
Using the LIN in TRAVEO™ T2G family

About this document
Scope and purpose

This application note describes how to use Local Interconnect Network (LIN) for TRAVEO™ T2G family MCU. The
LIN block of TRAVEO™ T2G supports the serial interface protocols LIN and UART. The LIN block supports the
autonomous transfer of the LIN frame, to reduce CPU processing.
Associated Part Family

TRAVEO™ T2G Family CYT2/CYT3/CYT4 Series
Intended audience

This document is intended for anyone who uses the local interconnect network (LIN) driver of the TRAVEO™ T2G
family.

Table of contents

About this document . 1

Table of contents . 1

1 Introduction . 3

2 General Description . 4
2.1 LIN System Connection Diagram .4
2.2 Message Frame Format . 4
2.3 Baud Rate Setting . 5

3 LIN Communication Example . 6
3.1 LIN Message Transfer . 7
3.2 Event Generation . 7

4 Example of Master Operation . 9
4.1 LIN Master Initialization .10
4.1.1 Use Case . 10
4.1.2 Configuration and Example . 10
4.2 Example of LIN Communication of LIN Master .15
4.2.1 Use Case . 18
4.2.2 Configuration and Example . 18
4.3 Example of LIN Master Interrupt Handling . 26
4.3.1 Use Case . 28
4.3.2 Configuration and Example . 28

5 Example of Slave Operation . 33
5.1 LIN Slave Initialization . 34
5.1.1 Use Case . 34
5.1.2 Configuration and Example . 34
5.2 Example of LIN Slave Interrupt Handling . 36

AN225346

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-25346 Rev.*C
www.infineon.com 2023-11-10

https://www.infineon.com

5.2.1 Use case .39
5.2.2 Configuration and Example . 40

6 Glossary . 46

7 Related Documents . 47

8 Other References .48

Revision history .49

Disclaimer . 50

Using the LIN in TRAVEO™ T2G family

Table of contents

Application note 2 002-25346 Rev.*C
2023-11-10

1 Introduction
LIN is a deterministic low-cost serial communication protocol implemented in automotive networks. LIN block
has LIN and UART modes. This application note describes how to implement LIN Master and LIN Slave nodes
with the LIN IP in TRAVEO™ T2G family MCUs. It is assumed that the LIN bus is in active state, which means that
the wake up and sleep functionalities are not discussed in this application note.
To understand the contents described and the terminology used in this application note, see the Local
Interconnect Network (LIN) chapter in the Architecture Technical Reference Manual (TRM).

Using the LIN in TRAVEO™ T2G family

1 Introduction

Application note 3 002-25346 Rev.*C
2023-11-10

2 General Description

2.1 LIN System Connection Diagram
The LIN protocol works on the concept of single master and multiple slaves and uses a single wire-bus for
communication. Figure 1 shows the principle setup of LIN cluster with two LIN nodes.

Figure 1 Example of Environment for the LIN Master/Slave

2.2 Message Frame Format
As shown in Figure 2, LIN message frame has a:
• Header: Consisting of break field, sync field, and protected identifier (PID) field; transmitted only by the

master node.
• Response: Consisting of maximum eight data fields and checksum field; transmitted by either the master

node or the slave node.

Figure 2 LIN Message Frame Format

See the Architecture (TRM) for details of the LIN message frame format.

Using the LIN in TRAVEO™ T2G family

2 General Description

Application note 4 002-25346 Rev.*C
2023-11-10

2.3 Baud Rate Setting
The baud rate, derived from the PERI clock, can be configured for each channel individually. PERI clock is input
to the LIN block via the peripheral clock divider. The baud rate is configured by the peripheral clock divider
value. Furthermore, there is a fixed signal oversampling factor of 16 in the LIN channel. Therefore, the baud rate
is calculated as shown in Equation 1.
Equation 1Baud Rate = PERI clock

16 × Divider value
Equation 2 shows an example for the calculation of the divider setting value when PERI clock is 24 MHz and the
required LIN baud rate is 20 kbps (20 kHz).
Equation 2Divider value = PERI clock

16 × Baud Rate= 24 MHz
16 × 20 kHz = 75

See Clocking System in the Architecture TRM for details of the PERI clock, peripheral clock divider, and divider
value settings.

Using the LIN in TRAVEO™ T2G family

2 General Description

Application note 5 002-25346 Rev.*C
2023-11-10

3 LIN Communication Example
This section describes how to implementation of the LIN communication using the Sample Driver Library (SDL).
The code snippets in this application note are part of SDL. See Other References for the SDL.
SDL has a configuration part and a driver part. The configuration part configures the parameter values for the
desired operation. The driver part configures each register based on the parameter values in the configuration
part. You can configure the configuration part according to your system.
As the LIN is a deterministic in principle, the LIN Master has the scheduler that is activated periodically by the
reference timer and controls the bus activity. Every frame is transmitted according to the predefined slots. Each
LIN frame starts with the master header.
Furthermore, LIN Master has a schedule table, which is divided into time slots. The schedule is finished, when
all time slots response frames are passed. A repetition of the table is executed by retriggering the scheduler, but
the master node also has the flexibility to replace the schedule table by another one.
In the schedule table, the communication type of each time slot such as frame ID, message type, data length,
and type of check sum used for the response is predetermined. The message type defines the response
transmitter. If there are multiple slaves, then the message type defines the slave which will transmit a response.
In LIN communication, two checksum types are supported: classic mode and enhanced mode. In classic mode,
the PID field is not included in the checksum calculation, only the data fields are included in the calculation;
whereas in enhanced mode, the PID field is included along with the data fields in the checksum calculation. The
checksum type is can be selected using the CHECKSUM_ENHANCED bit in the LIN_CH_CTL register. See the
Registers TRM for details of checksum type.
Table 1 shows an example of a scheduled table.

Table 1 Example of a Scheduled Table

Time Slot ID Message Type Data Length Checksum Type

1 0x01 Slave Response 8 Enhanced

2 0x02 Master Response 8 Enhanced

3 0x10 Slave Response 1 Enhanced

4 0x11 Master Response 1 Enhanced

5 0x20 Slave-to-Slave - Enhanced

In this example, the schedule table consists of five time slots 1 to 5.
The message type of time slot 1 is a slave response and data length are 8. Therefore, when the header is
transmitted by scheduler trigger, the LIN slave transmits response data of 8 bytes to the master.
In time slot 4, there is a master response with one byte data length. The master node transmits 1 byte of data
along with the header to the slave nodes.
Time slot 5 defines a slave-to-slave response. In this case, the response is only between dedicated slave nodes
and the master can ignore the response.
Figure 3 shows LIN communication example between the master node and slave node as per the schedule
listed in Table 1.

Using the LIN in TRAVEO™ T2G family

3 LIN Communication Example

Application note 6 002-25346 Rev.*C
2023-11-10

LIN Master Slave Node Example

ID=0x01

Slave Response

ID=0x02

Master Response

ID=0x10

Slave Response

ID=0x11

Master Response

ID=0x20

Slave-to-Slave

Copy

Copy

ID=0x01

Slave Response

1

2

3

4

5

1

Time Slot

Start New

Header
Responce

Figure 3 Communication Between LIN Master and Slave

1. The master transmits a header with ID = 0x01 after the scheduler activation.
2. After receiving the header, the slave transmits the response of 8 bytes to the master according to

schedule table (time slot 1).
3. When the master receives the response, the frame in time slot 1 is completed and the master waits for

the next scheduler activation.
4. When scheduler is activated, the master transmits the header with ID = 0x02.
5. The master transmits a response of 8 bytes to the slave after transmitting header (time slot 2) and the

master waits for the next scheduler activation.
6. This operation procedure is repeated until the last time slot 5.
7. After the operation of time slot 5 is completed, the next time the scheduler is activated starting with time

slot 1.

3.1 LIN Message Transfer
In the SDL, to support different message types such as transmission and reception of header/response, the
handling of the LIN master or LIN slave operation mode is implicitly done by following commands:
• LIN_CMD_TX_HEADER: This command is used by the master to transmit the header.
• LIN_CMD_TX_RESPONSE: This command is used by the master or a slave to transmit a response.
• LIN_CMD_RX_RESPONSE: This command is used by the master or a slave to receive a response.
These commands are configured corresponding to the message type in Table 1. For details, see section 4 and
section 5.

3.2 Event Generation
The LIN block generates interrupt events such as transmission completion, reception completion, and error
detection. Each LIN channel has its dedicated interrupt signal and its own interrupt registers: LIN_CH_INTR,

Using the LIN in TRAVEO™ T2G family

3 LIN Communication Example

Application note 7 002-25346 Rev.*C
2023-11-10

LIN_CH_INTR_SET, LIN_CH_INTR_MASK, and LIN_CH_INTR_MASKED. In this implementation example, INTR_MASK
controls interrupt generation, and the LIN_CH_CMD.INTR_MASKD register checks the interrupt source.
Table 2 lists send/receive events detected by the master and slave nodes in the SDL.

Table 2 List of Send/Receive Events

Send/Receive Events Master Slave

TX_HEADER_DONE ✓ -

RX_HEADER_DONE - ✓

TX_RESPONSE_DONE ✓ ✓

TX_WAKEUP_DONE ✓ ✓

RX_RESPONSE_DONE ✓ ✓

RX_BREAK_WAKEUP_DONE ✓ ✓

RX_HEADER_SYNC_DONE - ✓

Table 3 lists the error events detected by the master and slave nodes.

Table 3 List of Error Events

Error Events Master Slave

RX_NOISE_DETECT ✓ ✓

TIMEOUT ✓ ✓

TX_RESPONSE_BIT_ERROR ✓ ✓

RX_HEADER_SYNC_ERROR - ✓

RX_RESPONSE_FRAME_ERROR ✓ ✓

RX_RESPONSE_CHECKSUM_ERROR ✓ ✓

TX_HEADER_BIT_ERROR ✓ -

The related interrupt registers have a bit corresponding to these events. The software can control the
generation of events by setting or clearing the corresponding bits.
See the Architecture TRM and Registers TRM for details of events and each interrupt register.

