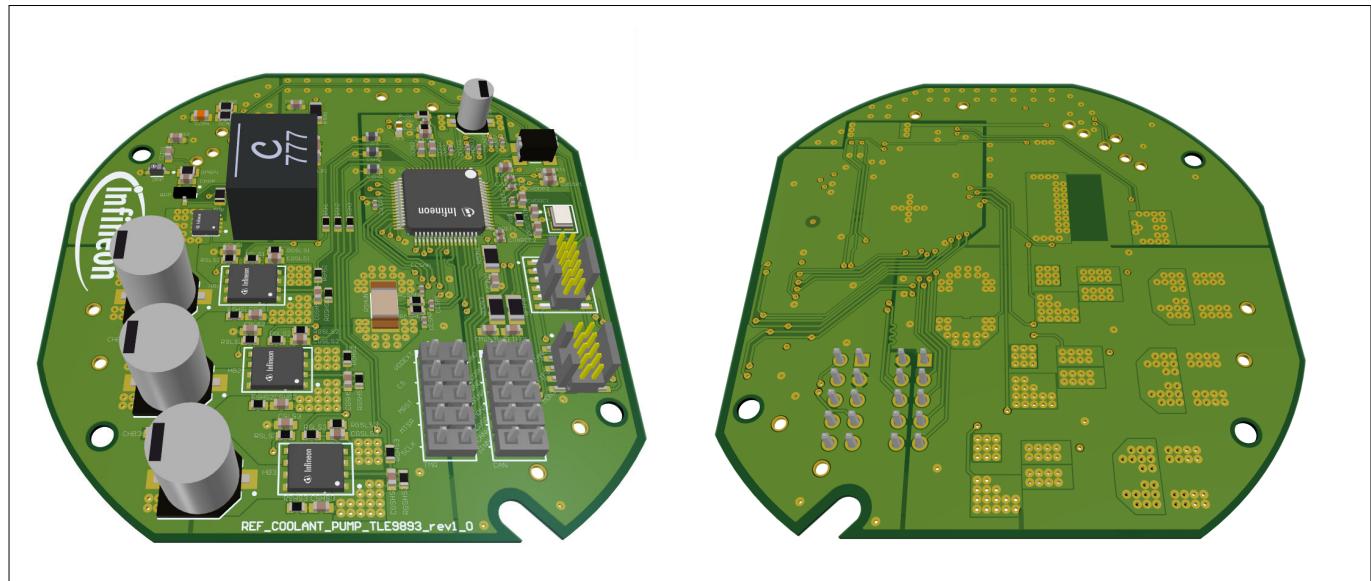
Table of contents

	Important notice	2
	Table of contents	3
1	Design specifications	4
2	Overview	5
3	Highlighted products	6
3.1	OptiMOS-7™ 40 V SSO8 (PG-TDSON-8-60) MOSFET	6
3.2	3-phase bridge driver IC with integrated arm® Cortex®-M3	6
3.3	OptiMOS-5™ 40 V SSO8 (PG-TDSON-8-33) MOSFET	7
4	Switching characteristics	8
5	Self-heating of components	8
6	Conducted emissions	8
6.1	Conducted emissions with motor in off-state	8
6.2	Conducted emissions with motor in on-state	8
7	Abbreviations and definitions	9
8	Reference documents	10
	Revision history	11
	Disclaimer	12

1 Design specifications

1 Design specifications

The design specifications are related to the used components and design considerations. They should not differ from the product datasheet values. In case of misalignment, the datasheet values of the products are valid.


Table 1 Design specifications

Parameter	Symbol	Values			Unit	Comment					
		Min.	Typ.	Max.							
System parameters											
Input voltage	V_{s_max}	-0.3	-	30	V	Specified by design					
Functional input voltage	V_{IN}	7	13.5	18	V	Specified according to coolant pump specification					
Peak input current	I_{IN}	-	-	15	A	Peak current (<10 s)					
Nominal input current	I_{IN}	-	9	-	A	Specified by design (7000 rpm)					
CAN interface	V_{CAN}	-27	-	40	V	P_GEN_03_01 (TLE989x/8x datasheet)					
Phase 1,2,3	V_{SH}	-8	-	48	V	P_GEN_02_05 (TLE989x/8x datasheet)					
Thermal											
Operating temperature	T_A	-40	25	120	°C	Specified by design					
Electromagnetic compatibility											
Conducted emissions	Class 5	CISPR25, 150 kHz -108 MHz									
Mechanical specification											
Dimensions PCB	66 mm × 66 mm × 12 mm (W × D × H)										

