
CAN FD usage in TRAVEO™ T2G family

About this document
Scope and purpose

This application note describes how to use Controller Area Network with Flexible Data (CAN FD) rate for
Infineon TRAVEO™ T2G family microcontrollers.
Associated p art f amily

TRAVEO™ T2G family CYT2/CYT3/CYT4 series

Table of contents

About this document . 1

Table of contents . 1

1 Introduction . 3

2 Overview of CAN FD . 4
2.1 CAN FD Network . 4
2.2 CAN FD Messages . 4
2.2.1 CAN FD Fields . 5
2.2.2 Bit Timing . 6

3 CAN FD Controller in TRAVEO™ T2G family . 8

4 CAN FD Settings . 9
4.1 CAN FD Setup . 9
4.2 Initialize CAN FD . 9
4.2.1 Use case .11
4.2.2 Configuration for CAN FD Controller . 12
4.2.3 Configuration for Message RAM . 17
4.2.4 Example Code to Initialize CAN FD in Driver Part . 17
4.3 Message Transmission . 25
4.3.1 Use case .26
4.3.2 Configuration . 26
4.3.3 Example Program of Message Transmission . 27
4.4 Message Reception .30
4.4.1 Message Reception in Dedicated Rx Buffer . 30
4.4.1.1 Use case . 31
4.4.1.2 Configuration .31
4.4.1.3 Example Program of Message Reception in Dedicated Rx Buffer .31
4.4.2 Message Reception in Rx FIFO 0/1 . 36
4.4.2.1 Use case . 37
4.4.2.2 Configuration .37
4.4.2.3 Example Program of Message Reception in Rx FIFO . 38

AN220278

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-20278 Rev. *E
www.infineon.com 2023-11-10

https://www.infineon.com

5 Glossary . 42

6 Related Documents . 43

7 Other References .44

Revision history .45

Disclaimer . 47

CAN FD usage in TRAVEO™ T2G family

Table of contents

Application note 2 002-20278 Rev. *E
2023-11-10

1 Introduction
This application note is intended for users of the Cypress TRAVEO™ T2G family microcontrollers. The application
note describes how to use CAN FD for Cypress TRAVEO™ T2G family devices.
CAN FD is an extension of CAN (nowadays called ‘Classical CAN’). CAN FD can transmit data frames of up to 64
bytes at bit rates exceeding the 1 Mbps limit of Classical CAN. The maximum achievable bus speed in the data
segment is limited only by external components such as transceivers and the particular network topology of an
application. There are transceivers supporting 5 Mbps; several new products claim speeds up to for 8 Mbps.
The CAN FD Controller (M_TTCAN) in TRAVEO™ T2G supports Classical CAN as well as CAN FD (ISO 11898-1:2015)
and Time-Triggered (TT) communication on CAN (ISO 11898-4:2004). The CAN FD Controller has been certified
according to ISO 16845:2015.
This document is applicable to CYT2/CYT3/CYT4 Series devices.

CAN FD usage in TRAVEO™ T2G family

1 Introduction

Application note 3 002-20278 Rev. *E
2023-11-10

2 Overview of CAN FD
This section describes the operation of CAN FD communication with an example of the CAN FD network
followed by the CAN FD message format and the bit timing considerations.

2.1 CAN FD Network
Figure 1 shows an example of the CAN FD network.
Two communication lines (CANH, CANL) are used in the CAN FD network to make it resilient against noise.
Multiple Electronic Control Units (ECUs) can be connected to the CAN FD network; data is exchanged between
the ECUs.
A receiver node converts the differential bus voltage to a digital signal by the CAN FD Transceiver; received data
is handled by the CAN FD Control Logic of the microcontroller. In transmission, data is transmitted from the CAN
FD Control Logic to the CAN FD Transceiver that drives a differential signal onto the CANH and CANL lines of the
CAN FD network.

ECU-1
Microcontroller

CAN FD
Transceiver

CAN FD
Control Logic

CAN Network

CANH

CANL

ECU-2
Microcontroller

CAN FD
Transceiver

CAN FD
Control Logic

ECU -n
Microcontroller

CAN FD
Transceiver

CAN FD
Control Logic

ECU - Electronic Control Unit
CANH - CAN Network Line High
CANL - CAN Network Line Low

Figure 1 CAN FD Network

2.2 CAN FD Messages
There are four frame types: DATA FRAME, REMOTE FRAME, ERROR FRAME, and OVERLOAD FRAME. This section
will explain the DATA FRAME.
Figure 2 shows the DATA FRAME formats of Classical CAN and CAN FD message frame. As already mentioned,
CAN FD is an extension of Classical CAN and both message formats are equal during the arbitration segment
and after the CRC field. The differences occur in the data segment; the CAN FD frame has more data bytes, and
can be transmitted at higher speeds than the arbitration baud rate.
The maximum data length in Classical CAN is 8 bytes with a maximum baud rate of 1 Mbps.
CAN FD supports data lengths of up to 64 bytes with a maximum baud rate of 1 Mbps for arbitration phase. The
data communication speed can exceed the 1 Mbps limit set by Classical CAN and is only limited by external
components such as transceivers and the network topology.

CAN FD usage in TRAVEO™ T2G family

2 Overview of CAN FD

Application note 4 002-20278 Rev. *E
2023-11-10

Classic CAN
Extended Format

CAN FD
Extended Format

Classic CAN
Base Format

CAN FD
Base Format

SO
F EOF

(7 bits)
DLC

(4 bits)
Data

(0-8 bytes)

CRC
Sequence
(15 bits)

Base Identifier
11-bit ID

(ID[28:18])

Nominal bit rateNominal bit rate

D
el

im
ite

r

R
TR

ID
E

FD
F

R
R

S

ID
E

FD
F

re
s

BR
S

ES
I

SR
R

ID
E

Data bit rate (if BRS is recessive)

Stuff
Count

(3 bits + 1
Parity bit)

CRC
Sequence
(17/21 bits)

Arbitration field Control field Data field CRC field

AC
K

SL
O

T

ACK field

D
el

im
ite

r

Arbitration field

Base Identifier
11-bit ID

(ID[28:18])SO
F

Control field

DLC
(4 bits)

Data
(0-64 bytes)

Data field CRC field

D
el

im
ite

r

ACK field

AC
K

SL
O

T

D
el

im
ite

r

EOF
(7 bits)

Arbitration field

SO
F

Base Identifier
29-bit ID

(ID[28:18])

Base Identifier
29-bit ID
(ID[17:0]) R

TR FD
F

r0

DLC
(4 bits)

Control field

Data
(0-8 bytes)

Data field

CRC
Sequence
(15 bits)

CRC field

EOF
(7 bits)

D
el

im
ite

r
AC

K
SL

O
T

ACK field

D
el

im
ite

r

Arbitration field

SR
R

ID
E

S
O

F Base Identifier
29-bit ID

(ID[28:18])

Base Identifier
29-bit ID
(ID[17:0]) R

R
S

FD
F

re
s

B
R

S
Control field

ES
I DLC

(4 bits)

Data field

Data
(0-64 bytes)

CRC field ACK field

Stuff
Count

(3 bits + 1
Parity bit)

CRC
Sequence
(17/21 bits) D

el
im

ite
r

AC
K

SL
O

T

D
el

im
ite

r

EOF
(7 bits)

Nominal bit rate Data bit rate (if BRS is recessive) Nominal bit rate

Figure 2 DATA FRAME Formats

2.2.1 CAN FD Fields
The fields of the CAN FD frame format include an Arbitration field, a Control field, a Data field, a CRC field, and
an ACK field.
The Arbitration field contains the message ID number, and determines the priority of the message among other
messages from other nodes trying to start a transmission simultaneously. The message ID can be 11-bits (Base
Format) or 29-bits (Extended Format), configured by the “IDE” bit.
The FD Format (FDF) indicator bit in the Control field identifies the frame type as CAN or CAN FD. The FDF bit is
recessive (‘1’) for CAN FD frames and dominant (‘0’) for CAN frames. If the Bit Rate Switch (BRS) bit is recessive,
the bit rate of the data field is switched to another, typically higher speed; if BRS bit is dominant, the bit rate of
the data field remains the arbitration bit rate. The Error State Indicator (ESI) bit is used for the identification of
the error state of the CAN FD node. BRS and ESI bits are only available in CAN FD frames.
Furthermore, the Data Length Code (DLC) has four bits and it indicates how many bytes of data are transmitted.
This settable range is 0–8 bytes for CAN frames and up to 64 bytes in CAN FD frames. Table 1 shows the
relationship between the DLC field and the number of transmitted data bytes.

Table 1 Coding of DLC in CAN and CAN FD

DLC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of data
bytes in CAN

0 1 2 3 4 5 6 7 8 8 8 8 8 8 8 8

Number of data
bytes in CAN FD

0 1 2 3 4 5 6 7 8 12 16 20 24 32 48 64

The Data field carries the message data, and is sized by the data length set by DLC.
The CRC field consists of a CRC sequence and a CRC delimiter. For CAN frames, the CRC sequence has fixed
length of 15 bits. CAN FD frames additionally consist of a 4-bit Stuff Count at the beginning of CRC field,
followed by the CRC sequence (17 bits when the data length is 0–16 bytes; 21 bits for data lengths greater than
16 bytes). Any receiver can analyze the received data stream of a message and compare it with the transmitted
CRC, and thus identify a valid or incorrectly received message.

CAN FD usage in TRAVEO™ T2G family

2 Overview of CAN FD

Application note 5 002-20278 Rev. *E
2023-11-10

The ACK field consists of an ACK slot and an ACK delimiter. The transmitter node sends an ACK as recessive bits
and one or more receivers overwrite this with a dominant bit if message reception is successful. This helps the
transmitter to determine whether the frame was received successfully or was corrupted.
The frame concludes with a flag sequence of seven recessive bits forming the end-of-frame (EOF).

2.2.2 Bit Timing
The Classical CAN operation defines a single bit time for the entire message frame. The CAN FD operation
defines two bit times – nominal bit time and data bit time. The nominal bit time is for the arbitration phase. The
data bit time is equal to or shorter than nominal bit time and can be used to accelerate the data phase.
The basic construction of a bit time is shared with both nominal and data bit times. The bit time can be divided
into four segments according to the CAN specifications (see Figure 3): the synchronization segment (Sync_Seg),
the propagation time segment (Prop_Seg), the phase buffer segment 1 (Phase_Seg1), and the phase buffer
segment 2 (Phase_Seg2). The sample point, the point of time at which the bus level is read and interpreted as
the value of that respective bit, is located at the end of Phase_Seg1.

Figure 3 Bit Time Construction

Each segment consists of a programmable number of time quanta, which is a multiple of the time quantum
that is defined by the CAN clock and a prescaler. The values and prescalers used to define these parameters
differ for the nominal and data bit times, and are configured by Nominal Bit Timing & Prescaler Register (NBTP)
and Data Bit Timing & Prescaler Register (DBTP) as listed in Table 2.

Table 2 CAN Bit Timing Parameters

Parameter Description

Time quantum tq (nominal)
and tqd (data)

Time quantum. Derived by multiplying the basic unit time quanta (i.e. the CAN
clock period) with the respective prescaler.
The time quantum is configured by the CAN FD Controller as nominal: tq =
(NBTP.NBRP[8:0] +1) × CAN clock period data: tqd = (DBTP.DBRP[4:0] + 1) × CAN
clock period

Sync_Seg Sync_Seg is fixed to one time quantum as defined by the CAN specifications
and is therefore not configurable (inherently built into the CAN FD Controller).
nominal: 1 tq
data: 1 tqd

(table continues...)

