

Application note Please read the sections “Important notice” and “Warnings” at the end of this document 002-39590 Rev. **

www.infineon.com 2024-03-05

AN239590

Provision CYW20829/CYW89829 to SECURE LCS

About this document

Scope and purpose

This document describes how to provision the AIROC™ CYW20829 Bluetooth® LE 5.4 MCU to SECURE LCS.

Note: Pin locations and electrical and timing specifications of the physical connection are not a part of
this document; see the device datasheet [1] for details.

Intended audience

This document is intended for OEMs who wish to use the security features of CYW20829/CYW89829.

http://www.infineon.com/

Application note 2 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

Table of contents

Table of contents

About this document ... 1

Table of contents .. 2

1 Overview ... 3

1.1 System security ... 3

1.2 Basic definitions .. 3

2 eFuse .. 5

2.1 Device lifecycle .. 5

2.1.1 NORMAL .. 6

2.1.2 NORMAL_NO_SECURE ... 6

2.1.3 SECURE ... 6

3 Provisioning to SECURE LCS .. 7

3.1 Quick start ... 7

3.1.1 Set a path to the on-chip debugger ... 7

3.1.2 Define a target .. 7

3.1.3 Create a new project .. 7

3.1.4 Define the policy... 8

3.2 Key creation ... 8

3.3 Provision the device .. 9

3.3.1 Reprovision the device ... 9

3.4 Image signing .. 10

3.4.1 Image encryption ... 12

3.5 Create debug certificate .. 13

3.6 Return merchandise authorization (RMA) .. 13

4 Nonvolatile memory subsystem .. 14

5 eFuse data mapping .. 15

References .. 17

Revision history... 18

Disclaimer... 19

Application note 3 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

Overview

1 Overview

AIROC™ CYW20829 Bluetooth® LE 5.4 MCU supports the Arm® SWJ-DP interface for programming eFuse using
the Serial Wire Debug (SWD) interface. The part can be programmed after it is installed in the system.

1.1 System security

To protect the hardware and the code (firmware) from being tampered with, you must implement security at
the beginning of any new project.

The products can be hacked via the following ways:

• Direct access to the debug port: With the use of common debug tools and dongles, one can reprogram the

firmware or access the internal data.

• Direct connection to a communication port: Depending on the firmware, the direct connection to any of
the communication ports (SPI, I2C, or a UART) may allow the firmware to be read or updated with a non-
sanctioned software.

• Network connections: The firmware could be accessed with networks such as Bluetooth®, Wi-Fi, or

Ethernet.

• Third-party code: Third-party code that is installed in the device after it has been shipped can also be used
to access the firmware.

1.2 Basic definitions

Table 1 Definitions

Terminology Description

Code signing Process of calculating a hash of the code binary and encrypting the hash with a

private key and appending this to the code binary.

Debug Access Port (DAP) Interface between an external debugger/programmer and CYW20829/CYW89829

for programming and debugging. This allows connection to one of the access

ports (CM33_AP).

Digital signature Encrypted digest (hash of a data set). For example, the encrypted hash of the user

application.

eFuse One-time programmable (OTP) memory that by default is ‘0’ and can be changed
only from ‘0’ to ‘1’. eFuse bits may be programmed individually and cannot be

erased.

Hash Crypto algorithm that generates a repeatable but unique signature for a given

block of data. This function is non-reversible.

Lifecycle stage (LCS) Security mode in which the device is operating. To the user, it has only four stages

of interest: NORMAL, NORMAL_NOSECURE, SECURE, and RMA.

Public key When using asymmetrical cryptography such as RSA or ECC, a public key is used to

validate the firmware that was signed by the private key. It can be shared, but it

should be authenticated or secured so it cannot be modified.

Private key When using asymmetrical cryptography such as RSA or ECC, the private key is used
to sign (encrypt the hash) of the firmware after it is built but prior to being loaded
into the device. It must be kept in a secured location so that it cannot be viewed or

stolen.

Application note 4 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

Overview

Terminology Description

RMA Return merchandise authorization

ROM Read-only memory is non-volatile and is programmed as part of the fabrication

process and cannot be reprogrammed.

ROM boot After a reset, the CPU starts executing code that has been programmed into ROM.

