

Application note Please read the sections “Important notice” and “Warnings” at the end of this document 002-38557 Rev. *A

www.infineon.com 2024-01-31

AN238557

AIROC™ CYW20829 application developer's

guide

About this document

Scope and purpose

This application note provides guidance on software usage of various SoC peripherals available on CYW20829
along with its use cases.

Intended audience

This document is intended for application developers of AIROC™ CYW20829 who are interested in
understanding the features and peripherals of CYW20829.

http://www.infineon.com/

Application note 2 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Table of contents

Table of contents

About this document ... 1

Table of contents .. 2

1 Overview of CYW20829 ... 5

1.1 Features ... 5

1.2 Block diagram .. 6

1.3 Software architecture ... 7

2 Peripheral management ... 8

2.1 Memory .. 8

2.1.1 Typical memory sections of a program ... 8

2.2 Clock tree ... 10

2.2.1 Features .. 10

2.2.2 Description ... 10

2.2.2.1 Internal main oscillator (IMO) ... 10

2.2.2.2 Internal low-speed oscillator (ILO) ... 10

2.2.2.3 Precision ILO (PILO) .. 10

2.2.2.4 Frequency-locked loop (FLL) .. 11

2.2.2.5 Medium frequency oscillator (MFO) ... 11

2.2.2.6 Peripheral clock dividers (PERI) ... 11

2.2.2.7 Internal high-speed oscillator (IHO) ... 11

2.2.2.8 Clock tree... 12

2.2.3 Software usage ... 12

2.2.3.1 Sequence diagram .. 13

2.2.3.2 Device Configurator .. 15

2.2.4 Applications and code examples ... 15

2.3 Serial memory interface (SMIF) .. 16

2.3.1 Features .. 16

2.3.2 Description ... 16

2.3.2.1 Block diagram ... 17

2.3.3 Software usage ... 18

2.3.3.1 Sequence diagram .. 19

2.3.3.2 Device Configurator .. 20

2.3.4 Applications and code example .. 22

2.4 GPIO ... 22

2.4.1 Features .. 22

2.4.2 Description ... 23

2.4.2.1 Block diagram ... 23

2.4.3 Software usage ... 23

2.4.3.1 Sequence diagram .. 24

2.4.3.2 Device Configurator .. 25

2.4.4 Applications and code example .. 25

2.5 Serial Communication Block (SCB) .. 26

2.5.1 Features .. 26

2.5.2 Description ... 26

2.5.2.1 SPI .. 27

2.5.2.2 UART .. 28

2.5.2.3 I2C .. 29

2.5.3 Software usage ... 29

Application note 3 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Table of contents

2.5.3.1 Sequence diagram .. 30

2.5.3.2 Device Configurator .. 32

2.5.4 Applications and code example .. 33

2.6 TCPWM/Timer .. 34

2.6.1 Features .. 34

2.6.2 Description ... 34

2.6.2.1 Block diagram ... 35

2.6.2.2 TCPWM counters ... 36

2.6.2.3 TCPWM operating modes ... 37

2.6.3 Software usage ... 38

2.6.3.1 Device Configurator .. 38

2.6.4 Application and code examples .. 39

2.7 Watchdog timer (WDT) .. 40

2.7.1 Features .. 40

2.7.2 Description ... 40

2.7.2.1 Block diagram ... 40

2.7.3 Software usage ... 41

2.7.3.1 Sequence diagram .. 42

2.7.3.2 Device Configurator .. 42

2.7.4 Applications and code examples ... 42

2.8 MCWDT ... 43

2.8.1 Features .. 43

2.8.2 Description ... 43

2.8.2.1 Block diagram ... 43

2.8.3 Software usage ... 44

2.8.3.1 Sequence diagram .. 44

2.8.3.2 Device Configurator .. 44

2.8.4 Applications and Code example .. 45

2.9 Real time clock (RTC) .. 46

2.9.1 Features .. 46

2.9.2 Description ... 46

2.9.2.1 Block diagram ... 47

2.9.3 Software usage ... 47

2.9.3.1 Sequence diagram .. 48

2.9.3.2 Device Configurator .. 49

2.9.4 Applications and code examples ... 50

2.10 Datawire ... 51

2.10.1 Features .. 51

2.10.2 Description ... 51

2.10.2.1 Block diagram ... 52

2.10.2.2 Implementation .. 52

2.10.2.3 Trigger Multiplexer (TrigMUX) ... 57

2.10.3 Software usage ... 57

2.10.3.1 Sequence diagram .. 57

2.10.3.2 Device Configurator .. 58

2.10.4 Applications and code examples ... 59

2.11 CAN... 60

2.11.1 Features .. 60

2.11.2 Description ... 60

2.11.3 Software usage ... 62

Application note 4 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Table of contents

2.11.3.1 Sequence diagram .. 63

2.11.3.2 PDL interface ... 63

2.11.3.3 Device Configurator .. 64

2.11.4 Applications and code example .. 65

2.12 Smart I/O.. 65

2.12.1 Features .. 65

2.12.2 Description ... 65

2.12.2.1 Block diagram ... 66

2.12.2.2 Block components .. 66

2.12.3 Software usage ... 69

2.12.3.1 Smart I/O configuration flow .. 69

2.12.3.2 Device Configurator .. 70

2.12.4 Applications and code examples ... 74

References .. 75

Revision history... 76

Disclaimer... 77

Application note 5 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Overview of CYW20829

1 Overview of CYW20829

1.1 Features

• High-performance compute subsystem with Arm® Cortex® M33 core dedicated for rich real-time embedded
applications.

• Bluetooth® Low Energy (Bluetooth® LE) controller subsystem with Arm® Cortex® M33 with dedicated ROM
and RAM for Bluetooth® operations.

• CPU subsystem

− 96-MHz Arm® Cortex®-M33 CPU

− ARMv8-M architecture

− Core logic operation at either 1.1 V or 1.0 V

− Datawire (DMA) controller with 16 channels

− 32 KB cache for greater eXecute-In-Place (XIP) performance with low power

− 256 KB SRAM with power and data retention control

− 64 KB ROM

• Bluetooth® subsystem

− 48 MHz Arm® Cortex® M33

− 2.4 GHz RF transceiver with 50 Ω antenna drive

− Configurable TX power for 0 dBm and 10 dBm

− Excellent receiver sensitivity

▪ LE-1 Mbps: –98 dBm

▪ LE-2 Mbps: –95 dBm

▪ Coded PHY 500 kbps (LE-LR): –101 dBm

▪ Coded PHY 125 kbps (LE-LR): –106 dBm

− Received signal strength indication (RSSI) with 1-dB resolution

− Link layer engine supports up to 16 connections simultaneously, four are peripheral

Application note 6 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Overview of CYW20829

1.2 Block diagram

Figure 1 shows the architectural view of CYW20829.

Security

Root of Trust (ROM based)

MxCryptolite

System resources

Power

Sleep Control

Regulator

Buck

RF LDO

PA LDO

MCU subsystem

Arm® Cortex® M33 96 MHz

32 KB Cache 1 Kbit eFuse

256 KB RAM 64 KB ROM

Peripherals

1x SCB I2C/SPI (DeepSleep)

SMIF with encrypted XIP

I2S (w TDM Mode)

2x PDM

CAN-FD

ADCMic

9x TCPWM

20 x 8 Keyscan Matrix

LIN

32x GPIO (1 x Smart IO)

2x SCBs (UART, I2C, SPI)

Bluetooth® Low Energy
subsystem

448 KB ROM

RX-Chain

96 KB RAM

TX-Chain

Baseband

MAC

Arm® Cortex® M33
48 MHz

RF/PA
Bluetooth® LE
Includes ECO

Clock

Clock Control

ILO WCO

IMO WDT

IHO FLL

ALTHF PILO

Reset
Reset Control

Backup

Backup Control

RTC BREG

Peripherals

MCU subsystem

System Resources

Legend

Bluetooth® Low Energy
subsystem

Security

16-Channel DMA (Datawire)

SHA-256 AES-128

TRNGVector Unit

Figure 1 Block diagram

Application note 7 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Overview of CYW20829

1.3 Software architecture

Figure 2 shows the software stack architecture of the CYW20829 CPU subsystem.

Application

CM33

CMSIS Startup Code

PDL

HAL FreeRTOS Custom BSP

MiddlewareBTSTACK

HCI

Figure 2 Software architecture

Application note 8 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2 Peripheral management

2.1 Memory

The CYW20829 follows the Arm® Cortex® M33 compatible memory design architecture. The on-chip memory is
isolated across the CPU subsystem and Bluetooth® subsystem. The CPU subsystem consists of 256 KB of RAM,

32 KB of Cache. The Bluetooth® subsystem consists of 448 KB of ROM and 96 B of RAM. The access to Bluetooth®

subsystem memory and 64 KB BootROM memory is restricted to user application. The user application will be
loaded to external memory such as serial flash or EEPROM and the code will be executed in place. Apart from
the application code, some regions of the memory range are occupied for memory mapped on-chip SoC
peripherals. These regions of the SoC peripheral memory are readable, writable, non-executable, volatile, and

uninitialized at power-up.

2.1.1 Typical memory sections of a program

By default, all the sections of the program memory (serial flash) have the following attributes:

• Readable

• Nonvolatile

Table 1 Program memory sections

Section Start address End address Length Write Execute Initialized

.appText 0x08002600 0x0800a857 0x8258 FALSE TRUE TRUE

.copy.table 0x0800a858 0x0800a86f 0x18 TRUE FALSE TRUE

.ARM.exidx 0x0800a870 0x0800a877 0x8 FALSE FALSE TRUE

.zero.table 0x0800a878 0x0800a87f 0x8 TRUE FALSE TRUE

segment_1 0x20000000 0x20000113 0x114 TRUE FALSE TRUE

.ramVectors 0x20001000 0x20001157 0x158 TRUE FALSE FALSE

.appTextRam 0x20001158 0x20003a6f 0x2918 FALSE TRUE TRUE

.data 0x20003a70 0x20004037 0x5c8 TRUE FALSE TRUE

.noinit 0x20004038 0x200040af 0x78 TRUE FALSE FALSE

.bss 0x200040b0 0x2002b833 0x27784 TRUE FALSE FALSE

.heap 0x2002b834 0x2003dbff 0x123cc TRUE FALSE FALSE

.bootstrapText 0x2003dc00 0x2003f5df 0x19e0 FALSE TRUE TRUE

.bootstrapzero.table 0x2003f5e0 0x2003f5e7 0x8 TRUE FALSE TRUE

.bootstrapData 0x2003f5e8 0x2003f603 0x1c FALSE FALSE TRUE

Table 1 shows the typical sections of the application code. Some sections of the program will be copied from an
external memory to the RAM, as show in Figure 3.

Application note 9 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

TOC2

.bootstrapText

.appText

.appTextRam

0x08000000

0x08002600

.data

.bootstrapData

0x08000050

0x08002450

Flash

0x2003dc00

.ramVectors

.data

.bootstrapText

0x20001000

.stack_dummy

0x20000000

.noinit

.bss

.heap

.bootstrapData

0x20001158

RAM

.copy.table

.ARM.exidx

.zero.table

U
se

r

A
p

p
lic

at
io

n

X
IP

.appTextRam

Figure 3 Copying sections of the program form an external memory

Application note 10 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.2 Clock tree

CYW20829 provides flexible clocking options with on-chip crystal oscillators, a frequency lock loop, and support
for multiple external clock sources. The CYW20829 device clock system provides clocks to the subsystems that
require them, and it allows switching between different clock sources.

2.2.1 Features

• Internal main oscillator (IMO) at a fixed 8 MHz frequency

• Internal high-speed oscillator (IHO) at a fixed 48 MHz frequency

• Precision internal low-speed oscillator (PILO) at a fixed 32.768 kHz frequency

• Internal low-speed oscillator (ILO) at a fixed 32.768 kHz frequency

• Frequency-locked loop (FLL) for logic clocking up to 96 MHz

• Medium frequency oscillator (MFO) at a fixed 2 MHz frequency

• Additional high-frequency clocks can be generated by division.

• PERI - Provides the peripheral support.

• Watch crystal oscillator (WCO) that requires external crystal with 32.768 kHz frequency

• Enables the configurable clock.

• Configurable clock frequency and divider

• Configurable clock sources

2.2.2 Description

2.2.2.1 Internal main oscillator (IMO)

The IMO is the primary source of internal clocking. It is trimmed during testing to achieve the specified
accuracy. The IMO default frequency is 8 MHz, and tolerance is ±2%. The IMO output can be used by the PLL or
FLL to generate a wide range of high-frequency clocks, or it can be used directly by the high-frequency root

clocks.

2.2.2.2 Internal low-speed oscillator (ILO)

The ILO operates with no external components and outputs a stable clock at 32.768 kHz nominal. The ILO is a
very low-power oscillator, nominally 32 kHz, that operates in all power modes. The ILO can be calibrated
against a high-accuracy clock for better accuracy. The ILO is always the source of the watchdog timer (WDT);
therefore, enabling the WDT will automatically enable the ILO.

2.2.2.3 Precision ILO (PILO)

PILO is an additional source that has better frequency stability than ILO. It is intended to replace a watch
crystal in Bluetooth® LE products while supporting delay counters that are accurate enough to meet Bluetooth®

LE requirements. PILO works in Hibernate and higher modes. PILO can be configured to continue operating
during XRES for RTC.

Application note 11 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.2.2.4 Frequency-locked loop (FLL)

CYW20829 contains one frequency-locked loop (FLL) that resides on clock path 0. The FLL is capable of
generating a clock output in the range of 24 MHz to 96 MHz; the input frequency must be between 0.040 Hz and
96 MHz and must be at least 2.5 times less than the CCO frequency. This makes it possible to use the IMO to
generate much higher clock frequencies for the rest of the system.

2.2.2.5 Medium frequency oscillator (MFO)

There is no actual circuit for MFO and it is generated internally by dividing IMO by 4 to generate 2 MHz clock.

