AN220278 infineon

CAN FD usage in TRAVEO™ T2G family

About this document
Scope and purpose

This application note describes how to use Controller Area Network with Flexible Data (CAN FD) rate for
Infineon TRAVEO™ T2G family microcontrollers.

Associated p art f amily

TRAVEO™ T2G family CYT2/CYT3/CYT4 series

Table of contents

Aboutthisdocument e 1

Tableof contents 1
1 Introduction e e 3
2 OVerview Of CAN FD e e e e 4
2.1 CAN FD NEtWOIK . vt e e e e e 4
2.2 CAN FD MBSSAZES « . ettt et e e e e e e et 4
221 CAN FD FIelds . .ottt e e e e e e e e e 5
2.2.2 Bt TIMIN g . e e e e 6
3 CAN FD Controllerin TRAVEO™ T2Gfamily............... ... i 8
4 CAN FD Settings i ittt e e e e e e 9
4.1 CAN FD SO U . o ettt e e ettt et et e 9
4.2 INitialize CAN FD . ..ot e e e e 9
4.2.1 U LS . ittt et e e e 11
422 Configuration for CAN FD Controller.o.ueunniiii i e 12
423 Configuration for Message RAMottt e 17
424 Example Code to Initialize CAN FD in Driver Partoointin e 17
4.3 MESSAEE TranSMISSIONttt ettt et e e e e et e et 25
431 S a8 . ittt ettt e 26
43.2 CONfIGUIAtION . .ottt 26
4.3.3 Example Program of Message TransmisSionttt iiiee i iiiieeeaans 27
4.4 MESSAEE RECEPTION . . o ettt ettt e e e 30
441 Message Reception in Dedicated RxBuffer............coooiiii i 30
4.4.1.1 U S a8 . ettt e 31
44.1.2 CONfIgUIAtION . .t e e 31
44.1.3 Example Program of Message Reception in Dedicated RxBuffer......................... 31
4.4.2 Message Reception iN RX FIFO O/ it 36
4.4.2.1 U S a8 . ettt e 37
4422 CONfIgUIAtION . .ttt e 37
4423 Example Program of Message Reception in RXFIFO 38
Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-20278 Rev. *E

www.infineon.com 2023-11-10

https://www.infineon.com

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

Table of contents

5 GlOSSaANY . ..ot e e e 42

6 Related DOCUMENESt e e e e e e 43

7 Other RefereNCesS e e e e e 44
ReVISION MiStOry e e 45
[0 T o - 1 1 L= Y 47

Application note 2 002-20278 Rev. *E

2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

1 Introduction

1 Introduction

This application note is intended for users of the Cypress TRAVEO™ T2G family microcontrollers. The application
note describes how to use CAN FD for Cypress TRAVEO™ T2G family devices.

CAN FD is an extension of CAN (nowadays called ‘Classical CAN’). CAN FD can transmit data frames of up to 64
bytes at bit rates exceeding the 1 Mbps limit of Classical CAN. The maximum achievable bus speed in the data
segment is limited only by external components such as transceivers and the particular network topology of an
application. There are transceivers supporting 5 Mbps; several new products claim speeds up to for 8 Mbps.
The CAN FD Controller (M_TTCAN) in TRAVEO™ T2G supports Classical CAN as well as CAN FD (ISO 11898-1:2015)
and Time-Triggered (TT) communication on CAN (ISO 11898-4:2004). The CAN FD Controller has been certified
according to 1ISO 16845:2015.

This document is applicable to CYT2/CYT3/CYT4 Series devices.

Application note 3 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

2 Overview of CAN FD

2 Overview of CAN FD

This section describes the operation of CAN FD communication with an example of the CAN FD network
followed by the CAN FD message format and the bit timing considerations.

2.1 CAN FD Network

Figure 1 shows an example of the CAN FD network.

Two communication lines (CANH, CANL) are used in the CAN FD network to make it resilient against noise.
Multiple Electronic Control Units (ECUs) can be connected to the CAN FD network; data is exchanged between
the ECUs.

A receiver node converts the differential bus voltage to a digital signal by the CAN FD Transceiver; received data

is handled by the CAN FD Control Logic of the microcontroller. In transmission, data is transmitted from the CAN
FD Control Logic to the CAN FD Transceiver that drives a differential signal onto the CANH and CANL lines of the

CAN FD network.

ECU-1 ECU-2 ECU -n
Microcontroller Microcontroller Microcontroller
CAN FD CAN FD CAN FD
Control Logic Control Logic Control Logic
CAN FD CAN FD CAN FD
Transceiver Transceiver Transceiver
o) ° CANH
< Q——====- '
CAN Network CANL
ECU - Electronic Control Unit
CANH - CAN Network Line High
CANL - CAN Network Line Low

Figure 1 CAN FD Network

2.2 CAN FD Messages

There are four frame types: DATA FRAME, REMOTE FRAME, ERROR FRAME, and OVERLOAD FRAME. This section
will explain the DATA FRAME.

Figure 2 shows the DATA FRAME formats of Classical CAN and CAN FD message frame. As already mentioned,
CAN FD is an extension of Classical CAN and both message formats are equal during the arbitration segment
and after the CRC field. The differences occur in the data segment; the CAN FD frame has more data bytes, and
can be transmitted at higher speeds than the arbitration baud rate.

The maximum data length in Classical CAN is 8 bytes with a maximum baud rate of 1 Mbps.

CAN FD supports data lengths of up to 64 bytes with a maximum baud rate of 1 Mbps for arbitration phase. The
data communication speed can exceed the 1 Mbps limit set by Classical CAN and is only limited by external
components such as transceivers and the network topology.

Application note 4 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

2 Overview of CAN FD

Arbitration field Control field Data field CRC field |ACK field‘
- |58
Classic CAN | u Base ldentfier o |y || DLC Data Segionce E|3|E| EOF
b [a) i - = = i
Base Format @ (ID[28:18]) |Q|T | (4bits) (0-8 bytes) (15 bits) 2 é 2 (7 bits)
[Abitrationfield | Control field | Datafield | CRC field [Ack ted]
] o] Stuff s5lels
canro |y | oot || sl gle|m| Do Data Count | gt o |E|S|E| EOF
Base Format a 1 ul | (4 bits) (0-64 bytes) | (3 bits + 1 N Slx |5 | (7bits)
[2) . x|=2|w] [0} o)
(ID[28:18]) Parity ity | (17/210its) (15 | 8
| Nominal bit rate | Data bit rate (if BRS is recessive) | Nominal bit rate |
Arbitration field Control field Data field CRC field |ACK field
. Base Identifier Base Identifier CRC § 5 E
EoassieTAN 16 20-bit ID g |w 29-bit ID Els|e| o o sequence | E|2 [E| FPF
xtended Format | ¢ (Dps:18) | |2 (ID[17:0]) | | 7| (4bits) | (0-8 bytes) (asbis) g5 (8| 7P
Arbitration field Control field Data field CRC field |Achle\d
] o)] Stuff 5)el5
CAN FD w Base Id‘entmer o Base Idgntlﬁer ole wl|_| bpLc Data Count CRC Ll9|2 EOF
Extended Format | &) ﬁjg[-z%”g] ¢4 fgig’;_gl’ Z0|8|% D @bits) | (0-64 bytes) | (3 bits + 1 ?sfzﬂegﬁe EIZ1E] (oits)
(ID[28:18)) (r17:0p Parity bit) | (ts) 18|28
| Nominal bit rate | Data bit rate (if BRS is recessive) | Nominal bit rate |
Figure 2 DATA FRAME Formats
.
2.2.1 CAN FD Fields

The fields of the CAN FD frame format include an Arbitration field, a Control field, a Data field, a CRC field, and
an ACK field.

The Arbitration field contains the message ID number, and determines the priority of the message among other
messages from other nodes trying to start a transmission simultaneously. The message ID can be 11-bits (Base
Format) or 29-bits (Extended Format), configured by the “IDE” bit.

The FD Format (FDF) indicator bit in the Control field identifies the frame type as CAN or CAN FD. The FDF bit is
recessive (‘1’) for CAN FD frames and dominant (‘0’) for CAN frames. If the Bit Rate Switch (BRS) bit is recessive,
the bit rate of the data field is switched to another, typically higher speed; if BRS bit is dominant, the bit rate of
the data field remains the arbitration bit rate. The Error State Indicator (ESI) bit is used for the identification of
the error state of the CAN FD node. BRS and ESI bits are only available in CAN FD frames.

Furthermore, the Data Length Code (DLC) has four bits and it indicates how many bytes of data are transmitted.
This settable range is 0-8 bytes for CAN frames and up to 64 bytes in CAN FD frames. Table 1 shows the
relationship between the DLC field and the number of transmitted data bytes.

Table 1 Coding of DLC in CAN and CAN FD

DLC 0 1 2 3 4 5 6 7 8 9 10 |11 |12 |13 |14 |15

Numberofdata |0 1 2 3 4 5 6 7 8 8 8 8 8 8 8 8
bytes in CAN

Numberofdata |0 1 2 3 4 5 6 7 8 12 |16 |20 |24 |32 |48 |64
bytes in CAN FD

The Data field carries the message data, and is sized by the data length set by DLC.

The CRC field consists of a CRC sequence and a CRC delimiter. For CAN frames, the CRC sequence has fixed
length of 15 bits. CAN FD frames additionally consist of a 4-bit Stuff Count at the beginning of CRC field,
followed by the CRC sequence (17 bits when the data length is 0-16 bytes; 21 bits for data lengths greater than
16 bytes). Any receiver can analyze the received data stream of a message and compare it with the transmitted
CRC, and thus identify a valid or incorrectly received message.

Application note 5 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

2 Overview of CAN FD

The ACK field consists of an ACK slot and an ACK delimiter. The transmitter node sends an ACK as recessive bits
and one or more receivers overwrite this with a dominant bit if message reception is successful. This helps the
transmitter to determine whether the frame was received successfully or was corrupted.

The frame concludes with a flag sequence of seven recessive bits forming the end-of-frame (EOF).

2.2.2 Bit Timing

The Classical CAN operation defines a single bit time for the entire message frame. The CAN FD operation
defines two bit times - nominal bit time and data bit time. The nominal bit time is for the arbitration phase. The
data bit time is equal to or shorter than nominal bit time and can be used to accelerate the data phase.

The basic construction of a bit time is shared with both nominal and data bit times. The bit time can be divided
into four segments according to the CAN specifications (see Figure 3): the synchronization segment (Sync_Seg),
the propagation time segment (Prop_Seg), the phase buffer segment 1 (Phase_Segl), and the phase buffer
segment 2 (Phase_Seg2). The sample point, the point of time at which the bus level is read and interpreted as
the value of that respective bit, is located at the end of Phase_Segl.

4 A bit time >
Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2
)
| 1]
<+
A time quantum T Sampling point

Figure 3 Bit Time Construction

Each segment consists of a programmable number of time quanta, which is a multiple of the time quantum
that is defined by the CAN clock and a prescaler. The values and prescalers used to define these parameters
differ for the nominal and data bit times, and are configured by Nominal Bit Timing & Prescaler Register (NBTP)
and Data Bit Timing & Prescaler Register (DBTP) as listed in Table 2.

Table 2 CAN Bit Timing Parameters

Parameter Description

Time quantum tq (nominal) Time quantum. Derived by multiplying the basic unit time quanta (i.e. the CAN
and tqd (data) clock period) with the respective prescaler.

The time quantum is configured by the CAN FD Controller as nominal: tq =
(NBTP.NBRP[8:0] +1) x CAN clock period data: tqd = (DBTP.DBRP[4:0] + 1) x CAN
clock period

Sync_Seg Sync_Seg is fixed to one time quantum as defined by the CAN specifications
and is therefore not configurable (inherently built into the CAN FD Controller).

nominal: 1 tq
data: 1tqd

(table continues...)