This code cannot be altered.

Serial Memory Interface

(SMIF)

A SPI (Serial Peripheral Interface) communication interface to serial memory

devices, including NOR flash, SRAM, and non-volatile SRAM.

AES Advance Encryption Standard; used to encrypt a block or blocks of data with the

specified key.

TRNG True random number generator: Unlike a pseudo random number generator, the

output of TRNG is always random and cannot be hacked.

Table of contents 2

(TOC2)

An area in the external flash of CYW20829/CYW89829 that is used to store
parameters and pointers to objects used for “Secure Boot”. Locations of one
application pointer is stored here. The first pointer, Application1, must point to

the first executable user code, which may be the bootloader or just the

application.

OEM Original equipment manufacturer: Although technically it means the

manufacturer, in this document it can be referred as the person or entity who has

control over CYW20829/CYW89829.

Application note 5 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

eFuse

2 eFuse

The eFuse is a one-time programmable (OTP) eFuse array consisting of 1024 bits, which are mostly reserved for

the system. However, some of the bits are available for storing security key information and hash values and
can be programmed by the user for device security.

• eFuse memory can be programmed (eFuse bit value changed from ‘0’ to ‘1’) only once. If an eFuse bit is

blown, it cannot be cleared.

• Programming the eFuse bits requires the associated I/O supply to be at a specific level: The device VDDIO_1
(or VDDIO if only one VDDIO is present in the system) supply must be set to 2.5 V (±5%).

• Where eFuse needs to be programmed after the application is running, supply 3.0 V to VDDIO to allow the

application to start, and then lower VDDIO to 2.5 V for eFuse programming.

Table 2 Pins required for eFuse programming

Spec ID# Parameter Description Min Typ Max Unit Details/conditions

SID7E VDDIO_1 Supply when

programming eFuse

2.38 2.5 2.62 V eFuse programming

voltage

Because blowing an eFuse is an irreversible process, when provisioning to SECURE LCS at the factory, it is
recommended to be done under controlled factory conditions using Infineon-provided provisioning tools.

2.1 Device lifecycle

The device lifecycle is a key aspect of the AIROC™ CYW20829/CYW89829 Bluetooth® MCU’s security. Lifecycle

stages follow a strict irreversible progression dictated by programming the eFuse bits (changing the value from

‘0’ to ‘1’). This system is used to protect the internal device data and code at the level required by the customer.
Lifecycle stages are governed by the LIFECYCLE_STAGE eFuse bits and can only be advanced to the next

lifecycle state as shown in Figure 1. For example, once in the SECURE lifecycle stage, the device can never
return to the normal state.

NORMAL

NORMAL_NO_SECURE SECURE

Post-Shipment +
OEM provisioned

Product

RMA

Product lifecycle

Unsecured
FW Secured FW

Figure 1 Device lifecycle

Application note 6 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

eFuse

2.1.1 NORMAL

NORMAL is the initial lifecycle stage of the device when handed over to the OEM. In this stage, the trim values
and wounding values are written into the eFuse. The device will be transitioned to a different lifecycle stage as
suited by the manufacturer.

2.1.2 NORMAL_NO_SECURE

NORMAL_NO_SECURE is the lifecycle stage of a non-secured device. By default, users have full debug access
and may program certain areas in the eFuse using the Infineon tool. Once a device is transitioned to
NORMAL_NO_SECURE LCS, you can no longer transition it to SECURE LCS. For more details, see Provisioning to
SECURE LCS.

2.1.3 SECURE

SECURE is the lifecycle stage of a secured device. To transition to SECURE LCS, complete the following tasks.
Failure to do so could leave you with an inoperable device.

1. Generate the private-public key pair that can be used by the tool provided by Infineon or a third-party tool.

2. Use the Infineon tool to write the public key hash into the eFuse.

3. Sign the firmware image using the private key generated.

4. Transition to SECURE LCS stage by using the proper policy mentioned in the Provisioning to SECURE LCS

section.

In the SECURE LCS stage, the protection state is set to “secure”. A secured device will boot only when the

authentication of its flash boot and application code succeeds.

For more information on the steps, see Provisioning to SECURE LCS.

