
Using the watchdog timer in TRAVEO™ T2G family
MCUs

About this document
Scope and purpose

This application note describes how to handle the watchdog timer in Traveo™ T2G family MCUs. It introduces
the functions of the basic watchdog timer and multi-counter watchdog timer and the necessary configurations
to generate faults, interrupts, and reset.
Intended audience

This document is intentded for anyone using Traveo™ T2G family.

Table of contents

About this document . 1

Table of contents . 1

1 Introduction . 3

2 Basic WDT .4
2.1 Source Clock .5
2.2 WDT Timer Counter . 5
2.3 Register Protection . 5
2.4 Warning Interrupt . 5
2.5 Timeout Mode . 6
2.6 Window Mode . 7
2.7 Basic WDT Settings . 7
2.7.1 Use Case . 8
2.7.2 Configuring the Basic WDT . 9
2.7.3 Example Program to Configure Basic WDT in Driver Part . 11
2.8 Clearing the Basic WDT . 14
2.8.1 Use Case . 15
2.8.2 Example Flow to Clear the Basic WDT .15
2.8.3 Example Program to Clear the Basic WDT . 16
2.9 Reset Cause Indication for Basic WDT . 17
2.10 Basic WDT Registers . 17

3 Multi-Counter WDT . 18
3.1 Source Clock . 18
3.2 Register Protection in MCWDT . 18
3.3 MCWDT Interrupts .19
3.3.1 Pre-Warning Interrupt . 19
3.3.2 MCWDT Subcounter 2 Interrupt . 19
3.4 Timeout Mode . 19

AN219944

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-19944 Rev. *G
www.infineon.com 2023-11-09

https://www.infineon.com

3.5 Window Mode . 19
3.6 Selecting the CPU . 20
3.7 MCWDT Settings . 21
3.7.1 Use Case . 21
3.7.2 Configuring the MCWDT . 22
3.7.3 Example Program to Configure the MCWDT in Driver Part . 28
3.8 Clearing the MCWDT .32
3.8.1 Use Case . 33
3.8.2 Example Flow to Clear the MCWDT . 33
3.8.3 Example Program to Clear the MCWDT .33
3.9 MCWDT Fault Handling . 34
3.9.1 Use Case . 34
3.9.2 Example Flow of MCWDT Fault Handler . 35
3.9.3 Example Program of MCWDT Fault Handler . 35
3.10 Reset Cause Indication for MCWDT . 37
3.11 MCWDT Registers . 37

4 Debug Support .38

5 Definitions, Acronyms, and Abbreviations . 39

6 Related Documents . 40

7 Other References .41

Revision history .42

Disclaimer . 43

Using the watchdog timer in TRAVEO™ T2G family MCUs

Table of contents

Application note 2 002-19944 Rev. *G
2023-11-09

1 Introduction
This application note describes the watchdog timer (WDT) for Traveo™ T2G family MCU. A WDT detects an
unexpected firmware execution path by generating warning interrupts, faults, or resets. It allows the system to
recover from an unsafe execution of an application program.
The WDT includes different counters that are used to observe a predetermined period and monitors the normal
operation of the application software by periodically clearing the timer. When the WDT reaches the
predetermined period, it detects the condition as an abnormality and generates a reset or an interrupt or a
fault event. Traveo™ T2G supports two types of WDTs: a basic WDT and a multi-counter WDT (MCWDT). Both
WDTs support window mode which allows defining an upper and lower time limit within which the watchdog
timer must be served.
The basic WDT is activated by hardware after reset release. Its operation mode is set by the application software
during the initial setting. It counts in Active, Sleep, DeepSleep, and Hibernate power modes.
The application software is responsible for activation of MCWDT and the configuration of its operation mode. It
counts in Active, Sleep, and DeepSleep power modes. This document is applicable for CYT2 series, CYT3 series,
and CYT4 series devices. Figure 1 shows the block diagram of the WDT. It includes both sub structures, the basic
WDT, and the MCWDT.
To understand the functionality described and terminology used in this application note, see the “Watchdog
Timer” chapter of the Architecture Technical Reference Manual (TRM).

Basic Watchdog Timer

Multi Counter
Watchdog Timers

Device Registers
AHB interface

LFCLK
(Low frequency clock)

Clock

CFG/STATUS

Reset

Interrupt

Clock

CFG/STATUS

Reset

Interrupt WIC
(Wakeup Interrupt Controller)

Device Reset

ILO0
(32-kHz low speed oscillator)

FAULT FAULT Structure

Interrupt Controller

Figure 1 WDT Block Diagram

Using the watchdog timer in TRAVEO™ T2G family MCUs

1 Introduction

Application note 3 002-19944 Rev. *G
2023-11-09

2 Basic WDT
Figure 2 shows the block diagram of the basic WDT. It supports one 32-bit free-running counter that counts up
with the ILO0 clock if the ENABLE[31] bit is set to ‘1’ in the WDT_CTL register.
Operation during Hibernate mode is possible because the WDT logic and ILO0 are supplied by the external high-
voltage supply (VDDD). A WDT reset restores the chip to Active mode. By default, the basic WDT is enabled,
UPPER_ACTION is configured as reset, UPPER_LIMIT is set with the value 0x8000 and all protectable registers
are locked. UPPER_ACTION and UPPER_LIMIT are configuration registers that are used to define the behavior of
the basic WDT in case it is not serviced in time and if a reset should be executed.
WDT configuration registers are in a protection region separate from the register that is used to service it.
Protection regions are handled by the Peripheral Protection Unit (PPU). Refer to the CPU Subsystem (CPUSS)
chapter in the Architecture (TRM) for more information.

WDT (32-bit Up-Counter)
WDT_CNT

ILO0

INTERRUPT

CTL_ENABLE EN

SERVICE
(Write ҂т҃ from Firmware)

Count = 0

RESETCount LOWER_LIMIT

Count == 3Count = UPPER_LIMIT

Count == WARN_LIMIT

Count

32

Debug_active Debug

WDT_CONFIG

WARN
ACTION

UPPER
ACTION

LOWERA
CTION

Figure 2 Basic WDT Block Diagram

Depending on the configuration in the WDT_CONFIG register, an interrupt or a reset event can be generated
when the counter reaches related counter limits. Three threshold limits can be used for the following actions:
• LOWER-LIMIT: If the LOWER_ACTION[0] bit is set to ‘1’ in the WDT_CONFIG register, a reset is issued when

the watchdog routine is serviced before the WDT reaches the LOWER_LIMIT value.
• UPPER-LIMIT: If the UPPER_ACTION[4] bit is set to ‘1’ in the WDT_CONFIG register, a reset is issued when

the WDT reaches the UPPER_LIMIT value before the WDT is serviced.
• WARN-LIMIT: If the WARN_ACTION[8] bit is set to ‘1’ in the WDT_CONFIG register, an interrupt is issued

when the WDT reaches the WARN_LIMIT value.
UPPER-LIMIT and LOWER-LIMIT in combination are used to build the window mode for the basic WDT.
Depending on the basic WDT mode defined by the ACTION bits in the WDT_CONFIG register, servicing of the
watchdog counter must be handled differently. In window mode, the firmware must ensure adequate
watchdog servicing timing to fulfill the window timing conditions. If the LOWER_ACTION bit is not set, the basic
WDT can be serviced anytime before the UPPER_LIMIT value is reached.

Using the watchdog timer in TRAVEO™ T2G family MCUs

2 Basic WDT

Application note 4 002-19944 Rev. *G
2023-11-09

2.1 Source Clock
The source clock that can be selected for the basic WDT is fixed to the ILO0 clock: 32.768 kHz.

2.2 WDT Timer Counter
The basic WDT count width is 32 bits. Therefore, the timer period that can be set is between 30.518 µs and
131,072 s. These values are calculated with the typical ILO0 timing. Tolerances must also be considered. See the
device datasheet for details.

2.3 Register Protection
Changing the register values that are used to configure the basic WDT requires an UNLOCK sequence of the
WDT_LOCK[1:0] bits located in the LOCK register. The following write access sequence to the WDT_LOCK bit
field must be performed for unlocking CNT, CTL, LOWER_LIMIT, UPPER_LIMIT, WARN_LIMIT, CONFIG, and
SERVICE registers:
• WDT_LOCK = 1
• WDT_LOCK = 2
To regain the lock for the basic WDT registers, one single access to LOCK register is required:
• WDT_LOCK = 3
Check the lock status by reading the WDT_LOCK register. If the read value is unequal to 0, it indicates that basic
WDT registers are locked.
After a transition from DeepSleep or Hibernate mode to Active mode, all basic WDT registers are locked.

2.4 Warning Interrupt
The basic WDT supports a WARN limit that can be used to define a dedicated timing to generate an interrupt. It
can be used for different purposes such as follows:
• Pre-warning event: The WARN_LIMIT value is defined as lower than the UPPER_LIMIT value. It is enabled

if the WARN_ACTION[8] bit in the CONFIG register is set to ‘1’. Note that you should use adequate limits to
execute the WARN interrupt in time.

• Wake-up event: The basic WDT can be used as a simple wakeup timer by setting the warning interrupt
for the desired wakeup time period. The watchdog counter can send interrupt requests to the wakeup
interrupt controller (WIC) in Sleep and DeepSleep power modes. In addition, the basic WDT is capable of
waking up the device from Hibernate power mode. This can be used with or without the normal watchdog
reset behavior. The configuration of wakeup from Hibernate mode is done in the PWR_HIBERNATE register.
See the Systems Resources Registers chapter in the Technical Reference Manual (TRM) for more details. The
basic WDT can be serviced automatically by setting the AUTO_SERVICE[12] bit to ‘1’ in the CONFIG register.
Setting up automatic servicing of the basic WDT creates a periodic interrupt if the basic WDT counter is
not used as a watchdog timer with the timeout reset function. This means that the LOWER_ACTION[0]
and UPPER_ACTION[1] bits are set to ‘0’ in the CONFIG register. Servicing the basic WDT counter in the
corresponding interrupt service routine (ISR) is not required. The basic WDT counter is serviced by the
hardware.