Using the LIN in TRAVEO™ T2G family

3 LIN Communication Example

Application note 8 002-25346 Rev.*C
2023-11-10

4 Example of Master Operation
This section shows an example implementation of a LIN Master using Table 1. In the SDL, you can manage the
state machine using commands. Figure 4 shows the operation of LIN Master state machine.

Figure 4 LIN Master State Machine

LIN Master state machine has the following four states.
• LIN_STATE_IDLE: This is the default state after initialization. This state is entered when the LIN Master IRQ

handler is completed.
• LIN_STATE_TX_HEADER_RX_RESPONSE: This is the state when the message type is a slave response. The master

sends a header and waits for a response from the slave.
• LIN_STATE_TX_HEADER_TX_RESPONSE: This is the state when the message type is a master response. The

master sends a header and a response to the slave.
• LIN_STATE_TX_HEADER: This is the state when the message type is slave-to-slave. The master sends only a

header.
The software determines the state according to the message type of the schedule table, and sets the command
sequence according to the current state.
Table 4 shows the relationship between message type, states and command sequence.

Table 4 Correspondence of message type, State, and Command Sequence settings in LIN
Master Node

Message Type State Command

TX_HEADER RX_HEADER TX_RESPONSE RX_RESPONSE

Slave Response LIN_STATE_TX_HEADER_RX_RES
PONSE

1 0 0 1

Master
Response

LIN_STATE_TX_HEADER_TX_RES
PONSE

1 0 1 0

Slave-to-Slave LIN_STATE_TX_HEADER 1 0 0 0

The following is an example of initialization and interrupt control to execute these processes.

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 9 002-25346 Rev.*C
2023-11-10

4.1 LIN Master Initialization
Figure 5 shows the flow example for LIN Master Initialization.

(1) Initialize LIN master

Start of Configure

(4) Start the timer for starting the scheduler

(2) Enable LIN Channel

(3) Initialize the state machine

End of Configure

Figure 5 LIN Master Initialize Flow Example

1. Initialize LIN Master.
2. Enable LIN Channel.

Software enables the external LIN transceiver after port setting is completed. This example does not
control the external LIN transceiver because LIN_CH_CTL0.AUTO_EN is set to “0” in step 4 of this setup
procedure. In this case, the software can control the EN-pin via the register bit TX_RX_STATUS.EN_OUT. If
the LIN_EN_OUT pin for this deployed channel is not available on the MCU, EN-pin on the transceiver can
be also controlled by a normal GPIO output.

3. Initialize software state machine.
Set current state to lin_state = LIN_STATE_IDLE.

4. Start the timer for starting the scheduler.
The communication starts automatically when the scheduler starts by this setting.

For details for clock setting, port setting, and Interrupt Controller setting, see the Architecture TRM and
Registers TRM.

4.1.1 Use Case
This section describes a use case of LIN Master Initialization with the following parameters.
• Master/Slave Node : Master Node
• LIN Instance : LIN0_CH0
• Baud Rate : 19231 Hz

4.1.2 Configuration and Example
Table 5 lists the parameters of the configuration part in SDL for LIN Master Initialization.

Table 5 List of LIN Master Initialization Parameters

Parameters Description Setting Value

For CLK

CY_LINCH0_PCLK Peripheral Clock Number PCLK_LIN0_CLOCK_CH_EN0
(table continues...)

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 10 002-25346 Rev.*C
2023-11-10

Table 5 (continued) List of LIN Master Initialization Parameters

Parameters Description Setting Value

For LIN

config.bMasterMode Master or Slave Mode true (Master Mode)

config.bLinTransceiverAutoEnable LIN transceiver auto enable: true (Enable)

config.u8BreakFieldLength Break/wakeup length (minus 1)
in bit periods:

13ul (13-1 = 12 bit)

config.enBreakDelimiterLength Break delimiter length: LinBreakDelimiterLength1bits (1 bit)

config.enStopBit STOP bit periods LinOneStopBit (1 bit)

config.bFilterEnable RX filter true

CY_LINCH0_TYPE Define using LIN Channel
Number

Assigned to LIN0 channel 0

Code Listing 1 demonstrates an example program to initialize the LIN Master in the configuration part.

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 11 002-25346 Rev.*C
2023-11-10

Code Listing 1 CYT2 Series: Example to initialize LIN in Configuration Part (Master)

int main(void)
{
 :
 /* LIN baudrate setting */
 {
 /* Note:
 * LIN IP does oversampling and oversampling count is fixed 16.
 * Therefore LIN baudrate = LIN input clock / 16.
 */
 Cy_SysClk_PeriphAssignDivider(CY_LINCH0_PCLK, CY_SYSCLK_DIV_16_BIT, 0ul); /*Configure
the Baud Rate Clock*1*/
 /*Configure the Baud Rate Clock*1*/
 Cy_SysClk_PeriphSetDivider(CY_SYSCLK_DIV_16_BIT, 0ul, 259ul); // 80 MHz / 260 /
16 (oversampling) = 19231 Hz
Cy_SysClk_PeriphEnableDivider(CY_SYSCLK_DIV_16_BIT, 0ul); /*Configure the Baud Rate Clock*1*/
 }

 :
 /* Initialize LIN */
 {
 stc_lin_config_t config = /*Configure LIN Master parameters*/
 {
 .bMasterMode = true,
 .bLinTransceiverAutoEnable = true,
 .u8BreakFieldLength = 13ul,
 .enBreakDelimiterLength = LinBreakDelimiterLength1bits,
 .enStopBit = LinOneStopBit,
 .bFilterEnable = true
 };

/* (1)Initialize LIN Master based on above structure (See Code Listing 3) */
 /* (2)Enable LIN_CH0 (See Code Listing 3) */
 Lin_Init(CY_LINCH0_TYPE, &config);

lin_state = LIN_STATE_IDLE; /*(3)Initialize the state machine*/
 }

 /* Start scheduling */
 SchedulerInit(); /*(4)Start the Timer (See Code Listing 2)*/
}

*1: For details, refer to the “Clocking System” section in the Architecture TRM.
Code Listing 2 demonstrates an example of SchedulerInit.

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 12 002-25346 Rev.*C
2023-11-10

Code Listing 2 Example of SchedulerInit

static void SchedulerInit(void)
{
 Cy_SysTick_Init(CY_SYSTICK_CLOCK_SOURCE_CLK_CPU, SYSTICK_RELOAD_VAL);
 Cy_SysTick_SetCallback(0ul, LIN0_TickHandler);
 Cy_SysTick_Enable(); /*(4)Start the timer*/
}

Code Listing 3 demonstrates an example program to configure LIN in the driver part.
The following description will help you understand the register notation of the driver part of SDL:
• pstcLin->unCTL0 is the LINx_CHy_CTL0 register mentioned in the Registers TRM. Other registers are also

described in the same manner. 'x' signifies LIN instance number, 'y' is the channel number.
• Performance improvement measures:
To improve the performance of setting a register, the SDL writes a complete 32-bit data to the register. Each bit
field is generated in advance in a bit-writable buffer and written to the register as the final 32-bit data.

ctl0.stcField.u1BIT_ERROR_IGNORE = 0ul;
ctl0.stcField.u1PARITY = 0ul;
ctl0.stcField.u1PARITY_EN = 0ul;
pstcLin->unCTL0.u32Register = ctl0.u32Register;

• See cyip_lin.h under hdr/rev_x/ip for more information on the union and structure representation of
registers.

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 13 002-25346 Rev.*C
2023-11-10

Code Listing 3 Lin_Init

/***
* Function Name: Lin_Init
***/
cy_en_lin_status_t Lin_Init(volatile stc_LIN_CH_t* pstcLin, const stc_lin_config_t *pstcConfig)
{
 cy_en_lin_status_t status = CY_LIN_SUCCESS;

 /* Check if pointers are valid */
 if ((NULL == pstcLin) || /*Check if parameter values are valid.*/
 (NULL == pstcConfig))
 {
 status = CY_LIN_BAD_PARAM;
 }
 else if (pstcConfig->bMasterMode &&
 ((LIN_MASTER_BREAK_FILED_LENGTH_MIN > pstcConfig->u8BreakFieldLength) ||
 (LIN_BREAK_WAKEUP_LENGTH_BITS_MAX < pstcConfig->u8BreakFieldLength)))
 {
 status = CY_LIN_BAD_PARAM;
 }
 else if (LIN_BREAK_WAKEUP_LENGTH_BITS_MAX < pstcConfig->u8BreakFieldLength)
 {
 status = CY_LIN_BAD_PARAM;
 }
 else
 {
 un_LIN_CH_CTL0_t ctl0 = { 0ul };

 /* Stop bit length */
 ctl0.stcField.u2STOP_BITS = pstcConfig->enStopBit; /*(1)Initialize the LIN with
parameter*/
 /* LIN Transceiver Auto Enable by Hardware */
 ctl0.stcField.u1AUTO_EN = pstcConfig->bLinTransceiverAutoEnable; /*(1)Initialize the
LIN with parameter*/
 /* Break field length */
 ctl0.stcField.u5BREAK_WAKEUP_LENGTH = pstcConfig->u8BreakFieldLength - 1ul; /
(1)Initialize the LIN with parameter/
 /* Break Delimiter Length: Bit8-9 */
 /* This field effect only master node header transmission. */
 ctl0.stcField.u2BREAK_DELIMITER_LENGTH = pstcConfig->enBreakDelimiterLength; /
(1)Initialize the LIN with parameter/
 /* Mode of Operation: Bit 24: 0 -> LIN Mode, 1 -> UART Mode */ /*(1)Initialize the LIN
with parameter*/
 ctl0.stcField.u1MODE = 0ul; /*(1)Initialize the LIN with parameter*/
 /* Enable the LIN Channel */
 ctl0.stcField.u1ENABLED = 1ul; /*(2)Enable LIN_CH0*/
 /* Filter setting */
 ctl0.stcField.u1FILTER_EN = pstcConfig->bFilterEnable; /*(1)Initialize the LIN with
parameter*/
 /* Other settings are set to default */
 ctl0.stcField.u1BIT_ERROR_IGNORE = 0ul /*(1)Initialize the LIN with parameter*/
 ctl0.stcField.u1PARITY = 0ul; /*(1)Initialize the LIN with parameter*/

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 14 002-25346 Rev.*C
2023-11-10

 ctl0.stcField.u1PARITY_EN = 0ul; /*(1)Initialize the LIN with parameter*/
 pstcLin->unCTL0.u32Register = ctl0.u32Register; /*(1)Initialize the LIN with
parameter*/

 }
 return status;
}

4.2 Example of LIN Communication of LIN Master
When the LIN communication starts, the interrupt activates the master scheduler handler. Figure 6 shows
example of how the master schedule handler works.

