

Application Note Please read the Important Notice and Warnings at the end of this document 002-32553 Rev. *B

www.infineon.com page 1 of 42 2022-02-10

AN232553

Getting started with EZ-PD™ PMG1 MCU on

ModusToolbox™ software

About this document

Scope and purpose

This application note introduces you to the capabilities of the EZ-PD™ PMG1 (Power Delivery Microcontroller
Gen1) family of high-voltage microcontrollers (MCU) with USB-C power delivery (PD) and helps you to get

started with your first project with PMG1 MCU in Eclipse IDE for ModusToolbox™ software.

Intended audience

This is primarily intended for anyone who uses the EZ-PD™ PMG1 MCU family on ModusToolbox™ software.

Table of contents

About this document ... 1

Table of contents .. 1

1 Introduction .. 3
1.1 PMG1 MCU family general description and comparison ... 3

1.2 PMG1-S0 MCU .. 5
1.3 PMG1-S1 MCU .. 6

1.4 PMG1-S2 MCU .. 7
1.5 PMG1-S3 MCU .. 8

1.6 Software environment: ModusToolbox™ software .. 9

2 Development ecosystem .. 10

2.1 PMG1 MCU resources .. 10

2.2 Firmware/application development using ModusToolbox™ software ... 10

2.2.1 PMG1 MCU software resources .. 12
2.2.1.1 Configurators .. 12

2.2.1.2 PMG1 MCU software development ... 13

2.3 ModusToolbox™ software help ... 14
2.4 Support for other IDEs ... 14

2.5 Programming and debugging ... 14

2.6 PMG1 MCU kits ... 14

3 My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software 15

3.1 Prerequisites .. 15

3.1.1 Hardware .. 15
3.1.2 Software ... 15
3.2 Application development flow ... 15

3.3 About the design ... 15
3.4 Procedure .. 16
3.4.1 Part 1: Create a new application ... 16
3.4.2 Part 2: View and modify the design ... 18
3.4.3 Part 3: Write the firmware .. 21

3.4.3.1 Firmware flow ... 21

http://www.infineon.com/

Application Note 2 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Table of contents

3.4.4 Part 4: Build the application .. 23
3.4.5 Part 5: Program the device .. 25

3.4.6 Part 6: Test your design.. 27
3.4.7 Part 7: Debug the application .. 29

3.4.7.1 Debugging through the KitProg3 interface .. 29
3.4.7.2 Debug through the 10-pin SWD header .. 32

3.5 Add middleware .. 33
3.6 USB-PD sink example .. 33

3.7 Porting the project across PMG1 MCUs .. 34

4 Summary ... 37

Related documents .. 38

Acronyms and abbreviations ... 39

Glossary ... 40

Revision history... 41

Application Note 3 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Introduction

1 Introduction

1.1 PMG1 MCU family general description and comparison

EZ-PD™ PMG1 (Power Delivery Microcontroller Gen1) is a family of high-voltage USB power delivery (PD)
microcontrollers (MCU). These chips include an Arm® Cortex® -M0/M0+ CPU and USB PD controller along with
analog and digital peripherals. PMG1 MCU is targeted for embedded systems that provide/consume power
to/from a high-voltage USB PD port and leverages the microcontroller to provide additional control capability.

Table 1 shows the comparison of features of different MCUs of the PMG1 MCU family. This table can be used to
select the suitable PMG1 MCU for your application.

Table 1 Comparison of features of different MCUs of PMG1 MCU family

Subsystem

or range

Item PMG1-S0 PMG1-S1 PMG1-S2 PMG1-S3

CPU and
memory

subsystem

Core Arm® Cortex®-M0 Arm® Cortex®-M0 Arm® Cortex®-

M0

Arm® Cortex®-

M0+

Max freq (MHz) 48 48 48 48

Flash (KB) 64 128 128 256

SRAM (KB) 8 12 8 32

Power

Delivery

Power Delivery

ports

1 1 1 1 port in 48QFN

2 ports in 97BGA

Role Sink DRP DRP DRP

MOSFET gate

drivers

1x PFET 2x PFET 2x NFET Flexible 2x NFET

Fault

protection

VBUS OVP and

UVP

VBUS OVP, UVP

and OCP. SCP
and RCP (Source

only)

VBUS OVP, UVP

and OCP

VBUS OVP, UVP

and OCP. SCP
and RCP (Source

only)

USB Integrated Full

Speed USB 2.0
device with

Billboard Class

support

No No Yes Yes

Voltage

range

Supply (V) VDDD (2.7–5.5)

VBUS (4–21.5)

VSYS (2.75–5.5)

VBUS (4–21.5)

VSYS (2.7–5.5)

VBUS (4–21.5)

VSYS (2.8–5.5)

VBUS (4–28)

I/O (V) 1.71–5.5 1.71–5.5 1.71–5.5 1.71–5.5

Digital SCB
(configurable
as

I2C/UART/SPI)

2 4 4 7 in 48QFN (out
of which only 5
can be

configured as SPI

and UART)

8 in 97BGA

TCPWM block
(configurable

as timer,
counter or

4 2 4 7 in 48QFN

8 in 97BGA

Application Note 4 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Introduction

Subsystem

or range

Item PMG1-S0 PMG1-S1 PMG1-S2 PMG1-S3

pulse width

modulator)

Hardware
Authentication

Block (Crypto)

No No Yes (AES-
128/192/256,

SHA1, SHA2-
224, SHA2-256,

PRNG, CRC)

Yes (AES-128,
SHA2-256, TRNG,

Vector Unit)

Analog ADC 2x 8-bit SAR

1x 8-bit SAR

2x 8-bit SAR

2x 8-bit SAR

1x 12-bit SAR

On-chip
temperature

sensor

Yes Yes Yes Yes

Direct
Memory

Access

(DMA)

DMA No No No Yes

GPIO Max # of I/O 12 (10+2 OVT) 17 (15+2 OVT) 20 (18+2 OVT) 26 (24+2 OVT) in

48QFN

50 (48+2 OVT) in

97BGA

Charging

standards

Charging

source

-

BC 1.2, AC BC 1.2, AC BC 1.2, AC, AFC

and Quick

Charge 3.0

Charging sink BC 1.2, Apple

Charging (AC)

BC 1.2, AC BC 1.2, AC BC 1.2, AC

ESD

protection

ESD protection Yes (Up to ± 8-kV
contact discharge

and up to ±15-kV
air discharge,

HBM, CDM)

Yes (HBM and

CDM)

Yes (Up to ± 8-
kV contact

discharge and
up to ±15-kV air

discharge,

HBM, CDM)

Yes (HBM and

CDM)

Packages Package

options

24 QFN (4x4 mm,

0.5-mm pitch)

40 QFN (6×6 mm,

0.5-mm pitch)

40 QFN
(6×6 mm, 0.5-

mm pitch)

48QFN (6x6 mm,

0.5-mm pitch)

97BGA (6x6 mm,

0.5-mm and 0.65-

mm pitch)

Application Note 5 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Introduction

1.2 PMG1-S0 MCU

PMG1-S0 MCU is the first member of the PMG1 MCU family. It includes a 48-MHz Arm® Cortex®-M0 processor

with 64-KB flash, a complete Type-C USB-PD transceiver, pull-down termination resistor RD to support Sink on a

Type-C port, 12 GPIOs, and system-level ESD protection. It is available in a 24-pin QFN package.