After the MCU is in the SECURE LCS stage, it is irreversible. The debug ports may be disabled depending on your

preferences, which means that there is no way to reprogram or erase the device with a hardware
programmer/debugger. You should have a secondary application in case there are any upgrades required in

which the primary application will remain stationary and will always be verified by the BOOT_ROM and the
secondary application gets upgraded (for example, MCU_Boot (primary application) can be used to upgrade

the firmware (secondary application)).

Note: The code (user application) should be tested in the NORMAL lifecycle stages before the device

moves to the SECURE lifecycle stage. This is to prevent a configuration error that could cause the
part to be no longer accessible to program, thereby making it unusable.

Application note 7 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

Provisioning to SECURE LCS

3 Provisioning to SECURE LCS

To transition to SECURE LCS, the following pins must be made available to be accessed by the SWD

programmer.

Table 3 Pins required for eFuse programming

Pin name Description

VDDIO_1 Supply for GPIO ports and eFuse programming. See Table 2 for power supply requirements.

P1.2 SWD_IO

P1.3 SWD_Clock

XRES Active LOW system reset without an internal pull-up resistor

You need the Infineon CySecureTools and Infineon OpenOCD software to program the CYW20829/CYW89829

eFuse. These software tools are available as part of the ModusToolbox™ software, which can be downloaded

from the ModusToolbox™ software webpage.

With a default installation of ModusToolbox™ software, the default locations of these tools are as follows:

• OpenOCD root directory: C:\Users\[user_name]\ModusToolbox\tools_3.1\openocd

• CySecureTools: C:\Users\[user_name]\ModusToolbox\tools_3.1\python\Scripts\cysecuretools.exe

For more details, see the CYW20829/CYW89829 section in the CySecureTools webpage.

3.1 Quick start

3.1.1 Set a path to the on-chip debugger

Note: Specifying the path is not mandatory if you have ModusToolbox™ installed on your machine.

OpenOCD from the ModusToolbox™ directory is used by default.

cysecuretools set-ocd --name openocd --path <PATH_TO_OPENOCD_ROOT_DIRECTORY>

Make sure you provide the path to the root directory of OpenOCD (NOT the bin directory).

3.1.2 Define a target

This target name will be used as a -t option value with each command. In this case, use -t cyw20829.

Example command:

cysecuretools -t cyw20829 -p <POLICY> <COMMAND> [OPTIONS]

3.1.3 Create a new project

This copies the list of files required to start using the tool to the current working directory.

Example command:

cysecuretools -t cyw20829 init

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/
https://github.com/Infineon/cysecuretools/blob/master/docs/README_CYW20829.md

Application note 8 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

Provisioning to SECURE LCS

3.1.4 Define the policy

Policy is a text file in JSON format that contains a set of properties for the device configuration (e.g.,
enabling/disabling debug access ports, SMIF configuration, keys information, etc.)

Policy files are located in the policy directory of the user project; the path to a file is specified when almost any
command is run. Select a policy file based on your needs.

For example, if you have ModusToolbox™ installed, the policy files will be located in:

C:\Users\[user_name]\ModusToolbox\tools_3.1\python\Scripts\policy

The package contains the following policy types for the CYW20829/CYW89829 target:

• SECURE – For provisioning a device with keys and then converting the device to the SECURE LCS.

• NO_SECURE – For provisioning a device without keys and then converting the device to the
NORMAL_NO_SECURE LCS.

• REPROVISIONING_SECURE – For reprovisioning an already secured device (previously provisioned with the

SECURE policy type, allows the configuration of a limited set of settings. The file contains only those
settings that can be changed during reprovisioning.

• PROVISIONING_NO_SECURE – For reprovisioning a non-secured device (previously provisioned with the
NO_SECURE policy type), allowing the configuration of a very limited set of settings. The file contains only
those settings that can be changed during reprovisioning.

• HCI - Allows a device to work without external memory by launching the Host Control Interface (HCI)

application placed in the ROM.

3.2 Key creation

1. Create an OEM key pair by specifying the key ID (‘0’ or ‘1’). The keys is generated into the files specified in

the 'keys' section of the policy. You can create both ‘0’ and ‘1’.