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 15 002-25346 Rev.*C
2023-11-10

Figure 6 Example of Master Schedule Handler

The following is the application software operation for the scheduler:
(0) The timer IRQ activates the master schedule handler on the LIN Master.
(1) Initializes the current pending state by configuring LIN_CH_CTL0.ENABLE to “0”.All non-retained MMIO registers
(for example, the LIN_CH_STAUS, LIN_CH_CMD, and LIN_CH_INTR registers) are reset to default values by setting
LIN_CH_CTL0.ENABLE to “0”. See the Registers TRM for details of the registers to be initialized.
(2) Re-enables the LIN channel.

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 16 002-25346 Rev.*C
2023-11-10

(3) Checks the message type of the next frame. This is the message type specified in the current scheduler. If the
message type is slave response or master response, it will configure the data length of the response field ((3)-1)
and the checksum type ((3)-2) accordingly.
(4) Write the PID field of the header. LIN_CH_PID_CHECKSUM.PID[7] is parity [1], LIN_CH_PID_CHECKSUM.PID[6] is
parity [0], and LIN_CH_PID_CHECKSUM.PID[5:0] is ID. Software needs to calculate the PID field parity bits P[1] and
P[0]. Parity is calculated as follows:
P[0] = (ID[4] ^ ID[2] ^ ID[1] ^ ID[0])
P[1] = ! (ID[5] ^ ID[4] ^ ID[3] ^ ID[1])
• In case of Master Response: The LIN master writes the response data of the required data length into the

data register (DATA 0/1). (4)-1
(5) The LIN_CH_INTR_MASK register enables the event interrupt according to the cases:
• Slave-to-Slave Response:

Configure the TX_HEADER_DONE to “1”
Configure the error detection bit to “1”.

• Slave Response:
Configure the RX_RESPONSE_DONE to “1”
Configure the RX_RESPONSE_DONE to “1”
v

• Master Response:
Configure the TX_RESPONSE_DONE to “1”
Configure the error detection bit to “1”.

It is necessary to set the required error detection bit depending on the system.
(6) Set the state according to the current message type:
• Slave-to-slave Response:

Configure the lin_state to LIN_STATE_TX_HEADER
• Slave Response:

Configure the lin_state to LIN_STATE_TX_HEADER_RX_RESPONSE
• Master Response:

Configure the lin_state to LIN_STATE_TX_HEADER_TX_RESPONSE
(7) Set the command sequence according to the lin_state for each case:
• Slave-to-slave Response:

Configure the LIN_CH_CMD.TX_HEADER to “1”
• Slave Response:

Configure the LIN_CH_CMD.TX_HEADER to “1”
Configure the LIN_CH_CMD.RX_RESPONSE to “1”

• Master Response:
Configure the LIN_CH_CMD.TX_HEADER to “1”
Configure the LIN_CH_CMD.TX_RESPONSE to “1” (a response is transmitted after the transmission of the
header)

(8) Set the message type for the next scheduler activation according to Table 1.
(9) Returns from the scheduler (timer interrupt) and waits for the occurrence of the configured LIN interrupt as
shown in Table 2

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 17 002-25346 Rev.*C
2023-11-10

4.2.1 Use Case
This section describes an example of determining the message type and performing LIN Master
Communication.
• Master/Slave Node : Master Node
• LIN Instance : LIN0_CH0
• Communication Operation : See Table 1 and- Section 4.

4.2.2 Configuration and Example
Table 6 lists the parameters of the configuration part in SDL for LIN Communication (LIN Master)

Table 6 List of LIN Communication Parameters

Parameters Description Setting Value

For LIN

msgContext[] ID/ Message Type 0x01ul / LIN_RX_RESPONSE
0x02ul / LIN_TX_RESPONSE
0x10ul / LIN_RX_RESPONSE
0x11ul / LIN_TX_RESPONSE
0x20ul / LIN_TX_HEADER

Checksum Type LinChecksumTypeExtended

Data Length 8ul or 1ul

CY_LINCH0_TYPE Define using LIN Channel Number Assigned to LIN0 channel 0

Code Listing 4 demonstrates an example program to communicate LIN in the configuration part.

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 18 002-25346 Rev.*C
2023-11-10

Code Listing 4 CYT2 Series: Example to communicate LIN in Configuration Part (Master)

lin_message_context msgContext[] =
{
{0x01ul, LIN_RX_RESPONSE, LinChecksumTypeExtended, 8ul,}, /*Set msgContext Table 1 */
 {0x02ul, LIN_TX_RESPONSE, LinChecksumTypeExtended, 8ul,}, /*Set msgContext Table 1 */
 {0x10ul, LIN_RX_RESPONSE, LinChecksumTypeExtended, 1ul,}, /*Set msgContext Table 1 */
 {0x11ul, LIN_TX_RESPONSE, LinChecksumTypeExtended, 1ul,}, /*Set msgContext Table 1 */
 {0x20ul, LIN_TX_HEADER, LinChecksumTypeExtended, 8ul,}, /*Set msgContext Table 1 */
};
 :
int main(void)
{
 :

/* Master schedule handler */
static void LIN0_TickHandler(void)
{
 /* Disable the channel for clearing pending status */
 Lin_Disable(CY_LINCH0_TYPE); /* 1)Initializes the current pending state for LIN0_CH0
Code Listing 5 */

 /* Re-enable the channel */
 Lin_Enable(CY_LINCH0_TYPE); /* (2)Re-enables the LIN channel Code Listing 6 */

 switch(msgContext[scheduleIdx].responseDirection) /* (3)Checks the message type */
 {
 case LIN_TX_RESPONSE:
 /* Response Direction = Master to Slave */
 /* (3)-1 Configure the data length of the response field Code Listing 7 */
 /* (3)-2 Configure the checksum type Code Listing 8 */
 Lin_SetDataLength(CY_LINCH0_TYPE, msgContext[scheduleIdx].dataLength);

 Lin_SetChecksumType(CY_LINCH0_TYPE, msgContext[scheduleIdx].checksumType);

 /* (4)Configure the PID field Code Listing 9 */
 Lin_SetHeader(CY_LINCH0_TYPE, msgContext[scheduleIdx].id);

 /* (4)-1 Configure the data register Code Listing 10 */
 Lin_WriteData(CY_LINCH0_TYPE, msgContext[scheduleIdx].dataBuffer,
msgContext[scheduleIdx].dataLength);

 /* (5)Enables the event interrupt Code Listing 11 */
 Lin_SetInterruptMask(CY_LINCH0_TYPE, LIN_INTR_TX_RESPONSE_DONE |
LIN_INTR_ALL_ERROR_MASK_MASTER);

 /* (6)Configure the lin_state */
 lin_state = LIN_STATE_TX_HEADER_TX_RESPONSE;

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 19 002-25346 Rev.*C
2023-11-10

 /* (7)Configure the command sequence Code Listing 12 */
 Lin_SetCmd(CY_LINCH0_TYPE, LIN_CMD_TX_HEADER_TX_RESPONSE);
 break;

 case LIN_RX_RESPONSE:
 /* Response Direction = Slave to Master */
 /* (3)-1 Configure the data length of the response field Code Listing 7 */
 Lin_SetDataLength(CY_LINCH0_TYPE, msgContext[scheduleIdx].dataLength);

/* (3)-2 Configure the checksum type Code Listing 8 */
 Lin_SetChecksumType(CY_LINCH0_TYPE, msgContext[scheduleIdx].checksumType);

/* (4)Configure the PID field Code Listing 9 */
 Lin_SetHeader(CY_LINCH0_TYPE, msgContext[scheduleIdx].id);

/* (5)Enables the event interrupt Code Listing 11 */
 Lin_SetInterruptMask(CY_LINCH0_TYPE, LIN_INTR_RX_RESPONSE_DONE |
LIN_INTR_ALL_ERROR_MASK_MASTER);

 /* (6)Configure the lin_state */
 lin_state = LIN_STATE_TX_HEADER_RX_RESPONSE;

/* (7)Configure the command sequence Code Listing 12 */
 Lin_SetCmd(CY_LINCH0_TYPE, LIN_CMD_TX_HEADER_RX_RESPONSE);
 break;

 case LIN_TX_HEADER:
 /* Response Direction = Slave to Slave */
 /* (4)Configure the PID field Code Listing 9 */
 Lin_SetHeader(CY_LINCH0_TYPE, msgContext[scheduleIdx].id);
 /* (5)Enables the event interrupt Code Listing 11 */
 Lin_SetInterruptMask(CY_LINCH0_TYPE, LIN_INTR_TX_HEADER_DONE |
LIN_INTR_ALL_ERROR_MASK_MASTER);

 /* (6)Configure the lin_state */
 lin_state = LIN_STATE_TX_HEADER;
 /* (7)Configure the command sequence Code Listing 12 */
 Lin_SetCmd(CY_LINCH0_TYPE, LIN_CMD_TX_HEADER);
 break;
 default:
 break;
 }

 /* (8)Configure the message type for the next scheduler activation */
 scheduleIdx = (scheduleIdx + 1ul) % (sizeof(msgContext) / sizeof(msgContext[0ul]));
}

Code Listing 5 to Code Listing 12 demonstrates an example to communicate LIN in the driver part.