P
a

d
s,

 IE
C

 E
S

D

USB PD Subsystem

PMG1-S0 MCU
CYPM1011-24LQXI

CPU Subsystem

P
ro

gr
am

m
a

b
le

 I/
O

 M
a

tr
ix

S
ys

te
m

 In
te

rc
o

n
n

e
ct

 (S
in

g
le

 L
a

ye
r

A
H

B
)

Cortex® M0
48 MHz

Flash
64 KB

SRAM
8 KB

P
e

ri
p

h
e

ra
l I

n
te

rc
o

n
n

ec
t

(M
M

IO
)

P
e

ri
p

h
e

ra
l c

lo
ck

 (
P

C
LK

)

System Resources

Power Clocks

POR REF

Sleep Control

PWRSYS

ILO IMO

WIC

Clock Control

WDT

FAST MUL

NVIC, IRQMUX

SWD/TC

SPCIF

Read Accelerator

SRAM Controller

12
 G

P
IO

s
(i

n
cl

u
d

in
g

 2
 O

V
T

),
 2

4
-Q

FN
 P

ac
ka

g
e

IO
 S

u
b

sy
st

em

2x PFET Gate Drivers

Deep Sleep

Active/Sleep

Color Key:Power Modes

Reset Control

Reset

Digital DFT

Test

Test Mode Entry

Analog DFT

ROM
8 KB

ROM Controller

Figure 1 PMG1-S0 MCU block diagram

Application Note 6 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Introduction

1.3 PMG1-S1 MCU

PMG1-S1 MCU includes a 48-MHz Arm® Cortex®-M0 processor but with a higher flash size than PMG1-S0 MCU. It

has 128-KB flash, a complete Type-C USB PD transceiver with all termination resistors RP, RD, and dead battery

RD, and 17 GPIOs. It is available in a 40-pin QFN package.

P
a

d
s,

 E
S

D

USB PD Subsystem

PMG1-S1 MCU
CYPM1111-40LQXI

CPU Subsystem

P
ro

gr
am

m
a

b
le

 I/
O

 M
a

tr
ix

S
ys

te
m

 In
te

rc
o

n
n

e
ct

 (S
in

g
le

 L
a

ye
r

A
H

B
)

Cortex® M0
48 MHz

Flash
128 KB

SRAM
12 KB

P
e

ri
p

h
e

ra
l I

n
te

rc
o

n
n

ec
t

(M
M

IO
)

P
e

ri
p

h
e

ra
l c

lo
ck

 (
P

C
LK

)System Resources

Power Clocks

POR REF

Sleep Control

PWRSYS

ILO IMO

Reset Control

WIC

Clock Control

WDT

Reset

XRES

FAST MUL

NVIC, IRQMUX

SWD/TC

SPCIF

Read Accelerator

SRAM Controller

17
 G

P
IO

s
(i

n
cl

u
d

in
g

 2
 O

V
T

),
 4

0
-Q

FN
 P

ac
ka

g
e

IO
 S

u
b

sy
st

e
m

Deep Sleep

Active/Sleep

Color Key:Power Modes

Digital DFT

Test

Test Mode Entry

Analog DFT

ROM
16 KB

ROM Controller

2x PFET Gate Drivers

Figure 2 PMG1-S1 MCU block diagram

Application Note 7 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Introduction

1.4 PMG1-S2 MCU

PMG1-S2 MCU uses the 48-MHz Arm® Cortex®-M0 processor with 128-KB flash and includes a Full Speed USB
device controller, a Crypto engine for authentication, 20 GPIOs and system level ESD protection. PMG1-S2 MCU

is available in 40-QFN package.

USB PD Subsystem

PMG1-S2 MCU
CYPM1211-40LQXI

CPU Subsystem

P
ro

gr
am

m
a

b
le

 I/
O

 M
a

tr
ix

S
ys

te
m

 In
te

rc
o

n
n

e
ct

 (S
in

g
le

 L
a

ye
r

A
H

B
)

Cortex® M0
48 MHz

Flash
128 KB

SRAM
8 KB

P
e

ri
p

h
e

ra
l I

n
te

rc
o

n
n

ec
t

(M
M

IO
)

P
e

ri
p

h
e

ra
l c

lo
ck

 (
P

C
LK

)System Resources

Power Clocks

POR REF

Sleep Control

PWRSYS

ILO IMO

Reset Control

WIC

Clock Control

WDT

Reset

XRES

FAST MUL

NVIC, IRQMUX

SWD/TC

SPCIF

Read Accelerator

SRAM Controller

20
 G

P
IO

s
(i

n
cl

u
d

in
g

 2
 O

V
T

),
 4

0
-Q

FN
 P

ac
ka

g
e

IO
 S

u
b

sy
st

em

Authentication

FS PHY

P
a

d
s,

 IE
C

 E
S

D

Deep Sleep

Active/Sleep

Color Key:Power Modes

VBUS Under Voltage/Over
Voltage

Digital DFT

Test

Test Mode Entry

Analog DFT

ROM
8 KB

ROM Controller

Figure 3 PMG1-S2 MCU block diagram

Application Note 8 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Introduction

1.5 PMG1-S3 MCU

PMG1-S3 MCU uses the 48-MHz Arm® Cortex®-M0+ processor with 256-KB flash and includes a Full Speed USB
device controller, CAPSENSE™, DMA, a Crypto engine for authentication, 26/50 GPIOs, and system-level ESD

protection. PMG1-S3 MCU is available in 48-QFN and 97-BGA package.