Application note 6 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

2 Overview of CAN FD

Table 2 (continued) CAN Bit Timing Parameters
Parameter Description
Prop_Seg Prop_Seg is the part of the bit time that is used to compensate for the physical

delay times within the network. The CAN FD Controller configures the sum of
Prop_Seg and Phase_Segl with a single parameter, i.e.,

nominal: Prop_Seg + Phase_Segl = NBTP.NTSEG1[7:0] + 1 data: Prop_Seg +
Phase_Segl = DBTP.DTSEG1[4:0] + 1

Phase_Segl Phase_Segl is used to compensate for edge phase errors before the sampling
point. Can be lengthened by the resynchronization jump width.

The sum of Prop_Seg and Phase_Segl is configured by the CAN FD Controller
as nominal: NBTP.NTSEG1[7:0] +1

data: DBTP.DTSEG1[4:0] + 1

Phase_Seg2 Phase_Seg?2 is used to compensate for edge phase errors after the sampling
point. Can be shortened by the resynchronization jump width.

Phase_Seg?2 is configured by the CAN FD Controller as nominal:
NBTP.NTSEG2[6:0] + 1

data: DBTP.DTSEG2[3:0] + 1

SJW Resynchronization Jump Width. Used to automatically compensate timing
fluctuation between nodes and adjust the length of Phase_Segl and
Phase_Seg2. SJW will not be longer than either Phase_Segl or Phase_Seg?2.

SJW is configured by the CAN FD Controller as nominal: NBTP.NSJW[6:0] + 1
data: DBTP.DSJW[3:0] + 1

These relations result in the following equations for the nominal and data bit times:
Nominal Bit Time

=Sync_Seg + Prop_Seg + Phase_Segl + Phase_Seg2xtq

=1+ NBTP.NTSEG17:0+1+NBTP.NTSEG26:0+1xNBTP.NBRP8:0+1xCAN clock period
Example (500 kbps with sampling point of 75%)
=1+13+1+4+1x3+1x140000000=0.000002 500 kbps

Data bit time

=1+ DBTP.DTSEG14:0+1+DBTP.DTSEG23:0+1xDBTP.DBRP4:0+1xCAN clock period
Example (5 Mbps with sampling point of 62.5%)
=1+3+1+2+1x0+1x140000000=0.0000002 5 Mbps

Example (2 Mbps with sampling point of 60%)
=1+10+1+7+1x0+1x140000000=0.0000005 2 Mbps

Application note 7 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

3 CAN FD Controller in TRAVEO™ T2G family

3 CAN FD Controller in TRAVEO™ T2G family
This section provides an overview of the CAN FD Controller in TRAVEQO™ T2G family.

DMA IF on

Debug Triggers on

CAN IF Sync triggers Message Rx FIFOs
A A A A

M_TTCAN Group M_TTCAN Decoder SRAM Arbiter

<SRAM write/read>€—] .

Fault report
A y Y >

TTCANFD Wrapper

<Fault rep

A

M_TTCANChannel <SRAMwrite/read> Shared MRAM

«— o> <

by

SRAM Power Control
TTCANFD RX FIFO Top
AHB Slave IF Wrap Pointer
AHB f
<« <Register/SRAMaccess> Registers ECC Generator & Checker

<Clock stop IF>< Counter value> <interrupts>

3

I <SRAM writefread & ECC parity>

]

<Correction data by ECC>

mEEgl

Timestamp
Counter

|

<Global control> TTCANFD <Intermuptsstatus>

Registers oo

<Register write/| injection>
road-[€

<Check enableferror injection>

A

Interrupts
>

Figure 4 CAN FD Controller Block Diagram

Figure 4 shows the block diagram of the CAN FD Controller (M_TTCAN) in TRAVEO™ T2G devices. The M_TTCAN
channels in TRAVEO™ T2G devices are organized into groups, with each group consisting of one or more
channels that share the Message RAM. The total number of available M_TTCAN groups and channels depends
on the device variant. For details, see the device datasheet.

The M_TTCAN channels support Classical CAN and CAN FD operation according to ISO 11898-1:2015. M_TTCAN
operation is available in Active and Sleep power modes; the IP is fully retained except the Time Stamp counter
in Deep Sleep power mode.

The CAN Core, along with the Tx and Rx handlers is responsible for protocol handling; the slave interface to
Memory Mapped I/0 (MMIO) registers facilitates the configuration of the CAN FD Controller by the CPU. Each
M_TTCAN channel has two clock inputs: cclk and hclk. The cclk is used for CAN FD operation and hclk is used for
internal IP operation (for example, register accesses and Message RAM accesses).

Each M_TTCAN Group consists of one Message RAM, and this Message RAM is shared among the M_TTCAN
channels belonging to that group. You should take care of distributing the Message RAM to the channels of that
group and prevent any overlapping distribution. The CAN FD Controller does not check internally if any
Message RAM region is overlapping for multiple channels of the group. The Message RAM is ECC protected with
the single-bit error correction and double-bit error detection feature. ECC errors and out-of-range accesses to
the Message RAM are reported to fault structures.

Each M_TTCAN channel consists of two interrupt lines (Interrupt 0 and Interrupt 1); you have the flexibility to
route the Channel Interrupt sources to either Channel Interrupt 0 or Channel Interrupt 1. Channel Interrupt
sources include the New Message received interrupt, Transmission completed interrupt, and Receive FIFO
Watermark interrupt.

In addition to Channel Interrupt lines, Consolidated Interrupt 0 and Consolidated Interrupt 1 are available for
each M_TTCAN Group. Consolidated Interrupt 0 is a logical OR of the Interrupt 0 lines of all channels of the
group; similarly, Consolidated Interrupt 1 is the logical OR of the Interrupt 1 lines of all channels of the group.
All Channel Interrupt lines and Consolidated Interrupt lines are routed to the Device Interrupt System.

To remove the software overhead for calculating an Rx pointer each time a frame is received, hardware logic is
implemented. The Rx FIFO top pointer calculates the next read address and provides a single address
(RXFTOPNn_DATA) for each FIFO from where data can be read. This logic will also update a specific acknowledge
index (RXFnA.FnA) in the TTCAN register set so that the index is also incremented accordingly.

The following sections describe how to set up the CAN FD Controller to transmit and receive CAN FD messages.

Application note 8 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

4 CAN FD Settings

This section describes how to configure CAN FD based on a use case using Sample Driver Library (SDL) provided
by Cypress. The code snippets in this application note are part of SDL. See Other References for the SDL.

SDL basically has a configuration part and a driver part. The configuration part mainly configures the parameter
values for the desired operation. The driver part configures each register based on the parameter values in the
configuration part.

You can configure the configuration part according to your system.

4.1 CAN FD Setup

Do the following to set up CAN FD:
1. Initialize the CAN FD peripheral clock by configuring and assigning a clock divider to the CAN FD

peripheral.
2, Enable the I/0 ports used for CAN FD communication.
3. Map CAN FD system interrupt sources to available external CPU interrupts.

4, Initialize the CAN FD Controller.

For steps 1 to 3 set up, see the “Clocking System”, “Input/Output Subsystem”, and “Interrupts” sections in the
Architecture Technical Reference Manual (TRM).

4,2 Initialize CAN FD

Figure 5 shows the flow to initialize the CAN FD controller. In this flow, (0) is performed in the configuration part,
and (1) to (9) are performed in the driver part.

(0) Configure the parameter values according to the system.

(1) Setinitialization register (CCCR.INIT) to “1” and stop CAN FD communication. Then, enable the
Configuration Change Enable register (CCCR.CCE) to enable write access to the write-protected CAN FD
configuration registers.

(2) Configure the number of elements of the message filter and the start address offset in the Message RAM with
the Standard ID Filter Configuration (SIDFC) register and the Extended ID Filter Configuration register (XIDFC).
Configure the Extended ID AND Mask (XIDAM) register for masking the ID bits that are not to be used for
extended ID message acceptance filtering.

(3) For Rx and Tx messages, configure the element size of the Rx FIFO and start address offset in Message RAM
with the Rx FIFO 0 Configuration (RXFOC) register and Rx FIFO 1 Configuration (RXF1C) register. The Rx FIFO Top
pointer logic is enabled/disabled by setting the RXFTOP_CTL register.

Configure the Rx buffer start address offset in the Rx Buffer Configuration (RXBC) register and the data field size
of Rx buffer or FIFO elements in the Rx Buffer/FIFO Element Size Configuration (RXESC) register.

If the application uses Tx event FIFO it must be configured in the TXEFC register. The event FIFO size, start
address offset, and watermark level must be configured in this register.

Configure the number of Tx buffers and start address offset in the Message RAM with the Tx Buffer Configuration
(TXBC) register. Set the size of the data field of the Tx buffer with the Tx Buffer Element Size Configuration
(TXESC) register.

(4) Clear the Message RAM area intended to be allocated for this CAN FD channel. This Message RAM area will
hold the Rx and Tx buffers and filter configurations for this channel.

(5) Configure the mode of operation - Classical CAN/CAN FD mode (CCCR.FDOE) and the Bit Rate Switch
(CCCR.BRSE) in the CC Control Register (CCCR).

(6) Configure the Bit timing - Nominal Bit Timing & Prescaler Register (NBTP) used in the arbitration phase and
the Data Bit Timing & Prescaler Register (DBTP) used in the data phase when the bit rate switch is enabled in

Application note 9 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

CAN FD mode. Configure the Transmitter Delay Compensation Register (TDCR) for using higher bit rates during
the CAN FD data phase.

(7) For message filters, determine the handling of received frames with message IDs that do not match any
filters as set in the Global Filter Configuration (GFC) register.

Set up message filters in the address obtained by adding the start address offset (SIDFC/XIDFC) to the start
address of Message RAM. Range Filter, Dual Filter, or Classic Bit Mask Filter can be configured. For details, see
the Message RAM chapter in the ArchitectureTRM.

(8) To enable Tx buffers to assert an interrupt upon transmission, configure the Tx Buffer Transmission Interrupt
Enable (TXBTIE) register. Similarly, for Tx buffers to assert an interrupt upon completion of transmission
cancellation, configure the Tx Buffer Cancellation Finished Interrupt Enable (TXBCIE) register. Clear the
interrupt flags in the Interrupt Register (IR) and enable each interrupt in the Interrupt Enable (IE) register. The
CAN FD Controller has dual interrupt lines; Interrupt Line Select (ILS) determines the line the interrupt is
assigned to. Enable the interrupt line with Interrupt Line Enable (ILE).

(9) Set the Initialization register (CCCR.INIT) to ‘0’ to start the operation of CAN FD. The CAN FD channel is ready
for transmitting/receiving messages once the read of CCCR.INIT results in a value of ‘0’.

Note: Some external transceivers require to be configured (for example, via SPI interface) before they can
facilitate CAN FD communication. For details, see the device datasheet of the transceiver used in your
hardware.