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 20 002-25346 Rev.*C
2023-11-10

Code Listing 5 Lin_Disable

/**
 ** \brief Disable LIN channel.
**/
cy_en_lin_status_t Lin_Disable(volatile stc_LIN_CH_t* pstcLin)
{
 cy_en_lin_status_t ret = CY_LIN_SUCCESS;
 if (NULL == pstcLin) /* Check if parameter values are valid */
 {
 ret = CY_LIN_BAD_PARAM;
 }
 else
 {
 pstcLin->unCTL0.stcField.u1ENABLED = 0ul; /* (1)Disable the LIN */
 }
 return ret;
}

Code Listing 6 Lin_Enable

/**
 ** \brief Enable LIN channel.
**/
cy_en_lin_status_t Lin_Enable(volatile stc_LIN_CH_t* pstcLin) /* Check if parameter
values are valid */
{
 cy_en_lin_status_t ret = CY_LIN_SUCCESS;
 if (NULL == pstcLin)
 {
 ret = CY_LIN_BAD_PARAM;
 }
 else
 {
 pstcLin->unCTL0.stcField.u1ENABLED = 1ul; /* (2)Enable the LIN */
 }
 return ret;
}

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 21 002-25346 Rev.*C
2023-11-10

Code Listing 7 Lin_SetDataLength

/**
 ** \brief Setup LIN response field data length
**/
cy_en_lin_status_t Lin_SetDataLength(volatile stc_LIN_CH_t* pstcLin, uint8_t length)
{
 cy_en_lin_status_t ret = CY_LIN_SUCCESS;
 if ((NULL == pstcLin) || /* Check if parameter values are valid */
 (length > LIN_DATA_LENGTH_MAX) ||
 (length < LIN_DATA_LENGTH_MIN))
 {
 ret = CY_LIN_BAD_PARAM;
 }
 else
 {
 /* (3)-1 Configure the data length of the response field */
 pstcLin->unCTL1.stcField.u3DATA_NR = length - 1ul;
 }
 return ret;
}

Code Listing 8 Lin_SetChecksumType

/**
 ** \brief Setup LIN checksum type setting
**/
cy_en_lin_status_t Lin_SetChecksumType(volatile stc_LIN_CH_t* pstcLin, en_lin_checksum_type_t
type)
{
 cy_en_lin_status_t ret = CY_LIN_SUCCESS;
 if (NULL == pstcLin) /* Check if parameter values are valid */
 {
 ret = CY_LIN_BAD_PARAM;
 }
 else
 {
 pstcLin->unCTL1.stcField.u1CHECKSUM_ENHANCED = type; /* (3)-2 Configure the checksum
type */
 }
 return ret;
}

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 22 002-25346 Rev.*C
2023-11-10

Code Listing 9 Lin_SetHeader

/**
 ** \brief Setup LIN header for master tx header operation
**/
cy_en_lin_status_t Lin_SetHeader(volatile stc_LIN_CH_t* pstcLin, uint8_t id)
{
 cy_en_lin_status_t ret = CY_LIN_SUCCESS;
 uint8_t TempPID;
 uint8_t Parity_P1, Parity_P0;
 cy_en_lin_status_t ret = CY_LIN_SUCCESS;
 uint8_t TempPID;
 uint8_t Parity_P1, Parity_P0; /* Check if parameter values are valid */
 if ((NULL == pstcLin) ||
 (LIN_ID_MAX < id))
 {
 ret = CY_LIN_BAD_PARAM;
 }
 else
 {
 /* Calculate the Parity bits P0 & P1 */
 Parity_P0 = ((id) ^ (id>>1ul) ^
 (id>>2ul) ^ (id>>4ul)) & 0x01ul;
 Parity_P1 = (~((id>>1ul) ^ (id>>3ul) ^
 (id>>4ul) ^ (id>>5ul))) & 0x01ul;
 /* Assign the Parity bits and the header values in to the TempPID */
 TempPID = id | ((uint8_t) Parity_P0<<6ul) | ((uint8_t) Parity_P1<<7ul);
 /* Write the TempID value in to the TX_HEADER register */
 /* (4)Configure the PID field */
 pstcLin->unPID_CHECKSUM.stcField.u8PID = TempPID;
 }
 return ret;
}

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 23 002-25346 Rev.*C
2023-11-10

Code Listing 10 Lin_WriteData

/**
 ** \brief Write response data.
**/
cy_en_lin_status_t Lin_WriteData(volatile stc_LIN_CH_t* pstcLin, const uint8_t *au8Data,
uint8_t u8DataLength)
{
 cy_en_lin_status_t status = CY_LIN_SUCCESS;
 un_LIN_CH_DATA0_t data0 = { 0ul };
 un_LIN_CH_DATA1_t data1 = { 0ul };
 uint8_t u8Cnt;
 /* Check if NULL pointer */ /* Check if parameter values are valid */
 if((NULL == pstcLin) ||
 (NULL == au8Data))
 {
 status = CY_LIN_BAD_PARAM;
 }
 /* Check if data length is valid */ /* Check if parameter values are valid */
 else if(LIN_DATA_LENGTH_MAX < u8DataLength)
 {
 status = CY_LIN_BAD_PARAM;
 }
 /* Check if the bus is free */ /* Check if parameter values are valid */
 else if(0ul == pstcLin->unSTATUS.stcField.u1TX_BUSY)
 {

 /* Write data in to the temp variables */
 for(u8Cnt = 0ul; u8Cnt < u8DataLength; u8Cnt++)
 {
 if(4ul > u8Cnt)
 {
 data0.au8Byte[u8Cnt] = au8Data[u8Cnt];
 }
 else
 {
 data1.au8Byte[u8Cnt - 4ul] = au8Data[u8Cnt];
 }
 }
 /* Write data to HW FIFO */
 /* (4)-1 Configure the data register (DATA 0) */
 pstcLin->unDATA0.u32Register = data0.u32Register;
 /* (4)-1 Configure the data register (DATA 1) */
 pstcLin->unDATA1.u32Register = data1.u32Register;
 }
 else
 {
 status = CY_LIN_BUSY;
 /* A requested operation could not be completed */
 }
 return status;
}

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 24 002-25346 Rev.*C
2023-11-10

Code Listing 11 Lin_SetInterruptMask

/**
 ** \brief Setup interrupt source to be accepted.
**/
cy_en_lin_status_t Lin_SetInterruptMask(volatile stc_LIN_CH_t* pstcLin, uint32_t mask)
{
 cy_en_lin_status_t ret = CY_LIN_SUCCESS;
 if (NULL == pstcLin) /* Check if parameter values are valid */
 {
 ret = CY_LIN_BAD_PARAM;
 }
 else
 {
 pstcLin->unINTR_MASK.u32Register = mask; /* (5)Enables the event interrupt */
 }
 return ret;
}

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 25 002-25346 Rev.*C
2023-11-10

Code Listing 12 Lin_SetCmd

/**
 ** \brief Setup LIN operation command
**/
cy_en_lin_status_t Lin_SetCmd(volatile stc_LIN_CH_t* pstcLin, uint32_t command)
{
 cy_en_lin_status_t ret = CY_LIN_SUCCESS;
 un_LIN_CH_CMD_t cmdReg = pstcLin->unCMD;
 if (NULL == pstcLin) /* Check if parameter values are valid */
 {
 ret = CY_LIN_BAD_PARAM;
 }
 else if (((command & (LIN_CH_CMD_TX_HEADER_Msk | LIN_CH_CMD_RX_HEADER_Msk))
 == (LIN_CH_CMD_TX_HEADER_Msk | LIN_CH_CMD_RX_HEADER_Msk)) ||
 (((command & LIN_CH_CMD_TX_WAKEUP_Msk) != 0ul) &&
 ((command & (LIN_CH_CMD_TX_HEADER_Msk |
 LIN_CH_CMD_TX_RESPONSE_Msk |
 LIN_CH_CMD_RX_HEADER_Msk |
 LIN_CH_CMD_RX_RESPONSE_Msk)) != 0ul)))
 {
 ret = CY_LIN_BAD_PARAM;
 }
 else if (((cmdReg.stcField.u1TX_HEADER != 0ul) && (command & LIN_CH_CMD_RX_HEADER_Msk) !=
0ul) ||
 ((cmdReg.stcField.u1RX_HEADER != 0ul) && (command & LIN_CH_CMD_TX_HEADER_Msk) !=
0ul) ||
 ((cmdReg.stcField.u1TX_WAKEUP != 0ul) &&
 ((command & (LIN_CH_CMD_TX_HEADER_Msk |
 LIN_CH_CMD_TX_RESPONSE_Msk |
 LIN_CH_CMD_RX_HEADER_Msk |
 LIN_CH_CMD_RX_RESPONSE_Msk)) != 0ul)))
 {
 ret = CY_LIN_BUSY;
 }
 else
 {
 pstcLin->unCMD.u32Register = command; /* (7)Configure the command sequence */
 }
 return ret;
}

4.3 Example of LIN Master Interrupt Handling
When an interrupt set by the scheduler occurs, LIN Master IRQ handler is activated. Figure 7 shows example to
how the LIN Master IRQ handler works.