2x USB PD Subsystem

PMG1-S3 MCU
CYPM1311-48LDXI/
CYPM1322-97BZXI

CPU Subsystem

P
ro

gr
am

m
a

b
le

 I/
O

 M
a

tr
ix

S
ys

te
m

 In
te

rc
o

n
n

e
ct

 (S
in

g
le

 L
a

ye
r

A
H

B
)

Cortex® M0+
48 MHz

P
e

ri
p

h
e

ra
l I

n
te

rc
o

n
n

ec
t

(M
M

IO
)

P
e

ri
p

h
e

ra
l c

lo
ck

 (
P

C
LK

)

System Resources

Power Clocks

POR REF

Sleep Control

PWRSYS

ILO IMO

Reset Control

WIC

Clock Control

WDT

Reset

XRES

FAST MUL

NVIC, IRQMUX, MPU

SWD/TC

26
 G

P
IO

s
(i

n
cl

u
d

in
g

 2
 O

V
T

) f
o

r
48

-Q
FN

,
50

 G
P

IO
s

(i
n

cl
u

d
in

g
 2

 O
V

T
)

fo
r

97
-B

G
A

IO
 S

u
b

sy
st

em

VBUS Under Voltage/Over
Voltage

P
a

d
s,

 IE
C

 E
S

D

Deep Sleep

Active/Sleep

Color Key:Power Modes

SRAM
32 KB

SRAM Controller

Data Wire/DMA

Initiator/MMIO

Flash
256 KB

SPCIF

Read Accelerator

Crypto

AES, SHA2 (256),
TRNG, VU

Programmable Analog

CTBm
2x OpAmp

1x 12-bits
SAR ADC

SAR MUX

FS PHY

Figure 4 PMG1-S3 MCU block diagram

Application Note 9 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Introduction

1.6 Software environment: ModusToolbox™ software

The ModusToolbox™ software environment supports PMG1 MCU application development with a set of tools
for configuring the device, setting up peripherals, and complementing your projects with world-class

middleware.

This application note gives an overview of the ModusToolbox™ development ecosystem and gets you started

with a simple ‘Hello World’ application. The detailed steps to create the application from an empty template
application will be described in the following sections.

https://www.cypress.com/products/modustoolbox-software-environment

Application Note 10 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Development ecosystem

2 Development ecosystem

2.1 PMG1 MCU resources

The PMG1 MCU family has a rich set of documentation, development tools, and online resources to assist you
during your development process. The following is an abbreviated list of resources for PMG1 MCU. Visit PMG1
MCU webpage to find out more.

• PMG1 MCU webpage

• Datasheets provide all the information needed to select and use a particular device, including functional
description and electrical specifications.

• Application notes and code examples cover a broad range of topics, from basic to advanced level.

• Technical reference manuals (TRMs) provide detailed descriptions of the architecture and registers in each
device family.

• Prototyping kits are available for evaluation, design, and development of different applications using PMG1

MCUs.

• Technical support: PMG1 MCU community forum, knowledge base articles

2.2 Firmware/application development using ModusToolbox™ software

ModusToolbox™ development platform used for firmware/application development with the PMG1 MCU. This
latest-generation toolset, includes the Eclipse IDE and therefore is supported across Windows, Linux, and
macOS platforms. The ModusToolbox™ software includes configurators, low-level drivers, middleware libraries,

as well as other packages that enable you to create your PMG1 MCU applications. Using the configurators, you
can set the configuration of different blocks in the device and generate code that can be used in firmware

development.

The Eclipse IDE for ModusToolbox™ is integrated with quick launchers for tools and design configurators in the

Quick Panel. ModusToolbox™ also supports third-party IDEs, including Visual Studio Code, Arm® MDK (µVision),
and IAR Embedded Workbench.

A high-level view of the tools/resources included in the ModusToolbox™ software is shown in Figure 5. For a
more in-depth overview of the ModusToolbox™ software, see ModusToolbox™ software user guide.

https://www.cypress.com/products/ez-pd-pmg1
https://www.cypress.com/products/ez-pd-pmg1
https://www.cypress.com/ModusToolboxUserGuide

Application Note 11 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Development ecosystem

Hardware Abstraction Layer (HAL)

Board Support Packages (BSPs)

PSoC Peripheral Driver Library

Wi-Fi Host Driver (WHD)

CAPSENSE

DFU

USB Device

BLESS

emWin

MQTT

LPA

BT Stack

FreeRTOS

Secure Sockets

OTA

SecureBoot

PDStack

Wi-FI Connection Manager (WCM)

Libraries

Build System
Infrastructure

Program & Debug-
Support

IDE & CLI Support

Configurators

Tools

Utilities

Tools Installer

PSoC AnyCloud Mbed OS BT SDK AWS IoT

Code Examples

User Application

ModusToolbox Software

Figure 5 ModusToolbox™ software

Embedded PMG1 MCU is the native development flow supported by the Eclipse IDE for ModusToolbox™

software for PMG1 MCU. You can use it on the bare metal or with an RTOS of your choosing.

Following are the low-level resources for PMG1 MCU.

1. Board Support Packages (BSP): A BSP is the layer of firmware containing board-specific drivers and other

functions. The board support package is a set of libraries that provide APIs to initialize the board and
provide access to board-level peripherals. It includes low-level resources such as Peripheral Driver Library

(PDL) for PMG1 MCU and has macros for board peripherals. Custom BSPs can be created to enable support
for end-application boards. See the Board support Packages section in ModusToolbox™ software user

guide for more information.

2. Peripheral Driver Library (PDL): The PDL integrates device header files, start-up code, and peripheral

drivers into a single package. The drivers abstract the hardware functions into a set of easy-to-use APIs. This
reduces the need to understand register usage and bit structures, thus easing software development for the

extensive set of peripherals in the PMG1 MCU series. You configure the driver for your application, and then
use API calls to initialize and use the peripheral. For a PMG1 MCU solution, the on-chip blocks including

USBPD and SCBs are controlled by the MTB CAT2 PDL .

3. Middleware: The middleware is a set of firmware modules that provide specific capabilities to an

application. PDStack is the middleware available for PMG1 MCU, which contains the Type-C and USB-PD
state machine implementations, the PD protocol, and PD Policy Manager blocks.

All low-level resources are delivered as libraries via GitHub repositories.

Figure 6 shows the blocks of ModusToolbox™ software which are relevant for PMG1 MCU.

https://www.cypress.com/ModusToolboxUserGuide
https://www.cypress.com/ModusToolboxUserGuide

Application Note 12 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Development ecosystem

Board Support Packages (BSPs)

MTB CAT2 Peripheral Driver Library

PDStack

Libraries

Build System
Infrastructure

Program &
Debug-Support

IDE & CLI Support

Configurators

Tools

Utilities

Tools Installer

Code Examples

User Application

ModusToolbox Software

Figure 6 ModusToolbox™ software for PMG1 MCU

2.2.1 PMG1 MCU software resources

The PMG1 MCU software resources include configurators, drivers, libraries, and middleware, as well as

Makefiles and scripts to get you started with developing firmware with PMG1 MCU.