2 Overview

2 Overview

Figure 1 shows the 3D CAD view of the system. The FR4 4-layer board has, among other components, three SSO8 half-bridge MOSFETs, one TSDSON-8 MOSFET for active reverse polarity protection, one integrated 3-phase gate driver and one shunt resistor. All active components are carefully placed on the board to distribute the heat over the whole area of the PCB. The shunt resistor is an additional heat source, as it collects all return current from three legs of the bridge. Since the PCB does have surface-mounted components mounted only on the top side, it is possible to directly connect the board to the pump housing for an optimized cooling.

Figure 1 View of the reference design from top and bottom

Note: The delivered reference design has pin 3 of the SWD debugger connector clipped.

3 Highlighted products

3 Highlighted products

3.1 OptiMOS-7™ 40 V SSO8 (PG-TDS0N-8-60) MOSFET

The dual SSO8 package offers high current capability of 60A with a footprint of $5 \times 6 \text{ mm}^2$. In combination with Infineon leading OptiMOS-7™ 40 V power MOS technology, they are optimized to meet and exceed the energy efficiency and power density requirements of automotive BLDC and H-bridge applications. Thanks to Infineon's robust SSO8 package technology, it enables very small and efficient systems designs with minimal $R_{DS(on)}$ down to 1.9 mΩ. For more information about the product, please visit the Infineon webpage: <http://www.infineon.com/optimos7>.

Table 2 Automotive SSO8 MOSFET with 40 V OptiMOS-7™

Product	Max. $R_{DS(on)}$ [mΩ]	ID (DC) [A]	ID (limitation) [A]	Q_G typ. [nC]
IAUCN04S7N020D	1.9	60	210	36
IAUCN04S7N030D	2.5	60	130	24
IAUCN04S7N045D	4.2	60	80	14
IAUCN04S7N055D	5.5	60	60	14
IAUCN04S7N060D	5.8	60	60	10

3.2 3-phase bridge driver IC with integrated arm® Cortex®-M3

The TLE989x family addresses a wide range of smart 3-phase brushless DC motor control applications such as coolant pumps, fans and general BLDC motor applications that require space-constraint solutions and CAN-FD communication. It provides an unmatched level of integration and system cost to optimize the target application. In addition, it offers scalability in terms of flash memory sizes and MCU system clock frequency, supporting a wide range of motor control algorithms, either sensor-based or sensor-less. For more information about the product, please visit the Infineon webpage: <http://www.infineon.com/tle989x>.

Table 3 Product family of 3-phase bridge driver IC with integrated Arm® Cortex®-M3

Grade	Product	Flash	RAM	Security	Interface	SDADC	FuSa
Grade-0	TLE9893-2QKW62S	248 kByte	31 kByte	Yes	CAN-FD	Yes	ASIL-B
	TLE9893QKW62S	248 kByte	31 kByte	Yes	CAN-FD	No	ASIL-B
	TLE9893-2QTW62S	248 kByte	31 kByte	Yes	CAN-FD	Yes	ASIL-B
	TLE9891-2QTW61	120 kByte	16 kByte	No	CAN-2.0	Yes	ASIL-B
	TLE9891-2QTW60	120 kByte	16 kByte	No	CAN-2.0	Yes	QM
Grade-1	TLE9893-2QTA62S	248 kByte	31 kByte	Yes	CAN-FD	Yes	ASIL-B
	TLE9893-2QTA62	248 kByte	31 kByte	No	CAN-FD	Yes	ASIL-B
	TLE9891QTA61	120 kByte	16 kByte	No	CAN-2.0	No	ASIL-B

3 Highlighted products

3.3 OptiMOS-5™ 40 V SSO8 (PG-TDSON-8-33) MOSFET

The SSO8 package offers high current capability of 40 A with a footprint of $3.3 \times 3.3 \text{ mm}^2$. In combination with Infineon's leading OptiMOS-5™ 40 V power MOS technology, it is optimized to meet and exceed the energy efficiency and power density requirements of automotive BLDC and H-bridge applications. Thanks to Infineon's robust S308 leadless package technology, it enables very small and efficient systems designs with minimal RDS(on) down to 2.8 mΩ. For more information about the product, please visit the Infineon webpage: www.infineon.com//optimos5-40v60v.