2. Provision the device to check the policy for key paths. If key ‘0’ exists, provision it into the device. If both key
‘0’ and key ‘1’ exist, provision both.

3. Sign the image by specifying the key ID (‘0’ or ‘1’). The OEM key path will be set according to the policy.

4. Reprovision device. If key ‘0’ exists, create a reprovisioning packet with the OEM key ‘0’. If key ‘1’ exists,
create a reprovisioning packet with the OEM key ‘0’ and ‘1’. If key ‘0’ does not exist, it indicates an error.

Example command:

cysecuretools -t cyw20829 -p policy/policy_secure.json create-key -k 0

Table 4 Parameters for the “create-key” command

Name Optional/required Description

-k, --key-id

[0|1]
Optional (mutually exclusive with

the --output option)

The OEM key ID. This ID defines the paths where
the public and private keys will be saved based
on the selected policy prebuild and post

build sections. Depending on the selected value

‘0’ or ‘1’, oem_key_0 or oem_key_1 will be used.

Application note 9 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

Provisioning to SECURE LCS

Name Optional/required Description

-o, --output

[private]

[public]

Optional (mutually exclusive with

the --key-id option)

Key pair output files. This is an alternative
option and can be used to create a key in the
different location from the policy location. If it is

specified, the --key-id option will be ignored.
However, using --key-id is preferable because
it allows avoiding accidental provisioning and

signing with a key from different pairs. As the
option value, you must provide private and

public key paths. Specify the option multiple

times to create multiple key pairs.

--aes Optional (mutually exclusive with
the --key-id and --

output options)

Indicates whether to generate an AES key for
image encryption. The key will be saved by the
path specified in the

policy smif_aes_key field.

--key-path Optional Used to generate a key into a specific path.

Applicable with the --aes or --

template option.

--overwrite /

--no-overwrite
Optional Indicates whether to overwrite a key if it already

exists.

--template Optional A JSON file containing the public key modulus
and exponent. The option is used for creating a

PEM file based on public key modulus and

exponent.

--hash-path Optional A path to save the public key hash.

3.3 Provision the device

Use the following command to provision the device into SECURE LCS:

cysecuretools -t cyw20829 -p policy/policy_secure.json provision-device

3.3.1 Reprovision the device

Once a device has been provisioned, it can only be reprovisioned. Reprovisioning allows configuring a limited

set of settings (for example, provisioning an additional OEM key, revoking icv_pubkey_0 and oem_pubkey_0

keys, changing the anti-rollback counter, and so on). The policy_reprovisioning_secure.json file contains only

those settings that can be changed.

Example command:

cysecuretools -t cyw20829 -p policy/policy_secure.json reprovision-device -k 0

Table 5 Parameters for the “reprovision-device” command

Name Optional/required Description

-k, --key-id

[0|1]
Optional The OEM private key ID used to sign the reprovisioning packet. This

ID informs the tool about the key location. The tool will use the path

specified in the selected policy post build section.

Application note 10 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

Provisioning to SECURE LCS

Name Optional/required Description

--key-path Optional Sets OEM private key that is used to sign the reprovisioning packet.

Overrides the --key-id option.

--probe-id Optional Probe serial number.

--existing-

packet
Optional Skips reprovisioning packet creation and uses the existing packet.

This may be useful when a packet with RAM application input

parameters already exists and the tool does not have to generate it

again.

--signature Optional Name of the file containing the signature.

3.4 Image signing

The user application can have a signature that is calculated and kept along with the application in the external
flash. The application signature is generated by calculating the hash (SHA256) of the application image and

generating the signature with the ECDSA NIST P256 algorithm with the OEM private key. The OEM public key is
being used to verify the signature by BOOT_ROM. You can opt for only signature or signature along with
encrypting the user app as explained in the following section.

Example commands:

• Sign the image without encryption:

cysecuretools -t cyw20829 -p policy/policy_secure.json sign-image -I image.bin -o

image_signed.bin–-key-id 0 –image-type APP_PC0

• Sign the image with encryption:

cysecuretools -t cyw20829 -p policy/policy_secure.json sign-image -i image.bin -o

image_signed.bin–-key-id 0 –image-type APP_PC0—encrypt –app-addr 0x8000200

Table 6 Parameters for the “sign-image” command

Name Optional/required Description

-i, --image Required User application file. The output file format is based on the

input file extension (can be .bin or .hex).