CAN FD usage in TRAVEO™ T2G family

2 Overview of CAN FD

Application note 6 002-20278 Rev. *E
2023-11-10

Table 2 (continued) CAN Bit Timing Parameters

Parameter Description

Prop_Seg Prop_Seg is the part of the bit time that is used to compensate for the physical
delay times within the network. The CAN FD Controller configures the sum of
Prop_Seg and Phase_Seg1 with a single parameter, i.e.,
nominal: Prop_Seg + Phase_Seg1 = NBTP.NTSEG1[7:0] + 1 data: Prop_Seg +
Phase_Seg1 = DBTP.DTSEG1[4:0] + 1

Phase_Seg1 Phase_Seg1 is used to compensate for edge phase errors before the sampling
point. Can be lengthened by the resynchronization jump width.
The sum of Prop_Seg and Phase_Seg1 is configured by the CAN FD Controller
as nominal: NBTP.NTSEG1[7:0] + 1
data: DBTP.DTSEG1[4:0] + 1

Phase_Seg2 Phase_Seg2 is used to compensate for edge phase errors after the sampling
point. Can be shortened by the resynchronization jump width.
Phase_Seg2 is configured by the CAN FD Controller as nominal:
NBTP.NTSEG2[6:0] + 1
data: DBTP.DTSEG2[3:0] + 1

SJW Resynchronization Jump Width. Used to automatically compensate timing
fluctuation between nodes and adjust the length of Phase_Seg1 and
Phase_Seg2. SJW will not be longer than either Phase_Seg1 or Phase_Seg2.
SJW is configured by the CAN FD Controller as nominal: NBTP.NSJW[6:0] + 1
data: DBTP.DSJW[3:0] + 1

These relations result in the following equations for the nominal and data bit times:
Nominal Bit Time
=Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2×tq
=1 + NBTP.NTSEG17:0+1+NBTP.NTSEG26:0+1×NBTP.NBRP8:0+1×CAN clock period
Example (500 kbps with sampling point of 75%)
=1+13+1+4+1×3+1×140000000=0.000002 500 kbps
Data bit time
=1 + DBTP.DTSEG14:0+1+DBTP.DTSEG23:0+1×DBTP.DBRP4:0+1×CAN clock period
Example (5 Mbps with sampling point of 62.5%)
=1+3+1+2+1×0+1×140000000=0.0000002 5 Mbps
Example (2 Mbps with sampling point of 60%)
=1+10+1+7+1×0+1×140000000=0.0000005 2 Mbps

CAN FD usage in TRAVEO™ T2G family

2 Overview of CAN FD

Application note 7 002-20278 Rev. *E
2023-11-10

3 CAN FD Controller in TRAVEO™ T2G family
This section provides an overview of the CAN FD Controller in TRAVEO™ T2G family.

M_TTCAN Group
M_TTCAN Decoder

TTCANFD Wrapper

M_TTCANChannel

<Clock stop IF>< Counter value> <interrupts>

TTCANFD
Wrap

Registers

RX FIFO Top
Pointer

SRAM Arbiter

ECC Generator & Checker

Timestamp
Counter

<Register write/
read>

<Registerwrite/read>

<SRAM write/read>

<SRAMwrite/read>

<SRAMwrite/read>

<Fault report>

TTCANFD
Registers

AHB

CAN IF

Interrupts

<SRAM write/read & ECC parity>

<Check enable/error injection>

DMA IF on
Debug

Message

Fault report

<Check enable/error
injection>

AHB Slave IF

Shared MRAM

Triggers on
 Rx FIFOs

<Correction data by ECC>

SRAM Power Control

Sync triggers

<Global control> <Interruptsstatus>

<Register/SRAMaccess>

Figure 4 CAN FD Controller Block Diagram

Figure 4 shows the block diagram of the CAN FD Controller (M_TTCAN) in TRAVEO™ T2G devices. The M_TTCAN
channels in TRAVEO™ T2G devices are organized into groups, with each group consisting of one or more
channels that share the Message RAM. The total number of available M_TTCAN groups and channels depends
on the device variant. For details, see the device datasheet.
The M_TTCAN channels support Classical CAN and CAN FD operation according to ISO 11898-1:2015. M_TTCAN
operation is available in Active and Sleep power modes; the IP is fully retained except the Time Stamp counter
in Deep Sleep power mode.
The CAN Core, along with the Tx and Rx handlers is responsible for protocol handling; the slave interface to
Memory Mapped I/O (MMIO) registers facilitates the configuration of the CAN FD Controller by the CPU. Each
M_TTCAN channel has two clock inputs: cclk and hclk. The cclk is used for CAN FD operation and hclk is used for
internal IP operation (for example, register accesses and Message RAM accesses).
Each M_TTCAN Group consists of one Message RAM, and this Message RAM is shared among the M_TTCAN
channels belonging to that group. You should take care of distributing the Message RAM to the channels of that
group and prevent any overlapping distribution. The CAN FD Controller does not check internally if any
Message RAM region is overlapping for multiple channels of the group. The Message RAM is ECC protected with
the single-bit error correction and double-bit error detection feature. ECC errors and out-of-range accesses to
the Message RAM are reported to fault structures.
Each M_TTCAN channel consists of two interrupt lines (Interrupt 0 and Interrupt 1); you have the flexibility to
route the Channel Interrupt sources to either Channel Interrupt 0 or Channel Interrupt 1. Channel Interrupt
sources include the New Message received interrupt, Transmission completed interrupt, and Receive FIFO
Watermark interrupt.

In addition to Channel Interrupt lines, Consolidated Interrupt 0 and Consolidated Interrupt 1 are available for
each M_TTCAN Group. Consolidated Interrupt 0 is a logical OR of the Interrupt 0 lines of all channels of the
group; similarly, Consolidated Interrupt 1 is the logical OR of the Interrupt 1 lines of all channels of the group.
All Channel Interrupt lines and Consolidated Interrupt lines are routed to the Device Interrupt System.
To remove the software overhead for calculating an Rx pointer each time a frame is received, hardware logic is
implemented. The Rx FIFO top pointer calculates the next read address and provides a single address
(RXFTOPn_DATA) for each FIFO from where data can be read. This logic will also update a specific acknowledge
index (RXFnA.FnA) in the TTCAN register set so that the index is also incremented accordingly.
The following sections describe how to set up the CAN FD Controller to transmit and receive CAN FD messages.

CAN FD usage in TRAVEO™ T2G family

3 CAN FD Controller in TRAVEO™ T2G family

Application note 8 002-20278 Rev. *E
2023-11-10

4 CAN FD Settings
This section describes how to configure CAN FD based on a use case using Sample Driver Library (SDL) provided
by Cypress. The code snippets in this application note are part of SDL. See Other References for the SDL.
SDL basically has a configuration part and a driver part. The configuration part mainly configures the parameter
values for the desired operation. The driver part configures each register based on the parameter values in the
configuration part.
You can configure the configuration part according to your system.

4.1 CAN FD Setup
Do the following to set up CAN FD:
1. Initialize the CAN FD peripheral clock by configuring and assigning a clock divider to the CAN FD

peripheral.
2. Enable the I/O ports used for CAN FD communication.
3. Map CAN FD system interrupt sources to available external CPU interrupts.
4. Initialize the CAN FD Controller.
For steps 1 to 3 set up, see the “Clocking System”, “Input/Output Subsystem”, and “Interrupts” sections in the
Architecture Technical Reference Manual (TRM).

4.2 Initialize CAN FD
Figure 5 shows the flow to initialize the CAN FD controller. In this flow, (0) is performed in the configuration part,
and (1) to (9) are performed in the driver part.
(0) Configure the parameter values according to the system.
(1) Set initialization register (CCCR.INIT) to “1” and stop CAN FD communication. Then, enable the
Configuration Change Enable register (CCCR.CCE) to enable write access to the write-protected CAN FD
configuration registers.
(2) Configure the number of elements of the message filter and the start address offset in the Message RAM with
the Standard ID Filter Configuration (SIDFC) register and the Extended ID Filter Configuration register (XIDFC).
Configure the Extended ID AND Mask (XIDAM) register for masking the ID bits that are not to be used for
extended ID message acceptance filtering.
(3) For Rx and Tx messages, configure the element size of the Rx FIFO and start address offset in Message RAM
with the Rx FIFO 0 Configuration (RXF0C) register and Rx FIFO 1 Configuration (RXF1C) register. The Rx FIFO Top
pointer logic is enabled/disabled by setting the RXFTOP_CTL register.
Configure the Rx buffer start address offset in the Rx Buffer Configuration (RXBC) register and the data field size
of Rx buffer or FIFO elements in the Rx Buffer/FIFO Element Size Configuration (RXESC) register.
If the application uses Tx event FIFO it must be configured in the TXEFC register. The event FIFO size, start
address offset, and watermark level must be configured in this register.
Configure the number of Tx buffers and start address offset in the Message RAM with the Tx Buffer Configuration
(TXBC) register. Set the size of the data field of the Tx buffer with the Tx Buffer Element Size Configuration
(TXESC) register.
(4) Clear the Message RAM area intended to be allocated for this CAN FD channel. This Message RAM area will
hold the Rx and Tx buffers and filter configurations for this channel.
(5) Configure the mode of operation – Classical CAN/CAN FD mode (CCCR.FDOE) and the Bit Rate Switch
(CCCR.BRSE) in the CC Control Register (CCCR).
(6) Configure the Bit timing - Nominal Bit Timing & Prescaler Register (NBTP) used in the arbitration phase and
the Data Bit Timing & Prescaler Register (DBTP) used in the data phase when the bit rate switch is enabled in

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 9 002-20278 Rev. *E
2023-11-10

CAN FD mode. Configure the Transmitter Delay Compensation Register (TDCR) for using higher bit rates during
the CAN FD data phase.
(7) For message filters, determine the handling of received frames with message IDs that do not match any
filters as set in the Global Filter Configuration (GFC) register.
Set up message filters in the address obtained by adding the start address offset (SIDFC/XIDFC) to the start
address of Message RAM. Range Filter, Dual Filter, or Classic Bit Mask Filter can be configured. For details, see
the Message RAM chapter in the ArchitectureTRM.
(8) To enable Tx buffers to assert an interrupt upon transmission, configure the Tx Buffer Transmission Interrupt
Enable (TXBTIE) register. Similarly, for Tx buffers to assert an interrupt upon completion of transmission
cancellation, configure the Tx Buffer Cancellation Finished Interrupt Enable (TXBCIE) register. Clear the
interrupt flags in the Interrupt Register (IR) and enable each interrupt in the Interrupt Enable (IE) register. The
CAN FD Controller has dual interrupt lines; Interrupt Line Select (ILS) determines the line the interrupt is
assigned to. Enable the interrupt line with Interrupt Line Enable (ILE).
(9) Set the Initialization register (CCCR.INIT) to ‘0’ to start the operation of CAN FD. The CAN FD channel is ready
for transmitting/receiving messages once the read of CCCR.INIT results in a value of ‘0’.

Note: Some external transceivers require to be configured (for example, via SPI interface) before they can
facilitate CAN FD communication. For details, see the device datasheet of the transceiver used in your
hardware.

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 10 002-20278 Rev. *E
2023-11-10

START

Stop CAN FD Communication
and

Enable to Write Protected Configuration
Register

(1)
Select CAN/CAN FD Mode and Set Bit

Rate Switch(5)

Configure Nominal Bit Timing &
Prescaler

Configure Data Bit Timing & Prescaler

Configure Transmitter Delay
Compensation

(6)
Configure Standard ID Filter Start

Address

Configure Extended ID Filter Start
Address

(7)

Configure Extended ID AND Mask

Configure Rx Buffer/FIFO Element Size

Configure Rx FIFO 0/1

Configure RxFIFO 0,1 Top Pointer Logic

Configure Rx Buffer Start Address

Configure Tx Buffer Element Size

Configure Tx Event FIFO

Configure Tx Buffer

Configure Standard ID Filter

Configure Extended ID Filter

(2)

(3)

Configure Interrupt Enable

Configure Interrupt line Select

Configure Interrupt line Enable

(8)

Start CAN FD Communication

(9)

END

Configure Global Filter

Clear the Message RAM Area(4)

CCCR.INIT = 0 ?