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 26 002-25346 Rev.*C
2023-11-10

Figure 7 Example of LIN Master IRQ Handler

The following is the application software operation for the LIN master IRQ handler:
(0) LIN IRQ activates the LIN Master IRQ handler.
(1) Acquire interrupt information from LIN_CH_MASKED register.
(2) Clear all accepted interrupt.
(3) Disable all interrupt to prevent occurrence of different interrupt during interrupt handling.
(4) Check if an error occurred. If yes, go to (4)-1.
(4)-1 Clear the currently pending state by LIN_CH_CTL0.ENABLE being set to “0”, and delete the state in the
hardware internal state machine and the software state machine. After that, execute error handling.

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 27 002-25346 Rev.*C
2023-11-10

(5) When no communication error is detected, check the current state (lin_state) of the software state machine,
which is decided by the scheduler handler (6) in Figure 6.
• If current state is not ,
• , go to (9)
(6) If current state is LIN_STATE_TX_HEDER_RX_RESPONSE, get the condition of LIN_CH_CMD.RX_RESPONSE and
LIN_CH_STATUS.RX_BUSY.
(7) Check the bit fields of LIN_CH_CMD.RX_RESPONSE and LIN_CH_STATUS.RX_BUSY.
• The hardware sets LIN_CH_CMD.RX_RESPONSE to "0" on successful completion of the legal command

sequences (not set to "0" when an error is detected) and LIN_CH_STATUS.RX_BUSY to “0” on successful
completion of previous commands or when an error is detected. Therefore, reception is completed
successfully, when both the bits are set to "0".

• If LIN_CH_CMD.RX_RESPONSE or LIN_CH_STATUS.RX_BUSY is “1”, reception is not completed correctly. In this case,
go to (4)-1.

(8) Read the received data from DATA0 and DATA1 registers.
(9) Set the state to LIN_STATE_IDLE.
(10) Leave LIN Master IRQ handler, and wait for the next scheduler activation.

4.3.1 Use Case
This section describes an example in which the LIN Master Handler determines the interrupt factor, clears the
interrupt factor, and executes the processing for current state.
• System Interrupt source : LINCH0 (IDX: 69)
• Mapped to CPU Interrupt : IRQ3
• CPU Interrupt Priority : 3
• Communication Operation : See Table 1 and Section 4.

4.3.2 Configuration and Example
Table 7 lists the parameters of the configuration part in SDL for LIN Master Interrupt Handler.

Table 7 List of LIN Master Interrupt Handler Parameters

Parameters Description Setting Value

For Interrupt

irq_cfg.sysIntSrc System interrupt index number CY_LINCH0_IRQN

irq_cfg.intIdx CPU interrupt number CPUIntIdx3_IRQn

irq_cfg.isEnabled CPU interrupt enable true (0x1)

For LIN

CY_LINCH0_TYPE Define using LIN Channel Number Assigned to LIN0 channel 0

Code Listing 13 demonstrates an example program to interrupt LIN in the configuration part.

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 28 002-25346 Rev.*C
2023-11-10

Code Listing 13 CYT2 Series: Example to interrupt LIN in Configuration Part (Master)

int main(void)
{

 :
 __enable_irq(); /* Enable global interrupts. */
 :
 /* Register LIN interrupt handler and enable interrupt */
 {
 cy_stc_sysint_irq_t irq_cfg;
 irq_cfg = (cy_stc_sysint_irq_t){
 .sysIntSrc = CY_LINCH0_IRQN,
 .intIdx = CPUIntIdx3_IRQn,
 .isEnabled = true,
 };
 Cy_SysInt_InitIRQ(&irq_cfg); /* Set the parameters to interrupt structure*1 */
 Cy_SysInt_SetSystemIrqVector(irq_cfg.sysIntSrc, LIN0_IntHandler); /* Set the system
interrupt handler*1 */
 NVIC_SetPriority(CPUIntIdx3_IRQn, 0ul); /* Set priority*1*/
 NVIC_EnableIRQ(CPUIntIdx3_IRQn); /* Interrupt Enable*1 */
 }
 :
/* LIN0 IRQ Handler */
static void LIN0_IntHandler(void)
{
 uint32_t maskStatus;
 cy_en_lin_status_t apiResponse;
 /* (1)Acquire interrupt information Code Listing 14 */
 Lin_GetInterruptMaskedStatus(CY_LINCH0_TYPE, &maskStatus);
 /* (2)Clear all accepted interrupt Code Listing 15 */
 Lin_ClearInterrupt(CY_LINCH0_TYPE, maskStatus); /* Clear all accepted interrupt */

/* (3)Disable all interrupt to prevent occurrence of different interrupt during interrupt
handling Code Listing 11 */
 Lin_SetInterruptMask(CY_LINCH0_TYPE, 0uL); /* Disable all interrupt */

 /* (4)Check if an error occurred */
 if ((maskStatus & LIN_INTR_ALL_ERROR_MASK_MASTER) != 0ul)
 {
 /* Wait for next tick. */
 lin_state = LIN_STATE_IDLE;
 /* Disable the channel to reset LIN status */
 /* (4)-1 Clear the currently pending state */
 Lin_Disable(CY_LINCH0_TYPE); /* (4)-1 Clear the currently pending state Code
Listing 5 */
 /* Re-enable the channel */
 Lin_Enable(CY_LINCH0_TYPE);
 }

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 29 002-25346 Rev.*C
2023-11-10

 else
 {
 switch(lin_state)
 {
 /* (5)Current state is not LIN_STATE_TX_HEADER_RX_RESPONSE */
 case LIN_STATE_TX_HEADER:
 /* Tx header complete with no error */
 break;
 /* (5)Current state is not LIN_STATE_TX_HEADER_RX_RESPONSE */
 case LIN_STATE_TX_HEADER_TX_RESPONSE:
 /* Tx response complete with no error */
 break;
 /* (6)Current state is LIN_STATE_TX_HEDER_RX_RESPONSE */
 case LIN_STATE_TX_HEADER_RX_RESPONSE:

 /* (7)Check the bit fields. */
 /* Tx header and rx response complete with no error */
 while(1)
 {
 /* (8)Read the received dataCode Listing 16. */
 apiResponse = Lin_ReadData(CY_LINCH0_TYPE, msgContext[scheduleIdx].dataBuffer);
 if(apiResponse == CY_LIN_SUCCESS)
 {
 break;
 }
 }
 /* For testing
 * Set rx data to tx data. Rx ID + 1 => Tx ID
 */
 memcpy(msgContext[scheduleIdx + 1ul].dataBuffer,
msgContext[scheduleIdx].dataBuffer, LIN_DATA_LENGTH_MAX);
 break;
 default:
 break;
 }
 lin_state = LIN_STATE_IDLE; /* (9) Set the state to LIN_STATE_IDLE. */
 }
}

*1 For details, refer to the CPU interrupt handing sections in the Architecture TRM
Code Listing 14 to Code Listing 16 demonstrates an example program to interrupt LIN in the driver part.

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 30 002-25346 Rev.*C
2023-11-10

Code Listing 14 Lin_GetInterruptMaskedStatus

/**
 ** \brief Return interrupt masked status.
**/
cy_en_lin_status_t Lin_GetInterruptMaskedStatus(volatile stc_LIN_CH_t* pstcLin, uint32_t
*status)
{
 cy_en_lin_status_t ret = CY_LIN_SUCCESS;
 if ((NULL == pstcLin) || /* Check if parameter values are valid */
 (NULL == status))
 {
 ret = CY_LIN_BAD_PARAM;
 }
 else
 {
 status = pstcLin->unINTR_MASKED.u32Register; / (1)Acquire interrupt information */
 }
 return ret;
}

Code Listing 15 Lin_ClearInterrupt

/**
 ** \brief Clear interrupt status.
**/
cy_en_lin_status_t Lin_ClearInterrupt(volatile stc_LIN_CH_t* pstcLin, uint32_t mask)
{
 cy_en_lin_status_t ret = CY_LIN_SUCCESS;
 if (NULL == pstcLin) /* Check if parameter values are valid */
 {
 ret = CY_LIN_BAD_PARAM;
 }
 else
 {
 pstcLin->unINTR.u32Register = mask; /* (2)Clear interrupt status */
 }
 return ret;
}

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 31 002-25346 Rev.*C
2023-11-10

Code Listing 16 Lin_ReadData

/**
 ** \brief Read response data.
**/
cy_en_lin_status_t Lin_ReadData(volatile stc_LIN_CH_t* pstcLin, uint8_t *u8Data)
{
 cy_en_lin_status_t status = CY_LIN_SUCCESS;
 uint8_t u8Cnt;
 uint8_t u8Length;
 /* Check if pointers are valid */
 if((NULL == pstcLin) || /* Check if parameter values are valid */
 (NULL == u8Data))
 {
 status = CY_LIN_BAD_PARAM;
 }
 /* Check if the response is received successfully */
 else if((0ul == pstcLin->unCMD.stcField.u1RX_RESPONSE) &&
 (0ul == pstcLin->unSTATUS.stcField.u1RX_BUSY))
 {
 u8Length = pstcLin->unCTL1.stcField.u3DATA_NR + 1ul;
 /* Copy the data in to u8Data array */
 un_LIN_CH_DATA0_t data0 = pstcLin->unDATA0;
 un_LIN_CH_DATA1_t data1 = pstcLin->unDATA1; /* (8)Read response data */
 for (u8Cnt = 0ul; u8Cnt < u8Length; u8Cnt++)
 {
 if(4ul > u8Cnt)
 {
 u8Data[u8Cnt] = data0.au8Byte[u8Cnt];
 }
 else
 {
 u8Data[u8Cnt] = data1.au8Byte[u8Cnt - 4ul];
 }
 }
 }
 else
 {
 status = CY_LIN_BUSY;
 }
 return status;
}

Using the LIN in TRAVEO™ T2G family

4 Example of Master Operation

Application note 32 002-25346 Rev.*C
2023-11-10

5 Example of Slave Operation
This section shows an example implementation of the LIN Slave. The LIN Slave transmits or receives
information depending on the schedule table from the LIN protocol analyzer that acts like a master. LIN Slave
IRQ Handler includes a table; see Table 8 for an example of message frame ID processing and this information is
used in Figure 11. The LIN Slave receives the header from the LIN master. Upon receiving the header, the
response field corresponding to the received PID will be transmitted or received as shown in Table 8. To support
these different message types, the handling of the LIN Slave operation is implicitly done by command
sequences, as listed in the “LIN Slave Command Sequence” table in the Architecture TRM.