Application note 10 002-20278 Rev. *E

2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

START
0) Configure Parameter Values
Stop CAN FD Communication 5) Select CAN/CAN FD Mode and Set Bit
1) and Rate Switch
Enable to Write Protected Configuration *
Register C Configure Nominal Bit Timing &
(6-1) Prescaler
4 Configure Standtrd ID Filter Start :
(2-1) g 6)< (6-2) Configure Data Bit Timing & Prescaler
Address
2)< Configure Extended ID Filter Start Configure Transmitter Delay
2 (2-2) Address q (6-3) Compensation
: - :
(2-3) Configure Extended ID AND Mask (7-1) Configure Global Filter
-
- ; ;
(3-1) Configure Rx Buffer/FIFO Element Size "< (7-2) Configure Standard ID Filter
(3-2) Configure Rx FIFO 0/1 (7-3) Configure Extended ID Filter
} - }
e
(3-3) Configure RxFIFO 0,1 Top Pointer Logic (8-1) Configure Interrupt Enable
3)< (3-4) Configure Rx Buffer Start Address ®)< (8-2) Configure Interrupt line Select
(3-5) Configure Tx Buffer Element Size (8-3) Configure Interrupt line Enable
}) }
e
(3-6) Configure Tx Event FIFO Start CAN FD Communication
(3-7) Configure Tx Buffer 9)< Y
-
v CCCRINIT=07?
(4) Clear the Message RAM Area g
Figure 5 Example of CAN FD Initialization Flow
4.2.1 Use case

This section explains an example of CAN FD initialization using the following use case. CAN FD initialization is
configured using SDL.

Use case:

Application note 11 002-20278 Rev. *E
2023-11-10

CAN FD usage in TRAVEO™ T2G family

infineon

4 CAN FD Settings

+ Mode: CANFD
« CAN Instance: CANO_CHO
+ Interrupt handler: For CAN message reception
« Input Clock: 40 MHz
« Normal Bit rate (Sample point = 75%)
- 500 kbps, 1 bit=81q
- Prescaler=40 MHz / 500 kbps /8 tq =10
- tsegl=5tq,tseg2=2tq,sjw=21tq
« Fast Bit rate (Sample point = 75%)
- 1Mbps,1bit=8tq
- Prescaler=40MHz /1 Mbps/8tq=5
- tsegl=5tq,tseg2=2tq,sjw=21tq
+ Filter Configuration: Two Standard and Extended IDs
« Transceiver delay compensation: unused
« Rx/Tx Data Size: 64 bytes
+ Number Tx event FIFO/Buffer: 4

4.2.2 Configuration for CAN FD Controller
Table 3 lists the parameters of the configuration part in SDL for CAN FD initialization.
Table 3 List of CAN FD Initialization Parameters
Output Pin Description Initial Setting
Can_Cfg.txCallback Set Interrupt handler address for each event. NULL
Can_Cfg.rxCallback No handling, if set to NULL. CAN_RxMsgCallback
Can_Cfg.rxFifoWithTopCallback NULL
Can_Cfg.statusCallback NULL
Can_Cfg.errorCallback NULL
Can_Cfg.canFDMode Select configure mode true
True: CAN FD mode, False: Classic CAN mode
Can_Cfg.bitrate Normal bit rate setting. -
.prescaler Set value by which the oscillator frequency is 10u-1u
divided for generating the bit time quanta. The
setting value is actual value minus 1.
timeSegmentl Set normal time segment 1. The setting value is 5u-1lu
actual value minus 1.
timeSegment2 Set normal time segment 2. The setting value is 2u-1u
actual value minus 1.
.syncJumpWidth Set normal (Re)Synchronization Jump Width. The |2u-1u
setting value is actual value minus 1.
Can_Cfg.fastBitrate Fast bit rate setting. It should be needed if you set |-
CAN FD mode.

(table continues...)

Application note 12

002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

Table 3 (continued) List of CAN FD Initialization Parameters
Output Pin Description Initial Setting
.prescaler Set value by which the oscillator frequency is 5u-1u

divided for generating the bit time quanta. The
setting value is actual value minus 1.

timeSegmentl Set time segment 1. The setting value is actual 5u-1lu
value minus 1.

timeSegment2 Set time segment 2. The setting value is actual 2u-1u
value minus 1.

.syncJumpWidth Set (Re)Synchronization Jump Width. The setting |2u-1u
value is actual value minus 1.

Can_Cfg.tdcConfig Transmitter Delay Compensation setting. It should |-
be needed if you set CAN FD mode.

.tdcEnabled Set transmitter delay compensation enable. false
True: Enable, False: Disable

.tdcOffset Set transmitter delay compensation offset. 0
.tdcFilterWindow Set transmitter delay compensation filter window |0
length.

Can_Cfg.sidFilterConfig Set standard message ID filters -
.numberOfSIDFilters | Number of standard message ID filters sizeof(stdIdFilter) /

sizeof(stdIdFilter[0])
.sidFilter Set standard message ID filter address stdldFilter

Can_Cfg.extidFilterConfig Set extended message ID filters -
.numberOfEXTIDFilter | Number of extended message ID filters sizeof(extldFilter) /

S sizeof(extldFilter[0])
.extidFilter Set extended message ID filter address extldFilter
.extiIDANDMask Set value to be ANDed with the Message ID of a OxLfffffff

received frame for acceptance filtering of extended

frames.

Can_Cfg.globalFilterConfig Global Filter Setting -
.nonMatchingFramesS | Defines how received messages that do not match |CY_CANFD_ACCEPT_|
tandard any element of the filter list are treated. N_RXFIFO_0
.nonMatchingFramesE |Acceptin Rx FIFO 0, Accept in Rx FIFO 1, Reject CY_CANFD_ACCEPT_|
xtended N_RXFIFO_1
.rejectRemoteFrames |Reject Remote Frames true
Standard True: Reject all remote frames, False: Filter remote
.rejectRemoteFrames | frames true
Extended

Can_Cfg.rxBufferDataSize Set Rx event FIFO size. CY_CANFD_BUFFER_D

ATA_SIZE_64

(table continues...)

Application note 13 002-20278 Rev. *E
2023-11-10

CAN FD usage in TRAVEO™ T2G family

infineon

4 CAN FD Settings

Table 3 (continued) List of CAN FD Initialization Parameters

Output Pin Description Initial Setting

Can_Cfg.rxFifolDataSize Set Rx data buffer size CY_CANFD_BUFFER_D
ATA_SIZE_64

Can_Cfg.rxFifoODataSize Set Rx FIFO1 size CY_CANFD_BUFFER_D
ATA_SIZE_64

Can_Cfg.txBufferDataSize Set Tx buffer data size CY_CANFD_BUFFER_D
ATA_SIZE_64

Can_Cfg.rxFifoOConfig

Configure Rx FIFO 0

ed

Top Address and message word counter. True:
Enable, False: Disable

.mode FIFO 0 Operation Mode CY_CANFD_FIFO_MOD
Blocking mode, Overwrite mode E_BLOCKING

.watermark Set level for Rx FIFO 0 watermark interrupt 10u

.numberOfFifoElemen | Set number of Rx FIFO 0 elements 8u

ts

.topPointerLogicEnabl | It enables the FIFO top pointer logic to set the FIFO | false

Can_Cfg.rxFifolConfig

Configure Rx FIFO 0

.mode FIFO 1 Operation Mode CY_CANFD_FIFO_MOD
Blocking mode, Overwrite mode E_BLOCKING
.watermark Set level for Rx FIFO 1 watermark interrupt 10u
.numberOfFifoElemen | Set number of Rx FIFO 1 elements 8u
ts
.topPointerLogicEnabl | It enables the FIFO top pointer logic to set the FIFO | false
ed Top Address and message word counter. True:
Enable, False: Disable
Can_Cfg.noOfRxBuffers Set number of Tx event FIFO 4u
Can_Cfg.noOfTxBuffers Set number of dedicated Tx buffers 4u

Code Listing 1 demonstrates an example program to initialize CAN FD in the configuration part.

Application note

14

002-20278 Rev. *E
2023-11-10

O
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

Code Listing 1 Example to Initialize CAN FD in Configuration Part

/* Standard ID Filter configuration */
static const cy_stc_id_filter_t stdIdFilter[] =
{

/* Standard ID filter. */

CANFD_CONFIG_STD_ID_FILTER_CLASSIC_RXBUFF(@x010u, Ou), /* ID=0x010, store into RX buffer
Idxe */

CANFD_CONFIG_STD_ID_FILTER_CLASSIC_RXBUFF(@x020u, 1u), /* ID=0x020, store into RX buffer
Idx1 */

1

/* Extended ID Filter configration */
static const cy_stc_extid_filter_t extIdFilter[] =
{

/* Extended ID filter. */

CANFD_CONFIG_EXT_ID_FILTER_CLASSIC_RXBUFF(@0x10010u, 2u), /* ID=0x10010, store into RX
buffer Idx2 */

CANFD_CONFIG_EXT_ID_FILTER_CLASSIC_RXBUFF(0x10020u, 3u), /* ID=0x10020, store into RX
buffer Idx3 */

};

/* CAN configuration */

/* Configure interrupt handler for each event. Registers CAN message reception event. Others
are NULL */

cy_stc_canfd_config_t canCfg =

{
.txCallback = NULL, // Unused.
.rxCallback = CAN_RxMsgCallback,
.rxFifoWithTopCallback = NULL, //CAN_RxFifoWithTopCallback,
.statusCallback = NULL, // Un-supported now
.errorCallback = NULL, // Un-supported now
.canFDMode = true, // Use CANFD mode
// 40 MHz
.bitrate = // Nominal bit rate settings
(sampling point = 75%)
{

/* Normal bit rate setting. Prescaler = 10, tsegl = 4, tseg2 = 1, sjw = 1. Set to
minus 1. */

.prescaler = 10u - 1u, // cclk/10, When using 500kbps,
1bit = 8tq
.timeSegmentl = 5u - 1u, // tsegl = 5tq
.timeSegment2 = 2u - 1u, // tseg2 = 2tq
.syncJumpWidth = 2u - 1u, // sjw = 2tq
})
.fastBitrate = // Fast bit rate settings (sampling
point = 75%)
{
/* Fast bit rate setting. Prescaler = 5, tsegl = 4, tseg2 = 1, sjw = 1. Set to minus
1. */
.prescaler = 5u - 1u, // cclk/5, When using 1Mbps, 1bit =
Application note 15 002-20278 Rev. *E

2023-11-10

CAN FD usage in TRAVEO™ T2G family

infineon

4 CAN FD Settings

8tq
.timeSegmentl = 5u - 1u,
.timeSegment2 = 2u - 1u,
.syncJumpWidth = 2u - 1u,
})
.tdcConfig =
unused.
{

unused). */

/* Configure FIFO and data buffer size: 64 bytes. */
.rxBufferDataSize = CY_CANFD_BUFFER_DATA_SIZE_64,
.rxFifolDataSize = CY_CANFD_BUFFER_DATA_SIZE_ 64,
.rxFifoeDataSize = CY_CANFD_BUFFER_DATA_SIZE 64,
.txBufferDataSize = CY_CANFD_BUFFER_DATA_SIZE_64,
.rxFifo@Config = // RX FIF0Q, unused.

{

.mode = CY_CANFD_FIFO_MODE_BLOCKING,
.watermark = 10u,
.numberOfFifoElements = 8u,
.topPointerLogicEnabled = false,

s

.rxFifolConfig =

{
/* Configure Rx FIFO 1. */
.mode = CY_CANFD_FIFO_MODE_BLOCKING,
.watermark = 10u,
.numberOfFifoElements = 8u,

Application note 16

// tsegl = 5tq,
// tseg2 = 2tq
// sjw = 2tq

// Transceiver delay compensation,

/* Configure Transmitter Delay Compensation. Set tdcEnabled to false (this is

// Standard message ID filters

// Extended message ID filters

// Global filter setting.

// No remote frame
// No remote frame

.tdcEnabled = false,
.tdcOffset =0,
.tdcFilterWindow= @,

}s

.sidFilterConfig =

setting.

{
.numberOfSIDFilters = sizeof(stdIdFilter) / sizeof(stdIdFilter[@]),
.sidFilter = stdIdFilter,

}s

.extidFilterConfig =

setting.

{
.numberOfEXTIDFilters = sizeof(extIdFilter) / sizeof(extIdFilter[@]),
.extidFilter = extIdFilter,
.extIDANDMask = Ox1fffffff, // No pre filtering.