Yes

No

(2-1)

(2-2)

(2-3)

(3-1)

(3-2)

(3-3)

(3-4)

(3-5)

(3-6)

(3-7)

(6-1)

(6-2)

(6-3)

(7-1)

(7-2)

(7-3)

(8-1)

(8-2)

(8-3)

Configure Parameter Values(0)

Figure 5 Example of CAN FD Initialization Flow

4.2.1 Use case
This section explains an example of CAN FD initialization using the following use case. CAN FD initialization is
configured using SDL.
Use case:

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 11 002-20278 Rev. *E
2023-11-10

• Mode: CAN FD
• CAN Instance: CAN0_CH0
• Interrupt handler: For CAN message reception
• Input Clock: 40 MHz
• Normal Bit rate (Sample point = 75%)

- 500 kbps, 1 bit = 8 tq
- Prescaler = 40 MHz / 500 kbps / 8 tq = 10
- tseg1 = 5 tq, tseg2 = 2 tq, sjw = 2 tq

• Fast Bit rate (Sample point = 75%)
- 1 Mbps, 1 bit = 8 tq
- Prescaler = 40 MHz / 1 Mbps / 8 tq = 5
- tseg1 = 5 tq, tseg2 = 2 tq, sjw = 2 tq

• Filter Configuration: Two Standard and Extended IDs
• Transceiver delay compensation: unused
• Rx/Tx Data Size: 64 bytes
• Number Tx event FIFO/Buffer: 4

4.2.2 Configuration for CAN FD Controller
Table 3 lists the parameters of the configuration part in SDL for CAN FD initialization.

Table 3 List of CAN FD Initialization Parameters

Output Pin Description Initial Setting

Can_Cfg.txCallback Set Interrupt handler address for each event.
No handling, if set to NULL.

NULL

Can_Cfg.rxCallback CAN_RxMsgCallback

Can_Cfg.rxFifoWithTopCallback NULL

Can_Cfg.statusCallback NULL

Can_Cfg.errorCallback NULL

Can_Cfg.canFDMode Select configure mode
True: CAN FD mode, False: Classic CAN mode

true

Can_Cfg.bitrate Normal bit rate setting. –

.prescaler Set value by which the oscillator frequency is
divided for generating the bit time quanta. The
setting value is actual value minus 1.

10u–1u

.timeSegment1 Set normal time segment 1. The setting value is
actual value minus 1.

5u–1u

.timeSegment2 Set normal time segment 2. The setting value is
actual value minus 1.

2u–1u

.syncJumpWidth Set normal (Re)Synchronization Jump Width. The
setting value is actual value minus 1.

2u–1u

Can_Cfg.fastBitrate Fast bit rate setting. It should be needed if you set
CAN FD mode.

–

(table continues...)

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 12 002-20278 Rev. *E
2023-11-10

Table 3 (continued) List of CAN FD Initialization Parameters

Output Pin Description Initial Setting

.prescaler Set value by which the oscillator frequency is
divided for generating the bit time quanta. The
setting value is actual value minus 1.

5u–1u

.timeSegment1 Set time segment 1. The setting value is actual
value minus 1.

5u–1u

.timeSegment2 Set time segment 2. The setting value is actual
value minus 1.

2u–1u

.syncJumpWidth Set (Re)Synchronization Jump Width. The setting
value is actual value minus 1.

2u–1u

Can_Cfg.tdcConfig Transmitter Delay Compensation setting. It should
be needed if you set CAN FD mode.

–

.tdcEnabled Set transmitter delay compensation enable.
True: Enable, False: Disable

false

.tdcOffset Set transmitter delay compensation offset. 0

.tdcFilterWindow Set transmitter delay compensation filter window
length.

0

Can_Cfg.sidFilterConfig Set standard message ID filters –

.numberOfSIDFilters Number of standard message ID filters sizeof(stdIdFilter) /
sizeof(stdIdFilter[0])

.sidFilter Set standard message ID filter address stdIdFilter

Can_Cfg.extidFilterConfig Set extended message ID filters –

.numberOfEXTIDFilter
s

Number of extended message ID filters sizeof(extIdFilter) /
sizeof(extIdFilter[0])

.extidFilter Set extended message ID filter address extIdFilter

.extIDANDMask Set value to be ANDed with the Message ID of a
received frame for acceptance filtering of extended
frames.

0x1fffffff

Can_Cfg.globalFilterConfig Global Filter Setting –

.nonMatchingFramesS
tandard

Defines how received messages that do not match
any element of the filter list are treated.
Accept in Rx FIFO 0, Accept in Rx FIFO 1, Reject

CY_CANFD_ACCEPT_I
N_RXFIFO_0

.nonMatchingFramesE
xtended

CY_CANFD_ACCEPT_I
N_RXFIFO_1

.rejectRemoteFrames
Standard

Reject Remote Frames
True: Reject all remote frames, False: Filter remote
frames

true

.rejectRemoteFrames
Extended

true

Can_Cfg.rxBufferDataSize Set Rx event FIFO size. CY_CANFD_BUFFER_D
ATA_SIZE_64

(table continues...)

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 13 002-20278 Rev. *E
2023-11-10

Table 3 (continued) List of CAN FD Initialization Parameters

Output Pin Description Initial Setting

Can_Cfg.rxFifo1DataSize Set Rx data buffer size CY_CANFD_BUFFER_D
ATA_SIZE_64

Can_Cfg.rxFifo0DataSize Set Rx FIFO1 size CY_CANFD_BUFFER_D
ATA_SIZE_64

Can_Cfg.txBufferDataSize Set Tx buffer data size CY_CANFD_BUFFER_D
ATA_SIZE_64

Can_Cfg.rxFifo0Config Configure Rx FIFO 0 –

.mode FIFO 0 Operation Mode
Blocking mode, Overwrite mode

CY_CANFD_FIFO_MOD
E_BLOCKING

.watermark Set level for Rx FIFO 0 watermark interrupt 10u

.numberOfFifoElemen
ts

Set number of Rx FIFO 0 elements 8u

.topPointerLogicEnabl
ed

It enables the FIFO top pointer logic to set the FIFO
Top Address and message word counter. True:
Enable, False: Disable

false

Can_Cfg.rxFifo1Config Configure Rx FIFO 0 –

.mode FIFO 1 Operation Mode
Blocking mode, Overwrite mode

CY_CANFD_FIFO_MOD
E_BLOCKING

.watermark Set level for Rx FIFO 1 watermark interrupt 10u

.numberOfFifoElemen
ts

Set number of Rx FIFO 1 elements 8u

.topPointerLogicEnabl
ed

It enables the FIFO top pointer logic to set the FIFO
Top Address and message word counter. True:
Enable, False: Disable

false

Can_Cfg.noOfRxBuffers Set number of Tx event FIFO 4u

Can_Cfg.noOfTxBuffers Set number of dedicated Tx buffers 4u

Code Listing 1 demonstrates an example program to initialize CAN FD in the configuration part.

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 14 002-20278 Rev. *E
2023-11-10

Code Listing 1 Example to Initialize CAN FD in Configuration Part

/* Standard ID Filter configuration */
static const cy_stc_id_filter_t stdIdFilter[] =
{
 /* Standard ID filter. */
 CANFD_CONFIG_STD_ID_FILTER_CLASSIC_RXBUFF(0x010u, 0u), /* ID=0x010, store into RX buffer
Idx0 */
 CANFD_CONFIG_STD_ID_FILTER_CLASSIC_RXBUFF(0x020u, 1u), /* ID=0x020, store into RX buffer
Idx1 */
};

/* Extended ID Filter configration */
static const cy_stc_extid_filter_t extIdFilter[] =
{
 /* Extended ID filter. */
 CANFD_CONFIG_EXT_ID_FILTER_CLASSIC_RXBUFF(0x10010u, 2u), /* ID=0x10010, store into RX
buffer Idx2 */
 CANFD_CONFIG_EXT_ID_FILTER_CLASSIC_RXBUFF(0x10020u, 3u), /* ID=0x10020, store into RX
buffer Idx3 */
};

/* CAN configuration */
/* Configure interrupt handler for each event. Registers CAN message reception event. Others
are NULL */
cy_stc_canfd_config_t canCfg =
{
 .txCallback = NULL, // Unused.
 .rxCallback = CAN_RxMsgCallback,
 .rxFifoWithTopCallback = NULL, //CAN_RxFifoWithTopCallback,
 .statusCallback = NULL, // Un-supported now
 .errorCallback = NULL, // Un-supported now

 .canFDMode = true, // Use CANFD mode
 // 40 MHz
 .bitrate = // Nominal bit rate settings
(sampling point = 75%)
 {
 /* Normal bit rate setting. Prescaler = 10, tseg1 = 4, tseg2 = 1, sjw = 1. Set to
minus 1. */
 .prescaler = 10u - 1u, // cclk/10, When using 500kbps,
1bit = 8tq
 .timeSegment1 = 5u - 1u, // tseg1 = 5tq
 .timeSegment2 = 2u - 1u, // tseg2 = 2tq
 .syncJumpWidth = 2u - 1u, // sjw = 2tq
 },

 .fastBitrate = // Fast bit rate settings (sampling
point = 75%)
 {
 /* Fast bit rate setting. Prescaler = 5, tseg1 = 4, tseg2 = 1, sjw = 1. Set to minus
1. */
 .prescaler = 5u - 1u, // cclk/5, When using 1Mbps, 1bit =

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 15 002-20278 Rev. *E
2023-11-10

8tq
 .timeSegment1 = 5u - 1u, // tseg1 = 5tq,
 .timeSegment2 = 2u - 1u, // tseg2 = 2tq
 .syncJumpWidth = 2u - 1u, // sjw = 2tq
 },
 .tdcConfig = // Transceiver delay compensation,
unused.
 {
 /* Configure Transmitter Delay Compensation. Set tdcEnabled to false (this is
unused). */
 .tdcEnabled = false,
 .tdcOffset = 0,
 .tdcFilterWindow= 0,
 },
 .sidFilterConfig = // Standard message ID filters
setting.
 {
 .numberOfSIDFilters = sizeof(stdIdFilter) / sizeof(stdIdFilter[0]),
 .sidFilter = stdIdFilter,
 },
 .extidFilterConfig = // Extended message ID filters
setting.
 {
 .numberOfEXTIDFilters = sizeof(extIdFilter) / sizeof(extIdFilter[0]),
 .extidFilter = extIdFilter,
 .extIDANDMask = 0x1fffffff, // No pre filtering.
 },
 .globalFilterConfig = // Global filter setting.
 {
 .nonMatchingFramesStandard = CY_CANFD_ACCEPT_IN_RXFIFO_0, // Reject none match IDs
 .nonMatchingFramesExtended = CY_CANFD_ACCEPT_IN_RXFIFO_1, // Reject none match IDs
 .rejectRemoteFramesStandard = true, // No remote frame
 .rejectRemoteFramesExtended = true, // No remote frame
 },
 /* Configure FIFO and data buffer size: 64 bytes. */
 .rxBufferDataSize = CY_CANFD_BUFFER_DATA_SIZE_64,
 .rxFifo1DataSize = CY_CANFD_BUFFER_DATA_SIZE_64,
 .rxFifo0DataSize = CY_CANFD_BUFFER_DATA_SIZE_64,
 .txBufferDataSize = CY_CANFD_BUFFER_DATA_SIZE_64,
 .rxFifo0Config = // RX FIFO0, unused.
 {
 /* Configure Rx FIFO 0. Set topPointerLogicEnabled to false (RxFIFO 0 is unused). */
 .mode = CY_CANFD_FIFO_MODE_BLOCKING,
 .watermark = 10u,
 .numberOfFifoElements = 8u,
 .topPointerLogicEnabled = false,
 },
 .rxFifo1Config = // RX FIFO1, unused.
 {
 /* Configure Rx FIFO 1. */
 .mode = CY_CANFD_FIFO_MODE_BLOCKING,
 .watermark = 10u,
 .numberOfFifoElements = 8u,

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 16 002-20278 Rev. *E
2023-11-10

 .topPointerLogicEnabled = false, // true,
 },
 .noOfRxBuffers = 4u,
 .noOfTxBuffers = 4u, /* Configure Tx event FIFO and Buffer.
 Set to 4.
 */
};

int main(void)
{
 :
 /* CAN Channel setting. CAN0 Channel 0. */
Cy_CANFD_Init(CY_CANFD_TYPE, &canCfg);
 :
}

4.2.3 Configuration for Message RAM
This section shows that the configuration of CAN Message RAM and the overall message RAM size can be
different for each TRAVEO™ device. You need to specify the size allocated per channel under each CAN macro. As
part of SDL, a configuration is provided as an example, which can be modified based on your requirement for
the respective application.
CYT2B7 has a 24-KB Message RAM per CAN macro. Code Listing 2 shows an example configuration which
allocates 8 KB per channel. You can change this code to allocate 10 KB + 10 KB + 4 KB.