2.2.1.1 Configurators

ModusToolbox™ software provides graphical applications called Configurators that make it easier to configure
a hardware block or middleware. For example, instead of having to search through all the documentation to

configure a serial communication block as a UART with a desired configuration, open the Configurator and set
the baud rate, parity, and stop bits. Upon saving the hardware configuration, the tool generates the C code to

initialize the hardware with the desired configuration.

Configurators are independent of each other, but they can be used together to provide flexible configuration

options. They can be used standalone, in conjunction with other tools, or within a complete IDE. Configurators
are used for:

• Setting options and generating code to configure drivers

• Setting up connections such as pins and clocks for a peripheral

• Setting options and generating code to configure middleware

For PMG1 MCU applications, available configurators include the following:

• Device Configurator: Set up the system (platform) functions, as well as the basic peripherals (e.g., UART,

Timer, PWM).

• EZ-PD™ Configurator: Provides a user-friendly tool for selecting the features of PDStack middleware and
configuring parameters to generate the required code.

These configurators create their own files (e.g., design.mtbezpd for EZ-PD™ Configurator). The configurator file
(design.modus) usually provided with the BSP and design.mtbezpd is provided as part of the code example.

When an application is created based on a BSP, the files are copied into the application. You can also create

custom device configurator files for an application and override the ones provided by the BSP. For more details

Application Note 13 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Development ecosystem

refer to Documentation section in the ModusToolbox™ tool page. These documents can also be accessed in
ModusToolbox™ via help menu > ModusToolbox™ General Documentation > ModusToolbox™

Documentation Index.

2.2.1.2 PMG1 MCU software development

Infineon provides customers with source code and tools to enable software development for PMG1 MCUs. You
use tools to specify how you want to configure the hardware, generate code for that purpose which you use in
your firmware, and include various middleware libraries for additional functionality, like PDStack. This source

code makes it easier to develop the firmware for supported devices. It helps you quickly customize and build

firmware without the need to understand the register set.

As Figure 7 shows, with the Eclipse IDE for ModusToolbox™ software, you can:

1. Choose a board support package (BSP).

2. Create a new application based on a list of template applications, filtered by kit.

3. Add middleware.

4. Develop your application firmware using the PDL.

Figure 7 Eclipse IDE for ModusToolbox™ software resources and middleware

https://www.cypress.com/products/modustoolbox-software-environment

Application Note 14 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Development ecosystem

2.3 ModusToolbox™ software help

Visit the ModusToolbox™ software home page to download and install the latest version of ModusToolbox™
software. Launch Eclipse IDE for ModusToolbox™ software and navigate to the following items for

ModusToolbox™ Help.

Choose Help > ModusToolbox™ General Documentation or Help > Eclipse IDE for ModusToolbox™

Documentation

2.4 Support for other IDEs

You can develop firmware for PMG1 MCUs using your favourite IDE such as IAR Embedded Workbench or Visual
Studio Code in addition to the Eclipse IDE.

See the “Exporting to IDEs” section in ModusToolbox™ software user guide for more details. Infineon

recommends that you generate resource configurations using the configuration tools provided with

ModusToolbox™ software.

2.5 Programming and debugging

The Eclipse IDE of ModusToolbox™ software supports KitProg3 and uses the Open On-Chip Debugger
(OpenOCD) protocol for debugging PMG1 MCU applications. It also supports GDB (GNU Debugger) debugging

using industry standard probes like the Segger J-Link.

All PMG1 MCU kits have a KitProg3 onboard programmer/debugger. It supports Cortex® Microcontroller
Software Interface Standard - Debug Access Port (CMSIS-DAP). See the KitProg3 user guide for details.

For more information on programming/debugging firmware on PMG1 devices with ModusToolbox™ software,

see the “Program and Debug Support” section in the ModusToolbox™ software user guide.

2.6 PMG1 MCU kits

Table 2 lists the list of PMG1 MCU kits and the corresponding BSPs.

Table 2 BSPs for PMG1 MCU kits

PMG1 MCU PMG1 MCU Kit BSP

CYPM1011-24LQXI CY7110 EZ-PD™ PMG1-S0 prototyping kit PMG1-CY7110

CYPM1111-40LQXI CY7111 EZ-PD™ PMG1-S1 prototyping kit PMG1-CY7111

CYPM1211-40LQXI CY7112 EZ-PD™ PMG1-S2 prototyping kit PMG1-CY7112

CYPM1311-48LQXI CY7113 EZ-PD™ PMG1-S3 prototyping kit PMG1-CY7113

CYPM1322-97BZXI NA CYPM1322-97BZXI

http://www.cypress.com/modustoolbox
http://openocd.org/
https://www.segger.com/products/debug-probes/j-link/
https://www.cypress.com/documentation/development-kitsboards/kitprog-user-guide
https://www.cypress.com/ModusToolboxUserGuide

Application Note 15 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

3 My first PMG1 MCU design using Eclipse IDE for

ModusToolbox™ software

This section does the following:

• Demonstrate how to create a simple PMG1 MCU-based design, and build and program it on to the
prototyping kit.

• Make it easy to learn PMG1 MCU design techniques and how to use the Eclipse IDE for ModusToolbox™

software.

3.1 Prerequisites

Before you get started, make sure that you have the appropriate kit for your PMG1 MCU product line and have

installed the latest ModusToolbox™ software from PMG1 MCU webpage. You also need internet access to get
the GitHub repositories during project creation.

See Table 2 for the list of PMG1 MCU kits.

3.1.1 Hardware

The design is developed for CY7110 EZ-PD™ PMG1-S0 prototyping kit (PMG1-CY7110). However, you can build

the projects for other prototyping kits. See the Application development flow section.

3.1.2 Software

• ModusToolbox™ software 2.3 or above

After installing the software, see the ModusToolbox™ software user guide to get an overview of the software.

3.2 Application development flow

These instructions are grouped into several sections. Each section is devoted to a phase of the application
development workflow. The major sections are:

• Part 1: Create a new application

• Part 2: View and modify the design

• Part 3: Write the firmware

• Part 4: Build the application

• Part 5: Program the device

• Part 6: Test your design

• Part 7: Debug the application

The code described in the sections that follow has been tested on all the PMG1 MCU kits listed in Table 2.