Table 4 **Automotive S308 MOSFET with 40 V OptiMOS-5™**

Package	Silicon technology	Product	Max. $R_{DS(on)}$ [mΩ]	ID [A]
S308 (PG-TDSON-8)	OptiMOS-5™	IPZ40N04S5L-2R8	2.8	40
		IPZ40N04S5-3R1	3.1	40
		IPZ40N04S5L-4R8	4.8	40
		IPZ40N04S5-5R4	5.4	40
		IPZ40N04S5L-7R4	7.4	40
		IPZ40N04S5-8R4	8.4	40

4 Switching characteristics**4 Switching characteristics**

The switching waveforms of HB3 (low-side MOSFET) were measured during the tests.

5 Self-heating of components

Active components are the main source of power dissipation on the reference design. The biggest sources are the TLE9893 and the half-bridge MOSFETs, whose losses are described as follows:

- TLE9893:
 - Charge pump
 - Gate drivers
 - Internal (CPU, PMU)
- IAUC60N04S7N020D
 - Switching losses
 - Conduction losses

6 Conducted emissions**6.1 Conducted emissions with motor in off-state**

In this condition, the reference design is supplied with 13.5 V and the microcontroller of the TLE9893-2QW62S is executing the code, without controlling the motor. Peak (PK) and average (AV) micro only shows the conducted emissions while the MOSFET bridge driver and charge pump are disabled.

6.2 Conducted emissions with motor in on-state

During this test, the reference design is powered and the microcontroller of the TLE9893-2QW62S is executing the code and the spread spectrum features are enabled. The motor is spinning with 2000 rpm, 5000 rpm, 7000 rpm and 8000 rpm. The MOSFET bridge driver is enabled.

7 Abbreviations and definitions

7 Abbreviations and definitions

Table 5 Abbreviations

Abbreviation	Definition
CAN	Controller Area Network
FOC	Field Oriented Control
MI	Modulation Index
RPP	Reverse Polarity Protection
PSI	Pound per Square Inch
ECU	Electronic Control Unit
PWM	Pulse Width Modulation
PCB	Printed Circuit Board
EMC	Electromagnetic Compatibility
IC	Integrated Circuit
DC	Direct Current
ESR	Equivalent Series Resistance
DUT	Device under test

8 Reference documents

8 Reference documents

This document should be read in conjunction with the following documents:

1. TLE989x/8x Datasheet, Infineon Technologies AG, Rev 1.1
2. TLE989x/8x User Manual, Infineon Technologies AG, Rev 1.0
3. TLE989x/8x Hardware Design Guideline, Infineon Technologies AG, Rev 1.0
4. MOTIX™ TLE989x Motor Control FOC Demo, Infineon Technologies AG, Rev 1.0
5. Reverse Polarity Protection for Embedded Power ICs, Infineon Technologies AG, Rev 1.0
6. IPZ40N04S5L-3R1 Datasheet, Infineon Technologies AG, Rev 1.01
7. IAUCN04S7N020D, Preliminary Datasheet (myICP), Infineon Technologies AG
8. Analytical calculation of the RMS current stress on the DC-link capacitor of voltage-PWM converter systems, 2006-07, IEE Proc.-Electr. Power Appl., Vol. 153, No.4.
9. IPC-2152, 2003-05, Institute for Interconnecting and Packaging Electronic Circuits
10. IEC 60664-1, 2007-04, International Electrotechnical Commission

Revision history

Revision history

Document version	Date of release	Description of changes
Rev. 1.0	2023-11-03	Initial version

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-11-03

Published by

**Infineon Technologies AG
81726 Munich, Germany**

© 2023 Infineon Technologies AG

All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

**Document reference
IFX-Z8F80521372**

Important notice

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.