Code Listing 2 Example Configuration of Message RAM

/** Offset of CAN FD Message RAM (MRAM). Total 24k MRAM per CAN FD instance is shared by all
CAN FD channels
 * within an instance and allocation for each channel is done by user. Below shown is example
allocation */

/** Defining MRAM size (in bytes) per channel for CAN0 */
#define CY_CANFD0_0_MSGRAM_SIZE ((CANFD0_MRAM_SIZE*1024)/CANFD0_CAN_NR)
#define CY_CANFD0_1_MSGRAM_SIZE ((CANFD0_MRAM_SIZE*1024)/CANFD0_CAN_NR)
#define CY_CANFD0_2_MSGRAM_SIZE ((CANFD0_MRAM_SIZE*1024)/CANFD0_CAN_NR)

4.2.4 Example Code to Initialize CAN FD in Driver Part
Code Listing 3 demonstrates an example program to initialize CAN FD in the driver part.
The following description will help you understand the register notation of the driver part of SDL:
• pstcCanFDChMTTCAN->unCCCR.u32Register is the CANFDx_CHy_CCCR register mentioned in the Registers

TRM. Other registers are also described in the same manner. “x” signifies the CAN FD instance and “y”
signifies the channel number of CAN FD instance.

• Performance improvement measures

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 17 002-20278 Rev. *E
2023-11-10

For register setting performance improvement, the SDL writes a complete 32-bit data to the register. Each bit
field is generated in advance in a bit writable buffer and written to the register as the final 32-bit data.

unRXESC.stcField.u3RBDS = pstcConfig->rxBufferDataSize;
unRXESC.stcField.u3F1DS = pstcConfig->rxFifo1DataSize; /* 1. Generate 32-bit data on the
buffer. */
unRXESC.stcField.u3F0DS = pstcConfig->rxFifo0DataSize;
pstcCanFDChMTTCAN->unRXESC.u32Register = unRXESC.u32Register; /* 2. Write to register as
complete 32-bit data. */

See cyip_canfd.h under hdr/rev_x for more information on the union and structure representation of registers.

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 18 002-20278 Rev. *E
2023-11-10

Code Listing 3 Example to Initialize CAN FD in Driver Part

cy_en_canfd_status_t Cy_CANFD_Init(cy_pstc_canfd_type_t pstcCanFD, const cy_stc_canfd_config_t*
pstcConfig)
{
// Local variable declarations
cy_stc_canfd_context_t* pstcCanFDContext;
uint32_t* pu32Adrs;
uint32_t u32Count;
uint32_t u32SizeInWord;

cy_stc_id_filter_t* pstcSIDFilter;
cy_stc_extid_filter_t* pstcEXTIDFilter;
cy_stc_canfd_msgram_config_t stcMsgramConfig;
volatile stc_CANFD_CH_M_TTCAN_t* pstcCanFDChMTTCAN;

/* Shadow data to avoid RMW and speed up HW access */
/* Set data on the buffer to ‘0’ for performance improvement. */
un_CANFD_CH_SIDFC_t unSIDFC = { 0 };
un_CANFD_CH_XIDFC_t unXIDFC = { 0 };
un_CANFD_CH_XIDAM_t unXIDAM = { 0 };
un_CANFD_CH_RXF0C_t unRXF0C = { 0 };
un_CANFD_CH_RXF1C_t unRXF1C = { 0 };
un_CANFD_CH_RXBC_t unRXBC = { 0 };
un_CANFD_CH_TXEFC_t unTXEFC = { 0 };
un_CANFD_CH_TXBC_t unTXBC = { 0 };
un_CANFD_CH_CCCR_t unCCCR = { 0 };
un_CANFD_CH_NBTP_t unNBTP = { 0 };
un_CANFD_CH_DBTP_t unDBTP = { 0 };
un_CANFD_CH_TDCR_t unTDCR = { 0 };
un_CANFD_CH_GFC_t unGFC = { 0 };
un_CANFD_CH_RXESC_t unRXESC = { 0 };
un_CANFD_CH_TXESC_t unTXESC = { 0 };
un_CANFD_CH_IE_t unIE = { 0 };
un_CANFD_CH_ILS_t unILS = { 0 };
un_CANFD_CH_ILE_t unILE = { 0 };
un_CANFD_CH_RXFTOP_CTL_t unRXFTOP_CTL = { 0 };

/* Check for NULL pointers */
if (pstcCanFD == NULL ||
 pstcConfig == NULL ||
 /* Check if configuration parameter values are valid. */
 ((pstcConfig->sidFilterConfig.numberOfSIDFilters != 0) && (pstcConfig-
>sidFilterConfig.sidFilter == NULL)) ||((pstcConfig->extidFilterConfig.numberOfEXTIDFilters !=
0) && (pstcConfig->extidFilterConfig.extidFilter == NULL))
 　)
　　{
return CY_CANFD_BAD_PARAM;
　　}

/* Get pointer to internal data structure */
pstcCanFDContext = Cy_CANFD_GetContext(pstcCanFD);

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 19 002-20278 Rev. *E
2023-11-10

/* Check for NULL */
if (pstcCanFDContext == NULL)
　　{
return CY_CANFD_BAD_PARAM;
　　}
/* Set notification callback functions */
/* Configure interrupt handler for callback events. */
pstcCanFDContext->canFDInterruptHandling.canFDTxInterruptFunction = pstcConfig->txCallback;
pstcCanFDContext->canFDInterruptHandling.canFDRxInterruptFunction = pstcConfig->rxCallback;
pstcCanFDContext->canFDInterruptHandling.canFDRxWithTopPtrInterruptFunction = pstcConfig-
>rxFifoWithTopCallback;
pstcCanFDContext->canFDNotificationCb.canFDStatusInterruptFunction = pstcConfig->statusCallback;
pstcCanFDContext->canFDNotificationCb.canFDErrorInterruptFunction = pstcConfig->errorCallback;

/* Get the pointer to M_TTCAN of the CAN FD channel */
/* Get base address of CANx channel register. */
pstcCanFDChMTTCAN = &pstcCanFD->M_TTCAN;

/* Set CCCR.INIT to 1 and wait until it will be updated. */
pstcCanFDChMTTCAN->unCCCR.u32Register = 0x1ul;
while(pstcCanFDChMTTCAN->unCCCR.stcField.u1INIT != 1)
 {
 }

 /* Cancel protection by setting CCE */
 /* (1) Stop CAN FD communication and enable to write to Protected Configuration Register.
*/
 pstcCanFDChMTTCAN->unCCCR.u32Register = 0x3ul;

 /* Standard ID filter */
 /* (2-1) Configure Standard ID filter. */
 unSIDFC.stcField.u8LSS = pstcConfig->sidFilterConfig.numberOfSIDFilters; // Number of SID
filters
 unSIDFC.stcField.u14FLSSA = stcMsgramConfig.offset >> 2; // Start address (word) of SID
filter configuration in message RAM
 pstcCanFDChMTTCAN->unSIDFC.u32Register = unSIDFC.u32Register;

 /* Extended ID filter */
 unXIDFC.stcField.u7LSE = pstcConfig->extidFilterConfig.numberOfEXTIDFilters; // Number of
ext id filters
 unXIDFC.stcField.u14FLESA = pstcCanFDChMTTCAN->unSIDFC.stcField.u14FLSSA +
 (pstcConfig->sidFilterConfig.numberOfSIDFilters * SIZE_OF_SID_FILTER_IN_WORD); // Start
address (word) of ext id filter configuration in message RAM
 /* (2-2) Configure Extended ID Filter.Start address is placed under Standard ID filter
area. */
 pstcCanFDChMTTCAN->unXIDFC.u32Register = unXIDFC.u32Register;

 /* Extended ID AND Mask */
 unXIDAM.stcField.u29EIDM = pstcConfig->extidFilterConfig.extIDANDMask;
 /* (2-3) Configure Extended ID Mask. */
 pstcCanFDChMTTCAN->unXIDAM.u32Register = unXIDAM.u32Register;

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 20 002-20278 Rev. *E
2023-11-10

 /* Configuration of Rx Buffer and Rx FIFO */
 unRXESC.stcField.u3RBDS = pstcConfig->rxBufferDataSize;
 unRXESC.stcField.u3F1DS = pstcConfig->rxFifo1DataSize;
 unRXESC.stcField.u3F0DS = pstcConfig->rxFifo0DataSize;
 /* (3-1) Configure Rx Buffer/FIFO Element size. */
 pstcCanFDChMTTCAN->unRXESC.u32Register = unRXESC.u32Register;

 /* Rx FIFO 0 */
 unRXF0C.stcField.u1F0OM = pstcConfig->rxFifo0Config.mode;
 unRXF0C.stcField.u7F0WM = pstcConfig->rxFifo0Config.watermark;
 unRXF0C.stcField.u7F0S = pstcConfig->rxFifo0Config.numberOfFifoElements;
 unRXF0C.stcField.u14F0SA = pstcCanFDChMTTCAN->unXIDFC.stcField.u14FLESA +
 /* (3-2) Configure Rx FIFO 0. Start address is placed under Extend ID filter area. */
 (pstcConfig->extidFilterConfig.numberOfEXTIDFilters * SIZE_OF_EXTID_FILTER_IN_WORD);
 pstcCanFDChMTTCAN->unRXF0C.u32Register = unRXF0C.u32Register;

 /* Rx FIFO 1 */
 unRXF1C.stcField.u1F1OM = pstcConfig->rxFifo1Config.mode;
 unRXF1C.stcField.u7F1WM = pstcConfig->rxFifo1Config.watermark;
 unRXF1C.stcField.u7F1S = pstcConfig->rxFifo1Config.numberOfFifoElements;
 unRXF1C.stcField.u14F1SA = pstcCanFDChMTTCAN->unRXF0C.stcField.u14F0SA +
 /* (3-2) Configure Rx FIFO Start address is placed under Rx FIFO 0 area. */
 (pstcConfig->rxFifo0Config.numberOfFifoElements * (2 + dataBufferSizeInWord[pstcConfig-
>rxFifo0DataSize]));
 pstcCanFDChMTTCAN->unRXF1C.u32Register = unRXF1C.u32Register;

 /* Rx FIFO 0,1 Top pointer logic config */
 /* (3-3) Configure RxFIFO 0,1 Top pointer logic. */
 unRXFTOP_CTL.stcField.u1F0TPE = (pstcConfig->rxFifo0Config.topPointerLogicEnabled == false)
? 0 : 1;
 unRXFTOP_CTL.stcField.u1F1TPE = (pstcConfig->rxFifo1Config.topPointerLogicEnabled == false)
? 0 : 1;
 pstcCanFD->unRXFTOP_CTL.u32Register = unRXFTOP_CTL.u32Register;

 /* Rx buffer */
 /* (3-4) Configure Rx Buffer. Start address is placed under Rx FIFO 1 area. */
 unRXBC.stcField.u14RBSA = pstcCanFDChMTTCAN->unRXF1C.stcField.u14F1SA +
 (pstcConfig->rxFifo1Config.numberOfFifoElements * (2 + dataBufferSizeInWord[pstcConfig-
>rxFifo1DataSize]));
 pstcCanFDChMTTCAN->unRXBC.u32Register = unRXBC.u32Register;

 /* Configuration of Tx Buffer and Tx FIFO/Queue */
 unTXESC.stcField.u3TBDS = pstcConfig->txBufferDataSize;
 /* (3-5) Configure Tx Buffer Element Size. */
 pstcCanFDChMTTCAN->unTXESC.u32Register = unTXESC.u32Register;