3.3 About the design

This design uses the PMG1-S0 MCU to execute two tasks: UART communication and LED control. The project
uses the UART to print a “Hello World” message to the serial port stream, and starts blinking the user LED on
the kit.

https://www.cypress.com/products/ez-pd-pmg1
https://www.cypress.com/ModusToolboxUserGuide

Application Note 16 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

3.4 Procedure

3.4.1 Part 1: Create a new application

This section takes you on a step-by-step guided tour of the new application creation process. It uses the “Hello
World” code example and guides you through the design development stages, and programming.

If you are familiar with developing projects with ModusToolbox™ software, you can use the code example
directly. It is a complete design, with all the firmware written for the supported kits. You can walk through the
instructions in the code and observe how the steps are implemented.

If you start from scratch and follow all the instructions in this section, you use the code example as a reference
while following the instructions.

1. Launch Eclipse IDE for ModusToolbox™ software.

Launch Eclipse IDE for ModusToolbox™ software 2.3 to get started. Note that Eclipse IDE for
ModusToolbox™ software needs access to the internet to successfully clone the template application onto

your machine.

2. Select a new workspace.

At launch, Eclipse IDE for ModusToolbox™ presents a dialog box to choose a directory for use as the

workspace directory. The workspace directory is used to store workspace preferences and development
artefacts. You can choose an existing empty directory by clicking the Browse button, as Figure 8 shows.

Alternatively, you can type in a directory name to be used as the workspace directory along with the
complete path, and Eclipse IDE will create the directory for you.

Figure 8 Select/create a directory for the workspace

3. Create a new ModusToolbox™ application.

a) Click New Application in the Start group of the Quick Panel.

b) Alternatively, you can choose File > New > ModusToolbox™ Application, as Figure 9 shows.

The Eclipse IDE for ModusToolbox™ Application window appears.

Application Note 17 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

Figure 9 Create a new ModusToolbox™ software application

4. Select a target PMG1 MCU kit.

a) In the Choose Board Support Package (BSP) dialog, choose the Kit Name that you have. As you are
creating for PMG1-S0, choose PMG1-CY7110. See Figure 10 for help with this step.

b) Click Next.

Figure 10 Choose the target hardware

c) In the Select Application dialog, select Hello World template application, as Figure 11 shows.

Application Note 18 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

d) In the Name field, type in a name for the application, such as PMG1_S0_Hello_World. You can choose
to leave the default name if you prefer.

e) Click Create to create the application and wait for the Project Creator to automatically close once the
project is successfully created.

Figure 11 Choose the template application

You have successfully created a new ModusToolbox™ software application for PMG1-S0 MCU. The BSP uses the
CYPM1011-24LQXI device on the CY7110 EZ-PD™ PMG1-S0 prototyping kit (PMG1-CY7110).

README.md file will be opened after the application is created successfully, which contains information about
the template application implementation.

If you are using custom hardware based on PMG1-S0 MCU, or a different PMG1 MCU part number, see the
“Creating your Own BSP” section in the ModusToolbox™ software user guide (Help > ModusToolbox™
General Documentation).

3.4.2 Part 2: View and modify the design

Figure 12 shows the ModusToolbox™ software project explorer interface displaying the structure of the
application project.

In the Eclipse IDE for ModusToolbox™ software, a PMG1 MCU application consists of a project to develop code
for the CM0/CM0+ CPU. A project folder consists of various subfolders – each denoting a specific aspect of the
project.

https://www.cypress.com/ModusToolboxUserGuide

Application Note 19 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

a) An application project contains a Makefile which is typically at the root folder. It has instructions on
how to recreate the project. This file also contains the set of directives that the make tool uses to

compile and link the application project. There can be more than one project in an application; each
dependent project usually resides within its own folder within the application folder and contains its

own Makefile.

b) The build folder contains all the artefacts resulting from the make build of the project. The output files

are organized by target BSPs.

Figure 12 Project Explorer view

c) The deps folder contains .mtb files, which provide the location from which ModusToolbox™ software

pulls the BSP/library that is directly referenced by the application. These files typically contain the
GitHub location of the entire library. The .mtb files also contains a git Commit Hash or Tag that tells

which version of the library is to be fetched and a path as to where the library should be stored.

d) The libs folder also contains .mtb files; these point to libraries that are included indirectly as a

dependency of a BSP or another library. For each indirect dependency, the Library Manager places an

.mtb file in this folder. These files have been populated based on the targets available in deps folder.

For example, using the BSP lib file TARGET_PMG1-CY7110.mtb populates the libs folder with the
following .mtb files: core-lib.mtb, core-make.mtb, mtb-hal-cat2.mtb, mtb-pdl-cat2.mtb, recipe-

make-cat2.mtb.

The libs folder contains mtb.mk file, which stores the relative paths of the all the libraries required by
the application. The build system uses this file to find all the libraries required by the application.

e) By default, when creating a new application or adding a library to an existing application and specifying
it as shared, all libraries are placed in an mtb_shared directory adjacent to the application directory.

The mtb_shared folder is shared between different applications that use the same versions of
BSP/library.

https://github.com/cypresssemiconductorco/core-lib
https://github.com/cypresssemiconductorco/core-make
https://github.com/cypresssemiconductorco/mtb-hal-cat2
https://github.com/cypresssemiconductorco/mtb-pdl-cat2
https://github.com/cypresssemiconductorco/recipe-make-cat2
https://github.com/cypresssemiconductorco/recipe-make-cat2

Application Note 20 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

f) The files provided by the BSP are listed under the TARGET_x folder. All the configuration files generated
by the device and peripheral configurators are included in the GeneratedSource folder of the BSP and are

prefixed with cycfg_. These files contain the design configuration as defined by the BSP. You can view and
modify the design configuration by clicking the Device Configurator link in the Quick Panel. However,

note that if you upgrade the BSP library to a newer version, the manual edits done to the design.x files are
lost.

Of interest are the configuration files that are in the COMPONENT_BSP_DESIGN_MODUS folder. Click on the
Device Configurator link in the Quick Panel. Figure 13 shows the resulting window called the Device
Configurator window. You can also double-click to open the other design.x files to open the respective
configurators or click the corresponding links in the Quick Panel.

Figure 13 design.modus overview

The Device Configurator window provides a Resources Categories pane. Here, can you can choose between

different resources available in the device such as peripherals, pins, and clocks from the List of Resources.