Table 8 Message Frame ID Processing Table of LIN Slave

ID Message Type Data Length Checksum Type

0x01 Master Response 8 Enhanced

0x02 Slave Response 8 Enhanced

0x10 Master Response 1 Enhanced

0x11 Slave Response 1 Enhanced

In this example, the software manages the configuration of command sequences using a state machine. Figure
8 shows the state machine for the LIN Slave. The arrows from T0 to T6 are the triggers for state transition.

Figure 8 LIN Slave State Machine

LIN slave state machine has following four states:
1. LIN_STATE_IDLE: This is the default state after initialization. The slave is neither receiving nor transmitting

any information on the LIN bus.
2. LIN_STATE_RX_HEADER: This is the state when the slave is ready for permanent LIN break detection. The

slave is waiting for a successful header reception.
3. LIN_STATE_RX_RESPONSE: This is the state when the message type is a master response. The slave waits for

a response from the master.
4. LIN_STATE_TX_RESPONSE: This is the state when the message type is a slave response. The slave sends a

response to the master. If the message type is slave-to-slave, the slave sends a response to the other
slave.

The software determines the state according to the message type of Table 8 and sets the command sequence
according to the current state. Table 9 shows the relationship between message type, states, and command
sequence.

Using the LIN in TRAVEO™ T2G family

5 Example of Slave Operation

Application note 33 002-25346 Rev.*C
2023-11-10

Table 9 Correspondence between message type, State, and Command Sequence settings in
LIN Slave

Message
Type

State TX_HEADER RX_HEADER TX_RESPONSE RX_RESPONSE

Slave
Response

LIN_STATE_TX_RESPONSE 0 1 1 1

Master
Response

LIN_STATE_RX_RESPONSE 0 1 0 1

The following is an example of initialization and interrupt control to execute these processes.

5.1 LIN Slave Initialization
Figure 9 shows the flow example for LIN Slave Initialization.

(1) Initialize LIN slave

Start of Configure

(2) Enable LIN Channel

(3) Initialize the state machine

End of Configure

Figure 9 LIN Slave Initialize Flow Example

1. Initialize LIN Slave.
2. Enable LIN Channel.

Software enables the external LIN transceiver after port setting is completed. This LIN example does not
control the external LIN transceiver because LIN_CH_CTL0.AUTO_EN is set to “0” in (1) of this setup
procedure. In this case, the software can control the EN-pin via the register bit TX_RX_STATUS.EN_OUT. If
the LIN_EN_OUT pin for this deployed channel is not available on the MCU, the EN-pin on the transceiver
can be also controlled by a normal GPIO output.

3. Initialize the software state machine.
Set the current state to lin_state = LIN_STATE_IDLE.

For details for Clock setting, port setting, and Interrupt Controller setting, see the Architecture TRMand
Registers TRM.

5.1.1 Use Case
This section describes a use case of LIN Slave Initialization with the following parameters.
• Master/Slave Node : Slave Node
• LIN Instance : LIN0_CH0
• Baud Rate : 19231 Hz

5.1.2 Configuration and Example
Table 10 lists the parameters of the configuration part in SDL for LIN Master Initialization.

Using the LIN in TRAVEO™ T2G family

5 Example of Slave Operation

Application note 34 002-25346 Rev.*C
2023-11-10

Table 10 List of LIN Slave Initialization Parameters

Parameters Description Setting Value

For CLK

CY_LINCH0_PCLK Peripheral Clock Number PCLK_LIN0_CLOCK_CH_EN0

For LIN

lin_config.bMasterMode Master or Slave Mode false (Slave Mode)

lin_config.bLinTransceiverAutoEnable LIN transceiver auto enable: true (Enable)

lin_config.u8BreakFieldLength Break/wakeup length
(minus 1) in bit periods:

11ul (11-1 = 10 bit)

lin_config.enBreakDelimiterLength Break delimiter length: LinBreakDelimiterLength1bits (1 bit)

lin_config.enStopBit STOP bit periods LinOneStopBit (1 bit)

lin_config.bFilterEnable RX filter true

CY_LINCH0_TYPE Define using LIN Channel
Number

Assigned to LIN0 channel 0

Code Listing 17 demonstrates an example program to initialize LIN Slave in the configuration part.

Using the LIN in TRAVEO™ T2G family

5 Example of Slave Operation

Application note 35 002-25346 Rev.*C
2023-11-10

Code Listing 17 CYT2 Series: Example to initialize LIN in Configuration Part (Slave)

/* Configure LIN Slave parameters */
static const stc_lin_config_t lin_config =
{
 .bMasterMode = false,
 .bLinTransceiverAutoEnable = true,
 .u8BreakFieldLength = 11ul,
 .enBreakDelimiterLength = LinBreakDelimiterLength1bits,
 .enStopBit = LinOneStopBit,
 .bFilterEnable = true
};

 :
int main(void)
{
 :
 /* LIN baudrate setting */
 /* Note:
 * LIN IP does oversampling and oversampling count is fixed 16.
 * Therefore LIN baudrate = LIN input clock / 16.
 */
 /* Configure LIN Slave parameters */
 Cy_SysClk_PeriphAssignDivider(CY_LINCH0_PCLK, CY_SYSCLK_DIV_16_BIT, 0u);
 /* Configure LIN Slave parameters */
 Cy_SysClk_PeriphSetDivider(CY_SYSCLK_DIV_16_BIT, 0ul, 259ul); // 80 MHz / 260 / 16
(oversampling) = 19231 Hz
 /* Configure LIN Slave parameters */
 /* Configure the Baud Rate Clock*1 */
 Cy_SysClk_PeriphEnableDivider(CY_SYSCLK_DIV_16_BIT, 0ul);

 /* Initialize LIN */
 /* (1)Initialize LIN Master based on above structure (See Code Listing 3) */
 /* (2)Enable LIN_CH0 (See Code Listing 3) */
 Lin_Init(CY_LINCH_TYPE, &lin_config);
 lin_state = LIN_STATE_IDLE;

 /* LIN operation */
 /* (3)Initialize the state machine */
 lin_state = LIN_STATE_RX_HEADER;
 :
}

*1: For details, refer to the Clocking System sections in the Architecture TRM.

5.2 Example of LIN Slave Interrupt Handling
When an interrupt is set by header from master, LIN Slave IRQ handler is activated.
Figure 10 shows an example of how the LIN Slave IRQ handler works. This flow is used in Code Listing 18.

Using the LIN in TRAVEO™ T2G family

5 Example of Slave Operation

Application note 36 002-25346 Rev.*C
2023-11-10

Figure 10 Example of LIN Slave IRQ Handler

For the LIN Slave IRQ handler, the application software operation is as follows.
(0) The LIN slave IRQ handler is activated by LIN IRQ.
(1) Acquire interrupt information from LIN_CH_MASKED register.
(2) Clear all interrupt flags for initialized interrupt status.
(3) Check the occurrence of communication error. If an error is detected, then go to (6)-2.
(4) When there is no communication error, check the current state (lin_state) in the state machine.
• If current state is LIN_STATE_RX_HEADER, go to (5).
• If current state is not LIN_STATE_RX_HEADER, go to (7).

Using the LIN in TRAVEO™ T2G family

5 Example of Slave Operation

Application note 37 002-25346 Rev.*C
2023-11-10

(5) Get the received PID value from LIN_CH_PID_CHECKSUM.PID.
(6) Check the current ID. If the current ID is not in Table 8, go to (6)-2.
• If the ID is present in Table 8, go to (6)-1.
• (6)-1 Go to in Figure 11.
• (6)-2 Clear the currently pending state by setting LIN_CH_CTL0.ENABLE to “0” and delete the state in the

hardware internal state machine and the software state machine. After that, run to the appropriate fail
operation depending on the system.

(7) Check the current state (lin_state) in state machine.
• If current state is LIN_STATE_TX_RESPONSE, go to (8). If not, go to (10).
(8) Check the condition of INTR.RX_RESPONSE_DONE.
Hardware configures LIN_CH_INTR.RX_RESPONSE_DONE to “1”, when a frame response (data fields and checksum
field) is received (the CMD.RX_RESPONSE is completed).
If LIN_CH_INTR.RX_RESPONSE_DONE is “0”, there is no data collision. Go to (12).
If LIN_CH_INTR.RX_RESPONSE_DONE is “1”, data collision occurs. Go to (9).
(9) Run the data collision operation depending on the system and go to (12).
(10) Check the current state (lin_state) in state machine.
• If current state is LIN_STATE_RX_RESPONSE, go to (11). If not, go to (15).
(11) Read the reception data from DATA0 and DATA1.
(12) Configure the state to LIN_STATE_RX_HEADER.
(13) Enable event interrupt by LIN_CH_INTR_MASK register.
• Configure RX_HEADER_DONE to “1”.
• Configure RX_RESPONSE_DONE to “1”.
• Configure the error detection bit to “1”.
• It is necessary to Configure the required error detection bit depending on the system.
(14) Configure the Command Sequence
• Configure LIN_CH_CMD.RX_HEADER to “1”.
• Configure LIN_CH_CMD.RX_RESPONSE to “1”.
(15) Return from LIN slave IRQ handler and wait for the occurrence of the configured LIN interrupt as Table 2.
Figure 11 shows how the message type and checksum type operations are performed. This flow is used in the
case of jumping from (6) -1 in Figure 10 and in Code Listing 20.