 /* Tx FIFO/QUEUE (not use) */
 unTXEFC.stcField.u6EFWM = 0; /* Watermark interrupt disabled */
 unTXEFC.stcField.u6EFS = 0; /* Tx Event FIFO disabled */
 /* (3-6) Configure Tx Event FIFO. Start address is placed under Tx Buffer area. */
 unTXEFC.stcField.u14EFSA = pstcCanFDChMTTCAN->unRXBC.stcField.u14RBSA +
 (pstcConfig->noOfRxBuffers * (2 + dataBufferSizeInWord[pstcConfig->rxBufferDataSize]));

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 21 002-20278 Rev. *E
2023-11-10

 pstcCanFDChMTTCAN->unTXEFC.u32Register = unTXEFC.u32Register;

 /* Tx buffer */
 unTXBC.stcField.u1TFQM = 0; /* Tx FIFO operation */
 unTXBC.stcField.u6TFQS = 0; /* No Tx FIFO/Queue */
 unTXBC.stcField.u6NDTB = pstcConfig->noOfTxBuffers; /* Number of Dedicated Tx Buffers */
 /* (3-7) Configure Tx Buffer. Start address is placed under Tx FIFO area. */
 unTXBC.stcField.u14TBSA = pstcCanFDChMTTCAN->unTXEFC.stcField.u14EFSA +
 (10 * SIZE_OF_TXEVENT_FIFO_IN_WORD); // Reserving memory for 10 TxEvent Fifo elements
for easy future use
 pstcCanFDChMTTCAN->unTXBC.u32Register = unTXBC.u32Register;

 /* Initialize message RAM area(Entire region zeroing) */
 pu32Adrs = (uint32_t *)(((uint32_t)pstcCanFD & 0xFFFF0000ul) +
(uint32_t)CY_CANFD_MSGRAM_START + stcMsgramConfig.offset);
 u32SizeInWord = stcMsgramConfig.size >> 2; /* (4) Clear the Message RAM area. */
 for(u32Count = 0; u32Count < u32SizeInWord; u32Count++)
 {
 *pu32Adrs++ = 0ul;
 }

 /* Configuration of CAN bus */
 /* CCCR register */
 unCCCR.stcField.u1TXP = 0; /* Transmit pause disabled */
 unCCCR.stcField.u1BRSE = ((pstcConfig->canFDMode == true) ? 1 : 0); /* Bit rate switch */
 unCCCR.stcField.u1FDOE = ((pstcConfig->canFDMode == true) ? 1 : 0); /* FD operation */
 unCCCR.stcField.u1TEST = 0; /* Normal operation */
 unCCCR.stcField.u1DAR = 0; /* Automatic retransmission enabled */
 unCCCR.stcField.u1MON_ = 0; /* Bus Monitoring Mode is disabled */
 unCCCR.stcField.u1CSR = 0; /* No clock stop is requested */
 unCCCR.stcField.u1ASM = 0; /* Normal CAN operation. */
 /* (5) Select CAN/CAN FD Mode and Set Bit Rate Switch. */
 pstcCanFDChMTTCAN->unCCCR.u32Register = unCCCR.u32Register;

 /* Nominal Bit Timing & Prescaler Register */
 unNBTP.stcField.u9NBRP = pstcConfig->bitrate.prescaler;
 unNBTP.stcField.u8NTSEG1 = pstcConfig->bitrate.timeSegment1;
 unNBTP.stcField.u7NTSEG2 = pstcConfig->bitrate.timeSegment2;
 unNBTP.stcField.u7NSJW = pstcConfig->bitrate.syncJumpWidth;
 /* (6-1) Configure Nominal Bit Timing & Prescaler. */
 pstcCanFDChMTTCAN->unNBTP.u32Register = unNBTP.u32Register;

 if(pstcConfig->canFDMode == true)
 {
 /* Data Bit Timing & Prescaler */
 unDBTP.stcField.u5DBRP = pstcConfig->fastBitrate.prescaler;
 unDBTP.stcField.u5DTSEG1 = pstcConfig->fastBitrate.timeSegment1;
 /* (6-2) Configure Data Bit Timing & Prescaler.This configuration is only for CAN FD
mode. */
 unDBTP.stcField.u4DTSEG2 = pstcConfig->fastBitrate.timeSegment2;
 unDBTP.stcField.u4DSJW = pstcConfig->fastBitrate.syncJumpWidth;
 unDBTP.stcField.u1TDC = ((pstcConfig->tdcConfig.tdcEnabled == true) ? 1 : 0); /*

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 22 002-20278 Rev. *E
2023-11-10

Transceiver Delay Compensation enabled */
 pstcCanFDChMTTCAN->unDBTP.u32Register = unDBTP.u32Register;

 /* Transmitter Delay Compensation */
 /* (6-3) Configure Transmitter Delay Compensation. This configuration is only for CAN
FD mode. */
 unTDCR.stcField.u7TDCO = pstcConfig->tdcConfig.tdcOffset; /* Transmitter Delay
Compensation Offset */
 unTDCR.stcField.u7TDCF = pstcConfig->tdcConfig.tdcFilterWindow; /* Transmitter Delay
Compensation Filter Window Length */
 pstcCanFDChMTTCAN->unTDCR.u32Register = unTDCR.u32Register;
 }

 /* Configuration of Global Filter */
 unGFC.stcField.u2ANFS = pstcConfig->globalFilterConfig.nonMatchingFramesStandard;
 /* (7-1) Configure Global Filter. */
 unGFC.stcField.u2ANFE = pstcConfig->globalFilterConfig.nonMatchingFramesExtended;
 unGFC.stcField.u1RRFS = ((pstcConfig->globalFilterConfig.rejectRemoteFramesStandard ==
true) ? 1 : 0);
 unGFC.stcField.u1RRFE = ((pstcConfig->globalFilterConfig.rejectRemoteFramesExtended ==
true) ? 1 : 0);
 pstcCanFDChMTTCAN->unGFC.u32Register = unGFC.u32Register;

 /* Standard Message ID Filters */
 /* (7-2) Configure Standard ID Filter. */
 pstcSIDFilter = (cy_stc_id_filter_t *)(((uint32_t)pstcCanFD & 0xFFFF0000ul) +
 (uint32_t)CY_CANFD_MSGRAM_START +
 (pstcCanFDChMTTCAN->unSIDFC.stcField.u14FLSSA <<
2u));
 for(u32Count = 0; u32Count < pstcConfig->sidFilterConfig.numberOfSIDFilters; u32Count++)
 {
 pstcSIDFilter[u32Count] = pstcConfig->sidFilterConfig.sidFilter[u32Count];
 }

 /* Extended Message ID Filters */
 /* (7-3) Configure Extended ID Filter. */
 pstcEXTIDFilter = (cy_stc_extid_filter_t *)(((uint32_t)pstcCanFD & 0xFFFF0000ul) +
 (uint32_t)CY_CANFD_MSGRAM_START +
 (pstcCanFDChMTTCAN->unXIDFC.stcField.u14FLESA
<< 2u));
 for(u32Count = 0; u32Count < pstcConfig->extidFilterConfig.numberOfEXTIDFilters; u32Count++)
 {
 pstcEXTIDFilter[u32Count] = pstcConfig->extidFilterConfig.extidFilter[u32Count];
 }

 /* Configuration of Interrupt */
 /* Interrupt Enable */
 unIE.stcField.u1ARAE = 0; /* Access to Reserved Address */
 unIE.stcField.u1PEDE = 0; /* Protocol Error in Data Phase */
 unIE.stcField.u1PEAE = 0; /* Protocol Error in Arbitration Phase */
 unIE.stcField.u1WDIE = 0; /* Watchdog */
 unIE.stcField.u1BOE = 0; /* Bus_Off Status */
 unIE.stcField.u1EWE = 0; /* Warning Status */

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 23 002-20278 Rev. *E
2023-11-10

 unIE.stcField.u1EPE = 0; /* Error Passive */
 unIE.stcField.u1ELOE = 0; /* Error Logging Overflow */
 unIE.stcField.u1BEUE = 0; /* Bit Error Uncorrected */
 unIE.stcField.u1BECE = 0; /* Bit Error Corrected */
 unIE.stcField.u1DRXE = 1; /* Message stored to Dedicated Rx Buffer */
 unIE.stcField.u1TOOE = 0; /* Timeout Occurred */
 unIE.stcField.u1MRAFE = 0; /* Message RAM Access Failure */
 unIE.stcField.u1TSWE = 0; /* Timestamp Wraparound */
 unIE.stcField.u1TEFLE = 0; /* Tx Event FIFO Event Lost */
 unIE.stcField.u1TEFFE = 0; /* Tx Event FIFO Full */
 unIE.stcField.u1TEFWE = 0; /* Tx Event FIFO Watermark Reached */
 unIE.stcField.u1TEFNE = 0; /* Tx Event FIFO New Entry */
 unIE.stcField.u1TFEE = 0; /* Tx FIFO Empty */
 unIE.stcField.u1TCFE = 0; /* Transmission Cancellation Finished */
 unIE.stcField.u1TCE = 0; /* Transmission Completed */
 unIE.stcField.u1HPME = 0; /* High Priority Message */
 unIE.stcField.u1RF1LE = 0; /* Rx FIFO 1 Message Lost */
 unIE.stcField.u1RF1FE = 0; /* Rx FIFO 1 Full */
 unIE.stcField.u1RF1WE = 0; /* Rx FIFO 1 Watermark Reached */
 unIE.stcField.u1RF1NE = 1; /* Rx FIFO 1 New Message */
 unIE.stcField.u1RF0LE = 0; /* Rx FIFO 0 Message Lost */
 unIE.stcField.u1RF0FE = 0; /* Rx FIFO 0 Full */
 unIE.stcField.u1RF0WE = 0; /* Rx FIFO 0 Watermark Reached */
 unIE.stcField.u1RF0NE = 1; /* Rx FIFO 0 New Message */ /* (8-1) Configure Interrupt
Enable. */
 pstcCanFDChMTTCAN->unIE.u32Register = unIE.u32Register;

 /* Interrupt Line Select */
 unILS.stcField.u1ARAL = 0; /* Access to Reserved Address */
 unILS.stcField.u1PEDL = 0; /* Protocol Error in Data Phase */
 unILS.stcField.u1PEAL = 0; /* Protocol Error in Arbitration Phase */
 unILS.stcField.u1WDIL = 0; /* Watchdog */
 unILS.stcField.u1BOL = 0; /* Bus_Off Status */
 unILS.stcField.u1EWL = 0; /* Warning Status */
 unILS.stcField.u1EPL = 0; /* Error Passive */
 unILS.stcField.u1ELOL = 0; /* Error Logging Overflow */
 unILS.stcField.u1BEUL = 0; /* Bit Error Uncorrected */
 unILS.stcField.u1BECL = 0; /* Bit Error Corrected */
 unILS.stcField.u1DRXL = 0; /* Message stored to Dedicated Rx Buffer */
 unILS.stcField.u1TOOL = 0; /* Timeout Occurred */
 unILS.stcField.u1MRAFL = 0; /* Message RAM Access Failure */
 unILS.stcField.u1TSWL = 0; /* Timestamp Wraparound */
 unILS.stcField.u1TEFLL = 0; /* Tx Event FIFO Event Lost */
 unILS.stcField.u1TEFFL = 0; /* Tx Event FIFO Full */
 unILS.stcField.u1TEFWL = 0; /* Tx Event FIFO Watermark Reached */
 unILS.stcField.u1TEFNL = 0; /* Tx Event FIFO New Entry */
 unILS.stcField.u1TFEL = 0; /* Tx FIFO Empty */
 unILS.stcField.u1TCFL = 0; /* Transmission Cancellation Finished */
 unILS.stcField.u1TCL = 0; /* Transmission Completed */
 unILS.stcField.u1HPML = 0; /* High Priority Message */
 unILS.stcField.u1RF1LL = 0; /* Rx FIFO 1 Message Lost */
 unILS.stcField.u1RF1FL = 0; /* Rx FIFO 1 Full */
 unILS.stcField.u1RF1WL = 0; /* Rx FIFO 1 Watermark Reached */