You can choose how a resource behaves by choosing a Personality for the resource. For example, a Serial

Communication Block (SCB) resource can have a EZI2C, I2C, SPI or UART personalities. The Name is your

name for the resource, which is used in firmware development. One or more names can be specified by using a

comma to separate them (with no spaces)

The Parameters pane is where you enter the configuration parameters for each enabled resource and the

selected personality. The Code Preview pane shows the configuration code generated per the configuration
parameters selected. This code is populated in the cycfg_ files in the GeneratedSource folder. Any errors,

warnings, and information messages arising out of the configuration are displayed in the Notices pane.

At this point in the development process, you are ready to add any required middleware to the design.
Figure 28 shows an example of adding a middleware. For the “Hello World” example project, no additional
middleware needs to be added.

The configuration of the debug UART peripheral, pins, and system clocks can be done directly in the code using
the function APIs provided by BSP. See Part 3: Write the firmware.

Application Note 21 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

3.4.3 Part 3: Write the firmware

At this point in the development process, you have created an application, with the assistance of a template
application. In this section, you write the firmware that implements the design functionality.

If you are working from scratch, you can copy the source code provided in this section to the main.c of the
application project. If you are using the PMG1 MCU ‘Hello World’ code example, all the required files are already

in the application.

3.4.3.1 Firmware flow

You now examine the code in the main.c file of the application. Figure 14 shows the firmware flowchart.

Resource initialization for this example is performed by the CM0 CPU. It configures the system clocks, pins,

clock to peripheral connections, and other platform resources.

When the CM0 CPU is enabled, the clocks and system resources are initialized by the BSP initialization function.
The UART peripheral is configured and enabled. It prints a “Hello World” message on the terminal emulator.

The CPU continuously toggles the LED state with a delay of 500 milliseconds.

Note that the application code uses BSP/middleware functions to execute the intended functionality.

Copy the following code snippet to main.c of your application project.

Application Note 22 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

Application Note 23 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

Configure and Enable UART
peripheral

Device Initialization

Send Hello World
on to UART terminal

Toggle LED State

Delay of 500ms

START

Figure 14 Firmware flowchart

This completes the summary of how the firmware works in the code example. Feel free to explore the source

files for a deeper understanding.

3.4.4 Part 4: Build the application

This section shows how to build the application.

1. Build the application.

a) Select the application project in the Project Explorer window and click on the Build <name>
Application shortcut under the <name> group in the Quick Panel. It selects the Debug build
configuration and compiles/links all projects that constitute the application.

b) The Console view lists the results of the build operation, as Figure 15 shows.

Application Note 24 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

Figure 15 Build the application

If you encounter errors, try the following options:

• Revisit earlier steps to ensure that you accomplished all the required tasks.

• Check the Problems tab to find more details about the errors and to solve them.

• From Quick Panel, click ‘Clean <application name>’ after which try to build the project again.

Note: You can also use the command line interface (CLI) to build the application. Please refer to Using

the Command Line section in the ModusToolbox™ software user guide. This document can also

be accessed in ModusToolbox™ software via help menu > ModusToolbox™ General
Documentation.

https://www.cypress.com/ModusToolboxUserGuide

Application Note 25 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

3.4.5 Part 5: Program the device

This section explains how to program the device. Refer Figure 16 for CY7110 EZ-PD™ PMG1-S0 prototyping kit.
See the ‘Kits’ section in the PMG1 MCU web page.

1. KitProg3 USB Type-C port (J1) 10. CYPM1011-24LQXI (PMG1-S0)

2. KitProg3 status LED (LED1) 13. User switch (SW2)

3. PSoC™ 5LP controller (U1) 15. 3.3V on-board LDO

4. KitProg3 mode switch (SW1) 16. 10-pin SWD/JTAG header *

5. KitProg3 VBUS LED (LED2) 17. DC_OUT terminal block (J9)

6. KitProg3 header (J3, J4) * 18. Load switch

7. Power selection jumper (J5) 19. PMG1 MCU USB Type-C port (J10)

8. User LED (LED3)

9. I/O headers (J6, J7) * * Footprint only; not populated on the board.

Figure 16 Choose CY7110 EZ-PD™ PMG1-S0 prototyping kit

ModusToolbox™ software uses the OpenOCD protocol to program and debug applications on PMG1 MCU

devices. For ModusToolbox™ software to identify the device on the kit, the kit must be running KitProg3.

If you are using a PMG1 MCU prototyping kit with a built-in programmer, follow steps 1 and 2.

If you are developing on your own hardware, you may need a hardware programmer/debugger; for example, an

Infineon CY8CKIT-005 MiniProg4.

1. Make the following hardware connections on the prototyping kit:

a) Connect a Type-C cable from the J1 (KitProg3 USB Type-C port) connector on the kit to the host.

b) Connect the J5 (power selection jumper) pins 2 and 3 for programming mode.

Note: Device can also be programmed by connecting J5 (power selection jumper) pins 1 and 2 for

operation mode, and connecting both Type-C cables J1 and J10.

2. Program the board:

a) In ModusToolbox™ software, select the application project in the Project Explorer.

b) In the Quick Panel, scroll down, and click \<Application Name> Program (KitProg3_MiniProg4).

https://www.cypress.com/products/ez-pd-pmg1
https://www.cypress.com/documentation/development-kitsboards/cy8ckit-005-miniprog4-program-and-debug-kit

Application Note 26 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

The IDE will select and run the appropriate run configuration. Note that this step will also perform a
build if any files have been modified since the last build.

Figure 17 Programming an application to a device

3. The Console view in the ModusToolbox™ software lists the results of the programming operation, as

Figure 18 shows.

Figure 18 Console – programming results

Application Note 27 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

3.4.6 Part 6: Test your design

This section explains how to test your design.

1. Make the following hardware connections:

a) Connect the J5 (Power Selection Jumper) pins 1 and 2 for operational mode.

b) Connect J6.10 to J3.8 and J6.9 to J3.10 to establish a UART connection between KitProg3 and PMG1-S0.

Note: This step to establish UART connection needs to be executed only for the following older revision of
the kit boards:

o CY7110 board revision 3 or lower

o CY7111 board revision 2 or lower

o CY7112 board revision 2 or lower

o CY7113 board revision 3 or lower

 The kit revision number (600-60xxx-01 Revxx) is marked on the silkscreen of the kit board as shown:

Figure 19 Identifying PMG1 MCU kit board revision number

The UART connection between KitProg3 and PMG1-S0 is pre-established by default on the newer revisions of
the kit boards.

c) Connect a Type-C cable from the J1 (KitProg3 USB Type-C port) connector on the kit to the host.

d) Confirm that KitProg3 VBUS LED (LED2) and status LED (LED1) glow amber.

2. Open a terminal program and select the KitProg3 COM port. This application note uses Tera Term as the
UART terminal emulator to view the results. You can use any terminal of your choice to view the output.