2.2.2.6 Peripheral clock dividers (PERI)

There are multiple peripheral clock dividers that, in effect, create multiple separate peripheral clocks. The 8-bit

and 16-bit dividers are integer dividers. A divider value of ‘1’ means the output frequency matches the input

frequency (that is, there is no change). Otherwise, the frequency is divided by the value of the divider. For
example, if the input frequency is 50 MHz and the divider is set to ‘10’, the output frequency is 5 MHz. The five

fractional bits support further precision in 1/32nd increments. For example, a divider with an integer value of 3
and a fractional value of 4 (4/32) results in a divider of 3.125. Fractional dividers are useful when a high-

precision clock is required, for example, for a UART/SPI serial interface. Integer and fractional clock dividers are

provided for peripheral use and timing purposes. There are one or more:

• 8-bit clock dividers

• 16-bit integer clock dividers

• 16.5-bit fractional clock dividers

• 24.5-bit fractional clock divider

2.2.2.7 Internal high-speed oscillator (IHO)

The IHO operates with no external components and outputs a stable clock at 48 MHz.

Application note 12 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.2.2.8 Clock tree

EXTCLK

CLK_HF0

CLK_HF1

CLK_HF2

ALTHF

IHO

FLL

MFO

CLK_HF3

PILO

IMO

P
A

T
H

_
M

U
X

0
P

A
TH

_M
U

X
1

P
A

T
H

_
M

U
X

2
P

A
T

H
_

M
U

X
3

WCO

ILO

CLK_PATH0

CLK_PATH1

CLK_PATH2

CLK_PATH3

CLK_TIMER

CLK_MF

CLK_LF

CLK_ALT_SYS_TICK

CLK_BAK

Peri Clock group0(CPU)
CPU, BTSS, CRYPTO,

IOSS, QSPI Bus interface

Peri Clock group1 (SCB, TCPWM,
LIN, CANFD, SMARTIO)

Peri clockgroup3 (PDM, TDM)
QSPI Transmission interface

BTSS

ADCMIC

Figure 4 Block diagram

• CLK_HF’s are the Active mode clocks and it can use any clock source from the following clock sources IMO,

IHO, ALTHF, and EXTCLK.

• CLK_LF is a Deep Sleep domain clock and CLK_BAK is a Hibernate clock and both can select clock sources
are from ILO, WCO, and PILO.

• IMO is also available in Deep Sleep.

2.2.3 Software usage

This section describes the software usage of clock trees using PDL APIs and device configurators. For more
information, see the clock PDL APIs in clock tree PDL.

https://infineon.github.io/mtb-pdl-cat1/pdl_api_reference_manual/html/group__group__sysclk.html

Application note 13 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.2.3.1 Sequence diagram

• Enable high-frequency clocks (HF1)

APP PDL

Cy_SysClk_ClkPathSetSource()

Cy_SysClk_ClkHfSetSource()

Cy_SysClk_ClkHfEnable()

Cy_SysClk_ClkHfSetDivider()

Figure 5 Enable high-frequency clocks (HF1)

See the following code block to enable HF1 by using Path 1:

 /* set the Source of PATH MUX 1 as IMO */

 Cy_SysClk_ClkPathSetSource(1U, CY_SYSCLK_CLKPATH_IN_IMO);

 /* Set Source of HF Clock as Clk path mux 1 */

 Cy_SysClk_ClkHfSetSource(1U, CY_SYSCLK_CLKHF_IN_CLKPATH1);

 /*Set the Divider to get the Desired HF frequency */

 Cy_SysClk_ClkHfSetDivider(1U, CY_SYSCLK_CLKHF_NO_DIVIDE);

 /* Enable Hf1 Clock */

 Cy_SysClk_ClkHfEnable(1U);

• Enable HF3 by changing the source of Clk path mux 1 as IHO.

APP PDL

Cy_SysClk_IhoEnable()

Cy_SysClk_ClkPathSetSource()

Cy_SysClk_ClkHfSetDivide()

Cy_SysClk_ClkHfSetSource()

Cy_SysClk_ClkHfEnable()

Figure 6 Enable HF3 by changing the source CLK path mux 1 as IHO

Application note 14 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

See the following code block to enable HF3 with the source clock path of IHO:

 if(!Cy_SysClk_IhoIsEnabled)

 {

 /* Enable IHO */

 Cy_SysClk_IhoEnable()

 }

 /* set the Source of PATH MUX 1 as IMO */

 Cy_SysClk_ClkPathSetSource(1U, CY_SYSCLK_CLKPATH_IN_IHO);

 /* Set Source of HF Clock as Clk path mux 1 */

 Cy_SysClk_ClkHfSetSource(3U, CY_SYSCLK_CLKHF_IN_CLKPATH1);

 /*Set the Divider to get the Desired HF frequency */

 Cy_SysClk_ClkHfSetDivider(3U, CY_SYSCLK_CLKHF_NO_DIVIDE);

 /* Enable Hf1 Clock */

 Cy_SysClk_ClkHfEnable(3U);

• Configuring the peripheral clock for SCB.

APP PDL

Cy_SysClk_PeriPclkDisableDivider()

Cy_SysClk_PeriPclkSetFracDivider()

Cy_SysClk_PeriPclkAssignDivider()

Cy_SysClk_PeriPclkEnableDivider()

Figure 7 Configuring the peripheral clock for SCB

See the following code block to configure the peripheral clock for SCB:

 Cy_SysClk_PeriPclkDisableDivider(PCLK_SCB2_CLOCK_SCB_EN,

CY_SYSCLK_DIV_16_5_BIT, 0U);

 /* Sets one of programmable divider for SCB2 */

 Cy_SysClk_PeriPclkSetFracDivider(PCLK_SCB2_CLOCK_SCB_EN, CY_SYSCLK_DIV_16_5_BIT,

U, 12U, 10);

 /* Enable the Selected Divider rrfrrrr */

 Cy_SysClk_PeriPclkEnableDivider(PCLK_SCB2_CLOCK_SCB_EN, CY_SYSCLK_DIV_16_5_BIT,

0U);

 /* Assigns the Divider to SCB2 block */

 Cy_SysClk_PeriPclkAssignDivider(PCLK_SCB2_CLOCK_SCB_EN,

CY_SYSCLK_DIV_16_5_BIT, 0U);

Application note 15 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.2.3.2 Device Configurator

The device configurator in ModusToolbox™ lets you choose various clock sections and their parameters as well.
Additionally, you can use HAL APIs to configure basic clock parameters.

Figure 8 FLL parameters

Figure 9 Peripheral clock settings

2.2.4 Applications and code examples

Clock tree use cases are:

• System clock (systick)

• Periodic functions (Callbacks)

• Simple timer

For example, see CYW20829 clock frequency measurement, which demonstrates how a clock measurement
counter can be used to measure the internal clock signal using another clock signal as a reference. Here, the

IMO clock is used as a reference clock to measure internal clock signals such as the internal high-frequency
clocks HFO, HF1, HF2, and HF3.

https://github.com/infineon/mtb-example-cyw20829-clk-freq-measurement

Application note 16 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.3 Serial memory interface (SMIF)

SMIF is designed to provide a convenient and efficient means of communicating with serial flash memories,
enabling the CYW20829 SoC to read, write, and erase data from the memories. By using the SMIF interface,
developers can easily integrate serial flash memories into their applications, allowing for more versatile and
scalable memory solutions. The SMIF in CYW20829 is an IP for external serial connectivity that provides high-

performance communication to the external memories. The SPI-based communication interface to the

external quad SPI (QSPI) high-speed memory devices.

2.3.1 Features

• Supports eXecute-In-Place (XIP) from external quad flash.

• Supports DDR

• Supports for single, dual and quad interfaces with throughput up to 384 -Mbps.

• XIP mode also supports AES-128 based on-the-fly encryption and decryption, enabling secure storage and
access of code and data in the external memory.

2.3.2 Description

The SMIF IP block implements a SPI-based communication interface for interfacing external memory devices to
CYW20829. The SMIF supports SPI, dual SPI (DSPI), and quad SPI (QSPI) configurations. The primary usage

model for the SMIF is that of an external memory interface, and it operates at a maximum frequency of 48 MHz.

The MMIO mode is used for implementing a generic SPI/DSPI/QSPI/communication interface using the SMIF
block. This interface can be used to implement special commands such as program or erase of flash, memory

device configuration, sleep mode entry for memory devices, or other special commands specific to the memory

device. The transfer width (SPI, DSPI, or QSPI) of a transmission is a parameter set for each transmit and receive
operation. Therefore, these can be changed at run time. In a typical memory interface with flash memory, the
SMIF is used in the memory mode while reading from the memory, and it switches to the normal mode when

writing to flash memory. A typical memory device has multiple types of commands. The SMIF interface can be
used to transmit different types of commands.

XIP is a mode of operation where read or write commands to the memory device are directed through the SMIF
without any use of API function calls. In this mode, the SMIF block maps the AHB bus accesses to external

memory device addresses to make it behave like internal memory. This allows the CPU to execute code directly
from external memory.

XIP mode is not limited to code and is suitable for data read and write accesses. The memory regions available
for XIP address allocation are defined in a linker script file (.ld). The XIP interface is protected by MPC integrated

into SMIF, along with associated interrupts and MMIO. Figure 12 shows the SMIF sequence diagram. Call the
cybsp_smif_init() API to initialize the SMIF. Use the Cy_SMIF_MemCmdReleasePowerDown() API to send

the release power-down command, and then use the Cy_SMIF_Memslot_IsBusy() API to check if the status
of the device is busy.

Application note 17 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.3.2.1 Block diagram

Cortex®-M33

A
H
B

SMIF
SPI

MEMORY

Figure 10 Block diagram

The SMIF provides the interface between the Cortex®-M33 and the external memory device via AHB.

The SMIF block maps the AHB bus accesses to external memory device addresses to make it behave like
internal memory. This allows the CPU to execute code directly from external memory.

Table 2 Memory interface

Memory device IO signals

Single SPI memory SCK, CS, SI, and SO. This memory device has two data signals (SI and SO).

Dual SPI memory SCK, CS, IO0, and IO1. This memory device has two data signals (IO0, IO1).

Quad SPI memory
SCK, CS, IO0, IO1, IO2, and IO3. This memory device has four data signals (IO0, IO1,

IO2, and IO3).

Application note 18 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.3.3 Software usage

Application

cy_smif_memconfig.h

structure cy_stc_smif_block_config_t

structure cy_stc_smif_mem_config_t

SMIF/QSPI Configuration Tool
(ModusToolbox Flow)

Salve Select Status Check

Base Address Other Features

structures cy_stc_smif_mem_device_config_t,
cy_stc_smif_mem_cmd_t

Read Cmd Program Cmd

Erase Cmd Status Reg

DataRate Other Params

cy_smif_memslot.h

Init Status Check

Deinit Read/Write Status Reg

QuadEnable Set Mode

Program SFDP

Write Enable/Disable Erase Read LocateHybridRegion

cy_smif.h

Encrypt Transmit Command

Transmit Data
Transmit Command

Extended (DDR)

Receive Data Send Dummy Cycles

Receive Data Extended
(DDR)

Send Dummy Cycles
Extended (DDR)

Transmit Data Extended
(DDR)

Set SMIF Mode

Interrupt Registers Encryption Registers
Normal Mode

(MMIO) Registers
Memory Mode
(XIP) Registers

Software SMIF
Configuration Tool

Firmware

Hardware

Memory Configuration
structures

cy_smif_memslot.h layer (memory-
slot function)

cy_smif.h layer
(low-level functions)

API_function

Structure member

Hardware

Figure 11 SMIF configuration

Application note 19 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.3.3.1 Sequence diagram

APP PDL

Loop

Loop

opt

Cy_SMIF_Init()

return(CY_SMIF_SUCCESS)

Cy_SMIF_SetDataSelect()

CY_SMIF_Enable

Cy_SMIF_MemCmdReleasePowerDown()

return(CY_SMIF_SUCCESS)

Cy_SMIF_Memslot_IsBusy()[SMIF_BUSY && MEMORY_BUSY_CHECK_RETRIES]

return(0)

 [quad_not_enabled]

[SMIF_BUSY && MEMORY_BUSY_CHECK_RETRIES]

Cy_SMIF_Memslot_Init()

return(CY_SMIF_SUCCESS)

Cy_SMIF_MemInitSfdpMode()

return(CY_SMIF_SUCCESS)

Cy_SMIF_Memslot_CmdReadSts()

Cy_SMIF_Memslot_CmdWriteEnable()

Cy_SMIF_Memslot_QuadEnable()

Cy_SMIF_Memslot_IsBusy()

return(0)

Cy_SMIF_SetMode()

Figure 12 SMIF initialization

Application note 20 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.3.3.2 Device Configurator

Do the following to initialize the SMIF:

1. Open the Device Configurator. Navigate to the Peripheral tab in the Device Configurator.

2. Select the checkbox next to the QSPI option.

This generates the initialization code. On the right side of the Device Configurator window, you can

configure the Interface Clock, SPI Clock, and Data Lines for the SMIF. Additionally, the Device Configurator

provides a Code Preview window that displays the defines and functions related to the QSPI configuration.

Figure 13 Peripheral interface in the Device Configurator

Additionally, the QSPI configurator provides the flexibility to initialize the QSPI memory configuration. You can

select the Memory Part number, Data Select, enable and disable the encryption, and so on.

Application note 21 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

Figure 14 QSPI memory configuration in the Device Configurator.

Application note 22 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.3.4 Applications and code example

SMIF use cases are:

• To interface an external flash to the SoC.

• To perform XIP (“on-the-fly” translation of read and write transfers on the XIP AHB interface to external
memory SPI transfers).

For example, see the following:

• Serial flash read and write, which demonstrates interfacing an external NOR flash memory and performing
read and write operations using the serial flash library.

• Code example: Demonstrates how to initialize the SMIF for XIP.