}s

.globalFilterConfig =

{
.nonMatchingFramesStandard = CY_CANFD_ACCEPT_IN_RXFIFO_@, // Reject none match IDs
.nonMatchingFramesExtended = CY_CANFD_ACCEPT_IN_RXFIFO_1, // Reject none match IDs
.rejectRemoteFramesStandard = true,
.rejectRemoteFramesExtended = true,

s

/* Configure Rx FIFO ©. Set topPointerLogicEnabled to false (RxFIFO © is unused). */

// RX FIFO1, unused.

002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

.topPointerLogicEnabled = false, // true,
s
.noOfRxBuffers = 4u,
.noOfTxBuffers = 4u, /* Configure Tx event FIFO and Buffer.
Set to 4.
*/

}s

int main(void)

{

/* CAN Channel setting. CAN@ Channel ©. */
Cy_CANFD_Init(CY_CANFD_TYPE, &canCfg);

}

4.2.3 Configuration for Message RAM

This section shows that the configuration of CAN Message RAM and the overall message RAM size can be
different for each TRAVEO™ device. You need to specify the size allocated per channel under each CAN macro. As
part of SDL, a configuration is provided as an example, which can be modified based on your requirement for
the respective application.

CYT2B7 has a 24-KB Message RAM per CAN macro. Code Listing 2 shows an example configuration which
allocates 8 KB per channel. You can change this code to allocate 10 KB + 10 KB + 4 KB.

Code Listing 2 Example Configuration of Message RAM

/** Offset of CAN FD Message RAM (MRAM). Total 24k MRAM per CAN FD instance is shared by all
CAN FD channels

* within an instance and allocation for each channel is done by user. Below shown is example
allocation */

/** Defining MRAM size (in bytes) per channel for CANO */

#define CY_CANFD®_© MSGRAM_SIZE ((CANFD@_MRAM_SIZE*1024)/CANFDO_CAN_NR)

#define CY_CANFD®_1 MSGRAM_SIZE ((CANFD@_MRAM_SIZE*1024)/CANFDO_CAN_NR)

#define CY_CANFDO_2_MSGRAM_SIZE ((CANFD@_MRAM_SIZE*1024)/CANFDO_CAN_NR)
4.2.4 Example Code to Initialize CAN FD in Driver Part

Code Listing 3 demonstrates an example program to initialize CAN FD in the driver part.
The following description will help you understand the register notation of the driver part of SDL:
+ pstcCanFDChMTTCAN->unCCCR.u32Register is the CANFDx_CHy_CCCR register mentioned in the Registers

Ky,

TRM. Other registers are also described in the same manner. “x” signifies the CAN FD instance and “y
signifies the channel number of CAN FD instance.

« Performance improvement measures

Application note 17 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

For register setting performance improvement, the SDL writes a complete 32-bit data to the register. Each bit
field is generated in advance in a bit writable buffer and written to the register as the final 32-bit data.

unRXESC.stcField.u3RBDS
unRXESC.stcField.u3F1DS
buffer. */
UNRXESC.stcField.u3F@DS = pstcConfig->rxFifo@DataSize;
pstcCanFDChMTTCAN->unRXESC.u32Register = unRXESC.u32Register; /* 2. Write to register as
complete 32-bit data. */

pstcConfig->rxBufferDataSize;
pstcConfig->rxFifolDataSize; /* 1. Generate 32-bit data on the

See cyip_canfd.h under hdr/rev_x for more information on the union and structure representation of registers.

Application note 18 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

Code Listing 3 Example to Initialize CAN FD in Driver Part

cy_en_canfd_status_t Cy_CANFD_Init(cy_pstc_canfd_type_t pstcCanFD, const cy_stc_canfd_config t*
pstcConfig)

{

// Local variable declarations

cy_stc_canfd_context_t* pstcCanFDContext;

uint32_t* pu32Adrs;
uint32_t u32Count;
uint32_t u32SizeInWord;
cy_stc_id_filter_t* pstcSIDFilter;

cy_stc_extid_filter_t* pstcEXTIDFilter;
cy_stc_canfd_msgram_config_t stcMsgramConfig;
volatile stc_CANFD_CH M_TTCAN_t* pstcCanFDChMTTCAN;

/* Shadow data to avoid RMW and speed up HW access */
/* Set data on the buffer to €@’ for performance improvement. */

un_CANFD_CH_SIDFC_t unSIDFC = { @ };
un_CANFD_CH_XIDFC_t unXIDFC = { @ };
un_CANFD_CH_XIDAM t unXIDAM = { @ };
un_CANFD_CH_RXFOC_t unRXFOC = { @ };
un_CANFD_CH_RXF1C_t unRXF1C = { © };
un_CANFD_CH RXBC_t unRXBC = { @ };
un_CANFD_CH_TXEFC_t unTXEFC = { @ };
un_CANFD_CH TXBC_t unTXBC = { @ };
un_CANFD_CH CCCR_t unCCCR = { @ };
un_CANFD_CH_NBTP_t unNBTP = { 0 };
un_CANFD_CH DBTP_t unDBTP = { 0 };
un_CANFD_CH TDCR_t unTDCR = { © };
un_CANFD_CH GFC_t unGFC = { @ };
un_CANFD_CH_RXESC_t unRXESC = { @ };
un_CANFD_CH_TXESC_t unTXESC = { @ };
un_CANFD_CH_TIE_t unIE ={0};
un_CANFD_CH_ILS t unILS = { 0@ };
un_CANFD CH ILE t unILE = { @ };

un_CANFD_CH_RXFTOP_CTL_t unRXFTOP_CTL = { @ };

/* Check for NULL pointers */
if (pstcCanFD == NULL ||
pstcConfig == NULL ||
/* Check if configuration parameter values are valid. */
((pstcConfig->sidFilterConfig.numberOfSIDFilters != @) && (pstcConfig-
>sidFilterConfig.sidFilter == NULL)) ||((pstcConfig->extidFilterConfig.numberOfEXTIDFilters !=
0) && (pstcConfig->extidFilterConfig.extidFilter == NULL))
)
{
return CY_CANFD_BAD_PARAM;

}

/* Get pointer to internal data structure */
pstcCanFDContext = Cy_CANFD_GetContext(pstcCanFD);

Application note 19 002-20278 Rev. *E
2023-11-10

o~ _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

/* Check for NULL */
if (pstcCanFDContext == NULL)

{
return CY_CANFD_BAD_PARAM;

}
/* Set notification callback functions */
/* Configure interrupt handler for callback events. */
pstcCanFDContext->canFDInterruptHandling.canFDTxInterruptFunction = pstcConfig->txCallback;
pstcCanFDContext->canFDInterruptHandling.canFDRxInterruptFunction = pstcConfig->rxCallback;
pstcCanFDContext->canFDInterruptHandling.canFDRxWithTopPtrInterruptFunction = pstcConfig-
>rxFifoWithTopCallback;
pstcCanFDContext->canFDNotificationCb.canFDStatusInterruptFunction = pstcConfig->statusCallback;
pstcCanFDContext->canFDNotificationCb.canFDErrorInterruptFunction = pstcConfig->errorCallback;

/* Get the pointer to M_TTCAN of the CAN FD channel */
/* Get base address of CANx channel register. */
pstcCanFDChMTTCAN = &pstcCanFD->M_TTCAN;

/* Set CCCR.INIT to 1 and wait until it will be updated. */
pstcCanFDChMTTCAN->unCCCR.u32Register = Ox1lul;
while(pstcCanFDChMTTCAN->unCCCR.stcField.ulINIT != 1)

{

}

/* Cancel protection by setting CCE */

/* (1) Stop CAN FD communication and enable to write to Protected Configuration Register.
*/

pstcCanFDChMTTCAN->unCCCR.u32Register = Ox3ul;

/* Standard ID filter */

/* (2-1) Configure Standard ID filter. */

unSIDFC.stcField.u8LSS = pstcConfig->sidFilterConfig.numberOfSIDFilters; // Number of SID
filters

unSIDFC.stcField.ul4FLSSA = stcMsgramConfig.offset >> 2; // Start address (word) of SID
filter configuration in message RAM

pstcCanFDChMTTCAN->unSIDFC.u32Register = unSIDFC.u32Register;

/* Extended ID filter */
unXIDFC.stcField.u7LSE = pstcConfig->extidFilterConfig.numberOfEXTIDFilters; // Number of
ext id filters
unXIDFC.stcField.ul4FLESA = pstcCanFDChMTTCAN->unSIDFC.stcField.ul4FLSSA +
(pstcConfig->sidFilterConfig.numberOfSIDFilters * SIZE_OF_SID_FILTER_IN_WORD); // Start
address (word) of ext id filter configuration in message RAM
/* (2-2) Configure Extended ID Filter.Start address is placed under Standard ID filter
area. */
pstcCanFDChMTTCAN->unXIDFC.u32Register = unXIDFC.u32Register;

/* Extended ID AND Mask */

unXIDAM.stcField.u29EIDM = pstcConfig->extidFilterConfig.extIDANDMask;
/* (2-3) Configure Extended ID Mask. */
pstcCanFDChMTTCAN->unXIDAM.u32Register = unXIDAM.u32Register;

Application note 20 002-20278 Rev. *E
2023-11-10

o~ _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

/* Configuration of Rx Buffer and Rx FIFO */
UnRXESC.stcField.u3RBDS pstcConfig->rxBufferDataSize;
UNRXESC.stcField.u3F1DS = pstcConfig->rxFifolDataSize;
UNRXESC.stcField.u3F@DS = pstcConfig->rxFifo@DataSize;

/* (3-1) Configure Rx Buffer/FIFO Element size. */
pstcCanFDChMTTCAN->unRXESC.u32Register = unRXESC.u32Register;

/* Rx FIFO @ */

UNRXFOC.stcField.ulFOOM = pstcConfig->rxFifo@Config.mode;

UnRXFOC.stcField.u7FOWM = pstcConfig->rxFifo@Config.watermark;

UNRXFOC.stcField.u7F@S = pstcConfig->rxFifo@Config.numberOfFifoElements;

unRXFOC.stcField.ul4FOSA = pstcCanFDChMTTCAN->unXIDFC.stcField.ul4FLESA +

/*¥ (3-2) Configure Rx FIFO @. Start address is placed under Extend ID filter area. */
(pstcConfig->extidFilterConfig.numberOfEXTIDFilters * SIZE_OF_EXTID_FILTER_IN_WORD);

pstcCanFDChMTTCAN->unRXFOC.u32Register = unRXFOC.u32Register;

/* Rx FIFO 1 */

UNRXF1C.stcField.ulF10M = pstcConfig->rxFifolConfig.mode;

UNRXF1C.stcField.u7F1WM = pstcConfig->rxFifolConfig.watermark;

unRXF1C.stcField.u7F1S = pstcConfig->rxFifolConfig.numberOfFifoElements;

unRXF1C.stcField.ul4F1SA = pstcCanFDChMTTCAN->unRXFOC.stcField.ul4F@OSA +

/* (3-2) Configure Rx FIFO Start address is placed under Rx FIFO © area. */

(pstcConfig->rxFifo@Config.numberOfFifoElements * (2 + dataBufferSizeInWord[pstcConfig-

>rxFifo@DataSize]));

pstcCanFDChMTTCAN->unRXF1C.u32Register = unRXF1C.u32Register;

/* Rx FIFO 0,1 Top pointer logic config */

/* (3-3) Configure RxFIFO 0,1 Top pointer logic. */

UNRXFTOP_CTL.stcField.ulFOTPE = (pstcConfig->rxFifo@Config.topPointerLogicEnabled == false)
20 :1;

UNRXFTOP_CTL.stcField.ulF1TPE = (pstcConfig->rxFifolConfig.topPointerLogicEnabled == false)
20 :1;

pstcCanFD->unRXFTOP_CTL.u32Register = unRXFTOP_CTL.u32Register;