Figure 3 illustrates an example for a 500 milliseconds periodic wakeup timing with auto servicing activated. The
calculation is done using the following equation:
WARN_LIMIT = 32768 Hz × 500 ms = 16384 = 0x00004000

Using the watchdog timer in TRAVEO™ T2G family MCUs

2 Basic WDT

Application note 5 002-19944 Rev. *G
2023-11-09

500ms

Time

WARN_LIMIT = 0x4000

Counts value

0xFFFFFFFF

AUTO_SERVICE
Wake-up event

Low Power Mode
RUN Mode

AUTO_SERVICE
Wake-up event

AUTO_SERVICE
Wake-up event

AUTO_SERVICE
Wake-up event

Figure 3 Periodic Wakeup with Basic WDT

2.5 Timeout Mode
The legacy mode of the basic WDT is the standard watchdog behavior with a timeout condition for resetting the
MCU. It uses the UPPER_LIMIT register for generating a reset if the basic WDT is not serviced in time. Set the
UPPER_ACTION[4] bit in the CONFIG register to ‘1’ to trigger a reset when the watchdog counter matches with
the UPPER_LIMIT value.
The WARN_LIMIT register can be used as a pre-warning event to indicate an incorrect watchdog counter service
timing. Set the WARN_ACTION[8] bit in the CONFIG register to ‘1’ to enable the warn interrupt.
Figure 4 shows an example for the basic WDT which demonstrates how to define the upper limit timeout period
of 1 second and 875-milliseconds pre-warning interrupt timing. Corresponding register values are calculated as
follows:
UPPER_LIMIT = 32768 Hz × 1 sec = 32768 = 0x00008000
WARN_LIMIT = 32768 Hz × 875 ms = 28672 = 0x00007000

Using the watchdog timer in TRAVEO™ T2G family MCUs

2 Basic WDT

Application note 6 002-19944 Rev. *G
2023-11-09

875ms

Time

WARN_LIMIT = 0x7000

Counts value

0xFFFFFFFF

SERVICE
WARN

Interrupt

RESET

UPPER_LIMIT = 0x8000

SERVICE

1sec

Figure 4 Basic WDT with Timeout and Pre-Warning

The example shows the following three scenarios:
• Service the basic WDT counter before it reaches the WARN_LIMIT.
• Service the basic WDT counter within the pre-warning ISR.
• If the basic WDT counter not serviced in time, a RESET is issued after 1 second.

2.6 Window Mode
Traveo™ T2G MCUs support the option to define a lower counter threshold that allows a WDT window mode.
WDT window mode supports observation of two counter limits – a lower limit and an upper limit. If the
watchdog is serviced before the counter has reached the configured lower limit value in the LOWER_LIMIT
register, a reset is issued. If the watchdog is not serviced before the upper limit of the basic WDT counter is
reached, a reset is issued. The two limits define the window timing within which the basic Watchdog timer must
be serviced. To enable this function, the LOWER_ACTION[0] bit in the CONFIG register must be set to ‘1’ and an
adequate lower limit period must be defined in LOWER_LIMIT register.
The following example calculates the LOWER_LIMIT of 150 ms:
LOWER_LIMIT = 32.768 kHz × 150 ms = 4915 = 0x00000CCC

2.7 Basic WDT Settings
This section describes how to configure the WDT based on a use case using the Sample Driver Library (SDL)
provided by Infineon. The code snippets in this application note are part of SDL. See Other References.
SDL has a configuration part and a driver part. The configuration part configures the parameter values for the
desired operation. The driver part configures each register based on the parameter values in the configuration
part.
You can configure the configuration part according to your system.

Figure 5 shows an example flow to configure the basic WDT.

Using the watchdog timer in TRAVEO™ T2G family MCUs

2 Basic WDT

Application note 7 002-19944 Rev. *G
2023-11-09

Basic Watchdog Timer Setting

Set UPPER_LIMIT

Disable Basic Watchdog Timer

Set LOWER_LIMIT

Unlock Basic Watchdog Timer Registers

Set WARN_LIMIT

Set WARN_ACTION

Set UPPER_ACTION

Set LOWER_ACTION

Enable WDT Interrupt

Enable Basic Watchdog Timer

Lock Basic Watchdog Timer Registers

Configure Auto Service

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(11)

(12)

(13)

Configure Counter Pause in Debug Mode(10)

Clear Pending Interrupt

End

Enable Interrupt

System Interrupt Control

Enable NVIC Interrupt Controller

Setup Interrupt (WDT Warn Interrupt)

Clear NVIC Pending Register

(14)

(15)

(16)

Configure Interrupt

Figure 5 Example Flow to Configure Basic WDT

2.7.1 Use Case
This section explains an example of the basic WDT using the following use case. The basic WDT is cleared in the
warn interrupt handler. A reset is triggered if the basic WDT is not cleared between LOWER_LIMIT and
UPPER_LIMIT.
Use case:
• LOWER_LIMIT: 125 ms
• UPPER_LIMIT: 1 second
• WARN_LIMIT: 875 ms
• Window mode: Used
• Warn interrupt: Used (IRQ number: 2)
• Auto service: Unused
• Debugger configuration: Enables the trigger input for WDT to pause the counter during debug mode

Using the watchdog timer in TRAVEO™ T2G family MCUs

2 Basic WDT

Application note 8 002-19944 Rev. *G
2023-11-09

2.7.2 Configuring the Basic WDT
Table 1 lists the parameters of the configuration part in SDL for basic WDT.

Table 1 List of Basic WDT Parameters

Function Description Value

Cy_WDT_SetLowerLimit() Set the lower limit (unsigned integer 32-
bit)

4096ul

Cy_WDT_SetUpperLimit() Set the upper limit (unsigned integer 32-
bit)

32768ul

Cy_WDT_SetWarnLimit() Set the warn limit (unsigned integer 32-
bit)

28672ul

Cy_WDT_SetLowerAction() Set lower action to “no action” or
“reset”:
CY_WDT_LOW_UPP_ACTION_NONE =
0ul
CY_WDT_LOW_UPP_ACTION_RESET =
1ul

CY_WDT_LOW_UPP_ACTION_RESET

Cy_WDT_SetUpperAction() Set upper action to “no action” or
“reset”:
CY_WDT_LOW_UPP_ACTION_NONE =
0ul
CY_WDT_LOW_UPP_ACTION_RESET =
1ul

CY_WDT_LOW_UPP_ACTION_RESET

Cy_WDT_SetWarnAction() Set warn action to “no action” or
“interrupt”:
CY_WDT_WARN_ACTION_NONE = 0ul
CY_WDT_WARN_ACTION_INT = 1ul

CY_WDT_WARN_ACTION_INT

Cy_WDT_SetAutoService() Configure to automatically clear the
basic WDT when the count value reaches
WARN_LIMIT:
CY_WDT_DISABLE = 0ul
CY_WDT_ENABLE = 1ul

CY_WDT_DISABLE

Cy_WDT_SetDebugRun() Set the debugger configuration
(required when using debugger)
CY_WDT_DISABLE = 0ul
CY_WDT_ENABLE = 1ul

CY_WDT_ENABLE

Code Listing 1 shows an example program of the basic WDT configuration part. For details of the interrupt initial
setting procedure, see the “Interrupt Structure” section in AN219842 listed in Related Documents.

Using the watchdog timer in TRAVEO™ T2G family MCUs

2 Basic WDT

Application note 9 002-19944 Rev. *G
2023-11-09

Code Listing 1 Example of Basic WDT Configuration

cy_stc_sysint_irq_t stc_sysint_irq_cfg_wdt =
{
 .sysIntSrc = srss_interrupt_wdt_IRQn,
 .intIdx = CPUIntIdx2_IRQn,
 .isEnabled = true,
};

int main(void)
{
 SystemInit();

 __enable_irq(); /* Enable global interrupts. */

 /*-----------------------*/
 /* Configuration for WDT */
 /*-----------------------*/
 Cy_WDT_Disable(); /* (1) Disable Basic WDT */

 Cy_WDT_Unlock(); /* (2) Unlock Basic WDT registers */

 Cy_WDT_SetLowerLimit(4096ul); /* (3) Set LOWER_LIMIT */

 Cy_WDT_SetUpperLimit(32768ul); /* (4) Set UPPER_LIMIT */

 Cy_WDT_SetWarnLimit (28672ul); /* (5) Set WARN_LIMIT */

 Cy_WDT_SetLowerAction(CY_WDT_LOW_UPP_ACTION_RESET); /* (6) Set LOWER_ACTION */

 Cy_WDT_SetUpperAction(CY_WDT_LOW_UPP_ACTION_RESET); /* (7) Set UPPER_ACTION */

 Cy_WDT_SetWarnAction (CY_WDT_WARN_ACTION_INT); /* (8) Set WARN_ACTION */

 Cy_WDT_SetAutoService(CY_WDT_DISABLE); /* (9) Disable Auto Service */

 Cy_WDT_SetDebugRun(CY_WDT_ENABLE); /* (10) Enable counter pause in debug mode */

 Cy_WDT_Lock(); /* (11) Lock Basic WDT registers */

 Cy_WDT_MaskInterrupt(); /* (12) Enable Interrupt */

 Cy_WDT_Enable(); /* (13) Enable Basic WDT */

 /*----------------------------------*/
 /* Interrupt Configuration for WDT */
 /*----------------------------------*/
 Cy_SysInt_InitIRQ(&stc_sysint_irq_cfg_wdt); /*(14) Setup Interrupt (WDT Warn Interrupt)*/
 Cy_SysInt_SetSystemIrqVector(stc_sysint_irq_cfg_wdt.sysIntSrc, Wdt_Warn_IntrISR);

 NVIC_ClearPendingIRQ(stc_sysint_irq_cfg_wdt.intIdx); /* (15) Clear Pending Interrupt */
 NVIC_EnableIRQ(stc_sysint_irq_cfg_wdt.intIdx); /* (16) Enable Interrupt */

Using the watchdog timer in TRAVEO™ T2G family MCUs

2 Basic WDT

Application note 10 002-19944 Rev. *G
2023-11-09

 for(;;);
}

2.7.3 Example Program to Configure Basic WDT in Driver Part
Code Listing 2 to Code Listing 14show the example programs to configure the basic WDT in the driver part.
The following description will help you understand the register notation of the driver part of SDL:
• WDT->unCTL.stcField.ulENABLE is the WDT_CTL.ENABLE register mentioned in the Registers TRM. Other

registers are also described in the same manner.