2.4 GPIO

GPIO is a term used to describe a collection of pins or ports that can be found on various electronic devices,
including microcontrollers, single-board computers, and embedded systems. These pins are specifically

designed to offer a flexible interface for connecting and managing external devices or circuits. The GPIO pins
can be configured to serve as either input or output channels, granting the device the ability to receive

information from external sensors or transmit signals to control other components. When functioning as input

pins, they have the capability to detect the state or voltage level of an external signal. Conversely, when

operating as output pins, they can generate or produce signals with varying voltage levels. The number of GPIO
pins available on a device may vary depending on the specific hardware being used. Typically, each pin is

assigned a unique number or identifier, which is utilized for programmatic interaction. Developers have the

ability to write software code that can read the state of input pins or set the state of output pins, enabling them

to establish connections with a wide range of external components, such as buttons, sensors, LEDs, and more.
The GPIO interface offers a versatile means of communication and control between a device and its external

environment.

2.4.1 Features

• Separate Set, Clear, and Invert Registers for output

• Interrupt configurations on all GPIO pins, edge-triggered on rising, falling, or both edges

• Frozen mode for latching current state

• Overvoltage tolerant pins (OVT_GPIO)

• Eight drive modes including pull-up/down, open drain drive HIGH and LOW

• Slew rate control to control speed for each GPIO

• Automatic place and route of signals to and from GPIOs

• Analog and digital input and output capability

https://github.com/Infineon/mtb-example-serial-flash-readwrite
https://github.com/Infineon/TARGET_CYW920829M2EVK-02/blob/master/cybsp_smif_init.c

Application note 23 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.4.2 Description

The configuration information for I/O cells in the GPIO component is communicated through registers. In the
power mode of System Deep Sleep, these registers are preserved, while in the Hibernate power mode, they are
reset to their default values. In order to enable the Hibernate Interrupt feature, the configuration information of
the I/O cells is preserved or frozen when transitioning into System Deep Sleep or Hibernate power modes.

Consequently, the configuration signals can be directed within the system's HP (high power), LP (low power),

or ULP (ultra-low power) modes.

The configuration of I/O cells encompasses various details, such as the drive mode (pull-up/pull-down) and

drive strength. This configuration information may be specific to individual I/O pads, including details like drive
mode, drive strength, slew control transitioning (fast or slow), input buffer mode, and more. Through the I/O

port, software can access the I/Os to write output signals and read input signals. By leveraging these
capabilities, software can carry out bit-banging operations. The signals for GPIO data input, data output, and

data output enable in I/O cells are connected via the HSIOM functional connections. The HSIOM register fields
determine the specific connection.

2.4.2.1 Block diagram

The GPIO pins establish a connection with I/O cells, which are equipped with an input buffer to facilitate digital

input with high input impedance as well as a driver for digital output signals. The I/O cells are linked to digital
peripherals through the high-speed I/O matrix (HSIOM). Each pin's HSIOM incorporates multiplexers that
establish a connection between the chosen peripheral and the pin.

GPIO and Port
Control

High Speed IO Matrix

ADC Mic
 Digital

Peripherals

C
o

n
fi

g
u

ra
ti

o
n

In
te

rr
u

p
t

In
te

rf
a

ce

I/O Cell

Pin

Figure 15 Block diagram

2.4.3 Software usage

This section describes about the software usage of GPIO using PDL and HAL APIs and device configurator. For
more documentation, see the GPIO HAL APIs and PDL APIs in the following:

• Hardware Abstraction Layer (HAL)

• MTB CAT1 Peripheral Driver Library

https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__gpio.html
https://infineon.github.io/mtb-pdl-cat1/pdl_api_reference_manual/html/group__group__gpio.html

Application note 24 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.4.3.1 Sequence diagram

Use case 1: Figure 16 illustrates about the reading the GPIO state.

APP HAL

cyhal_gpio_init()

cyhal_gpio_read()

Figure 16 Reading the GPIO state

Use case 2: Figure 17 illustrates the utilization of a GPIO set as an input pin to produce interrupts.

APP HAL

cyhal_gpio_init()

cyhal_gpio_register_callback()

cyhal_gpio_enable_event()

Event
Trigger

Event
Callback

Figure 17 Utilization of GPIO set as an input pin

Application note 25 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.4.3.2 Device Configurator

Do the following to initialize the GPIO:

1. Use the following methods to access the Device Configurator:

• Right-click on the project and select ModusToolbox™, and then select Device Configurator.

Or

• Click Device Configurator in the bottom left corner of the Quick Panel of ModusToolbox™.

2. Navigate to the Peripheral tab in the Device Configurator.

3. Select the checkbox in the Pins section.

This action generates the initialization code. On the right side of the Device Configuration window, you can

configure parameters such as Drive Mode, Initial Drive State, Interrupt Trigger Type, Slew Rate, and Drive
Strength.

4. Go to File and click Save before closing the Device Configurator. Additionally, the Device Configurator

provides a Code Preview window that displays the defines and functions related to the GPIO configuration.

Note: Use Device Configurator only for PDL APIs.

Figure 18 Device Configurator for GPIO

2.4.4 Applications and code example

GPIO use cases are:

• LED Blinking with GPIO and Delay

• LED Breathing using TCPWM

For example, HAL: GPIO interrupt demonstrates the use of a GPIO configured as an input pin to generate
interrupts on an Infineon MCU. The GPIO signal interrupts the CPU and executes a user-defined interrupt
service routine (ISR). The GPIO interrupt acts as a wakeup source to wake the CPU from Deep Sleep.

https://github.com/Infineon/mtb-example-hal-gpio-interrupt

Application note 26 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.5 Serial Communication Block (SCB)

The SCB has the capability to support three different serial communication protocols, such as SPI, UART, and
I2C. However, note the following:

• A SCB can support only one of these protocols at any given time.

• Not all SCBs are capable of supporting all three modes (SPI, UART, and I2C)

• Not all SCBs operate in Deep Sleep mode. To determine which SCBs operate in Deep Sleep and which SCB is
capable of supporting which mode, see the device datasheet for specific information.

2.5.1 Features

• Standard I2C master and slave functionality

• Trigger outputs for connection to DMA

• Each SCB has a 256-byte FIFO for receive (Rx) and transmit (Tx)

• Multiple interrupt sources to indicate status of FIFOs and transfers

• Local loop-back control

• Deep Sleep-capable SCB features:

− EZ mode for SPI and I2C slaves , allows for operation without CPU intervention

− CMD_RESP mode for SPI and I2C slaves ,allows for operation without CPU intervention

− Low-power (Deep Sleep) mode of operation for SPI and I2C slaves (using external clocking)

− Deep Sleep wakeup on I2C slave address match or SPI slave selection

2.5.2 Description

Every SCB is equipped with 256-byte dedicated RAM specifically designed for transmit and receive operations.

This RAM can be configured in three distinct modes: FIFO mode, EZ mode, and Command-Response mode.
Masters can only use FIFO mode. UART only uses FIFO mode. I2C and SPI slaves can use all three modes.

Note: EZ and CMD Response modes are available only on the Deep Sleep-capable SCB.

The SCB can receive clock signals from two sources: either an internal clock provided by the peripheral clock
dividers or an external master clock. However, for UART, SPI master, and I2C master modes, the SCB must use

clk_scb as the clock source. SPI slave and I2C slave modes can utilize the clock from an external master;
however, this capability is limited to the Deep Sleep-capable SCBs.

https://www.infineon.com/cms/en/product/gated-document/airoc-bluetooth-le-5-4-mcu-8ac78c8c86919021018709cc79af3afd/

Application note 27 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.5.2.1 SPI

The SPI protocol is a synchronous serial interface protocol that allows devices to function in either master or
slave mode. Data transfer initiation is the responsibility of the master device. The SCB facilitates a single-
master-multiple-slaves topology for SPI communications, with multiple slaves being supported and having
their individual slaves select lines. During the SPI data transfer, the master selects a slave by asserting its SS

line, and subsequently, it transmits data on the MOSI line along with a clock signal on the SCLK line. Depending

on the configuration, the slave captures data on the MOSI line using either the rising or falling edges of the
SCLK signal while simultaneously sending data on the MISO line, which is then captured by the master. This
block supports the following features.

• Support both master and slave functionality

• Activating wake-up interrupt cause upon slave selection

• Offering three modes: FIFO mode, EZ mode (for slaves only), and CMD_RESP mode (for slaves only)

• Local loop-back control

• Support interrupts or a polling CPU interface for data handling

Block diagram

A SPI interface has the following four signals:

• SCLK: Clock output from the master, input to the slave.

• MOSI: Data output from the master, input to the slave.

• MISO: Data input to the master, output from the slave.

• Slave Select (SS): Output from the master, input to the slave.

SPI
Master

SPI
Slave 1

SPI
Slave 2

SPI
Slave 4

SCLK

MOSI

MISO

Slave Select (SS) 2

Slave Select (SS) 4

SPI
Slave 3

Slave Select (SS) 3

Slave Select (SS) 1

Figure 19 SPI block diagram

Application note 28 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.5.2.2 UART

The UART protocol is an asynchronous serial interface used for point-to-point communication. TX (Transmitter
output) and RX (Receiver input) are the two main signals. For flow control in UART, the following two additional
side-band signals are utilized; however, note that the flow control applies only to the TX functionality.

• Clear to Send (CTS), an input signal to the transmitter, indicating that the receiver is ready to receive data,
allowing the transmitter to send the data.

• Request to Send (RTS), an output signal from the receiver, which becomes active when the receiver is ready
to receive data. The RTS of one device is connected to the CTS of the other device and vice versa. Therefore,

when a device (receiver) is prepared to receive data, it activates its RTS, triggering the CTS of the other
device (transmitter), signaling it to send the data.

This block supports the following features:

• Data frame size programmable from 4 to 9 bits

• Programmable amount of STOP bits

• Parity support (odd and even parity)

• Transmitter and receiver functionality

• Start skipping

• Hardware flow control

Block diagram

The UART transfer is initiated with a start bit, followed by several data bits, and optionally a parity bit,

concluding with one or more stop bits. The start and stop bits serve to mark the beginning and end of data

transmission. The transmitter includes the parity bit, which allows the receiver to identify single-bit errors. Due

to the asynchronous nature of the interface, there is no shared clock between the transmitter and receiver.
Therefore, both parties must synchronize and settle on the same baud rate for effective communication.

UART UART

Tx

Rx Tx

Rx

Figure 20 UART block diagram

Application note 29 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.5.2.3 I2C

Every SCB supports both I2C master and slave modes. However, only SCB[0] is accessible in system Deep Sleep
power mode and permits externally-clocked operations. This section describes the software usage of SCB using
PDL and HAL APIs and a device configurator. I2C is an asynchronous serial interface that supports single-master,
multi-master, and multi-slave configurations. Devices can function as either a master, slave, or master/slave. In

master/slave mode, a device switches between master and slave roles depending on the address it receives.

During a data transfer, only one master can be active at a time, and this active master is responsible for
generating the clock signal on the SCL line. This block supports the following features:

• Master, slave, and master-slave functionality

• Clock stretching

• Multi-master modes and bus arbitration

• Programmable oversampling of I2C clock signal (SCL)

• Wake up from sleep modes

Block diagram

The standard I2C bus consists of two wires, namely Serial Data (SDA) and Serial Clock (SCL). I2C devices utilize
open collector or open-drain output stages and are connected to these lines along with pull-up resistors (Rp).

Devices in the I2C bus have a straightforward master/slave relationship, and they can function as either

transmitters or receivers. Each slave device on the bus is uniquely addressable by a 7-bit address through

software.

RpRp

SCL

SDA

I2C
Master I2C Slave I2C Slave I2C Slave

Figure 21 Block diagram

2.5.3 Software usage

This section describes the software usage of SCB (SPI, UART, and I2C) using PDL and HAL APIs and a device
configurator. For more details on SCB (SPI, UART, and I2C) HAL APIs and PDL APIs, see the following:

• SPI HAL

• UART HAL

• I2C HAL

• SPI PDL

• UART PDL

• I2C PDL

https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__spi.html
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__uart.html
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__i2c.html
https://infineon.github.io/mtb-pdl-cat1/pdl_api_reference_manual/html/group__group__scb__spi.html
https://infineon.github.io/mtb-pdl-cat1/pdl_api_reference_manual/html/group__group__scb__uart.html
https://infineon.github.io/mtb-pdl-cat1/pdl_api_reference_manual/html/group__group__scb__i2c.html

Application note 30 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.5.3.1 Sequence diagram

Use case 1: Configuration to send command packets by SPI master.

APP HAL

cyhal_spi_init()

cyhal_spi_set_frequency()

cyhal_spi_send()

Figure 22 SPI master command packet transmission sequence

Use case 2: Configuration to receive command packets by SPI slave.

APP HAL

cyhal_spi_init()

cyhal_spi_set_frequency()

cyhal_spi_recv()

Figure 23 SPI slave command packet receive sequence

Application note 31 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

Use case 3: Configuration to read and write by I2C master.

APP HAL

cyhal_i2c_init()

cyhal_i2c_configure()

cyhal_i2c_master_write()

cyhal_i2c_master_read()

Figure 24 I2C master read and write

Use case 4: Configuration to read and write by I2C slave.

APP HAL

cyhal_i2c_init()

 cyhal_i2c_configure()

cyhal_i2c_slave_config_read_buffer()

cyhal_i2c_slave_config_write_buffer()

Figure 25 I2C slave read and write

Use case 5: Simple UART communication to read.

APP HAL

cy_retarget_io_init()

cyhal_uart_getc()

Figure 26 UART communication

Application note 32 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.5.3.2 Device Configurator

Do the following to initialize the SCB:

1. Use the following methods to access the Device Configurator:

• Right-click on the project and select ModusToolbox™, and then select Device Configurator.

Or

• Click Device Configurator in the bottom left corner of the Quick Panel of ModusToolbox™.

2. Navigate to the Peripheral tab in the Device Configurator.

3. Select the checkbox next to the SCB option.

This action generates the initialization code. On the right side of the Device Configuration window, you can

configure parameters such as Mode and Enable wakeup from Deep Sleep Mode(SCB0).

4. Go to File and click Save before closing the Device Configurator. Additionally, the Device Configurator
provides a Code Preview window that displays the defines and functions related to the SCB configuration.

Note: Use Device Configurator only for PDL APIs.