/* Rx buffer */
/* (3-4) Configure Rx Buffer. Start address is placed under Rx FIFO 1 area. */
unRXBC.stcField.ul4RBSA = pstcCanFDChMTTCAN->unRXF1C.stcField.ul4F1SA +
(pstcConfig->rxFifolConfig.numberOfFifoElements * (2 + dataBufferSizeInWord|[pstcConfig-
>rxFifolDataSize]));
pstcCanFDChMTTCAN->unRXBC.u32Register = unRXBC.u32Register;

/* Configuration of Tx Buffer and Tx FIFO/Queue */
unTXESC.stcField.u3TBDS = pstcConfig->txBufferDataSize;

/* (3-5) Configure Tx Buffer Element Size. */
pstcCanFDChMTTCAN->unTXESC.u32Register = unTXESC.u32Register;

/* Tx FIFO/QUEUE (not use) */

UnTXEFC.stcField.u6EFWM = @; /* Watermark interrupt disabled */

UnTXEFC.stcField.u6EFS = 9; /* Tx Event FIFO disabled */

/* (3-6) Configure Tx Event FIFO. Start address is placed under Tx Buffer area. */

UNTXEFC.stcField.ul4EFSA = pstcCanFDChMTTCAN->unRXBC.stcField.ul4RBSA +
(pstcConfig->noOfRxBuffers * (2 + dataBufferSizeInWord[pstcConfig->rxBufferDataSize]));

Application note 21 002-20278 Rev. *E
2023-11-10

o~ _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

pstcCanFDChMTTCAN->unTXEFC.u32Register = unTXEFC.u32Register;

/* Tx buffer */

unTXBC.stcField.ulTFQM 9; /* Tx FIFO operation */

unTXBC.stcField.u6TFQS = O; /* No Tx FIFO/Queue */

unTXBC.stcField.u6NDTB = pstcConfig->noOfTxBuffers; /* Number of Dedicated Tx Buffers */

/* (3-7) Configure Tx Buffer. Start address is placed under Tx FIFO area. */

unTXBC.stcField.ul4TBSA = pstcCanFDChMTTCAN->unTXEFC.stcField.ul4EFSA +

(1@ * SIZE_OF_TXEVENT_FIFO_IN_WORD); // Reserving memory for 10 TxEvent Fifo elements

for easy future use

pstcCanFDChMTTCAN->unTXBC.u32Register = unTXBC.u32Register;

/* Initialize message RAM area(Entire region zeroing) */

pu32Adrs = (uint32_t *)(((uint32_t)pstcCanFD & OxFFFFO000OUl) +
(uint32_t)CY_CANFD_MSGRAM_START + stcMsgramConfig.offset);

u32SizeInWord = stcMsgramConfig.size >> 2; /* (4) Clear the Message RAM area. */

for(u32Count = ©; u32Count < u32SizeInWord; u32Count++)

{
*pu32Adrs++ = Qul;

/* Configuration of CAN bus */

/* CCCR register */

unCCCR.stcField.ulTXP = @; /* Transmit pause disabled */

unCCCR.stcField.ulBRSE ((pstcConfig->canFDMode == true) ? 1 : 0); /* Bit rate switch */
unCCCR.stcField.ulFDOE ((pstcConfig->canFDMode == true) ? 1 : 0); /* FD operation */

unCCCR.stcField.ulTEST = 0; /* Normal operation */
unCCCR.stcField.ulDAR = O; /* Automatic retransmission enabled */
unCCCR.stcField.ulMON_ = ©; /* Bus Monitoring Mode is disabled */
unCCCR.stcField.ulCSR = 0; /* No clock stop is requested */
unCCCR.stcField.ulASM = @; /* Normal CAN operation. */

/* (5) Select CAN/CAN FD Mode and Set Bit Rate Switch. */
pstcCanFDChMTTCAN->unCCCR.u32Register = unCCCR.u32Register;

/* Nominal Bit Timing & Prescaler Register */
unNBTP.stcField.u9NBRP = pstcConfig->bitrate.prescaler;
unNBTP.stcField.u8NTSEG1 = pstcConfig->bitrate.timeSegmentl;
unNBTP.stcField.u7NTSEG2 = pstcConfig->bitrate.timeSegment2;
unNBTP.stcField.u7NSJW = pstcConfig->bitrate.syncJumpWidth;
/* (6-1) Configure Nominal Bit Timing & Prescaler. */
pstcCanFDChMTTCAN->unNBTP.u32Register = unNBTP.u32Register;

if(pstcConfig->canFDMode == true)
{
/* Data Bit Timing & Prescaler */
unDBTP.stcField.u5SDBRP = pstcConfig->fastBitrate.prescaler;
unDBTP.stcField.u5DTSEG1 = pstcConfig->fastBitrate.timeSegmentl;
/* (6-2) Configure Data Bit Timing & Prescaler.This configuration is only for CAN FD
mode. */
unDBTP.stcField.u4DTSEG2 = pstcConfig->fastBitrate.timeSegment2;
unDBTP.stcField.u4DSIW = pstcConfig->fastBitrate.syncJumpWidth;
unDBTP.stcField.ulTDC = ((pstcConfig->tdcConfig.tdcEnabled == true) ? 1 : 0); /*

Application note 22 002-20278 Rev. *E
2023-11-10

o~ _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

Transceiver Delay Compensation enabled */
pstcCanFDChMTTCAN->unDBTP.u32Register = unDBTP.u32Register;

/* Transmitter Delay Compensation */

/* (6-3) Configure Transmitter Delay Compensation. This configuration is only for CAN
FD mode. */

unTDCR.stcField.u7TDCO
Compensation Offset */

unTDCR.stcField.u7TDCF = pstcConfig->tdcConfig.tdcFilterWindow; /* Transmitter Delay
Compensation Filter Window Length */

pstcCanFDChMTTCAN->unTDCR.u32Register = unTDCR.u32Register;

pstcConfig->tdcConfig.tdcOffset; /* Transmitter Delay

/* Configuration of Global Filter */

unGFC.stcField.u2ANFS = pstcConfig->globalFilterConfig.nonMatchingFramesStandard;

/* (7-1) Configure Global Filter. */

unGFC.stcField.u2ANFE = pstcConfig->globalFilterConfig.nonMatchingFramesExtended;

unGFC.stcField.ulRRFS ((pstcConfig->globalFilterConfig.rejectRemoteFramesStandard ==
true) ? 1 : 9);

unGFC.stcField.ulRRFE
true) ? 1 : 9);

pstcCanFDChMTTCAN->unGFC.u32Register = unGFC.u32Register;

((pstcConfig->globalFilterConfig.rejectRemoteFramesExtended ==

/* Standard Message ID Filters */

/* (7-2) Configure Standard ID Filter. */

pstcSIDFilter = (cy_stc_id_filter_t *)(((uint32_t)pstcCanFD & OxFFFFO@00OUl) +
(uint32_t)CY_CANFD_MSGRAM_START +
(pstcCanFDChMTTCAN->unSIDFC.stcField.ul4FLSSA <<

2u));
for(u32Count = ©; u32Count < pstcConfig->sidFilterConfig.numberOfSIDFilters; u32Count++)
{
pstcSIDFilter[u32Count] = pstcConfig->sidFilterConfig.sidFilter[u32Count];
}

/* Extended Message ID Filters */
/* (7-3) Configure Extended ID Filter. */
pstcEXTIDFilter = (cy_stc_extid filter_t *)(((uint32_t)pstcCanFD & OxFFFFO@00OUl) +
(uint32_t)CY_CANFD_MSGRAM_START +
(pstcCanFDChMTTCAN->unXIDFC.stcField.ul4FLESA
<< 2u));
for(u32Count = ©@; u32Count < pstcConfig->extidFilterConfig.numberOfEXTIDFilters; u32Count++)

{
pstcEXTIDFilter[u32Count] = pstcConfig->extidFilterConfig.extidFilter[u32Count];

/* Configuration of Interrupt */
/* Interrupt Enable */
unIE.stcField.ulARAE =
unIE.stcField.ulPEDE =
unIE.stcField.ulPEAE =
unIE.stcField.ulWDIE =
unIE.stcField.ulBOE =
unIE.stcField.ulEWE =

/* Access to Reserved Address */

;5 /* Protocol Error in Data Phase */

/* Protocol Error in Arbitration Phase */
/* Watchdog */

/* Bus_Off Status */

/* Warning Status */

e

e

“e

QQ?Q@Q

“e

Application note 23 002-20278 Rev. *E
2023-11-10

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note

unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.
unILS.

unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
unIE.stcField.
Enable. */
pstcCanFDChMTTCAN->unIE.

UlEPE
UlELOE
UlBEUE
ulBECE
UlDRXE
ulTOOE
U1MRAFE
U1lTSWE
UlTEFLE
UlTEFFE
ULTEFWE
U1TEFNE
U1lTFEE
ulTCFE
ulTCE
ulHPME
UlRF1LE
UlRF1FE
U1RF1WE
UlRFINE
U1lRFOLE
U1lRFOFE
UlRFOWE
UlRFONE

UlARAL
ulPEDL
UlPEAL
ulWDIL
ulBOL
ulEWL
ulEPL
ulELOL
ulBEUL
ulBECL
ulDRXL
ulTOOL
ulMRAFL
ulTSWL
UITEFLL
UlTEFFL
UlTEFWL
ulTEFNL
UlTFEL
ulTCFL
ulTCL
ulHPML
ulRF1LL
ulRF1FL
UlRF1WL

we Wwe We We We Wwe e We We e

e

Ve We We We We e Lo We Wwe e e

HQQOHQOQQOQQPQQOQQOHQOQQ

e

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Error Passive */

Error Logging Overflow */

Bit Error Uncorrected */

Bit Error Corrected */

Message stored to Dedicated Rx Buffer */
Timeout Occurred */

Message RAM Access Failure */
Timestamp Wraparound */

Tx Event FIFO Event Lost */

Tx Event FIFO Full */

Tx Event FIFO Watermark Reached */

Tx Event FIFO New Entry */

Tx FIFO Empty */

Transmission Cancellation Finished */
Transmission Completed */

High Priority Message */

Rx FIFO 1 Message Lost */

Rx FIFO 1 Full */

Rx FIFO 1 Watermark Reached */

Rx FIFO 1 New Message */

Rx FIFO © Message Lost */

Rx FIFO © Full */

Rx FIFO @ Watermark Reached */

Rx FIFO © New Message */ /* (8-1) Configure Interrupt

u32Register = unIE.u32Register;

/* Interrupt Line Select */
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.
stcField.