Code Listing 2 Example to Disable Basic WDT in Driver Part

void Cy_WDT_Disable(void)
{
 Cy_WDT_Unlock();
 /* (1) Disable Basic WDT. WDT should be unlocked before being disabled. */
 WDT->unCTL.stcField.u1ENABLE = 0ul;
 Cy_WDT_Lock();
}

Code Listing 3 Example to Unlock Basic WDT in Driver Part

void Cy_WDT_Unlock(void)
{
 uint32_t interruptState;
 interruptState = Cy_SysLib_EnterCriticalSection();

 /* The WDT lock is to be removed by two writes */
 /* (2) Unlock Basic WDT registers when interrupts are disabled */
 WDT->unLOCK.stcField.u2WDT_LOCK = 1ul;
 WDT->unLOCK.stcField.u2WDT_LOCK = 2ul;

 Cy_SysLib_ExitCriticalSection(interruptState);
}

Code Listing 4 Example to Set Lower Limit in Driver Part

__STATIC_INLINE void Cy_WDT_SetLowerLimit(uint32_t match)
{
 WDT->unLOWER_LIMIT.stcField.u32LOWER_LIMIT = match; /* (3) Set LOWER_LIMIT */
}

Using the watchdog timer in TRAVEO™ T2G family MCUs

2 Basic WDT

Application note 11 002-19944 Rev. *G
2023-11-09

Code Listing 5 Example to Set Upper Limit in Driver Part

__STATIC_INLINE void Cy_WDT_SetUpperLimit(uint32_t match)
{
 WDT->unUPPER_LIMIT.stcField.u32UPPER_LIMIT = match; /* (4) Set UPPER_LIMIT */
}

Code Listing 6 Example to Set Warn Limit in Driver Part

__STATIC_INLINE void Cy_WDT_SetWarnLimit(uint32_t match)
{
 WDT->unWARN_LIMIT.stcField.u32WARN_LIMIT = match; /* (5) Set WARN_LIMIT */
}

Code Listing 7 Example to Set Lower Action in Driver Part

 typedef enum
{
 CY_WDT_LOW_UPP_ACTION_NONE,
 CY_WDT_LOW_UPP_ACTION_RESET
} cy_en_wdt_lower_upper_action_t;

__STATIC_INLINE void Cy_WDT_SetLowerAction(cy_en_wdt_lower_upper_action_t action)
{
 WDT->unCONFIG.stcField.u1LOWER_ACTION = action; /* (6) Set LOWER_ACTION */
}

Code Listing 8 Example to Set Upper Action in Driver Part

__STATIC_INLINE void Cy_WDT_SetUpperAction(cy_en_wdt_lower_upper_action_t action)
{
 WDT->unCONFIG.stcField.u1UPPER_ACTION = action; /* (7) Set UPPER_ACTION */
}

Using the watchdog timer in TRAVEO™ T2G family MCUs

2 Basic WDT

Application note 12 002-19944 Rev. *G
2023-11-09

Code Listing 9 Example to Set Warn Action in Driver Part

typedef enum
{
 CY_WDT_WARN_ACTION_NONE,
 CY_WDT_WARN_ACTION_INT
} cy_en_wdt_warn_action_t;

__STATIC_INLINE void Cy_WDT_SetWarnAction(cy_en_wdt_warn_action_t action) /* (8) Set
WARN_ACTION */
{
 WDT->unCONFIG.stcField.u1WARN_ACTION = action;
}

Code Listing 10 Example to Configure Auto Service in Driver Part

typedef enum
{
 CY_WDT_DISABLE,
 CY_WDT_ENABLE
} cy_en_wdt_enable_t;

__STATIC_INLINE void Cy_WDT_SetAutoService(cy_en_wdt_enable_t enable)
{
 WDT->unCONFIG.stcField.u1AUTO_SERVICE = enable; /* (9) Configure Auto Service */
}

Code Listing 11 Example to Set Debugger Configuration in Driver Part

__STATIC_INLINE void Cy_WDT_SetDebugRun(cy_en_wdt_enable_t enable)
{
 WDT->unCONFIG.stcField.u1DEBUG_RUN = enable; /8 (10) Set Debugger Configuration */
}

Using the watchdog timer in TRAVEO™ T2G family MCUs

2 Basic WDT

Application note 13 002-19944 Rev. *G
2023-11-09

Code Listing 12 Example to Lock Basic WDT in Driver Part

void Cy_WDT_Lock(void)
{
 uint32_t interruptState;
 interruptState = Cy_SysLib_EnterCriticalSection();

 WDT->unLOCK.stcField.u2WDT_LOCK = 3ul; /* (11) Lock Basic WDT registers during
interrupts disabled */

 Cy_SysLib_ExitCriticalSection(interruptState);
}

Code Listing 13 Example to Enable WDT Interrupt in Driver Part

__STATIC_INLINE void Cy_WDT_MaskInterrupt(void)
{
 WDT->unINTR_MASK.stcField.u1WDT = 1ul; /* (12) Enable WDT Interrupt- */
}

Code Listing 14 Example to Enable Basic WDT in Driver Part

void Cy_WDT_Enable(void)
{
 Cy_WDT_Unlock();
 WDT->unCTL.stcField.u1ENABLE = 1ul; /* (13) Enable Basic WDT during WDT unlocked */
 Cy_WDT_Lock();
}

2.8 Clearing the Basic WDT
Clearing the basic WDT is performed by setting the SERVICE[0] bit to ‘1’ in the SERVICE register. The firmware
must consider reading this bit until it is ‘0’ before writing '1' to this bit.
Servicing of the basic WDT counter must be done regularly to ensure a stable software flow. Independent of the
software concept used, runtime calculation of software components is crucial to define the limits of the counter
to be cleared. The window mode makes it even more complex because a minimum time period needs to be
determined before which the software is not expected to service the basic WDT. This minimum time period can
be, for example, the minimum execution time of a low-priority main function.
Figure 6 shows an example when the watchdog counter can be cleared within a system with different tasks. The
calculation of each service moment must consider the following conditions:
1. In the window mode, do not service the watchdog before the counter reaches the LOWER_LIMIT.
2. Must service the watchdog counter before reaching the UPPER_LIMIT to avoid a reset event.
The following conditions are defined:
• UPPER_LIMIT = 0x8000: Upper reset threshold is 1 second
• LOWER_LIMIT = 0x1000: Minimum reset threshold is 125 ms

Using the watchdog timer in TRAVEO™ T2G family MCUs

2 Basic WDT

Application note 14 002-19944 Rev. *G
2023-11-09

• Task 1 duration: 100 ms
• Task 2 duration: 300 ms
• Task 3 duration: 200 ms
• Task 4 duration: 150 ms
• Task 5 duration: 200 ms
There are different sequences assumed with different timings:
• Sequence 1: tTask1 + tTask2 + tTask3 + tTask4 = 100 ms + 300 ms + 200 ms + 150 ms = 750 ms
• Sequence 2: tTask1 + tTask4 = 100 ms + 150 ms = 250 ms
• Sequence 3: tTask1 + tTask4 + tTask5 = 100 ms + 150 ms + 200 ms = 450 ms
In all cases, the following condition is met:
tLOWER_LIMIT < tSEQUENCE < tUPPER_LIMIT

Sequence 2:
250ms

...

125ms

Time

LOWER_LIMIT = 0x1000

Counts value

0xFFFFFFFF

UPPER_LIMIT = 0x8000

Sequence 1:
750ms

Ta
sk

 1

Ta
sk

 2

Ta
sk

 3

Ta
sk

 4

Ta
sk

 1

Ta
sk

 4

Ta
sk

 1

Ta
sk

 4

Ta
sk

 5

Ta
sk

 1

Ta
sk

 2

100ms 300ms 200ms 150ms 100ms 150ms 100ms 150ms 200ms 100ms 300ms

SERVICESERVICE SERVICE
Sequence 3:

450ms

Figure 6 Example of Servicing basic WDT in Window Mode

2.8.1 Use Case
This section describes an example of clearing the basic WDT using the use case discussed in Chapter 2.7.1 Use
Case.

2.8.2 Example Flow to Clear the Basic WDT
Figure 7 shows an example flow to clear the basic WDT.

Using the watchdog timer in TRAVEO™ T2G family MCUs

2 Basic WDT

Application note 15 002-19944 Rev. *G
2023-11-09

Start

Clear Basic WDT Counter

Clear Basic WDT Interrupt

End

Set Service bit to clear WDT Counter

Unlock Basic WDT Registers

Lock Basic WDT Registers

(1)

(2)

(3)

(4)

(5)

Figure 7 Example Flow to Clear Basic WDT

2.8.3 Example Program to Clear the Basic WDT
Code Listing 15 shows an example program to clear the basic WDT.

Code Listing 15 Example Program to Clear Basic WDT

void Wdt_Warn_IntrISR(void)
{
 Cy_WDT_ClearWatchdog(); /* (1) Clear Basic WDT Counter */
 Cy_WDT_ClearInterrupt(); /* (2) Clear Basic WDT Interrupt */
}

Code Listing 16 shows an example program to clear the basic WDT in the driver part.

Code Listing 16 Example Program to Clear Basic WDT in Driver Part

void Cy_WDT_ClearWatchdog(void)
{
 Cy_WDT_Unlock(); /* (3) Unlock Basic WDT Registers */
 Cy_WDT_SetService();
 Cy_WDT_Lock(); /* (5) Unlock Basic WDT Registers */
}

__STATIC_INLINE void Cy_WDT_SetService()
{
 WDT->unSERVICE.stcField.u1SERVICE = 1ul; /* (4) Set Service bit to clear Basic WDT
Counter */
}

Code Listing 17 shows an example program to clear the basic WDT interrupt in the driver part.

Using the watchdog timer in TRAVEO™ T2G family MCUs

2 Basic WDT

Application note 16 002-19944 Rev. *G
2023-11-09

Code Listing 17 Example Program to Clear Basic WDT Interrupt in Driver Part

void Cy_WDT_ClearInterrupt(void)
{
 WDT->unINTR.stcField.u1WDT = 1ul; /* (2) Clear Basic WDT Interrupt */

 /* Read the interrupt register to ensure that the initial clearing write has
 * been flushed out to the hardware.
 */
 (void) SRSS->unSRSS_INTR;
}

2.9 Reset Cause Indication for Basic WDT
If the basic WDT is not serviced or serviced too early, a system-wide reset is issued. The reset event is stored in
the RESET_WDT[0] bit in the RES_CAUSE register. Note that the hardware clears this bit during power-on reset
(POR). It cannot be distinguished whether a reset was caused by a LOWER_LIMIT or UPPER_LIMIT violation.