Application Note 28 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

Figure 20 Selecting the KitProg3 COM port in Tera Term

3. Set the serial port parameters to 8N1 and 115200 baud.

Figure 21 Configuring the baud rate in Tera Term

4. Connect a Type-C cable from the J10 (PMG1 MCU USB Type-C Port) connector to the host.

5. Confirm that "Hello World" is displayed on the UART terminal.

Application Note 29 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

Figure 22 “Hello World” in terminal output

6. Confirm that the Power LED (LED4) glows green and User LED (LED3) blinks green.

3.4.7 Part 7: Debug the application

Eclipse IDE for ModusToolbox™ software can be used to debug applications. The prototyping kits can be
acquired in debug mode though either of the following three interfaces similar to programming mode:

• KitProg3 USB Type-C port

• 10-pin SWD header

• I/O header pins

The kit needs to be configured for operational mode before starting the debug.

3.4.7.1 Debugging through the KitProg3 interface

Figure 23 Debugging through KitProg3

Application Note 30 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

Do the following to debug an application on the CY7111 and CY7112 prototyping kits over KitProg3 interface
from Eclipse IDE for ModusToolbox™ software.

1. Open the Eclipse IDE for ModusToolbox™ software and select the PMG1 MCU project on the host PC. For
details, see the Eclipse IDE for ModusToolbox™ software user guide.

2. Place the jumper shunt on pins 1–2 of the power section jumper (J5) to configure the kit in operational
mode.

3. Connect the USB-PD sink port to the USB PD source to activate on-board LDO, Load switch, and user LED.
Ensure that LED4, which is power LED, glows green.

4. Connect the kit to the host PC through programming KitProg3 USB Type-C Port. Ensure that LED1 and LED2
glow amber. LED2, which is KitProg3 Power LED, indicates that the KitProg3 module is powered. LED1,

which is the status LED, indicates the programming/debug mode and status, and is ON when KitProg3 is

powered.

5. Go to the Quick Panel tab. Click <Application name> Debug (KitProg3_MiniProg4) from the Launches
section.

6. The IDE will switch to debugging mode and will halt at the first line of the main () function. This indicates
that the application is ready for debugging.

Do the following to debug an application on the CY7110 prototyping kits over KitProg3 interface from Eclipse

IDE for ModusToolbox™ software.

1. Open the Eclipse IDE for ModusToolbox™ software and select the PMG1 MCU project on the host PC or
laptop. For details, see the Eclipse IDE for ModusToolbox™ software user guide.

2. Power selection jumper (J5) shunt needs to be placed on pins 2–3 of the power selection jumper (J5) to

enable ModusToolbox™ software to acquire the target (PMG1-S0) in power cycle mode.

3. Connect the USB-PD sink port to the USB PD source to activate on-board LDO, Load switch, and user LED.

Ensure that LED4, which is power LED, glows green.

4. Connect the kit to the host PC through programming KitProg3 USB Type-C Port. Ensure that LED1 and LED2

glow amber. LED2, which is KitProg3 Power LED, indicates that the KitProg3 module is powered. LED1,

which is the status LED, indicates the programming/debug mode and status, and is ON when KitProg3 is
powered.

5. Go to the Quick Panel tab. Click <Application name> Program (KitProg3_MiniProg4) from the Launches

section to download the firmware into the kit as shown in Figure 24.

6. After program download completed, change the jumper to short 1–2 of the power section jumper (J5) to

configure the kit in operational mode for debugging.

7. Go to Run menu, click on Debug Configurations, as shown in in Figure 25.

8. Under GDB OpenOCD Debugging, select <Application name> Attach (KitProg3_MiniProg4) and click on

Debug as shown in Figure 26. This will start a debugging session attaching to a running target without

programming or reset. For more information on debug configurations refer ModusToolbox™ software user

guide.

https://www.cypress.com/file/504371/download
https://www.cypress.com/file/504371/download
https://www.cypress.com/file/524841/download
https://www.cypress.com/file/524841/download

Application Note 31 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

Figure 24 Quick panel and debug options

Figure 25 Selecting Debug configurations from the Run menu

Application Note 32 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

Figure 26 Selecting Debug Attach and starting a debug session

On successful completion of compilation, build and debug launch, ModusToolbox™ software acquires the kit in
debug mode and the debug tools appear on the toolbar.

3.4.7.2 Debug through the 10-pin SWD header

Figure 27 Debugging through the 10-pin SWD header

Application Note 33 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

Figure 27 shows the setup for debugging prototyping kits through 10-pin SWD connector. The procedure to use
Eclipse IDE for ModusToolbox™ software is the same as that of the KitProg3 interface. Follow steps 5 to 7 listed

in Debugging through the KitProg3 interface.

3.5 Add middleware

This section explains the steps to add middleware to your active application using the Library Manager. For the
‘Hello World’ example project, no additional middleware needs to be added.

The initialization of the middleware will be done in the main.c code.

1. In the Quick Panel, click on the Library Manager link.

2. In the subsequent dialog, select the Libraries tab.

3. Under Board Utils or MCU Middleware, select and enable the required middleware.

4. Click Update.

The files necessary to use the middleware are added in the mtb_shared folder as well as in the .mtb file under

the deps folder. Figure 28 shows an example of adding a middleware. The .mtb file pointing to the PDStack
middleware is added to the application project. The middleware content is also downloaded and placed inside

the corresponding folder called pdstack.

Figure 28 Add PDStack middleware in a ModusToolbox™ software application

3.6 USB-PD sink example

A code example for USBPD Sink can also be found in the Select Application dialog, select “USBPD_Sink”
template application.

The PMG1 MCU devices support a USB-PD block which integrates the Type-C terminations, comparators and
Power Delivery Transceiver required to detect the attachment of a partner device and negotiate power
contracts with them.

This application uses the PDStack in an UFP (Upstream Facing Port) - Sink configuration. The PMG1 MCU
devices have a dead-battery Rd termination which ensures that a USB-C source/charger connected to it can

detect the presence of a sink even when the PMG1 MCU device is not powered.

Application Note 34 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

The application tries to keep the PMG1 MCU device is deep sleep state where all clocks are disabled and only
limited hardware blocks are enabled, for most of its working time. Interrupts in the USB-PD block are

configured to detect any changes that happen while the device is in sleep and wake it up for further processing.

An Over-Voltage (OV) comparator in the USB-PD block is used to detect cases where the power source is
supplying incorrect voltage levels and automatically shut-down the power switches to protect the rest of the

components on the board.

README.md file will be opened after the application is created successfully, which contains information about

the template application implementation.