Figure 27 Device Configuration for SCB

Application note 33 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.5.4 Applications and code example

SCB use cases are:

• SPI

− Communication with external peripheral

− Act as a peripheral device

− Wakeup from Deep Sleep

• UART

− Debug device with a PC

− Redirect Printf to use the UART

• I2C

− Communication with external peripheral

− Act as a peripheral device

− Wakeup from Deep Sleep

For example, see the following:

• HAL: SPI master demonstrates the use of a SPI (HAL) resource in master mode. The SPI master is configured

to send command packets to control a user LED on the slave.

• HAL: SPI slave demonstrates the use of a SPI (HAL) resource in slave mode. The SPI slave is configured to

receive command packets to control a user LED on the kit.

• Hardware Abstraction Layer (HAL): I2C master demonstrates the use of the I2C resource in HAL in master

mode. The I2C master is configured to send command packets to control a user LED on the slave.

• Hardware Abstraction Layer (HAL): I2C slave demonstrates the use of the I2C resource in HAL in slave mode.

The I2C slave is configured to receive command packets to control a user LED on the kit.

• HAL: Hello world demonstrates a simple UART communication by printing the "Hello world" message on a
terminal and blinking an LED using a timer resource.

https://github.com/Infineon/mtb-example-hal-spi-master
https://github.com/Infineon/mtb-example-hal-spi-slave
https://github.com/Infineon/mtb-example-hal-i2c-master
https://github.com/Infineon/mtb-example-hal-i2c-slave
https://github.com/Infineon/mtb-example-hal-hello-world

Application note 34 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.6 TCPWM/Timer

The Timer, Counter, Pulse Width Modulator (TCPWM) block in CYW20829 uses a 16- or 32-bit counter, which can
be configured as a timer, counter, pulse width modulator (PWM), or quadrature decoder.

The block can be used to:

• Measure the period and pulse width of an input signal (timer)

• Find the number of times a particular event occurs (counter)

• Generate PWM signals, or decode quadrature signals

This chapter explains the features, implementation, and operational modes of the TCPWM block. TCPWM

supports operation in Active, Low power Active, Sleep and Low power Sleep power modes.

2.6.1 Features

• The TCPWM block supports the following operational modes:

− Timer-counter with compare

− Timer-counter with capture

− Quadrature decoding

− Pulse width modulation

− Pseudo-random PWM

− PWM with dead time

• Up, Down, and Up/Down counting modes

• Clock prescaling (division by 1, 2, 4, ... 64, and 128)

• 16- or 32-bit counter widths

• Double buffering of compare/capture and period values

• Underflow, overflow, and capture/compare output signals

• Complementary output for PWMs

• Supports interrupt on:

− Terminal count: Depends on the mode; typically occurs on overflow or underflow.

− Capture/compare: The count is captured to the capture register or the counter value equals the value in

the compare register.

2.6.2 Description

To enable and disable the TCPWM block, use the TCPWM_CTRL_SET and TCPWM_CTRL_CLR register bits,
respectively. Use these registers to avoid race-conditions on read-modify-write attempts to the TCPWM_CTRL
register, which controls the enable/disable fields of the counters.

Application note 35 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.6.2.1 Block diagram

Counter i

256

T
ri

gg
er

 S
yn

ch
ro

n
iz

at
io

n

Trigger inputs

Trigger outputs:
tr_out0
tr_out1

interrupt

line_out,
line_out_en
line_compl_out
line_compl_out_en

42clock_counter_enFor each
Counter i

Counter Group j

Counter Group j

Counter Group j ...

Counter i

Event
Generation

16-bit or 32-bit counter

Counter i

Event
Generation

16-bit or 32-bit counter
Configuration

Register

Counter i

Event
Generation

16-bit or 32-bit counter
Configuration

Register

...
1

2

256

4

1

2

Figure 28 Block diagram

• The TCPWM block can contain up to 32 counters. Each counter can be 16- or 32-bit wide. The three main
registers that control the counters are:

− TCPWM_CNT_CC is used to capture the counter value in CAPTURE mode. In all other modes, this value is

compared to the counter value.

− TCPWM_CNT_COUNTER holds the current counter value.

− TCPWM_CNT_PERIOD holds the upper value of the counter. When the counter counts for n cycles, this

field should be set to n–1.

The number of 16- and 32-bit counters are device-specific. For more details, see the device datasheet. In this
chapter, a TCPWM refers to the entire block and all the counters inside. A counter refers to the individual
counter inside the TCPWM. Within a TCPWM block, the width of each counter is the same. TCPWM has following

interfaces:

• I/O signal interface: Consists of input triggers (such as reload, start, stop, count, and capture) and output
signals (such as pwm, pwm_n, overflow (OV), underflow (UN), and capture/compare (CC)). All of these input
signals are used to trigger an event within the counter, such as a reload trigger generating a reload event.

The output signals are generated by internal events (underflow, overflow, and capture/compare) and can
be connected to other peripherals to trigger events.

• Interrupts: Provides interrupt request signals from each counter, based on TC or CC conditions.

https://www.infineon.com/cms/en/product/gated-document/airoc-bluetooth-le-5-4-mcu-8ac78c8c86919021018709cc79af3afd/

Application note 36 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.6.2.2 TCPWM counters

Each TCPWM counter can have its own clock source and the only source for the clock is from the configurable
peripheral clock dividers generated by the clocking system. To select a clock divider for a particular counter
inside a TCPWM, use the CLOCK_CTL register from the PERI register space.

Each TCPWM block has 14 Trigger_In signals, which come from other on-chip resources, such as other TCPWMs,
SCBs, or DMA. The Trigger_In signals are shared with all counters inside of one TCPWM block. Use the Trigger
Mux registers to configure which signals get routed to the Trigger_In for each TCPWM block. Two constant
trigger inputs, ‘0’ and ‘1’, are available in addition to the 14 Trigger_In. For each counter, the trigger input

source is selected using the TCPWM_CNT_TR_CTRL0 register. Each counter can select any of the 16 trigger
signals to be the source for any of the following events:

• Reload

• Start

• Stop/Kill

• Count

• Capture/swap

Each counter can generate three trigger output events. These trigger output events can be routed through the
trigger mux to other peripherals on the device.

The three trigger outputs are:

• Overflow (OV)

• Underflow (UN)

• Compare/Capture (CC)

The TCPWM block provides a dedicated interrupt output for each counter. This interrupt can be generated for a
terminal count (TC) or CC event. A TC is the logical OR of the OV and UN events.

Each counter has two outputs: pwm (line_out) and pwm_n (line_compl_out) (complementary of pwm). Note
that the OV, UN, and CC conditions are used to drive pwm and pwm_n by configuring the

TCPWM_CNT_TR_CTRL2 register.

The TCPWM block works in Active and Sleep modes. The TCPWM block is powered from VCCD. The

configuration registers and other logic are powered in Deep Sleep mode to keep the states of configuration
registers.

Application note 37 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.6.2.3 TCPWM operating modes

TCPWM supports six function modes: Timer, Capture, quadrature Decoder, Pulse Width Modulation (PWM),
PWM with dead time insertion (PWMDT) and Pseudo random PWM (PWM_PR). The TCPWM driver is structured
to map these functional modes to four high-level operating modes:

• Timer/counter mode:

The timer mode is used to measure the time taken for an event or the time difference between two events.
The timer functionality increments and decrements a counter between ‘0’ and the value stored in the
PERIOD register. When the counter is running, the count value stored in the COUNTER register is compared

with the compare/capture register (CC). When the counter changes from a state in which COUNTER equals
CC, the cc_match event is generated.

• Capture mode:

The capture functionality increments and decrements a counter between ‘0’ and PERIOD. When the capture

event is activated, the count value in the COUNTER register is copied to CC (and CC is copied to CC_BUFF).
The capture functionality is used to measure the pulse width (connected as one of the input triggers and

used as a capture event).

• PWM:

− Pulse Width Modulation mode (PWM)

The PWM can output a left, right, center, or asymmetrically-aligned PWM. Incrementing or decrementing

a counter between ‘0’ and PERIOD and comparing the counter value COUNTER with CC generates the
PWM signal. When COUNTER equals CC, the cc_match event is generated. To generate a pulse-width
modulated signal, use the cc_match event along with overflow and underflow events. Two pulse-width

modulated signals, pwm and pwm_n, are outputs from the PWM.

To generate the PWM output signals, use the underflow, overflow, and cc_match events. Each of these
events can be individually set to INVERT, SET, or CLEAR pwm_dt_input. The PWM behavior depends on

the PERIOD and CC registers. The software can update the PERIOD_BUFF and CC_BUFF registers without
affecting the PWM behavior. This is the main rationale for double-buffering these registers.

− PWM with Dead Time mode (PWMDT)

The PWMDT functionality is the same as the PWM functionality; however, the following are the
differences:

o PWM_DT supports dead time insertion; PWM does not support dead time insertion.

o PWM_DT does not support clock pre-scaling; PWM supports clock pre-scaling.

− PWM Pseudo-Random mode (PWMPR)

The PWM_PR functionality changes the counter value using the linear feedback shift register (LFSR). This

results in a pseudo random number sequence. A signal similar to PWM signal is created by comparing the
counter value COUNTER with CC. The generated signal has different frequency or noise characteristics

than a regular PWM signal.

• Quadrature decoder mode:

The Quadrature functionality increments and decrements a counter between ‘0’ and 0xFFFF or 0xFFFFFFFF
(32-bit mode). Counter updates are under the following quadrature signal input control:

− The index input is used to indicate an absolute position.

− The phiA and phiB inputs are used to determine a change in position (the rate of change in position can
be used to derive speed).

Application note 38 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.6.3 Software usage

This section describes the TCPWM software usage using HAL and PDL API’s. Additionally, it explains the Device
Configurator usage.

For more details, see the TCPWM PDL APIs in the following:

• TCPWM PDL

• Timer (Timer/Counter) HAL drivers

• PWM HAL drivers

• Quadrature Decoder HAL drivers

2.6.3.1 Device Configurator

From the Device Configurator, select 32-bit counter or 16-bit counter (see Figure 29). TCPWM can be
configured in any one of the operating mode.

Figure 29 Device Configurator enable TCPWM

For example, configure the Timer/Counter mode using the following parameters (see Figure 30):

• TCPWM[0] Group [1] 16-bit Counter 0 = Timer and Timer – Counter- 1.0

• Clock Prescaler = Divide by 4

• Period = 10000

• Clock signal = 16 bit Divider 0 clk [USED]

https://infineon.github.io/mtb-pdl-cat1/pdl_api_reference_manual/html/group__group__tcpwm.html
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__timer.html
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__pwm.html
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__quaddec.html

Application note 39 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

Figure 30 Device Configurator time configuration

2.6.4 Application and code examples

TCPWM can be used in multiple operations anything bound with timing requirements.

The following are the typical applications:

• Timer/Counter: Used in various applications like LED blinking and Events handling.

• PWM: Used in many lighting and motor control applications.

• Quadrature Decoder: Used in position sensing (e.g., Mouse scroll wheel).

For more details, see the following:

• HAL: TCPWM timer

• HAL: OWM square wave

https://github.com/Infineon/mtb-example-hal-tcpwm-timer
https://github.com/Infineon/mtb-example-hal-pwm-square-wave

Application note 40 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.7 Watchdog timer (WDT)

The WDT driver provides a low-level interface to the WDT Hardware block. The purpose of using WDT is to
recover from CPU or firmware failure by generating a device reset (WRES). It generates periodic interrupts and
prevents the system from crashing by resetting the device. The WDT can be used as an interrupt source or a
wakeup source in low-power modes.

2.7.1 Features

The WDT component provides the following features:

• CLK_LF as the input clock source

• Periodic Interrupt or wakeup generation in Active, Sleep, Deep Sleep, and Hibernate power modes

• Device reset generation if not serviced within a configurable interval

2.7.2 Description

WDT has the capability to issue counter match interrupts and trigger a device reset in the absence of interrupt
handling. WDT main purposes can be categorized into two use cases:

1. The first involves utilizing the WDT to recover from a CPU or firmware failure. By configuring a timeout
period within the Watchdog timer, if the specified time elapses without receiving a signal, the device
undergoes a reset (WRES).

2. The second is used to generate periodic interrupts. Instead of performing a device reset, the WDT can

generate an interrupt. This interrupt can be handled by the Interrupt Service Routine (ISR) either as a

periodic interrupt or as an early indication of a firmware failure, allowing the watchdog to be cleared.

In CPU Active power modes, the watchdog counter has the capability to issue interrupt requests to the CPU,

while in CPU Sleep and Deep Sleep power modes, it can send interrupt requests to the wakeup interrupt

controller (WIC).

• Active mode: In this mode, WDT is capable of sending an interrupt to the CPU, CPU acknowledges the
interrupt request and proceeds to execute the Interrupt Service Routine (ISR). The ISR is responsible for

clearing the interrupt.

• Sleep or Deep Sleep mode: The interrupt request from the WDT is directly transmitted to the WIC. The WIC is

responsible for awakening the CPU. Once the CPU acknowledges the interrupt request, it proceeds to
execute the ISR. The ISR firmware is responsible for clearing the interrupt within its operations.

• Hibernate mode: Few peripherals such as the WDT remains active. Any interrupt that aims to wake up the

device while in this mode will lead to a device reset. There is no specific interrupt service routine or

mechanism associated with this particular mode.

2.7.2.1 Block diagram

This section provides an overview of the functionality of the WDT. The WDT consists of a wraparound up-

counter that continuously counts. The counter is driven by the CLK_LF clock. The timer is capable of generating
an interrupt when it matches a specified value and triggering a reset event after the occurrence of the third

unhandled interrupt. The number of bits utilized for the match comparison can be configured.

Application note 41 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

WDT

WDT_CNT

CLK_LF
2(WDT_MATCH.IGNORE_BITS*) -1

Bitwise AND

INTERRUPT

WDT_EN EN

SRSS_INTR.WDT_MATCH***

(Write 1 from Firmware)

Count = 0

++Count

Count == 3 RESET

Reset Generation
logic

Yes

Free-running WDT

== WDT_MATCH.MATCH**

Figure 31 WDT block diagram

When WDT is enabled, it increments its counter with each rising edge of the CLK_LF signal. An interrupt is
generated when the counter value matches the value stored in the MATCH bits of the WDT_MATCH register.