2.10 Basic WDT Registers

Table 2 Basic WDT Registers

Name Description

WDT_CTL Watchdog Counter Control Register

WDT_LOWER_LIMIT WDT Lower Limit Register

WDT_UPPER_LIMIT WDT Upper Limit Register

WDT_WARN_LIMIT WDT Warn Limit Register

WDT_CONFIG WDT Configuration Register

WDT_CNT WDT Count Register

WDT_LOCK WDT Lock Register

WDT_SERVICE WDT Service Register

WDT_INTR WDT Interrupt Register

WDT_INTR_SET WDT Interrupt Set Register

WDT_INTR_MASK WDT Interrupt Mask Register

WDT_INTR_MASKED WDT Interrupt Masked Register

CLK_SELECT Clock Selection Register

CLK_ILO_CONFIG ILO Configuration

RES_CAUSE Reset Cause Observation Register

Using the watchdog timer in TRAVEO™ T2G family MCUs

2 Basic WDT

Application note 17 002-19944 Rev. *G
2023-11-09

3 Multi-Counter WDT
The MCWDT includes three subcounters: Subcounters 0, 1, and 2.
Subcounter 0 and Subcounter 1 are 16-bit counters, which behave like the basic WDT. Window mode and pre-
warning interrupts are supported. If any window timing violation occurs, a FAULT or a reset after a FAULT can be
generated if not handled within a timeout timing.
Subcounter 2 is a 32-bit counter, which can be configured to generate an interrupt when one of the pre-defined
counter bits toggles. Both types of counters operate during Active, Sleep, and DeepSleep modes. They are not
available during Hibernate mode.
Figure 8 illustrates the block diagram of the MCWDT with all three subcounters.

LFCLK

FAULT

Count <
MCWDTx_CTR1_LOWER_LIMIT

Count == 3 Count >=
MCWDTx_CTR1_UPPER_LIMIT

Count ==
MCWDTx_CTR1_WARN_LIMIT

16

MCWDTx_CNT0 (16-bit Counter)
Subcounter 0

Count <
MCWDTx_CTR0_LOWER_LIMIT

Count == 3 Count >=
MCWDTx_CTR0_UPPER_LIMIT

Count ==
MCWDTx_CTR0_WARN_LIMIT

Count

16

INTERRUPT

Timeout RESET

32

5
MCWDTx_CTR2_CONFIG.BITS

MCWDT
Mode

Configuration

MCWDTx_INTR.CTR2_INT

MCWDTx_CTR2_CONFIG.ACTION

MCWDTx_CNT1 (16-bit Counter)
Subcounter 1

Count

MCWDTx_CNT2 (32-bit Counter)
Subcounter 2

Count

Figure 8 Multi-Counter WDT Block Diagram

3.1 Source Clock
The source clock that can be selected for MCWDT is LFCLK, which can be one of following clock sources:
• ILO0/1: Internal low-speed oscillator (32.768 kHz nom.) with relatively poor accuracy
• WCO: Low-frequency watch crystal oscillator (32.768 kHz nom.)
• ECO: High-frequency crystal oscillator (4–33.33 MHz nom.)

3.2 Register Protection in MCWDT
Changing the registers related to MCWDT requires an UNLOCK sequence of the MCWDT_LOCK[1:0] bits located
in the LOCK register. The following access sequence must be performed for unlocking the following:
Subcounter 2: CTR2_CTL, CTR2_CONFIG, and CTR2_CNT registers
Subcounter 0 and Subcounter 1: CTL, LOWER_LIMIT, UPPER_LIMIT, WARN_LIMIT, CONFIG, SERVICE, and CNT
registers
• MCWDT_LOCK = 1
• MCWDT_LOCK = 2
To protect the MCWDT registers, one single write access to the LOCK register is required:
• MCWDT_LOCK = 3

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 18 002-19944 Rev. *G
2023-11-09

3.3 MCWDT Interrupts
MCWDT supports different types of interrupts.

3.3.1 Pre-Warning Interrupt
Subcounter 0 and Subcounter 1 behave very similar to the pre-warning interrupt of the basic WDT. See Chapter
2.4 Warning Interrupt. The only difference is that the WARN_LIMIT is a 16-bit value that can generate an
interrupt timing per the following equation:

The interrupt can be used as a pre-warning event that indicates that the MCWDT counter must be serviced
before a FAULT event is issued.
The interrupt is triggered to the related CPU when the WARN_ACTION[8] bit is set to ‘1’ in the CONFIG register.
The MCWDT can be serviced automatically by the AUTO_SERVICE[12] bit in the CONFIG register. This allows the
creation of a periodic interrupt if this counter is not needed as a watchdog.

3.3.2 MCWDT Subcounter 2 Interrupt
Subcounter 2 interrupt behaves in a different way. A coarse-grained timing should be generated when a
dedicated pre-defined counter bit is toggled. The interrupt timing is calculated with the following equation:

Example:
LFCLK = ILO0 = 32.768 kHz
Toggle-Bit = Bit 12

The toggle-bit is configured by BITS[20:16] in the CTR2_CONFIG register. The interrupt is triggered to the related
CPU when the ACTION[0] bit is set to ‘1’ in the CTR2_CONFIG register.

3.4 Timeout Mode
This mode is related to Subcounter 0 and Subcounter 1 only, and is similar to that of the basic WDT. See Chapter
2.5 Timeout Mode. The difference is that the UPPER_LIMIT is a 16-bit value; when the subcounter matches with
the UPPER_LIMIT value, a FAULT is generated to be handled in the FAULT structures.
The UPPER_ACTION[1:0] bit field in the CONFIG register specifies how a FAULT is handled:
• No action is taken
• Generate only a FAULT to be handled by the FAULT structures
• Generate a FAULT and trigger a RESET if this FAULT is not handled in < 3 clock cycles

3.5 Window Mode
This mode is related to Subcounter 0 and Subcounter 1 only, and is similar to that of the basic WDT. See Chapter
2.6 Window Mode. The difference is that the LOWER_LIMIT is a 16-bit value, and if the subcounter is serviced
before the counter reaches the LOWER_LIMIT value, a FAULT is generated to be handled in the FAULT structures.

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 19 002-19944 Rev. *G
2023-11-09

The UPPER_ACTION[5:4] and LOWER_ACTION[1:0] bit fields in the CONFIG register specify how a FAULT is
handled as follows:
• No action is taken
• Generate only a FAULT to be handled by the FAULT structures
• Generate a FAULT and trigger a RESET if this FAULT is not handled in < 3 clk cycles
In Figure 9, the window mode is shown when FAULT_THEN_RESET is selected as LOWER_ACTION and
UPPER_ACTION. Four scenarios are possible while LOWER_ACTION, WARN_ACTION, and UPPER_ACTION are
activated accordingly:
• Counter is serviced between LOWER_LIMIT and WARN_LIMIT: This is the regular behavior of the MCWDT. No

WARN interrupt is issued and no RESET is done.
• Counter is serviced between WARN_LIMIT and UPPER_LIMIT: The service is done late; a WARN interrupt is

issued but no RESET is done.
• Counter is not serviced at all: A WARN interrupt is issued but even then, the CTR0/1_SERVICE bit is not set.

When the counter reaches the UPPER_LIMIT, a FAULT is issued. If the firmware does not handle this FAULT
to bring the system back into a safe state, a RESET is issued after a fixed number of LFCLK cycles.

• Counter is serviced before the LOWER_LIMIT is reached: The counter is serviced too early; a FAULT is issued
followed by a RESET in case the FAULT is not handled in time by the firmware.

Time

WARN_LIMIT

Counts value

LOWER_LIMIT

0xFFFF

CTR0/1_SERVICE

UPPER_LIMIT

CTR0/1_INT
interrupt 1

CTR0/1_SERVICE FAULT
CTR0/1_SERVICE

RESET
CTR0/1_INT
Interrupt 2

Figure 9 Subcounter 0/1 Operation in Window Mode with FAULT and RESET Action

3.6 Selecting the CPU
In a multi-CPU system, you should assign one MCWDT to a dedicated CPU to select the SLEEPDEEP for
controlling the counter behavior in the respective CPU low-power mode. The counter pauses while the
respective CPU is in a low-power mode if the SLEEPDEEP_PAUSE[30] bit is set to ‘1’ in the CTR2_CONFIG
register.
A single MCWDT is not intended to be used simultaneously by multiple CPUs because of the complexity
involved in coordination.
CPU_SEL[1:0] bits in the CPU_SELECT register are defined in Table 3.

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 20 002-19944 Rev. *G
2023-11-09

Table 3 MCWDT Assignment to CPUs

CPU_SEL[1:0] CYT2 CPU CYT3 CPU CYT4 CPU

0 CM0+ CM0+ CM0+

1 CM4 CM7-0 CM7-0

2 - - CM7-1

3.7 MCWDT Settings
Figure 10 illustrates an example flow to configure the MCWDT.

De-initialize MCWDT Return register value to their default state

Initialize MCWDT Configure register value to user setting

Unlock MCWDT Registers

End

Lock MCWDT Registers

Enable MCWDT Interrupt

Enable MCWDT Counter

Configure Interrupt Priority

Enable Interrupt

System Interrupt Control

Enable NVIC Interrupt Controller

Setup Interrupt

Configure NVIC Priority Register

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

Configure MCWDT Parameters

Clear Fault Status

(1)

(2)

MCWDT Setting

Enable Fault MCWDT

Enable Fault Interrupt

(3)

(4)

Configure Interrupt

Configure Fault

Figure 10 Multi-Counter WDT Setting Procedure

3.7.1 Use Case
This section explains an example of the MCWDT using the following use case. The MCWDT is cleared in the main
task loop. The fault interrupt is triggered if the MCWDT is not cleared within the UPPER_LIMIT.
Use case:
• MCWDT number: 1
• CPU: CM4

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 21 002-19944 Rev. *G
2023-11-09

• Subcounter 0
- LOWER_LIMIT: Unused
- UPPER_LIMIT: 1 second
- WARN_LIMIT: Unused
- Window mode: Unused
- Upper limit action: Fault interrupt (IRQ number: 2)
- Auto service: Unused
- Debugger configuration: Enables the trigger input for MCWDT to pause the counter during debug mode