0;

We e We Lo Le Le We We Lo We We e We Lo We e We Lo We e We We e

O O©O © © O 0O 0O 0O OO 0O OOV OOOOGDOOOS

e

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Access to Reserved Address */
Protocol Error in Data Phase */
Protocol Error in Arbitration Phase */
Watchdog */

Bus_Off Status */

Warning Status */

Error Passive */

Error Logging Overflow */

Bit Error Uncorrected */

Bit Error Corrected */

Message stored to Dedicated Rx Buffer */
Timeout Occurred */

Message RAM Access Failure */
Timestamp Wraparound */

Tx Event FIFO Event Lost */

Tx Event FIFO Full */

Tx Event FIFO Watermark Reached */

Tx Event FIFO New Entry */

Tx FIFO Empty */

Transmission Cancellation Finished */
Transmission Completed */

High Priority Message */

Rx FIFO 1 Message Lost */

Rx FIFO 1 Full */

Rx FIFO 1 Watermark Reached */

24

infineon

002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

unILS.stcField.ulRFINL
unILS.stcField.ulRFOLL
unILS.stcField.ulRFOFL
unILS.stcField.ulRFOWL
unILS.stcField.ulRFONL
line Select. */
pstcCanFDChMTTCAN->unILS.u32Register = unILS.u32Register;

;5 /* Rx FIFO 1 New Message */

/* Rx FIFO @ Message Lost */

/* Rx FIFO © Full */

5 /* Rx FIFO @ Watermark Reached */

5 /* Rx FIFO © New Message */ /* (8-2) Configure Interrupt

e

]
@OPQO

/* Interrupt Line Enable */

unILE.stcField.ulEINT® = 1; /* Enable Interrupt Line @ */ /* (8-3) Configure Interrupt
line Enable. */

unILE.stcField.ulEINT1 = O; /* Disable Interrupt Line 1 */

pstcCanFDChMTTCAN->unILE.u32Register = unILE.u32Register;

/* CAN-FD operation start */

/* Set CCCR.INIT to © and wait until it will be updated */
unCCCR.stcField.ulINIT = O; /* (9) Start CAN FD communication. */
pstcCanFDChMTTCAN->unCCCR.u32Register = unCCCR.u32Register;
while(pstcCanFDChMTTCAN->unCCCR.stcField.ulINIT != @)

{
}
return CY_CANFD_SUCCESS;
}
4.3 Message Transmission

Figure 6 is an example of message transmission flow. This example does not use the Tx Interrupt. In this flow, (0)
is performed in the configuration part, and (1) to (5) are performed in the driver part.

The message is sent via the Tx buffer in the Message RAM area. Ensure that there are no pending requests
(TXBRP). If there is no pending request, calculate the Tx buffer address of the Message RAM and write the
control information and data of the frame to be transmitted by the CAN FD Controller. A message transmission
is started by writing to the Tx Buffer Add Request (TXBAR) register.

START

0) ‘ Configure Parameter Values ‘
1) ‘ Check Pending Request ‘
2) ‘ Calculate Tx Buffer Address ‘

Write Frame Information

® ‘ to TX Buffer ‘
v
4) ‘ Write Data to Tx Buffer ‘
v
(5) ‘ Transmission Request ‘
END
Figure 6 Example of Message Transmission Flow
Application note 25 002-20278 Rev. *E

2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

4.3.1 Use case

This section explains an example of CAN FD message transmission using the following use case and the use
case discussed in Chapter 4.2.1 Use case. CAN FD message transmission is configured using SDL.
Use case:
« FD Format (FDF): 1 (Frame transmitted in CAN FD format)
- Bit Rate Switching (BRS): 1 (CAN FD frame transmitted with bit rate switching)
« Extended Identifier (XTD): 0 (11-bit standard identifier)
« ldentifier (ID): 0x525
+ DataLength Code (DLC): 15

4.3.2 Configuration

Table 4 lists the parameters of the configuration part in SDL for message transmission.

Table 4 List of Message Transmission Parameters

Parameters Description Value
.canFDFormat Select CAN frame format. true

True: CAN FD, False: Classic CAN

.idConfig.extended Select CAN identifier format. false

True: Extended identifier, False: Standard identifier
.idConfig.identifier Set CAN identifier. 0x525
.dataConfig.dataLengthCode |Set CAN data length code 15
.dataConfig.data Set transmission data Arbitrary value

Code Listing 4 demonstrates an example program of CAN FD message transmission in the configuration part.

Application note 26 002-20278 Rev. *E
2023-11-10

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Code Listing 4 Example of Message Transmission in Configuration Part

infineon

{

stcMsg

stcMsg

*/

}

stcMsg.
stcMsg.
stcMsg.
stcMsg.
stcMsg.
stcMsg.
stcMsg.
stcMsg.
stcMsg.
stcMsg.
stcMsg.
stcMsg.

stcMsg.
stcMsg.
stcMsg.
stcMsg.
stcMsg.
stcMsg.

int main(void)

.canFDFormat = true;

dataConfig.data[@]
dataConfig.data[1]
dataConfig.data[2]
dataConfig.data[3]
dataConfig.data[4]
dataConfig.data[5]
dataConfig.data[6]
dataConfig.data[7]
dataConfig.data[8]
.dataConfig.data[9]
dataConfig.data[10]
dataConfig.data[11]
dataConfig.data[12]
dataConfig.data[13]
dataConfig.data[14]
dataConfig.data[15]

/* CAN Transmission setting
CANO Channel ©

Message buffer ©
Transmission data

/* Prepare CANFD message to transmit*/
cy_stc_canfd_msg_ t stcMsg;

idConfig.extended = false;
idConfig.identifier
dataConfig.datalLengthCode = 15;

0x525;

0x70190523;
0x70190819;
0x33332222;
0x33332222;
0x55554444;
Ox77776666;
0x99998888 ;
OxBBBBAAAA ;
©xDDDDCCCC;
OxFFFFEEEE;
0x78563412;
0x00000000 ;
0x11111111;
0x22222222;
©x33333333;
0x44444444;

/* CAN FD format */
11-bit standard identifier

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

CAN ID */

CAN Data Length Code

Transmission data
Transmission data
Transmission data
Transmission data
Transmission data
Transmission data
Transmission data
Transmission data
Transmission data
Transmission data

Cy_CANFD_UpdateAndTransmitMsgBuffer(CY_CANFD_TYPE, ©, &stcMsg);

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/

4.3.3

Example Program of Message Transmission

Code Listing 5 demonstrates an example program of CAN FD message transmission in the driver part.

Application note

27

002-20278 Rev. *E
2023-11-10

o~ _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

Code Listing 5 Example of Message Transmission in Driver Part

cy_en_canfd_status_t Cy_ CANFD_UpdateAndTransmitMsgBuffer(cy_pstc_canfd_type_t pstcCanFD,
uint8_t u8MsgBuf, cy_stc_canfd_msg t* pstcMsg)
{

// Local variable declarations

cy_stc_canfd_context_t* pstcCanFDContext;

uintl6_t uléDlcTemp;

uintl6_t ulé6Count;

uint8_t u8DatalLengthWord;

cy_stc_canfd_tx_buffer_t* pstcCanFDTxBuffer;
volatile stc_CANFD_CH M TTCAN_t* pstcCanFDChMTTCAN;

/* Check for NULL pointers */
/* Check if configuration parameter values are valid */
if (pstcCanFD == NULL ||

pstcMsg == NULL

)

{

return CY_CANFD_BAD_PARAM;
}
if(u8MsgBuf > 31)
{

return CY_CANFD_BAD_PARAM;
}

/* Get pointer to internal data structure */
pstcCanFDContext = Cy_ CANFD_GetContext(pstcCanFD);

/* Check for NULL */
if (pstcCanFDContext == NULL)

{
return CY_CANFD_BAD_PARAM;

/* Get the pointer to M_TTCAN of the CAN FD channel */
pstcCanFDChMTTCAN = &pstcCanFD->M_TTCAN;

/* Check if CAN FD controller is in not in INIT state and Tx buffer is empty or not */
if((pstcCanFDChMTTCAN->unCCCR.stcField.ulINIT != @) ||
((pstcCanFDChMTTCAN->unTXBRP.u32Register & (1ul << u8MsgBuf)) != 0) /* (1) Check
Pending Request */
)

return CY_CANFD_BAD_PARAM;

/* Get Tx Buffer address */
/* (2) Get the Tx Buffer Address with a calculation function. (See Code Listing 5) */
pstcCanFDTxBuffer = (cy_stc_canfd_tx_buffer_t*)Cy_ CANFD_CalcTxBufAdrs(pstcCanFD, u8MsgBuf);

Application note 28 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

if(pstcCanFDTxBuffer == NULL)

{
return CY_CANFD_BAD_PARAM;

pstcCanFDTxBuffer->t0_f.rtr = @; /* Transmit data frame. */
pstcCanFDTxBuffer->t0_f.xtd = (pstcMsg->idConfig.extended == true) ? 1 : 0;
pstcCanFDTxBuffer->t0_f.id = (pstcCanFDTxBuffer->te_f.xtd == @) ?
(pstcMsg->idConfig.identifier << 18) : pstcMsg-
>idConfig.identifier;

pstcCanFDTxBuffer->tl_f.efc = @; /* Tx Event Fifo not used *//*(3) Write Frame Information
to TX Buffer */

pstcCanFDTxBuffer->tl_f.mm = 0@; /* Not used */

pstcCanFDTxBuffer->tl_f.dlc = pstcMsg->dataConfig.datalengthCode;

pstcCanFDTxBuffer->tl_f.fdf = (pstcMsg->canFDFormat == true) ? 1 : 0;

pstcCanFDTxBuffer->tl_f.brs = (pstcMsg->canFDFormat == true) ? 1 : 0;

/* Convert the DLC to data byte word */
if (pstcMsg->dataConfig.datalengthCode < 8)

{
uléDlcTemp = O;
}
else
{
uléDlcTemp = pstcMsg->dataConfig.datalengthCode - 8;
}

u8DatalLengthWord = dataBufferSizeInWord[ul6DlcTemp];

/* Data set */
for (ul6Count = @; ul6Count < u8DataLengthWord; ul6Count++) /*(4) Write Data to Tx
Buffer */

{
pstcCanFDTxBuffer->data_area_f[ul6Count] = pstcMsg->dataConfig.dataul6Count];

/* (5) Transmission Request */
pstcCanFDChMTTCAN->unTXBAR.u32Register = 1ul << u8MsgBuf; // Transmit buffer add request

return CY_CANFD_SUCCESS;

Code Listing 6 demonstrates an example program of Tx buffer address calculation in the driver part.

Application note 29 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

Code Listing 6 Example of Tx Buffer Address Calculation in Driver Part

static uint32_t* Cy_ CANFD_CalcTxBufAdrs(cy_pstc_canfd_type_t pstcCanFD, uint8_t u8MsgBuf
uint32_t* pu32Adrs
if (u8MsgBuf > 31

/* Set 0 to the return value if the index is invalid */
pu32Adrs = NULL

else

/* Set the message buffer address to the return value if the index is available */

pu32Adrs = (uint32_t* uint32_t)pstcCanFD & OxFFFFO@0OUl) +
uint32_t)CY_CANFD_MSGRAM_START

pu32Adrs += pstcCanFD->M_TTCAN.unTXBC.stcField.ul4TBSA

/* Calculate Tx Buffer Address */

pu32Adrs += u8MsgBuf * (2 + dataBufferSizeInWord[pstcCanFD-
>M_TTCAN.unTXESC.stcField.u3TBDS

return pu32Adrs

4.4 Message Reception

Based on the filter configuration, message reception can be done in dedicated Rx buffers or in Rx FIFO 0/1. This
section describes the message reception methods.

44.1 Message Reception in Dedicated Rx Buffer

Figure 7 shows an example of the message reception flow using the dedicated Rx buffer and Rx interrupt.

When a received message passes acceptance filtering and is stored in one of the dedicated Rx buffers of the
Message RAM area, an interrupt occurs at this event if Rx interrupt is enabled. When the message is stored in the
dedicated Rx buffer, the corresponding bits of the Interrupt Register (IR.DRX) and New Data register 1/2 (NDAT
1/2) are set. Interrupt handling involves the calculation of the absolute address of the Rx buffer in the Message
RAM holding the received message and reading the received message information from the calculated address.
After the message is read from the Rx buffer, the corresponding flag in the NDAT 1/2 register must be cleared to
enable this Rx buffer to receive the next message.

Application note 30 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

Is there Any
Interrupt Other than
Tx/Rx?

Error Interrupt Handling (Created by
User with User System Requirement)

Is New
Message Stored in
Rx Buffer?