Note that the match event does not reset the WDT counter; it continues counting until it reaches the 22-bit
boundary (0x3FFFFF). At this point, it wraps around to ‘0’ and starts counting up again. The match interrupt is

generated every time the counter value equals the match value, and the WDT_MATCH bit of the SRSS_INTR
register is set to indicate this interrupt occurrence. To clear the interrupt and reset the watchdog, a ‘1’ must be

written to the same bit (WDT_MATCH bit of SRSS_INTR). If the firmware fails to clear the interrupt for two
consecutive occurrences, the third interrupt results in a device reset. Use the WDT_EN bit to enable or disable

the WDT. The WDT provides an option to set the number of bits to be used for comparison. Use the

IGNORE_BITS of the WDT_MATCH register to configure the number of LSBs to ignore from the 22-bit count

value while performing the match.

2.7.3 Software usage

This section describes the software usage of WDT using HAL APIs and PDL APIs. For more details, see the WDT

HAL APIs and PDL APIs in the following:

• Hardware Abstraction Layer (HAL)

• MTB CAT1 Peripheral Driver Library

https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__wdt.html
https://infineon.github.io/mtb-pdl-cat1/pdl_api_reference_manual/html/group__group__wdt.html

Application note 42 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.7.3.1 Sequence diagram

1. Initialize the WDT using the following function:

cyhal_wdt_init()

2. Start (enable) the WDT using the following function:

cyhal_wdt_start()

3. Use the following command to check whether the WDT is enabled:

cyhal_wdt_is-enabled()

4. Reset the device using the following function:

cyhal_wdt_kick()

This function must be called periodically to prevent the WDT from timing out and resetting the device.

5. Disable the WDT using the following function:

cyhal_wdt_stop()

APP HAL

cyhal_wdt_init()

cyhal_wdt_start()

cyhal_wdt_is_enabled()

cyhal_wdt_kick()

cyhal_wdt_stop()

Figure 32 WDT sequence diagram

2.7.3.2 Device Configurator

WDT is not supported in Device Configurator.

2.7.4 Applications and code examples

WDT use cases are:

• Generate device reset

• Generate interrupts

• Generate periodic interrupts

For example, HAL: Watchdog Timer demonstrates how to set up a WDT using the WDT HAL resource. The WDT
resets the device if it is not serviced or “kicked” within the configured timeout interval. This helps in recovering

the program from an unintended lock up.

https://github.com/Infineon/mtb-example-hal-wdt

Application note 43 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.8 MCWDT

The MCWDT component offers an interface for configuring one MCWDT hardware block. Each block consists of
three counters that can be customized for different system utility functions, including a free-running counter,
periodic interrupts, or watchdog reset. Note that besides the MCWDTs, each device also has a standalone
watchdog (WDT) that can be utilized to generate a watchdog reset or periodic interrupts.

2.8.1 Features

• Device reset generation if not serviced within a configurable interval

• Two 16-bit counters that can be free running, generate periodic interrupts, or generate a watchdog reset

• One 32-bit counter that can be free running or generate periodic interrupts

• Periodic interrupt/wake up generation in LP/ULP Active, LP/ULP Sleep, and Deep Sleep power modes

• All counters are clocked by CLK_LF

2.8.2 Description

The main purpose of MCWDT is to generate periodic CPU interrupts and function as a free-running timer.

MCWDT has the capability to produce up to three periodic interrupts. Each MCWDT generates a single
combined interrupt. An Interrupt Service Routine (ISR) can handle this interrupt either as a periodic interrupt or
as an early indication of a firmware failure requiring the watchdog to be cleared. An alternative application of

MCWDT is as a watchdog, serving to recover from CPU or firmware failures. The CLK_LF serves as the clock

source for all the counters, enabling their operation in Active, Sleep, and Deep Sleep modes. However, note

that Hibernate mode is not supported for these counters.

2.8.2.1 Block diagram

The functional overview of a multi-counter WDT block in the 20829 MCU reveals the inclusion of one MCWDT
(Multi-Counter Watch Dog Timers) block. This MCWDT block consists of two 16-bit counters, namely

MCWDTx_WDT0 and MCWDTx_WDT1, along with one 32-bit counter known as MCWDTx_WDT2. These counters
can be configured to operate independently or in a cascade configuration, allowing for a maximum counter size
of 64 bits. MCWDTx_WDT0 and MCWDTx_WDT1 are 16-bit up counters, which can be configured to be a 16-bit
free-running counter or a counter with any 16-bit period. These counters can be used to generate an interrupt

or reset the device. The MCWDTx_WDT2 is a 32-bit free-running counter, which can be configured to generate
an interrupt. All the counters are synchronized by CLK_LF.

Application note 44 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

CLK_LF

MCWDTx_WDT1 (16-bit Counter)
MCWDTx_WDT0 (16-bit Counter)

MCWDT_CTR0
MCWDTx_WDT2 (32-bit Counter)

MCWDT_CTRHIGH

MCWDT_CTR0 == MCWDT_MATCH0 MCWDT_CTR1 == MCWDT_MATCH1

321616

MCWDT
Mode

Configuration
MCWDT_MODE0 MCWDT_MODE1

MCWDT
Mode

Configuration
MCWDT_MODE2

5
MCWDT_BITS2

MCWDT_CASCADE0_1 MCWDT_CASCADE1_2

MCWDT_INT1MCWDT_INT0 MCWDT_INT2RESET RESET

INTERRUPT

RESET

MCWDT
Mode

Configuration

Multi counter
WDT

Figure 33 MCWDT block diagram

2.8.3 Software usage

This section describes about the software usage of MCWDT using PDL APIs and device configurator. For more

documentation refer the MCWDT PDL APIs provided in the below links.

• PDL doxygen

2.8.3.1 Sequence diagram

Using the MCWDT Peripheral Driver Library (PDL) resource, a MCWDT can report the current value of the
specified counter when operating in free-running mode.

Cy_MCWDT_Init()

Cy_MCWDT_Enable()

Cy_MCWDT_GetCount()

PDLAPP

Figure 34 MCWDT sequence diagram

2.8.3.2 Device Configurator

Do the following to initialize the MCWDT:

1. Use the following methods to access the Device Configurator:

• Right-click on the project and select ModusToolbox™, and then select Device Configurator.

Or

• Click Device Configurator in the bottom left corner of the Quick Panel of ModusToolbox™.

2. Navigate to the Peripheral tab in the Device Configurator.

3. Select the checkbox next to the MCWDT option.

https://infineon.github.io/mtb-pdl-cat1/pdl_api_reference_manual/html/group__group__mcwdt.html

Application note 45 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

This action generates the initialization code. On the right side of the Device Configuration window, you can
configure Counter0, Counter1, and Counter2.

4. Go to File and click Save before closing the Device Configurator. Additionally, the Device Configurator

provides a Code Preview window that displays the defines and functions related to the MCWDT

configuration.

Note: Use Device Configurator only for PDL APIs.

Figure 35 Device Configurator for MCWDT

2.8.4 Applications and Code example

MCWDT use cases are:

• Periodic Interrupt Generation

• Reset Generation

• Interrupt Generation

• Free running timer

For example, HAL: Low-power timer demonstrates how to configure a low-power timer to measure the timing
between events in free-running mode using the LPTimer HAL resource.

https://github.com/Infineon/mtb-example-hal-lptimer
https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__lptimer.html

Application note 46 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.9 Real time clock (RTC)

RTC is a hardware component that is used to keep track of the current time and date as well as the ability to
trigger a callback at a specific time. RTCs are commonly used in electronic devices such as computers,
smartphones, digital cameras, microwave ovens, washing machines, clocks and other home appliances, IoT,
and activity trackers where an accurate and reliable time reference is required. The RTC operates

independently of the main system clock and continues to keep track of time even when the system is turned

OFF or in Sleep mode. The RTC typically has a battery backup to maintain the timekeeping function; therefore,
it can retain the time and date information even when the main power source is disconnected. RTC circuits
usually include a crystal oscillator, a counter, and a register for storing the time and date information.

2.9.1 Features

The RTC component supports the following features:

• BCD time and date format

• Configurable alarm

• Century interrupt feature

• Configurable DST

• 12-Hour/24-Hour time format

• Automatic leap year compensation

• Option to drive the RTC by an external 50-Hz or 60-Hz clock source while internal watch crystal oscillator is
the default source

2.9.2 Description

The RTC is comprised of eight fields, namely RTC_SEC, RTC_MIN, RTC_HOUR, CTRL_12HR, RTC_DAY,

RTC_DATE, RTC_MON, and RTC_YEAR, all of which are encoded in binary-coded decimal (BCD) format. BCD
encoding uses four bits to represent a single decimal digit. The RTC supports both 12-hour and 24-hour time

formats, with the "hours" field capable of displaying AM/PM flags. The RTC hardware automatically
compensates for leap years, eliminating the need for manual adjustment. Leap years are defined as years that

are divisible by 4 or 400 but not by 100.

• To Read and Write, set the READ bit and WRITE bit in the BACKUP_RTC_RW register.

• The RTC's Alarm feature enables the generation of an interrupt that can wake up the system from Sleep,
Deep Sleep, and Hibernate power modes. It consists of six fields that correspond to the RTC fields:

Month/Date, Day-of-Week, and Hour:Minute:Second. This allows the RTC to generate an interrupt when the

RTC time matches the time set in the ALARM registers. The RTC component physically provides two alarm

functions that can trigger an SRSS backup interrupt to prompt an appropriate action on time.

• The RTC component offers two modes for DST: fixed date and relative date. When DST is enabled, the

alarm2 block is reserved for executing DST start or stop actions. DST can be optionally enabled and
supports any start and end date, which can either be a fixed date such as March 24th or a relative date.

Application note 47 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.9.2.1 Block diagram

The RTC comprises two distinct blocks. The AHB RTC user registers contain all RTC settings and synchronize
with the actual RTC register. However, the AHB RTC user registers do not update automatically. Instead, they
are copied on-demand when a read transaction is initiated from the actual RTC register. To avoid stalling the
actual RTC, you are only allowed to access the AHB RTC user register.

RTC

Registers

RTC

Alarm

Config

User

Registers

RTC

Alarm

Config

CLK_BAK

Register

Interface

AHB

Interface Backup

Power

Switch

VDDD

VBACKUP

LFCLK

(from System Resources)

VDDBAK

Figure 36 Block diagram

The components of the RTC are:

• Crystal oscillator: Generates a clock signal that is used by the counter to keep track of the time and date.

• Counter: Increments the values of the time and date registers accordingly.

• Registers: Store the time and date information.

• Battery backup: Maintain the timekeeping function even when the power source is disconnected.

• Control logic: Manages the operation of the RTC circuit and interfaces with the rest of the system.

• Interface: Provides a way to set the time and date, read the time and date, and configure other RTC

functions.

2.9.3 Software usage

This section describes the software usage of RTC using PDL and HAL APIs and Device Configurator. For more
details on RTC HAL APIs and PDL APIs, see the following:

• RTC HAL

• RTC PDL

https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__rtc.html
https://infineon.github.io/mtb-pdl-cat1/pdl_api_reference_manual/html/group__group__rtc.html

Application note 48 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.9.3.1 Sequence diagram

Use case 1: Receive and set the time in the RTC using the RTC HAL API.

• Initialize the RTC peripheral using the following function:

cyhal_rtc_init()

This initialization step does not alter the RTC's state but grants access to it.

• Write the specified time and date to the RTC peripheral using the following function:

cyhal_rtc_write()

Conversely, the following function gets the current time and date from the RTC peripheral:

cyhal_rtc_read()

cyhal_rtc_init()

cyhal_rtc_read()

cyhal_rtc_write()

APP HAL

Figure 37 Setting and retrieving RTC time

Use case 2: Set the alarm in the RTC using RTC HAL API.

• Initialize the RTC peripheral using the following function:

cyhal_rtc_init()

This initialization step does not alter the RTC's state but grants access to it.

• Write the specified time and date to the RTC peripheral using the following function:

cyhal_rtc_write()

Conversely, the following function gets the current time and date from the RTC peripheral:

cyhal_rtc_read()

• Register an RTC event callback handler using the following function:

cyhal_rtc_register_callback()

This enables a specific function to execute when an RTC event occurs.

• Configure RTC events using the following function:

cyhal_rtc_register_callback()

This allows you to define the desired behavior for different RTC events.

• Set an alarm (interrupt) for the specified time and date using the RTC peripheral using the following
function:

cyhal_rtc_set_alarm()

This allows you to schedule an alarm that will trigger an interrupt when the specified time and date are

reached.

Application note 49 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

APP HAL

cyhal_rtc_init()

cyhal_rtc_write()

cyhal_rtc_register_callback()

cyhal_rtc_enable_event()

cyhal_rtc_set_alarm()

Alarm Trigger

Alarm Callback

Figure 38 Configuring RTC alarm

2.9.3.2 Device Configurator

Do the following to initialize the RTC:

1. Use the following methods to access the Device Configurator:

• Right-click on the project and select ModusToolbox™, and then select Device Configurator.

Or

• Click Device Configurator in the bottom left corner of the Quick Panel of ModusToolbox™.

2. Navigate to the Peripheral tab in the Device Configurator.

3. Select the checkbox next to the RTC option.

This action generates the initialization code. On the right side of the Device Configuration window, you can

configure Date Format, Enable DST, Time, and Date for the RTC.

4. Go to File and click Save before closing the Device Configurator.

Additionally, the Device Configurator provides a Code Preview window that displays the defines and

functions related to the RTC configuration.

Note: Use Device Configurator only for PDL APIs.

Application note 50 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

Figure 39 Device Configuration for RTC

2.9.4 Applications and code examples

RTC use cases are:

• RTC time keeping and time-stamping

• Set daily alarm or one time alarm

• RTC as a stopwatch

• DST adjustment

• Generate one sec interrupts

For example, see the following:

• HAL: RTC periodic wakeup demonstrates how to enter the Deep Sleep and Hibernate modes and wakeup

using the RTC alarm.