• Subcounter 1: Unused
• Subcounter 2: Unused
• Fault Report: Fault Structure 1

3.7.2 Configuring the MCWDT
Table 4 lists the parameters of the configuration part in SDL for MCWDT.

Table 4 List of MCWDT Parameters

Parameters Description Value

.coreSelect Select the CPU to be used for SleepDeepPause
CY_MCWDT_PAUSED_BY_DPSLP_CM0 = 0ul
CY_MCWDT_PAUSED_BY_DPSLP_CM4_CM7_0 =
1ul
CY_MCWDT_PAUSED_BY_DPSLP_CM7_1 = 2ul
CY_MCWDT_PAUSED_BY_NO_CORE = 3ul

CY_MCWDT_PAUSED_BY_DPSLP_CM4
_CM7_0

.c0LowerLimit Set the Subcounter 0 lower limit (unsigned
integer 32-bit)

0ul

.c0UpperLimit Set the Subcounter 0 upper limit (unsigned
integer 32-bit)

32768ul

.c0WarnLimit Set the Subcounter 0 warn limit (unsigned
integer 32-bit)

0ul

.c0LowerAction Set Subcounter 0 lower action to “no action”,
“fault”, or “fault then reset”:
CY_MCWDT_ACTION_NONE = 0ul
CY_MCWDT_ACTION_FAULT = 1ul
CY_MCWDT_ACTION_FAULT_THEN_RESET = 2ul

CY_MCWDT_ACTION_NONE

.c0UpperAction Set Subcounter 0 upper action to “no action”,
“fault”, or “fault then reset”:
CY_MCWDT_ACTION_NONE = 0ul
CY_MCWDT_ACTION_FAULT = 1ul
CY_MCWDT_ACTION_FAULT_THEN_RESET = 2ul

CY_MCWDT_ACTION_FAULT

(table continues...)

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 22 002-19944 Rev. *G
2023-11-09

Table 4 (continued) List of MCWDT Parameters

Parameters Description Value

.c0WarnAction Set Subcounter 0 warn action to “no action”, or
“interrupt”:
CY_MCWDT_WARN_ACTION_NONE = 0ul
CY_MCWDT_WARN_ACTION_INT = 1ul

CY_MCWDT_WARN_ACTION_NONE

.c0AutoService Configure to automatically clear MCWDT when
Subcounter 0 value reaches WARN_LIMIT:
CY_MCWDT_DISABLE = 0ul
CY_MCWDT_ENABLE = 1ul

CY_MCWDT_DISABLE

.c0SleepDeepPause Enable to pause Subcounter 0 when the
corresponding CPU is in DeepSleep:
CY_MCWDT_DISABLE = 0ul
CY_MCWDT_ENABLE = 1ul

CY_MCWDT_ENABLE

.c0DebugRun Set the debugger configuration. It needs when
using debugger.
CY_MCWDT_DISABLE = 0ul
CY_MCWDT_ENABLE = 1ul

CY_MCWDT_ENABLE

.c1LowerLimit Set Subcounter 1 lower limit (unsigned integer
32-bit)

0ul

.c1UpperLimit Set Subcounter 1 upper limit (unsigned integer
32-bit)

0ul

.c1WarnLimit Set Subcounter 1 warn limit (unsigned integer
32-bit)

0ul

.c1LowerAction Set Subcounter 1 lower action to “no action”,
“fault”, or “fault then reset”:
CY_MCWDT_ACTION_NONE = 0ul
CY_MCWDT_ACTION_FAULT = 1ul
CY_MCWDT_ACTION_FAULT_THEN_RESET = 2ul

CY_MCWDT_ACTION_NONE

.c1UpperAction Set Subcounter 1 upper action to “no action”,
“fault”, or “fault then reset”:
CY_MCWDT_ACTION_NONE = 0ul
CY_MCWDT_ACTION_FAULT = 1ul
CY_MCWDT_ACTION_FAULT_THEN_RESET = 2ul

CY_MCWDT_ACTION_NONE

.c1WarnAction Set Subcounter 1 warn action to “no action”, or
“interrupt”:
CY_MCWDT_WARN_ACTION_NONE = 0ul
CY_MCWDT_WARN_ACTION_INT = 1ul

CY_MCWDT_WARN_ACTION_NONE

(table continues...)

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 23 002-19944 Rev. *G
2023-11-09

Table 4 (continued) List of MCWDT Parameters

Parameters Description Value

.c1AutoService Configure to automatically clear MCWDT when
Subcounter 1 value reaches WARN_LIMIT:
CY_MCWDT_DISABLE = 0ul
CY_MCWDT_ENABLE = 1ul

CY_MCWDT_DISABLE

.c1SleepDeepPause Enable to pause Subcounter 1 when the
corresponding CPU is in DeepSleep:
CY_MCWDT_DISABLE = 0ul
CY_MCWDT_ENABLE = 1ul

CY_MCWDT_DISABLE

.c1DebugRun Set the debugger configuration (required when
using debugger)
CY_MCWDT_DISABLE = 0ul
CY_MCWDT_ENABLE = 1ul

CY_MCWDT_DISABLE

(table continues...)

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 24 002-19944 Rev. *G
2023-11-09

Table 4 (continued) List of MCWDT Parameters

Parameters Description Value

.c2ToggleBit Select the bit to observe for a toggle:
CY_MCWDT_CNT2_MONITORED_BIT0 = 0ul
CY_MCWDT_CNT2_MONITORED_BIT1 = 1ul
CY_MCWDT_CNT2_MONITORED_BIT2 = 2ul
CY_MCWDT_CNT2_MONITORED_BIT3 = 3ul
CY_MCWDT_CNT2_MONITORED_BIT4 = 4ul
CY_MCWDT_CNT2_MONITORED_BIT5 = 5ul
CY_MCWDT_CNT2_MONITORED_BIT6 = 6ul
CY_MCWDT_CNT2_MONITORED_BIT7 = 7ul
CY_MCWDT_CNT2_MONITORED_BIT8 = 8ul
CY_MCWDT_CNT2_MONITORED_BIT9 = 9ul
CY_MCWDT_CNT2_MONITORED_BIT10 = 10ul
CY_MCWDT_CNT2_MONITORED_BIT11 = 11ul
CY_MCWDT_CNT2_MONITORED_BIT12 = 12ul
CY_MCWDT_CNT2_MONITORED_BIT13 = 13ul
CY_MCWDT_CNT2_MONITORED_BIT14 = 14ul
CY_MCWDT_CNT2_MONITORED_BIT15 = 15ul
CY_MCWDT_CNT2_MONITORED_BIT16 = 16ul
CY_MCWDT_CNT2_MONITORED_BIT17 = 17ul
CY_MCWDT_CNT2_MONITORED_BIT18 = 18ul
CY_MCWDT_CNT2_MONITORED_BIT19 = 19ul
CY_MCWDT_CNT2_MONITORED_BIT20 = 20ul
CY_MCWDT_CNT2_MONITORED_BIT21 = 21ul
CY_MCWDT_CNT2_MONITORED_BIT22 = 22ul
CY_MCWDT_CNT2_MONITORED_BIT23 = 23ul
CY_MCWDT_CNT2_MONITORED_BIT24 = 24ul
CY_MCWDT_CNT2_MONITORED_BIT25 = 25ul
CY_MCWDT_CNT2_MONITORED_BIT26 = 26ul
CY_MCWDT_CNT2_MONITORED_BIT27 = 27ul
CY_MCWDT_CNT2_MONITORED_BIT28 = 28ul
CY_MCWDT_CNT2_MONITORED_BIT29 = 29ul
CY_MCWDT_CNT2_MONITORED_BIT30 = 30ul
CY_MCWDT_CNT2_MONITORED_BIT31 = 31ul

CY_MCWDT_CNT2_MONITORED_BIT0

.c2Action Set Subcounter 2 action to “no action” or
“interrupt”:
CY_MCWDT_CNT2_ACTION_NONE = 0ul
CY_MCWDT_CNT2_ACTION_INT = 1ul

CY_MCWDT_CNT2_ACTION_NONE

(table continues...)

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 25 002-19944 Rev. *G
2023-11-09

Table 4 (continued) List of MCWDT Parameters

Parameters Description Value

.c2SleepDeepPause Enable to pause Subcounter 2 when the
corresponding CPU is in DeepSleep:
CY_MCWDT_DISABLE = 0ul
CY_MCWDT_ENABLE = 1ul

CY_MCWDT_DISABLE

.c2DebugRun Set the debugger configuration (required when
using debugger)
CY_MCWDT_DISABLE = 0ul
CY_MCWDT_ENABLE = 1ul

CY_MCWDT_DISABLE

Code Listing 18 shows an example program of the MCWDT configuration part. For details of the interrupt and
fault initial setting procedure, see the “Interrupt and Fault Report Structure” section in AN219842 listed in
Related Documents.

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 26 002-19944 Rev. *G
2023-11-09