3.7 Porting the project across PMG1 MCUs

The project created for one MCU can be ported to work for other MCUs of the PMG1 MCU family. With a

consideration that the feature / functionality / resource we are porting is available in the new MCU. Please refer

below steps for porting the project across PMG1 MCUs.

1. Open the Library Manager from the Quick Link.

2. Do the following in the Library Manager:

a) Select the new BSP to add it and deselect the current one to remove it. In Figure 29, you can see that
PMG1-CY7110 is deselected and PMG1-CY7111 is selected. This means that you are porting the PMG1

MCU ‘Hello World’ code example to PMG1-S1 MCU.

Note: To port the “Hello World” example to a custom hardware, choose the custom BSP that has been

created.

b) Click Update.

Figure 29 Porting a project to a different BSP

Application Note 35 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

3. In the Makefile, change the target name to that of the new BSP selected in previous step. See Figure 30.

Figure 30 Edit the target name

4. Do the following in the Quick Panel:

a) Click on Generate Launches for <project name>.

b) Click on Refresh Quick Panel.

Figure 31 Regenerate launch configurations

Now, the Device Configurator is updated to the new BSP, as shown in Figure 32.

Application Note 36 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software

Figure 32 Device configurator with new BSP

5. Continue with rest of the development steps from Application development flow to build, program and
test the project.

Application Note 37 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Summary

4 Summary

This application note explored the PMG1 MCU device architecture and the associated development tools.
PMG1 MCU is a programmable embedded system-on-chip with configurable analog and digital peripheral
functions, memory, and CM0/CM0+ CPU system.

Application Note 38 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Related documents

Related documents

For a complete and updated list of PMG1 MCU code examples, visit our GitHub repository. For more

PMG1 MCU-related documents, visit the PMG1 MCU product web page.

https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://www.cypress.com/products/ez-pd-pmg1

Application Note 39 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Acronyms and abbreviations

Acronyms and abbreviations

Acronym Expansion

AC Apple Charging

AES Advanced Encryption Standard

AFC Adaptive Fast Charging

BC Battery Charging

CDM Charged Device Model

CRC Cyclic Redundancy Check

HBM Human Body model

OCP Over Current Protection

OVP Over Voltage Protection

OVT Over Voltage Tolerant

PRNG Pseudo Random Number Generation

RCP Reverse Current Protection. Supported in Source configuration only.

SCP Short Circuit Protection. Supported in Source configuration only.

SHA Secure Hash Algorithm

TRNG True Random Number Generation

UVP Undervoltage Protection

Application Note 40 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Glossary

Glossary

This section lists the most commonly used terms that you might encounter while working with PMG1 MCU
family of devices in ModusToolbox™ software.

Board support package (BSP): A BSP is the layer of firmware containing board-specific drivers and other
functions. The board support package is a set of libraries that provide firmware APIs to initialize the board and

provide access to board level peripherals.

KitProg: The KitProg is an onboard programmer/debugger with USB-I2C and USB-UART bridge functionality.
The KitProg is integrated onto most PMG1 MCU kits.

MiniProg3 / MiniProg4: Programming hardware for development that is used to program PMG1 MCU devices
on your custom board or PMG1 MCU kits that do not support a built-in programmer.

Personality: A personality expresses the configurability of a resource for a functionality. For example, the SCB
resource can be configured to be an UART, SPI or I2C personalities.

Middleware: Middleware is a set of firmware modules that provide specific capabilities to an application. This
provide high level software interfaces to device features (e.g. PDStack).

ModusToolbox™ software: An Eclipse-based embedded design platform for developers that provides a single,

coherent, and familiar design experience combining the driver libraries, middleware and the lowest power,
most flexible MCUs with best-in-class sensing.

Peripheral driver library: The peripheral driver library (PDL) simplifies software development for the

PMG1 MCU architecture. The PDL reduces the need to understand register usage and bit structures, thus easing
software development for the extensive set of peripherals available.

http://www.cypress.com/documentation/development-kitsboards/cy8ckit-002-psoc-miniprog3-program-and-debug-kit
http://www.cypress.com/cy8ckit-005
http://www.cypress.com/modustoolbox
http://www.cypress.com/documentation/software-and-drivers/peripheral-driver-library-pdl

Application Note 41 of 42 002-32553 Rev. *B

 2022-02-10

Getting started with EZ-PD™ PMG1 MCU on ModusToolbox™ software

Revision history

Revision history

Document

version

Date of release Description of changes

** 2021-02-26 Initial release

*A 2021-07-28 Added 1.5 PMG1-S3 MCU section

Updated Table 2 and Figure 12

Added a note in 3.4.5

Added 3.4.7 Part 7: Debug the application section

*B 2022-02-10 Updated section 3.4.6 Part 6: Test your design to describe the UART

connection step on older revisions of the kit board

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-02-10

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2022 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Go to www.infineon.com/support

Document reference

002-32553 Rev. *B

IMPORTANT NOTICE
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

http://www.infineon.com/support
http://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 PMG1 MCU family general description and comparison
	1.2 PMG1-S0 MCU
	1.3 PMG1-S1 MCU
	1.4 PMG1-S2 MCU
	1.5 PMG1-S3 MCU
	1.6 Software environment: ModusToolbox™ software

	2 Development ecosystem
	2.1 PMG1 MCU resources
	2.2 Firmware/application development using ModusToolbox™ software
	2.2.1 PMG1 MCU software resources
	2.2.1.1 Configurators
	2.2.1.2 PMG1 MCU software development

	2.3 ModusToolbox™ software help
	2.4 Support for other IDEs
	2.5 Programming and debugging
	2.6 PMG1 MCU kits

	3 My first PMG1 MCU design using Eclipse IDE for ModusToolbox™ software
	3.1 Prerequisites
	3.1.1 Hardware
	3.1.2 Software

	3.2 Application development flow
	3.3 About the design
	3.4 Procedure
	3.4.1 Part 1: Create a new application
	3.4.2 Part 2: View and modify the design
	3.4.3 Part 3: Write the firmware
	3.4.3.1 Firmware flow

	3.4.4 Part 4: Build the application
	3.4.5 Part 5: Program the device
	3.4.6 Part 6: Test your design
	3.4.7 Part 7: Debug the application
	3.4.7.1 Debugging through the KitProg3 interface
	3.4.7.2 Debug through the 10-pin SWD header

	3.5 Add middleware
	3.6 USB-PD sink example
	3.7 Porting the project across PMG1 MCUs

	4 Summary
	Related documents
	Acronyms and abbreviations
	Glossary
	Revision history