• HAL: Real-time clock basics demonstrates the usage of the real-time clock (RTC) in the Infineon MCU. It
shows how to get and set the time in the RTC using the RTC HAL API. The example also supports the daylight

saving time (DST) feature. A UART interface is used to input the time and configure the RTC.

https://github.com/Infineon/mtb-example-hal-rtc-periodic-wakeup
https://github.com/Infineon/mtb-example-hal-rtc-basics

Application note 51 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.10 Datawire

A Direct Memory Access (DMA) block is specifically designed for data movement and is more power efficient
than the CPU for transferring large data blocks. The DMA block provides an independent data transfer engine,
which offloads the CPU usage on data transfer use cases. The DMA block in CYW20829 implements a data
transfer engine with different configuration options that lets the DMA block be used in different data transfer

use cases. This chapter describes the different DMA configurations and use cases. The DMA engine in CYW20829

called Datawire (DW) is specifically designed for transferring small data blocks, typically between peripherals
and memory, to offload the CPU from any data transfer with peripherals.

2.10.1 Features

The DMA (Datawire) hardware block has the following features:

• Transfers the data between peripherals to memory without involving the CPU core.

• One Datawire block (DW0) that supports up to 16 channels.

• Supports multiple instances of DMA channel.

• Four levels of priority for each channel

• Various attributes of DMA are configurable through software called DMA descriptors.

• DMA Descriptors are defined in memory and referenced to the respective DMA channels.

• Supports single-shot, one-dimensional (1-D), and two-dimensional (2-D) transfer modes using DMA
descriptor.

• Supports transfers up to 65536 data elements per descriptor.

• Configurable source and destination address increments

• Supports 8-bit, 16-bit, and 32-bit data widths at both source and destination.

• Descriptors can be chained to other descriptors in memory.

• Configurable input/output trigger and interrupt generation for each descriptor.

• Available in Active and Sleep power mode.

2.10.2 Description

DMA transfers the data to and from the memory, peripherals, and registers. These transfers occur
independently from the CPU. DMA can be configured to perform multiple independent data transfers. A

channel manages all data transfers. There can be up to 32 channels in the DMA. Datawire focuses on peripheral-
to-memory and memory-to-peripheral data transfers (however, it can also perform memory-to-memory data

transfers). It is designed to achieve low latency for a large number of channels. It uses a single-data transfer

engine that is shared by all channels.

Application note 52 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.10.2.1 Block diagram

Trigger Multiplexer

System
Triggers

Pending
triggers

Priority
Decoder

Data Transfer Engine
(active request)

Bus slave
interface

Bus master
interface

DMA
registers

DescriptorsDescriptors
Descriptors

Memory

Datawire

Trigger out

Interrupt

Figure 40 Block diagram

2.10.2.2 Implementation

• DMA Channels

A single DMA hardware block can support many DMA channels that may be triggered by independent and

unrelated events. CYW20829 has one DMA block that supports up to 16 channels. Each DMA channel has a
trigger input, trigger output, and interrupt output line. Interrupt signals are routed to individual interrupt

lines in the respective CPU. Trigger signals to and from DMA channels are routed through a trigger
multiplexer block, which has a device-specific architecture. The trigger multiplexer block enables routing of

trigger signals from different peripherals to the DMA block and routing trigger outputs back to other

peripherals.

The DMA channels has one of the following four channel states at any given time:

− Disabled: Channel is disabled.

− Blocked: Channel is enabled and is waiting for a trigger to initiate the data transfer.

− Pending: The channel is enabled and has received an active trigger. In this state, the channel is ready to

initiate a data transfer but waiting for it to be scheduled.

− Active: The channel is enabled, has received an active trigger and has been scheduled. It is actively
performing data transfer(s). If there are multiple channels pending, the highest priority pending channel

gets scheduled.

• Channel priorities and preemption

The DMA channels can be assigned priorities, and preemption can be enabled to handle higher-priority
transfers. A channel is assigned a priority between ‘0’ (0’ being the highest priority) and ‘3’ (‘3’ being the

lowest priority). Channels with the same priority constitute a priority group. Priority decoding determines

the highest-priority pending channel. This channel is determined as follows.

− The highest-priority group with pending channels is identified.

− Within this priority group, round-robin arbitration is applied. Round-robin arbitration (within the priority
group) provides the highest priority to the lower channel indices (within the priority group).

However, if there is a low-priority channel already active and is in the middle of a large transfer, a pending

higher-priority channel cannot become active. This can hold the execution of a higher-priority channel. This
can be a problem when the higher-priority channel caters to a data transfer that is time-sensitive. Figure 41

Application note 53 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

shows this condition in the case of channel without preemption. To address this, there is an additional
configuration parameter in the DMA channel called “preemptable”. This parameter allows a higher-priority

channel to preempt the currently active low-priority channel. If a channel has preemptable enabled, any
other channel with a higher priority can preempt the channel. This means that when the DMA channel is in

the middle of a transfer, a higher-priority channel request will stop the current transfer after completing the
current atomic transfer, keep the channel pending, and then start the higher-priority channel. The data
width parameter determines the size of an atomic transfer. Only when the high-priority channel is

completed, the low-priority channel may resume. A low-priority preemptable channel can get preempted
multiple times during a single transfer.

HP HP LP HP HPHP

High-Priority Channel Delayed

HP HP LP HP HPHP

Low-Priority Channel Preempted

HPLP LP

time

time

Channel Arbitration Without Preemption

Channel Arbitration with Preemption

HP High-priority DMA channel is active

Low-priority DMA channel is activeLP

High-priority DMA channel triggered

Low-priority DMA channel triggered

Figure 41 Channel arbitration

Preemption is useful only in cases when there are low-priority channels with no constraints of transfer times
and there are high-priority channels that are time-sensitive and cannot be held hostage by other on-going
transactions. Note that preemption can cause significant delay in low-priority transfers, if:

− There are multiple frequent requests from high priority channels.

− The time taken for a high-priority transfer is too long.

There are multiple bus masters in the CYW20829 device. A DMA channel may have the highest priority in its
DMA hardware block, but that does not guarantee its performance on the bus when arbitrating with other
bus masters. Sometimes, even a DMA channel’s descriptor fetch process can be delayed due to bus

arbitration by other masters.

• Data transfer widths

Application note 54 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

The data width determines the width of the data being accessed at the source or destination. The DMA
supports different data transfer widths, such as bytes, 2-byte words, and 4-byte words. This configuration is

also responsible for the value of each increment of the X or Y loops which will be discussed below. Data
widths must always be equal to the width supported by the device. For example, because all peripherals

support 32-bit data width, if the source or destination of a transfer is a peripheral, the source or destination
data width must be set to 32 bits.

Memory supports 8-bit, 16-bit, and 32-bit access. You can use larger data widths to increase throughputs

or use smaller data widths to quantize the data size. For example, 8-bit data is being transferred from a
communication block to the memory, the source data width must be 32 bits (because the source is a

peripheral), but the destination can be 8 bits (because the destination is a memory location), which
automatically truncates the higher 24 bits. This will enable a smaller memory footprint.

• Descriptors

A descriptor describes the data transfer associated with a DMA channel and is stored in RAM or external
flash with read-only attribute for CYW20829. The cy_stc_dma_descriptor_config_t structure in PDL driver
cy_dma.h helps to configure the DMA descriptor. The descriptor defines different configurations of the
transfer, such as size, data width, burst sizes, address increment schemes, and source and destination

addresses. The descriptor is a structure of a specific type placed in a memory location. The pointer to this

descriptor is associated with a DMA channel as part of its DMA channel configuration. When a DMA channel
is active, the fetch its descriptor from the memory. Multiple descriptors can be associated with a DMA

channel in a chained configuration.

Descriptor

Source Address
DESCR_SRC

Destination Address
DESCR_DST

X Size

SRC_X_INR DST_X_INCR

Y Size

SRC_Y_INR DST_Y_INCR

Next Descriptor Address
DESCR_NEXT_PTR

DESCR_TYPE
DESCR_CTL

TR_IN_TYPE
SCR_TRANSFER_SIZE

TR_OUT_TYPE
DST_TRANSFER_SIZE

DATA_SIZE

WAIT_FOR_DEACTINTR_TYPE CH_DISABLE

Figure 42 Descriptor

Application note 55 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

• Descriptor types (transfer modes - triggering schemes)

There are three transfer modes for a DMA channel based on the transfer size (data element) that should be

defined in the associated descriptor. A data element could be 1-byte, 2-byte or 4-byte word based on the
width definition in the descriptor.

− Single-shot (atomic) transfer: In this mode, the DMA channel can transfer only a single data element
(byte, half word, and word). A trigger signal need to initiate each single transfer to the DMA channel.

− 1D Transfer (X loop): In this mode, the DMA channel can transfer a single data element or the entire 1D

transfer at a time. This mode is useful for buffer-to-buffer transfer or a peripheral-to-memory buffer
transfer; it allows for multiple data elements to be transferred as defined in a descriptor. The descriptor

can decide on the exact form of source and destination address increments.

− 2D Transfer (Y loop): In this mode, the DMA channel can transfer a single data element, the entire 1D

transfer at a time, or the entire 2D transfer at a time. mode allows for multiple 1D transfers to be defined
in a single descriptor. This allows for a larger data count and allows for transfers of more complex data
entities like array of data structures.

• Types of transfers:

− 1-to-1 transfer: Enables the direct transfer of one data element from a source to a destination, triggered

by interrupts.

− 1-to-N transfer: Allows for the transfer of one data element to multiple destinations.

− N-to-1 transfer: Enables the transfer of multiple data elements from multiple sources to a single

destination.

− N-to-N transfer: Enables the transfer of multiple data elements between multiple sources and

destinations.

− N-to-NxM transfer: Allows more complex transfers involving multiple sources and destinations.

• Chaining descriptors (advanced use cases)

DMA blocks support descriptor chaining, which is useful if different types of transfers are to be done in a

sequence. Each descriptor has the pointer to the next descriptor it must chain to, similar to a linked list.
There is no limit on the number of descriptors you can chain. One of the greatest advantages of chaining is

that each descriptor can have a different configuration including different source and destination
addresses, trigger settings, interrupt settings, transfer modes, loops settings, and data widths. This allows

the same DMA channel to implement multiple transfers of varying characteristics.

Figure 43 shows the double buffering, which is a good use-case for descriptor chaining. The input data is in

the form of 8-byte blocks in the SCB FIFO, which needs to be moved to Buffer 0 or 1 for double buffering. The
buffers are 256 bytes each and therefore can accommodate 32 FIFOs worth of data before overflowing. A
single DMA channel is used for the transfer with two descriptors. Both descriptors are set up for a 2D transfer

with the FIFO as the source. The X loop will cycle through the FIFO and therefore needs both source and
destination increments. The Y loop handles the moving of 32 FIFOs. Descriptor 0 is set to chain to Descriptor
1 and vice versa. Descriptor 0 is configured to transfer to Buffer 0 and Descriptor 1 to Buffer 1. Once
Descriptor 0 is completed, the control automatically transfers to Descriptor 1 due to chaining. This will

ensure the continued transfer and double buffering. Each descriptor is also configured to interrupt the CPU
at its transfer completion. This will inform the CPU that one buffer is available for processing.

Application note 56 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

SCB FIFO

(8 bytes)

Descriptor 0 (To Buffer 0)

Descriptor 1 (To Buffer 1)

DMA Channel Buffer 0

(256 bytes)

Buffer 1

(256 bytes)

CPU

Interrupt for each buffer completion

Figure 43 Double buffering for chaining descriptors

• Chaining DMA channels (advanced use cases)

In addition to chaining of descriptors in a single DMA channel, there are cases where it is useful to chain two
DMA channels. To do this, one DMA channel’s trigger output is routed to the next DMA channel’s trigger

input. Depending on the specific trigger multiplexer routing in CYW20829, only certain DMA channels will

have the ability to chain. For more details on chaining restrictions of DMA channels, see the “Trigger
Multiplexer” section.

Application note 57 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.10.2.3 Trigger Multiplexer (TrigMUX)

It is important to understand Trigger Multiplexer for the typical usage of datawire. This subsection will provide
the basic purpose of Trigger Multiplexer and will be detailed in a separate chapter dedicated for Trigger
Multiplexer. Trigger Multiplexer is a series of multiplexers used to route the trigger signals from potential
sources to destinations. CYW20829 has several SoC peripheral blocks; each of these blocks can be connected to

other blocks through trigger signals. The trigger signals are digital signals generated by peripheral blocks to

indicate an action such as completion of an event, state of FIFO level, etc. These trigger signals typically serve
as initiator of other actions in other peripheral blocks. The trigger multiplexer can connect to any trigger signal
emanating out of any peripheral block in CYW20829 and route it to any other peripheral to initiate an operation
or change an ongoing operation at the destination peripheral block.

2.10.3 Software usage

For more details, see the RTC HAL APIs and PDL APIs provided in the following:

• DMA HAL : Hardware Abstraction Layer (HAL)

• DMA PDL : MTB CAT1 Peripheral Driver Library

2.10.3.1 Sequence diagram

Do the following to operate the DMA:

1. Use the ModusToolbox™ Device Configurator to configure the triggers, channels, and descriptors. This

automatically generates the code in the cycfg_DMAs.h and cycfg_DMAs.c files. Each descriptor will generate

a descriptor structure called CYBSP_DMA_PDM_Descriptor_2_config in the code.

Note: This descriptor is not automatically initialized or allocated to the DMA channel. This must be done

in user code as described in the following steps.

2. A configuration structure “CYBSP_DMA_PDM_Descriptor_2_config” is generated, which has all descriptor

configuration set in the Device Configurator. This can be used to initialize the descriptor
CYBSP_DMA_PDM_Descriptor_2_config.

3. All channel-level configuration such as priority is configured in CYBSP_DMA_PDM_channelConfig. This

structure can be used to initialize the channel.

4. Initialize the descriptor with the following function:

− Cy_DMA_Descriptor_Init()

This step transfers all configuration to the descriptor.