Code Listing 18 Example Program to Configure MCWDT

cy_stc_sysint_irq_t irq_cfg =
{
 .sysIntSrc = cpuss_interrupts_fault_1_IRQn,
 .intIdx = CPUIntIdx2_IRQn,
 .isEnabled = true,
};
cy_stc_mcwdt_config_t mcwdtConfig = /* (1) Configure MCWDT Parameters */
{
 .coreSelect = CY_MCWDT_PAUSED_BY_DPSLP_CM4_CM7_0, /* Select CPU to be used for
SleepDeepPause. */
 .c0LowerLimit = 0, /* Configure WDT Subcounter 0 Parameters */
 .c0UpperLimit = 32768, /* Configure WDT Subcounter 0 Parameters */
 .c0WarnLimit = 0, /* Configure WDT Subcounter 0 Parameters */
 .c0LowerAction = CY_MCWDT_ACTION_NONE, /* Configure WDT Subcounter 0 Parameters */
 .c0UpperAction = CY_MCWDT_ACTION_FAULT, /* Configure WDT Subcounter 0 Parameters */
 .c0WarnAction = CY_MCWDT_WARN_ACTION_NONE, /* Configure WDT Subcounter 0
Parameters */
 .c0AutoService = CY_MCWDT_DISABLE, /* Configure WDT Subcounter 0 Parameters */
 .c0SleepDeepPause = CY_MCWDT_ENABLE, /* Configure WDT Subcounter 0 Parameters */
 .c0DebugRun = CY_MCWDT_ENABLE, /* Configure WDT Subcounter 0 Parameters */
 .c1LowerLimit = 0, /* Configure WDT Subcounter 1 Parameters */
 .c1UpperLimit = 0, /* Configure WDT Subcounter 1 Parameters */
 .c1WarnLimit = 0, /* Configure WDT Subcounter 1 Parameters */
 .c1LowerAction = CY_MCWDT_ACTION_NONE, /* Configure WDT Subcounter 1 Parameters */
 .c1UpperAction = CY_MCWDT_ACTION_NONE, /* Configure WDT Subcounter 1 Parameters */
 .c1WarnAction = CY_MCWDT_WARN_ACTION_NONE, /* Configure WDT Subcounter 1
Parameters */
 .c1AutoService = CY_MCWDT_DISABLE, /* Configure WDT Subcounter 1 Parameters */
 .c1SleepDeepPause = CY_MCWDT_DISABLE, /* Configure WDT Subcounter 1 Parameters */
 .c1DebugRun = CY_MCWDT_DISABLE, /* Configure WDT Subcounter 1 Parameters */
 .c2ToggleBit = CY_MCWDT_CNT2_MONITORED_BIT0, /* Configure WDT Subcounter 2
Parameters */
 .c2Action = CY_MCWDT_CNT2_ACTION_NONE, /* Configure WDT Subcounter 2
Parameters */
 .c2SleepDeepPause = CY_MCWDT_DISABLE, /* Configure WDT Subcounter 2 Parameters */
 .c2DebugRun = CY_MCWDT_DISABLE, /* Configure WDT Subcounter 2 Parameters */
};
int main(void)
{
 SystemInit();
 __enable_irq(); /* Enable global interrupts. */
 /***/
 /***** Fault report settings *****/
 /***/
 Cy_SysFlt_ClearStatus(FAULT_STRUCT1); /* (2) Clear Fault Status. */
 Cy_SysFlt_SetMaskByIdx(FAULT_STRUCT1, CY_SYSFLT_SRSS_MCWDT1); /* (3) Enable Fault MCWDT.
*/
 Cy_SysFlt_SetInterruptMask(FAULT_STRUCT1); /* (4) Enable Fault Interrupt. */
 /***/
 /***** Interrupt setting *****/

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 27 002-19944 Rev. *G
2023-11-09

 /***/
 Cy_SysInt_InitIRQ(&irq_cfg); /* (5) Setup Interrupt. */
 Cy_SysInt_SetSystemIrqVector(irq_cfg.sysIntSrc, irqFaultReport1Handler);
 NVIC_SetPriority(CPUIntIdx2_IRQn, 0); /* (6) Configure Interrupt Priority. */
 NVIC_EnableIRQ(CPUIntIdx2_IRQn); /* (7) Enable Interrupt. */
 /***/
 /***** Configuration for MCWDT *****/
 /***/
 Cy_MCWDT_DeInit(MCWDT1); /* (8) De-initialize MCWDT. */
 Cy_MCWDT_Init(MCWDT1, &mcwdtConfig); /* (9) Initialize MCWDT. */
 Cy_MCWDT_Unlock(MCWDT1); /* (10) Unlock MCWDT. */
 Cy_MCWDT_SetInterruptMask(MCWDT1, CY_MCWDT_CTR0); /* (11) Enable MCWDT Interrupt. */
 Cy_MCWDT_Enable(MCWDT1,
 CY_MCWDT_CTR0, /* (12) Enable MCWDT Counter. */
 0);
 Cy_MCWDT_Lock(MCWDT1); /* (13) Unlock MCWDT. */
 for(;;)
 {
 :
 }
}

3.7.3 Example Program to Configure the MCWDT in Driver Part
Code Listing 19 to Code Listing 24 show an example program to configure the MCWDT in the driver part.
The following description will help you understand the register notation of the driver part of SDL:
• base signifies the pointer to the MCWDT register base address. counters specifies the Subcounter within the

MCWDT. See Table 5.
• To improve the performance of the register setting procedure, the SDL writes a complete 32-bit data to

register. Each bit field is generated in advance in a bit-writable buffer and written to the register as the final
32-bit data.

tempCNT2ConfigParams.stcField.u5BITS = config->c2ToggleBit;
tempCNT2ConfigParams.stcField.u1ACTION = config->c2Action;
tempCNT2ConfigParams.stcField.u1SLEEPDEEP_PAUSE = config->c2SleepDeepPause;
tempCNT2ConfigParams.stcField.u1DEBUG_RUN = config->c2DebugRun;
base->unCTR2_CONFIG.u32Register = tempCNT2ConfigParams.u32Register;

See cyip_srss_v2.h under hdr/rev_x/ip for more information on the union and structure representation of
registers.

Table 5 List of MCWDT Parameters in Driver Part

Parameters Description Value

base Specify the MCWDT number to configure its registers:
MCWDT0
MCWDT1
MCWDT2 (only for CYT4)

MCWDT1

(table continues...)

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 28 002-19944 Rev. *G
2023-11-09

Table 5 (continued) List of MCWDT Parameters in Driver Part

Parameters Description Value

counters Specify the Subcounter to configure its registers:
CY_MCWDT_CTR0: Subcounter 0
CY_MCWDT_CTR1: Subcounter 1
CY_MCWDT_CTR2: Subcounter 2
CY_MCWDT_CTR_Msk: All Subcounters

CY_MCWDT_CTR0

Code Listing 19 Example Program to De-Initialize MCWDT in Driver Part

/* (8) De-initializes the MCWDT block, returns register values to their default state. */
void Cy_MCWDT_DeInit(volatile stc_MCWDT_t *base)
{
 Cy_MCWDT_Unlock(base); /* Unlock MCWDT Registers */

 // disable all counter
 for(uint32_t loop = 0ul; loop < CY_MCWDT_NUM_OF_SUBCOUNTER; loop++)
 {
 base->CTR[loop].unCTL.u32Register = 0ul;
 }
 base->unCTR2_CTL.u32Register = 0ul;

 for(uint32_t loop = 0ul; loop < CY_MCWDT_NUM_OF_SUBCOUNTER; loop++)
 {
 while(base->CTR[loop].unCTL.u32Register != 0x0ul); // wait until enabled bit become 1
 base->CTR[loop].unLOWER_LIMIT.u32Register = 0x0ul;
 base->CTR[loop].unUPPER_LIMIT.u32Register = 0x0ul;
 base->CTR[loop].unWARN_LIMIT.u32Register = 0x0ul;
 base->CTR[loop].unCONFIG.u32Register = 0x0ul;
 base->CTR[loop].unCNT.u32Register = 0x0ul;
 }

 while(base->unCTR2_CNT.u32Register != 0ul); // wait until enabled bit become 1
 base->unCPU_SELECT.u32Register = 0ul;
 base->unCTR2_CONFIG.u32Register = 0ul;
 base->unSERVICE.u32Register = 0x00000003ul;
 base->unINTR.u32Register = 0xFFFFFFFFul;
 base->unINTR_MASK.u32Register = 0ul;

 Cy_MCWDT_Lock(base); /* Lock MCWDT Registers */
}

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 29 002-19944 Rev. *G
2023-11-09

Code Listing 20 Example Program to Initialize MCWDT in Driver Part

/* (9) Initializes the MCWDT block according to the MCWDT configuration */
cy_en_mcwdt_status_t Cy_MCWDT_Init(volatile stc_MCWDT_t *base, cy_stc_mcwdt_config_t const
*config)
{
 cy_en_mcwdt_status_t ret = CY_MCWDT_BAD_PARAM;
 if ((base != NULL) && (config != NULL)) /* Validate configuration parameter */
 {
 Cy_MCWDT_Unlock(base); /* Unlock MCWDT Registers */
 un_MCWDT_CTR_CONFIG_t tempConfigParams = { 0ul };
 un_MCWDT_CTR2_CONFIG_t tempCNT2ConfigParams = { 0ul };

 /* Configure CPU to be used for SLEEPDEEP_PAUSE. */
 base->unCPU_SELECT.u32Register = config->coreSelect;

 /* Configure Subcounter 0 */
 base->CTR[0].unLOWER_LIMIT.stcField.u16LOWER_LIMIT = config->c0LowerLimit;
 base->CTR[0].unUPPER_LIMIT.stcField.u16UPPER_LIMIT = config->c0UpperLimit;
 base->CTR[0].unWARN_LIMIT.stcField.u16WARN_LIMIT = config->c0WarnLimit;
 tempConfigParams.stcField.u2LOWER_ACTION = config->c0LowerAction;
 tempConfigParams.stcField.u2LOWER_ACTION = config->c0LowerAction;
 tempConfigParams.stcField.u2UPPER_ACTION = config->c0UpperAction;
 tempConfigParams.stcField.u1WARN_ACTION = config->c0WarnAction;
 tempConfigParams.stcField.u1AUTO_SERVICE = config->c0AutoService;
 tempConfigParams.stcField.u1SLEEPDEEP_PAUSE = config->c0SleepDeepPause;
 tempConfigParams.stcField.u1DEBUG_RUN = config->c0DebugRun;
 base->CTR[0].unCONFIG.u32Register = tempConfigParams.u32Register;

 /* Configure Subcounter 1. */
 base->CTR[1].unLOWER_LIMIT.stcField.u16LOWER_LIMIT = config->c1LowerLimit;
 base->CTR[1].unUPPER_LIMIT.stcField.u16UPPER_LIMIT = config->c1UpperLimit;
 base->CTR[1].unWARN_LIMIT.stcField.u16WARN_LIMIT = config->c1WarnLimit;
 tempConfigParams.stcField.u2LOWER_ACTION = config->c1LowerAction;
 tempConfigParams.stcField.u2UPPER_ACTION = config->c1UpperAction;
 tempConfigParams.stcField.u1WARN_ACTION = config->c1WarnAction;
 tempConfigParams.stcField.u1AUTO_SERVICE = config->c1AutoService;
 tempConfigParams.stcField.u1SLEEPDEEP_PAUSE = config->c1SleepDeepPause;
 tempConfigParams.stcField.u1DEBUG_RUN = config->c1DebugRun;
 base->CTR[1].unCONFIG.u32Register = tempConfigParams.u32Register;

 /* Configure Subcounter 2. */
 tempCNT2ConfigParams.stcField.u5BITS = config->c2ToggleBit;
 tempCNT2ConfigParams.stcField.u1ACTION = config->c2Action;
 tempCNT2ConfigParams.stcField.u1SLEEPDEEP_PAUSE = config->c2SleepDeepPause;
 tempCNT2ConfigParams.stcField.u1DEBUG_RUN = config->c2DebugRun;
 base->unCTR2_CONFIG.u32Register = tempCNT2ConfigParams.u32Register;