Tx Interrupt or Rx FIFO Interrupt
Handling

Clear Interrupt flag and Check New
Data flag of Rx Buffer

(5) ‘ Calculate Rx Buffer Address ‘ 8) ‘ Read Extended Identifier Flag ‘
(6) ‘ Clear New Data Flag ‘ (9) ‘ Read the Identifier: 11-bit or 20-bit
(7) ‘ Read the Message ‘ < (10) ‘ Check Frame Type ‘

v

(1) ‘ Read the Data Length Code (DLC) ‘

(12) Convert DLC into Number of Data
Words and Read the Data

Jf

Figure 7 Example of Message Reception in Dedicated Rx Buffer Flow

4.4.1.1 Use case

This section describes an example of the message reception in the dedicated Rx buffer using the use case
discussed in Chapter 4.2.1 Use case.

4.4.1.2 Configuration

This section describes an example of the message reception in the dedicated Rx buffer using the configuration
discussed in Chapter 4.2.2 Configuration for CAN FD Controller.

44.1.3 Example Program of Message Reception in Dedicated Rx Buffer

Code Listing 7 demonstrates an example program of message reception in the dedicated Rx buffer. This
program uses the dedicated Rx buffers 0-31 and the Rx Interrupt.

Application note 31 002-20278 Rev. *E
2023-11-10

o~ _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

Code Listing 7 Example of Message Reception in Dedicated Rx Buffer

void Cy_CANFD_IrqHandler(cy_pstc_canfd_type_t pstcCanFD)

{
uint32_t* pu32Adrs = 0;
uint8_t u8MessageBufferNumber ;
cy_stc_canfd_msg_t stcCanFDmsg;
volatile stc_CAN_CH M TTCAN_t* pstcCanFDChMTTCAN;
cy_stc_canfd_context_t* pstcCanFDContext;
uint8_t u8BufferSizeTemp = 0;
uint32_t au32RxBuf[18];

/* Get pointer to internal data structure */
pstcCanFDContext = Cy_CANFD_GetContext(pstcCanFD);

/* Get the pointer to M_TTCAN of the CAN FD channel */
pstcCanFDChMTTCAN = &pstcCanFD->M_TTCAN;

/* Other than Tx/Rx interrupt occurred */

/*¥ (1) Check for interrupts other than Tx/Rx */

if (pstcCanFDChMTTCAN->unIR.u32Register & Ox3ff7EOEE)

{

/* (2) Error Interrupt handling (created by user with user system requirement)*/
Cy_CANFD_ErrorHandling(pstcCanFD);

/* (3) Check if New Message stored in Dedicated Rx Buffer */
if(pstcCanFDChMTTCAN->unIR.stcField.ulDRX == 1) /* At least one message stored into an Rx
Buffer */
{
/* Clear the Message stored to Dedicated Rx Buffer flag */
/* (4) Clear Interrupt flag and check New Data flag of Dedicated Rx Buffers @ -31 */
pstcCanFDChMTTCAN->unIR.stcField.ulDRX = 1UL;

if(pstcCanFDChMTTCAN->unNDAT1.u32Register != @) // Message buffers 0-31
{
for(u8MessageBufferNumber = @; u8MessageBufferNumber < 32; u8MessageBufferNumber++)
{
if((pstcCanFDChMTTCAN->unNDAT1.u32Register & (1ul << u8MessageBufferNumber)) !=
9)

// Calculate Rx Buffer address

/* (5) Get the Rx Buffer address for which New Data flag is set with a
calculation function (See Code Listing 8) */

pu32Adrs = Cy_CANFD_CalcRxBufAdrs(pstcCanFD, u8MessageBufferNumber);

// Clear NDAT1 register
/* (6) Clear New Data flag */

pstcCanFDChMTTCAN->unNDAT1.u32Register = (1ul << u8MessageBufferNumber);

break;

Application note 32 002-20278 Rev. *E
2023-11-10

o~ _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

}
else if(pstcCanFDChMTTCAN->unNDAT2.u32Register != @) // Message buffers 32-63
{
for(u8MessageBufferNumber = 0; u8MessageBufferNumber < 32; u8MessageBufferNumber++)
{
if((pstcCanFDChMTTCAN->unNDAT2.u32Register & (1lul << u8MessageBufferNumber)) !=
9)
{
u8MessageBufferNumber += 32;
// Calculate Rx Buffer address
pu32Adrs = Cy_CANFD_CalcRxBufAdrs(pstcCanFD, u8MessageBufferNumber);
// Clear NDAT2 register
pstcCanFDChMTTCAN->unNDAT2.u32Register = (1ul << (u8MessageBufferNumber -
32));
break;
}
}
}
if(pu32Adrs)
{

/* (7) Read the message from Rx Buffer (See Code Listing 9) */
Cy_CANFD_ExtractMsgFromRXBuffer((cy_stc_canfd_rx_buffer_t *) pu32Adrs,
&stcCanFDmsg);

/* CAN-FD message received, check if there is a callback function */
/* Call callback function if it was set previously. */
if (pstcCanFDContext->canFDInterruptHandling.canFDRxInterruptFunction != NULL)
{
/* Message handling by application */
pstcCanFDContext->canFDInterruptHandling.canFDRxInterruptFunction(false,
u8MessageBufferNumber, &stcCanFDmsg);

}

Code Listing 8 demonstrates an example program of the Rx buffer address calculation.

Application note 33 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

Code Listing 8 Example of Rx Buffer Address Calculation

static uint32_t* Cy_CANFD_CalcRxBufAdrs(cy_pstc_canfd_type_t pstcCanFD, uint8_t u8MsgBuf)

{
uint32_t* pu32Adrs;

if (u8MsgBuf > 63)

{
/* Set @ to the return value if the index is invalid */
pu32Adrs = NULL;

}

else

{

/* Calculate Rx Buffer address */

/* Set the message buffer address to the return value if the index is available */

pu32Adrs = (uint32_t*)(((uint32_t)pstcCanFD & OxFFFFO@00OUl) +
(uint32_t)CY_CANFD_MSGRAM_START);

pu32Adrs += pstcCanFD->M_TTCAN.unRXBC.stcField.ul4RBSA;

pu32Adrs += u8MsgBuf * (2 + dataBufferSizeInWord[pstcCanFD-
>M_TTCAN.unRXESC.stcField.u3RBDS]);

}
return pu32Adrs;

Code Listing 9 demonstrates an example program of message extraction from Rx buffer.

Application note 34 002-20278 Rev. *E
2023-11-10

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Code Listing 9 Example of Message Extraction from Rx Buffer

infineon

/*** Internal function to extract received message from Rx Buffer ***/
void Cy_CANFD_ExtractMsgFromRXBuffer(cy_stc_canfd_rx_buffer_t *pstcRxBufferAddr,
cy_stc_canfd_msg_t *pstcCanFDmsg)
{
uintl6_t uléCount = 0;
uintle_t uléDlcTemp = O;

if(@ == pstcRxBufferAddr)
{
return;
¥
/* Save received data */
/* XTD : Extended Identifier */
/* (8) Read extended identifier flag (XTD) */
pstcCanFDmsg->idConfig.extended = pstcRxBufferAddr->re_f.xtd;

/* ID : RxID */
/* (9) Read the identifier: 11-bit or 29-bit depending on the XTD flag */
if (pstcCanFDmsg->idConfig.extended == false)

{
pstcCanFDmsg->idConfig.identifier = pstcRxBufferAddr->ro_f.id >> 18;

}

else

{
pstcCanFDmsg->idConfig.identifier = pstcRxBufferAddr->ro_f.id;

}

/* FDF : Extended Data Length */
/* (10) Check Frame type */
pstcCanFDmsg->canFDFormat = pstcRxBufferAddr->rl_f.fdf;

/* DLC : Data Length Code */
/* (11) Read the Data Length Code (DLC) */
pstcCanFDmsg->dataConfig.datalengthCode = pstcRxBufferAddr->rl_f.dlc;

/* Copy 0-64 byte of data area */
if (pstcCanFDmsg->dataConfig.datalLengthCode < 8)

{
uléDlcTemp = 0;

}

else

{
/* (12) Convert DLC into number of data words and read the data */
uléDlcTemp = pstcCanFDmsg->dataConfig.datalLengthCode - 8;

}

for (uléCount = @; ul6Count < iDlcInWord[ulé6DlcTemp]; ul6Count++)

{
pstcCanFDmsg->dataConfig.datalul6Count] = pstcRxBufferAddr->data_area_f[ul6Count];

}

Application note 35

002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

4.4.2 Message Reception in Rx FIFO 0/1

When a received message passes the acceptance filtering and is stored in Rx FIFO 0/1 of the Message RAM area,
an interrupt occurs at this event if Rx FIFO interrupts are enabled. The received message is stored in the Rx FIFO
at the buffer position pointed to by the Rx FIFO Put Index; the corresponding bit in the Interrupt Register
(IR.RFON/RF1N) is set. The messages in the FIFO are always read out from the position pointed by the Rx FIFO
Get Index. This is depicted in an example in Figure 8 with eight FIFO elements.

Get Index
RXFnS.FnGl

Fill Level
Put Index
RXEnS.FnPl RXFnS.FnFL
Figure 8 Example of Rx FIFO with Eight Elements

The conventional method of Rx FIFO Message handling involves three steps:

1. Calculating the absolute address of the buffer at the Get Index position
2, Reading the received message information
3. Acknowledging the message at the Get Index position

This method comes with the disadvantage of software overhead; to eliminate this overhead, TRAVEO™ T2G
implements a hardware logic on top of the Rx FIFOs. The Rx FIFO top pointer logic provides a single source
register (RXFTOPn_DATA) to read out the message content from the Get Index position, thus eliminating the
need for absolute address calculation. Also, the Top pointer logic takes care of acknowledging the message at
the Get Index position when all words of the message are read out via the RXFTOPn_DATA register.

For example, when the Rx FIFO element size is configured to be 18 words, the RXFTOPn_DATA register must be
read 18 times to read the complete message; after the 18t read, the message at the Get Index is automatically
acknowledged.

Figure 9 shows an example of the message reception flow using the Rx FIFO and Rx Interrupt. The example uses
only the Rx FIFO New Message Interrupt.

Application note 36 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

START

Other
than Tx/Rx
Interrupt?

Error Interrupt Handling

Is
New Message
Stored in Rx FIFO ?

No
Tx Interrupt or Rx Dedicated

Buffer Interrupt Handling

) 4

(3) Clear Interrupt flag

Is N
FIFO fill level ° v
RXF0S.FOFL/RXF1S.F1FL > >
0)?

Yes

Rx FIFO Yes
Top Pointer
Logic Used?

No (%)
v
) Calculate Rx FIFO Address using Get Read the Message from
Index RXFTOPn_DATA Register
(7) Read the Message
(13) Acknowledge the FIFO Message

s

Figure 9 Example of Message Reception in Rx FIFO Flow

4.4.2.1 Use case

This section describes an example of message reception in Rx FIFO using the use case discussed in Chapter
4.2.1 Use case.

4.4.2.2 Configuration

This section describes an example of message reception in Rx FIFO using the configuration discussed in Chapter
4.2.2 Configuration for CAN FD Controller.

Application note 37 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family ‘ Infineon

4 CAN FD Settings

4.4.2.3 Example Program of Message Reception in Rx FIFO

Code Listing 10 demonstrates an example program of message reception in Rx FIFO. This program uses the Rx
FIFO 0 and the Rx Interrupt.