-k, --key-id

[0|1]
Optional (mutually
exclusive with the
–-key-

path option)

The OEM key ID. This ID defines the key location based on the

selected policy post build section.

Depending on the selected value ‘0’ or

‘1’, oem_priv_key_0 or oem_priv_key_1 will be used.

--key-path Optional (mutually
exclusive with
the --key-

id option)

Key file path to sign the image. This is an alternative option
and can be used to specify different from the policy key file
location. If it is specified, the –-key-id option will be ignored.

However, using the –-key-id option is preferable because it
allows avoiding accidental provisioning and signing with keys

from different pairs.

--signature Optional The name of the file containing the signature. Used to add an

existing signature to the image.

-R, --erased-val

[0|0xff]
Optional The value that is read back from erased flash.

Application note 11 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

Provisioning to SECURE LCS

Name Optional/required Description

-o, --output Optional Signed image output file. If not specified, a copy of the input
file will be created with the unsigned prefix, then the input file

will be signed.

--encrypt Optional Enables the encryption feature. If present, the image will be

encrypted after signing.

--enckey Optional Path to the AES key. If absent, the key path is taken from the

policy smif_aes_key field.

--hex-addr Optional Adjusts address in .hex output file. The default value is ‘0’.

Ignored for output images in .bin format.

--app-addr Optional The address of the application to encrypt. Accepts values as

hexadecimal or decimal numbers. The default value is ‘0’.

-f, --image-

format
Optional The image format defines the image header size, signing, and

encryption algorithms. Values:

• bootrom_ram_app – RAM application started by BootROM

• bootrom_next_app – External memory application started

by BootROM (e.g., MCUboot)

• mcuboot_user_app – Application started by MCUboot. The

default value is mcuboot_user_app.

-H, --header-size Optional Sets the image header size. Overrides the header size defined

by the –-image-format option.

-S, --slot-size Optional Sets the maximum slot size. The default value is 0x20000.

--pad Optional Adds padding to the image trailer up to the maximum slot

size. Adds padding to the 32-byte Boot Magic to the end of the

trailer. Required for MCUboot image upgrade.

--confirm Optional Adds the “Image OK” byte to the image trailer. Required for

MCUboot image upgrade.

--overwrite-only Optional Sets “Overwrite” mode in the MCUboot image header instead

of “Swap”.

--update-key-id

[0|1]
Optional Sets the OEM private key ID used to sign the update data

packet.

--update-key-path Optional The key used to sign the update data packet. Overrides the –-

update-key-id option.

--min-erase-size Optional Sets the minimum erase size.

--align [1|2|4|8] Optional Sets the flash alignment. The default value is ‘8’.

-v, --version Optional Sets the image version in the image header.

-d, --

dependencies
Optional Add dependency on another image, format:

“(<image_ID>,<image_version>), “… ".

--image-id Optional Image ID. The value is used to update the NV counter. The

default value is ‘0’.

Application note 12 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

Provisioning to SECURE LCS

3.4.1 Image encryption

For image encryption/decryption, CySecureTool uses the AES algorithm with a direct use of a 128-bit key, which
is provisioned to the device. This key must be used for image encryption. This key is provisioned into the device
by storing it into eFuse. If you decide to use image encryption, the Key ID 1 space is used to store this
encryption key. The user application image may consist of multiple images (for example, MCUboot application,

L1 user application, and next user application). Each image may have its own TOC and application descriptor

data. However, during the encryption/decryption process, the boot ROM considers the images as a single
image. First, TOC2 and descriptor are used to get the image start address. All information except MCUboot
TOC2 and descriptor is encrypted.

TOC2

Image descriptor
(L1 app object)

TOC

Image descriptor
(L1 user app object)

L1 user application A

TOC

Image descriptor
(L1 user app object)

L1 user application B

Encrypted

area

0x08000000

0x08010000

0x08020000

MCUboot

Figure 2 Image encryption

A 128-bit encryption key is provisioned as is. There is an option to have two OEM keys
(oem_pub_key_0 and oem_pub_key_1). However, if the encryption is used, only oem_pub_key_0 can be used.
The encryption key will be placed instead of the second OEM key hash.