 Cy_MCWDT_Lock(base); /* Lock MCWDT Registers */

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 30 002-19944 Rev. *G
2023-11-09

 ret = CY_MCWDT_SUCCESS;
 }

 return (ret);
}

Code Listing 21 Example Program to unlock MCWDT Registers in Driver Part

#define CY_MCWDT_LOCK_CLR0 (1ul)
#define CY_MCWDT_LOCK_CLR1 (2ul)
__STATIC_INLINE void Cy_MCWDT_Unlock(volatile stc_MCWDT_t *base)
{
 uint32_t interruptState;

 interruptState = Cy_SysLib_EnterCriticalSection();

 /* (10) Unlock MCWDT Registers when Interrupts are disabled. */
 base->unLOCK.stcField.u2MCWDT_LOCK = CY_MCWDT_LOCK_CLR0;
 base->unLOCK.stcField.u2MCWDT_LOCK = CY_MCWDT_LOCK_CLR1;

 Cy_SysLib_ExitCriticalSection(interruptState);
}

Code Listing 22 Example Program to enable MCWDT Interrupt in Driver Part

__STATIC_INLINE void Cy_MCWDT_SetInterruptMask(volatile stc_MCWDT_t *base, uint32_t counters)
{
 if (counters & CY_MCWDT_CTR0)
 {
 base->unINTR_MASK.stcField.u1CTR0_INT = 1ul; /* (11) Enable the MCWDT Subcounter
Interrupt. */
 }
 if (counters & CY_MCWDT_CTR1)
 {
 base->unINTR_MASK.stcField.u1CTR1_INT = 1ul;
 }
 if (counters & CY_MCWDT_CTR2)
 {
 base->unINTR_MASK.stcField.u1CTR2_INT = 1ul;
 }
}

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 31 002-19944 Rev. *G
2023-11-09

Code Listing 23 Example Program to Enable MCWDT Counter in Driver Part

__STATIC_INLINE void Cy_MCWDT_Enable(volatile stc_MCWDT_t *base, uint32_t counters, uint16_t
waitUs)
{
 if (counters & CY_MCWDT_CTR0)
 {
 base->CTR[0].unCTL.stcField.u1ENABLE = 1ul; /* (12) Enable the MCWDT Subcounter. */
 }
 if (counters & CY_MCWDT_CTR1)
 {
 base->CTR[1].unCTL.stcField.u1ENABLE = 1ul;
 }
 if (counters & CY_MCWDT_CTR2)
 {
 base->unCTR2_CTL.stcField.u1ENABLE = 1ul;
 }
 Cy_SysLib_DelayUs(waitUs);
}

Code Listing 24 Example Program to Lock MCWDT Registers in Driver Part

#define CY_MCWDT_LOCK_SET01 (3ul)
__STATIC_INLINE void Cy_MCWDT_Lock(volatile stc_MCWDT_t *base)
{
 uint32_t interruptState;

 interruptState = Cy_SysLib_EnterCriticalSection();

 base->unLOCK.stcField.u2MCWDT_LOCK = CY_MCWDT_LOCK_SET01; /* (13) Lock MCWDT Registers
when interrupts are disabled. */

 Cy_SysLib_ExitCriticalSection(interruptState);
}

3.8 Clearing the MCWDT
Clearing the MCWDT is performed by setting the CTR0_SERVICE[0] bit to ‘1’ for Subcounter 0 and the
CTR1_SERVICE[1] bit to ‘1’ for Subcounter 1. Both bits are located in the SERVICE register. The firmware must
consider reading the corresponding bit until it is ‘0’ before it can be set to ‘1’.
• Servicing of the MCWDT counter must be done regularly to ensure a stable software flow. Independent of

the software concept used, runtime calculation of software components is crucial to define the limits of the
counter to be cleared. The window mode makes it even more complex because a minimum time period
needs to be determined before which the software is not expected to service the MCWDT. This minimum
period can be, for example, the minimum execution time of a low-priority main function, and it is relevant

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 32 002-19944 Rev. *G
2023-11-09

to detect the abnormal situation such as the software continuously executing the MCWDT servicing routine
without any other code being executed.

• The procedure is equal to the basic WDT in the window mode. Refer to Figure 7 which shows an example
when the watchdog counter can be cleared within a system with different tasks. The calculation of each
service moment must consider that in window mode, the clearing is not done before the counter reaches
the LOWER_LIMIT and must not reach the UPPER_LIMIT to avoid a FAULT and reset event.

3.8.1 Use Case
This section describes an example of clearing the MCWDT using the use case discussed in Chapter 3.7.1 Use
Case.

3.8.2 Example Flow to Clear the MCWDT
Figure 11 shows an example flow to clear the MCWDT.

Start

Clear MCWDT counter Set Service bit to clear MCWDT Counter

Unlock MCWDT Registers

Lock Basic MCWDT Registers

(1)

(2)

(3)

(4)

Initialization

Main Task

Figure 11 Example Flow to Clear MCWDT

3.8.3 Example Program to Clear the MCWDT
Code Listing 25 shows an example program to clear the MCWDT.

Code Listing 25 Example Program to Clear MCWDT

int main(void)
{
:
for(;;)
{
 :
Cy_MCWDT_ClearWatchdog(MCWDT1, CY_MCWDT_COUNTER0); /* (1) Clear the MCWDT counter. */
}
}

Code Listing 26 shows an example program to clear the MCWDT counter in the driver part.

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 33 002-19944 Rev. *G
2023-11-09

Code Listing 26 Example Program to Clear MCWDT Counter in Driver Part

void Cy_MCWDT_ClearWatchdog(volatile stc_MCWDT_t *base, cy_en_mcwdtctr_t counter)
{
 Cy_MCWDT_Unlock(base); /* (2) Unlock MCWDT Registers . */
 Cy_MCWDT_ResetCounters(base, (1u << (uint8_t)counter), 0u);
 Cy_MCWDT_Lock(base); /* (4) Lock MCWDT Registers . */
}

__STATIC_INLINE void Cy_MCWDT_ResetCounters(volatile stc_MCWDT_t *base, uint32_t counters,
uint16_t waitUs)
{
 if (counters & CY_MCWDT_CTR0)
 {
 base->unSERVICE.stcField.u1CTR0_SERVICE = 1ul; /* (3) Set the Service bit to clear
the MCWDT counter. */
 }
 if (counters & CY_MCWDT_CTR1)
 {
 base->unSERVICE.stcField.u1CTR1_SERVICE = 1ul;
 }
 if (counters & CY_MCWDT_CTR2)
 {
 // No reset functionality for CTR2
 }
 Cy_SysLib_DelayUs(waitUs);
}

3.9 MCWDT Fault Handling
The four faults are combined into a single fault report. This report includes the data of which fault is triggered,
so the fault handler can record the correct fault cause. Different MCWDT instances have independent fault
reports, so they can be handled by different processors.
The initialization of fault reporting is shown in Figure 10 and Code Listing 18. As an example, Fault structure 1 is
used.
For details of the fault setting procedure, see the “Fault Report Structure” section in AN219842 listed in Related
Documents.
The fault is handled within a FAULT report handler. The MCWDT provides the following four FAULT sources:
• Lower limit Fault Subcounter 0
• Upper limit Fault Subcounter 0
• Lower limit Fault Subcounter 1
• Upper limit Fault Subcounter 1
The Fault status can be read from the related Fault structure.

3.9.1 Use Case
This section describes an example of the MCWDT fault handling using the use case discussed in Chapter 3.7.1
Use Case.

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 34 002-19944 Rev. *G
2023-11-09

3.9.2 Example Flow of MCWDT Fault Handler
Figure 12 shows an example flow of the MCWDT fault handler.

Fault Report Handler

Clear Fault Status

Read Fault Status

Clear Fault Interrupt

End

Is there any Fault in MCWDT?

Subcounter 0 Lower Limit Fault?

Subcounter 0 Upper Limit Fault?

Subcounter 1 Lower Limit Fault?

Subcounter 1 Upper Limit Fault?

Subcounter 0 Lower Limit Fault Handling
(Created by User with User System

Requirement)
Subcounter 0 Upper Limit Fault Handling

(Created by User with User System
Requirement)

Subcounter 1 Lower Limit Fault Handling
(Created by User with User System

Requirement)
Subcounter 1 Upper Limit Fault Handling

(Created by User with User System
Requirement)

Yes

Yes

No

No

No

No

No

Yes

Yes

Yes

(2)

(1)

(3)

(4)

(5)

(6)

(7)

(8)

Figure 12 Example Flow of MCWDT Fault Handler

3.9.3 Example Program of MCWDT Fault Handler
Code Listing 27 shows an example program of the MCWDT fault handler.

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 35 002-19944 Rev. *G
2023-11-09

Code Listing 27 Example Program of MCWDT Fault Handler

void irqFaultReport1Handler(void)
 {
 cy_en_sysflt_source_t status;
 uint32_t faultData;

 /* Read FAULT status from FAULT structure */
 status = Cy_SysFlt_GetErrorSource(FAULT_STRUCT1); /* (1) Read Fault Status Register
(FAULT_STRUCT1_STATUS) */

 /* Evaluation of FAULT status */
 if(status != CY_SYSFLT_NO_FAULT)
 {
 */ MCWDT1 FAULT */
 if(status == CY_SYSFLT_SRSS_MCWDT1) /* (2) Check if any Fault in MCWDT1
(FAULT_STRUCT1_STATUS.SRSS_MCWDT1) */
 {
 /* Read and evaluate FAULT source from FAULT structure */
 faultData = Cy_SysFlt_GetData0(FAULT_STRUCT1); /* Check Fault Data Register
(FAULT_STRUCT1_DATA0.[0-3]) */
 if(faultData & 0x00000001ul) /* (3) Check if Subcounter 0 Lower Limit Fault */
 {
 // Subcounter 0 lower limit fault handling created by user
 }
 else if(faultData & 0x00000002ul) /* (4) Check if Subcounter 0 Upper Limit Fault
*/
 {
 // Subcounter 0 upper limit fault handling created by user
 }
 else if(faultData & 0x00000004ul) /* (5) Check if Subcounter 1 Lower Limit Fault
*/
 {
 // Subcounter 1 lower limit fault handling created by user
 }
 else if(faultData & 0x00000008ul) /* (6) Check if Subcounter 1 Upper Limit Fault
*/
 {
 // Subcounter 1 upper limit fault handling created by user
 }
 }
 }
 /* Clear FAULT interrupt */
 Cy_SysFlt_ClearStatus(FAULT_STRUCT1); /* (7) Clear Fault Status (FAULT_STRUCT1_STATUS =
0) */
 Cy_SysFlt_ClearInterrupt(FAULT_STRUCT1); /* (8) Clear Fault Interrupt (FAULT_INTR.FAULT =
1) */
 }

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 36 002-19944 Rev. *G
2023-11-09

3.10 Reset Cause Indication for MCWDT
If the MCWDT counter is not serviced, or serviced too early, a system reset can be issued after the FAULT is not
handled in time. When the device comes out of reset, it is useful to know the cause of the reset. Reset causes
are recorded in the RES_CAUSE register. Depending on the MCWDT instance used, the reset event is stored in
the RESET_MCWDT0[5], RESET_MCWDT1[6], RESET_MCWDT2[7], and RESET_MCWDT3[8] bits in the RES_CAUSE
register. The bits in the RES_CAUSE register are set on the occurrence of the corresponding reset, and remain
set until cleared by the user software or a power-on reset (POR).