Using the LIN in TRAVEO™ T2G family

5 Example of Slave Operation

Application note 38 002-25346 Rev.*C
2023-11-10

Figure 11 Example of LIN Slave Checking for Message Type and Checksum Type

The following is the flow to check the message type and checksum type:
(16) Configure the data length of the response according to Table 8.
(17) Configure the checksum type according to Table 8.
(18) Check the current message type according to Table 8.
• If the current message type is LIN_TX_RESPONSE:
• (18)-1. Enable event interrupt by the LIN_CH_INTR_MASK register.
• It is necessary to configure the required error detection bit depending on the system.

- Configure RX_RESPONSE_DONE to “1”
- Configure TX_RESPONSE_DONE to “1”
- Configure the error detection bit to “1”

• (18)-2. The LIN slave writes the response data of the required data length to the data register (DATA 0/1).
• (18)-3. Configure lin_state to LIN_STATE_TX_RESPONSE.
• (18)-4. Configure the Command Sequence according to the state. Configure LIN_CH_CMD.TX_RESPONSE to “1”.

- If the current message type is not LIN_TX_RESPONSE
• (18)-5. Configure lin_state to LIN_STATE_RX_RESPONSE.
(19) Return from LIN slave IRQ handler, and wait for the next interrupt event.

5.2.1 Use case
This section describes an example in which the LIN Slave Handler determines the interrupt factor, clears the
interrupt factor, and executes the processing for current state.
• System Interrupt source : LINCH0 (IDX: 69)

Using the LIN in TRAVEO™ T2G family

5 Example of Slave Operation

Application note 39 002-25346 Rev.*C
2023-11-10

• Mapped to CPU Interrupt : IRQ3
• CPU Interrupt Priority : 3
• Communication Operation : See Section 5 .

5.2.2 Configuration and Example
Table 11 lists the parameters of the configuration part in SDL for LIN Slave Interrupt Handler.

Table 11 List of LIN Slave Interrupt Handler Parameters

Parameters Description Setting Value

For Interrupt

lin_irq_cfg.sysIntSrc System interrupt index number CY_LINCH0_IRQN

lin_irq_cfg.intIdx CPU interrupt number CPUIntIdx3_IRQn

lin_irq_cfg.isEnabled CPU interrupt enable true (0x1)

For LIN

CY_LINCH0_TYPE Define using LIN Channel Number Assigned to LIN0 channel 0

Code Listing 18 demonstrates an example program to interrupt LIN in the configuration part.

Using the LIN in TRAVEO™ T2G family

5 Example of Slave Operation

Application note 40 002-25346 Rev.*C
2023-11-10

Code Listing 18 CYT2 Series: Example to interrupt LIN in Configuration Part (Slave)

#define CY_LINCH_IRQN CY_LINCH0_IRQN
 :
static const cy_stc_sysint_irq_t lin_irq_cfg = /* Configure interrupt structure parameters*1 */
{
 .sysIntSrc = CY_LINCH_IRQN,
 .intIdx = CPUIntIdx3_IRQn,
 .isEnabled = true,
};
 :
int main(void)
{
 :
 __enable_irq(); /* Enable global interrupts. */ /* Enable global interrupt*1 */
 :
 Cy_SysInt_InitIRQ(&lin_irq_cfg); /* Set the parameters to interrupt structure*1 */
 Cy_SysInt_SetSystemIrqVector(lin_irq_cfg.sysIntSrc, LIN0_IntHandler); /* Set the system
interrupt handler*1 */
 NVIC_SetPriority(CPUIntIdx3_IRQn, 3ul); /* Set priority*1 */
 NVIC_EnableIRQ(CPUIntIdx3_IRQn); /* Interrupt Enable*1 */
 :

/* LIN0 IRQ Handler */
void LIN0_IntHandler(void)
{
 uint32_t maskStatus;
 /* (1)Acquire interrupt information (See Code Listing 14) */
 Lin_GetInterruptMaskedStatus(CY_LINCH0_TYPE, &maskStatus);
 /* (2)Clear all interrupt flags (See Code Listing 15) */
 Lin_ClearInterrupt(CY_LINCH0_TYPE, maskStatus); /* Clear all accepted interrupt */
 cy_en_lin_status_t apiResponse;

 /* (3)Check if an error occurred */
 if ((maskStatus & CY_LIN_INTR_ALL_ERROR_MASK_SLAVE) != 0ul)
 {
 /* There are some error */
 /* Handle error if needed. */
 /* Disable the channel to reset LIN status */
 Lin_Disable(CY_LINCH0_TYPE);
 /* Re-enable the channel */
 Lin_Enable(CY_LINCH0_TYPE);
 /* Re enable header RX */
 lin_state = LIN_STATE_RX_HEADER;
 Lin_SetInterruptMask(CY_LINCH0_TYPE, CY_LIN_INTR_RX_HEADER_DONE |
CY_LIN_INTR_RX_RESPONSE_DONE | CY_LIN_INTR_ALL_ERROR_MASK_SLAVE);
 Lin_SetCmd(CY_LINCH0_TYPE, CY_LIN_CMD_RX_HEADER_RX_RESPONSE);
 }
 else
 {
 bool acceptedId = false;
 uint8_t id, parity;
 switch(lin_state)

Using the LIN in TRAVEO™ T2G family

5 Example of Slave Operation

Application note 41 002-25346 Rev.*C
2023-11-10

 {
 case LIN_STATE_RX_HEADER: /* (4)Current state is LIN_STATE_RX_HEADER */
 /* Rx header complete with no error */
 Lin_GetHeader(CY_LINCH0_TYPE, &id, &parity); /* (5)Get the received PID value
(See Code Listing 19) */
 /* Analyze ID */ /* (6)Check the current ID */
 for (uint8_t I = 0ul; I < (sizeof(msgContext) / sizeof(msgContext[0ul])); i++)
 {
 if (id == msgContext[i].id)
 {
 currentMsgIdx = I;
 acceptedId = true;
 break;
 }
 }
 if (acceptedId)
 {
 /* Setup checksum type and data length */
 Lin_SetDataLength(CY_LINCH0_TYPE, msgContext[currentMsgIdx].dataLength);
 Lin_SetChecksumType(CY_LINCH0_TYPE, msgContext[currentMsgIdx].checksumType);
 if (msgContext[currentMsgIdx].responseDirection == LIN_TX_RESPONSE)
 {
 Lin_SetInterruptMask(CY_LINCH0_TYPE, CY_LIN_INTR_TX_RESPONSE_DONE |
CY_LIN_INTR_RX_RESPONSE_DONE | CY_LIN_INTR_ALL_ERROR_MASK_SLAVE);
 Lin_WriteData(CY_LINCH0_TYPE, msgContext[currentMsgIdx].dataBuffer,
msgContext[currentMsgIdx].dataLength);
 lin_state = LIN_STATE_TX_RESPONSE;
 Lin_SetCmd(CY_LINCH0_TYPE, CY_LIN_CMD_TX_RESPONSE);
 }
 else
 {
 lin_state = LIN_STATE_RX_RESPONSE;
 }
 }
 else
 {
 /* Message to be ignored */
 /* Disable the channel to reset LIN status */
 Lin_Disable(CY_LINCH0_TYPE); /* (6)-2 Clear the currently pending state
(See Code Listing 5) */
 /* Re-enable the channel */
 Lin_Enable(CY_LINCH0_TYPE);
 /* Re enable header RX */
 lin_state = LIN_STATE_RX_HEADER;
 Lin_SetInterruptMask(CY_LINCH0_TYPE, CY_LIN_INTR_RX_HEADER_DONE |
CY_LIN_INTR_RX_RESPONSE_DONE | CY_LIN_INTR_ALL_ERROR_MASK_SLAVE);
 Lin_SetCmd(CY_LINCH0_TYPE, CY_LIN_CMD_RX_HEADER_RX_RESPONSE);
 }
 break;
 case LIN_STATE_TX_RESPONSE: /* (7)Current state is LIN_STATE_TX_RESPONSE */
 /* Tx response complete with no error */
 /* Check if RX_DONE interrupt occurs or not */
 /* If RX_DONE interrupt occurs, response collision occurs */

Using the LIN in TRAVEO™ T2G family

5 Example of Slave Operation

Application note 42 002-25346 Rev.*C
2023-11-10

 if ((maskStatus & CY_LIN_INTR_RX_RESPONSE_DONE) != 0ul) /* (8)Check the
condition of INTR.RX_RESPONSE_DONE */
 {
 /* Data collision occurs */
 /* Do error handling if needed */
 }
 {
 /* Data collision occurs */ /* (9)Run the data collision operation */
 /* Do error handling if needed */
 }
 /* Re enable header RX */
 lin_state = LIN_STATE_RX_HEADER; /* (12)Configure the state to
LIN_STATE_RX_HEADER */
 /* (13)Enable event interrupt for RX_HEADER (See Code Listing 11) */
 Lin_SetInterruptMask(CY_LINCH0_TYPE, CY_LIN_INTR_RX_HEADER_DONE |
CY_LIN_INTR_RX_RESPONSE_DONE | CY_LIN_INTR_ALL_ERROR_MASK_SLAVE);

 /* (14)Configure the Command Sequence for RX_HEADER (See Code Listing 12) */
 Lin_SetCmd(CY_LINCH0_TYPE, CY_LIN_CMD_RX_HEADER_RX_RESPONSE);
 break;

 case LIN_STATE_RX_RESPONSE: /* (10)Current state is LIN_STATE_RX_RESPONSE */
 /* Rx response complete with no error */
 while(1)
 {
 /* (11)Read the reception data from DATA0 and DATA1 (See Code Listing 16) */
 apiResponse = Lin_ReadData(CY_LINCH0_TYPE,
msgContext[currentMsgIdx].dataBuffer);
 if(apiResponse == CY_LIN_SUCCESS)
 {
 break;
 }
 }
 /* For testing
 * Set rx data to tx data. Rx ID – 1 => Tx ID
 */
 memcpy(msgContext[currentMsgIdx - 1].dataBuffer,
msgContext[currentMsgIdx].dataBuffer, CY_LIN_DATA_LENGTH_MAX);
 /* Re enable header RX */
 /* (12)Configure the state to LIN_STATE_RX_HEADER.*/
 lin_state = LIN_STATE_RX_HEADER;
 /* (13)Enable event interrupt for RX_HEADER (See Code Listing 11).*/
 Lin_SetInterruptMask(CY_LINCH0_TYPE, CY_LIN_INTR_RX_HEADER_DONE |
CY_LIN_INTR_RX_RESPONSE_DONE | CY_LIN_INTR_ALL_ERROR_MASK_SLAVE);

 /* (14)Configure the Command Sequence for RX_HEADER (See Code Listing 12).*/
 Lin_SetCmd(CY_LINCH0_TYPE, CY_LIN_CMD_RX_HEADER_RX_RESPONSE);
 break;
 default:
 break;
 }

Using the LIN in TRAVEO™ T2G family

5 Example of Slave Operation

Application note 43 002-25346 Rev.*C
2023-11-10

 }
}

*1: For details, refer to the CPU interrupt handing sections in the Architecture TRM.
Code Listing 19 demonstrates an example program to interrupt LIN in the driver part.