5. Configure the source and destination addresses using the following functions:

− Cy_DMA_Descriptor_SetSrcAddress()

− Cy_DMA_Descriptor_SetSrcAddress().

6. Initialize the channel and associate the descriptor to the channel with the following function:

− Cy_DMA_Channel_Init()

7. Enable the channel using the following function:

− Cy_DMA_Channel_Enable()

Note: At this stage, only the channel is enabled but not the DMA block itself. To enable the DMA block, use
the Cy_DMA_Enable() function.

https://infineon.github.io/mtb-hal-cat1/html/group__group__hal__dma.html
https://infineon.github.io/mtb-pdl-cat1/pdl_api_reference_manual/html/group__group__dma.html

Application note 58 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

App PDL

Cy_DMA_Descriptor_Init()

Cy_DMA_Descriptor_SetSrcAddress()

Cy_DMA_Descriptor_SetDstAddress()

Cy_DMA_Channel_Init()

Cy_DMA_Channel_Enable()

Cy_DMA_Enable()

Figure 44 DMA operations

2.10.3.2 Device Configurator

Do the following to initialize the RTC:

1. Access the Device Configurator via the following methods:

• Right-click on the project and select ModusToolbox™, and then select Device Configurator.

Or

• Click Device Configurator in the bottom left corner of the Quick Panel of ModusToolbox™.

2. Navigate to the DMA tab in the Device Configurator.

3. Select the checkbox next to the required DMA Datawire channel option.

On the right side of the Device Configuration window, you can configure one or more DMA descriptors, DMA

channel parameters, and the trigger input and output routing.

Application note 59 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

Figure 45 Device Configuration for DMA

2.10.4 Applications and code examples

DMA use cases are:

• Memory-to-peripheral data transfer without the CPU involvement.

• Peripheral-to-memory data transfer without the CPU involvement.

• Continuous data transfer operation from multiple peripherals-to-memory or peripherals while CPU is in

Sleep mode.

AIROC™ CYW20829 Voice Remote Reference Solution: This solution demo demonstrates the implementation of

AIROC™ CYW20829 Voice Remote Reference Solution using the Infineon AIROC™ CYW20829 Bluetooth® LE MCU
and ModusToolbox™ Software Environment. This application is designed to work on two platforms i.e.,
CYW920829-VR and CYW920829M2EVK-02.

https://github.com/Infineon/mtb-example-btstack-freertos-cyw20829-voice-remote

Application note 60 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.11 CAN

mxttcanfd(CAN FD Controller) is used as a CAN IP that supports CANFD and TTCAN. This IP implements CAN
functionality with the integration of a third-party IP from BOSCH.

CAN is a broadcast type of bus and is a multi-master setup. All the nodes on the bus can hear all the
transmissions. There is no way to send a message to just a specific node; all the nodes will invariably pick up
the traffic. The CAN hardware, however, provides local filtering so that each node may react only on the
interesting messages. CAN partially defines the services for the Physical and Data Link Layer of the OSI model.

2.11.1 Features

Major features of CAN FD are:

• Two configurable receive FIFOs (up to 64 buffers each)

• Configurable transmit FIFO

• Up to 64 dedicated receive buffers

• Up to 32 dedicated transmit buffers

• Shared message RAM

2.11.2 Description

The M_TTCAN operation is available in Active and Sleep power modes, and the IP is fully retained except for the

Time Stamp counter in Deep Sleep power mode.

The following are the major blocks in CAN FD:

Dual clock sources

The M_TTCAN channel has two clock inputs:

• clk_can: Derived from the system peripheral clock dividers, it is used for the CAN (or CAN FD) operation.

• clk_sys: Used for everything except CAN operations; for example, register accesses, SRAM accesses, and so

on.

Interrupt lines

The M_TTCAN channel provides two interrupt lines: interrupt0 and interrupt1. Interrupts from any source
within the M_TTCAN channel can be routed either to interrupt0 or interrupt1. By default, all interrupts are
routed to interrupt0.

MRAM – Message RAM

Each M_TTCAN group consists of one message RAM, and this message RAM is shared among the M_TTCAN

channels belonging to that group. The M_TTCAN IP requires access to a MRAM to store in- and out-going
messages and acceptance filters. The host CPU must also be able to access this MRAM. You must take care of
distributing the MRAM to the channels of that group and prevent any overlapping distribution. The IP does not
check internally if any MRAM region is overlapping for multiple channels of the group. The MRAM is ECC-
protected with single-bit error correction and double-bit error detection feature. ECC errors and out-of-range

accesses to the MRAM are reported to fault structures.

Message RAM contains Rx and Tx messages and the filter configurations. All messages go through MRAM to
transmit or receive them.

Application note 61 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

M_TTCAN

All message handling functions are implemented by the Rx and Tx Handlers.

• Tx Handler: Transfers transmit messages from the message RAM to the CAN core and provides transmit
status information.

• Rx Handler: Manages message acceptance filtering, transfers received messages from the CAN core to a

message RAM, and receives message status information.

Timestamp generation

The M_TTCAN channel uses a 16-bit counter to record when messages are sent or received. This allows the
application software to know the order in which events occurred.

Operation modes

The M_TTCAN's default operating mode after hardware reset is event-driven CAN communication without time
triggers.

• CAN FD operation: The two variants of CAN FD frame transmission are:

− CAN FD frame without bitrate switching

− CAN FD frame where the control, data, and CRC fields are transmitted with a higher bit rate than the

beginning and end of the frame.

The previously reserved bit in CAN frames with 11-bit identifiers and 29-bit identifiers will now be decoded

as an FDF bit.

− FDF = recessive signifies a CAN FD frame.

− FDF = dominant signifies a classic CAN frame.

In a CAN FD frame, the two bits following FDF, reserved bits (res), and bit rate switch (BRS) decide whether
the bit rate inside the CAN FD frame is switched. A CAN FD bit rate switch signified by res is dominant, and
BRS is recessive.

• Restricted Operation mode:

In Restricted Operation mode, the node is able to receive data and remote frames and acknowledge valid

frames, but it does not send data frames, remote frames, active error frames, or overload frames. In case of

an error or overload condition, it does not send dominant bits; instead, it waits for the occurrence of a bus
idle condition to resynchronize itself to the CAN communication.

The Restricted Operation mode can be used in applications that adapt themselves to different CAN bit rates.

In this case, the application tests different bit rates and leaves the mode after it has received a valid frame.

• Bus Monitoring Mode:

In Bus Monitoring mode, the M_TTCAN is able to receive valid data frames and valid remote frames but
cannot start a transmission. In this mode, it sends only recessive bits on the CAN bus. If the M_TTCAN is

required to send a dominant bit (ACK bit, overload flag, or active error flag), the bit is rerouted internally so

that the M_TTCAN monitors this dominant bit, although the CAN bus may remain in recessive state. The Bus
Monitoring mode can be used to analyze the traffic on a CAN bus without affecting it through the
transmission of dominant bits.

Application note 62 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

Block diagram

CYW20829

MXTTCANFD

TTCANFD Decoder

TTCANFD REG

Sync Triggers DMA RX Triggers on FIFO

AHB

CAN FD
Transceiver

C
A

N
L

C
A

N
H

C
A

N
 N

et
w

or
k

TTCANFD Wrapper

M-TTCAN

Interrupts

Interrupts

clkstop

SRAM
RX

TX

Figure 46 Block diagram

2.11.3 Software usage

This section describes the software usage of CAN FD using PDL and device configurator. For more details on
CANFD PDL APIs, see the following:

• CAN FD PDL

Prior to the main flow of transmission and reception of desired messages, you must initialize certain variables
to define base values. Even though these values can be preconfigured in PDL flow, you can change them in

code.

Members of structures such as “cy_stc_canfd_config_t CANFD_config” and “cy_stc_canfd_context_t

canfd_context” must be initialized with desired values. For more details, see the “CAN FD on 20829” code
example.

https://infineon.github.io/mtb-pdl-cat1/pdl_api_reference_manual/html/group__group__canfd.html
https://github.com/Infineon/mtb-example-cat1-canfd

Application note 63 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.11.3.1 Sequence diagram

APP PDL

Cy_CANFD_Init()

Register IRQ

Cy_CANFD_UpdateAndTransmitMsgBuffer()

IRQ Trigger

IRQ CallBack

canfd_rx_callback()

Update the Node message

Figure 47 Sequence diagram

2.11.3.2 PDL interface

The Peripheral Driver provides an API to access the low-level registers of the CAN FD IP. The CAN FD PDL
interface allows an easy configuration of the commonly used settings, the following are its functions:

• Initializes the required port: Enables available pin configurations specific to CAN FD.

• Initializes the clock system and CANFD related prescaler: It is necessary to configure the frequency block
used for the same.

• Initializes the CANFD configuration block, like mode, bit rate, and so on.

• Initializes the CANFD message filters: Required to set message ID filters.

• Initializes the CANFD interrupt system.

• Supports data transmission (object configuration and sending).

• Supports data reception (read-out of objects)

The CAN FD Peripheral Driver has an API to initialize the predefined structure type. You will need to pass this
descriptor pointer as an instance into the channel initialization API. All the Peripheral Driver functions will have

one parameter associated with them: the CAN FD hardware block number.

Application note 64 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.11.3.3 Device Configurator

For example. Figure 48, Figure 49, and Figure 50 show the values that can be filled in the Device Configurator to
get the desired output.

Note: The following figures show predefined values and you can change them if required.

Figure 48 Device Configurator CAN FD settings

Figure 49 Device Configurator CAN FD settings

Figure 50 Device Configurator CAN FD settings

Application note 65 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.11.4 Applications and code example

CAN FD use cases are:

• Electronic Control Units (ECU)

• Industrial Automation

For example, the CAN FD code example demonstrates that CAN FD Node-1 sends a CAN FD frame to Node-2 on
pressing the user button and vice versa. Both the CAN FD nodes log the received data over the UART terminal.

Each time a CAN FD frame is received, the user LED toggles.

2.12 Smart I/O

Smart I/O adds programmable logic to an I/O port. Smart I/O integrates Boolean logic functionality such as

AND, OR, and XOR into a port. It also pre- or post-processes the signals between the high-speed I/O matrix
(HSIOM) and the I/O port. For example, smart I/O can enable digital glue logic for input signals using multiple
flip-flops without CPU intervention. HSIOM multiplexes GPIOs, sharing multiple functions, into peripheral
devices selected by the user.

2.12.1 Features

• Integrate board-level Boolean logic functionality into a port

• Ability to pre-process HSIOM input signals from the GPIO port pins

• Ability to post-process HSIOM output signals to the GPIO port pins

• Supports all device power modes except Hibernate mode

• Integrate closely to the I/O pads, providing shortest signal paths with programmability

2.12.2 Description

This design consists of a PWM resource and a smart I/O resource, both creating square waves of slightly
different frequencies. These square waves are routed through an exclusive-OR (XOR) gate within the smart I/O

resource, yielding a signal with a gradually changing duty cycle. The rate of change is proportional to the
difference between the output square wave frequencies. The signal is then output to IO1 of smart I/O port 9.

Driving an LED with this signal results in a ramping effect, where the LED gradually gets brighter and dimmer

alternately.

A 10 kHz clock drives the PWM with a period of 399 counts and a compare value of 200 counts. This provides a
50 percent duty cycle square wave with a 40 ms period. The smart I/O is clocked at 99 Hz using a divided clock

sourced from CLK_PERI. This input clock is divided by four using the lookup tables (LUTs) of the smart I/O
resource to produce a square wave with a 40.4 ms period.

To generate a square wave signal with a time period close to 40 ms, a 99 Hz clock is divided by four using a
synchronous sequential circuit, which is realized using the LUTs of the smart I/O resource.

https://github.com/Infineon/mtb-example-cat1-canfd

Application note 66 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.12.2.1 Block diagram

HSIOM Smart I/O I/O Port

HSIOM
Output Signals

HSIOM
Input Signals

GPIO Output
Signals

GPIO Input
Signals

12

4

3

Figure 51 Block diagram

2.12.2.2 Block components

The internal logic of the smart I/O includes the following components:

• Clock and reset

• Synchronizers

• Three-input lookup table (LUT)

• Data unit (DU)

Clock and reset

The clock and reset component selects the smart I/O block’s clock (clk_block) and reset signal (rst_block_n). A
single clock and reset signal is used for all components in the block. The clock and reset sources are

determined by the CLOCK_SRC[4:0] bitfield of the SMARTIO_PRTx_CTL register. The selected clock is used for
the synchronous logic in the block components, which includes the I/O input synchronizers, LUT, and data unit

components. The selected reset is used to asynchronously reset the synchronous logic in the LUT and data unit

components.

Note that the selected clock (clk_block) for the block’s synchronous logic is not phase-aligned with other

synchronous logic in the device, operating on the same clock. Therefore, communication between smart I/O
and other synchronous logic should be treated as asynchronous.

The following clock sources are available for selection:

• GPIO input signals “io_data_in[7:0]”. These clock sources have no associated reset.

• HSIOM output signals “chip_data[7:0]”. These clock sources have no associated reset.

• Smart I/O clock (clk_smartio). This is derived from the system clock (clk_sys) using a peripheral clock

divider.

• Low-frequency system clock (clk_lf). This clock is available in the System Deep Sleep power mode. This
clock has an associated reset (rst_lf_dpslp_n). Reset is activated if the system enters Hibernate mode or is
at POR.

Application note 67 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

When the block is enabled, the selected clock (clk_block) and associated reset (rst_block_n) are provided to the
fabric components. When the fabric is disabled, no clock is released to the fabric components and the reset is

activated (the LUT and data unit components are set to the reset value of ‘0’). The I/O input synchronizers
introduce a delay of two clk_block cycles (when synchronizers are enabled). As a result, in the first two cycles,

the block may be exposed to stale data from the synchronizer output. Hence, during the first two clock cycles,
the reset is activated and the block is in bypass mode.