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 24 002-20278 Rev. *E
2023-11-10

 unILS.stcField.u1RF1NL = 0; /* Rx FIFO 1 New Message */
 unILS.stcField.u1RF0LL = 0; /* Rx FIFO 0 Message Lost */
 unILS.stcField.u1RF0FL = 0; /* Rx FIFO 0 Full */
 unILS.stcField.u1RF0WL = 0; /* Rx FIFO 0 Watermark Reached */
 unILS.stcField.u1RF0NL = 0; /* Rx FIFO 0 New Message */ /* (8-2) Configure Interrupt
line Select. */
 pstcCanFDChMTTCAN->unILS.u32Register = unILS.u32Register;

 /* Interrupt Line Enable */
 unILE.stcField.u1EINT0 = 1; /* Enable Interrupt Line 0 */ /* (8-3) Configure Interrupt
line Enable. */
 unILE.stcField.u1EINT1 = 0; /* Disable Interrupt Line 1 */
 pstcCanFDChMTTCAN->unILE.u32Register = unILE.u32Register;

 /* CAN-FD operation start */
 /* Set CCCR.INIT to 0 and wait until it will be updated */
 unCCCR.stcField.u1INIT = 0; /* (9) Start CAN FD communication. */
 pstcCanFDChMTTCAN->unCCCR.u32Register = unCCCR.u32Register;
 while(pstcCanFDChMTTCAN->unCCCR.stcField.u1INIT != 0)
 {
 }

 return CY_CANFD_SUCCESS;
}

4.3 Message Transmission
Figure 6 is an example of message transmission flow. This example does not use the Tx Interrupt. In this flow, (0)
is performed in the configuration part, and (1) to (5) are performed in the driver part.
The message is sent via the Tx buffer in the Message RAM area. Ensure that there are no pending requests
(TXBRP). If there is no pending request, calculate the Tx buffer address of the Message RAM and write the
control information and data of the frame to be transmitted by the CAN FD Controller. A message transmission
is started by writing to the Tx Buffer Add Request (TXBAR) register.

START

Transmission Request

END

Check Pending Request

Calculate Tx Buffer Address

Write Data to Tx Buffer

Write Frame Information
to TX Buffer

(1)

(2)

(3)

(4)

(5)

Configure Parameter Values(0)

Figure 6 Example of Message Transmission Flow

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 25 002-20278 Rev. *E
2023-11-10

4.3.1 Use case
This section explains an example of CAN FD message transmission using the following use case and the use
case discussed in Chapter 4.2.1 Use case. CAN FD message transmission is configured using SDL.
Use case:
• FD Format (FDF): 1 (Frame transmitted in CAN FD format)

- Bit Rate Switching (BRS): 1 (CAN FD frame transmitted with bit rate switching)
• Extended Identifier (XTD): 0 (11-bit standard identifier)
• Identifier (ID): 0x525
• Data Length Code (DLC): 15

4.3.2 Configuration
Table 4 lists the parameters of the configuration part in SDL for message transmission.

Table 4 List of Message Transmission Parameters

Parameters Description Value

.canFDFormat Select CAN frame format.
True: CAN FD, False: Classic CAN

true

.idConfig.extended Select CAN identifier format.
True: Extended identifier, False: Standard identifier

false

.idConfig.identifier Set CAN identifier. 0x525

.dataConfig.dataLengthCode Set CAN data length code 15

.dataConfig.data Set transmission data Arbitrary value

Code Listing 4 demonstrates an example program of CAN FD message transmission in the configuration part.

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 26 002-20278 Rev. *E
2023-11-10

Code Listing 4 Example of Message Transmission in Configuration Part

int main(void)
{
 :
/* Prepare CANFD message to transmit*/
 cy_stc_canfd_msg_t stcMsg;

 stcMsg.canFDFormat = true; /* CAN FD format */
 stcMsg.idConfig.extended = false; /* 11-bit standard identifier */
 stcMsg.idConfig.identifier = 0x525; /* CAN ID */
 stcMsg.dataConfig.dataLengthCode = 15; /* CAN Data Length Code */
 stcMsg.dataConfig.data[0] = 0x70190523; /* Transmission data */
 stcMsg.dataConfig.data[1] = 0x70190819; /* Transmission data */
 stcMsg.dataConfig.data[2] = 0x33332222; /* Transmission data */
 stcMsg.dataConfig.data[3] = 0x33332222; /* Transmission data */
 stcMsg.dataConfig.data[4] = 0x55554444; /* Transmission data */
 stcMsg.dataConfig.data[5] = 0x77776666; /* Transmission data */
 stcMsg.dataConfig.data[6] = 0x99998888; /* Transmission data */
 stcMsg.dataConfig.data[7] = 0xBBBBAAAA; /* Transmission data */
 stcMsg.dataConfig.data[8] = 0xDDDDCCCC; /* Transmission data */
 stcMsg.dataConfig.data[9] = 0xFFFFEEEE; /* Transmission data */
 stcMsg.dataConfig.data[10] = 0x78563412;
 stcMsg.dataConfig.data[11] = 0x00000000;
 stcMsg.dataConfig.data[12] = 0x11111111;
 stcMsg.dataConfig.data[13] = 0x22222222;
 stcMsg.dataConfig.data[14] = 0x33333333;
 stcMsg.dataConfig.data[15] = 0x44444444;

/* CAN Transmission setting
CAN0 Channel 0
Message buffer 0
Transmission data
*/
Cy_CANFD_UpdateAndTransmitMsgBuffer(CY_CANFD_TYPE, 0, &stcMsg);
:
}

4.3.3 Example Program of Message Transmission
Code Listing 5 demonstrates an example program of CAN FD message transmission in the driver part.

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 27 002-20278 Rev. *E
2023-11-10

Code Listing 5 Example of Message Transmission in Driver Part

cy_en_canfd_status_t Cy_CANFD_UpdateAndTransmitMsgBuffer(cy_pstc_canfd_type_t pstcCanFD,
uint8_t u8MsgBuf, cy_stc_canfd_msg_t* pstcMsg)
{
 // Local variable declarations
 cy_stc_canfd_context_t* pstcCanFDContext;
 uint16_t u16DlcTemp;
 uint16_t u16Count;
 uint8_t u8DataLengthWord;

 cy_stc_canfd_tx_buffer_t* pstcCanFDTxBuffer;
 volatile stc_CANFD_CH_M_TTCAN_t* pstcCanFDChMTTCAN;

 /* Check for NULL pointers */
 /* Check if configuration parameter values are valid */
 if (pstcCanFD == NULL ||
 pstcMsg == NULL
)
 {
 return CY_CANFD_BAD_PARAM;
 }

 if(u8MsgBuf > 31)
 {
 return CY_CANFD_BAD_PARAM;
 }

 /* Get pointer to internal data structure */
 pstcCanFDContext = Cy_CANFD_GetContext(pstcCanFD);

 /* Check for NULL */
 if (pstcCanFDContext == NULL)
 {
 return CY_CANFD_BAD_PARAM;
 }

 /* Get the pointer to M_TTCAN of the CAN FD channel */
 pstcCanFDChMTTCAN = &pstcCanFD->M_TTCAN;

 /* Check if CAN FD controller is in not in INIT state and Tx buffer is empty or not */
 if((pstcCanFDChMTTCAN->unCCCR.stcField.u1INIT != 0) ||
 ((pstcCanFDChMTTCAN->unTXBRP.u32Register & (1ul << u8MsgBuf)) != 0) /* (1) Check
Pending Request */
)
 {
 return CY_CANFD_BAD_PARAM;
 }

 /* Get Tx Buffer address */
 /* (2) Get the Tx Buffer Address with a calculation function. (See Code Listing 5) */
 pstcCanFDTxBuffer = (cy_stc_canfd_tx_buffer_t*)Cy_CANFD_CalcTxBufAdrs(pstcCanFD, u8MsgBuf);

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 28 002-20278 Rev. *E
2023-11-10

 if(pstcCanFDTxBuffer == NULL)
 {
 return CY_CANFD_BAD_PARAM;
 }

 pstcCanFDTxBuffer->t0_f.rtr = 0; /* Transmit data frame. */
 pstcCanFDTxBuffer->t0_f.xtd = (pstcMsg->idConfig.extended == true) ? 1 : 0;
 pstcCanFDTxBuffer->t0_f.id = (pstcCanFDTxBuffer->t0_f.xtd == 0) ?
 (pstcMsg->idConfig.identifier << 18) : pstcMsg-
>idConfig.identifier;

 pstcCanFDTxBuffer->t1_f.efc = 0; /* Tx Event Fifo not used *//*(3) Write Frame Information
to TX Buffer */
 pstcCanFDTxBuffer->t1_f.mm = 0; /* Not used */
 pstcCanFDTxBuffer->t1_f.dlc = pstcMsg->dataConfig.dataLengthCode;
 pstcCanFDTxBuffer->t1_f.fdf = (pstcMsg->canFDFormat == true) ? 1 : 0;
 pstcCanFDTxBuffer->t1_f.brs = (pstcMsg->canFDFormat == true) ? 1 : 0;

 /* Convert the DLC to data byte word */
 if (pstcMsg->dataConfig.dataLengthCode < 8)
 {
 u16DlcTemp = 0;
 }
 else
 {
 u16DlcTemp = pstcMsg->dataConfig.dataLengthCode - 8;
 }
 u8DataLengthWord = dataBufferSizeInWord[u16DlcTemp];

 /* Data set */
 for (u16Count = 0; u16Count < u8DataLengthWord; u16Count++) /*(4) Write Data to Tx
Buffer */
 {
 pstcCanFDTxBuffer->data_area_f[u16Count] = pstcMsg->dataConfig.data[u16Count];
 }

 /* (5) Transmission Request */
 pstcCanFDChMTTCAN->unTXBAR.u32Register = 1ul << u8MsgBuf; // Transmit buffer add request

 return CY_CANFD_SUCCESS;
}

Code Listing 6 demonstrates an example program of Tx buffer address calculation in the driver part.

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 29 002-20278 Rev. *E
2023-11-10

Code Listing 6 Example of Tx Buffer Address Calculation in Driver Part

static uint32_t* Cy_CANFD_CalcTxBufAdrs(cy_pstc_canfd_type_t pstcCanFD, uint8_t u8MsgBuf)
{
 uint32_t* pu32Adrs;

 if (u8MsgBuf > 31)
 {
 /* Set 0 to the return value if the index is invalid */
 pu32Adrs = NULL;
 }
 else
 {
 /* Set the message buffer address to the return value if the index is available */
 pu32Adrs = (uint32_t*)(((uint32_t)pstcCanFD & 0xFFFF0000ul) +
(uint32_t)CY_CANFD_MSGRAM_START);
 pu32Adrs += pstcCanFD->M_TTCAN.unTXBC.stcField.u14TBSA;
 /* Calculate Tx Buffer Address */
 pu32Adrs += u8MsgBuf * (2 + dataBufferSizeInWord[pstcCanFD-
>M_TTCAN.unTXESC.stcField.u3TBDS]);
 }
 return pu32Adrs;
}

4.4 Message Reception
Based on the filter configuration, message reception can be done in dedicated Rx buffers or in Rx FIFO 0/1. This
section describes the message reception methods.

4.4.1 Message Reception in Dedicated Rx Buffer
Figure 7 shows an example of the message reception flow using the dedicated Rx buffer and Rx interrupt.
When a received message passes acceptance filtering and is stored in one of the dedicated Rx buffers of the
Message RAM area, an interrupt occurs at this event if Rx interrupt is enabled. When the message is stored in the
dedicated Rx buffer, the corresponding bits of the Interrupt Register (IR.DRX) and New Data register 1/2 (NDAT
1/2) are set. Interrupt handling involves the calculation of the absolute address of the Rx buffer in the Message
RAM holding the received message and reading the received message information from the calculated address.
After the message is read from the Rx buffer, the corresponding flag in the NDAT 1/2 register must be cleared to
enable this Rx buffer to receive the next message.

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 30 002-20278 Rev. *E
2023-11-10

(1)

(3)

(4)

(5)

(6)

(7)

(9)

(10)

(11)

(8)

(12)

(2)

START

Is there Any
Interrupt Other than

Tx/Rx?