3.11 MCWDT Registers

Table 6 MCWDT Registers

Name Description

MCWDTx_CTL MCWDT Subcounter 0/1 Control Register

MCWDTx_LOWER_LIMIT MCWDT Subcounter 0/1 Lower Limit Register

MCWDTx_UPPER_LIMIT MCWDT Subcounter 0/1 Upper Limit Register

MCWDTx_WARN_LIMIT MCWDT Subcounter 0/1 Warn Limit Register

MCWDTx_CONFIG MCWDT Subcounter 0/1 Configuration Register

MCWDTx_CNT MCWDT Subcounter 0/1 Count Register

MCWDT2_CTR2_CTL MCWDT Subcounter 2 Control Register

MCWDT2_CTR2_CONFIG MCWDT Subcounter 2 Configuration Register

MCWDT2_CTR2_CNT MCWDT Subcounter 2 Count Register

MCWDT2_LOCK MCWDT Lock Register

MCWDT2_SERVICE MCWDT Service Register

MCWDT2_INTR MCWDT Interrupt Register

MCWDT2_SET MCWDT Interrupt Set Register

MCWDT2_MASK MCWDT Interrupt Mask Register

MCWDT2_MASKED MCWDT Interrupt Masked Register

CLK_SELECT Clock Selection Register

CLK_ILO_CONFIG ILO Configuration

RES_CAUSE Reset Cause Observation Register

Using the watchdog timer in TRAVEO™ T2G family MCUs

3 Multi-Counter WDT

Application note 37 002-19944 Rev. *G
2023-11-09

4 Debug Support
Both types of WDTs support different debug modes. The configuration is done with the
DEBUG_TRIGGER_ENABLE[28] and DEBUG_RUN[31] bits, which are both located in the related CONFIG register
for basic WDT and MCWDT. The WDT reset request is blocked during debug modes, while debugging through
MCWDT reset is possible using breakpoints during debug modes.

Table 7 Debug Modes

DEBUG_RUN DEBUG_TRIGGER_ENABLE Description

0 0 Counter is stopped when a debugger is connected.

0 1 Counter is stopped only when a debugger is
connected and the CPU is halted during a breakpoint.

1 x Counter is running when debugger is connected. No
reset is issued when the CPU is halted during a
breakpoint but the counter is not stopped.

Note that in each case, no reset or FAULT is issued when the debugger is connected to the target system.
To pause at a breakpoint while debugging, configure the trigger matrix to connect the related ‘CPU halted’
signal to the trigger input for the related WDT. It takes up to two LFCLK cycles for the trigger signal to be
processed. Triggers that are less than two LFCLK cycles may be missed. Synchronization errors can accumulate
each time it is halted.

Using the watchdog timer in TRAVEO™ T2G family MCUs

4 Debug Support

Application note 38 002-19944 Rev. *G
2023-11-09

5 Definitions, Acronyms, and Abbreviations
Table 8 Definitions, Acronyms, and Abbreviations

Terms Definitions

AHB Advanced High-performance Bus

CPU Central Processing Unit

CPUSS CPU subsystem

ECO High-frequency crystal oscillator

ILO0 32-kHz internal low-speed oscillator

IRQ Interrupt request

ISR Interrupt Service Routine

kHz kilohertz

LFCLK Low-frequency clock

MCWDT Multi-Counter Watchdog Timer

ms, msec milliseconds

POR Power-on reset

PPU Peripheral Protection Unit

sec second

SW Software

VDDD External high-voltage supply

WCO Low-frequency watch crystal oscillator

WDT Watchdog Timer

WIC Wakeup interrupt controller

Using the watchdog timer in TRAVEO™ T2G family MCUs

5 Definitions, Acronyms, and Abbreviations

Application note 39 002-19944 Rev. *G
2023-11-09

6 Related Documents
The following are the Traveo™ T2G family series datasheets and Technical Reference Manuals. Contact Technical
Support to obtain these documents.
• Device datasheet

- CYT2B7 Datasheet 32-Bit Arm® Cortex®-M4F Microcontroller Traveo™ T2G Family
- CYT2B9 Datasheet 32-Bit Arm® Cortex®-M4F Microcontroller Traveo™ T2G Family
- CYT4BF Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller Traveo™ T2G Family
- CYT4DN Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller Traveo™ T2G Family
- CYT3BB/4BB Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller Traveo™ T2G Family
- CYT3DL Datasheet 32-Bit Arm® Cortex®-M7 Microcontroller Traveo™ T2G Family

• Body Controller Entry Family
- Traveo™ T2G Automotive Body Controller Entry Family Architecture Technical Reference Manual (TRM)
- Traveo™ T2G Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for CYT2B7
- Traveo™ T2G Automotive Body Controller Entry Registers Technical Reference Manual (TRM) for CYT2B9

• Body Controller High Family
- Traveo™ T2G Automotive Body Controller High Family Architecture Technical Reference Manual (TRM)
- Traveo™ T2G Automotive Body Controller High Registers Technical Reference Manual (TRM) for CYT4BF
- Traveo™ T2G Automotive Body Controller High Registers Technical Reference Manual (TRM) for

CYT3BB/4BB
• Cluster 2D Family

- Traveo™ T2G Automotive Cluster 2D Family Architecture Technical Reference Manual (TRM)
- Traveo™ T2G Automotive Cluster 2D Registers Technical Reference Manual (TRM) for CYT4DN
- Traveo™ T2G Automotive Cluster 2D Registers Technical Reference Manual (TRM) for CYT3DL

• Application Notes
- AN219842 – How to Use Interrupt in Traveo™ T2G

Using the watchdog timer in TRAVEO™ T2G family MCUs

6 Related Documents

Application note 40 002-19944 Rev. *G
2023-11-09

http://www.cypress.com/support
http://www.cypress.com/support

7 Other References
Infineon provides the Sample Driver Library (SDL) including the initialization code as sample software to access
various peripherals. SDL also serves as a reference to customers for drivers that are not covered by official
AUTOSAR products. The SDL cannot be used for production purposes because it does not qualify to automotive
standards. Code snippets in this application note are part of the SDL. Contact Technical Support to obtain the
SDL.

Using the watchdog timer in TRAVEO™ T2G family MCUs

7 Other References

Application note 41 002-19944 Rev. *G
2023-11-09

http://www.cypress.com/support

Revision history
Document
version

Date of release Description of changes

** 2018-08-21 Initial release.

*A 2018-10-29 Changed target part number (from CYT2B5/B7 series to CYT2B series) in
all instances across the document.

*B 2019-02-28 Added target part number (CYT4B series) in all instances across the
document.

*C 2019-10-01 Added target part number (CYT4D series) in all instances across the
document.

*D 2020-03-02 Changed target part number (from CYT2B/CYT4B/CYT4D series to CYT2/
CYT4 series) in all instances across the document.
Added target part number (CYT3 series) in all instances across the
document.

*E 2020-06-04 Added the flow to Section 2.7, 2.8, 3.7, 3.8, 3.9.
Updated the example codes in Section 2.7, 2.8, 3.7, 3.8, 3.9.
Added the AN219842 to Section 6.
Added Section 7 (containing the information of the Sample Driver
Library).

*F 2021-03-15 Updated Figure 8.
Updated to Infineon template.

*G 2023-11-09 Template update; no content update

Using the watchdog timer in TRAVEO™ T2G family MCUs

Revision history

Application note 42 002-19944 Rev. *G
2023-11-09

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-11-09
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2023 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-ova1681539638600

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	2 Basic WDT
	2.1 Source Clock
	2.2 WDT Timer Counter
	2.3 Register Protection
	2.4 Warning Interrupt
	2.5 Timeout Mode
	2.6 Window Mode
	2.7 Basic WDT Settings
	2.7.1 Use Case
	2.7.2 Configuring the Basic WDT
	2.7.3 Example Program to Configure Basic WDT in Driver Part

	2.8 Clearing the Basic WDT
	2.8.1 Use Case
	2.8.2 Example Flow to Clear the Basic WDT
	2.8.3 Example Program to Clear the Basic WDT

	2.9 Reset Cause Indication for Basic WDT
	2.10 Basic WDT Registers

	3 Multi-Counter WDT
	3.1 Source Clock
	3.2 Register Protection in MCWDT
	3.3 MCWDT Interrupts
	3.3.1 Pre-Warning Interrupt
	3.3.2 MCWDT Subcounter 2 Interrupt

	3.4 Timeout Mode
	3.5 Window Mode
	3.6 Selecting the CPU
	3.7 MCWDT Settings
	3.7.1 Use Case
	3.7.2 Configuring the MCWDT
	3.7.3 Example Program to Configure the MCWDT in Driver Part

	3.8 Clearing the MCWDT
	3.8.1 Use Case
	3.8.2 Example Flow to Clear the MCWDT
	3.8.3 Example Program to Clear the MCWDT

	3.9 MCWDT Fault Handling
	3.9.1 Use Case
	3.9.2 Example Flow of MCWDT Fault Handler
	3.9.3 Example Program of MCWDT Fault Handler

	3.10 Reset Cause Indication for MCWDT
	3.11 MCWDT Registers

	4 Debug Support
	5 Definitions, Acronyms, and Abbreviations
	6 Related Documents
	7 Other References
	Revision history
	Disclaimer