Synchronizer

Each GPIO input signal and device input signal (HSIOM input) can be used either asynchronously or
synchronously. To use the signals synchronously, a double flip-flop synchronizer (see Figure 52) is placed on

both of these signal paths to synchronize the signal to the smart I/O clock (clk_block). The synchronization for

each pin or input is enabled or disabled by setting or clearing the IO_SYNC_EN[i] bitfield for the GPIO input

signal and CHIP_SYNC_EN[i] for the HSIOM signal in the SMARTIO_PRTx_SYNC_CTL register, where ‘i’ is the pin
number.

io_data_in[i]
Or

chip_data_in[i]

clk_block

clkclk

DQDQ

0

1

SYNC_CTL.IO_SYNC_EN[i]
Or

SYNC_CTL.CHIP_SYNC_EN[i
]

To SMARTIO
block

Clock
Synchronizer

Figure 52 Clock synchronizer

Lookup table (LUT)

Each LUT block takes three input signals and generates an output based on the configuration set in the
SMARTIO_PRTx_LUT_CTLy register (y denotes the LUT number). For each LUT, an 8-bit lookup vector LUT[7:0]
and a 2-bit opcode OPC[1:0] in the SMARTIO_PRTx_LUT_CTLy register determine the configuration. The 8-bit
vector is used as a lookup table for the three input signals. The 2-bit opcode determines the use of the flip-flop.

The LUT configuration for different opcodes is shown in Figure 53.

The SMARTIO_PRTx_LUT_SELy registers select the three input signals (tr0_in, tr1_in, and tr2_in) going into

each LUT. The input can come from the following sources:

• Data unit output

• Other LUT output signals (tr_out)

• HSIOM output signals (chip_data[7:0])

• GPIO input signals (io_data[7:0])

Application note 68 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

LUT

tr0_in

tr1_in

tr2_in

tr_out

8

OPC[1:0] = 0

LUT[7:0]

LUT

tr0_in

tr1_in

tr2_in

tr_out

8

OPC[1:0] = 1

LUT[7:0]

clk_block

LUT

tr0_in

tr1_in

tr2_in

8

OPC[1:0] = 2

LUT[7:0]

clk_block

tr_out

tr2_in

tr1_in

tr0_in

OPC[1:0] = 3

clk_block

tr_out
LUT[5]

LUT[4]

LUT[3]

LUT[2]

LUT[1]

LUT[0]

Set

Clr

Clk

Enable

Combinational Logic Sequential gated output

Asynchronous Set/Reset mode
TR2 gated, combinational

output

Figure 53 LUT operations

LUT has the following four operations selected by a 2-bit Op Code field (see Figure 53).

• Combinatorial LUT is purely combinatorial. Each LUT output is the result of the LUT mapping truth table
and will only be delayed by the LUT3 [x] combinatorial path (basic mode).

• Gated Input LUT3 input 2 is registered. Other inputs are directly connected to LUT3 [x]. The output is

combinatorial (input synchronization).

• Gated Output Inputs are directly connected to LUT3 [x], and the output is registered (output

synchronization).

• Set/Reset flip-flop: Input signals are used to control an S/R flip-flop.

Data unit (DU)

Each smart I/O block includes a data unit (DU) component. The DU consists of a simple 8-bit data path. It is
capable of performing simple increment, decrement, increment/decrement, shift, and AND/OR operations. The

operation performed by the DU is selected using a 4-bit opcode DU_OPC[3:0] bitfield in the

SMARTIO_PRTx_DU_CTL register. The DU component supports up to three input trigger signals (tr0_in, tr1_in,
and tr2_in), similar to the LUT component. These signals are used to initiate an operation defined by the DU

opcode. In addition, the DU also includes two 8-bit data inputs (data0_in[7:0] and data1_in[7:0]) that are used

to initialize the 8-bit internal state (data[7:0]) or to provide a reference. The 8-bit data input source is

configured as:

• Constant ‘0x00’

• io_data_in[7:0]

• chip_data_in[7:0]

• DATA[7:0] bitfield of SMARTIO_PRTx_DATA register

Application note 69 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

Tr0_in Tr_ou
tTr1_in

Tr2_in

data0_in[7:0
]data1_in[7:0
]

Clk_block Clk

Data Unit

Figure 54 Data unit

The trigger signals are selected using the DU_TRx_SEL[3:0] bitfield of the SMARTIO_PRTx_DU_SEL register. The
DUT_-DATAx_SEL[1:0] bits of the SMARTIO_PRTx_DU_SEL register select the 8-bit input data source.

The DU_SIZE[2:0] bits of the SMARTIO_PRTx_DU_CTL register define the size of the DU (number of bits used by
the data path). The DU generates a single output trigger signal (tr_out). The internal state (du_data[7:0]) is
captured in flip-flops and requires clk_block.

2.12.3 Software usage

This section describes about the software usage of smart I/O using PDL API's and also explains the usage of
Device configurator and smart I/O configurator.

For more details on the smart I/O PDL APIs, see Smart I/O PDL.

2.12.3.1 Smart I/O configuration flow

Do the following to configure and operate the smart I/O block:

1. Before enabling the block, all the components and routing should be configured.

2. In addition to configuring the components and routing, some block level settings must be configured
correctly for desired operation.

− Bypass control: To bypass the smart I/O path for a particular GPIO signal, set the BYPASS[i] bitfield in the
SMARTIO_PRTx_CTL register. When bit ‘i’ is set in the BYPASS[7:0] bitfield, the ith GPIO signal is bypassed
to the HSIOM signal path directly; smart I/O logic will not be present in that signal path. This is useful

when the smart I/O function is required only on select I/Os.

− Pipelined trigger mode: The LUT input multiplexers and the LUT component itself do not include any

combinatorial loops. Similarly, the data unit also does not include any combinatorial loops. However,

when one LUT interacts with the other or with the data unit, inadvertent combinatorial loops are

possible. To overcome this limitation, the PIPELINE_EN bitfield of the SMARTIO_PRTx_CTL register is
used. When set, all the outputs (LUT and DU) are registered before branching out to other components.

3. After the smart I/O block is configured for the desired functionality, set the ENABLED bitfield of the

SMARTIO_PRTx_CTL register to enable the block. If disabled, the smart I/O block is put in bypass mode,
where the GPIO signals are directly controlled by the HSIOM signals and vice versa. The smart I/O block

must be configured; that is, all register settings must be updated before enabling the block to prevent

glitches during register updates.

https://infineon.github.io/mtb-pdl-cat1/pdl_api_reference_manual/html/group__group__smartio.html

Application note 70 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

2.12.3.2 Device Configurator

The smart I/O device configuration is configured in the ModusToolbox™ Software. The Device configurator is
opened from the smart I/O project in ModusToolbox™ Software IDE. Figure 55 shows the smart I/O pin
configuration in the PIN section.

Figure 55 Pin configuration

The PWM module provides the input for the smart I/O. The PWM is generated with the following configuration
(see Figure 56): 50% Duty cycle.

Figure 56 PWM configuration

Application note 71 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

Clock configuration for smart I/O Frequency is set for 100 HZ.

Figure 57 Clock configuration for Smart I/O

Clock configuration for PWM at 10-KHZ frequency.

Figure 58 Clock configuration for PWM

Application note 72 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

Opening smart I/O configurator can be opened in two ways. Directly from the project menu or from the device
configurator. For more information, see ModusToolbox™ Smart I/O Configurator Guide.

Figure 59 Smart I/O configurator

Routing the smart I/O

The smart I/O block includes many switches that are used to route the signals in and out of the block and also
between various components present inside the block. The routing switches are handled through the

PRTGIO_PRTx_LUT_SELy and SMARTIO_PRTx_DU_SEL registers. Figure 60 shows the smart I/O internal
routing. In Figure 60, note that LUT7 to LUT4 operate on io_data/chip_data[7] to io_data/chip_data[4] whereas

LUT3 to LUT0 operate on io_data/chip_data[3] to io_data/chip_data[0]. Figure 56 shows the smart I/O internal
routing. Note that LUT7 to LUT4 operate on io_data/chip_data[7] to io_data/chip_data[4] whereas LUT3 to

LUT0 operate on io_data/chip_data[3] to io_data/chip_data[0]. The “Ramping LED” uses the configuration

shown in Figure 56.

Figure 60 Routing smart I/O

https://www.infineon.com/dgdl/Infineon-ModusToolbox_Smart_IO_Configurator_Guide_(Version_2.1)-Software-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f8cee4d76a2&da=t

Application note 73 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

The following are the LUT operating modes and tables:

1. Combinational output

Figure 61 Combinational output

2. Sequential (gated) output

Figure 62 Sequential (gated) output

3. TR2 gated, combinational output

Figure 63 TR2 gated, combinational output

Application note 74 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Peripheral management

4. Asynchronous Set/Reset mode

Figure 64 Asynchronous Set/Reset mode

2.12.4 Applications and code examples

Use smart I/O to perform simple logic operations and routing on signals to or from the I/O pins.

Typical applications include the following:

• Change routing to or from pins: This function allows rerouting signals from the fixed-function peripherals to

non-dedicated pins on the same port.

• Invert the polarity of signal: This function inverts the polarity of output signals such as the SPI signal, before
it goes out from a pin.

• Clock or signal buffer: This function drives a GPIO input signal, which has to drive a heavier load for one pin,

through two GPIO buffers.

• Detect a pattern on pins: This function detects the patterns of several signal inputs and outputs the

programmable signal depending on the result of detection.

These applications of smart I/O can work in low-power mode (Deep Sleep), therefore can be used as a wakeup
interrupt.

For example, see the Ramping LED using smart I/O code example.

https://github.com/Infineon/mtb-example-smartio-ramping-led

Application note 75 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

References

References

[1] 002-38254: AN238254 - Getting started with AIROC™ CYW20829 Bluetooth® LE on ModusToolbox™

[2] 002-37529: CYW920829M2EVK-02 Evaluation Kit user guide

[3] 002-37478: CYW920829M2EVK-02 Evaluation Kit release notes

Application note 76 002-38557 Rev. *A

 2024-01-31

AIROC™ CYW20829 application developer's guide

Revision history

Revision history

Document

revision

Date Description of changes

** 2023-10-12 Initial release.

*A 2024-01-31 Removed “restricted” status.

Published to web.

 Important notice Warnings

Edition 2024-01-31

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

002-38557 Rev. *A

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”)

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and
standards concerning customer’s products and any
use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of such marks by Infineon is under license.

Disclaim er

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Overview of CYW20829
	1.1 Features
	1.2 Block diagram
	1.3 Software architecture

	2 Peripheral management
	2.1 Memory
	2.1.1 Typical memory sections of a program

	2.2 Clock tree
	2.2.1 Features
	2.2.2 Description
	2.2.2.1 Internal main oscillator (IMO)
	2.2.2.2 Internal low-speed oscillator (ILO)
	2.2.2.3 Precision ILO (PILO)
	2.2.2.4 Frequency-locked loop (FLL)
	2.2.2.5 Medium frequency oscillator (MFO)
	2.2.2.6 Peripheral clock dividers (PERI)
	2.2.2.7 Internal high-speed oscillator (IHO)
	2.2.2.8 Clock tree

	2.2.3 Software usage
	2.2.3.1 Sequence diagram
	2.2.3.2 Device Configurator

	2.2.4 Applications and code examples

	2.3 Serial memory interface (SMIF)
	2.3.1 Features
	2.3.2 Description
	2.3.2.1 Block diagram

	2.3.3 Software usage
	2.3.3.1 Sequence diagram
	2.3.3.2 Device Configurator

	2.3.4 Applications and code example

	2.4 GPIO
	2.4.1 Features
	2.4.2 Description
	2.4.2.1 Block diagram

	2.4.3 Software usage
	2.4.3.1 Sequence diagram
	2.4.3.2 Device Configurator

	2.4.4 Applications and code example

	2.5 Serial Communication Block (SCB)
	2.5.1 Features
	2.5.2 Description
	2.5.2.1 SPI
	2.5.2.2 UART
	2.5.2.3 I2C

	2.5.3 Software usage
	2.5.3.1 Sequence diagram
	2.5.3.2 Device Configurator

	2.5.4 Applications and code example

	2.6 TCPWM/Timer
	2.6.1 Features
	2.6.2 Description
	2.6.2.1 Block diagram
	2.6.2.2 TCPWM counters
	2.6.2.3 TCPWM operating modes

	2.6.3 Software usage
	2.6.3.1 Device Configurator

	2.6.4 Application and code examples

	2.7 Watchdog timer (WDT)
	2.7.1 Features
	2.7.2 Description
	2.7.2.1 Block diagram

	2.7.3 Software usage
	2.7.3.1 Sequence diagram
	2.7.3.2 Device Configurator

	2.7.4 Applications and code examples

	2.8 MCWDT
	2.8.1 Features
	2.8.2 Description
	2.8.2.1 Block diagram

	2.8.3 Software usage
	2.8.3.1 Sequence diagram
	2.8.3.2 Device Configurator

	2.8.4 Applications and Code example

	2.9 Real time clock (RTC)
	2.9.1 Features
	2.9.2 Description
	2.9.2.1 Block diagram

	2.9.3 Software usage
	2.9.3.1 Sequence diagram
	2.9.3.2 Device Configurator

	2.9.4 Applications and code examples

	2.10 Datawire
	2.10.1 Features
	2.10.2 Description
	2.10.2.1 Block diagram
	2.10.2.2 Implementation
	2.10.2.3 Trigger Multiplexer (TrigMUX)

	2.10.3 Software usage
	2.10.3.1 Sequence diagram
	2.10.3.2 Device Configurator

	2.10.4 Applications and code examples

	2.11 CAN
	2.11.1 Features
	2.11.2 Description
	2.11.3 Software usage
	2.11.3.1 Sequence diagram
	2.11.3.2 PDL interface
	2.11.3.3 Device Configurator

	2.11.4 Applications and code example

	2.12 Smart I/O
	2.12.1 Features
	2.12.2 Description
	2.12.2.1 Block diagram
	2.12.2.2 Block components

	2.12.3 Software usage
	2.12.3.1 Smart I/O configuration flow
	2.12.3.2 Device Configurator

	2.12.4 Applications and code examples

	References
	Revision history
	Disclaimer