Application note 38 002-20278 Rev. *E
2023-11-10

o~ _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

Code Listing 10 Example of Message Reception in Rx FIFO

void Cy_CANFD_IrgHandler(cy_pstc_canfd_type_t pstcCanFD)
{
uint32_t* pu32Adrs = 0;
uint8_t u8MessageBufferNumber ;
cy_stc_canfd_msg_t stcCanFDmsg;
volatile stc_CAN_CH_M TTCAN_t* pstcCanFDChMTTCAN;
cy_stc_canfd_context_t* pstcCanFDContext;
uint8_t u8BufferSizeTemp = 0;
uint32_t au32RxBuf[18];

/* Get pointer to internal data structure */
pstcCanFDContext = Cy_CANFD_GetContext(pstcCanFD);

/* Get the pointer to M_TTCAN of the CAN FD channel */
pstcCanFDChMTTCAN = &pstcCanFD->M_TTCAN;

/* Other than Tx/Rx interrupt occurred */
/* (1) Check for interrupts other than Tx/Rx */
if (pstcCanFDChMTTCAN->unIR.u32Register & Ox3ff7EOEE)

{
Cy_CANFD_ErrorHandling(pstcCanFD);

}
/* (2) Check if New Message stored in Rx FIF0@ */
else if(pstcCanFDChMTTCAN->unIR.stcField.ulRFON == 1) // New message stored into RxFIFO ©
{
/* (3) Clear Interrupt flag */
pstcCanFDChMTTCAN->unIR.stcField.ulRFON = 1; // Clear the new message interrupt
flag
while(pstcCanFDChMTTCAN->unRXF@S.stcField.u7FOFL > @)
{
/* (4) Check if Rx FIFO © Top pointer logic is used */
if(pstcCanFD->unRXFTOP_CTL.stcField.ulFOTPE == 1) // RxFifo Top pointer logic is
used

u8BufferSizeTemp = 2 + dataBufferSizeInWord[pstcCanFD-
>M_TTCAN.unRXESC.stcField.u3FeDS];

// Now read the RX FIFO Top Data register to copy the content of received
message
for(uint8_t u8LoopVar = @u; u8LoopVar < u8BufferSizeTemp; u8LoopVar++)
{
/* (5) Read the message content directly from RXFTOPO_DATA register */
au32RxBuf[u8LoopVar] = pstcCanFD->unRXFTOPO_DATA.u32Register;

/* CAN-FD message received, check if there is a callback function */

/* Call callback function if it was set previously. */

if (pstcCanFDContext->canFDInterruptHandling.canFDRxWithTopPtrInterruptFunction
I= NULL)

/* Message handling by application */

Application note 39 002-20278 Rev. *E
2023-11-10

o~ _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

pstcCanFDContext-
>canFDInterruptHandling.canFDRxWithTopPtrInterruptFunction(CY_CANFD_RX_FIF0@, u8BufferSizeTemp,
&au32RxBuf[0]);

}
else // RxFifo Top pointer logic is not used
{

un_CAN_CH_RXF@S_t unRXFOS;

/* (6) When Rx FIFO @ Top pointer logic is not used, get the Rx FIFO address
holding the message at FIFO O get index position with a calculation function (See Code Listing
11).*/

UnRXFOS.u32Register = pstcCanFDChMTTCAN->unRXF@S.u32Register;

pu32Adrs = Cy_CANFD_CalcRxFifoAdrs(pstcCanFD, CY_CANFD_RX_FIFO00,
UNRXFOS.stcField.u6FOGI);

if(pu32Adrs)
{
// Extract the received message from Buffer
/* (7) Read the message at get index position (See Code Listing 9) */
Cy_CANFD_ExtractMsgFromRXBuffer((cy_stc_canfd_rx_buffer_t *) pu32Adrs,
&stcCanFDmsg) ;

// Acknowledge the FIFO message
/* (13) Acknowledge the FIFO © message at get index position */
pstcCanFDChMTTCAN->unRXFOA.stcField.u6FOAI = unRXFOS.stcField.u6F0OGI;

/* CAN-FD message received, check if there is a callback function */

/* Call callback function if it was set previously. */

if (pstcCanFDContext->canFDInterruptHandling.canFDRxInterruptFunction !=
NULL)

/* Message handling by application */
pstcCanFDContext->canFDInterruptHandling.canFDRxInterruptFunction(true,
CY_CANFD_RX_FIFO@, &stcCanFDmsg);
}

Code Listing 11 demonstrates an example program of the Rx FIFO address calculation.

Application note 40 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

4 CAN FD Settings

Code Listing 11 Example of Rx FIFO Address Calculation

static uint32_t* Cy_CANFD_CalcRxFifoAdrs(cy_pstc_canfd_type_t pstcCanFD, uint8_t u8FifoNumber,
uint32_t u32GetIndex)

{
uint32_t* pu32Adrs;

if(u8FifoNumber > 1)

{
/* Set @ to the return value if the FIFO number is invalid */
pu32Adrs = NULL;

}

else

{

/* Calculate the Rx FIFO address */

/* Set the message buffer address to the return value if the index is available */

pu32Adrs = (uint32_t*)(((uint32_t)pstcCanFD & OxFFFFo000OUl) +
(uint32_t)CY_CANFD_MSGRAM_START);

pu32Adrs += (u8FifoNumber == @) ? pstcCanFD->M_TTCAN.unRXFOC.stcField.ul4F0OSA :
pstcCanFD->M_TTCAN.unRXF1C.stcField.ul4F1SA;

pu32Adrs += u32GetIndex * (2 + dataBufferSizeInWord[(u8FifoNumber == @) ? pstcCanFD-
>M_TTCAN.unRXESC.stcField.u3FeDS : pstcCanFD->M_TTCAN.unRXESC.stcField.u3F1DS]);

}
return pu32Adrs;
}
Application note 41 002-20278 Rev. *E

2023-11-10

CAN FD usage in TRAVEO™ T2G family

infineon

5 Glossary

5 Glossary

Table 5 Glossary

Terms Description

ACK Acknowledgement

BRS Bit Rate Switch

CAN Controller Area Network

CAN FD Controller Area Network with Flexible Data rate
CANH CAN Network Line High

CANL CAN Network Line Low

CRC Cyclic Redundancy Check

DLC Data Length Code

ECC Error Correction Code

ECU Electronic Control Unit

EOF End of Frame

ESI Error State Indicator

FDF FD Format indicator

FIFO Firstin First out

ID Identifier

IDE Identifier Extension

MMIO Memory Mapped I/O

RAM Random Access Memory

RTR Remote Transmission Request
SOF Start of Frame

SPI Serial Peripheral Interface
Application note 42 002-20278 Rev. *E

2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

6 Related Documents

6 Related Documents
The following are the TRAVEO™ T2G family series datasheets and Technical Reference Manuals. Contact
Technical Support to obtain these documents.
+ Device datasheet
- CYT2B7 Datasheet 32-Bit Arm® Cortex®-M4F Microcontroller TRAVEO™ T2G family
- CYT2B9 Datasheet 32-Bit Arm°® Cortex®-M4F Microcontroller TRAVEO™ T2G family
- CYT4BF Datasheet 32-Bit Arm® Cortex-M7 Microcontroller TRAVEO™ T2G family
- CYT4DN Datasheet 32-Bit Arm® Cortex’-M7 Microcontroller TRAVEO™ T2G family
- CYT3BB/4BB Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller TRAVEO™ T2G family
+ Body Controller Entry Family
- TRAVEO™ T2G Automotive Body Controller Entry Family Architecture Technical Reference Manual (TRM)

- TRAVEO™ T2G Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for
CYT2B7

- TRAVEO™ T2G Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for
CYT2B9

+ Body Controller High Family
- TRAVEO™ T2G Automotive Body Controller High Family Architecture Technical Reference Manual (TRM)

- TRAVEO™ T2G Automotive Body Controller High Registers Technical Reference Manual (TRM) for
CYT4BF

- TRAVEO™ T2G Automotive Body Controller High Registers Technical Reference Manual (TRM) for
CYT3BB/4BB

+ Cluster 2D Family
- TRAVEO™ T2G Automotive Cluster 2D Family Architecture Technical Reference Manual (TRM)
- TRAVEO™ T2G Automotive Cluster 2D Registers Technical Reference Manual (TRM)

Application note 43 002-20278 Rev. *E
2023-11-10

https://www.cypress.com/support

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

7 Other References

7 Other References

Infineon provides the Sample Driver Library (SDL) including startup as sample software to access various
peripherals. SDL also serves as a reference, to customers, for drivers that are not covered by the official
AUTOSAR products. The SDL cannot be used for production purposes as it does not qualify to any automotive
standards. The code snippets in this application note are part of the SDL. Contact Technical Support to obtain
the SDL.

Application note 44 002-20278 Rev. *E
2023-11-10

https://www.cypress.com/support

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

Revision history

Revision history

Document Date of release Description of changes

version

o 2018-09-28 New application note.

*A 2019-03-07 Updated Associated Part Family as “TRAVEO™ T2G family CYT2B/CYT4B
Series”.

Added target part numbers “CYT4B Series” related information in all
instances across the document.

[Section 1, 2.2]

- Change to bps from bits/s.

[Section 2.2]

- Added the explanation of DATA FRAME.

- Updated the figure 2 according to the specifications.
[Section 4.2]

- Updated the flow of Figure 5.

- Added the CCCR.INIT setting to (1).

- Updated the contents for (2), (3), (7).

[Section 4.2.1]

- Added new

[Section 4.3]

- Updated the flow of Figure 6.

[Section 4.3.1]

- Updated the example code.

*B 2019-09-12 Updated Associated Part Family as “TRAVEO™ T2G family CYT2B/CYT4B/
CYT4D Series”.

Added target part numbers “CYT4D Series” related information in all
instances across the document.

[Section 3]

- Updated the link of device datasheet

[Section 4]

- Updated the link of Architecture TRM

- Added the link of device datasheet

[Section 6]

- Changed to new format and added the CYT4D series documents

Application note 45 002-20278 Rev. *E
2023-11-10

o _.
CAN FD usage in TRAVEO™ T2G family Infineon

Revision history

Document Date of release Description of changes

version

*C 2020-03-10 Updated Associated Part Family as “TRAVEO™ T2G family CYT2/CYT3/
CYT4 Series”.

Changed target part numbers from “CYT2B/CYT4B/CYT4D Series” to
“CYT2/CYT4 Series” in all instances across the document.

Added target part numbers “CYT3 Series” in all instances across the

document.
[Section 3]
- Updated the Figure 4
[Section 4]
- Updated the flow and code to align
[Section 6]
- Updated the Related Documents
[Section 7]
- Added the information of the Sample Driver Library
*D 2021-05-06 Updated to Infineon template.
*E 2023-11-10 Updated the document title.

Template update; no content update.

Application note 46 002-20278 Rev. *E
2023-11-10

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-11-10
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2023 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?

Email: erratum@infineon.com

Document reference
IFX-pvul681443277092

Important notice

The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	2 Overview of CAN FD
	2.1 CAN FD Network
	2.2 CAN FD Messages
	2.2.1 CAN FD Fields
	2.2.2 Bit Timing

	3 CAN FD Controller in TRAVEO™ T2G family
	4 CAN FD Settings
	4.1 CAN FD Setup
	4.2 Initialize CAN FD
	4.2.1 Use case
	4.2.2 Configuration for CAN FD Controller
	4.2.3 Configuration for Message RAM
	4.2.4 Example Code to Initialize CAN FD in Driver Part

	4.3 Message Transmission
	4.3.1 Use case
	4.3.2 Configuration
	4.3.3 Example Program of Message Transmission

	4.4 Message Reception
	4.4.1 Message Reception in Dedicated Rx Buffer
	4.4.1.1 Use case
	4.4.1.2 Configuration
	4.4.1.3 Example Program of Message Reception in Dedicated Rx Buffer

	4.4.2 Message Reception in Rx FIFO 0/1
	4.4.2.1 Use case
	4.4.2.2 Configuration
	4.4.2.3 Example Program of Message Reception in Rx FIFO

	5 Glossary
	6 Related Documents
	7 Other References
	Revision history
	Disclaimer