Application note 13 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

Provisioning to SECURE LCS

3.5 Create debug certificate

The debug certificate is used by BOOT_ROM to enable the CM33-AP and/or Sys-AP when it is temporarily
disabled.

Note: The certificate cannot enable an access port that is permanently disabled by the access
restrictions. Also, the debug certificate can be used to enable/disable invasive or non-invasive

debug for CM33-AP.

Example command:

cysecuretools -t cyw20829 -p policy/policy_secure.json debug-certificate -t

packets/debug_cert.json -o packets/debug_cert.bin -k 0

The command creates a debug or RMA certificate binary based on the template provided in CySecureTools. The
certificate must contain an OEM public key for further verification. If it is signed using the local private key, the

public key is extracted from the private key. If the certificate is going to be signed using the hardware security
module (HSM), you must create a non-signed certificate and then specify the public key.

BOOT_ROM validates the debug certificate in boot flow; upon authentication, its starts secure debugging.

Table 7 Parameters for the “debug certificate” command

Name Optional/required Description

--non-signed Optional Flag indicating that debug certificate will not be signed.

-t, --

template
Optional Path to the certificate template in JSON format.

-k, --key-id

[0|1]
Optional (mutually

exclusive with the --

key-path option)

OEM private key ID used to sign the certificate. This ID defines

the key location based on the selected policy post build section.
Depending on the selected value ‘0’ or

‘1’, oem_priv_key_0 or oem_priv_key_1 will be used.

--key-path Optional (mutually

exclusive with the --

key-id option)

Either a private key path for signing the certificate or a public

key to be added to the certificate. This is an alternative option
and can be used to specify different location from the policy key
file location. If it is specified, the --key-id option will be

ignored.

--sign

[cert]

[signature]

Optional Option for signing an existing certificate using existing signature

file.

-o, --output Required File where the debug certificate is saved.

3.6 Return merchandise authorization (RMA)

The command advances the device lifecycle stage to RMA. If the device is in SECURE LCS, the transition process

requires a certificate. Use the debug certificate with the RMA flag enabled (see Create debug certificate). The

certificate must be signed with the OEM private key.

cysecuretools -t cyw20829 convert-to-rma --cert packets/debug_cert.bin

Application note 14 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

Nonvolatile memory subsystem

4 Nonvolatile memory subsystem

• The eFuse array can be read eight bits at a time using normal memory-mapped AHB register reads or

corresponding system calls.

• eFuses are programmed one bit at a time using a command register.

These eFuse bytes are accessible for production programming:

• 0x040 - 0x04F: OEM key ‘0’ hash (16 bytes hash of OEM public key).

• 0x050 – 0x05F: OEM key ‘1’ hash (16 bytes hash of OEM public key).

• 0x064 - 0x067: OEM key revocation and SMIF configuration.

Application note 15 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

eFuse data mapping

5 eFuse data mapping

See Table 8 and Table 9 for eFuse data mapping.

Table 8 eFuse data mapping

Offset Width (bit) Name Description

0x000 32 System reserved

… … System reserved

0x03C 32

0x040 32 OEM_KEY_0_HASH OEM key ‘0’ hash (16 bytes hash of OEM public key)

0x050 32 OEM_KEY_1_HASH OEM key ‘1’ hash (16 bytes hash of OEM public key)

0x060 32 System reserved System reserved

0x064 32 OEM_CONFIG OEM key revocation and SMIF configuration

0x068 32 NOT_USED_1 NOT_USED_1 (32-bit unused)

0x06C 32 NOT_USED_2 NOT_USED_2 (32-bit unused)

0x070 32 System reserved

… … System reserved

0x07C 32

Application note 16 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

eFuse data mapping

Table 9 eFuses bit mapping

Name Bits Function Description

OEM_KEY_0_HASH 31:0 DATA32 OEM key ‘0’ hash (16-byte hash of OEM public key)

OEM_KEY_1_HASH 31:0 DATA32 OEM key ‘1’ hash (16-byte hash of OEM public key)