Is New
Message Stored in

Rx Buffer?

Clear Interrupt flag and Check New
Data flag of Rx Buffer

Calculate Rx Buffer Address

Clear New Data Flag

Read the Message

Read Extended Identifier Flag

Read the Identifier: 11-bit or 20-bit

Check Frame Type

Read the Data Length Code (DLC)

Convert DLC into Number of Data
Words and Read the Data

Tx Interrupt or Rx FIFO Interrupt
Handling

Error Interrupt Handling (Created by
User with User System Requirement)

No

No

Yes

END

Yes

Figure 7 Example of Message Reception in Dedicated Rx Buffer Flow

4.4.1.1 Use case
This section describes an example of the message reception in the dedicated Rx buffer using the use case
discussed in Chapter 4.2.1 Use case.

4.4.1.2 Configuration
This section describes an example of the message reception in the dedicated Rx buffer using the configuration
discussed in Chapter 4.2.2 Configuration for CAN FD Controller.

4.4.1.3 Example Program of Message Reception in Dedicated Rx Buffer
Code Listing 7 demonstrates an example program of message reception in the dedicated Rx buffer. This
program uses the dedicated Rx buffers 0–31 and the Rx Interrupt.

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 31 002-20278 Rev. *E
2023-11-10

Code Listing 7 Example of Message Reception in Dedicated Rx Buffer

void Cy_CANFD_IrqHandler(cy_pstc_canfd_type_t pstcCanFD)
{
 uint32_t* pu32Adrs = 0;
 uint8_t u8MessageBufferNumber ;
 cy_stc_canfd_msg_t stcCanFDmsg;
 volatile stc_CAN_CH_M_TTCAN_t* pstcCanFDChMTTCAN;
 cy_stc_canfd_context_t* pstcCanFDContext;
 uint8_t u8BufferSizeTemp = 0;
 uint32_t au32RxBuf[18];

 /* Get pointer to internal data structure */
 pstcCanFDContext = Cy_CANFD_GetContext(pstcCanFD);

 /* Get the pointer to M_TTCAN of the CAN FD channel */
 pstcCanFDChMTTCAN = &pstcCanFD->M_TTCAN;

 /* Other than Tx/Rx interrupt occurred */
 /* (1) Check for interrupts other than Tx/Rx */
 if (pstcCanFDChMTTCAN->unIR.u32Register & 0x3ff7E0EE)
 {
 /* (2) Error Interrupt handling (created by user with user system requirement)*/
 Cy_CANFD_ErrorHandling(pstcCanFD);
 }

 /* (3) Check if New Message stored in Dedicated Rx Buffer */
 if(pstcCanFDChMTTCAN->unIR.stcField.u1DRX == 1) /* At least one message stored into an Rx
Buffer */
 {
 /* Clear the Message stored to Dedicated Rx Buffer flag */
 /* (4) Clear Interrupt flag and check New Data flag of Dedicated Rx Buffers 0 -31 */
 pstcCanFDChMTTCAN->unIR.stcField.u1DRX = 1UL;

 if(pstcCanFDChMTTCAN->unNDAT1.u32Register != 0) // Message buffers 0-31
 {
 for(u8MessageBufferNumber = 0; u8MessageBufferNumber < 32; u8MessageBufferNumber++)
 {
 if((pstcCanFDChMTTCAN->unNDAT1.u32Register & (1ul << u8MessageBufferNumber)) !=
0)
 {
 // Calculate Rx Buffer address
 /* (5) Get the Rx Buffer address for which New Data flag is set with a
calculation function (See Code Listing 8) */
 pu32Adrs = Cy_CANFD_CalcRxBufAdrs(pstcCanFD, u8MessageBufferNumber);

 // Clear NDAT1 register
 /* (6) Clear New Data flag */
 pstcCanFDChMTTCAN->unNDAT1.u32Register = (1ul << u8MessageBufferNumber);

 break;
 }
 }

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 32 002-20278 Rev. *E
2023-11-10

 }
 else if(pstcCanFDChMTTCAN->unNDAT2.u32Register != 0) // Message buffers 32-63
 {
 for(u8MessageBufferNumber = 0; u8MessageBufferNumber < 32; u8MessageBufferNumber++)
 {
 if((pstcCanFDChMTTCAN->unNDAT2.u32Register & (1ul << u8MessageBufferNumber)) !=
0)
 {
 u8MessageBufferNumber += 32;

 // Calculate Rx Buffer address
 pu32Adrs = Cy_CANFD_CalcRxBufAdrs(pstcCanFD, u8MessageBufferNumber);

 // Clear NDAT2 register
 pstcCanFDChMTTCAN->unNDAT2.u32Register = (1ul << (u8MessageBufferNumber -
32));

 break;
 }
 }
 }
 if(pu32Adrs)
 {
 /* (7) Read the message from Rx Buffer (See Code Listing 9) */
 Cy_CANFD_ExtractMsgFromRXBuffer((cy_stc_canfd_rx_buffer_t *) pu32Adrs,
&stcCanFDmsg);

 /* CAN-FD message received, check if there is a callback function */
 /* Call callback function if it was set previously. */
 if (pstcCanFDContext->canFDInterruptHandling.canFDRxInterruptFunction != NULL)
 {
 /* Message handling by application */
 pstcCanFDContext->canFDInterruptHandling.canFDRxInterruptFunction(false,
u8MessageBufferNumber, &stcCanFDmsg);
 }
 }
 }
}

Code Listing 8 demonstrates an example program of the Rx buffer address calculation.

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 33 002-20278 Rev. *E
2023-11-10

Code Listing 8 Example of Rx Buffer Address Calculation

static uint32_t* Cy_CANFD_CalcRxBufAdrs(cy_pstc_canfd_type_t pstcCanFD, uint8_t u8MsgBuf)
{
 uint32_t* pu32Adrs;

 if (u8MsgBuf > 63)
 {
 /* Set 0 to the return value if the index is invalid */
 pu32Adrs = NULL;
 }
 else
 {
 /* Calculate Rx Buffer address */
 /* Set the message buffer address to the return value if the index is available */
 pu32Adrs = (uint32_t*)(((uint32_t)pstcCanFD & 0xFFFF0000ul) +
(uint32_t)CY_CANFD_MSGRAM_START);
 pu32Adrs += pstcCanFD->M_TTCAN.unRXBC.stcField.u14RBSA;
 pu32Adrs += u8MsgBuf * (2 + dataBufferSizeInWord[pstcCanFD-
>M_TTCAN.unRXESC.stcField.u3RBDS]);
 }
 return pu32Adrs;
}

Code Listing 9 demonstrates an example program of message extraction from Rx buffer.

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 34 002-20278 Rev. *E
2023-11-10

Code Listing 9 Example of Message Extraction from Rx Buffer

/*** Internal function to extract received message from Rx Buffer ***/
void Cy_CANFD_ExtractMsgFromRXBuffer(cy_stc_canfd_rx_buffer_t *pstcRxBufferAddr,
cy_stc_canfd_msg_t *pstcCanFDmsg)
{
 uint16_t u16Count = 0;
 uint16_t u16DlcTemp = 0;

 if(0 == pstcRxBufferAddr)
 {
 return;
 }
 /* Save received data */
/* XTD : Extended Identifier */
 /* (8) Read extended identifier flag (XTD) */
pstcCanFDmsg->idConfig.extended = pstcRxBufferAddr->r0_f.xtd;

/* ID : RxID */
 /* (9) Read the identifier: 11-bit or 29-bit depending on the XTD flag */
if (pstcCanFDmsg->idConfig.extended == false)
{
pstcCanFDmsg->idConfig.identifier = pstcRxBufferAddr->r0_f.id >> 18;
}
else
{
pstcCanFDmsg->idConfig.identifier = pstcRxBufferAddr->r0_f.id;
}

/* FDF : Extended Data Length */
 /* (10) Check Frame type */
pstcCanFDmsg->canFDFormat = pstcRxBufferAddr->r1_f.fdf;

/* DLC : Data Length Code */
 /* (11) Read the Data Length Code (DLC) */
pstcCanFDmsg->dataConfig.dataLengthCode = pstcRxBufferAddr->r1_f.dlc;

/* Copy 0-64 byte of data area */
if (pstcCanFDmsg->dataConfig.dataLengthCode < 8)
{
u16DlcTemp = 0;
}
else
{
 /* (12) Convert DLC into number of data words and read the data */
u16DlcTemp = pstcCanFDmsg->dataConfig.dataLengthCode - 8;
}

for (u16Count = 0; u16Count < iDlcInWord[u16DlcTemp]; u16Count++)
{
pstcCanFDmsg->dataConfig.data[u16Count] = pstcRxBufferAddr->data_area_f[u16Count];
}

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 35 002-20278 Rev. *E
2023-11-10

}

4.4.2 Message Reception in Rx FIFO 0/1
When a received message passes the acceptance filtering and is stored in Rx FIFO 0/1 of the Message RAM area,
an interrupt occurs at this event if Rx FIFO interrupts are enabled. The received message is stored in the Rx FIFO
at the buffer position pointed to by the Rx FIFO Put Index; the corresponding bit in the Interrupt Register
(IR.RF0N/RF1N) is set. The messages in the FIFO are always read out from the position pointed by the Rx FIFO
Get Index. This is depicted in an example in Figure 8 with eight FIFO elements.

0

1

2

34

5

6

7

Get Index
RXFnS.FnGI

Fill Level
RXFnS.FnFL

Put Index
RXFnS.FnPI

Figure 8 Example of Rx FIFO with Eight Elements

The conventional method of Rx FIFO Message handling involves three steps:
1. Calculating the absolute address of the buffer at the Get Index position
2. Reading the received message information
3. Acknowledging the message at the Get Index position
This method comes with the disadvantage of software overhead; to eliminate this overhead, TRAVEO™ T2G
implements a hardware logic on top of the Rx FIFOs. The Rx FIFO top pointer logic provides a single source
register (RXFTOPn_DATA) to read out the message content from the Get Index position, thus eliminating the
need for absolute address calculation. Also, the Top pointer logic takes care of acknowledging the message at
the Get Index position when all words of the message are read out via the RXFTOPn_DATA register.
For example, when the Rx FIFO element size is configured to be 18 words, the RXFTOPn_DATA register must be
read 18 times to read the complete message; after the 18th read, the message at the Get Index is automatically
acknowledged.
Figure 9 shows an example of the message reception flow using the Rx FIFO and Rx Interrupt. The example uses
only the Rx FIFO New Message Interrupt.

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 36 002-20278 Rev. *E
2023-11-10

Is
FIFO fill level

(RXF0S.F0FL/RXF1S.F1FL >
0)?

START

Other
than Tx/Rx
Interrupt?

Is
New Message

Stored in Rx FIFO ?

Yes

No

Yes

No

Error Interrupt Handling

Tx Interrupt or Rx Dedicated
Buffer Interrupt Handling

No

Yes

Calculate Rx FIFO Address using Get
Index

Rx FIFO
Top Pointer
Logic Used?

Read the Message

Acknowledge the FIFO Message

END

Read the Message from
RXFTOPn_DATA Register

Clear Interrupt flag

Yes

No

(2)

(6)

(7)

(4)

(5)

(13)

(3)

(1)

Figure 9 Example of Message Reception in Rx FIFO Flow

4.4.2.1 Use case
This section describes an example of message reception in Rx FIFO using the use case discussed in Chapter
4.2.1 Use case.

4.4.2.2 Configuration
This section describes an example of message reception in Rx FIFO using the configuration discussed in Chapter
4.2.2 Configuration for CAN FD Controller.

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 37 002-20278 Rev. *E
2023-11-10

4.4.2.3 Example Program of Message Reception in Rx FIFO
Code Listing 10 demonstrates an example program of message reception in Rx FIFO. This program uses the Rx
FIFO 0 and the Rx Interrupt.