Code Listing 19 Lin_GetHeader

/**
 ** \brief Return received LIN header
**/
cy_en_lin_status_t Lin_GetHeader(volatile stc_LIN_CH_t* pstcLin, uint8_t *id, uint8_t *parity)
{
 cy_en_lin_status_t ret = CY_LIN_SUCCESS;
 if ((NULL == pstcLin) || /* Check if parameter values are valid */
 (NULL == id) ||
 (NULL == parity))
 {
 ret = CY_LIN_BAD_PARAM;
 }
 else
 {
 /* Store received ID and parity bits */
 uint8_t temp = pstcLin->unPID_CHECKSUM.stcField.u8PID; /* (5)Return received LIN
header */
 *parity = (temp >> 6ul);
 *id = (temp & LIN_ID_MAX);
 }
 return ret;
}

Code Listing 20 demonstrates an example program of how the message type and checksum type operations in
the configuration part.

Using the LIN in TRAVEO™ T2G family

5 Example of Slave Operation

Application note 44 002-25346 Rev.*C
2023-11-10

Code Listing 20 CYT2 Series: Example of how the message type and checksum type operations

/* LIN0 IRQ Handler */
void LIN0_IntHandler(void)
{

 :
 /* Setup checksum type and data length */
 /* (16)Configure the data length of the response (See Code Listing 7) */
 Lin_SetDataLength(CY_LINCH0_TYPE, msgContext[currentMsgIdx].dataLength);
 /* (17)Configure the checksum type (See Code Listing 8) */
 Lin_SetChecksumType(CY_LINCH0_TYPE, msgContext[currentMsgIdx].checksumType);

 /* (18)Check the current message type */
 if (msgContext[currentMsgIdx].responseDirection == LIN_TX_RESPONSE)

 {
 /* 18)-1 Enable event interrupt (See Code Listing 11) */
 Lin_SetInterruptMask(CY_LINCH0_TYPE, CY_LIN_INTR_TX_RESPONSE_DONE |
CY_LIN_INTR_RX_RESPONSE_DONE | CY_LIN_INTR_ALL_ERROR_MASK_SLAVE);

 /* (18)-2 Write the response data (See Code Listing 10) */
 Lin_WriteData(CY_LINCH0_TYPE, msgContext[currentMsgIdx].dataBuffer,
msgContext[currentMsgIdx].dataLength);

 lin_state = LIN_STATE_TX_RESPONSE; /* (18)-3 LIN_STATE_TX_RESPONSE */

 /* (18)-4 TX_RESPONSE bit = 1H (See Code Listing 12) */
 Lin_SetCmd(CY_LINCH0_TYPE, CY_LIN_CMD_TX_RESPONSE);
 }
 else
 {
 /* (18)-5 LIN_STATE_RX_RESPONSE */
 lin_state = LIN_STATE_RX_RESPONSE;
 }
 }
 else
 {
 :

Using the LIN in TRAVEO™ T2G family

5 Example of Slave Operation

Application note 45 002-25346 Rev.*C
2023-11-10

6 Glossary
Terms Description

LIN Local Interconnect Network

LIN transceiver LIN bus is interfaced with external transceivers through a three-pin interface including an
enable function, and supports master and slave functionality.

GPIO General Purpose Input/Output

AUTOSAR AUTomotive Open System Architecture

Header Consists of break field, SYNC field, and PID field, transmitted only by the master. See the LIN
Message Frame Format section in the LIN chapter of the Architecture TRM for details.

Response Consists of a maximum of 8 data fields and checksum field, transmitted by the master and
the slave. See the LIN Message Frame Format section in the LIN chapter of the Architecture
TRM for details.

MMIO Memory Mapped I/O

PID Protected Identifier

PERI clock PERipheral Interconnect clock

Message type The message type indicates whether the source of the response is a master or slave. Slave-
to-slave means that a slave node transmits the response and another slave receives the
response.

Master response The master node transmits the header and transmits the response. This type can be used to
control slave nodes. See the “LIN Message Transfer” section in the LIN chapter of the
Architecture TRM for details.

Slave response The master node transmits the header. A slave node transmits the response and the master
node receives the response. This type can be used to observe slave node status. See the LIN
Message Transfer section in the LIN chapter of the Architecture TRM for details.

Slave to slave The master node transmits the header. A slave node transmits the response and another
slave receives the response. See the LIN Message Transfer section in the LIN chapter of the
Architecture TRM for details.

Data Length Number of data fields in the response (not including the checksum). It is set by
LIN_CH_CTL1 register DATA_NR [2:0] bits

Checksum Type There are classic and enhanced modes. In case of classic mode, PID field is not included in
the checksum calculation. In case of enhanced mode, PID field is included in the checksum
calculation.

ISR Interrupt Service Routine

IRQ Interrupt ReQuest

Using the LIN in TRAVEO™ T2G family

6 Glossary

Application note 46 002-25346 Rev.*C
2023-11-10

7 Related Documents
The following are the TRAVEO™ T2G family series datasheets and Technical Reference Manuals. Contact
Technical Support to obtain these documents.
• Device datasheet

- CYT2B7 Datasheet 32-Bit Arm® Cortex®-M4F Microcontroller TRAVEO™ T2G Family
- CYT2B9 Datasheet 32-Bit Arm® Cortex®-M4F Microcontroller TRAVEO™ T2G Family
- CYT4BF Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller TRAVEO™ T2G Family
- CYT4DN Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller TRAVEO™ T2G Family
- CYT3BB/4BB Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller TRAVEO™ T2G Family

• Body Controller Entry Family
- TRAVEO™ T2G Automotive Body Controller Entry Family Architecture Technical Reference Manual (TRM)
- TRAVEO™ T2G Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for

CYT2B7
- TRAVEO™ T2G Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for

CYT2B9
• Body Controller High Family

- TRAVEO™ T2G Automotive Body Controller High Family Architecture Technical Reference Manual (TRM)
- TRAVEO™ T2G Automotive Body Controller High Registers Technical Reference Manual (TRM) for

CYT4BF
- TRAVEO™ T2G Automotive Body Controller High Registers Technical Reference Manual (TRM) for

CYT3BB/4BB
• Cluster 2D Family

- TRAVEO™ T2G Automotive Cluster 2D Family Architecture Technical Reference Manual (TRM)
- TRAVEO™ T2G Automotive Cluster 2D Registers Technical Reference Manual (TRM)

Using the LIN in TRAVEO™ T2G family

7 Related Documents

Application note 47 002-25346 Rev.*C
2023-11-10

http://www.cypress.com/support

8 Other References
Infineon provides the Sample Driver Library (SDL) including startup as sample software to access various
peripherals. SDL also serves as a reference to customers for drivers that are not covered by the official AUTOSAR
products. The SDL cannot be used for production purposes because it does not qualify to any automotive
standards. The code snippets in this application note are part of the SDL. Contact Technical Support to obtain
the SDL.
Attention:

Using the LIN in TRAVEO™ T2G family

8 Other References

Application note 48 002-25346 Rev.*C
2023-11-10

https://www.cypress.com/support

Revision history
Document
version

Date of release Description of Change

** 2019-11-07 New application note

*A 2020-09-04 Changed target parts number (CYT2/CYT4 series)
Added target parts number (CYT3 series)

*B 2020-12-02 Added example of SDL Code and description.
MOVED TO INFINEON TEMPLATE.

*C 2023-11-10 Template update; no content update

Using the LIN in TRAVEO™ T2G family

Revision history

Application note 49 002-25346 Rev.*C
2023-11-10

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-11-10
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2023 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-jyl1683100159465

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	2 General Description
	2.1 LIN System Connection Diagram
	2.2 Message Frame Format
	2.3 Baud Rate Setting

	3 LIN Communication Example
	3.1 LIN Message Transfer
	3.2 Event Generation

	4 Example of Master Operation
	4.1 LIN Master Initialization
	4.1.1 Use Case
	4.1.2 Configuration and Example

	4.2 Example of LIN Communication of LIN Master
	4.2.1 Use Case
	4.2.2 Configuration and Example

	4.3 Example of LIN Master Interrupt Handling
	4.3.1 Use Case
	4.3.2 Configuration and Example

	5 Example of Slave Operation
	5.1 LIN Slave Initialization
	5.1.1 Use Case
	5.1.2 Configuration and Example

	5.2 Example of LIN Slave Interrupt Handling
	5.2.1 Use case
	5.2.2 Configuration and Example

	6 Glossary
	7 Related Documents
	8 Other References
	Revision history
	Disclaimer