OEM_CONFIG 11:0 SMIF_CFG SMIF configuration (12 bits):

• Chip Select (1 bit)

− 0=CS0, 1=CS1

• Data width (2 bits)

− 00 = 1X, 01 = 2X, 10 = 4X, 11 =8X

• Data Select (2 bits)

− 00 = CY_SMIF_DATA_SEL0

− 01 = CY_SMIF_DATA_SEL1

− 10 = CY_SMIF_DATA_SEL2

− 11 = CY_SMIF_DATA_SEL

• Addressing Mode (1 bit)

− 0 = 3-byte addressing

− 1 = 4-byte addressing

− SMIF crypto enable (1bit)

− 0 = No encryption

− 1 = L1 image is encrypted

• Reserved1 (1 bit)

• SMIF Configuration Index (4 bits)

− 0000 = No configuration

− 0001 = SFDP 1.5 and above part. Quad Enable

Requirement present in SFDP.

− 0010 = QER_1: Bit 1 of Status Register 2 - Write uses
2 bytes using 01h.

− 0011 = QER_2: Bit 6 of Status Register 1 - Write uses

1 byte.

− 0100 = QER_3: Bit 7 of Status Register 2 - Write uses

1 byte.

− 0101 = QER_4: Bit 1 of Status Register 2 - Write uses

1 or 2 bytes.

− 0110 = QER_5: Bit 1 of Status Register 2 - Write

status uses 01h.

− 0111 = QER_6: Bit 1 of Status Register 2 - Write uses

1 byte using 31h.

− 1000 to 1011 = Four Non-SFDP parts

− 1100 to 1110 = Reserved

− 1111 = ROM app

12 OEM_KEY_REVOCATION OEM key revocation

31:13 UNUSED_13 19-bit unused

Application note 17 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

References

References

[1] Device documentation

− CYW20829 MCU datasheet

[2] Development kits

− CYW920829M2EVK-02

− CYW920829B0M2P4TAI100-EVK

− CYW920829B0M2P4EPI100-EVK

[3] Tool documentation

− ModusToolbox™ software user guide

[4] Tool

− ModusToolbox™ software - The Infineon IDE for IoT designers

[5] Documentation

− AIROC™ CYW20829 Bluetooth® LE: Designing a secure system

https://www.infineon.com/dgdl/Infineon-CYW20829_AIROC_TM_Bluetooth_R_LE_5_4_MCU-DataSheet-v05_00-EN.pdf?fileId=8ac78c8c86919021018709cc79af3afd&da=t
http://www.infineon.com/cyw920829m2evk-02
https://www.infineon.com/CYW920829B0M2P4TAI100-EVK
https://www.infineon.com/CYW920829B0M2P4EPI100-EVK
https://www.infineon.com/MTBEclipseIDEUserGuide
https://www.infineon.com/modustoolbox

Application note 18 002-39590 Rev. **

 2024-03-05

Provision CYW20829/CYW89829 to SECURE LCS

Revision history

Revision history

Document

revision

Date Description of changes

** 2024-03-05 Initial release.

 Important notice Warnings

Edition 2024-03-05

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

002-39590 Rev. **

The information contained in this application note
is given as a hint for the implementation of the
product only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby
disclaims any and all warranties and liabilities of
any kind (including without limitation warranties of
non-infringement of intellectual property rights of
any third party) with respect to any and all
information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of such marks by Infineon is under license.

Disclaim er

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Overview
	1.1 System security
	1.2 Basic definitions

	2 eFuse
	2.1 Device lifecycle
	2.1.1 NORMAL
	2.1.2 NORMAL_NO_SECURE
	2.1.3 SECURE

	3 Provisioning to SECURE LCS
	3.1 Quick start
	3.1.1 Set a path to the on-chip debugger
	3.1.2 Define a target
	3.1.3 Create a new project
	3.1.4 Define the policy

	3.2 Key creation
	3.3 Provision the device
	3.3.1 Reprovision the device

	3.4 Image signing
	3.4.1 Image encryption

	3.5 Create debug certificate
	3.6 Return merchandise authorization (RMA)

	4 Nonvolatile memory subsystem
	5 eFuse data mapping
	References
	Revision history
	Disclaimer