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 38 002-20278 Rev. *E
2023-11-10

Code Listing 10 Example of Message Reception in Rx FIFO

void Cy_CANFD_IrqHandler(cy_pstc_canfd_type_t pstcCanFD)
{
 uint32_t* pu32Adrs = 0;
 uint8_t u8MessageBufferNumber ;
 cy_stc_canfd_msg_t stcCanFDmsg;
 volatile stc_CAN_CH_M_TTCAN_t* pstcCanFDChMTTCAN;
 cy_stc_canfd_context_t* pstcCanFDContext;
 uint8_t u8BufferSizeTemp = 0;
 uint32_t au32RxBuf[18];

 /* Get pointer to internal data structure */
 pstcCanFDContext = Cy_CANFD_GetContext(pstcCanFD);

 /* Get the pointer to M_TTCAN of the CAN FD channel */
 pstcCanFDChMTTCAN = &pstcCanFD->M_TTCAN;

 /* Other than Tx/Rx interrupt occurred */
 /* (1) Check for interrupts other than Tx/Rx */
 if (pstcCanFDChMTTCAN->unIR.u32Register & 0x3ff7E0EE)
 {
 Cy_CANFD_ErrorHandling(pstcCanFD);
 }
 /* (2) Check if New Message stored in Rx FIFO0 */
 else if(pstcCanFDChMTTCAN->unIR.stcField.u1RF0N == 1) // New message stored into RxFIFO 0
 {
 /* (3) Clear Interrupt flag */
 pstcCanFDChMTTCAN->unIR.stcField.u1RF0N = 1; // Clear the new message interrupt
flag
while(pstcCanFDChMTTCAN->unRXF0S.stcField.u7F0FL > 0)
{
 /* (4) Check if Rx FIFO 0 Top pointer logic is used */
 if(pstcCanFD->unRXFTOP_CTL.stcField.u1F0TPE == 1) // RxFifo Top pointer logic is
used
 {
 u8BufferSizeTemp = 2 + dataBufferSizeInWord[pstcCanFD-
>M_TTCAN.unRXESC.stcField.u3F0DS];

 // Now read the RX FIFO Top Data register to copy the content of received
message
 for(uint8_t u8LoopVar = 0u; u8LoopVar < u8BufferSizeTemp; u8LoopVar++)
 {
 /* (5) Read the message content directly from RXFTOP0_DATA register */
 au32RxBuf[u8LoopVar] = pstcCanFD->unRXFTOP0_DATA.u32Register;
 }

 /* CAN-FD message received, check if there is a callback function */
 /* Call callback function if it was set previously. */
 if (pstcCanFDContext->canFDInterruptHandling.canFDRxWithTopPtrInterruptFunction
!= NULL)
 {
 /* Message handling by application */

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 39 002-20278 Rev. *E
2023-11-10

 pstcCanFDContext-
>canFDInterruptHandling.canFDRxWithTopPtrInterruptFunction(CY_CANFD_RX_FIFO0, u8BufferSizeTemp,
&au32RxBuf[0]);
 }
 }
 else // RxFifo Top pointer logic is not used
 {
 un_CAN_CH_RXF0S_t unRXF0S;
 /* (6) When Rx FIFO 0 Top pointer logic is not used, get the Rx FIFO address
holding the message at FIFO 0 get index position with a calculation function (See Code Listing
11).*/
 unRXF0S.u32Register = pstcCanFDChMTTCAN->unRXF0S.u32Register;

 pu32Adrs = Cy_CANFD_CalcRxFifoAdrs(pstcCanFD, CY_CANFD_RX_FIFO0,
unRXF0S.stcField.u6F0GI);

 if(pu32Adrs)
 {
 // Extract the received message from Buffer
 /* (7) Read the message at get index position (See Code Listing 9) */
 Cy_CANFD_ExtractMsgFromRXBuffer((cy_stc_canfd_rx_buffer_t *) pu32Adrs,
&stcCanFDmsg);

 // Acknowledge the FIFO message
 /* (13) Acknowledge the FIFO 0 message at get index position */
 pstcCanFDChMTTCAN->unRXF0A.stcField.u6F0AI = unRXF0S.stcField.u6F0GI;

 /* CAN-FD message received, check if there is a callback function */
 /* Call callback function if it was set previously. */
 if (pstcCanFDContext->canFDInterruptHandling.canFDRxInterruptFunction !=
NULL)
 {
 /* Message handling by application */
 pstcCanFDContext->canFDInterruptHandling.canFDRxInterruptFunction(true,
CY_CANFD_RX_FIFO0, &stcCanFDmsg);
 }
 }
 }
 }
 }
}

Code Listing 11 demonstrates an example program of the Rx FIFO address calculation.

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 40 002-20278 Rev. *E
2023-11-10

Code Listing 11 Example of Rx FIFO Address Calculation

static uint32_t* Cy_CANFD_CalcRxFifoAdrs(cy_pstc_canfd_type_t pstcCanFD, uint8_t u8FifoNumber,
uint32_t u32GetIndex)
{
 uint32_t* pu32Adrs;

 if(u8FifoNumber > 1)
 {
 /* Set 0 to the return value if the FIFO number is invalid */
 pu32Adrs = NULL;
 }
 else
 {
 /* Calculate the Rx FIFO address */
 /* Set the message buffer address to the return value if the index is available */
 pu32Adrs = (uint32_t*)(((uint32_t)pstcCanFD & 0xFFFF0000ul) +
(uint32_t)CY_CANFD_MSGRAM_START);
 pu32Adrs += (u8FifoNumber == 0) ? pstcCanFD->M_TTCAN.unRXF0C.stcField.u14F0SA :
pstcCanFD->M_TTCAN.unRXF1C.stcField.u14F1SA;
 pu32Adrs += u32GetIndex * (2 + dataBufferSizeInWord[(u8FifoNumber == 0) ? pstcCanFD-
>M_TTCAN.unRXESC.stcField.u3F0DS : pstcCanFD->M_TTCAN.unRXESC.stcField.u3F1DS]);
 }

 return pu32Adrs;
}

CAN FD usage in TRAVEO™ T2G family

4 CAN FD Settings

Application note 41 002-20278 Rev. *E
2023-11-10

5 Glossary
Table 5 Glossary

Terms Description

ACK Acknowledgement

BRS Bit Rate Switch

CAN Controller Area Network

CAN FD Controller Area Network with Flexible Data rate

CANH CAN Network Line High

CANL CAN Network Line Low

CRC Cyclic Redundancy Check

DLC Data Length Code

ECC Error Correction Code

ECU Electronic Control Unit

EOF End of Frame

ESI Error State Indicator

FDF FD Format indicator

FIFO First in First out

ID Identifier

IDE Identifier Extension

MMIO Memory Mapped I/O

RAM Random Access Memory

RTR Remote Transmission Request

SOF Start of Frame

SPI Serial Peripheral Interface

CAN FD usage in TRAVEO™ T2G family

5 Glossary

Application note 42 002-20278 Rev. *E
2023-11-10

6 Related Documents
The following are the TRAVEO™ T2G family series datasheets and Technical Reference Manuals. Contact
Technical Support to obtain these documents.
• Device datasheet

- CYT2B7 Datasheet 32-Bit Arm® Cortex®-M4F Microcontroller TRAVEO™ T2G family
- CYT2B9 Datasheet 32-Bit Arm® Cortex®-M4F Microcontroller TRAVEO™ T2G family
- CYT4BF Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller TRAVEO™ T2G family
- CYT4DN Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller TRAVEO™ T2G family
- CYT3BB/4BB Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller TRAVEO™ T2G family

• Body Controller Entry Family
- TRAVEO™ T2G Automotive Body Controller Entry Family Architecture Technical Reference Manual (TRM)
- TRAVEO™ T2G Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for

CYT2B7
- TRAVEO™ T2G Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for

CYT2B9
• Body Controller High Family

- TRAVEO™ T2G Automotive Body Controller High Family Architecture Technical Reference Manual (TRM)
- TRAVEO™ T2G Automotive Body Controller High Registers Technical Reference Manual (TRM) for

CYT4BF
- TRAVEO™ T2G Automotive Body Controller High Registers Technical Reference Manual (TRM) for

CYT3BB/4BB
• Cluster 2D Family

- TRAVEO™ T2G Automotive Cluster 2D Family Architecture Technical Reference Manual (TRM)
- TRAVEO™ T2G Automotive Cluster 2D Registers Technical Reference Manual (TRM)

CAN FD usage in TRAVEO™ T2G family

6 Related Documents

Application note 43 002-20278 Rev. *E
2023-11-10

https://www.cypress.com/support

7 Other References
Infineon provides the Sample Driver Library (SDL) including startup as sample software to access various
peripherals. SDL also serves as a reference, to customers, for drivers that are not covered by the official
AUTOSAR products. The SDL cannot be used for production purposes as it does not qualify to any automotive
standards. The code snippets in this application note are part of the SDL. Contact Technical Support to obtain
the SDL.

CAN FD usage in TRAVEO™ T2G family

7 Other References

Application note 44 002-20278 Rev. *E
2023-11-10

https://www.cypress.com/support

Revision history
Document
version

Date of release Description of changes

** 2018-09-28 New application note.

*A 2019-03-07 Updated Associated Part Family as “TRAVEO™ T2G family CYT2B/CYT4B
Series”.
Added target part numbers “CYT4B Series” related information in all
instances across the document.
[Section 1, 2.2]
- Change to bps from bits/s.
[Section 2.2]
- Added the explanation of DATA FRAME.
- Updated the figure 2 according to the specifications.
[Section 4.2]
- Updated the flow of Figure 5.
- Added the CCCR.INIT setting to (1).
- Updated the contents for (2), (3), (7).
[Section 4.2.1]
- Added new
[Section 4.3]
- Updated the flow of Figure 6.
[Section 4.3.1]
- Updated the example code.

*B 2019-09-12 Updated Associated Part Family as “TRAVEO™ T2G family CYT2B/CYT4B/
CYT4D Series”.
Added target part numbers “CYT4D Series” related information in all
instances across the document.
[Section 3]
- Updated the link of device datasheet
[Section 4]
- Updated the link of Architecture TRM
- Added the link of device datasheet
[Section 6]
- Changed to new format and added the CYT4D series documents

CAN FD usage in TRAVEO™ T2G family

Revision history

Application note 45 002-20278 Rev. *E
2023-11-10

Document
version

Date of release Description of changes

*C 2020-03-10 Updated Associated Part Family as “TRAVEO™ T2G family CYT2/CYT3/
CYT4 Series”.
Changed target part numbers from “CYT2B/CYT4B/CYT4D Series” to
“CYT2/CYT4 Series” in all instances across the document.
Added target part numbers “CYT3 Series” in all instances across the
document.
[Section 3]
- Updated the Figure 4
[Section 4]
- Updated the flow and code to align
[Section 6]
- Updated the Related Documents
[Section 7]
- Added the information of the Sample Driver Library

*D 2021-05-06 Updated to Infineon template.

*E 2023-11-10 Updated the document title.
Template update; no content update.

CAN FD usage in TRAVEO™ T2G family

Revision history

Application note 46 002-20278 Rev. *E
2023-11-10

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-11-10
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2023 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-pvu1681443277092

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	2 Overview of CAN FD
	2.1 CAN FD Network
	2.2 CAN FD Messages
	2.2.1 CAN FD Fields
	2.2.2 Bit Timing

	3 CAN FD Controller in TRAVEO™ T2G family
	4 CAN FD Settings
	4.1 CAN FD Setup
	4.2 Initialize CAN FD
	4.2.1 Use case
	4.2.2 Configuration for CAN FD Controller
	4.2.3 Configuration for Message RAM
	4.2.4 Example Code to Initialize CAN FD in Driver Part

	4.3 Message Transmission
	4.3.1 Use case
	4.3.2 Configuration
	4.3.3 Example Program of Message Transmission

	4.4 Message Reception
	4.4.1 Message Reception in Dedicated Rx Buffer
	4.4.1.1 Use case
	4.4.1.2 Configuration
	4.4.1.3 Example Program of Message Reception in Dedicated Rx Buffer

	4.4.2 Message Reception in Rx FIFO 0/1
	4.4.2.1 Use case
	4.4.2.2 Configuration
	4.4.2.3 Example Program of Message Reception in Rx FIFO

	5 Glossary
	6 Related Documents
	7 Other References
	Revision history
	Disclaimer

